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Abstract 

Autonomous robots are being considered for increasingly capable roles in our society, 
such as urban search and rescue, automation for assisted living, and lunar habitat 
construction.  To fulfill these roles, teams of autonomous robots will need to cooperate 
together to accomplish complex mission objectives in uncertain and dynamic 
environments.  In these environments, autonomous robots face a host of new challenges, 
such as responding robustly to timing uncertainties and perturbations, task and coordination 
failures, and equipment malfunctions.   
  In order to address these challenges, this thesis advocates a novel planning approach, 
called temporally-flexible contingent planning.  A temporally-flexible contingent plan is 
a compact encoding of methods for achieving the mission objectives which incorporates 
robustness through flexible task durations, redundant methods, constraints on when 
methods are applicable, and preferences between methods.  This approach enables robots 
to adapt to unexpected changes on-the-fly by selecting alternative methods at runtime in 
order to satisfy as best possible the mission objectives.  The drawback to this approach, 
however, is the computational overhead involved in selecting alternative methods at 
runtime in response to changes.  If a robot takes too long to select a new plan, it could fail 
to achieve its near-term mission objectives and potentially incur damage.  
  To alleviate this problem, and extend the range of applicability of temporally-flexible 
contingent planning to more demanding real-time systems, this thesis proposes a 
temporally-flexible contingent plan executive that selects new methods quickly and 
optimally in response to changes in a robot’s health and environment.  We enable fast and 
optimal method selection through two complimentary approaches.  First, we frame 
optimal method selection as a constraint satisfaction problem (CSP) variant, called an 
Optimal Conditional CSP (OCCSP).  Second, we extend fast CSP search algorithms, 
such as Dynamic Backtracking and Branch-and-Bound Search, to solve OCCSPs.  
Experiments on an autonomous rover test-bed and on randomly generated plans show 
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that these contributions significantly improve the speed at which robots perform optimal 
method selection in response to changes in their health status and environment.  
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Chapter 1 - Introduction 

 

As Artificial Intelligence (AI) methods steadily mature, and processor speed continues to 

improve, autonomous robots are being considered for increasingly capable roles in our 

society.  Three such roles are autonomous search and rescue [24], automation for assisted 

living [32], and autonomous lunar habitat construction [3].  To fulfill these ambitious 

roles, teams of autonomous robots will need to cooperate together to accomplish complex 

mission objectives.  Traditionally, however, cooperation between robots has been 

restricted to tightly scheduled and choreographed routines involving only a small number 

of robots.  Additionally, robots have traditionally operated only in structured 

environments where changes are strictly regulated.  This will no longer be the case in 

uncertain and dynamic environments such as collapsed buildings or on the surface of the 

moon.  To operate reliably in these environments, autonomous robots face a host of new 

challenges, such as responding robustly to timing uncertainties and perturbations, task 

and coordination failures, and equipment malfunctions.  These challenges pose 

difficulties for traditional planning techniques which assume static conditions and 

predictable outcomes, leading to a need for new approaches to planning.    

 In order to address these challenges, this thesis advocates a novel planning approach, 

called temporally-flexible contingent planning [52]. A temporally-flexible contingent 

plan is a compact encoding of strategies for achieving the mission objectives which 

incorporates robustness through flexible task durations [7], redundant methods [19], 

constraints on when methods are applicable [45], and preferences between methods [45].  

This approach enables robots to adapt to unexpected changes on-the-fly by selecting 

alternative methods at runtime in order to satisfy as best possible the remaining mission 

objectives.  The drawback to this approach, however, is the computational overhead 

involved in selecting alternative methods at runtime in response to changes.  If a robot 

takes too long to select a new set of methods, it could fail to achieve its near-term mission 

objectives and potentially incur damage.  For example, consider a space probe 

performing a time-critical aero-braking maneuver.  If a thruster fails during aero-braking, 
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the probe will need to select alternative methods so that the probe performs an equivalent 

maneuver while avoiding the failed thruster.  Imagine, however, that the probe takes too 

long to select the appropriate methods and overheats while plowing too deeply into the 

atmosphere.  This scenario highlights an important point. When an autonomous robot 

takes too long to select alternative methods in response to changes at runtime, it can fail 

to accomplish its near-term mission objectives and potentially incur damage from the 

environment.  This is particularly important to avoid in critical real-time systems such as 

rescue robots and space satellites. 

 The central contribution of this thesis is to extend the range of applicability of 

temporally-flexible contingent planning to more demanding real-time systems by 

minimizing the occurrence such failures.  To achieve this, we propose a novel 

temporally-flexible contingent plan executive that selects alternative methods quickly and 

optimally in response to changes in a robot’s health status and environment.  We enable 

fast and optimal method selection through two complimentary approaches.  First, we 

frame optimal method selection as a constraint satisfaction problem (CSP) variant, called 

an Optimal Conditional CSP (OCCSP) [17,21].  Second, we extend fast CSP search 

algorithms, such as Dynamic Backtracking [13] and Branch-and-Bound Search [37], to 

solve OCCSPs.  These algorithms build upon the ideas of conflict-directed search and 

optimal heuristic search, which reason on the structure of a problem to guide the search 

towards an optimal and consistent solution.  Experiments on an autonomous rover test-

bed and randomly generated plans show that these contributions significantly improve the 

speed at which robots can perform optimal method selection in response to changes in 

their health status and environment.  

  The remainder of this chapter is organized as follows.  First, we motivate the need for 

temporally-flexible contingent planning through an example lunar exploration scenario. 

Then, we present a high-level overview of temporally-flexible contingent planning, 

followed by a statement of the problem being addressed by this thesis.  Finally, we 

describe our proposed solution approach, and give an outline for the rest of this thesis. 
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1.1 A Motivating Example 

To motivate the need for temporally-flexible contingent planning, consider NASA’s 

Vision for Space Exploration [29].  NASA intends to construct a manned base on the 

Moon by the year 2020.  To decrease mission costs and reduce Astronaut risk, NASA 

envisions several robotic precursor missions to the Moon in order to identify future lunar 

base locations and also to construct a lunar habitat before the Astronauts arrive.  In this 

ambitious example, we assume that NASA has sent two humanoid robots to the South 

Pole-Aitken Basin, and their mission is to scout out potential lunar base locations.  The 

robots have traveled to the Moon in an Apollo-style spacecraft, and to increase their 

scouting mobility, the robots’ first task upon arrival is to deploy an Apollo-style Lunar 

Roving Vehicle (LRV).  Therefore, in this example, the robotic assistants must execute 

the exact same LRV deployment sequence as the original Apollo Astronauts.  Figure 1.1 

shows an illustration of two Apollo astronauts deploying the LRV, and Figure 1.2 shows 

the original Apollo LRV deployment sequence.  First, one astronaut removes the 

insulation blanket and operating tapes.  Next, the two astronauts simultaneously lower the 

LRV and deploy the front and aft wheels by pulling on the deployment cables.  Finally, 

the astronauts unfold the seats and footrests.   

 

 

Figure 1.1: An Illustration of LRV Deployment (*courtesy of NASA) 
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 This example highlights the need for many of the capabilities of temporally-flexible 

contingent planning.  The two robots must coordinate together to accomplish a rather 

complex goal; successfully deploying the LRV.  They must operate reliably in the 

uncertain lunar environment by adapting to plan perturbations and failures such as 

stumbling over a rock, missing a rung on the ladder, and equipment malfunctions.  In 

addition, the robots must perform complex tasks in unison, such as grasping and pulling 

on the deployment cables and unfolding the seats and footrests.  The next section 

provides a high-level overview of temporally-flexible contingent planning.   

 

 

Figure 1.2: The Apollo LRV Deployment Sequence (*courtesy of NASA) 
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1.2 Temporally-Flexible Contingent Planning 

Temporally-flexible contingent planning is a novel approach towards writing and 

executing control programs for autonomous robots, which builds upon an idea called 

model-based programming [15,27].  Model-based programming enables a mission 

programmer to write control programs at a common-sense level using intuitive language 

constructs to compactly encode a robot’s capabilities, mission objectives, and 

environment.  Temporally-flexible contingent plans extend model-based programs by 

incorporating temporal-flexibility.  Temporal-flexibility is enabled through flexible time 

windows on the duration of activities, allowing autonomous robots to adapt more reliably 

to timing uncertainties and perturbations at runtime. 

 In this thesis, we encode temporally-flexible contingent plans using the Reactive 

Model-based Programming Language (RMPL) [15,49].  RMPL builds upon previous 

work in robotic execution languages, such as RAPS [9], ESL [11], and TDL [40].  Next, 

to introduce temporally-flexible contingent planning and the RMPL language, we walk 

through a simple example, depicted in Figure 1.3.  Suppose that an autonomous robot is 

tired of doing its reinforcement learning exercises and wants to take a study break for 2 to 

3 hours.   The robot knows of three redundant strategies for taking a study break: sailing, 

hiking, and watching a movie.  In Figure 1.3, the robot’s choice  

between redundant strategies is encoded using an intuitive RMPL language construct, 

called a choose operator.  In addition, each strategy may have associated constraints and 

 

 

Figure 1.3: A Temporally-Flexible Contingent Plan encoded in RMPL. 

 

study-break() [2,3] = { ;;high-level mission objective 
  parallel( 
    choose(  ;;redundant methods to choose from 

   do( sailing=1() [2,4] ) maintaining ( weather = sunny ), 
   hiking=2() [4,5], 
   do( watch-movie=3() [1.5,3] ) maintaining (weather = raining) 
 ) 

    sequence( ;;the predicted state of the environment 
      ( weather = raining ) [0,4] 
    ) 
  ) 
} 
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preferences.  For example, suppose the robot prefers sailing over hiking, and hiking over 

watching a movie.  This is encoded via the, =1, =2, and =3, preference values listed next 

to each respective strategy.  In addition, suppose the robot’s choice depends upon the 

state of the environment.  These constraints can be encoded via do-maintaining language 

constructs which constrain a strategy to be executed only while a certain maintenance 

condition holds; in this case the weather.  Also, the allowable temporal durations for each 

strategy, and for the overall mission, can be specified via numbers contained in brackets.  

For example, the overall mission objective is to take a study break for 2 to 3 hours, 

denoted [2,3], and the watch-movie strategy is known to last from 1.5 to 3 hours, denoted 

[1.5,3].  Once a strategy has been encoded in RMPL along with its associated timing 

constraints, maintenance constraints, and preferences, it is called a method.  Finally, the 

state of the environment is encoded into the plan via state assertions.  Suppose the robot 

checks the weather forecast, and the weather is predicted to rain for up to 4 hours.  This is 

encoded with the state assertion Tell(weather = raining)[0,4].  Temporally-flexible 

contingent plans can be encoded into RMPL by a mission programmer, or alternatively, 

as suggested in this example, by another autonomous entity, such as a generative planner 

[16,8].  Next, we describe how an autonomous robot executes such a plan. 

 Temporally-flexible contingent plans are executed by a temporally-flexible 

contingent plan executive as a two step, iterative process, which is depicted in Figure 1.4.  

The first step, called optimal method selection, is to choose from among the redundant 

methods, the most preferred set of methods which satisfies the timing and maintenance 

constraints.  In general, the number of possible combinations of methods to consider is 

exponential in the number choices in the plan.  To improve the speed of finding an 

optimal set of methods, an RMPL control program is first converted into an equivalent 

plan graph representation, called a Temporal Plan Network (TPN), so that network and 

graph theory algorithms can be used to quickly test its timing and maintenance 

constraints for consistency.  A detailed explanation of TPNs, and how they are checked 

for consistency, is provided in Chapter 2.  The Temporal Plan Network encoding of the 

study-break example is presented in Figure 1.5.  In this example, there is only a single 

choice with 3 alternative methods, so optimal method selection simplifies to just 

considering each method in order of preference.  First, consider the “sailing” method.   
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Figure 1.4: Execution of Temporally-Flexible Contingent Plans. 
 

Ask( weather = sunny)

Ask( weather = raining )

sailing( ) [2,4] (1)

watch-movie [1,3] (3)

Tell( weather = raining )

study-break( )

[2,5]

[ 0,4 ]

hiking( ) [4,5] (2)

Start End

Ask( weather = sunny)

Ask( weather = raining )

sailing( ) [2,4] (1)

watch-movie [1,3] (3)

Tell( weather = raining )

study-break( )

[2,5]

[ 0,4 ]

hiking( ) [4,5] (2)

Start End

 

Figure 1.5: A Temporally-Flexible Contingent Plan encoded as a TPN. 

 

Although it is the most preferred method for achieving the mission objective, it is not 

feasible, because the weather is predicted to rain.  Next, consider the “hiking” method.  

While there is no maintenance constraint regarding the weather, hiking takes at least 4 

hours to complete, exceeding the allowable duration of the study-break.  Finally, consider 
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the “watching-a-movie” method.  While it is the least preferred method, it satisfies the 

timing and maintenance constraints and is therefore selected for execution.  The methods 

selected for execution are collectively referred to as the optimal feasible plan, and are 

passed on to step 2. 

 During step 2, called plan reformulation and dispatching, an optimal feasible plan is 

prepared for execution (called reformulation) and then executed by the dispatcher.  To 

execute a plan, the dispatcher traverses the plan sending commands at appropriate times 

to the robot.  Additionally, the dispatcher continuously monitors the robot’s progress and 

immediately reports any task failures or changes in the state of the robot and environment.  

A detailed explanation of plan reformulation and dispatching is provided in Chapter 2.   

 Each time the dispatcher observes a task failure or a change in state, the currently 

selected plan is re-checked for validity.  This is accomplished by passing information 

regarding execution history, task failures, and state changes back to step 1, and invoking 

optimal method selection again.  If the previously selected plan becomes invalidated or 

suboptimal, a new optimal feasible plan will be selected for execution.  For example, 

suppose that our study-break robot, an hour into watching its movie, decides to second 

guess the ‘human’ weatherman, and looks outside to check the weather for itself.  Further 

reinforcing its distrust of human judgment, the robot sees sunny skies without a cloud in 

sight, and deduces a new state estimate: (weather = sunny)[0,4].  In general, state 

estimates can come directly from the robot’s observations, such as this one, or from a 

deductive controller [51], which infers hidden state from the robot’s observations.  The 

robot passes this new information into its contingent plan executive, re-invoking optimal 

method selection.  In this example, changing the state of the weather from raining to 

sunny revalidates the robots most preferred strategy, sailing, while simultaneously 

invalidating its current strategy, watching a movie, due to the maintenance constraints 

specified on each activity: do(sailing=1()[2,4]) maintaining (weather = sunny), 

and  do( watch-movie=3() [1.5,3] ) maintaining (weather = raining). 

 This example illustrates how a temporally-flexible contingent plan executive enables 

robots to adapt to changes by selecting alternative methods at runtime in order to satisfy 

as best possible the mission objectives.   
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1.3 Problem Statement 

In dynamic and uncertain environments, autonomous robots face a host of new 

challenges, such as responding robustly to timing uncertainties and perturbations, task 

and coordination failures, and equipment malfunctions.  To handle such failures, an 

autonomous robot needs to adapt to unexpected changes on-the-fly by selecting 

alternative methods at runtime in order to satisfy as best possible the mission objectives.  

In addition, alternative methods need to be selected quickly and optimally.  Otherwise, an 

autonomous robot could fail to achieve its near-term mission objectives or potentially 

incur damage from the environment while waiting for new methods to be selected.  To 

enable reliable operation of autonomous robots in dynamic and uncertain environments, a 

temporally-flexible contingent plan executive needs to be developed that can select 

alternative methods quickly and optimally in response to changes in a robot’s health 

status and environment.   

 

1.4 Thesis Contributions 

The central contribution of this thesis is to extend the range of applicability of 

temporally-flexible contingent planning to more demanding real-time systems.  To 

achieve this, we propose a novel temporally-flexible contingent plan executive that 

selects alternative methods quickly and optimally in response to changes in a robot’s 

health status and environment.  We enable fast and optimal method selection through two 

complimentary approaches.  First, we frame optimal method selection as a constraint 

satisfaction problem (CSP) variant, called an Optimal Conditional CSP (OCCSP).  

Second, we extend fast CSP search algorithms, such as Dynamic Backtracking (DB) and 

Branch-and-Bound Search (B+B), to solve OCCSPs.  These algorithms build upon the 

ideas of conflict-directed search and optimal heuristic search, which reason on the 

structure of a problem to guide the search towards an optimal and consistent solution.  To 

be specific, this thesis makes five key contributions, each of which reduces the number of 

candidate executions considered during optimal method selection: 
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1.)  Frames Optimal Method Selection as an Optimal Conditional CSP (OCCSP). 

- By encoding the dependencies and preferences between choices in a Temporal 

Plan Network (TPN) as activity and soft constraints, respectively, in an OCCSP, 

we can draw upon the advanced methods of constraint satisfaction to perform 

optimal method selection, in the form of search over a TPN, more efficiently. 

 

2.)  Extends Dynamic Backtracking (DB) to solve OCCSPs. 

- Through novel enhancements to the Dynamic Backtracking algorithm, we 

extend DB to solve OCCSPs by utilizing activity constraints and soft constraints 

to quickly prune infeasible and suboptimal regions of the search space. 

 

3.)  Enables Conflict-directed Search of TPNs 

 - We develop a conflict-directed candidate execution generator that uses  

  temporally inconsistent and sub-optimal partial executions, called conflicts, to  

  guide optimal method selection to an optimal, complete, and consistent execution.  

 

4.)  Develops a Tight Bound for Branch and Bound Search of TPNs. 

- We develop a method which exploits the hierarchical structure of a TPN to 

tighten the lower bound computed during Branch and Bound search. 

 

5.)  Develops a Relaxed Union Operator for TPNs. 

- We develop a relaxed union operator that enables early detection of temporal 

conflicts in TPNs.  

 

6.)  Extracts Focused Temporal Conflicts from TPNs. 

- First, we develop a method to identify irrelevant variable-value assignments in a 

temporal conflict.  Then, we develop a method to identify large sets of irrelevant 

variable-value assignments in a temporal conflict.  This capability enables us to 

significantly focus conflict-directed search of TPNs. 
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 Experiments performed on an autonomous rover test bed and on randomly generated 

plans show that these contributions significantly improve the speed at which robots can 

perform optimal method selection in response to changes in their health status and 

environment.  

 

1.5 Thesis Layout 

This thesis is organized as follows.  Chapter 2 provides required background information 

and summarizes several areas of related research.  Chapter 3 introduces temporally-

flexible contingent planning.  Chapter 4 frames optimal method selection as an OCCSP.  

