
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2018-011 February 1, 2013

Risk Allocation for Temporal Risk Assessment
Andrew J. Wang

Risk Allocation for Temporal Risk Assessment

by

Andrew J. Wang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 31, 2013

Certified by. .
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

Risk Allocation for Temporal Risk Assessment

by

Andrew J. Wang

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Temporal uncertainty arises when performing any activity in the natural world. When
activities are composed into temporal plans, then, there is a risk of not meeting
the plan requirements. Currently, we do not have quantitatively precise methods
for assessing temporal risk of a plan. Existing methods that deal with temporal
uncertainty either forgo probabilistic models or try to optimize a single objective,
rather than satisfy multiple objectives. This thesis offers a method for evaluating
whether a schedule exists that meets a set of temporal constraints, with acceptable
risk of failure.

Our key insight is to assume a form of risk allocation to each source of temporal
uncertainty in our plan, such that we may reformulate the probabilistic plan into an
STNU parameterized on the risk allocation. We show that the problem becomes a
deterministic one of finding a risk allocation which implies a schedulable STNU within
acceptable risk. By leveraging the principles behind STNU analysis, we derive condi-
tions which encode this problem as a convex feasibility program over risk allocations.
Furthermore, these conditions may be learned incrementally as temporal conflicts.
Thus, to boost computational efficiency, we employ a generate-and-test approach to
determine whether a schedule may be found.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I am grateful to those who cared for my thesis in the making. Their support meant

much. They include:

• First and foremost, my advisor, Prof. Brian Williams. His scholarship and his

dedication to his students show me concepts that I would rarely learn on my

own.

• My fellow lab members in the Model-based Embedded & Robotics Systems

group. Those who have collaborated most directly are Larry Bush, Cheng Fang,

Peng Yu, and Pedro Santana. Others who I have or still interact with daily in-

clude David Wang, Eric Timmons, Steve Levine, Andreas Hoffman, Masahiro

Ono, Wesley Graybill, Robert Effinger, Shannon Dong, James Paterson, En-

rique Fernandez, and Ameya Shroff.

• Jerry Jaeger and Michael Boulet at MIT Lincoln Laboratory. They generously

funded this research, and they have taken great interest in it as well.

• Anne Hunter, Vera Sayzew, and Linda Sullivan in the Course 6 Undergraduate

Office, who work tirelessly on behalf of students.

• And my family, which I am very fortunate to be part of.

5

6

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Core Insight . 11

1.3 Solution Method . 12

1.4 Experimental Results . 13

1.5 Thesis Outline . 14

2 Problem Statement 15

2.1 Motivating Scenario . 15

2.2 pSTN Model . 17

2.2.1 Primitives . 18

2.2.2 Model definition . 21

2.3 pSTP Scheduling Problem . 24

2.3.1 Execution strategy . 25

2.3.2 Problem definition . 26

3 Reformulation into Convex Risk Allocation 31

3.1 Approach Overview . 32

3.1.1 Challenges and approach to solving the pSTP 32

3.1.2 Online execution strategy . 36

3.1.3 Offline scheduling run-through example 38

3.2 Reformulation Procedure . 42

3.2.1 Risk allocation into STNU form 44

7

3.2.2 Reduction to convex feasibility 45

3.2.3 Incremental temporal constraint discovery 48

4 Experimental Validation 53

4.1 Hypothesis . 53

4.2 Test-case Generation . 53

4.3 Experiment Design . 54

4.4 Results . 55

5 Conclusion 59

5.1 Contributions . 59

5.2 Future Work . 60

5.2.1 Algorithm and Analysis Extensions 60

5.2.2 Integration with Other Capabilities 61

8

Chapter 1

Introduction

1.1 Motivation

Temporal uncertainty is a natural aspect of performing real-world activities. For

instance, the time it takes to drive down a block is subject to road traffic, pedestrians

crossing, whether the road curves or goes straight, and plenty of other factors. These

factors may not amount to much for one short block, but if one needs to drive across

town for an appointment, then the accumulated temporal effects begin to matter.

Such temporal effects pose serious risks in time-critical missions where lives or

high-value assets are at stake. Disaster relief responders must traverse dangerous and

unknown terrain to reach survivors, who may only have hours to live. Autonomous

Mars exploration rovers must complete their science objectives with enough daylight

left to recharge their batteries. The assembly line in a manufacturing warehouse must

tolerate the varying rates at which workers assemble parts in order to avoid costly

bottlenecks.

All these scenarios involve constraints on the time difference between various activ-

ities. For example, we are very familiar with deadline constraints. The seriousness of

such deadlines is apparent in the disaster relief and Mars rover scenarios. Sometimes,

though, we may not want to work as fast as possible, but rather ensure a minimum

passage of time. Such a situation might arise in the manufacturing scenario, where

one would prefer to produce a part slower in order to match the rate of the assembly

9

line, instead of accumulating a huge stockpile of said parts. In general, different sets

of activities need to finish within certain time bounds.

However, temporal uncertainty is involved in executing any activity. Whether

driving through flooded roads, drilling a soil sample, or building parts by hand, there

are always uncontrollable and natural effects which will tend to speed one up or slow

one down. As these effects accumulate over activities in sequence, they may make it

easier or harder to satisfy the temporal constraints, but it will always be impossible

to guarantee satisfaction of all temporal constraints.

Therefore, we must deploy missions on the basis of weighing the risks of multiple

objectives against their relative priorities. If our disaster relief mission is to reach

two survivors in two different locations, it would be more urgent to reach the one

in more critical condition first, and that would inform how we balance our temporal

risks when scheduling the mission. Currently, the complex implications of temporal

uncertainty limit deployed missions to those whose temporal risks can be analyzed

by hand. However, computational methods could enable us to confidently assess and

schedule more ambitious missions, hence raising performance in many applications.

The state-of-the-art in scheduling under temporal uncertainty is insufficient in

several regards. Vidal [16] introduced the simple temporal network with uncertainty

(STNU), which assumes that uncontrollable temporal disturbances are limited to a

fixed interval. This representation provides ease of analysis, and there exist several

polynomial-time scheduling algorithms for STNUs. Unfortunately, it is sensitive to

modeling errors; a perturbation to one of the intervals may require recomputing the

schedule. More recently, Tsamardinos [14, 15] and Li [10, 9] have pursued proba-

bilistic temporal constraint networks and developed scheduling strategies for those.

However, they attempt to optimize the risk for the entire mission, rather than ad-

dressing different goals according to priority. Other techniques either optimize a single

utility rather than satisfying multiple goals [1], are based on most likely inaccurate

probabilistic models [13, 8], or perform expensive Monte Carlo simulations [5]. None

of these approaches are sufficient for the needs laid out above.

This thesis addresses the problem of chance-constrained scheduling, given proba-

10

bilistic temporal uncertainty. We model the mission as a probabilistic simple temporal

network (pSTN) and apply chance constraints over subsets of its temporal constraints.

We then provide an offline scheduling algorithm that either finds a schedule that meets

the chance constraints, or claims no such schedule exists.

1.2 Core Insight

The key intuition behind our scheduling algorithm is to allocate risk to each source

of temporal uncertainty by assuming its outcome will lie in a finite range. This

will occur with some probability for each source, which is the risk we allocate to

it. By representing the bounds of these ranges as risk variables, we reformulate the

pSTN model into an STNU parameterized on the risk variables. This is advantageous

because efficient algorithms exist for scheduling and dispatching STNUs [11]. Hence,

if we find a risk allocation such that it meets the chance constraints and the resulting

STNU can be scheduled, then the STNU’s schedule is a valid solution to our chance-

constrained pSTN.

By assuming this risk allocation, we are reformulating the original stochastic prob-

lem into a deterministic one. It is deterministic because we are no longer concerned

with individual outcomes of temporal uncertainty and their probability densities, but

rather entire intervals and their probability masses. The original problem is defined

over schedules and individual probabilistic outcomes, whereas the reformulated one

is only over risk variables.

Our scheduling problem is an instance of stochastic constraint satisfaction, or a

stochastic CSP, over continuous variables. This strategy of reformulating into a deter-

ministic problem is a common thread in solving this class of problems. For instance,

Blackmore [2] applied reformulation to obstacle path-planning with stochastic vehicle

dynamics. By approximating the expected vehicle position with a collection of parti-

cles, the problem became deterministic in terms of the particle set. One downfall of

this approach is that in order to achieve good accuracy, a large number of particles is

needed, and resulting deterministic CSP becomes intractable again. Ono [12] followed

11

up on this path-planning problem, using risk allocation to reformulate the problem

into the deterministic one of calculating safety margins around obstacles. This is

much like our approach, except in the context of physical state rather than time.

Tsamardinos [15] and Li [10] also reformulated their probabilistic temporal prob-

lems into deterministic optimization. Tsamardinos offers an approach that is quite

similar to ours in spirit. Although he does not use the term “risk allocation,” he does

frame the problem in terms of finding ranges for each source of uncertainty. Nev-

ertheless, where his reformulation ends, our algorithm reformulates one step further

for efficiency gains. Also, he is concerned with dynamic scheduling and optimizing

the entire mission, whereas our algorithm focuses on static scheduling and satisfy-

ing individual chance constraints. On the other hand, Li’s reformulation is based on

summary statistics of each source’s temporal distribution, and hence does not take

full advantage of the information in each distribution. Li applies “risk allocation”

only as a heuristic after optimization for curbing conservatism, and hence it is not an

integral part of his reformulation technique.

1.3 Solution Method

The goal of our offline scheduling algorithm is twofold. First, we want to reformulate

the original chance-constrained pSTN into a set of deterministic constraints over the

risk variables. Then, we need to solve for a feasible risk allocation. The reformulation

should address both the temporal and the probabilistic aspects of the original prob-

lem; our approach considers each separately. This produces two sets of constraints,

which must be solved together in the last step.

The output of the temporal reformulation in the first step is to construct an simple

temporal network (STN) out of the original pSTN, parameterized on the risk variables.

During this step is when we apply the key insight to construct the parameterized

STNU from the pSTN and the risk variables. We then apply a reformulation algorithm

for the STNU to turn it into an equivalent STN. Algebraically, an STN is simply a

set of inequality constraints.

12

The probabilistic reformulation rewrites each chance constraint, which is defined

over temporal constraints, in terms of the risk variables. Note that only certain

sources of temporal uncertainty could affect the satisfaction of chance constraints. For

example, suppose one goes shopping at two supermarkets, first A then B. Finishing

shopping at supermarket A by noon does not depend on how long it takes to drive

home from B, but it does depend on how long it took to drive from home to A and how

long one spends at A. Detecting which sources are relevant is achieved by applying a

cycle detection algorithm on the temporal network. Then, each chance constraint may

be rewritten in terms of the corresponding risk variables as an inequality constraint

as well.

Finally, we solve these inequality constraints via an off-the-shelf solver. First, we

note that the STN constraints are linear, and the chance constraints are proven to be

convex. Thus, we can use a convex solver to take advantage of well known barrier and

interior-point methods [3, 4]. Second, the STN constraints are actually in terms of

scheduled event times as well as the risk variables. To avoid solving over the additional

event time variables, we learn constraints equivalent to the STN over iterations of

generating and testing candidate risk variable assignments. The generator solves the

convex satisfaction problem over the inequality constraints, while the test then checks

consistency of the risk allocation against the temporal constraints. If inconsistent,

a temporal constraint on the risk variables is learned, and this is fed to the convex

solver in order to prune the space of candidate risk allocations. This continues until

the risk allocation is no longer temporally inconsistent, upon which a schedule may

be derived, or until the convex solver receives an infeasible set of constraints.

1.4 Experimental Results

We aim to empirically validate the range of problems for which our algorithm tractably

solves. In particular, we run the algorithm with and without the last step of generate-

and-test with constraint learning, in order to evaluate the efficiency gains of that

strategy. We generate our test corpus of pSTNs modeling a single agent performing a

13

sequence of activities, with temporal constraints between events along the way. The

problem size grows as the number of activities and temporal constraints.

Runtime improvements become apparent for problem sizes involving hundreds of

activities. Few improvements, if any, are seen for trivially small problems. This is due

to several iterations of solving and discovering new constraints, whereas the full STN

approach solves it all at once. However, the total number of constraints considered

for generate-and-test grows slower than the problem does. Hence, this approach is

tractable for a much larger range of problems.

1.5 Thesis Outline

The body of this thesis is comprised of two technical chapters plus a third on experi-

mental validation. First, Chapter 2 defines the chance-constrained pSTN scheduling

problem. Chapter 3 then presents our novel temporal risk allocation algorithm, which

either finds a schedule that satisfies the chance constraints over a given pSTN, or

determines that no such schedule exists. The scalability of the algorithm’s generate-

and-test approach in the last step is empirically investigated in Chapter 4. Finally,

we summarize our contributions in Chapter 5. We discuss future extensions, analysis,

and potential integration of our work with other planning and scheduling capabilities.

14

Chapter 2

Problem Statement

2.1 Motivating Scenario

As a guiding example in explaining our model and algorithm, we consider a simplified

version of the disaster relief scenario introduced in Chapter 1. Although simple, this

scenario expresses the three key features of our scheduling problem: 1) the desired

temporal coordination between activities, 2) the temporal flexibility and stochastic

uncertainty in executing each activity, and 3) the desire to robustly achieve (1) in the

face of execution uncertainty from (2). In this section, we describe a scenario that

exemplifies these features.

A major hurricane has devastated a coastal city, and in response, a disaster relief

organization sets up a supply depot on the city’s outskirts. This depot will supply

food, water, and basic utilities until sufficient infrastructure is repaired. As a field

worker for this organization, your daily job is to lead supply convoys into surrounding

neighborhoods to deliver these supplies. A typical deployment consists of driving into

a particular neighborhood, dropping off your supplies, and returning to base for your

next convoy assignment.

At the high-level, this mission plan consists of three major activities in sequence:

driving there, dropping off supplies, and driving back. Each segment requires time

to complete, but you must finish them within certain timing constraints. Your first

responsibility is to the people: to arrive there and give them what they need within

15

one hour. Since you will not know their needs exactly until you arrive and assess their

condition, you make sure to carry a slight surplus. Once there, you radio back to the

depot staff what you have decided to unload, so the staff can restock in preparation for

your return. They require at least 80 minutes to prepare your next batch of supplies.

However, the depot is on a tight schedule, so once the depot staff start processing your

request, they need you back within two hours to pick up your supplies. Nevertheless,

satisfying this depot logistics constraint is not as crucial as getting supplies to the

people on time.

From your experience running such missions, you have an estimate of how long

each activity will take. These estimates are based on how much control you have

in guiding each activity towards completion. For example, in driving to the neigh-

borhood, you may be comfortable driving at speeds which would get you there as

fast as 20 minutes but no longer than 40 minutes. However, you do not know the

road conditions ahead of time. Due to widespread flooding, the roads may be more

flooded or more dry than you expect, which would tend to slow you down or speed

you up. Having a probabilistic belief about Nature’s temporal effects is a key aspect of

this scenario.

Similar estimates could be made for the other two activities. For unloading sup-

plies, your experience says you can do it as quickly as 15 minutes, but you don’t mind

spending an extra 20 minutes to further distribute the supplies you have unloaded.

Also, depending on how organized the people are, they may help you shave five min-

utes off or require an additional ten minutes of your assistance, approximately. Then,

by the time you start leaving for base, you expect dusk to have fallen, so you will

naturally drive slower under less visibility. If you plan to reduce your speed by a

factor of one-third, then you will make the trip between 30 and 60 minutes.

Your job, as convoy leader, is to pace these activities so that you deliver your

supplies expediently, while returning to the depot at an appropriate time. Due to

the stochastic uncertainty in your activity duration estimates, adhering to these goals

might not be achievable under all situations. For instance, should you encounter heav-

ily flooded roads, you might have to drive much slower than anticipated and therefore

16

miss your first one-hour deadline. If you believe there is a significant possibility of

such flooding, you would want to negotiate for more time to complete your mission.

Otherwise, barring no other conceivable dangers, you would be willing to proceed.

Everyone at your organization recognizes such operational risks, and therefore no

one expects perfect guarantees of temporal success. However, your superiors coor-

dinating the city-wide relief effort want to be notified if any convoy leader does not

believe he has a 90% chance of meeting all deadlines. In addition, you would like

to personally guarantee that the people will receive your supplies on time with 95%

probability. Prior to embarking, you must demonstrate that you have a strategy for

achieving these temporal goals within such safety margins.

This small example’s scheduling requirements and temporal risks are intuitive to

grasp, but assessing risk in the context of larger missions becomes quite complex. By

encoding these features in formal models, we may apply computational methods to

evaluate risks in scenarios that are beyond humans’ inference abilities. In Section 2.2,

we discuss constraints that model global coordination and local execution. Then, in

Section 2.3, these are combined with chance constraints that model acceptable risk,

which leads us to the formal problem statement.

2.2 pSTN Model

We model the constraints on global coordination and local execution through the

probabilistic simple temporal network (pSTN). First, we describe what mod-

eling primitives are needed to represent our scenario. Then, we summarize these

primitives as the definition of a pSTN. We apply some reasonable assumptions on

how these primitives may be composed, so that the restricted class of pSTNs matches

those scenarios we are concerned with.

17

2.2.1 Primitives

Modeling temporal coordination requirements

To model temporal coordination, we begin with the notion of an event, which rep-

resents a point in time. Each activity has two endpoints, a start event and an end

event. These events are controllable, meaning that we determine when they should

occur. This corresponds to the idea of scheduling. When we coordinate activities, we

schedule their endpoints to happen close enough to each other (or far enough from

each other). Formally, this is expressed as a set of simple temporal constraints

(STCs), each consisting of a lower and upper bound on the temporal difference

between two events.

For example, Figure 2-1 models our scenario’s global coordination requirements

using four events and two STCs. Our scenario is composed of three activities in series:

driving to the neighborhood, unloading supplies, and driving back. In sequence, they

start and end on events e1 and e2, e2 and e3, and e3 and e4. Each activity is drawn

as a thick arrow from start to end, while both temporal constraints are drawn as thin

arrows with acceptable intervals written above. The first temporal constraint associ-

ated with dropping off supplies is an upper bound on the time between leaving the

depot (e1) and finishing unloading (e3). This is represented by the interval (−∞, 60],

where units are in minutes. Likewise, the other temporal constraint concerning depot

logistics is an interval [80, 120] on the time between arriving at the drop-off site (e2)

and returning to the depot (e4).

STCs are equivalently called requirement links because they specify temporal

requirements to be satisfied. The definition follows.

Definition 1 (Requirement Link). A requirement link constrains the time between

two events ea and eb to a set of allowed durations D. That is, t(eb)−t(ea) ∈ D. When

D is an interval with lower and upper bounds, [l, u], the requirement link is in the form

of a simple temporal constraint.