Chapter 5 extends the DB algorithm to solve OCCSPs. Chapter 6 introduces four 

techniques for improving TPN search efficiency.  Chapter 7 provides an empirical 

evaluation, discussion of the results, implementation details, recommendations for future 

work, and conclusions. 
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Chapter 2 – Background and  

Related Work 
 

The ideas developed in this thesis build upon previous work from several areas of 

research: hierarchical task network (HTN) planning, continuous planning, temporally-

flexible planning, and constraint satisfaction.  This chapter summarizes relevant topics 

from each of the aforementioned research areas. 

 

2.1 Continuous Planning, HTN Planning, and Temporally-Flexible 

Planning 

Temporally-flexible contingent planning combines previous work in continuous planning, 

hierarchical task network (HTN) planning, and temporally-flexible planning.  In this 

section, we briefly discuss related work in each of these areas. 

 Continuous planning enables robust plan execution in uncertain and dynamic 

environments by considering plans as open-ended and continuously evolving in response 

to changes.  Continuous planners, such as Aspen [34] and CPEF [28], enable fast 

adaptation of plans through correctness-preserving methods and fast plan repair 

techniques such as dependency-structure maintenance [28] and incremental reasoning 

[38,7]. 

 Hierarchical task network (HTN) planners enable fast online planning by limiting the 

search for valid plans to a predefined library of strategies.  To incorporate robustness into 

HTN planners, such as SHOP2 [30] and Aspen [34], strategies are encoded hierarchically 

within redundant methods for achieving a goal.  In this way, an exact strategy to achieve 

each goal is not picked beforehand, but instead is hierarchically decomposed at run-time 

to ensure that the plan executes correctly given the state of the environment. 

 Temporally-flexible planners, such as HSTS [25] and Kirk [18], enable robust plan 

execution by incorporating temporal flexibility into plan specifications.  These planners 
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are able to adapt to timing uncertainties and perturbations at runtime by only imposing 

those temporal constraints required to guarantee a plan’s success, leaving flexibility in 

the execution time of activities.  This flexibility is then exploited, in order to adapt to 

uncertainty, by delaying the scheduling of each activity until it is executed.  Temporally-

flexible plans are enabled via simple temporal constraints, which bound the minimum 

and maximum duration of an activity, and were first introduced by Dechter, Meiri, and 

Pearl [7], called simple temporal problems (STPs).  Fast and efficient execution of STPs 

was pioneered by Muscetolla et. al. via a novel reformulation algorithm [26].   In related 

work, STPs have been extended to specify preferences over when within the allowable 

time interval an activity is completed, as well as to support arbitrary disjunctions of 

simple temporal constraints, called disjunctive temporal problems with preferences 

(DTPP) [31].  In addition, recent work has mapped DTPPs to meta-weighted CSP 

problems [23].  Next we review relevant concepts in constraint satisfaction. 

 

2.2 Constraint Satisfaction 

In this section we summarize relevant topics in constraint satisfaction.  Specifically, we 

review the Constraint Satisfaction Problem (CSP), the Chronological Backtracking (BT) 

and Dynamic Backtracking (DB) search algorithms for solving CSPs, and the Optimal 

Conditional CSP (OCCSP).  In Chapter 4, optimal method selection is framed as an 

OCCSP, and in Chapter 5, Dynamic Backtracking is extended to solve OCCSPs.   

 To improve the uniformity and readability of this thesis, every algorithm that appears 

in this thesis is presented using a common generate and test framework and pseudocode, 

which is described in detail in Section 2.2.2.  

 

2.2.1 Constraint Satisfaction Problem (CSP) 

Constraint satisfaction problems (CSP) are a simple yet powerful formalism used 

extensively to solve combinatorial problems.  Much effort has gone into developing fast 

search algorithms to solve CSPs.  A few such algorithms are chronological backtracking, 

dynamic backtracking, forward checking, and arc-consistency [33, 13, 20, 14].  CSPs 
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have proven useful in a variety of application areas such as diagnosis, planning and 

scheduling, product configuration, and design [51, 7, 8, 43].  The definition of a CSP is 

provided below in Definition 2.1.  An assignment is a solution to a CSP if it assigns a 

value to every variable in the CSP and is also consistent with the problem’s constraints, 

CC.  In practice, a CSP is solved by repeatedly extending a partial assignment of variables 

to values and by checking that partial assignment against the problem’s constraints.  

Definitions of partial assignment and CSP solution are provided next in Definitions 2.2 

and 2.3, respectively.   

 

Definition 2.1 - CSP 

A CSP is a tuple CCVI ,, , where { }niiI ,,, 21 K=  is a set of variables each with a 

nonempty domain { }mvvvv ,,, 21 K=  of possible values.  },...,,{ 21 kC CCCC =  is a set of 

constraints such that each constraint iC  involves some subset of the variables and 

specifies allowable combinations of values for that subset.  An assignment of values to 

variables { }K,, jjii vivi ==  is a full assignment if it assigns a value to every variable in 

I , and is a partial assignment if it assigns a value to only a subset of the variables.  For a 

partial assignment ,P we will denote by P̂  the set of variables assigned values by .P   

 

Definition 2.2 – Solution to a CSP 

A solution, *,I  to a CSP is a full assignment to I  that satisfies each constraint CCc∈ .     

 

2.2.2 Generate and Test Framework 

Each search algorithm described in this thesis uses a similar generate and test procedure 

to construct solutions.  Therefore, to enhance uniformity, we use the same high-level 

pseudocode to describe each algorithm.  The pseudocode used in this thesis was 

originally used by Ginsberg in [13] to describe Chronological Backtracking, 

Backjumping, Conflict-directed Backjumping, and Dynamic Backtracking, all within a 

uniform setting.  In Ginsberg’s generate and test framework, partial assignments are 
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generated by assigning values to unassigned variables, and then tested for consistency 

against the problem’s constraints.  If a partial assignment is inconsistent with the 

problem’s constraints, then a subset of that partial assignment which gives rise to the 

inconsistency, called a conflict, is returned as the cause of the problem.  The definition of 

conflict is summarized in Definition 2.3.    

 

Definition 2.3 - Conflict 

A partial assignment, P , is a conflict if and only if there is no CSP solution containing P .  

Conflicts are often and interchangeably called nogoods. 

 

 Next, we provide two additional definitions which allow us to present Chronological 

Backtracking and Dynamic Backtracking within a uniform setting. 

 

Definition 2.4 – Eliminating Explanation 

Given a partial assignment P  to a CSP, an eliminating explanation for a variable i is a 

pair ( )Pvi ˆ,≠ .   

 

 The intended meaning of Definition 2.4, an eliminating explanation, is that i  cannot 

take the value v  because of the values already assigned to P .  An eliminating 

explanation can be viewed as a conflict written in a directed form.  For example, if the 

partial assignment },,{ 332211 vivivi === is a conflict, it can be written in the directed 

form, ,},{ 332211 vivivi ≠→==  and corresponds to the eliminating explanation 

( ),},{, 2133 iivi ≠  where }.,{ˆ
21 iiP =  

 

Definition 2.5 – Elimination Mechanism, ),( iPε  

An elimination mechanism ),( iPε  for a CSP is a function that accepts as arguments a 

partial assignment, P , and a variable .P̂i∉   The function returns a (possibly empty) set 

),( iPEi ε=  of eliminating explanations for i .  An elimination mechanism tries to extend 

a partial solution, P , by assigning each possible value v  for a variable i , and returns a 
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reason for each value assignment that isn’t consistent with P.  For a set iE  of eliminating 

explanations, iÊ  denotes all values that have been identified as eliminated for i while 

ignoring the variables P̂  that explain the elimination.  For example, ),(ˆ iPε  returns just 

the values eliminated by ),( iPε , and ).,(ˆˆ iPEi ε=  

 

 In the next two sections, we describe Chronological Backtracking and then Dynamic 

Backtracking. 

 

2.2.3 Chronological Backtracking (BT) 

Chronological backtracking (BT) ensures a complete and systematic search of a CSP, by 

always expanding a search node’s children before expanding its siblings.  The algorithm 

has a linear space complexity and an exponential time complexity in the number of 

variables.  Although simple to implement, it often suffers from a condition called 

“thrashing”.  Thrashing occurs when the algorithm repeatedly explores large portions of 

the search space unnecessarily.  This condition worsens as the problem space gets larger, 

and can cause BT to perform very poorly on some problems, called extremely hard 

instances (EHI’s) [2].  In addition, BT’s performance can vary greatly depending upon 

the order in which variables are assigned.  The pseudocode for BT is presented next in 

Algorithm 2.1.   

 

 

 

 

 

 

 

 

 

 



 27

 

Algorithm 2.1 - Chronological Backtracking Pseudocode (BT) [13] 

1. Take as input a CSP, CCVI ,, .  Set .∅=P   P is a partial solution to the CSP.  Set 

∅=iÊ  for each iEIi ˆ.∈  is the set of values that have been eliminated for variable i. 

  

2. If ,ˆ IP =  so that P assigns a value to every element in I, it is a solution to the original 

problem.  Return it.  Otherwise, select a variable PIi ˆ−∈   Set ( ),,ˆˆ iPEi ε=  the 

values that have been eliminated as possible choices for i. 
 

3. Set ,ˆ
ii EVS −=  the set of remaining possible values for i.  If S is nonempty, choose 

an element .Sv∈   Add ),( vi  to P, thereby setting i’s value to v, and return to Step 2. 

 

4. If S is empty, clear iÊ  and let ),( jvj  be the last entry in P; if there is no such entry, 

return failure.  Remove ),( jvj  from P, add jv  to jÊ , set i = j and return to Step 3. 

 

2.2.4 Dynamic Backtracking (DB) 

Dynamic backtracking (DB) [13] ensures a complete, systematic, and memory-bounded 

search of the state space, while leveraging conflicts to only generate candidate 

assignments that resolve all stored conflicts [41,10].  When DB encounters a dead-end, it 

utilizes a backjumping resolution step, Proposition 2.1, to backjump directly to the source 

of the inconsistency, thus reducing the “thrashing” behavior common to BT.  In addition, 

DB dynamically reorders the partial solution when backjumping in order to preserve as 

much intermediate conflict information as possible.  Search failure is indicated when the 

backjumping resolution step returns an empty conflict, indicating that all domain values for 

a variable are inconsistent with the problem’s constraints.  DB requires O(i2v) space where 

i is the number of variables, and v is the largest domain size.  The notation used in 

Proposition 2.1 is from [44].  The pseudocode for DB is given in Algorithm 2.2.  For 

clarity, the differences between BT and DB are highlighted in grey. 
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Proposition 2.1 - Backjumping Resolution Step 

Let i  be a variable with domain, },,,,{ 21 mvvvv K=  and let mPPP ,,, 21 K  be partial 

assignments that do not include i.  If, 

( ){ } ( ){ } ( ){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ K   

are all conflicts, then,  

mPPP ∪∪∪ K21  

is also a conflict. 

 

Algorithm 2.2 - Dynamic Backtracking Pseudocode (DB) [13] 

1. Take as input a CSP, CCVI ,, .  Set ∅== iEP  for each .Ii∈  

2. If ,ˆ IP =  return P.  Otherwise, select a variable .P̂Ii −∈   Set ).,( iPEE ii ε∪=  

3. Set .ˆ
ii EVS −=   If S is nonempty, choose an element .Sv∈   Add ),( vi  to P and 

return to step 2. 
 

4. If S is empty, we must have ;ˆ
ii VE =  let E be the set of all variables, P̂ , 

appearing in the explanations of each elimination explanation, ( )Pvi ˆ,≠  for each 

iEv ˆ∈ . 

 

5. If ,∅=E  return failure.  Otherwise, let ),( jvj  be the last entry in P such that 

.Ej∈   Remove ),( jvj from P and, for each variable k assigned a value after j, 

remove from kE  any eliminating explanation that involves j.  Set 

( ){ }PEvjPEE jjj
ˆ,),( ∩∪∪= ε  

 so that jv  is eliminated as a value for j because of the values taken by variables 

in .P̂E ∩   The inclusion of the term ),( jPε  incorporates new information from 

variables that have been assigned values since the original assignment of jv to j.  

Now set i = j and return to step 3. 

* The differences between Chronological Backtracking (BT) and Dynamic 

Backtracking (DB) are highlighted in grey. 



 29

To intuitively explain the DB algorithm, we use a simple map coloring example, 

which is paraphrased from [13].  We indicate the paraphrased text with indentations in 

both margins: 

 

Consider a map with five countries: Albania, Bulgaria, Czechoslovakia, 

Denmark and England.  Each country must be assigned a color, subject to 

the constraint that bordering countries can’t be assigned the same color. 

  

A
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D

E

Available Colors:

Red

Yellow

Blue

Map:

A

B

C

D

EA

B
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Red

Yellow

Blue

Map:

 

Figure 2.1: A Map Coloring Example 

 

Figure 2.1 illustrates shared borders, and each country is abbreviated with 

its starting letter.  To start, we color Albania red and then Bulgaria yellow.  

Next, we consider Czechoslovakia.  Czechoslovakia can’t be colored red, 

since it borders Albania (which is already colored red), hence we 

eliminate red from Czechoslovakia’s domain and record Albania as the 

reason.  Instead, we color Czechoslovakia blue.  DB keeps track of all 

relevant search information in an elimination table, as shown in Figure 2.2. 
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Figure 2.2: Recording the first Elimination Explanation 
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Now, we look at coloring Denmark.  Denmark can’t be colored red, 

because of Albania, or yellow, because of Bulgaria, hence we color it blue.  

But now we’ve reached a dead end.  England cannot be colored any color 

because it borders Albania, Bulgaria, and Denmark.  The updated 

elimination table is shown in Figure 2.3.  To resolve this problem, DB 

merges each of England’s elimination explanations into a new conflict, 

{ },,, DBA  using the backjumping resolution step described in Proposition 

2.1.  Then, the most recently instantiated variable in the new conflict 

(Denmark) is unassigned, and any eliminating explanation involving that 

variable is removed.  The updated elimination table is shown in Figure 2.4. 
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Figure 2.3: England’s domain is exhausted. 
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Figure 2.4: Denmark’s color assignment is retracted. 

 

DB then turns the conflict, { },,, DBA  into an elimination explanation for 

Denmark, { }( ),,, BAblueD ≠  as described in Definition 2.5.  This new 

elimination explanation is used to eliminate the value blue from 

Denmark’s domain, and any elimination explanation involving Denmark 
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is removed from the elimination database.  The updated elimination table 

is shown in Figure 2.5.  
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Figure 2.5: Bulgaria’s color assignment is retracted. 

 

Now DB has encountered another dead end, Denmark’s domain has been 

exhausted.  Therefore, DB employs the backjumping resolution step again, 

and merges each of Denmark’s eliminating explanations together to 

construct a new conflict }.,{ BA   DB then eliminates red from Bulgaria’s 

domain, { }( ),, AredB ≠  since Bulgaria was the most recently instantiated 

variable in the conflict },,{ BA via Definition 2.5.  Bulgaria is 

subsequently assigned a new color, yellow, and the updated elimination 

table is shown in Figure 2.6.  Note that DB is able to skip over changing 

Czechoslovakia’s variable assignment even though it was instantiated after 

Bulgaria.  Instead, DB simply switches the instantiation orders of Bulgaria 

and Czechoslovakia.  This is referred to as dynamic variable reordering, 

and is the key innovation of DB. 
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Figure 2.6: Dynamic Variable Reordering (Bulgaria and Czechoslovakia). 
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The problem is now trivially solved by coloring Bulgaria red, Denmark 

yellow, and England blue.  As Ginsberg [13] points out, “the thing to note 

is that when we changed the color for Bulgaria, we retained both the blue 

color for Czechoslovakia and the information indicating that none of 

Czechoslovakia, Denmark and England could be red.  In more complex 

examples, this information may be very hard-won and retaining it may 

save us a great deal of subsequent search effort.” 

 

2.2.5 Optimal Conditional CSP (OCCSP) 

Here we present a hybrid CSP formalism that combines the conditional constraint 

satisfaction problem (CCSP) and the optimal constraint satisfaction problem (OCSP).  

This hybrid, called an OCCSP, is presented below in Definition 2.6.   

 

Definition 2.6 - Optimal Conditional CSP (OCCSP) 

An OCCSP is formally defined as a 6-tuple )(,,,,, PfCICVI AIC .  Where,  

• { }niiiI ,,, 21 K= , is a set of all variables which may appear in the problem. 

• { }nvvvv ,,, 21 K= , is afinite domain corresponding to each variable in I. 

• CC , represents the set of all constraints to be satisfied. 

• II I ⊆ , is a set of non-empty initially active variables. 

• AC , is a set of activity constraints (Definition 2.7) describing when variables 

become active. 

• ),(Pf  is a multi-attribute cost function, ( )∑
∈

=
Pvi

i vfPf
),(

)( , that sums together 

the costs of individual variable value assignments, ( ) ℜ∈∈ ii Vvf  for every 

Ii∈ that is assigned a value, ivv∈ , in the partial assignment P. 
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Definition 2.7 – Activity Constraint 

An activity constraint is an expression of the form ),( kiactiveAC →  where AC  

represents an assignment of values to variables,{ },,,11 jj vivi == K  and is the condition 

under which variable ki  becomes active. [22]   

 

 When a variable becomes active, that variable must subsequently be assigned a value 

which is consistent with all other variable-value assignments.  If all of an activity 

constraint’s conditions, ,AC  are met but the activated variable, ki , is not assigned a value, 

then that activity constraint is said to be unsatisfied.  If all of an activity constraint’s 

conditions, ,AC  are met and the activated variable, ki , is assigned a value, then that 

activity constraint is said to be satisfied. 

 

Definition 2.8 – Solution to an OCCSP. 

The optimal solution to an OCCSP, *I , is defined as:  

( ) satisfiedisCcandsatisfiedisCctsII AaCc ∈∀∈∀= ..minarg* . 

 

 The OCCSP formalism presented here has also been referred to as an activity-based 

Dynamic Preference CSP (aDPCSP) [21,17].  However, in this thesis we choose the 

naming convention Optimal Conditional CSP to reflect the conditionally active nature the 

variables [35], and to reflect the optimization being performed.  In [17], the A* search 

algorithm and an order-of-magnitude preference logic were extended in order to solve 

OCCSPs more efficiently.  In Chapter 4, we extend Dynamic Backtracking to solve 

OCCSPs with the same motivation, to improve the speed at which OCCSPs can be solved. 

 

A Simple Example of an OCCSP: 

To give a simple example of an OCCSP, we introduce a simple car configuration task 

commonly employed in the CCSP literature [22].  In this example, the car buyer’s 

objective is to minimize the cost of the vehicle subject to the car dealer’s configuration 

requirements, shown in Figure 2.7.  The car buyer must choose from Base Package (B) 

one of three values {luxury, standard, convertible}.  Choosing luxury activates the 
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options Air-Conditioning (A) and Sunroof (S), while choosing standard activates no 

additional options, and choosing Convertible (C) activates the options Hardtop (H) and 

Ragtop (R).  Each base package and option has an associated cost.  Each option has a 

corresponding activity constraint:    

 

),(1{ AactiveBC A →==   ),(1 SactiveB →=   ),(3 RactiveB →=   )}.(3 HactiveB →=    

 

 In addition, the car buyer does not want a sunroof, so there are two compatibility 

constraints: }.21{ ≠∧≠= SSCC   The preferences, which are costs associated with 

variable-value assignments, in this example are:  

 

,9}1{{ →== BC S ,10}2{ →=B ,9}3{ →=B ,2}2{ →=A ,3}1{ →=S ,2}2{ →=S  ,2}2{ →=H  

,3}1{ →=R }.2}2{ →=R  

 

 
Variable Activates: Cost $

1.)  luxury airConditioning, 
sunroof $9 K

2.) standard - $10 K
3.) convertible ragtop, hardtop $9 K
1.) no - $0 K
2.) yes - $2 K
1.) tint - $3 K
2.) no tint - $2 K
1.) no - $0 K
2.) yes - $2 K
1.) automatic - $3 K
2.) manual - $2 K

(H) hardtop

(R) ragtop

(B) base 
package

Values

(S) sunroof

(A)  Air- 
Conditioning

 

Figure 2.7: An example OCCSP, a car buyer’s configuration task. 

 

 

Next, in Chapter 3, we describe Temporally-Flexible Contingent Planning.   
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Chapter 3 – Temporally-Flexible 

Contingent Planning 
 

The Model-based Embedded and Robotic Systems Group at MIT has designed a 

temporally-flexible contingent plan executive, called Kirk [18].  A diagram of Kirk’s 

planning architecture, initially shown in Figure 1.4, is shown again for convenience in 

Figure 3.1.  Kirk takes as input a temporally-flexible contingent plan, encoded in the 

Reactive Model-based Programming Language (RMPL) [15].  To enable fast online 

execution, Kirk translates an RMPL plan into a temporally-flexible plan graph called a 

Temporal Plan Network (TPN).  Kirk then searches the TPN to determine an optimal set 

of methods for accomplishing the mission objectives, called optimal method selection.  In 

addition, Kirk can adjust the plan as necessary, in response to changes in state and task 

failures during execution, to ensure that a robot always optimally achieves its mission 

objectives.  In this chapter, we describe temporally-flexible contingent planning in more 

detail.  The central focus of this thesis, developed in Chapters 4 through 6, is to improve 

the speed at which Kirk performs Step 1, optimal method selection. 
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Figure 3.1:  Kirk: A Temporally-Flexible Contingent Plan Executive. 
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 The remainder of this chapter is organized as follows.  First, we describe the language 

in which Kirk understands its input plan, called the Reactive Model-Based Programming 

Language (RMPL).  Then, we describe Kirk’s temporally-flexible plan specification, 

called a Temporal Plan Network (TPN), which enables fast online execution of RMPL 

programs.  Finally, we describe Kirk’s underlying planning algorithms, which perform 

optimal method selection, and plan reformulation and dispatching. 

 

3.1 Reactive Model-based Programming Language (RMPL) 

To encode temporally-flexible contingent plans compactly, RMPL supports many 

intuitive language constructs, such as: parameterized commands with cost, state 

assignments, temporally-flexible duration constraints, sequential and parallel composition, 

non-deterministic choice, conditional and pre-emptive execution, and maintenance 

constraints.  Each construct is shown, respectively, in Figure 3.2, and is described briefly 

in the following paragraph.  A more thorough description of these constructs is available 

in [50]. 

 

 

Figure 3.2: RMPL Constructs Supported by the Kirk Planner. 

A := a( p1, p2, … )=c | 
     s | 
     A [lb,ub] |  
     sequence ( A, A’, … ) | 
     parallel ( A, A’, … ) | 
     choose ( A, A’, … ) | 
     if s then A else A’ | 
     when s then A | 
     do A maintaining s | 
     do A watching s  
 
a := primitive activity or command 
p := activity parameter 
c := cost associated with activity 
s := assignment to state variable   
     of the form (xi = vi) 
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 The RMPL language supports two primitive constructs, commands and state 

assignments.  A command, a( p1, p2, … )=c, is a function call that the robot can directly 

interpret and execute.  Each p is a function parameter passed to the robot with the 

function call, and c is the cost to be incurred by executing that activity.  A state 

assignment, s, is an assignment to a state variable, xi = vi, where xi is a state variable and 

vi is an element of xi’s domain.  Kirk uses state assignments for two purposes, state 

assertions and state queries.  A state assertion declares that a state variable will hold a 

particular value from its domain for a specified duration of time.  A state query is used in 

conjunction with maintenance constraints to ensure that a certain state constraint is 

satisfied.  The upper case letter A denotes well-formed RMPL expressions.  A[lb,ub] is 

the basic construct for expressing flexible timing requirements, and implies that A must 

not finish executing before lb time units, and must finish executing before ub time units. 

 

 

Figure 3.3: LRV Deployment Example encoded in RMPL 

LRV-deployment-sequence() [5,20] = {
 sequence(  
   R1.remove(insulation-blanket)=1 [1,3],  
   R1.remove(operating-tapes)=1 [1,3]  
   parallel( 
     R2.pull(reel)=3 [1,5], 
     reel = in-tension [1,5], 
     do( 
         sequence(  
           R1.deploy(aft-wheels)=2 [0.5,2], 
           R1.deploy(front-wheels)=2 [0.5,2]) 
     )maintaining ( braked-reel = in-tension ) 
   ) 
   parallel( 
      choose( 
        parallel( 
          R1.unfold(seats)=2 [1,5], 
          R1-status = unfolding-seats [1,5] ) 
        parallel( 
          R1.unfold(footrests)=3 [1,5], 
          R1-status = unfolding-footrests [1,5]) 
      ) 
      if( R1-status = unfolding-seats ) 
        R2.unfold(footrests)=2 [1,5], 
      else( 
        R2.unfold(seats)=3 [1,5] 
      ) 
   ) 
 ) 
} [5,20] 
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The parallel and sequence constructs are for concurrent and sequential tasks, and choose 

is used to express multiple strategies and contingencies.  If (c) then (A) else (A’) 

provides the construct for conditional execution, and when(c) then (A) provides the 

construct for reactive execution.  Do (A) maintaining (c) and do (A) watching (c) act as 

maintenance conditions.  Maintenance conditions monitor a state assignment, c, such as 

{power = on}, for the duration of an enclosed sub-plan, A, and halts execution of the sub-

plan if c is violated. 

 As an example, we provide an RMPL encoding of the LRV deployment scenario in 

Figure 3.3.  Each command of the form R1.command( ) is to be performed by robot #1, 

and each command of the form R2.command( ) is to be performed by robot #2.  The 

sequence and parallel constructs provide the basic building blocks to piece together the 

network of commands, the do maintaining construct ensures simultaneous lowering and 

deployment of the LRV, and the if else construct allows for conditional execution, for 

example, robot #2 will unfold the footrests if robot #1 is unfolding the seats, and vice 

versa.  In addition, a cost is associated with each command, for example, it costs more for 

robot #1 to unfold the footrests than for robot #2 to unfold the footrests. 

 

3.2 Temporal Plan Network (TPN) 

To support fast online planning, Kirk converts an RMPL program into a temporally-

flexible plan graph, called a Temporal Plan Network (TPN) [52].  A TPN represents all 

possible executions of an RMPL program over a finite window.  Like RMPL, a TPN 

supports all of the language constructs listed in Figure 3.2.  Figure 3.4 presents the 

mapping from RMPL to TPN.  There are several aspects of the mapping from RMPL to 

TPN worth noting: state assertions are qualified with the statement Tell( xi = vi ), state 

queries are qualified with the statement Ask(xi = vi ), and all arcs with no time bounds in 

a TPN are assumed to have [0,0] time bounds.   

To give an example of how an RMPL program is represented as a TPN, the LRV 

deployment example is converted into a TPN in Figure 3.5.  The corresponding RMPL 

specification is in Figure 3.3.   
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[ lb , ub ] (c)

sequence ( TPN1 , TPN2 , … )

parallel ( TPN1 , TPN2 , … )

choose ( TPN1 , TPN2 , … )

a(p1,p2,...)=c  [ lb , ub ]

TPN1

TPN2
…

TPN1 TPN2 …

TPN1

TPN2
…

if (s) then ( TPN1 ) 

else ( TPN2 )

s  [ lb , ub ]
[ lb , ub ]

Tell (s)

when ( s )  then  (TPN1)

a(p1,p2,…)

do  ( TPN1 )  maintaining  (s)
do  ( TPN1 )  watching  (s)

TPN1

TPN2

Ask (s)

Ask (not(s))

Ask (s)
[0,0]

TPN1

[0,0]

TPN1

Ask (s) [0,0]

[ lb , ub ] (c)

sequence ( TPN1 , TPN2 , … )

parallel ( TPN1 , TPN2 , … )

choose ( TPN1 , TPN2 , … )

a(p1,p2,...)=c  [ lb , ub ]

TPN1

TPN2
…

TPN1 TPN2 …TPN1 TPN2 …

TPN1

TPN2
…

TPN1

TPN2
…

if (s) then ( TPN1 ) 

else ( TPN2 )

s  [ lb , ub ]
[ lb , ub ]

Tell (s)
[ lb , ub ][ lb , ub ]

Tell (s)

when ( s )  then  (TPN1)

a(p1,p2,…)

do  ( TPN1 )  maintaining  (s)
do  ( TPN1 )  watching  (s)

TPN1

TPN2

Ask (s)

Ask (not(s))

Ask (s)
[0,0]

TPN1

[0,0]

TPN1

Ask (s) [0,0][0,0]

TPN1

Ask (s) [0,0]
 

Figure 3.4: Mapping from RMPL to TPN. 
 

Ask( reel = in-tension)

R1.deploy( 
front-wheels)

R1.deploy(
aft-wheels)

[0.5,2] (2)
R1.remove(
insulation-
blanket )

[1,3] (1)

R1.remove(
operating-

tapes)

[1,3] (1)

R2.pull(reel)

[1,5] (3)

[0.5,2] (2)

Tell( R1-status = 
unfolding-seats)

Tell( reel = in-tension) [1,5]

R2.unfold(footrests)

[1,5] (2)

R2.unfold(seats)

[1,5] (3)

Ask( R1-status = 
unfolding-seats)

Ask( not( R1-status 
= unfolding-seats) )

R1.unfold(seats)

[1,5] (2)

Tell( R1-status = 
unfolding-footrests)

R1.unfold(footre sts)

[1,5] (3)

[1,5]

[1,5]

 
Figure 3.5: TPN encoding of the LRV deployment example. 
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3.3 Optimal Method Selection 

To improve robustness, RMPL allows a mission programmer to specify redundant 

methods for accomplishing mission objectives [19], preferences between methods [45], 

and maintenance constraints on when methods are applicable [19].  Because of these 

features, an RMPL program is a non-deterministic program which represents many 

possible alternatives, called candidate executions, for achieving the mission objectives.  

Not all candidate executions are guaranteed to optimally achieve the mission objectives, 

however.  Some candidate executions will violate timing constraints or maintenance 

constraints, while still others will satisfy the constraints, but do so sub-optimally.  In Kirk, 

the process of finding an optimal, consistent, and complete execution of an RMPL 

program is called optimal method selection and occurs in four phases, as depicted in 

Figure 3.6. 

 

Temporal Plan Network

Phase 1 Candidate Execution Generation

Optimal, Complete, 
and Consistent Execution

Candidate Execution

Plan Runner

RMPL TPN
Compiler

Commands

Candidate Execution

Mission Programmer

RMPL
Program

Robot

Backtracking

Optimal Method Selection

Backtracking
Consistent Candidate Execution

Observations

Backtracking

Execution History,
Failed Activities,
Changes in State

Reformulation and Dispatching

Phase 2 Temporal Consistency Check

Phase 3 Symbolic Consistency Check

Phase 4 Completeness and Optimality Check
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and Consistent Execution

Candidate Execution

Plan Runner

RMPL TPN
Compiler

Commands

Candidate Execution

Mission Programmer

RMPL
Program

Robot

Backtracking

Optimal Method Selection

Backtracking
Consistent Candidate Execution

Observations

Backtracking

Execution History,
Failed Activities,
Changes in State

Reformulation and Dispatching

Phase 2 Temporal Consistency Check

Phase 3 Symbolic Consistency Check

Phase 4 Completeness and Optimality Check

 

Figure 3.6: Optimal Method Selection. 
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 In order to perform optimal method selection efficiently via graph-based algorithms, 

Kirk first compiles an RMPL program into a TPN, as described in Section 3.2.  Then, 

Kirk employs a generate-and-test cycle in order find an optimal, complete, and consistent 

execution.  Kirk generates candidate executions in Phase 1 by making choices between 

redundant methods in the TPN.  Then, Kirk tests the candidate executions for consistency, 

completeness, and optimality in Phases 2 through 4.  A candidate execution is consistent 

if all temporal and maintenance constraints along its selected threads of execution are 

satisfiable.  A candidate execution is complete if it makes a choice for every choice point 

reached by a selected thread of execution, starting from the beginning of the TPN.  An 

optimal execution is an execution with the lowest total cost.  If a candidate execution 

passes through Phases 2 through 4, then it is an optimal, complete, and consistent 

execution, and is sent to the plan runner for execution.  Otherwise, it is eliminated, and 

Kirk backtracks to Phase 1 to generate another candidate execution.  Next, we describe 

each of the four phases of optimal method selection in more detail.  

 

Phase 1: Candidate Execution Generation 

The process of generating candidate executions corresponds to choosing between 

redundant methods in an RMPL program.  For example, consider the LRV example 

presented in Figures 3.3 and 3.5.  There are 2 choices in the plan with 2 alternatives each, 

so there are a total of 2^(2) = 4 candidate executions of this RMPL program, each of 

which is shown in Figure 3.7.   

 To perform optimal method selection quickly, Kirk’s candidate generation algorithm 

must be capable of ruling out large sets of candidate executions quickly in search of an 

optimal, complete, and consistent execution.  In addition, to ensure that Kirk finds an 

optimal, complete, and consistent execution, if one exists, the algorithm used to generate 

candidate executions must satisfy two important properties; soundness and completeness. 

  Soundness ensures that an algorithm does not generate false positives; meaning it 

never falsely reports that an execution is optimal, complete, or consistent when it really is 

not.  Completeness ensures that an algorithm will eventually find an optimal, complete, 

and consistent execution, if one exists, by forcing the algorithm to consider all 

combinations of methods that are not provably suboptimal or inconsistent.   
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Ask( reel = in-tension)

R1.deploy( 
front-wheels)

R1.deploy(
aft-wheels)

[0.5,2] (2)
R1.remove(
insulation-
blanket )

[1,3] (1)

R1.remove(
operating-

tapes)

[1,3] (1)

R2.pull(reel)

[1,5] (3)

[0.5,2] (2)

Tell( R1-status = 
unfolding-seats)

Tell( reel = in-tension) [1,5]

22
R2.unfold(footre sts)

[1,5] (2)

[1,5] (3)

Ask( R1-status = 
unfolding-seats)

11

R1.unfold(seats)

[1,5] (2)

Tell( R1-status = 
unfolding-footre sts)

R1.unfold(footrests)
[1,5] (3)

[1,5]

[1,5]

A.) Candidate Execution {1A,2A}

1A

1B

2A

2B
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[1,3] (1)
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[1,5] (3)

[1,5]

[1,5]

B.) Candidate Execution {1A,2B}

11

22

1A

1B

Ask( R1-status = 
unfolding-seats)

Ask( not( R1-status 
= unfolding-seats) )

2A

2B

Ask( reel = in-tension)

R1.deploy( 
front-wheels)

R1.deploy(
aft-wheels)

[0.5,2] (2)
R1.remove(
insulation-
blanket )

[1,3] (1)

R1.remove(
operating-

tapes)

[1,3] (1)

R2.pull(reel)

[1,5] (3)

[0.5,2] (2)

Tell( R1-status = 
unfolding-seats)

Tell( reel = in-tension) [1,5]

R2.unfold(footrests)

[1,5] (2)

[1,5] (3)

Tell( R1-status = 
unfolding-footrests)
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[1,5] (3)
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C.) Candidate Execution {1B,2A}
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D.) Candidate Execution {1B,2B}
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= unfolding-seats) )
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2B

 

Figure 3.7: Four Candidate Executions for the LRV Deployment Scenario. 
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 In previous work, two sound and complete algorithms have been used to generate 

candidate executions in Kirk: Chronological Backtracking [19,48] and A* search [45].  

Chronological Backtracking, as discussed in Section 2.2.3, is a simple algorithm to 

implement that requires very little runtime memory.  However, it often suffers from a 

condition called “thrashing”, making it an inefficient algorithm for generating candidate 

executions.  In addition, Chronological Backtracking is incapable of considering 

preferences, so while it is sound with respect to completeness and consistency, it is not 

sound with respect to optimality.  A* addresses the drawbacks of Chronological 

Backtracking by ensuring soundness with respect to optimality, and by incorporating a 

heuristic which decreases the number of candidate executions considered.  These 

improvements come at a price, however.  A* search requires exponential run-time 

memory in the worst-case. 

 To address the memory problem of A* search, in Chapter 4 we introduce a novel 

algorithm, called Conditional Dynamic Backtracking Branch-and-Bound, which requires 

a much smaller amount of runtime memory (worst-case polynomial) while retaining the 

performance efficiency and soundness with respect to optimality of A*.  Next, we 

describe Phase 2, temporal consistency checking. 

 

Phase 2: Temporal Consistency Checking 

A candidate execution is a TPN with choices selected, as shown in Figure 3.7.  

Determining temporal consistency of a candidate execution corresponds to proving that 

an allowable time exists in which to execute each time event in the candidate execution.  

Because a TPN is built upon a framework of simple temporal constraints, this 

computation can be performed in polynomial time [7].  A candidate execution with all 

information omitted except for the timing constraints is a simple temporal network (STN), 

for which fast shortest path algorithms have been developed to determine temporal 

consistency.  An inconsistent STN causes the shortest path algorithm to loop 

continuously, creating a negative cycle, which can be detected quickly by looking for 

self-loops in the set of support [4].   

 Kirk performs an incremental form of temporal consistency checking with an 

algorithm called ITC [39].  ITC supports fast temporal consistency testing through an 
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incremental set of support [4], and through a novel set of incremental update rules [39].  

ITC’s update rules can both update a consistent STN and repair an inconsistent STN.  In 

addition, ITC can extract the underlying cause of temporal inconsistency in a candidate 

plan, which is called a conflict.  ITC’s conflict extraction mechanism is instrumental to 

the enhancements developed in this thesis, and is described in Section 6.1.1.  Next, we 

describe Phase 3, symbolic consistency checking. 