The STC model of activity coordination is widely applicable. It readily handles our

scenario where activities are laid in series. An event can simultaneously be the end of

18

one activity and the start of the next. Alternatively, we can insert an implicit temporal

constraint of zero (i.e., an interval of [0, 0]) between two activities in sequence. In

more complex scenarios, where activities occur simultaneously or in parallel, STCs are

equally applicable. Finally, if we require coordination in the middle of an activity, then

we can split that activity in two, creating a middle event as the point of coordination.

This model of temporal coordination draws directly from the Simple Temporal

Network (STN), which is simply a set of events and STCs. The term “network” refers

to the graphical depiction of a set of constraints. The main limitation of this model

is that constraints are restricted to the form of STCs, which constrain the allowed

duration between two events to a single interval. However, in most situations, if two

different durations are acceptable, then any duration in between is also acceptable;

this is equivalent to having an interval of durations that are temporally feasible.

There are instances, though, where some environmental condition would deter-

mine whether one interval or another is applicable. That would require modeling

conditional constraints, which is beyond the scope of this work.

Modeling activity execution

If we modeled each activity’s duration as a requirement link, this would imply that we

have full control over completing each activity within some time interval. However,

activity execution in our scenario is more subtle. We assume that in addition to

our nominal range of control, Nature will inject stochastic effects, such as the effects

of flooding. Therefore, we cannot determine when exactly an activity will end, but

throughout activity execution, we may be able to adjust our control efforts in response

to Nature.

We represent this model of activity execution by an contingent links followed by

a requirement link. The contingent link’s spans the time between the activity’s start

event to an uncontrollable event, which is a “virtual” event in the “middle” of activity

execution. The outcome of the contingent link is a random variable distributed over

the set of reals. Its probability distribution summarizes the effect of Nature over the

entire course of the activity’s execution. Note that this duration can be negative, as

19

Nature may speed you up or slow you down. Then, the requirement link that follows

represents the range of control you have. It begins on the uncontrollable event and

ends back on the activity’s end event, which is controllable. Hence, you do not know

when the uncontrollable duration will end, but given an outcome for it, you maintain

some control over when the entire activity ends.

Figure 2-2 illustrates this model applied to the first activity in our scenario, driv-

ing into the neighborhood. The uncontrollable event is represented by a square, as

opposed to circles for the activity’s controllable start and end events. The solid arrow

from the uncontrollable duration to the end event is a regular STC with lower and

upper bounds of 20 and 40 minutes, respectively. This encodes your model of how

fast or slow you can drive under nominal conditions. The dotted arrow from the

start event to the uncontrollable event is the uncontrollable duration. Its associated

distribution is Gaussian, centered at 0 and with a standard deviation σ of 2.5 min-

utes. That means the durations falls within the 2σ range of ±5 minutes with 95.5%

likelihood, encoding your rough estimate that Nature would affect your driving time

by at most 5 minutes.

Definition 2 (Contingent Link). A contingent link defines a temporal distribution

for the time between two events ea and eb. That is, t(eb) − t(ea) = ω, where ω is

a real-valued random variable, and it is distributed according to probability density

function f(ω) and corresponding cumulative density function F (ω). Because the link

ends on event eb, this event is said to be uncontrollable.

This model of a contingent link followed by a requirement link reflects the intu-

ition of aiming to stay on schedule while executing an activity. The schedule to be

constructed would assign specific values to the activity’s start and end events, hence

implying a total duration. This duration would determine how much control effort

you have to put in nominally. In the case of driving to the neighborhood, if it is 10

miles away, and your schedule says to reach there in 30 minutes, then you should drive

at 20 mph. Along the way, if you have to slow down to traverse a flooded section of

the road, then you would speed back up on dry land, so that you average 20 mph in

20

the long run. However, if the flooding slowed you to a crawl, you might not be able

to recover all the lost time. Thus, a more realistic model for activity execution may

be a series of tiny uncontrollable and controllable segments. Nevertheless, this could

be equivalently summarized as two durations in sequence, the first a contingent link

and the second a requirement link.

2.2.2 Model definition

We now define the pSTN, using the intuition developed above for modeling temporal

coordination and activity execution. This definition actually encompasses a wider

set of temporal situations than those we are currently interested in. Therefore, we

impose some limitations on the structure of the pSTN, and we explain why these

assumptions do not greatly restrict the class of useful scenarios. Those extra classes

would be useful to consider in future work, using different modeling and solution

strategies.

Definition 3 (pSTN). A probabilistic simple temporal network is a tuple Np =

〈E ,Lreq,Lctg〉, representing:

• A set of events E, partitioned into controllable events Ec and uncontrollable

events Eu, i.e., E = Ec
⋃ Eu.

• A set of requirement links Lreq, each specifying a simple temporal constraint

linking event ei to event ej, where ei, ej ∈ E and ei 6= ej. The temporal bounds

are denoted [lij, uij].

• A set of contingent links Lctg, each linking an event ei ∈ E to an uncontrollable

event eu
j ∈ Eu. The duration between them is denoted by the random variable

ωij, which has probability density function fij(t) and corresponding cumulative

density function Fij(t).

A schedule t : Ec → R|E
c| assigns a timepoint to every controllable event. During

execution, each contingent link’s probabilistic outcome ωij is an observation. Since

each ωij ∈ R, the space of complete observations for a pSTN’s contingent links is

21

Ω = R|Lctg|. Together, a schedule and a complete observation determine the timepoints

of the uncontrollable events.

Structurally, the pSTN is similar to the STNU [17], which also extends the STN to

include temporal uncertainty. However, the STNU model restricts each uncontrollable

duration to an interval. That is, in driving to the neighborhood, you would only be

able to model Nature’s temporal influence as somewhere in the interval [−5, 5]. On

one hand, restricting a duration to a finite interval simplifies analysis. On the other,

this is a less accurate model, and does not provide the rich notion of likelihood of

success that this work addresses.

Assumptions

We make three assumptions on the form of the elements in Lreq and Lctg. The first

two assumptions govern where and what type of constraints may be drawn between

which events, and the third limits the type of temporal distributions we will consider.

Assumption 1. Every contingent link begins on a controllable event. That is, given

` ∈ Lctg linking ei to eu
j ,

` =⇒ ei ∈ Ec.

Assumption 2. All requirement links must include at least one controllable event.

That is, given ` ∈ Lreq linking ei to ej,

` =⇒ (ei ∈ Ec)
∨

(ej ∈ Ec) .

Together, these two assumptions restrict the class of pSTNs to model each activity

as a contingent followed by a requirement link, as discussed before. Furthermore, it

allows two activities to share the same source of uncertainty. For example, when

delivering supplies to the people of the neighborhood, you may have both food and

medical equipment to distribute. The medical equipment may be more delicate to

handle, so you cannot distribute it as fast. However, as you distribute both in parallel

to the same crowd, the uncertainty in both activities is due to how efficiently you

process the same lines. The corresponding temporal model for this situation is shown

22

in Figure 3-1. Event e2 marks the beginning of distributing supplies. There are two

requirement links from the uncontrollable event to events e3a and e3b, corresponding

to distributing food and medical supplies, respectively. These last two events converge

back at event e3, waiting for whichever finishes first.

These restrictions form a valid model for many useful scenarios. Specifically, these

are the situations it excludes.

• Assumption 1 does not allow a contingent link to follow another one immedi-

ately. Together, they would represent a single contingent link, and the only

useful purpose for modeling like that is if one tries to coordinate by reaching

into the middle of a contingent link. As mentioned before, this case would be

better served by splitting the activity in two.

• Assumption 2 gives you at least one direct knob on the satisfiability of each

requirement link. If both events are controllable, then you would have full

control to satisfy the constraint via scheduling. If only one is controllable ei

and the other is uncontrollable ej, then since Assumption 1 says ej arrives some

unspecified duration after a controllable event e′j, you could coordinate ei and

e′j to protect the constraint against one source of uncertainty. This corresponds

to scheduling the start and end event of an activity, which we have discussed

above.

However, we would rarely encounter a requirement link with both ei and ej

uncontrollable, for two reasons. First, this does not make sense in the interpre-

tation of uncontrollable events as “virtual” events. Second, even if these were

real events, you could only coordinate their direct predecessor events e′i and e′j.

Now your schedule to e′i and e′j must protect against two sources of uncertainty,

which again, does not have a clear physical interpretation during local execution

of activities.

Both assumptions essentially restrict Nature to at most one degree of freedom. When

executing an activity, the first assumption lets you aggregate all the sources of un-

certainty into one contingent link, and the second means you have to control against

23

only the uncertainty in that link.

Assumption 3. Each temporal distribution’s probability density function fu is semi-

concave. The definition of a semi-concave function is that given fu’s mode d?, we

must have

∀d < d?, f ′u(d) ≥ 0

∀d > d?, f ′u(d) ≤ 0.

Equivalently, for any constant c, the set D for which fu(d) ≥ c,∀d ∈ D, is an interval,

which could possibly be empty.

Pictorially, this third assumption means that fu is unimodal. Intuitively, semi-

concavity of a probability density function reflects the idea that stochasticity is cen-

tered around a deterministic process. If a probability density function has two modes,

then perhaps there is some underlying switching condition determines whether pro-

cess A or process B happens, each with its own nominal duration and stochasticity.

Modeling such conditions is beyond our current scope. Practically, semi-concave

functions will allows us to take advantage of corresponding convexity in cumulative

distribution masses.