 

Phase 3: Symbolic Consistency Checking 

Kirk supports two types of state assignments, state assertions and state requests.  State 

assertions allow a mission programmer to declare that a state assignment will hold for a 

specified duration of time in a plan, while state requests allow a mission programmer to 

request that a state assignment hold for a specified duration in a plan.  These features 

enable Kirk to:  

 

1.) Avoid selecting combinations of methods that entail a conflicting state. 

2.) Avoid selecting methods whose maintenance conditions are not satisfied. 

 

In Phase 3, any candidate execution that violates either of these two conditions is called 

symbolically inconsistent and is eliminated.  A candidate execution that satisfies these 

two conditions is called a consistent candidate execution and is passed on to Phase 4 to 

be tested for optimality and completeness.  Next, we describe in detail the two conditions 

that are checked during symbolic consistency checking.   

 

1.) Detecting State Assertion Conflicts: 

Consider the two concurrent threads of execution in Figure 3.8.  If these two threads 

execute simultaneously, they will assert (erroneously) that the power is both on and off at 

the same time.  One of these two state assertions will necessarily be violated at 

execution time, potentially causing a plan failure.  A state assertion conflict occurs when 

two different values are assigned to the same state variable at a single instant in time.  To 

avoid selecting combinations of methods that entail a state assertion conflict, Kirk first 

identifies all pairs of conflicting state assertions which could potentially co-occur during 
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Tell( power = on )

Tell( power = off )

 

Figure 3.8: Conflicting state assertions. 

 

execution, such as the ones in Figure 3.8.  Then, Kirk resolves any threat of co-

occurrence by forcing one to occur strictly before or after the other.  For example, in 

Figure 3.9, Kirk considers two possibilities; inserting a timing constraint to ensure that 

power = on occurs before power = off, and inserting a timing constraint to ensure that 

power = on occurs after power = off.  These two options are depicted in Figure 3.9. 

 

Tell( power = on )

Tell( power = off )

[ 0, inf ]

Tell( power = on )

Tell( power = off )

[ 0, inf ]

Tell( power = on )

Tell( power = off )

[ 0, inf ]

Tell( power = on )

Tell( power = off )

[ 0, inf ]

Tell( power = on )

Tell( power = off )

[ 0, inf ]

Tell( power = on )

Tell( power = off )

[ 0, inf ]

 

Figure 3.9: Two possible orderings to resolve conflicting state assertions. 

 

2.) Detecting methods whose maintenance conditions are not satisfied: 

Maintenance conditions correspond to state requests that ask a state assignment to hold 

for a specified duration of time in a plan.  To ensure that state requests are satisfied, Kirk 

attempts to pair each state request with a state assertion that satisfies the request.  For 

example, in Figure 3.10 the state request Ask( reel = in-tension ) is paired with the state 

assertion Tell( reel = in-tension) by adding timing constraints to the plan which ensure 

that the state assertion holds for the entire duration of the state request.  This is 

accomplished via two timing constraints, as indicated in Figure 3.10 with dashed grey 

arrows, which ensure that the state assertion starts before the state request starts and ends 

after the state request ends.  In order to consider all candidate executions, Kirk must 

consider all consistent pairings of asks and tells for each candidate.  Next we describe 

Phase 4, the completeness and optimality check. 
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Ask( reel = in-tenion)

R1: Deploy
front wheels

R1: Deploy
aft wheels

[0.5,2] (2)

R2: Lower LRV using
braked reel

[1,5] (3)

[0.5,2] (2)

Tell( reel = in-tension)

[0,inf] [0,inf]

 

Figure 3.10: Ask Consistency Constraints 

 

 

Phase 4: Completeness and Optimality Check 

A candidate execution is complete if it makes a choice for every choice point reached by 

a selected thread of execution, starting from the beginning of the TPN. 

 To test a candidate execution for completeness, Kirk simply starts at the beginning of 

the TPN and follows the selected threads of execution to make sure that a choice is 

selected at every choice point.  If not, then the candidate is passed back to Phase 1 for 

further method selection. 

 To test a candidate for optimality, Kirk keeps in memory the lowest cost complete 

and consistent execution found so far, called the incumbent.  If a new complete and 

consistent execution has a lower cost than the incumbent, then it is stored as the new 

incumbent, otherwise it is pruned based on suboptimality.  When no more candidate 

executions exist with a lower cost than the incumbent, the incumbent is returned as an 

optimal, complete, and consistent execution of the RMPL program, and is passed to the 

plan runner for reformulation and dispatching.  If no incumbent is found, then the RMPL 

program has no consistent execution, and execution of the program is not allowed. 
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3.4 Plan Reformulation and Dispatching 

Because Kirk supports temporal flexibility during planning and execution, there are many 

feasible schedules for executing a plan.  To make explicit all feasible schedules, the 

allowable time bounds between activities needs to be calculated.  This can accomplished 

using Floyd-Warshalls All-Pair Shortest-Path algorithm or Johnson’s algorithm [5], and 

is called plan reformulation.  Once reformulated, a plan is then sent to the dispatcher 

which executes the temporally-flexible plan dynamically while adapting to timing 

uncertainties and uncertain activity durations at runtime.  We refer the interested reader to 

[26] and [42] for more information on plan reformulation and dispatching.   

 

Next, we frame optimal method selection as an Optimal Conditional CSP (OCCSP). 
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Chapter 4 – Framing Optimal Method 

Selection as an OCCSP 

 

Research on constraint satisfaction problems has lead to many breakthroughs in our 

ability to understand, analyze, and solve combinatorial problems.  These advances have 

taken the form of fast and sophisticated search algorithms [33,41,13,37,20,14], as well as 

in-depth complexity analyses to help differentiate between fundamentally easy and hard 

to solve CSP instances [10,2,7].  To leverage these advances into more expressive 

domains, such as conditional planning with preferences and design configuration, many 

dynamic and flexible CSP variants have emerged [21].  One such variant, the Optimal 

Conditional CSP (OCCSP), employs activity constraints and soft constraints to model 

both conditional dependencies and preferences within a unified framework [17,21].   

In this chapter, we frame optimal method selection, specifically TPN search, as an 

OCCSP.  The motivation behind this approach is two-fold:  Firstly, a mapping between 

TPN search and an OCCSP enables us to use fast algorithms from constraint satisfaction 

to perform optimal method selection.  Secondly, this mapping enables us to leverage 

future developments in the field of constraint satisfaction with no further development 

effort.   

It is important to note that the concepts presented in this chapter were developed 

jointly with Jon Kennel, and build upon previous work by Andreas Wehowsky and Aisha 

Walcott.  In [48], Wehowsky framed a TPN as an activity-based Dynamic CSP with 

activity constraints encoding the conditional dependencies between choices.  In [45], 

Walcott investigates a technique to perform optimal search over a TPN which weighs 

preferences between redundant choices.  In this chapter, we merge these two research 

ideas by framing optimal search over a TPN as finding a solution to an OCCSP. 

A TPN represents a physical process, which consists of primitive activities that are 

composed together using RMPL expressions.  In Section 4.1, we show how to encode a 

TPN and its primitive activities as an OCCSP.  Then, in Section 4.2, we show how 



 49

primitive activities and TPNs, which are encoded as OCCSPs, are composed together 

using RMPL expressions.  In Section 4.3, we show how optimal method selection, in the 

form of TPN search, can be encoded as a process of dynamically adding in more 

variables and values to the OCCSP encoding of a TPN. 

 

4.1 Encoding a TPN and its Primitive Activities as an OCCSP 

A TPN is comprised of four types of primitive activities: commands, state assertions, 

state requests, and timing constraints.  To begin this section, we develop a general 

definition of a primitive activity, depicted in Figure 4.1 and described in Definition 4.1, 

which encompasses each of the primitive activity types listed above.  Then, in Definition 

4.2, we present an OCCSP encoding of a TPN.  Finally we show that a primitive activity, 

Definition 4.1, is a restricted instance of a TPN, Definition 4.2. 

 

[lb,ub]  (c)
ni nj

string

[lb,ub]  (c)
ni nj

string

[lb,ub]  (c)
ni nj

string
 

Figure 4.1: TPN Primitive Activity. 

 

Definition 4.1 – TPN Primitive Activity 

A TPN primitive activity is a 5-tuple [ ] cublbnnstring ji ,,,,, .  Where, 

• string represents a command, state assertion, state request, or timing constraint. 

o Commands take the form Robot.command(params). 

o State assertions take the form TELL( var = val ). 

o State queries take the form ASK( var = val) .   

o Timing constraints have the empty string,∅ . 

• ni is a time event representing the start time of the activity. 

• nj is a time event representing the end time of the activity. 

• [lb, ub] enforces a metric constraint, ubnnlb ij ≤−≤ , on the activity’s duration 
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• c ℜ∈  is a real-valued cost associated with executing a command.  Costs for state 

assertions, state requests, and timing constraints are all zero. 

 

A TPN describes a physical process comprised of primitive activities, as follows: 

 

Definition 4.2 – OCCSP Encoding of a TPN 

An OCCSP encoding of a TPN is a 6-tuple ),(),(,,,, esPfCiVI AA .  Where,  

• { }niiiI ,,, 21 K= , is a set of discrete choice variables. 

• { }imiii AAAv ,,, 21 K= , is the domain for each Ii∈ , where a domain value, 

{ }jik aaaA ,,, 21 K= , is a set of TPN primitive activities, as defined above. 

• IiA ∈ , a TPN always has one initially active variable, with one value, { }.AA Av =  

• AC , is a set of activity constraints describing when variables become active. 

• ),(Pf  is a multi-attribute cost function that sums up the costs of all primitive 

activities selected with a candidate execution, P.  This is accomplished by 

summing the costs of all primitive activities that belong to each variable-value 

assignment in the candidate execution P: ( ) .)( PAiAacPf kmkma ∈=∧∈= ∑   

• ),( es , represents the starting time event, s, and the end time event, e, of the TPN.   

 

There are several aspects of Definition 4.2 worth clarifying: 

 

1.) Discrete variables represent the disjunctive choices between redundant methods 

in a TPN and should not be confused with the TPN’s time events.  Every choice 

in an RMPL specification, and analogously its TPN, has a corresponding discrete 

choice variable in its OCCSP encoding, and every time event has a 

corresponding continuous variable (i.e. node) in the TPN.   

 

2.) A TPN has exactly one initially active discrete variable, iA, with exactly one 

value, vA, which encodes all primitive activities between the TPN start and end 
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events that are not nested within any choices, and, therefore, must be selected for 

execution.   

 

3.) The activity constraints, CA, encode the hierarchal dependencies between choices 

in a TPN, and are of the form ),(}{ 11 kiactivevi →=  where }{ 11 vi =  represents 

an assignment of one value to one variable, and is the exact condition under 

which variable ki  becomes active.  Note that this is a restricted instance of the 

more general OCCSP definition of an activity constraint (Definition 2.7):  

{ }jj vivi == ,,11 K  ).( kiactive→   

 

4.) This general definition allows a range of TPNs to be defined that don’t 

correspond to an RMPL program, or even a contiguous process.  In the next 

section, Section 4.2, we show how primitive activities and TPNs, which are 

encoded as OCCSPs, can be composed together using RMPL combinators to 

ensure that the resulting TPN corresponds to an actual RMPL program and 

represents a contiguous physical process.  We call a TPN that is formed only 

from RMPL combinators a “well-formed” TPN. 

 

Next, to give a concrete example of Definitions 4.1 and 4.2, we encode the TPN for the 

LRV deployment scenario as an OCCSP. 

 

4.1.1 The LRV Deployment Scenario Encoded as an OCCSP 

In this section we encode the LRV deployment scenario as an OCCSP.  For convenience, 

the TPN is re-shown in Figure 4.2a.  To begin, we label each TPN primitive and encode 

them using Definition 4.1, as depicted in Figure 4.2b and listed below.  All primitive 

activities without time bounds specified are assumed to have [0,0] time bounds. 
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a1 a2
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a3

8

12

4
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[1,3] (1)

R1.remove(
operating-
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[1,3] (1)
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[0.5,2] (2)
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Figure 4.2:  Labeling and encoding each primitive activity in the TPN. 

 

TPN primitive activities: 

[ ]1,3,1,1,,)R1.remove(1 s-blanketinsulationa = , 

[ ]1,3,1,2,1,)R1.remove(2 tapesoperating-a = , 

[ ]3,5,1,4,3)R2.pull(3 reela = , 

[ ]0,5,1,6,5, )Tell(4 n in-tensio reel a == ,   

[ ] 2,2,5.0,8,7,)R1.deploy(5 aft-wheelsa = , 

[ ] 2,2,5.0,9,8,)R1.deploy(6 lsfront-wheea = , 

[ ]0,4,1,11,10,) Ask(7 n in-tensioreel a == , 

[ ]3,5,1,17,16,)unfold( R1.8 seatsa = , 
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[ ]0,5,1,19,18,) Tell(9 -seats unfoldingRl-status a == , 

[ ]3,5,1,23,22,)R1.unfold(10 footrestsa = , 

[ ]0,5,1,25,24,)1 Tell(11 -footrests unfolding-status Ra == , 

[ ]0,0,0,29,28,)1 Ask(12 -seats unfolding-status Ra == , 

[ ] 2,5,1,30,29,)R2.unfold(13 footrestsa = , 

[ ]0,0,0,31,27,))1not( Ask(14 -seats unfolding-status Ra == , 

[ ]3,5,1,32,31,)R2.unfold(15 seatsa =  

In addition, all of the timing constraints, t1 through t27, have [0,0] time bounds:  

t1 through t27  = [ ]0,0,0,,, ji∅ . 

 

 Next, we identify the primitive activities that belong to the initially active variable-

value assignment, { }AA Ai = .  Each primitive activity in the plan that does not reside 

within any nested choices belongs to the initially active variable-value assignment.  This 

encompasses all primitive activities in the plan in Figure 3.2, except for ones along the 

conditional threads of execution between events 14 and 27, and 28 and 33.  Therefore, the 

initially active variable assignment consists of these primitive activities: 

 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

==
27,24,23

,10,9,8,7,6,5,4,3,2,1,7 ,6,5 ,4 ,3 ,2 ,1  

ttt
ttttttttttaaaaaaa

Ai AA  

 

There are two choices to make in the plan, so two discrete choice variables, 1i  and 2i , 

need to be defined.   Variable 1i  has two possible values corresponding to the two 

possible threads of execution emanating from event 14 and converging at event 27.  The 

domain for variable 1i  is defined as follows: 

{ } { }
{ }⎭

⎬
⎫

⎩
⎨
⎧

==
2221201615141110
,19181713121198

, 111 ,t,t,t,t,t,t,aa
,t,t,t,t,t,t,aa

AAv ba  
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Similarly, variable 2i  has two possible values corresponding to the two possible threads 

of execution emanating from event 28 and converging at event 33.  The domain for 

variable 2i  is defined as follows: 

 

{ } { } { }{ }t25a15,a14,,t26a13,a12,, 222 == ba AAv  

 

 Next, we need to define an activity constraint for each variable that isn’t initially 

active.  In this example, that corresponds to variables 1i  and 2i .  A variable’s activating 

condition is determined by the thread of execution upon which a choice resides.  In 

RMPL, because choices are hierarchically composed, there will always be exactly one 

primitive activity preceding a choice start event, and one primitive activity succeeding a 

choice end event.  For example, in Figure 3.2, exactly one primitive activity, t10, 

precedes the choice start event, event 14, and exactly one primitive activity, t23, succeeds 

the choice end event, event 27.  Furthermore, the two primitive activities that precede and 

succeed a choice will always reside along the same thread of execution, and hence belong 

to the same variable-value assignment in the OCCSP.  In this case, the preceding and 

succeeding primitive activities belong to the initially active variable-value assignment, 

{ }AA Ai = .  Therefore, the activity constraint for variable 1i is: )(}{ 1iactivevi AA →= .  

This encodes the constraint that if variable i1’s parent thread, { }AA Ai = , is selected for 

execution, then a thread of execution subsequently needs to be selected for variable i1.  

The activity constraint for variable 2i is similar: )(}{ 2iactivevi AA →= . 

 

 Next we demonstrate how to calculate the cost function for this LRV scenario: 

( ) .)( PAiAacPf mkma ∈=∧∈= ∑   First, we demonstrate how this cost function 

allows us to calculate the cost of individual variable-value assignments.  For example, 

next, we use the cost function to calculate the total cost of all primitive activities that 

belong to the three separate variable-value assignments, },{ AA viP ==  },{ 11 aAiP ==  

and }.{ 22 aAiP ==   Notice that all timing constraints, denoted ti , have zero cost. 
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( ) ( )

9 
0 02 2  0  3  1  1 

}{ 7654321

=
+++++++=

+++++++==∧∈=== ∑ iaaaaaaaAAAaAA tcccccccAiAacAifPf
 

( )

2 
  00   2 

}{)( 9811111

=
++=

++==∧∈=== ∑ iaaaaaa tccAiAacAifPf

 

( )

2 
  02   0 

}{)( 131222222

=
++=

++==∧∈=== ∑ iaaaaaa tccAiAacAifPf

 

 

In the LRV scenario, there are four possible candidate executions: 

( ) ( ) ( ){ }aaAA AiAiAi 2211 ,,,,, ,  ( ) ( ) ( ){ }baAA AiAiAi 2211 ,,,,, ,  

( ) ( ) ( ){ }abAA AiAiAi 2211 ,,,,, , and ( ) ( ) ( ){ }bbAA AiAiAi 2211 ,,,,, , as depicted in Figure 3.7. 

 

Next, we compute the total cost of one candidate execution: ( ) ( ) ( ){ }aaAA AiAiAi 2211 ,,,,, .  

Notice that this candidate execution, ( ) ( ) ( ){ }aaAA AiAiAiP 2211 ,,,,,= , is simply the sum of 

the three cost functions developed above:    

 

( ) ( ) ( )( ) ( ) ( ) ( ) .13229,,,,,,,,)( 22112211 =++=++== aaAAaaAA AifAifAifAiAiAifPf  

 

 

4.2 Constructing a TPN from RMPL Expressions 

In this section, we explain how Kirk recursively constructs a TPN from RMPL 

expressions.  Kirk constructs a TPN recursively by first constructing TPNs for each sub-

expression of an RMPL expression.  In the following sub-sections, we define how each 

RMPL expression composes a single TPN out of its component sub-TPNs. 

  



 56

4.2.1 TPN Primitive Activity 

A TPN primitive activity (Figure 4.1), [ ] cublbnnstring ji ,,,,, , is encoded as a TPN, 

),(),(,,,, esPfCiVI AA , such that: 

• {} { }{ } {}.,, iivViI Ai ===   

• There is only one discrete variable i, which is initially active and has value vi . 

•  vi = [ ]( )cublbnnstring ji ,,,,, . 

• There are no activity constraints. 

• The cost function trivially corresponds to cvif i == )( .   

• The start and end events of the TPN are those of the primitive activity, ),( ji nn .   

 

Hence, the TPN for a primitive activity is a tuple: {} { } {} { } ( ) ( )jiii nncvifivi ,,,,,, ==∅  

with vi = [ ]( )cublbnnstring ji ,,,,, . 

 

4.2.2 TPN Composition Operator 

The fundamental operation performed by an RMPL expression is to compose two or 

more TPNs together to form a new TPN.  In this sub-section, we define precisely this 

operation.   

  

n1 n2

a1

TPN1: TPN2:

[0,0] n4 n5a2

a3
n6 n7

t2

n1

[0,0] [0,0]

[0,0]

t3 t5

t4

n3
n8

[2,4]

[3,5]

 

Figure 4.3: TPN1 and TPN2 

 

 To illustrate the concept of composing two TPNs into a new TPN, consider the two 

TPNs in Figure 4.3.  Consider, for example, that we wish to compose TPN1 and TPN2 
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into a new TPN, called TPNnew, in which TPN2 is executes immediately after TPN1.  This 

is accomplished, as shown in Figure 4.4, by placing an additional timing constraint with 

[0,0] time bounds, called t1, between the end event of TPN1, n2, and the start event of 

TPN2, n3. 

 

TPNnew:

t1

[0,0] n4 n5a2

a3
n6 n7

t2
n1

[0,0] [0,0]

[0,0]

t3 t5

t4

n3
n8

[2,4]

[3,5]

n1 n2

a1
[0,0]

 

Figure 4.4: Composing TPN1, TPN2, and t1 into a new TPN, called TPNnew. 

 

 The composition operator takes as input two or more TPNs, such as TPN1 and TPN2, 

and additional timing constraints, such as t1, to compose the TPNs together.  Then, it 

outputs a single TPN that composes each of the input TPNs together in accordance with 

the additional timing constraints, as shown in Figure 4.4.  

 

In general, seven steps need to be performed to compose two or more TPNs, plus any 

additional timing constraints, into a new TPN: 

  

Definition 4.3 – TPN Composition Operator 

1.) Take as input two or more sub-TPNs, {TPN1,TPN2,…}, and any additional timing 

constraints, {ti}, which are to be composed together into a new TPN, called 

TPNnew. 

 

2.) Merge all initially active primitive activities from each TPN, as well as any 

additional timing constraints, into the initially active domain for TPNnew: 

{ }}{...)],[()],[()],[( 21 iAAAAAAnew tviTPNviTPNviTPN ∪∪∪=    

 

3.) Next, add all discrete variables, except iA, from each TPN into TPNnew: 
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{ }...][][][ 21 ∪−∪−=− AAAnew iITPNiITPNiITPN  

 

4.) Add in their respective domains as well: 

  { }K∪≠∃∪≠∃= ][][][ 21 AiiAiiinew vvvTPNvvvTPNvTPN  

 

5.) Inherit all activity constraints from each TPN:  

{ }K∪∪= ][][][ 21 AAAnew CTPNCTPNCTPN  

 

6.) ( )f , the cost function stays the same: ( ) .)( PAiAacPf mkma ∈=∧∈= ∑  

 

7.) The start event, s, is the only time event with no incoming primitive activity.  The 

end event, e, is the only event with no outgoing primitive activity.  To be well-

formed, a TPN must be composed such that there is only one start event, s, and 

one end event, e. 

 

 Next, in the following sub-sections we describe how each RMPL expression uses this 

composition operator, Definition 4.3, to compose well-formed TPNs. 

 

4.2.3 Sequence 

The sequence RMPL expression enables sequential execution of sub-expressions, as 

shown in Figure 4.5, by adding a timing constraint between two TPNs in sequence.  For 

example, the additional constraint a1 = [ ]0,0,0,,, 32 nn∅  forces events n2 and n3 to co-

occur, thus ensuring that the execution of TPN2 begins immediately after the execution of 

TPN1 ends.  While two TPNs are connected in sequence in Figure 4.5, in general, the 

sequence combinator can connect an arbitrary number of TPNs in sequence. 
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[0,0]n1 n2

TPN1

TPN2
n3 n4

a1

TPNnew:

[0,0]n1 n2

TPN1

TPN2
n3 n4

a1

TPNnew:

 

Figure 4.5: Sequence RMPL Expression. 

 

 To connect two TPNs in sequence, Kirk simply composes TPN1, TPN2, and the 

additional timing constraint, a1, into a new TPNnew using the TPN composition operator 

(Definition 4.3).    

 

4.2.4 Parallel 

The parallel RMPL expression enables concurrent execution of RMPL sub-expressions; 

its corresponding TPN is depicted in Figure 4.6.  While two TPNs are connected in 

parallel in Figure 4.6, in general, the parallel RMPL expression can connect an arbitrary 

number of TPNs in parallel.  To ensure that two TPNs execute concurrently, Kirk adds 

additional timing constraints, {a1,a2,a3,a4}, which ensure that the two TPN’s respective 

start and end events co-occur. 
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n3 n5
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a2 a4
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Figure 4.6: Parallel RMPL Expression. 
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4.2.5 Choose 

The choose RMPL expression enables disjunctive choice between sub-expressions; its 

TPN is depicted in Figure 4.7.  As with the parallel and sequence expressions, the choose 

expression allows an arbitrary number of TPNs to be composed together.  The start event 

of a choice is indicated by a double circle, and the end event by a circle with two 

horizontal lines.  Kirk selects only one thread of execution between a choice’s start and 

end events.  To encode a disjunctive choice between sub-expressions, Kirk introduces a 

new discrete variable into TPNnew with a domain value to represent each of the possible 

sub-expressions.  In addition, Kirk adds additional timing constraints so that the 

redundant sub-expressions co-occur.  For example, in Figure 4.7, to represent a new 

choice, Kirk creates a new TPN with six events, n1 through n6, four timing constraints, a1 

= [ ]0,0,0,,, 21 nn∅ , a2 = [ ]0,0,0,,, 31 nn∅ , a3 = [ ]0,0,0,,, 64 nn∅ , and a4 = 

[ ]0,0,0,,, 65 nn∅ , one discrete variable with two discrete values representing TPN1 and 

TPN2, and an activity constraint to activate the new variable, { } )( kAA iactivevi →= . 
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Figure 4.7: Choose RMPL Expression. 

4.2.6 If Then Else 

The if then else RMPL expression enables conditional execution, its corresponding TPN 

is depicted in Figure 4.8.  This combinator behaves just like the choose combinator with a 

simple modification; there is a condition on each choice branch.  The only difference is 

that two of the four timing constraints, a1 and a2, now have associated ask conditions:  

a1 = [ ]0,0,0,,),( 21 nncAsk and a2 = [ ]0,0,0,,)),(( 31 nncnotAsk .  
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Figure 4.8: If Then Else RMPL Expression. 

 

4.2.7 When Then 

The when then RMPL expression enables reactive execution by composing three sub-

expressions in sequence, its corresponding TPN is depicted in Figure 4.9.  First, an 

infinite timing constraint, a1 = [ ]0,,0,,, 21 ∞∅ nn , second, a condition to be satisfied, a2 

= [ ]0,0,0,,),( 32 nncAsk , and third, a TPN to be executed.  This combinator works by 

executing a noop indefinitely, a1, until the condition c is satisfied, and then continuing on 

to execute the TPN.  This combinator behaves just like the sequence combinator 

described in section 4.3.2.   

 

[0,    ]
n1 n2

TPN
n3 n4a1

∞
a2: Ask(c)

[0,0]

TPNnew:

[0,    ]
n1 n2

TPN
n3 n4a1

∞
a2: Ask(c)

[0,0]

TPNnew:

 

Figure 4.9: When Then RMPL Expression. 

4.2.8 Do Maintaining 

The do maintaining RMPL expression enables condition maintenance, and its 

corresponding TPN is depicted in Figure 4.10.  To enforce a maintenance condition, the 

new TPN is composed such that a TPN and its maintenance condition, in the form of a 

state request, are forced to execute concurrently.  This is accomplished with additional 

timing constraints between the start and end nodes of the maintenance condition, a1 
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= [ ]0,,,,),( 21 ublbnnsAsk , and the TPN.   If the condition s is violated at runtime, Kirk 

halts the execution of the TPN.  This same approach applies to the do watching RMPL 

combinator. 

 

TPN1
n1 n2

TPNnew:

n3 n4
Ask (s)

[0,+inf]

[0,0][0,0]

 

Figure 4.10: Do Maintaining RMPL Combinator 

 

 

 Next, we show that optimal method selection can also be encoded as an OCCSP by 

adding variables and values dynamically to the OCCSP encoding of a TPN. 
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4.3 Framing Optimal Method Selection as an OCCSP 

In this section, we frame optimal method selection as solving an OCCSP.  Through this 

contribution, optimal method selection is shown to be equivalent to finding an optimal 

solution to an OCCSP.  As mentioned previously, this mapping is significant because it 

enables all past and future achievements in the field of constraint satisfaction to be 

applied to the problem of optimal method selection.   

 Optimal method selection, described in Section 3.3, occurs in four phases: candidate 

execution generation, temporal consistency check, symbolic consistency check, and 

completeness and optimality check.  In the following sub-sections we describe how each 

of these phases can be framed as contributing to solving an OCCSP. 

 

4.3.1 Phase 1: Candidate Execution Generation 

In Definition 4.2, a TPN is encoded as an OCCSP where choices between redundant 

methods are encoded as discrete variable and values.  Kirk’s candidate execution 

generation algorithm is responsible for choosing between redundant methods in order to 

generate candidate executions.  With the redundant methods in a TPN encoded as 

OCCSP variables and values, Kirk’s candidate execution generation algorithm is 

effectively generating partial assignments to an OCCSP, thus fulfilling the “generate” 

aspect of the constraint satisfaction generate-and-test cycle described in Section 2.2.2. 

 

4.3.2 Phase 2: Temporal Consistency Check 

To test a candidate execution for temporal consistency, Kirk applies a temporal 

consistency algorithm, such as ITC, to a TPN with choices selected in search of temporal 

inconsistencies.  When a TPN is encoded as an OCCSP, this phase corresponds to the 

“test” aspect of the constraint satisfaction generate-and-test cycle described in Section 

2.2.2.   Phase 1 of optimal method selection is just the first part of the “testing” however.  

A candidate execution must also pass the tests in Phase 3 and 4 of optimal method 

selection to be labeled as an optimal, consistent, and complete solution.   
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4.3.3 Phase 3: Symbolic Consistency Checking 

In this section, we show that symbolic consistency checking, Phase 3 of optimal method 

selection, can be framed as a two-step process of 1) adding more discrete variables and 

values to the OCCSP encoding of a TPN, and then 2) searching the OCCSP for an 

optimal, complete, and consistent solution.  Recall that symbolic consistency checking 

involves two steps: 

1.) Detecting state assertion conflicts. 

2.) Detecting selected methods whose maintenance conditions are not satisfied. 

 

1.) Detecting State Assertion Conflicts: 

The first step of symbolic consistency checking ensures that state assertion constraints are 

consistent.  For example, in Figure 4.11, if the state constraints {a = 1} and {a = 0} 

overlap temporally in an execution, then the assertions are unsatisfiable.  When two 

conflicting state assertions may overlap in time, we say they “threaten” one another.  To 

resolve threats, Kirk adds additional timing constraints so that one follows the other. 
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Figure 4.11: Conflicting state assertion constraints that threaten to co-occur. 

 

 For example, to resolve a state assertion threat, such as {a = 1} and {a = 0}, in Figure 

4.11, Kirk has two possible options.  The first option is to ensure that state assertion  

{a = 1} occurs before {a = 0} by adding a timing constraint, [ ]0,inf,0,4,2, 1 ∅=r , 

between the end event of Tell(a = 1) and the start event of Tell(a = 0), as shown in 

Figure 4.12  The second option is to ensure that assertion {a = 1} happens after {a = 0} 
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by adding a timing constraint, [ ]0,inf,0,1,5, 2 ∅=r , between the end event of  

Tell(a = 0) and the start event of Tell(a = 1), also shown in Figure 4.12  The possible 

resolutions for state assertion threat {b = 0} and {b=1} are also depicted in Figure 4.12, 

as timing constraints r3 and r4. 
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Figure 4.12: Resolving Conflicting State Assertions Framed as Solving an OCCSP 

 

To resolve these threats, Kirk needs to consider all possible combinations of resolution 

constraints in order to find an optimal solution.  This can be accomplished by adding a 

discrete choice variable to the OCCSP encoding of a TPN for each state assertion threat.  

The domain for each variable contains two values, one for each timing constraint that can 

resolve the threat.  For example, two discrete variables, i2 and i3, are added to the OCCSP 

encoding of the TPN in Figure 4.12; one for each state assertion threat.  The domain 

values for variables i2 and i3 are { }2,12 rrv = and { },4,33 rrv =  respectively.  In addition, 

activity constraints are constructed for each new variable based on the variable-value 

assignments to which the conflicting state assertion constraints belong: 

)(}{ 2iactivevi AA →=  and ).(}{ 321 iactivevivi AA →=∧=  Intuitively, an activity 

constraint enforces the condition that a threat resolution only has to take place if both of 

the conflicting state assertion constraints are selected for execution.   

 Now, Step 1 of symbolic consistency checking is encoded into the OCCSP as well.  

Thus, an optimal, consistent, and complete solution to the OCCSP encoding of a TPN 

will resolve all state assertion threats.  The optimal, complete, and consistent solution to 

the OCCSP encoding of the TPN in Figure 4.11 and 4.12 is ( ) ( ) ( ){ }1211 ,,,,, vivivi AA . 
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2.) Detecting methods whose maintenance conditions are not satisfied: 

Step 2 of symbolic consistency checking ensures that all maintenance constraints in a 

candidate execution are satisfied.  A maintenance constraint is represented in a TPN as a 

state request, Ask(xi = vi ).   Kirk ensures that state requests are satisfied by adding 

additional timing constraints into the plan which force a matching state assertion 

constraint to co-occur for the entire duration of the state request.  A matching state 

assertion assigns the same variable and value as the state query, for example, Tell( foo = 

bar) is a matching state assertion for the state query Ask( foo = bar ).   

 

3 4 5
a1

[1,2]

7 8

9 10

i1=v1
n1 i1=v2

2 111
Tell(a=1)

s

[2,2] (1) [1,3]

Ask(a=1)
6

[0,3]

a3

Ask(b=1)

[1,3]

[1,3]

Tell(a=1) e

 

Figure 4.13: Examples of state requests, Ask(a = 1) and Ask(b = 2). 

 

 Kirk has as many options to satisfy a state request as there exist matching state 

assertions in the TPN to cover it.  For example, in Figure 4.13, the Ask(a = 1) state 

request can be satisfied by forcing either of the two Tell(a = 1) state assertions to co-

occur in the TPN, while the Ask(b = 2) state request has no satisfying state assertions in 

the TPN.  Forcing a state assertion and a state request to co-occur, such as Ask(a = 1 ) 

and Tell(a = 1),  is accomplished via two timing constraints.  One to ensure that the state 

assertion begins before the state request begins, [ ]0,inf,0,4,1, 1 ∅=r , and one to ensure 

that the state assertion ends after the state request ends, [ ]0,inf,0,2,4, 2 ∅=r .    There 

are two possibilities for satisfying the state request Ask(a=1) in Figure 4.13, both of 

which are shown in Figure 4.14. 
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Figure 4.14: Satisfying state requests framed as OCCSP variables and values. 

 

 In order to find an optimal solution that satisfies all state requests, Kirk must consider 

all possible combinations of matching state requests and state assertions.  This can be 

accomplished by adding a discrete choice variable to the OCCSP encoding of a TPN for 

each state query that needs to be satisfied.  The domain for each variable contains a value 

for each matching state assertion in the TPN, and each value contains the timing 

constraints required for the matching state assertion to cover the state query.  For 

example, two discrete variables, i2 and i3, are added to the OCCSP encoding of the TPN 

in Figure 4.13, one for each state request, Ask(a=1) and Ask(b=1), respectively.  Variable 

i2 has two values, },{ 222 ba AAv = one for each matching state assertion, Tell(a=1), while 

variable i3 has no values, }{3 ∅=v  because there are no matching state assertions, 

Tell(b=1).  The domains for variable i2 contain the timing constraints required for the 

matching state assertion to cover the state query, { } { }{ }4,3,2,1},{ 222 rrrrAAv ba == .  In 

addition, activity constraints are constructed for each new variable based on the variable-
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value assignments to which the matching state assertion and state query belong: 

)(}{ 2iactivevi AA →=  and )(}{ 311 iactivevi →= .   

 In addition, note that matching state assertion constraints may or may not be available 

depending on the threads of execution which are selected.  For example, the Tell(a=1) 

constraint between events 9 and 10 in Figure 4.14 is only available to cover the Ask(a=1) 

constraint if the variable-value assignment }{ 21 vi = is selected.  Therefore, each time Kirk 

reaches Phase 3 of the optimal method selection routine, the state assertion constraints 

available to cover any given state request constraint can change.   The availability of a 

state assertion constraint depends on whether or not the thread upon which the state 

assertion resides has been selected for execution.  To encode changes in the values of 

state request variables during optimal method selection, we can define activity constraints 

for each value of an OCCSP variable.  For example, the activity constraints for each 

value in Figure 3.12 are: ( )( )12 ,}{ viactivevi AA →=  and ( )( )2221 ,}{ viactivevi →= . 

 If a state request variable, such as 2i  or 3i  is activated, but none of its values are 

activated, then that variable is self-inconsistent.  Intuitively, this implies that there are no 

matching Tell constraints available in the candidate execution in which to cover an Ask 

constraint, such as Ask(b=1), and it is trivially inconsistent.  If this occurs, the candidate 

execution is not satisfiable, and it must be passed back to Phase 1 in attempts to 

deactivate the self-inconsistent Ask constraint, or activate a satisfying Tell constraint to 

cover the Ask constraint. 

 Now, Step 2 of symbolic consistency checking is encoded into the OCCSP as well.  

Thus, an optimal, consistent, and complete solution to the OCCSP encoding of a TPN 

will satisfy all maintenance constraints.  The optimal, complete, and consistent solution 

to the OCCSP encoding of the TPN in Figure 4.13 is ( ) ( ) ( ){ }2221 ,,,,, vivivi AA . 

 

4.3.3 Phase 4: Completeness and Optimality Check 

As discussed in Section 3.3, a candidate execution is complete if it makes a choice for 

every choice point reached by a selected thread of execution, starting from the beginning 

of the TPN.  In an OCCSP encoding of a TPN, the hierarchical dependencies among 
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choice points are encoded as activity constraints.  Therefore, finding an OCCSP solution 

that satisfies all activity constraints is equivalent to ensuring completeness by making a 

choice for every choice point reached in the TPN.  Similarly, an optimal execution is an 

execution with the lowest total cost, where the total cost is equal to the sum of all activity 

costs selected for execution.  Encoding a TPN as an OCCSP does not change this.  