2.3 pSTP Scheduling Problem

The pSTN encodes temporal coordination and activity durations by composing con-

tingent and requirement links. However, this only models what we would like and

what we can do. To assess temporal risk, we need to know the chance of achieving

our desired temporal coordination, while constrained to the physical laws of activity

execution. This is what a chance constraint represents. It mandates the maximum

acceptable risk with respect to achieving a set of temporal goals.

Chance constraints are applicable to pSTNs because as discussed previously, there

is no way to always guarantee satisfaction of the temporal coordination constraints,

given the stochasticity in activity execution. However, given a strategy for carrying

24

out the mission, it would imply a stochastic model for every event’s actual execution

time. From this model, we could infer each coordination constraint’s likelihood of

being satisfied.

Therefore, our temporal risk assessment problem is to find an execution strategy

that would satisfy a set of chance constraints over a pSTN model. In this section,

we first explain what an execution strategy is, so that we may then define a chance

constraint in terms of one. Finally, we define the probabilistic simple temporal

problem (pSTP) in terms of chance constraints and the pSTN.

2.3.1 Execution strategy

An execution strategy defines the control actions we use to execute our mission. These

actions, combined with Nature’s stochastic effects, result in an actual execution time

for each event. For instance, suppose we want to arrive the neighborhood in 30

minutes. If we simply assume nominal conditions and drive without adjusting to

Nature’s effects, then according to our activity model, this is equivalent to arriving

at event eu
2 by sampling a temporal outcome ω12 from the contingent link, and then

the activity ends at event e2 30 minutes later. The actual time spent getting there

would be:

t(e2)− t(e1) = ω12 + 30.

Now, suppose we adopt the more flexible strategy of continually observing Nature’s

effects during execution, and we try to adjust to meet the 30-minute specification.

This is equivalent to observing when we arrive at eu
2 , and at that moment, deciding the

duration until e2. Since the range of control we have is between 20 and 40 minutes, the

range of uncertainty we can tolerate is ±10 minutes in order to arrive in 30 minutes.

If the disturbance extends the driving duration more than 10 minutes, then the best

we can do is to drive as fast as possible at the speed corresponding to 20 minutes, and

vice versa if the disturbance is less than −10 minutes. Hence, the actual duration of

25

this driving activity would be:

t(e2)− t(e1) =


ω12 + 40 : ω12 < −10

30 : −10 ≤ ω12 ≤ 10

ω12 + 20 : ω12 > 10

(2.1)

Hence, this execution strategy yields a different schedule than the previous one. Here

is the formal definition for an execution strategy.

Definition 4 (Execution Strategy). An execution strategy for a pSTN N p is a

function tx : Ec × Ω → R|E
c| that determines the actual schedule followed during

execution, conditioned on complete observation ω ∈ Ω. For convenience, we will

denote a single event’s execution time as tx(ei).

Note that in our definition, the complete observation is provided but not neces-

sarily used. In our example, we did not use it at all the first time, and the second

time, we observed only what was happening at the current activity to plan for the

activity’s end timepoint. In real life, we could observe the entire history up to what

has happened so far, but not beyond into the future. We may choose not to use the

entire history, though, for instance, if it is too expensive computationally. Whether

we discard the observation, use only the history, or use the complete observation our

execution strategy corresponds to the notions of strong, dynamic, and weak control-

lability in STNU execution, respectively.

2.3.2 Problem definition

The actual schedule that transpires from following an execution strategy determines

whether the temporal coordination constraints hold. Since that schedule depends on a

complete observation, and is therefore nondeterministic, we use chance constraints to

express how important it is for the schedule to meet certain coordination constraints.

In our scenario, the chance constraints would correspond to the 90% requirement

on the entire mission and the 95% requirement on delivering supplies on time. The

former requires both requirement links in the pSTN to be satisfied, whereas the latter

26

concerns only the [0, 60] link. In principle, given an execution strategy, we could derive

a joint probability distribution for when each event would occur. This would then

determine the likelihood of satisfying each requirement link or a set of requirement

links at once. This concept is mathematically formulated below.

Definition 5 (Chance Constraint). Given a pSTN N p and an execution strategy tx,

a chance constraint requires a minimum probability ∆ of satisfying all requirement

links in a subset of Lreq. That is,

Pr

 ∧
`∈L′
⊆Lreq

tx(ej)− tx(ei) ∈ [lij, uij]

 ≥ ∆.

We are specifically interested in chance constraints over requirement links that

encode temporal coordination. Given our activity execution model, this means these

requirement links only link controllable events in the pSTN. It would not mean much

to consider those requirement links involving an uncontrollable event, for two reasons.

First, our uncontrollable events are “virtual” events that only summarize the net effect

of Nature’s stochasticity over an entire activity, and there is no physical way to verify

that a constraint involving a virtual event has been satisfied. Second, in our model,

those requirement links reflect the range of feasible control we have over an activity’s

duration. In the real world, physically, they cannot be violated, no matter what the

execution strategy.

The ability to express multiple chance constraints is key. If we allow the scenario

to become arbitrarily large, then we are adding more sources of uncertainty, so the

chance that everything will go perfectly plummets. What we actually care about

is that individual parts of the mission plan will succeed. Some goals may be more

important than others, so it may be easier to focus on satisfying a few really well

than to satisfy them all equally badly. This is what the two chance constraints in

our scenario demonstrate. To us, delivering supplies on time is the most important

part of the mission; if a constraint had to be bent, the logistics constraint [80, 120]

be first to be modified. During execution, then, to satisfy the delivery-specific 95%

27

requirement and the mission-wide 90% requirement, we would be extra-mindful of

the time when driving out and unloading supplies, and willing to take more temporal

risk on the way back. Thus, satisfying multiple chance constraints over a pSTN is

our core problem, and that is what the pSTP expresses.

Problem 1 (pSTP). The probabilistic simple temporal problem is a tuple Pp =

〈N p, C〉, where:

• N p is a pSTN with components 〈E ,Lreq,Lctg〉.

• C is a set of chance constraints, each constraint c specifying a minimum proba-

bility ∆c over a subset of the requirements links, Lc ⊆ Lreq.

A solution to Pp is an execution strategy tx that satisfies all the chance constraints

in C.

28

Figure 2-1: Temporal schematic of activities with temporal coordination constraints
linking their start and end events.

Figure 2-2: Modeling an activity as a probabilistic contingent link plus a requirement
link.

29

Figure 2-3: Example pSTN modeling the disaster relief scenario.

Figure 2-4: Example pSTP modeling the disaster relief scheduling problem.

30

Chapter 3

Reformulation into Convex Risk

Allocation

This chapter presents our solution to the pSTP, which involves offline scheduling

plus online execution that tries to meet the schedule. Executing a schedule online is

relatively simple. However, designing a schedule to satisfy the chance constraints is

considerably more complex and requires knowledge of the online execution strategy.

This is the main component of our algorithm.

Our approach to offline scheduling is to reformulate the problem’s structure so

that the probabilistic aspects are more tractable to reason about. This reformulation

is a novel combination of concepts from risk allocation, STNU controllability, convex

optimization, and conflict detection. The goal is to construct a schedule that can

be verified against the pSTP’s chance constraints. We do this by allocating risk

to each source of temporal uncertainty, making sure the total risk still satisfies the

chance constraints, and deriving a schedule that can avoid such risk while respecting

the temporal constraints. Along the way, our reformulation borrows the form of the

STNU to frame our problem in terms of convex feasibility. Then we can use an off-

the-shelf solver to find an acceptable schedule, if one exists. Our usage of the convex

solver is further optimized by incrementally detecting temporal conflicts and inserting

them in place of the original set of temporal constraints.

Section 3.1 presents an overview of the methods used in our approach. It includes

31

a formal statement of the online execution strategy and a run-through example of the

offline scheduling algorithm on the disaster relief scenario. Then, we describe each

step of the reformulation in detail in Section 3.2.

3.1 Approach Overview

In this section, we give a high-level motivation and overview of our algorithm. First,

we outline the computational challenges posed by the pSTP, and we highlight the

methods used to address these challenges. These methods are demonstrated on the

disaster relief scenario. However, they rely on assessing the risk of our strategy for

executing a pSTN according to a schedule. Thus, we define the behavior of the online

portion first, and then run through the offline portion applied to the scenario.

3.1.1 Challenges and approach to solving the pSTP

Challenges

To solve the problem, we need to compute an execution strategy and verify it against

each chance constraint. This entails temporal and probabilistic reasoning over the

space of complete observations Ω. According to Definition 5, an execution strategy

tx satisfies a chance constraint c if and only if there exists a subset Ω′ ⊆ Ω with these

two properties:

(a) Given any observation in Ω′, the execution strategy would find execution

times that satisfy all the requirement links in c. In other words, the execution

strategy is robust against Ω′.

(b) The probability that the actual observation lies in Ω′ is at least ∆c.

Hence, to verify a solution, we need to be given a candidate subset Ω′ and be

able to verify conditions (a) and (b). Additionally, to solve the problem, we need to

construct such a subset or prove one does not exist. Each of these three capabilities

is computationally challenging for the following reasons:

32

1. It is hard to verify whether an execution strategy is robust against a given Ω′.

This is because requirement links are specified in terms of events’ execution

times, whereas Ω′ is a set of observations. The mapping from observations to

event times, given by the execution strategy, may be difficult to analyze. For ex-

ample, consider the hour-long requirement link on driving to the neighborhood

and delivering supplies. First, our driving behavior and reaction to temporal

uncertainty along the way determines when we arrive. Then, given the amount

of time left until 60 minutes, we may start distributing supplies faster or slower,

but dealing with a disorganized crowd could still push us over schedule.