Optimality is still calculated by summing the costs of all activities selected for execution.  

The only difference is that, now, candidate executions and their associated costs are 

grouped into variable-value assignments, and are calculated from the cost function: 

( ) .)( PAiAacPf kmkma ∈=∧∈= ∑   To find an optimal, complete, and consistent 

solution to an OCCSP encoding of a TPN, Kirk still performs an incumbent search, 

keeping track of the lowest cost, complete, and consistent execution found so far.  Then, 

when no more candidate executions, in the form of OCCSP partial assignments, exist 

with a lower cost than the incumbent, the incumbent is returned, in the form of an optimal, 

complete, and consistent assignment of values to OCCSP variables, as an optimal, 

complete, and consistent execution. 

 

Next, in Chapter 5, we extend Dynamic Backtracking to Solve OCCSPs. 
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Chapter 5 – Extending Dynamic 

Backtracking to Solve OCCSPs 
 

In this chapter, we improve upon the state-of-the-art in solving OCCSPs by developing a 

conflict-directed OCCSP solver.  To accomplish this, we extend Dynamic Backtracking 

(DB) to solve OCCSPs via four extensions to Ginsberg’s original algorithm [13].  This 

new algorithm, called Conditional Dynamic Backtracking Branch and Bound (CondDB-

B+B), employs infeasibility conflicts, suboptimality conflicts, and dynamic variable 

reordering, to quickly prune suboptimal and infeasible portions of the search space in 

order to quickly arrive at an optimal solution.  While the pedagogical focus of this 

chapter is to extend the DB algorithm to solve OCCSPs, the ideas developed in this 

chapter more generally apply to extending all backjumping-based algorithms to solve 

OCCSPs. 

 To extend Dynamic Backtracking to solve Optimal Conditional CSPs, we augment 

the DB algorithm to handle activity constraints and soft constraints.  This is accomplished 

via four extensions to the DB algorithm, which are summarized below, and described in 

detail in the following sections.  The first three extensions address the problem of 

searching systematically and dynamically over conditional variables, while the last 

extension converts DB from a satisfaction algorithm into an optimization algorithm. 

 

1.) A total variable ordering, IO, for searching over conditional variables, and a 

conditional variable instantiation function. 

2.) A modified backjumping resolution step which accounts for the behavior of 

conditional variables. 

3.) A recursive check to remove deactivated variables from the partial solution when 

backjumping occurs. 

4.) A branch-and-bound search optimization framework augmented to construct 

minimal suboptimal conflicts. 



 71

 The pseudocode for this algorithm is presented as Algorithm 5.1 below, with each 

change to Ginsberg’s original algorithm (DB) highlighted in grey and annotated with a 

superscript number indicating the extension it belongs to.  In the following sections we 

give a detailed description of each of the four extensions.  

 
Algorithm 5.1 – Conditional Dynamic Backtracking Branch and Bound (CondDB-B+B)  
1.  Set ., IIIP =∅=   Set ∅=iE  for each .Ii∈   (1) Take as input the total variable 

ordering, IO .  (4)    Set the incumbent solution ( )∞∅= ,N . 
 
2.a. (4) If ,ˆ

AIP =  and ),()( NfPf <  P is the new incumbent solution. Set ( ).)(, PfPN =     
 
2.b. (4)  If ,ˆ

AIP =  set ).ˆ,( iPviEE ii −≠∪= Otherwise, select a variable(1)  )(CapplyNextAi =     
 (Function 5.1) and set ∪= ii EE (4) ).,( iPOε  (Definition 5.1) 

 
3.   Set .ˆ

ii EVL −=   If J is nonempty, choose an element .Lv∈   Add ),( vi  to P and return 
to step 2. 

 
4.  If  L  is empty, we must have ;ˆ

ii VE =  let E be the set of all variables appearing in the 
explanations, T, of each elimination explanation, ( )Tvi ,≠  for each  iEv ˆ∈ ,  (2)  plus all 
of the variables appearing in variable i’s activating constraint, AC. (Proposition 5.1, 
OCCSP Backjumping Resolution Step) 
 

5.  If ,∅=E  (4) return the incumbent, N.  Otherwise, let  ),( jvj  be the last entry in P such 
that .Ej ∈   Remove ),( jvj  from P and  for each variable Pk∈  which was assigned a 
value after j, remove from kE  any eliminating explanation that involves  j. (3)  Call 
removeUnsupportedVars( j , P ), and set, 

 
∪= jj EE (4) ),( jPOε ( ){ }PEvj j

ˆ, ∩≠∪  

 
 so that jv  is eliminated as a value for j because of the values taken by variables in 

.P̂E ∩   Now set i = j and return to step 3. 
 

 (1) Extension #1,   (2) Extension #2,   (3) Extension #3,   (4) Extension #4 
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5.1 Extension #1: A Systematic Method for Searching over Conditional 

Variables 

This extension outfits DB with the basic machinery to search systematically over 

conditional variables.  In previous work, systematic methods for searching over 

conditional variables have been developed [12,36].  One such method is to construct a 

directed graph from the conditional dependencies between variables [36].  Then, from 

this graph, a total variable ordering, IO, can be derived which together with a conditional 

variable instantiation function results in a systematic search over the conditional 

variables.  This method, called CondBT, is described in detail in [12] and [36]. 

 In order to enable DB to search systematically over conditional variables, we 

interleave the CondBT and DB algorithms.  At first glance, it may appear that CondBT’s 

strict variable ordering strategy is incompatible with DB’s dynamic variable reordering 

technique.  However, in actuality, the two merge quite nicely for the following reasons; 

CondBT restricts the order in which variables are added to the partial solution, while DB 

restricts the order in which variables are removed from the partial solution.  CondBT is in 

charge of picking which unassigned variable should be instantiated next (in order to 

ensure a systematic search over the conditional variables), and DB is in charge of 

rearranging, reassigning, and unassigning variables once they have been instantiated (in 

order to perform Dynamic Backtracking).   

 

Next, we summarize CondBT’s variable instantiation strategy in four steps: 

 

Step 1 - Create a Dependency Graph.  The dependencies between a OCCSP’s activity 

constraints, CA, can be represented in the form of a directed graph, called a dependency 

graph, where the root node is defined as the set of all initially active variables, II.  For 

example, the dependency graph for the car buyer example in Section 2.3.5 is shown in 

Figure 5.1, and the initially active variable is Base Package.  Constructing a dependency 

graph helps to identify:  

  

1.) Variables that will not become activated and can be removed (reachability check). 

2.) Cycles in the activity constraints (cycle check). 
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3.) A partial order in which the activity constraints should be applied and retracted 

during search. 

 

 

(A)  Air -
Conditioning
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(S)  Sunroof
{yes $2k ,

no $1k}

(H)  Hardtop
{no $0k , 
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(R)  Ragtop
{ auto $3k , 
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Maximal Depth: Variables:

0

1

(B) Base Package:
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{ luxury $9k, standard $10k, convertible $9k}

 
Figure 5.1: Dependency graph for the car configuration task in Section 2.3.5. 

 

Step 2 – Eliminating Cycles in the Dependency Graph 

Once a CCSP’s dependency graph is constructed, any cycles in the graph must be 

eliminated by clustering the cyclic elements into a super-node.  After all cycles have been 

collapsed, the new graph is called the reduced dependency graph, or RDG.  The RDG 

will always be a directed acyclic graph (DAG).  If a dependency graph contains no cycles, 

it is trivially an RDG, and also a DAG.  Within the scope of this thesis, we will only 

encounter OCCSPs that are guaranteed by construction to contain no cycles in their 

dependency graphs, so Step 2 will always be trivially satisfied.  For example, the car 

buyer example in Figure 5.1 contains no cycles so it is trivially the RDG. 

 

Step 3 – Derive a Total Ordering, IO 

The RDG implies a partial ordering in which the activity constraints of an OCCSP should 

be applied and retracted during search.  To determine the implied partial ordering, an 

integer value is defined for each node in the RDG, called the maximal depth.  The 

maximal depth for each RDG node is defined as the number of nodes appearing above it 

in the RDG.  If there happens to be more than one path into an RDG node, then the 

longest path must be taken as that node’s maximal depth.  For example, the maximal 

depth of each variable in the car buyer example is shown in Figure 5.1, and the implied 

partial ordering is: },,,{},{ RHSAB .   
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 As defined by Gelle and Faltings [12], any two nodes with the same maximal depth 

are incomparable, and the order in which their corresponding activity constraints are 

applied is arbitrary.  Thus, any total ordering, IO, that obeys the implied partial ordering, 

is valid.  For example, two valid total orderings for the car buyer example are 

RHSAB ,,,,  and HRSAB ,,,, .  

 

Step 4 – The CondBT Algorithm 

The CondBT algorithm enforces a sound and complete search over the conditional 

variables via two additions: a total variable ordering, IO, and a function applyNextAC().  

The function applyNextAC( ) works by instantiating only active variables, and simply 

skips over variables that are not active, and is described in Function 5.1. 

 

Function 5.1 - applyNextAC( ) 

This function simply scans IO from beginning to end and returns the first variable, v , 

which satisfies two conditions.   

1.) The variable must not belong to the current partial solution, P. 

2.) The variables activating condition must be satisfied.  

 

5.2 Extension #2: OCCSP Backjumping Resolution Step  

As Extension #2, we augment the DB Backjumping Resolution Step (Proposition 2.1) to 

account for conditional variables.  To do this, we inform the backjumping resolution step 

that a variable may be removed from the problem via conceding any one of the activation 

conditions used to instantiate it.  Thus, when backjumping occurs, the activation 

conditions responsible for a variable presently being active are also added to the newly 

resolved conflict.  This modified resolution step is described below. 
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Proposition 5.1 - OCCSP Backjumping Resolution Step 

Let i  be a variable with domain, },,,,{ 21 mi vvvV K=  activity constraint )(iactiveAC → , and 

let mPPP ,,, 21 K  be partial solutions that do not include i.  If,  

( ){ } ( ){ } ( ){ }mm viPviPviP ,,,,,, 2211 ∪∪∪ K  

are all conflicts, then,  

ACPPP d ∪∪∪∪ K21  

is also a conflict. 

 

 Note that this new conflict can be resolved by removing variable i  from the problem 

via conceding any one of its activation conditions, AC .  

 

5.3 Extension #3: Checking for Deactivated Variables 

Extension #3 is more straightforward than the previous two.  When CondDB backjumps to 

a variable and changes its value, it is possible for that reassignment to deactivate other 

variables in the partial solution.  In response, those variables must also be unassigned, 

removed from the partial solution, and the eliminating explanations depending on those 

variables must be erased.  This is accomplished via the recursive function 

removeUnsupportedVars(v,P). 

 

Function 5.2 – removeUnsupportedVars(  j , P )  

for each variable Pi ˆ∈ , 

 if si'  activating constraint depends on the reassigned variable j , unassign variable i , 

remove ),( ivi  from P, and for each variable k assigned a value after i, remove from kE  

any eliminating explanation that involves i, by calling removeUnsupportedVars( i , P ). 
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5.4 Extension #4: A Branch-and-Bound Framework   

To extend DB from a satisfaction algorithm to an optimization algorithm, we integrate 

Branch-and-Bound (B+B) search [37] into the DB algorithm.  In addition, we augment 

B+B to construct minimal suboptimal conflicts.  A B+B framework consists of three key 

attributes: an incumbent, a cost function, and a pruning mechanism.    Branch-and-Bound 

Search (B+B) augments standard chronological backtracking (Section 2.2.3) search with 

two simple modifications: 

 

1.) The search doesn’t terminate when the first solution is found, but instead 

searches until the optimal solution is found.   

2.) The lowest-cost solution found so far, called the incumbent, is stored and 

used to efficiently prune away sub-optimal portions of the search space.   

 

To merge branch-and-bound search with Dynamic Backtracking we augment Ginsberg’s 

elimination mechanism, ε , (Definition 2.5) to also prune candidate solutions with a 

higher cost than the incumbent solution.  Therefore, we define a new elimination 

mechanism for the OCCSP, called Oε , as follows:  

 

Definition 5.1 - OCCSP Elimination Mechanism, ).,( iPOε   We define a new 

elimination mechanism Oε  for the OCCSP as a function which accepts as arguments a 

partial solution, P , and a variable Pi ˆ∉  and returns a (possibly empty) set ),( iPE Oi ε=  of 

eliminating explanations for i .  An elimination mechanism tries to extend a partial 

solution, P , by assigning each possible value for a variable i , and returns a reason for 

each value assignment which along with P  is inconsistent or suboptimal given the 

problems constraints, CC and CA.  If the extended partial solution is suboptimal, (has a 

cost greater than the current incumbent, N ), ),()( NfviPf ≥=∪  then a subset of the 

extended partial solution, iPM ∪⊆  is returned as the reason for inconsistency, since its 

extension will be a suboptimal solution, ).ˆ,( Mvi ≠   Where M  is determined by the 

Function 5.3, minSubOptimalConflict(P,f(N)).   
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Function 5.3 – minSubOptimalConflict( P , f(N) ) 

Let SE CC ⊆  be the cost associated with each variable value assignment expressed in the 

partial assignment Pvi ∈= )( , and thus contributors to ).(Pf   Let EC  be an ordered list 

of each assignment K,, kkjjE viviC ===  such their associated costs, )( vif = , are 

ordered from greatest to least.   Let kC  be the first k elements of EC  such that their 

combined cost exceeds ).(Nf   Return kC  as a minimal suboptimal conflict. 

 

This concludes our description of the four extensions to DB in order to solve OCCSPs, next 

we provide an example of CondDB-B+B solving an OCCSP. 

 

5.5 Taking CondDB-B+B for a Test-Drive 

In this section we give an execution trace of the CondDB-B+B algorithm solving the car 

buyer example.  Initially, we assume CondDB-B+B receives as input, BI I =  and 

RHSABI O ,,,,= .  In Figure 5.2, we show at each search step the partial solution, ,P  its 

cost, ),(Pf  the cost of the current incumbent, ),(Nf  the elimination explanations for each 

variable, ,iE  and also the set of active variables which are not assigned values, PI A
ˆ− .  

 

Step 0 – CondDB-B+B is initialized with ,∅=P  ,ˆ ∅=iE   ,BII IA == ,,,,, RHSABI O =  

and ( )∞∅= ,N . 

 

Step 1 - ,ˆ
AIP ≠ so the function applyNextAC( ) is called and returns variable .B   All three 

of sB'  value assignments are consistent with the constraints, CC, and it is assigned the 

value 1.  The new variable-value assignment 1=B  activates variables A and .S   

 

Step 2 - ,ˆ
AIP ≠  so applyNextAC( ) is called and returns variable .A  Both of sA'  value 

assignments are consistent with the constraints CC, and it is assigned the value 1.  
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Figure 5.2: Solving the car buyer OCCSP with CondDB-B+B 

 

Step 3 - ,ˆ
AIP ≠ so applyNextAC( ) is called and returns variable .S   Both of sS '  value 

assignments are NOT consistent with the constraints, CC, so it is not added to the partial  

solution.  The buyer does not like a sunroof!  Since S is self-inconsistent, each of its 

elimination explanations are empty, { }.∅   }).{,2(}){,1( ∅≠∪∅≠∪= SSEE SS  

 

 Step 4 – ,∅=L  so backjump, { }.}{ BBE =∪∅∪∅=  (Proposition 5.1)  Let ).1,(),( Bvj j =   

Remove )1,(B  from ,P and erase any elimination explanations involving B.   Call 
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removeUnsupportedVars(B,P), which removes A  from .P   Set }),{,1( ∅≠∪= BEE BB  and 

set .2=B  Now, AIP =ˆ  and ),()( NfPf <  so that P  is the new incumbent.  Set 

{ }( )10,2== BN . 

 

Step 5 - AIP =ˆ  so )ˆ,2( BPBEE BB −≠∪=  and )3,(B  is added to .P   The assignment 

{ }3=B activates H and R. 

 

Step 6 - ,ˆ
AIP ≠ so applyNextAC( ) is called and returns variable .H   The assignment 

2=H  is pruned as suboptimal, { } ).()2( NfHPf ≥=∪  Add 2=H  to .P    

 

Step 7 - ,ˆ
AIP ≠ so applyNextAC( ) is called and returns variable R .  Both of sR'  value 

assignments are pruned as suboptimal.  Note that the conflict minimization function 

(Function 5.3) eliminates H=1 from each conflict, since the cost of the assignments to B 

and R alone (without even considering H) already comprise suboptimal conflicts.   

 

 Step 8 - ,∅=L  so backjump, }.{∅=E   An empty conflict was produced.  Return the 

incumbent, { }( )10,2== BN .    Search Success!! 

 

Next, we sketch out proofs of completeness and termination for the CondDB-B+B algorithm.  

 

5.6 Sketching Out Proofs of Completeness and Termination  

We sketch proofs of completeness and termination for the CondDB-B+B algorithm, 

based on a small set of modifications to Ginsberg’s proofs for Dynamic Backtracking 

[13].  Just as in [13], we begin by making the following assumptions about all elimination 

mechanisms: 

 

• They are correct.  We assume that suboptimal and infeasible partial assignments 

are always identified correctly (No false positives or negatives). 
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• They are complete.  This part requires no modification from [13]. 

• They are concise.  If a partial solution is suboptimal and infeasible, record only 

one of the two conflicts.  Specifically, always record infeasibility. 

 

5.6.1 Completeness 

 For CondDB-B+B we sketch completeness by proving three sufficient conditions: 

1.) Retained eliminating explanations are always valid, and invalid eliminating 

explanations are always dropped. 

2.) All possible combinations of conditionally activated variable assignments are 

considered during the search (The entire OCCSP search space). 

3.) The search is guaranteed to find an optimal, complete, and consistent assignment of 

values to variables, if one exists. 

 

Condition #1. To prove that retained eliminating explanations are always valid, we first 

need to prove that only valid eliminating explanations are added into the problem in the 

first place.  There are two places in which CondDB-B+B adds new elimination 

explanations: the elimination mechanism (Definition 5.1) and the OCCSP backjumping 

resolution step (Proposition 5.1).  Firstly, the elimination mechanism, as stated above, is 

assumed to only produce valid elimination explanations.  Secondly, the OCCSP 

backjumping resolution step (Proposition 5.1) is defined in such a way that it creates a 

new valid elimination explanation from existing valid elimination explanations.  Next, we 

point out that eliminating explanations are not altered after being created, so to complete 

our proof of condition #1, it suffices to show that valid eliminating explanations are 

always dropped as soon as they become invalid.  Analogously to DB, the CondDB-B+B 

algorithm is guaranteed by construction to drop eliminating explanations as soon as they 

become invalid.  This guarantee comes from the fact that all eliminating explanations are 

checked for validity every time a variable is unassigned and removed from the partial 

assignment, which is the only condition in-which an elimination explanation can become 

invalidated.   
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Condition #2.  This condition is enforced by Extension #1 to DB, the CondBT( ) 

algorithm presented Section 5.1, which utilizes a total ordering, IO, and a conditional 

variable instantiation function, applyNextAC( ) to systematically search over the 

conditional variables.  

 

Condition #3.  Branch-and-bound style search is proven to find the optimal, complete, 

and consistent solution, if a solution exists.  This is true even during dynamic variable 

reordering of the search tree simply because the cost function does not dependent upon 

the order of assignments in a partial solution, just what those assignments are. 

 

5.6.2 Termination 

Ginsberg proves termination for DB [13] by showing that the deductive consequences of 

all eliminating explanations grow monotonically as the DB algorithm proceeds.  The 

same termination proof can be applied to CondDB-B+B.  To state the argument 

intuitively, imagine an OCCSP inundated with so many activity constraints so that all 

variables always remain active.  This is simply a CSP, and the original termination proof 

applies.  If we reduce the number of activity constraints in the problem, the deductive 

consequences of all eliminating explanations still grows monotonically as search 

progresses, the only difference is that the valid search space is smaller, because not all 

combinations of conditional variables will be active at the same time.  Thus, the same 

termination proof still applies.  By pruning suboptimal sub-trees in addition to infeasible 

sub-trees we only strengthen the case for termination. 
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Chapter 6 – Improving TPN Search 

Efficiency 

  

In this chapter, we develop four novel methods for improving TPN search efficiency.   

 

1.)  We use temporally inconsistent and sub-optimal partial executions, called 

conflicts, to guide optimal method selection towards an optimal, complete, and 

consistent execution. 

 

2.) We introduce a technique for computing tight lower bounds during Branch and 

Bound search of TPNs that enables early pruning of sub-optimal partial 

executions. 

 

3.)  We define a relaxed union operator that enables early detection of temporal 

conflicts in a TPN.  

  

4.) We develop a method to focus temporal conflicts by identifying and removing 

irrelevant choices, in the form of variable-value assignments, from the conflict. 

 

 

6.1 – Using Conflicts to Guide Optimal Method Selection  

We begin by describing prior work on detecting temporal conflicts in a TPN, in Section 

6.1.1.  Then, in Section 6.1.2, we explain how inconsistent and sub-optimal partial 

executions, called conflicts, can be used by a conflict-directed candidate execution 

generator to guide optimal method selection towards an optimal, complete, and consistent 

execution. 
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6.1.1 Detecting Temporal Conflicts in TPNs 

Prior work [38,39] has enabled incremental conflict detection and resolution in TPNs via 

an algorithm called ITC.  ITC is an incremental shortest path algorithm that is augmented 

to detect temporal conflicts in a TPN by looking for self loops in its set of support [39]. 

 A temporal conflict is an over-constrained sub-network of activities in a TPN.  For 

example, a temporal conflict is shown in Figure 6.1, with grey and black striped arrows.  

The top thread of execution with choice assignments {i1=v1} and {i2=v1} is constrained 

to end before the thread of execution with choice assignment {i3=v1} is allowed to end.  

When ITC detects a temporal conflict, such as the one in Figure 6.1, it returns the set of 

all time events involved in the conflict: {d,c1,l,m,f,c2,p,q,r,j,i,h,u,,t,c3,e}. 
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Figure 6.1: A Temporal Conflict, { iA=vA, i1=v1, i2=v1, i3=v1}. 

 

6.1.2 Using Conflicts to Guide Optimal Method Selection 

In this section, we explain how temporally inconsistent and sub-optimal partial 

executions, called conflicts, can be used to guide optimal method selection towards an 

optimal, complete, and consistent execution.  To implement this capability we make two 

significant changes to Kirk’s optimal method selection architecture.  First, we augment 

each testing phase of optimal method selection, Phases 2 through 4, with the capability to 

return conflicts in the cases of inconsistency and sub-optimality, as depicted in Figure 

6.2.  Second, we develop a conflict-directed candidate execution generator for Phase 1 of 

optimal method selection that stores conflicts and only generates candidate executions 
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that avoid all stored conflicts.  The conflict-directed candidate execution generator is 

depicted in Figure 6.3.  Next, we describe the method in which conflicts are returned 

from Phases 2 through 4.  Then, we describe how the conflicts are used to guide optimal 

method selection. 

 To simplify the process of returning conflicts, phases 2 through 4 convert the 

conflicts into a uniform format before sending them to Phase 1.  This uniform format is 

an OCCSP representation of a conflict of the form { ix = vx , iy = vy , … } where each 

variable-value assignment represents a choice assignment in the TPN that contributes to 

the conflict.  In Phases 2 and 3, the ITC algorithm detects conflicts as a set of time events 

that contribute to a temporal conflict, as described in Section 6.1.1.  The process of 

converting a set of conflicting time events into the format described above is 

straightforward, and is described in Function 6.1, below.  In Phase 4, a candidate  
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Figure 6.2: Conflict-directed Optimal Method Selection 
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Function 6.1 – timeEventsToVarValAssignments ( T, OCCSP_TPN) 

 Let T be a set of time events, and let OCCSP_TPN be an OCCSP encoding of a TPN. 

 Initialize the variable value assignments to return to null:  { }.∅=C  

 For each time event, ,Tt ∈  

  Let A be the set of activities in OCCSP_TPN such that time event  t is either its 

   start or end event. 

For each ,Aa∈  

 If a’s start event is t, let v be a’s end event. 

 Else, let v be a’s start event. 

 If v also belongs to T, 

  Let {ik=vk} be the variable value assignment that activates a in the   

                       OCCSP_TPN.  Add {ik=vk} to C. 

 Return C. 

 

Function 6.2 – suboptimalExecutionToVarValAssignments ( S, N ) 

 Let S be a suboptimal candidate execution, and let N be the current incumbent. 

 Let S’ be the OCCSP variable value assignments of each choice in the suboptimal   

   candidate execution.  Let N’ be the OCCSP variable value assignments of each  

  choice assigned in the current incumbent.  Let f(N’) be the cost of N’. 

 Initialize the variable value assignments to return to null:  { }.∅=C  

  C = minSubOptimalConflict( P’ , f( N’ ) )  (Function 5.3) 

 Return C. 

 

execution is tested for completeness and optimality.  A suboptimal candidate execution is 

one whose total cost, which is the sum of all activity costs in the candidate execution, 

exceeds that of the best cost, complete, and consistent execution found so far, called the 

incumbent.  A suboptimal candidate execution is converted into OCCSP variable value 

assignments using Function 6.2, above. An incomplete candidate execution is one in-

which more choices need to be made to fulfill the mission objectives.  An incomplete 

candidate execution can be detected by looking for unassigned choice points along the 

selected threads of execution in a TPN, or alternatively, by checking that the activity 
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constraints, CA, in the OCCSP encoding of a TPN are not all satisfied.  An incomplete 

candidate execution is a consistent candidate execution that is passed back to Phase 1 for 

more choices to be selected.  Since incomplete candidate executions are not inconsistent 

or suboptimal, they do not return a conflict when backtracking. 

 Next, we describe the changes to Phase 1, candidate execution generation, in order to 

use conflicts to guide optimal method selection.  To enable conflict-directed candidate 

generation, we augment Kirk’s candidate execution generator to operate directly on the 

OCCSP encoding of a TPN, from Chapter 4.  Through this approach, any OCCSP 

algorithm, such as Conditional Dynamic Backtracking Branch and Bound (CondDB-

B+B) from Chapter 5, can be applied directly to the problem of optimal method selection.  

A depiction of this architecture is shown in Figure 6.3.  The candidate execution 

generator takes as input a TPN, which is then encoded as an OCCSP, and conflicts, in the 

form of OCCSP variable-value assignments.  Any OCCSP search algorithm, such as  
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Figure 6.3: Conflict-directed Candidate Execution Generation 
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CondDB-B+B can then be used to perform candidate execution generation.  A candidate 

execution comes from the candidate generator in the form of variable value assignments, 

of the form { ix = vx , iy = vy , … }.  A candidate execution is then selected from the TPN 

by activating each thread of execution that corresponds to an OCCSP variable-value 

assignment, as depicted in Figure 6.3.  Then the candidate execution is passed on to 

Phases 2 through 4. 

 

 Next, we describe a technique that improves the ability of Branch and Bound search 

to prune suboptimal partial executions. 

 

6.2 – A Technique for Computing Tight Lower Bounds  

In this section, we improve the pruning power of Branch and Bound search of TPNs by 

introducing a technique for computing tight lower bounds.  A lower bound is a cost 

associated with a partial execution, and is an underestimate of the lowest cost complete 

and consistent execution extending from that partial execution.  In Branch and Bound 

search of TPNs, the lower bound is used to prune partial executions that are guaranteed to 

be suboptimal.  The tightness of a lower bound refers to how close it estimates the actual 

lowest cost complete and consistent execution that extends from a partial execution.  A 

tight lower bound improves Branch and Bound’s ability to detect and prune suboptimal  
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Figure 6.4: A Partial Execution, {i1=v2}. 
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partial executions.   As an example, consider the TPN in Figure 6.4.  Suppose that we 

start with the partial execution {i1 = v2}, highlighted in grey and bold.  The actual lowest 

cost of a complete and consistent execution extending partial execution {i1 = v2} is 5, and 

corresponds to the choice assignments {i1 = v2, i2 = v1, i3 = v2}, or analogously, the 

execution thread “stop( )”, “drop( )”, and “roll( )”.  One valid lower bound is simply the 

cost of a partial execution itself, which for {i1 = v2} is 1. This lower bound is not very 

tight, however, and significantly underestimates the actual cost of extending a partial 

execution to a complete and consistent execution, which for {i1 = v2} is 5.  Next, we 

introduce a technique for computing tighter lower bounds. 

 As a tighter lower bound for Branch and Bound search of TPNs, we compute the 

lowest cost, complete, but not necessarily consistent, execution that extends a partial 

execution.  This lower bound is effective for two reasons:  
 

1) it often closely underestimates the cost of the complete and consistent execution 

with lowest cost, and  
 

2) it has an attractive time complexity; linear in the number of choices in a TPN.   

 

 To compute this lower bound in linear time, a pre-processing step is required.  We 

pre-compute the lowest cost thread of execution through each choice assignment in a 

TPN.  For example, in Figure 6.5, we place next to each choice assignment a number in 

brackets and highlighted in grey, such as {i1 = v2}<5>, which represents the lowest cost 

of a thread of execution through that choice assignment.  These costs can be computed 

recursively, as described in Function 6.3, by calling lowestCost(iA,vA) on a TPN’s base 

choice.  The computational complexity of this pre-processing step is linear in the number 

of activities in a TPN. 
 

Function 6.3 – lowestCost(i,vi) 

Initialize the lowest cost, c, of ( i , vi ) to zero, c = 0.   

For each variable j activated by the assignment ( i = vi ),  

m = m + MINIMUM{  f( i = vi ) + lowestCost( j , v ) ,  for each jvv∈   } 
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Figure 6.5: A Pre-processing Step for Computing Tight Lower Bounds. 

 

After the pre-processing step is completed, the lower bound for a partial execution is 

calculated as described in Function 6.4.  We use the partial execution {i1=v2} as a 

running example in describing Function 6.4. 

 

Function 6.4 – computeLowerBound( P ) 

1.) Take as input a partial execution, P.  For example, {i1=v2}. 

2.) Initialize the lower bound to zero, lb = 0. 

3.) Add to lb the cost of the partial execution.  For example, lb = 0+ f( i1=v2 ) = 1. 

4.) For each choice point in the partial execution without a value assigned, such as 

choice point 2, pick the lowest cost estimate of extending that choice point to a 

complete execution, and add it to lb.  For example, lb = 1+ MINIMUM{4,5} = 5. 

5.) Return lb. 

 

 To demonstrate the effectiveness of the tight lower bound (Function 6.4), we solve 

the TPN from Figure 6.4 using Branch and Bound (B+B) search first without the tight 

lower bound, and then with it.  The search tree for B+B without the tight lower bound is 

shown in Figure 6.6a, while the search tree for B+B with the tight lower bound is shown 

in Figure 6.6b.  
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Figure 6.6: Branch and Bound Search with and without tight lower bounds. 

 

 In this example, tight lower bounds (Function 6.4) added significant pruning power to 

the B+B algorithm, reducing the number of search iterations from 6 to 2.  This 

performance improvement scales well to larger TPNs, as demonstrated in our empirical 

results in Chapter 7. 

 

6.3 – A Relaxed Union Operator that Enables Early Detection of 

Temporal Conflicts 

In this section, we define a relaxed union operator that enables early detection of 

temporal conflicts by bounding the feasible durations of choice expressions in a TPN, 

where a bound is represented as a single interval constraint.  These bounds are added into 

a TPN at compile time, enabling the early detection of temporal conflicts.  For example, 

consider the TPN in Figure 6.7a.  Using a relaxed union operator for TPNs, which is  

defined in Section 6.3.1, we pre-compute a bound on the feasible durations of the choice 

C.  This bound is represented in the form of a single interval constraint, called Crelaxed, 

as depicted in Figure 6.7b, and indicates the shortest and longest possible durations for 

choice C.  Adding this new constraint into the TPN between choice C’s start and end 

events allows us to detect immediately that this TPN will be inconsistent no matter what 

choice we make for C.  Adding these relaxed bounds into a TPN, in general, saves an 
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Figure 6.7: A Relaxed Constraint: The Feasible Bound on a Choice Expression. 

 

exponential amount of time during search, while the time complexity for pre-computing 

them is linear in the number of activities in a TPN.  We conclude this section by defining 

the relaxed union operator for TPNs.   

 

6.3.1. Defining the Relaxed Union Operator for TPNs 

Next, we define the relaxed union operator for TPNs that extends the union operator 

defined by Dechter, Meiri, and Pearl [7] for temporal constraint networks.  Let 

{ }lIIT ,...,1=  and { }mIJS ,...,1=  be metric timing constraints which imply sets of 

allowable intervals of a real variable t.  Both of these operators are depicted in Figure 6.8. 

 

Definition 6.1 – The Union Operator:  The union of T and S, denoted ST ∪ , admits 

only values that are allowed by either one of them, { }ml JJIIST ,...,,,..., 11=∪ , as 

indicated in Figure 6.4. 
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Definition 6.2 – The Relaxed Union Operator: The relaxed union of T and S, 

denoted ST ∪~ , admits any value between the highest and lowest values of ST ∪ , 

as indicated in Figure 6.4.  

 

 In Figure 6.8, the highest value of ST ∪  is 8 and the lowest value of ST ∪  is 0.  

Therefore, ST ∪~ admits any value between 0 and 8.  The relaxed union operator is not a 

new concept.  It has been commonly employed in the area of interval arithmetic [1] to 

retain tractability when performing arithmetic over large sets of intervals.  What is novel, 

is to apply this operator to tractably pre-compute temporal conflicts in a TPN. 
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Figure 6.8: The Union and Relaxed Union Operators 

 

 

6.4 – Extracting Focused Temporal Conflicts from a TPN 

First, in section 6.4.1, we explain how to extract focused temporal conflicts from a TPN 

by identifying and removing irrelevant variable-value assignments from a conflict.  Then, 

in Section 6.4.2, we extend upon the ideas of Section 6.4.1 and develop an algorithm that 

identifies and removes large sets of irrelevant variable value assignments from a temporal 

conflict.    
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6.4.1 Identifying Irrelevant Variable-Value Assignments 

A key observation emanating from this thesis is that irrelevant variable-value 

assignments can be identified and eliminated from a conflict returned by ITC.  The 

reason is that there are disjunctive constraints in a TPN that are not captured in a 

candidate execution when it is tested for consistency by ITC, but that can be used to 

eliminate variable-value assignments from a conflict after being returned by ITC.  This is 

an important observation because removing irrelevant variable-value assignments from 

conflicts dramatically improves the performance of conflict-directed search algorithms.   
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Figure 6.9: An Alternative Way to View of a Temporal Conflict: A Conflict Timeline. 

 

 In order to detect irrelevant variable value assignments, in Figure 6.9, we provide an 

alternative way to view conflicts, called a conflict timeline.  A conflict timeline 

represents with double headed arrows the allowable durations of two conflicting parallel 

threads of execution, such as the parallel threads c1-r and e-i in Figure 6.9.  Next, we 

define several terms related to a conflict timeline that will be useful when explaining how 

to detect irrelevant variable-value assignments. 
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Definition 6.3 – A Conflict Timeline  

 (we use the conflict in Figure 6.6 as a running example) 

 The start and end events of the two conflicting threads of execution: {d,j}.   

 The short duration thread: { c1-r }. 

 The long duration thread: { e-i }. 

 The short duration thread’s upper bound, u1 = 12. 

 The long duration thread’s lower bound, l2 = 13. 

 The temporal gap: g = l2-u1 = 13 – 12 = 1. 

 

To resolve a conflict, the temporal gap, g, as defined in Definition 6.3, needs to become 

less than or equal to zero so that the two parallel threads, c1-r and e-i, can begin and end 

simultaneously.  To reduce the temporal gap, g, we can attempt to make different choices 

to the variables involved in the conflict, C1, C2, and C3.  An alternative choice is only 

beneficial, however, if it contributes towards eliminating the temporal gap, g.  We define 

a variable-value assignment as ‘irrelevant’ if no alternative choice for that variable helps 

to resolve the conflict.  For example, in Figure 6.9, variable C1 is irrelevant because the 

alternative choice for C1, {C1 = v2 }, has the same upper bound as the current choice, {C1 

= v2}, and does not contribute to resolving the temporal conflict, by reducing the 

temporal gap, g, between the two conflicting threads of execution.  Thus, we can remove 

the variable-value assignment {C1 = v2} from the conflict, because the remaining 

assignments, {C2 = v1 , C3 = v1 } still infer a temporal conflict regardless of the choice 

for variable C1.   

 More precisely, we define a variable-value assignment as ‘irrelevant’ if the absolute 

value of the difference between its relaxed bound and its actual bound, called the 

temporal slack, is less than the temporal gap, g.  If a variable-value assignment resides 

along a conflict’s short duration thread then we compare its upper bound, for example 

,0221 =−=− AArelaxed ubub  and if a variable-value assignment resides along a conflict’s 

long duration thread then we compare its lower bound, for example 

.4151 =−=− CCrelaxed lblb   For example, the temporal slack for variable-value 

assignment C1 = v1 is less than the temporal gap, 0 < 1, indicating that C1 = v1 is 

irrelevant, since no alternative choice for A can possibly resolve the temporal conflict.  
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The temporal slack for variable-value assignment C2 = v1 is greater than the temporal 

gap, 4 > 1, indicating that C = 1 is not extraneous because an alternative choice for C 

exists that can resolve the temporal conflict.   