Thus, an activity’s duration could depend on both its own stochasticity as well

as how we respond to the execution of previous activities. The resulting execu-

tion strategy could be arbitrarily nonlinear and intractable to analyze. Another

complication is determining the implied set of observations that are relevant to

this requirement link. In this case, it is obvious that only the durations for driv-

ing and unloading matter, but determining this for more complicated activity

networks is nontrivial.

2. It is hard to calculate the probability mass of an arbitrary Ω′. This requires us

to integrate a joint probability distribution over Ω′, which involves dependent

limits of integration among different variables. For instance, suppose if the

driving disturbance is at most +5 minutes, then we can tolerate a disturbance

of at most +8 minutes when unloading supplies. Now if the driving disturbance

increases to +10 minutes, then even if we work faster to unload, we might only

tolerate up to a +6 minute disturbance for this latter activity. In addition to

dependent limits of integration, the individual distributions for each contingent

link’s outcome are most likely nonlinear. Together, these two complexities would

make such a multivariate integral hard to evaluate.

3. It is hard to construct an Ω′ that will meet these conditions, due to the same

complications that make these conditions hard to verify. Namely, the com-

plexity of the execution strategy and the nonlinearity of the joint probability

33

distribution make it difficult to decide how far we may push out the boundaries

of Ω′. In particular, these two aspects have competing effects. On one hand,

the execution strategy can only be robust to a certain extent of temporal un-

certainty, but on the other, the probability mass of Ω′ needs to be large enough.

The relative sensitivities of these conditions at every point along the boundary

of Ω′ determines whether we want to pull it in (less uncertainty) or push it out

(more probability mass).

Approach

To address these three challenges, our approach involves two major methods. First,

we restrict our execution strategy to creating a full schedule prior to the mission and

following that schedule as best we can during execution. Rather than assess the risk

of meeting the required temporal coordination, we assess only the risk of meeting the

pre-planned schedule. Second, we represent the risk of such a schedule by allocating

risk to each contingent link. The variables representing the risk allocation are then

used to reformulate the original set of chance constraints into a convex feasibility

problem. This allows us to solve for a risk allocation, from which we can extract a

schedule that meets both the temporal and probabilistic requirements of the chance

constraints. Below, we discuss why we choose these two strategies and how they

resolve the three challenges.

Having a pre-planned schedule offers two computational advantages. Assuming

the schedule is actually followed during execution, then it becomes easy to verify

whether the temporal coordination constraints will be met, and it also mandates an

exact duration for each activity. The first property decouples the coordination re-

quirements from the effects of temporal uncertainty. Given a schedule that already

achieves temporal coordination, all we need is to find an Ω′ for which our execution

strategy can always meet the schedule. This resolves the first challenge. The sec-

ond property decouples temporal uncertainty between activities. If every activity is

assigned a duration, independent of any other activities’ durations, then the tempo-

ral uncertainty each activity can tolerate is independent of other activities’ temporal

34

uncertainties. Therefore, Ω′ may be composed from individual activities’ ranges of

uncertainty. Each activity’s risk is easily calculated over the univariate distribution

of that activity’s contingent link. Thus, Pr(Ω′) is easily computed as the product of

their risks, hence resolving the second challenge.

Of course, during execution, there may be outcomes where the schedule cannot

be met; some will still satisfy the temporal coordination requirements, and some will

not. If the schedule already satisfies all temporal coordination constraints, then the

probability mass of this schedule-related Ω′ is a conservative estimate of the true risk

of not satisfying temporal coordination. However, it is precisely this schedule-related

Ω′ that makes it easy to verify both the temporal and the probabilistic conditions of

a chance constraint. Therefore, we choose to accept the conservatism and only assess

the risk of meeting a schedule.

Since a schedule’s risk is represented by a decomposable Ω′, then conversely, an Ω′

in decomposable form represents a schedule or a family of schedules with equivalent

risk. Our risk allocation approach defines an Ω′ in decomposable form, parameterized

on each activity’s range of acceptable uncertainty. Since Ω′ corresponds to both a

schedule and a probability mass, then in terms of its parameters, we can analytically

express whether Ω′ has the properties to satisfy each chance constraint. Furthermore,

these expressions are proven to be convex, so we can leverage efficient numerical meth-

ods from convex optimization. Hence, just the reformulation to convex optimization

needs to be efficient, and this solves the third challenge of finding a suitable Ω′.

To further boost the efficiency of running the convex solver, we do not solve for

all temporal constraints. Instead, we discover only those that are violated, and we

include them one-by-one into our convex formulation. That way, starting from an

initial candidate solution, we only consider options that push the candidate towards

a feasible region, hence arriving at a solution faster if one exists. If there is no solution,

we also expect to determine that faster, which will happen by the time we collect the

minimum inconsistent set of temporal constraints.

35

3.1.2 Online execution strategy

Missions are executed by carrying out the planned activities, which means that there

are two types of temporal decisions to be made. First, we must decide when to start

each activity, and second, once an activity has started, we must decide when to end

it. Our job, given a schedule, is to make these two decisions so that we conform to

the schedule as much as possible.

To know when to start activities, we must first consider the physical flow of events.

Any mission plan, scheduled or not, is fundamentally composed of strings of activities.

For example, our scenario is one continuous string of three activities. Figure 2-1

had depicted this by showing three activities following each other in sequence. We

could have multiple strings if we had additional vehicles performing other things,

such as other convoys driving to other neighborhoods or aerial scouts assessing road

conditions. Such a representation might be considered by our superiors running the

disaster relief effort. Note that activities are distinguished from temporal coordination

constraints in that the former represent physical interactions with the world, while

the latter are only abstract desires. Activities must have positive duration, whereas

temporal constraints may specify positive or negative relationships in time.

In addition, strings may split or merge. Splitting means that we branch into doing

more than one activity simultaneously. Conversely, merging corresponds to activities

waiting for each other to finish. Note that waiting is also an activity, as we are

physically there and spending positive duration. A wait activity’s contingent duration

simply degenerates to a deterministic value of 0. Figure 3-1 shows a simple example

of splitting and merging on the activity of delivering supplies to the crowd. Here, we

have split our supplies into two types, food and medicine. Upon arrival, our convoy

team begins to unload these two supplies in parallel. Because the uncertainty model

is based on the crowd, the contingent link is shared, but we have distinct requirements

links indicating how fast we can unload these two commodities. Whichever branch

finishes first waits for the other before we pack up and start the return trip. Here, the

merge applies to the same split, but that does not have to be the case. Indeed, if we

36

had two convoys, but a mobile team was dispatched from one and later rendezvoused

with the other, the split and merge would be unrelated.

To execute a mission, then, means to execute strings of activities, which represent

physical progress. For activities at the beginning of a string, we can start right

when scheduled. However, any other activity must follow another on a string, and is

therefore dependent on the completion of its predecessor(s). For example, we cannot

unload before arriving at the neighborhood, and we cannot drive back before finishing

unloading. Furthermore, our mission plan says to start unloading immediately upon

arrival and to drive back immediately after we unload everything.

This means every activity has a precise arrival time. We arrive at those without a

preceding activity when the schedule says those activities should start, because there

is no physical dependence on other activities’ completion. For all other activities,

we arrive at them once their start event is activated by the preceding activity or

activities ending. During mission execution, then, we keep checking for activities

that have arrived, and we execute them once they do.

Once we begin executing an activity, though, we have to decide when to end it.

This is the second type of decision to be made. A complete schedule implies a precise

duration for each activity, which is the difference between the activity’s start and end

times. Because an activity’s duration is directly related to its temporal risk, it follows

that in order to preserve the acceptable risk levels that the schedule is designed for,

we should execute each activity according to duration. In our scenario, suppose the

mission start e1 is scheduled for time 0, arrival at the neighborhood e2 is at time 30,

and unloading concludes at time e3 = 55. Under normal circumstances, we would

finish driving in 30 minutes and have 25 minutes to unload. However, even if driving

ends up taking 35 minutes, we still aim for 25 minutes of unloading, so e3 would

happen at time 60.

To execute an activity according to duration, we must observe the result of its

contingent link and adjust our control effort within the bounds of the following re-

quirement link. This was demonstrated in Equation 2.1, where we discussed the

flexible strategy of observing and reacting to Nature’s effects during an activity’s

37

execution. Here, we formalize that strategy. Suppose we are aiming to execute an

activity for a duration d. Let the activity’s contingent link have duration ω, and let

its requirement link have lower and upper bounds l and u, respectively. Our job is to

choose a control effort x ∈ [l, u] such that ω + x approximates d as much as possible.

This is given by the function below.

x(ω) =


u : ω < d− u

d− ω : d− u ≤ ω ≤ d− l
l : ω > d− l

(3.1)

This function is depicted in Figure 3-2. Intuitively, it means the amount of temporal

disturbance we can tolerate is precisely the margin between the desired duration and

the lower and upper bounds of control. Beyond that margin, we will not be able to

meet the desired duration d; the best we can do is to stay at the limit of our control

effort that best counters the disturbance, either l or u.

Thus, this online execution strategy simply follows strings of activities laid out in

the mission plan, executing them according to the durations implied by the schedule.

It is only a proxy for carrying out the schedule. Any intent to meet the temporal and

chance constraints is therefore the responsibility of offline scheduling.

3.1.3 Offline scheduling run-through example

The main intuitions behind our offline scheduling algorithm are concretely demon-

strated below. We will continue our running example of the disaster relief scenario,

where we last framed the problem as a pSTP at the end of Section 2.3. Our algorithm

operates in three major steps.

Step 1. Initialize risk allocation variables.

We saw previously that we could execute an activity for a specific duration, assuming

a certain range of contingent link outcomes. Specifically, that occurs when ω ∈
[d− u, d− l]. In our scenario, suppose we decide to spend d12 = 30 minutes driving,

38

d23 = 25 minutes unloading, and d34 = 45 minutes returning. Based on Equation 3.1,

which describes our online execution strategy, we can meet these durations if and only

if the contingent links’ durations lie in the ranges ω12 ∈ [−10, 10], ω23 ∈ [−10, 10],

and ω34 ∈ [−15, 15]. This is depicted in Figure 3-3.

According to our pSTN model, this will not happen all the time, but rather with a

certain probability. For any particular ωij, it lies in its associated range
[
ωij, ωij

]
with

probability Fij (ωij)− Fij

(
ωij

)
, where Fij is the contingent link’s cumulative density

function. This is easy to calculate in our scenario because the probability distributions

are univariate Gaussians. In general, any univariate cumulative distribution is easily

approximated by a table of values.

Therefore, by deciding a duration for an activity, we are “allocating” to that activ-

ity the risk of whether we can meet that duration during execution. That means we

have reformulated the problem into assigning durations such that a) we can extend it

to a schedule that meets the temporal coordination constraints, and b) the activities’

individual risks compose to satisfy the chance constraints.

Step 2. Formulate as convex feasibility.

The next step is then to mathematically express these two conditions over our du-

rations. With regards to the schedule, it needs to obey both the durations and the

temporal coordination constraints. We introduce the variables ti = t(ei) to represent

the scheduled time of event ei. The first set of constraints encodes the durations of

our three activities.

t2 − t1 = d12 (3.2)

t3 − t2 = d23 (3.3)

t4 − t3 = d34 (3.4)

39

The second set reflects the coordination constraints.

t3 − t1 ≤ 60 (3.5)

80 ≤ t4 − t2 ≤ 120 (3.6)

To express the chance constraints, we only have to encode the composed risk,

because temporal coordination is already addressed by the scheduling constraints.

However, we have to know what activities’ risks are relevant to compose for each

chance constraint. The 95% chance constraint only concerns the one-long temporal

constraint between e1 and e3, whereas the 90% chance constraint is over both tem-

poral constraints. Whether the first temporal constraint is satisfied depends on the

durations d12 and d23, so those are the relevant durations for the first chance con-

straint. Meanwhile, the second temporal constraint depends on durations d23 and d34,

so the second chance constraint depends on all three durations. Hence, the chance

constraints may be expressed as

R12R23 ≥ 0.95 (3.7)

R12R23R34 ≥ 0.90, (3.8)

where Rij = Fij (dij − uij)−Fij (dij − lij) expresses the probability of meeting activity

ij’s duration.

Together, Equations 3.3 through 3.8 encode the reformulated problem. Note that

the scheduling equations are all linear. In addition, the chance constraints may be

proven to be convex, due to Assumption 3, which restricts us to semi-concave prob-

ability density functions. Thus, given an initial set of proposed durations, such as

d12 = 30, d23 = 25, and d34 = 45, we can use off-the-shelf convex optimization

software to find a feasible set of durations and a schedule.

40

Table 3.1: Iterations of constraint discovery.

Added Constraint d12 d23 d34 R12R23 R12R23R34

− 30 25 45 0.9991 0.9964
60 + d34 ≥ 80 + d12 28 25 48 0.9985 0.9901
d23 + d34 ≥ 80 28 30 50 0.9516 0.9299

Step 3. Discover temporal conflicts incrementally.

Solving five linear plus two nonlinear constraints is easy, but there would be many

more constraints for large missions. In particular, when planning larger missions, the

number of activities and temporal coordination constraints would tend to increase

more rapidly than the number of chance constraints. Thus, we further reformulate

the linear temporal constraints so that they only need to be discovered and considered

one-by-one. Below we illustrate.

Suppose we initialize the durations as we have described in Steps 1 and 2. If

we just insert the two nonlinear constraints into the solver, it will verify that these

durations satisfy each chance constraint’s acceptable risk level. This is shown in

the first line of Table 3.1. However, if we examine the solution, we will notice an

inconsistency on the duration between e1 and e4. We know e3 is supposed to happen

no later than 60 minutes after e1, and the duration d34 is set to 45 minutes. On the

other hand, the duration d12 is set to 30 minutes, and e4 should not occur earlier

than 80 minutes after e2. Hence, we have two conflicting requirements, one saying

the duration between e1 and e4 is no more than 105 minutes, and the other saying no

less than 110 minutes.

To resolve this conflict, we derive the linear temporal constraint saying that the

upper bound on this duration must be at least the lower bound. This is reflected

in the second line of Table 3.1. When we add this constraint to the original two

nonlinear constraints, the solver returns a new solution, where d12 has been reduced

by 2 minutes and d34 increased by 3 minutes, thus resolving the conflict.

However, we then discover another conflict, which is that d23 and d34 do not add

up to at least 80 minutes. When we add that to our constraint set, we now arrive

41

at the durations listed in the third line. Meanwhile, the risks associated with the

chance constraints have been affected, too, but not to the point of violation. The

final solution is to schedule e1 = 0, e2 = 28, e3 = 58, and e4 = 108. This satisfies all

the temporal coordination constraints, and the associated risks with the two chance

constraints are 95.12% and 92.99%, respectively.

By incrementally discovering inconsistent temporal constraints, we ended up only

adding two linear constraints to our system. Also, we did not have to consider the

schedule variables t1 through t4 to extract these constraints. These savings, although

modest, become very valuable for large problems.

3.2 Reformulation Procedure

In this section, we provide full details on the offline scheduling algorithm, which is

this thesis’s core contribution. Our discussion formalizes the three steps of the run-

through example. Here, we present the top-level algorithm, which breaks into three

subroutines. These subroutines are then discussed individually.

In this more formal discussion, the details of our presentation differ slightly in

two ways from that of the run-through example. First, our risk allocation variables

will represent windows on the contingent links’ outcomes, rather than representing

activity durations. This is because in general, and as discussed before, different

activities may share the same contingent link. In our scenario, there is only one

activity series, without any splits. Hence, it was equivalent and more intuitive to talk

about activity durations. Nevertheless, risk windows on contingent links are a more

direct representation of risk allocation, so that is what we use here.

Second, note that the schedule variables t1 through t4 were ultimately unnecessary.

Therefore, we will not introduce them here. They were presented to contrast the

size of the resulting convex problem, had we not utilized the incremental temporal

constraint discovery approach. By the end of our algorithm, either we will have

produced a consistent STN, from which we can extract a schedule, or the problem

will have been deemed infeasible.

42

Algorithm 1: Chance-constrained offline scheduling.

Input: a pSTP Pp = 〈N p, C〉
Output: a valid schedule ts, or infeasible

1
〈Rctg,N , r0

〉← InitializeRiskAllocation(N p).
2 〈C ′〉 ← ReformulateChanceConstraints(C,N p,Rctg).

3
〈N , rf

〉← SolveIncrementally(C ′,N , r0).
4 if SolveIncrementally found no solution then
5 return infeasible

6 else
7 Extract and return schedule ts from N .

Algorithm 1 is the top-level scheduling algorithm. We begin by creating and ini-

tializing the risk allocation variables on the pSTN N p. As mentioned, these variables

represent windows on each contingent link, and therefore, each contingent link has

an associated risk that can be expressed in terms of its risk allocation variable. The

set Rctg contains all these individual risk expressions for the contingent links in N p.

At the same time, we reformulate the pSTN into an STN parameterized in terms of

the risk allocation. The parameterized STN is written as N . Finally, the initialized

values of all the risk allocation variables are listed in the vector r0.

Next, we reformulate the pSTP’s chance constraints in terms of the risk allocation

variables. To do so, we need to match relevant contingent links in the pSTN N p to

each chance constraint in C. Once the relevant links are found, we can compose

their individual risk expressions from Rctg into reformulated risk expressions for each

chance constraint. These reformulated chance constraints are all collected into the

set C ′.
With the probabilistic constraints of the pSTP encoded in C ′, we now incremen-

tally encode the temporal constraints and solve for a risk allocation. We begin by

giving the convex solver all the probabilistic constraints and the initial risk allocation

r0. The parameterized STN N is provided to extract the next temporal conflict at

any stage. In the end, if the convex solver reaches an iteration where there is no so-

lution, then the problem is infeasible. Otherwise, it will return a final risk allocation

rf and the consistent STN it induces N = N (rf). Therefore, we can use standard

43

STN decomposition algorithms [7] to extract a complete offline schedule ts.

This offline scheduling algorithm, combined with the online execution strategy, is

sound with respect to solving the original pSTP. However, there are a few points of

conservatism, and hence it is not complete. We discuss this at the end of this chapter.

3.2.1 Risk allocation into STNU form

The motivation behind temporal risk allocation is that we cannot guarantee each

activity will finish at a specific time or even within some range of times. However, if we

assume the outcome of temporal uncertainty will fall in some window, then we have a

concrete set of uncertainty that we can control against. We just have to accept the risk

that comes with making this assumption. The goal of InitializeRiskAllocation is

to introduce risk allocation variables, which simultaneously reformulate probabilistic

uncertainty into set-bounded uncertainty and imply risks taken at each source of

uncertainty. With separate expressions for both, we will have decoupled the temporal

and the probabilistic aspects of the pSTN.