 In the next section, we develop a systematic method for identifying large sets of 

irrelevant variable-value assignments in a temporal conflict. 

 

6.4.2 Identifying Large Sets of Irrelevant Variable-Value Assignments 

In this section we develop an algorithm called, extractTemporalConflict( ), that can 

identify and remove a large set of irrelevant variable-value assignments from a temporal 

conflict.  To motivate the importance of this approach, consider the temporal conflict 

highlighted in grey in Figure 6.10.  We will be able to remove a large set of the variable-

value assignments from this conflict. 

 To begin, we calculate the temporal slack for each variable-value assignment 

involved in the conflict, as described in Section 6.4.1: 

 

{A = 1}: ,4371 =−=− AArelaxed lblb  {B = 1}: ,1011 =−=− BBrelaxed lblb  

{C = 1}: ,1011 =−=− CCrelaxed lblb  {D = 1}: ,1011 =−=− DArelaxed lblb  

{E = 1}: .1561 =−=− EErelaxed ubub  

 

 The temporal slack for each variable-value assignment in the conflict is less than the 

temporal gap of 5.  Therefore, any of the variable-value assignments could be considered 

‘irrelevant’ and removed from the conflict.  The trick here becomes, how do we remove 

the largest number of ‘irrelevant’ variables from the conflict in order to best focus the 

temporal conflict?  The answer to this question is described in Function 6.5, below. 
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Figure 6.10: A Tricky Conflict. 
 

Function 6.5 – ExtractTemporalConflict( ): 

Our strategy for identifying the largest set of irrelevant assignments given a temporal 

conflict is simple:  

1.) Order the assignments from least to greatest according to their temporal slack values. 

• For example, ( {B=1}=1 , {C=1}=1 , {D=1}=1 , {E=1}=1 , {A=1}=4 ). 

2.) Remove the remaining assignment with the least temporal slack until the temporal 

gap becomes less than or equal to zero.  Then, return the remaining assignments as a 

focused conflict.  For example, 

• Remove, {B=1}, such that the temporal gap, g = 5 – 1 = 4. 

• Remove, {C=1}, such that the temporal gap, g = 4 – 1 = 3. 

• Remove, {D=1}, such that the temporal gap, g = 3 – 1 = 2. 

• Remove, {E=1}, such that the temporal gap, g = 2 – 1 = 1. 

• Try to remove, {A = 1}, but the temporal gap, g = 1 – 4 = -3, becomes 

negative.  Return the remaining assignments as a focused conflict: {A=1}. 
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 Next, we develop an extension to the extractTemporalConflict( ) function that enables 

it to handle nested choices in a temporal conflict. 

 

Extending  extractTemporalConflict( )  to Handle Nested Choices: 

To handle the more general case, where nested choices can exist in a temporal conflict, 

we make one simple addition to the extractTemporalConflict( ) function.  In addition to 

ordering the assignments from greatest to least, we add an additional constraint so that 

nested choice assignments are removed from the conflict before their parent assignments.  

This ensures that the largest irrelevant set of assignments is removed from a conflict.  The 

algorithm is presented again in Function 6.6, with the extension highlighted in grey:   

 

Function 6.6 – ExtractTemporalConflict( ) (with extension to handle nested choices) 

1.) Order the assignments from least to greatest according to their temporal slack 

values. 

2.) Remove the remaining assignment with the least temporal slack that in addition 

has no children assignments remaining in the conflict, until the temporal gap 

becomes less than or equal to zero.  Then, return the remaining assignments as a 

focused conflict. 

 

 

Next, we provide empirical results that demonstrate the significance of the 

enhancements developed in this chapter, as well as implementation details, a discussion 

of future work, and conclusions. 
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Chapter 7 – Empirical Results, 

Discussion, Implementation, Future 

Work, and Conclusions 
 

7.1 Overview 

In this chapter we present empirical results, a discussion of the results, implementation 

details, possible directions for future work, and concluding remarks. 

 

7.2 Empirical Results and Discussion 

In this section, we present empirical results for each of the contributions developed in this 

thesis.  First, in Section 7.2.1, we describe a random TPN generator that was used to 

generate TPNs for the empirical evaluation.  Then, in section 7.2.2 we describe the 

algorithms that were evaluated.  In Section 7.2.3 we present the empirical results along 

with a discussion of the results. 

 

7.2.1 Random TPN Generator 

A random TPN generator was developed to test Kirk’s performance on a wide variety of 

TPNs.  The random TPN generator varies the generated TPNs over two dimensions: 

 

 1) the number of choices in parallel, called the branching factor (b) 

 2) the depth of nested choices, called the nest level (n) 

     

 Figure 7.1 shows a typical randomly generated TPN, and the black arrows represent 

each parameter that can be varied to change the dimension of TPN being generated.  In 

the experiments, the activity time bounds were adjusted until the randomly generated 
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plans were approximately 50% solvable, which means they are on the phase transition 

where difficult problems are most common [2]. 

 

 

Figure 7.1: Two Dimensions of Complexity in a TPN 

 

7.2.2 The Algorithms 

The central contribution of this thesis is a novel algorithm for performing optimal method 

selection, called Conditional Dynamic Backtracking Branch and Bound (CondDB-B+B).  

In addition, we develop three novel enhancements that speed up the CondDB-B+B 

algorithm when applied to TPN search: 

 

• A tight lower bound for Branch and Bound search of TPNs. (Section 6.2) 
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• A relaxed union operator that enables early detection of temporal conflicts in 

TPNs. (Section 6.3) 

• A method to extract focused temporal conflicts by eliminating irrelevant variable-

value assignments. (Section 6.4) 

 

  To measure the performance benefits of these enhancements separately, we define 

two algorithmic variants of the CondDB-B+B algorithm that incorporate these 

enhancements.  Additionally, for benchmarking purposes, we define a standard Branch-

and-Bound algorithm augmented to handle conditional variables, called CondBT-B+B.  

Again, to test each enhancement separately, we define two algorithmic variants to 

CondBT-B+B.  A description of each algorithm is provided below: 

 

1.) CondDB-B+B – This algorithm, as described in Section 6.1, employs the 

contributions in Chapters 4 and 5 to enable conflict-directed, and memory-bounded 

candidate execution generation with dynamic variable re-ordering to quickly prune sub-

optimal and inconsistent partial executions.  In addition, this algorithm stores conflicts, 

and only generates partial executions that avoid all stored conflicts. 

 

2.) CondDB-B+B_TB – This algorithm extends CondDB-B+B with a method for 

computing tight lower bounds, as described in Section 6.2, that improves the pruning 

power of Branch and Bound search of TPNs. 

 

3.) CondDB-B+B_RB –  This algorithm extends CondDB-B+B with a relaxed union 

operator that bounds the feasible durations of choice expressions in a TPN, as described 

in Section 6.3, and that enables extraction of focused temporal conflicts, as described in 

Section 6.4.  These enhancement enable early and accurate detection of temporal 

conflicts in a TPN. 

 

4.) CondBT-B+B – This algorithm a standard Branch and Bound search algorithm 

augmented to handle conditional variables. 
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5.) CondBT-B+B_TB – This algorithm augments CondBT-B+B with a method for 

computing tight lower bounds, as described in Section 6.2. 

 

6.) CondBT-B+B_RB – This algorithm augments CondBT-B+B with a method for 

computing relaxed bounds, as described in Section 6.3.   

 

7.2.3 Empirical Results and Discussion 

The speed of optimal method selection in Kirk was tested with six different candidate 

generation algorithms, as described above in Section 7.2.2, in two separate experiments.  

The two separate experiments each independently vary a dimension of TPN complexity, 

as described in Section 7.2.1. 

 

Experiment #1: Varying the Number of Choices in Parallel (b) 
 
For the first experiment, the depth of nested choices (n) was fixed at 4, and the number of 

choices in parallel (b) was varied from 6 to 20.  In addition, the domain size for each 

choice was fixed at 3, and all activities were assigned a cost of 0.  We record the number 

of partial executions generated by each algorithm before finding an optimal, complete, 

and consistent execution, while capping individual tests at 5000 candidates generated.  

The average case performance of each algorithm is presented in Figure 7.2, and the 

performance of the individual test cases is presented in Figure 7.3.   

 There are two important trends in the data.  Firstly, both of the dynamic backtracking 

algorithms, CondDB-B+B and CondDB-B+B_RB, significantly outperformed their 

chronological counterparts, by up to two orders of magnitude.  Secondly, the relaxed 

bounds (RB) enhancements doubled the performance of their respective algorithms.  In 

addition, since all activity costs in this experiment were zero, the tight bounds (TB) 

enhancement is not applicable, and the performance of the CondDB-B+B_TB and 

CondBT-B+B_TB would be identical to that of the CondDB-B+B and CondBT-B+B 

algorithms, respectively.  Hence, they were not tested in this experiment. 

 



 102

0

500

1000

1500

2000

2500

5 10 15 20
# of choices in parallel

# 
of

 c
an

di
da

te
 e

xe
cu

tio
ns

CondBT-B+B
CondBT-B+B_RB
CondDB-B+B
CondDB-B+B_RB

 

Figure 7.2: Average Case Performance for Experiment #1 
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Figure 7.3: Individual Test Cases for # of Choices in Parallel (b) 
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Experiment #2: Varying the Number of Nested Choices (n) 
 
For the second experiment, the depth of nested choices (n) was varied from 1 to 6, the 

number of choices in sequence (s) was fixed at 1, and the number of choices in parallel 

(b) was fixed at 2.  In addition, the domain size for each choice was fixed at 3, and the 

cost of each activity was selected randomly from 1 to 10 with a uniform distribution.  In 

this experiment, the nested choices formed a uniform depth tree of depth (n), so that the 

number of variables grew at each step by approximately 3^(n) as n varied from 1 to 6.  

We recorded the number of partial executions generated by each algorithm before finding 

an optimal, complete, and consistent execution.  The average case performance of each 

algorithm is presented in Figure 7.4, and the performance of the individual test cases is 

presented in Figure 7.5.   

 In the data, we see the same general trends as in Experiment #1.  Firstly, both of the 

dynamic backtracking algorithms, CondDB-B+B and CondDB-B+B_TB, significantly 

outperformed their chronological counterparts.  Secondly, this time, the tight bounds 

(TB) enhancements doubled the performance of their respective algorithms.  The relaxed 

bounds (RB) enhancements were not tested in this experiment.   

 Another important trend in the data, that is applicable to both experiments, is worth 

mentioning.  In the individual test cases, Figures 7.3 and 7.5, the dynamic backtracking 

algorithms all have significantly smaller variances than their chronological counterparts.  

Thus, in addition to being faster at optimal method selection, the dynamic backtracking 

algorithms are also more predictable.  Predictability is an important characteristic for 

autonomous robots that interact with elderly or injured people, and that operate as part of 

a larger engineered system. 

 These empirical results demonstrate that the contributions developed in this thesis 

significantly improve the speed and predictability at which robots can perform optimal 

method selection in response to changes in their environment and health status.  

Implementation details and concluding remarks are provided in the next two sections. 
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7.3 Implementation Details 

All of the algorithms developed in this thesis were implemented in C++ and integrated 

into the Kirk temporally-flexible contingent plan executive.  The random TPN generator 

was also implemented in C++.  Kirk’s main planning loop was augmented so that the 

user can select which algorithm, CondBT-B+B or CondDB-B+B, is to perform optimal 

method selection.  In addition, the relaxed bounds (RB) and tight bounds (TB) 

enhancements are presented as options to the user. 

 Kirk is integrated into a rover test bed of ATRV and ATRV Jr. rovers.  To test the 

algorithms developed in this thesis for correct integration with Kirk, three rover demos 

were performed using the CondBT-B+B and CondDB-B+B algorithm to perform optimal 

method selection.  The plans executed during these demos were small, with at most a few 

choices, hence there were no significant differences in runtime performance between 

algorithms.  The performance differences start to become noticeable when there are more 

than 5 to 10 choices in a plan. 

 

7.4 Future Work 

We suggest two directions for future work: 

1.) Improving the temporally-flexible contingent planning architecture.  

2.) Integrating additional OCCSP search techniques into Kirk. 

  

7.4.1 Improving the Temporally-Flexible Contingent Planning Architecture 

In this section, we describe two important and open issues regarding the temporally-

flexible contingent planning architecture described in this thesis, which is depicted again 

in Figure 7.7 for convenience.  The two open issues are listed below, and then described 

in detail in the following two sub-sections: 

1.) Incremental plan modification in response to changes 

2.) Failure recovery and clean-up 
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1.) Incremental plan modification in response to changes 

As shown in Figure 7.6, each time a change in state occurs, optimal method selection is 

re-invoked, and a new optimal feasible plan is generated.  This approach can become 

problematic, however, if changes in state occur too often.  To deal with frequent state 

changes, the current architecture needs a mechanism to distinguish between state changes 

that are important versus changes that are not.  In this way, a robot can invoke optimal 

method selection only when absolutely necessary, minimizing its risk of failing to meet 

near-term mission objectives or incurring damage from the environment while waiting on 

a new optimal feasible plan. 

 Another drawback to the current architecture is that each time optimal method 

selection is invoked, all conflicts are thrown away, and optimal method selection is 

started from scratch.  The reason for this is that when a state change occurs, some or all 

of the conflicts may no longer be valid.  To retain and utilize valid conflicts, two 

contributions are needed: 1) A mechanism for incrementally marking conflicts as valid 

and invalid as state changes occur, and 2) a candidate execution generation algorithm that 

can handle conflicts dropping out and reappearing seemingly at random to the algorithm.   

 A third drawback to the current approach is one of inconsistency between 
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Figure 7.6: Temporally-Flexible Contingent Planning Architecture. 
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successively generated plans.  In the current architecture, there is nothing stopping 

optimal method selection from gratuitously changing the plan in response to a minor state 

change.  The intuition here is that there may be more value in selecting a new plan that 

closely resembles the old plan, even if it happens to be slightly more costly than the 

global optimum.  As a suggestion to address this issue we make an interesting 

connection; with optimal method selection encoded as an OCCSP (Chapter 4) the issue of 

finding a plan that closely resembles the preceding plan becomes one of finding a stable 

solution to a dynamic and recurrent CSP [46,47].  We anticipate that past and future 

advances in this sub-field of constraint satisfaction can be leveraged to improve the 

temporally-flexible contingent planning architecture presented in Figure 7.6.  In fact, one 

of the most important contributions of this thesis may be to sketch a link between 

temporally-flexible contingent planning and finding stable solutions to dynamic and 

recurrent CSPs.   

 Another suggestion to improve consistency between successively generated plans is 

to associate a cost with communicating changes in a plan among multiple collaborating 

robots.  If this communication cost is considered as part of the objective function there 

would be a built-in reluctance to make major changes gratuitously.  This makes the most 

sense in a distributed planning system with multiple robots, and would be an interesting 

direction for future work. 

 

 

2.) Failure Recovery and clean-up 

Another issue that needs to be addressed is how to recover gracefully from failures that 

require clean-up.  By clean-up, we are referring to activities that need to be performed to 

adequately recover from a failure.  For example, consider the LRV-deployment example 

from Chapter 1.  Consider the first activity in the plan, shown in Figure 7.7a, 

remove(insulation-blanket).  Suppose that if robot #1 fails to remove the blanket, we 

would like for robot #2 to try to remove the blanket.  This can be encoded in a TPN as 

shown in Figure 7.7b.   To incorporate these types of recovery mechanisms into RMPL, a 

contingency handling framework was devised as a part of the DARPA Self Regenerative  
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R1.remove(insulation-blanket )

[1,3] (1)

R1.remove(insulation-blanket )
[1,10] (1)

R2.remove(insulation-blanket )
Ask( R1.remove(…) = failed )

[1,3] (1)

A.) B.)

 

Figure 7.7: A Contingency Plan for the R1.remove(insulation-blanket) Activity. 

 

try{ TPN1}catch(s){TPN2}

TPN1

TPN2

Ask (s)

A.) B.)

 

Figure 7.8: Contingency Handling Operator: RMPL to TPN. 

 

Systems program.  The basic RMPL construct for contingency handling, and its 

associated TPN representation are presented in Figures 7.8a and 7.8b, respectively.  To 

fully support this type of construct will require two modifications to Kirk.  Firstly, the 

plan dispatcher needs to be augmented to return failed activity information.   For example, 

if the activity R1.remove(…) fails during execution, the plan dispatcher needs to pass this 

information back to optimal method selection.  Currently, however, the plan dispatcher 

only monitors timing constraints, so maintenance conditions and explicit task failure 

information, such as the condition specified in Figure 7.7b, are not supported.  In addition, 

Kirk needs to be augmented so that a thread of execution upon which a failed activity 

resides cannot be selected again for execution. 

 

7.4.2 Incorporating other OCCSP Search Techniques 

Several OCCSP search techniques exist that could potentially improve the speed at which 

Kirk performs optimal method selection.  Keppens [17] defines an A* algorithm and an 

order of magnitude preference logic for OCCSPs, while Sabin [36] extends forward 
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checking and arc-consistency to OCCSPs.  In addition, techniques such as using valued 

nogoods [6] could be used to improve performance at the expense of more memory.   

 

7.5 Conclusions 

This thesis develops a novel temporally-flexible contingent plan executive that selects 

alternative methods quickly and optimally in response to changes in a robot’s health 

status and environment.  To enable fast and optimal method selection, this thesis makes 

six key contributions: 

 

1.) We frame optimal method selection as an OCCSP. (Chapter 4) 

 
2.) We extend fast CSP search algorithms, such as Dynamic Backtracking and 

Branch-and-Bound Search, to solve OCCSPs. (Chapter 5) 

 
3.) A candidate execution generator that uses temporally inconsistent and sub-

optimal partial executions, called conflicts, to guide optimal method selection to 

an optimal, complete, and consistent execution. (Section 6.1) 

 
4.) A tight lower bound for Branch and Bound search of TPNs. (Section 6.2) 

 

5.) A relaxed union operator that enables early detection of temporal conflicts in 

TPNs. (Section 6.3) 
 

6.) A method to extract focused temporal conflicts by eliminating irrelevant variable-

value assignments. (Section 6.4) 

 

 These contributions build upon the ideas of conflict-directed search and optimal 

heuristic search, which reason on the structure of a problem to guide the search towards 

an optimal and consistent solution.  Experiments on an autonomous rover test-bed and 

randomly generated plans demonstrate that these contributions significantly improve the 

speed at which robots can perform optimal method selection in response to changes in 

their health status and environment. 
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