Our risk allocation variables define windows
[
ωij, ωij

]
on each contingent link

`ij ∈ Lctg. If we assume the actual outcome ωij falls in this window, then we are

taking a risk Rij of falling outside the window

Rij = 1− Fij(ωij) + Fij(ωij).

This is what line 2 in Algorithm 2 expresses. We represent all contingent links’

windows by a risk allocation vector r, which collects all the ωij and ωij variables.

If we accept the risk and focus on scheduling, then we have reformulated the

pSTN N p into an STNU Nu whose contingent links are parameterized in terms of r,

as shown in line 6. Whether we can find a schedule for an STNU is a problem of STNU

strong controllability. The standard method for determining strong controllability is

to reformulate the STNU into an equivalent STN via triangular reductions [11]. Any

schedule that satisfies the STN’s constraints is also a strongly controllable schedule

for the STNU.

44

An example triangular reduction is shown in Figure 3-4. It simply replaces a

contingent link followed by a requirement link with a single requirement link. The

replacement link indicates the range of durations between e1 and e2 guaranteed to

be achievable regardless of the contingent link’s outcome. If we apply triangular

reductions to our STNU Nu with parameterized contingent links, then we get a

parameterized STN N , as shown in line 7. Hence, in order to find a schedule, we

must solve for r that will make N consistent. This is what SolveIncrementally will

do.

Lastly, we provide an initialization r0 to the risk allocation variables r, which

will be used as the initial values for the convex solver in SolveIncrementally. We

initialize each risk window’s bounds to both be the mode of the probability density

function. When solving, these bounds will move apart to the left and right of the

mode, so that Rij is convex in terms of these bounds. Lemma 1 discusses why this

is, and it will help us construct convex risk expressions for each chance constraint in

ReformulateChanceConstraints.

Lemma 1. The risk of a contingent link, Rij, is convex in terms of ωij and ωij over

the domain ωij ≤ mode and ωij ≥ mode.

Proof. Consider the lower bound ωij first. The concavity at any point is given by

∂2Rij

∂ωij
2 = F ′′ij(ωij) = f ′ij(ωij).

By Assumption 3 that fij is semi-concave, because ωij is less than the mode of fij,

the concavity at ωij is non-negative. Hence, Rij is convex in terms of ωij.

An analogous argument holds for the upper bound ωij.

3.2.2 Reduction to convex feasibility

Our ultimate goal is to encode the pSTP’s chance constraints in terms of the risk al-

location variables. InitializeRiskAllocation reformulated the pSTN model struc-

ture to where the risk and temporal relationships, Rctg and N , were explicitly laid

45

Algorithm 2: InitializeRiskAllocation

Input: a pSTN N p

Output: a set of contingent links’ risk expressions Rctg

Output: a parameterized STN N
Output: initial values to the risk allocation variables r0

1 foreach contingent link `ij ∈ Lctg, linking event ei to event eu
j do

2 Rij ←
〈
1− Fij(ωij) + Fij(ωij)

〉
3 Insert Rij into Rctg.
4 mode ← Find the mode of ωij’s probability density function fij.

5 Append
〈
ω0

ij ← mode
〉

and
〈
ω0

ij ← mode
〉

onto r0.

6 Nu ← Replace each probabilistic contingent link in N p with a set-bounded
contingent link ωij ∈ [ωij, ωij].

7 N ← TriangularReduce(Nu).

out in terms of r. Now, we can express the chance constraints in terms of Rctg and N ,

and by extension, r. First, ReformulateChanceConstraints rewrites the probabilis-

tic condition of each chance constraint. Then, SolveIncrementally inserts temporal

constraints as needed into the system of equations to solve.

The main hurdle for ReformulateChanceConstraints is to determine which con-

tingent links are relevant to each chance constraint. If a contingent link does not

affect satisfaction of a chance constraint, but we factor in its risk anyway, then we are

considering irrelevant risk. In the real world, only activities that execute prior to and

lead up to either event of a requirement link could affect whether that requirement

is satisfied. Hence, our approach identifies the contingent links belonging to such

activities it finds.

Algorithm 3 reformulates each chance constraint in terms of the risk allocation

variables. For each chance constraint c, first in lines 2 to 5, we find out which

contingent links `mn are relevant to each requirement link the chance constraint is

defined over. Note that multiple requirement links may share the same contingent

link; we do not include the same expression twice. Having identified all the contingent

links relevant to c in Lc, we collect their total risk in line 9, requiring that all of them

fall within their assumed risk windows. Then we specify in line 10 that this total

probability must meet the chance constraint’s threshold ∆c.

46

To find which contingent links are relevant to the satisfaction of a given require-

ment link `ij, we consider when the two events ei and ej will be executed by on the

online strategy tx. If an event en has no preceding activities, then it will always exe-

cute according to the schedule ts. There is no temporal uncertainty associated with

that. However, if en ends some activity, then its execution time tx(en) depends on

when that activity starts tx(em) and the outcome of its contingent link ωmn. Likewise,

if em ends some other activity, we can keep tracing back until the beginning of the

activity string. Hence, in line 3 of our algorithm, we trace back a tree of activity

strings leading up to the event. We include all the contingent links associated with

the tree’s edges in line 5.

Lastly, having obtained an expression for each chance constraint’s risk Rc, we

ensure it is convex before sending it to the solver in SolveIncrementally. Line 8

does this by ensuring the mode of each contingent link’s probability density function

is contained within its risk window. By Lemma 1, each Rmn that contributes to Rc

is convex in terms of its risk window’s bounds, and by Lemma 2, Rc must therefore

be convex.

Constraining the risk allocation windows to contain the mode places additional

restrictions on the types of temporal distributions we can handle. Notably, we may be

too conservative with respect to distributions that have modes on their extremities,

such as those shown in Figure 3-5. A feasible solution might exist, but only if the

risk allocation window is somewhere near the center of the distribution, which our

constraints in line 8 would preclude. However, if the chance constraint requirements

∆c are reasonably high, that means each individual Rij would have to be quite low,

and therefore the window on ωij would have to be considerably wide relative to fij.

In particular, the median is always contained if every ∆c ≥ 0.5. Therefore, if the

mode is reasonably close to the median, then it has a good chance of being included

in the window if a solution exists. In the real world, it is reasonable to model most

temporal distributions with sufficiently long tails on either side, so this restriction

should not be too conservative.

Lemma 2. If each Rmn is convex over a domain of possible windows on ωmn, then

47

Rc is convex over the joint domain of all contingent links’ risk allocation windows.

Proof. The initialization of Rc in line 6 with the iterative inclusion of Rmn in line 9

means the final expression for Rc is

Rc = 1−
∏

`mn∈Lc

(1−Rmn).

For convenience, let Pmn denote 1 − Rmn, and let Pc denote the entire product ex-

pression, which is equivalent to 1−Rc. Thus, Pc =
∏

`mn∈Lc

Pmn, and we need to show

that Pc is concave.

Algorithm 3: ReformulateChanceConstraints

Input: a set of pSTP chance constraints C
Input: a pSTN N p

Input: a set of contingent links’ risk expressions Rctg

Output: a set of reformulated chance constraints C ′
1 foreach chance constraint c ∈ C, over requirement links L′ do
2 foreach requirement link `ij ∈ L′, linking event ei to event ej do
3 Perform two depth-first traversals, one each from ei and ej. Include

only parameterized links leading up to either.
4 foreach link traversed, parameterized in terms of ωmn and ωmn do
5 Insert the contingent link `mn into Lc. Avoid duplicates.

6 Rc ← 0.
7 foreach contingent link `mn ∈ Lc do
8 Insert 〈ωmn ≤ mode〉 and 〈ωmn ≥ mode〉 into C ′.
9 Rc ← 1− (1−Rc)(1−Rmn).

10 Insert 〈1−Rc ≥ ∆c〉 into C ′.

3.2.3 Incremental temporal constraint discovery

In the last subsection, ReformulateChanceConstraints wrote the probabilistic as-

pect of each chance constraint in terms of the risk windows on each contingent link.

Now, corresponding to the temporal aspect, SolveIncrementally must ensure those

48

windows result in a consistent STN. STN consistency is equivalent to there being no

negative cycles in the STN’s distance graph [6]. Therefore, if we could extract all cy-

cles from the parameterized STN N , expressed in terms of the risk allocation r, then

we could enforce them to all be positive, combine these conditions with the reformu-

lated chance constraints, and submit them to the convex solver. A cycle constraint

is linear in terms of the risk allocation variables, so it is already convex.

However, it is usually not necessary to consider every cycle. There might be a

much smaller subset of cycles such that if we satisfy their constraints, then all other

cycle constraints will be satisfied, too. Such a subset would be dependent on the initial

values of the risk allocation. To construct such a subset, we could repeatedly solve

our constraint system, discovering a negative cycle after each iteration and adding its

constraint before the next, until there are no more negative cycles to be discovered.

The inclusion of each new cycle constraint would prune out the possibility of violating

many other cycles. Hence, we expect there to be few iterations, with a reasonable

problem size during each.

This approach is implemented by SolveIncrementally in Algorithm 4. We start

with the initial r0 calculated in InitializeRiskAllocation and the chance con-

straints C ′ from ReformulateChanceConstraints. Passing these through a convex

optimizer SolveConvexSystem will give us a new risk allocation r that satisfies the

chance constraints. Plugging these values into the parameterized STN N gives us a

concrete STN N , on which we check for negative cycles. Negative cycles are detected

using a single-source shortest path algorithm like Bellman-Ford [6]. Given a negative

cycle, we activate the cycle’s constraint by deriving its parameterized weight in N .

When there are no more negative cycles to be found, that means the current

risk allocation creates a consistent STN, and we can return that as our final risk

allocation rf . Otherwise, there are two ways the algorithm could fail. If the convex

solver returns no solution, then up to the precision of the solver, we have arrived at

a set of mutually inconsistent constraints. Since this is a subset of the entire set of

constraints, there is no solution to the original pSTP. The other failure case is if we

find an un-parameterized negative cycle, which must be composed only of requirement

49

links from the original pSTN. This would mean the temporal coordination constraints

are inconsistent with themselves, and there is no amount of risk allocation that could

resolve that.

Algorithm 4: SolveIncrementally

Input: a set of reformulated chance constraints C ′
Input: a parameterized STN N
Input: an initial risk allocation r0

Output: a grounded STN N and a final risk allocation rf , or no solution

1 r ← Initialize risk allocation to r0.
2 system ← Initialize system of equations to C ′.
3 repeat
4 r ← SolveConvexSystem(system, r).

5 N ← N (r).
6 cycle ← Extract negative cycle from SSSP(N).

7 Insert
〈
cycle’s weight in N ≥ 0

〉
into system.

8 until no more negative cycles, or SolveConvexSystem returns no solution
9 rf ← r.

50

Figure 3-1: Splitting the unloading activity into two sub-activities, then merging
them through waiting.

Figure 3-2: How we adapt our control effort in response to observed temporal stochas-
ticity.

51

Figure 3-3: Initial risk allocation for the disaster relief scenario.

Figure 3-4: Fundamental operation of the triangular reduction. Constraining the
duration between e1 and e2 to [u + 15, l + 35] guarantees satisfaction of the [15, 35]
requirement link prior to reduction.

Figure 3-5: Examples of distributions with modes on the extreme left side, which
might not lie in the solution’s risk allocation window.

52

Chapter 4

Experimental Validation

4.1 Hypothesis

Our objective is to demonstrate that our algorithm scales tractably as the problem

size grows. In particular, we wish to highlight the effect of our incremental generate-

and-test approach versus the inefficiencies of solving the full parameterized STN.

First, we describe how we generate test cases. Our strategy intends to capture the

competing temporal interaction among activities, temporal constraints, and chance

constraints. Then, we explain how we vary the parameters of our generated test cases

in order to compare the two algorithmic approaches.

4.2 Test-case Generation

A complete test case consists of activities, temporal constraints, and chance con-

straints. We will consider the case of modeling a single agent performing a sequence

of consecutive activities.

An activity has a contingent constraint plus a requirement constraint. We ran-

domly generate an interval inside [0, 100] for the requirement constraint. The contin-

gent constraint we model as a Normal distribution centered at 0. We randomly choose

a standard deviation between 0 and 0.1 times the width of the activity’s requirement

constraint.

53

To form a temporal constraint, we first randomly pick two events. We want the

temporal constraint to actually be constraining on the activity durations between its

two events. Hence, over all the activities in between, we first sum all the lower and

all the upper bounds of their requirement constraints. The analogy here is assuming

no temporal disturbance from the contingent constraints, this gives us a range of

the minimum and maximum time needed to physically complete these activities. To

simulate the intent that temporal constraints will restrict the durations of activities,

we choose the temporal constraint bounds to cover a random one-third. of this feasible

execution range.

Lastly, we randomly pick one, two, or three temporal constraints over which to

define each chance constraint. The more constraints an operator defines a chance

constraint over, the more likely that chance constraint represents as lower priority

requirement. In the disaster relief scenario, we were more concerned about getting

supplies to the people on time (95%) than with the entire mission’s success (90%).

For these three cases of one, two, or three temporal constraints, we assign chance

constraint requirements of 95%, and 90%, and 80%.

4.3 Experiment Design

To compare how these two approaches scale, we increase the problem size on a vari-

ety of factors and measure the average runtime and number of temporal constraints

considered. For the iterative approach, total runtime means the time spent across

all iterations, whereas for the full STN approach, there is only one iteration. Hence,

we expect the iterative approach to have worse total runtime on small examples, be-

cause it will require several iterations, whereas the single iteration on the entire STN

finished very quickly, too. However, the number of temporal constraints that the

iterative approach discovers should always be lower than those encoded by the STN.

There are several parameters on which we may adjust the problem size. Namely,

there are the number of activities, the number of temporal constraints, and the

number of chance constraints. In addition, we may widen the temporal distribu-

54

tions, which increases temporal uncertainty and hence makes it harder to satisfy the

chance constraints. Changing the number of activities roughly decides the mission

length. Given the number of activities, the number of temporal constraints affects

how “crowded” the temporal network is. Finally, given the number of temporal con-

straints, the number of chance constraints shows how interdependent our objectives

may be.

If we are to study the effects of varying each parameter, we must establish rela-

tive baselines between the numbers of each. These baselines should reflect a typical

single-vehicle mission. Nominally, we will create one-fifth the number of temporal

constraints as activities, and one-half the number of chance constraints as temporal

constraints. When varying the number of activities, we keep these ratios constant.

Then, when varying the number of temporal constraints, we keep at constant 300

activities. Likewise, we keep a constant 60 temporal constraints when varying the

number of chance constraints. Finally, we retain those above numbers and 30 chance

constraints when adjusting the distribution widths.

4.4 Results

55

56

57

58

Chapter 5

Conclusion

5.1 Contributions

This thesis developed an approach to scheduling under temporal uncertainty in order

to meet temporal constraints under acceptable risk. First, we laid out the chance-

constrained pSTN scheduling problem. This formulation models temporal uncertainty

as probabilistic temporal distribution in order to more accurate represent how uncer-

tain outcomes occur in the real world. It also defines chance constraints over subsets

of temporal constraints, which allow mission planners and operators greater freedom

to express their priorities.

Then, we offered an algorithm for offline scheduling of a pSTN to satisfy a set

of chance constraints. The fundamental insight was to allocate risk in a way that

reformulates the pSTN into a parameterized STNU. From that point, we were able

to write the reformulation as a set of convex inequalities and linear temporal in-

equalities. Furthermore, the latter set of inequalities could be equivalently learned

through temporal conflict detection. Our benchmarks demonstrated this algorithm

is tractable for plans involving upwards of hundreds of activities, largely due to the

generate-and-test approach.

Temporal uncertainty is pervasive in all our activities, and it can be difficult to

reason about over even in moderately sized temporal networks. However, the prob-

lem formulation and solution method presented in this thesis offer a quantitatively

59

rigorous method to guarantee low-risk satisfaction of temporal constraints through

chance-constrained scheduling. Our modeling of temporal plans is applicable to many

real-world problems, and hence, so are our scheduling insights.

5.2 Future Work

The ideas developed in this work have potential to be extended as well as integrated

with other algorithmic capabilities. We discuss these two aspects here.

5.2.1 Algorithm and Analysis Extensions

First, we would like to extend our algorithm to perform dynamic scheduling online.

Our static schedules have no leeway during execution. If we could schedule an activ-

ity’s end point based on current status and observed history, we would have a higher

chance of success. For example, when distributing supplies to the people, we do not

know how much help they need until we get there. How much time we decide to

spend helping them affects how fast we drive back to the base and therefore how

much risk we incur of arriving back late or early. The works by Tsamardinos [15] and

Li [10] study dynamic scheduling of probabilistic temporal networks, and they lever-

age principles from analysis of STNU dynamic controllability. We could incorporate

these ideas similarly into our chance-constrained framework.

With regard to algorithm analysis, we are interested in the sensitivity of the

schedule’s risk to modeling error. One of the main motivations for developing a

probabilistic model was to be more robust to temporal uncertainty through more

accurate modeling. However, no model is purely captures the physical world, and

it becomes increasingly expensive to develop higher fidelity models. Nevertheless,

we would expect probabilistic models to be more robust than the interval-bounded

representation employed by the STNU. Further experiments could be carried out

to determine how far our model’s temporal distributions may diverge from the true

distribution in order to maintain given sensitivity tolerance.

60

5.2.2 Integration with Other Capabilities

Currently, our algorithm simply outputs a “yes” or “no” response to whether there

exists a schedule. We are all set if “yes,” because we receive a corresponding schedule,

but a “no” need not be taken as hopeless news. All it means is the problem, as

specified, is over-constrained, but it doesn’t say by how much. If we couldn’t meet

a 95% chance constraint, then perhaps 94% would be achievable, or perhaps only

80% is. Clearly, these are two different situations, and we would like to distinguish

between them.

This relates to the idea of failing gracefully. If the problem is over-constrained,

rather than dropping all objectives, we could drop them in order of priority so that we

still achieve as much as possible. Fortunately, our problem formulation and scheduling

insights support such a strategy. Our chance constraints already specify priorities,

and our constraints are parameterized in terms of temporal and risk bounds. If our

algorithm exits with an infeasible solution, then by studying constraints in the vicinity

of that solution, we could determine how far to relax the constraints’ bounds in order

for the solution to be considered feasible. Yu and Williams [18] have pursued such

ideas for negotiating with the human operator intent which temporal goals to relax

and how much. We could extend this to include relaxations of chance constraints as

well.

Lastly, our risk assessment capability has been developed in the context of meeting

temporal constraints, but other types of goals and their associated risk exist in the

real world. The ultimately capability would be an integrated assessment of richly-

expressed mission goals over all sources of risk. Blackmore [2] and Ono [12] have

considered the risk of violating physical state constraints, such as colliding with ob-

stacles or missing a goal region. Like temporal risk assessment, vehicle path-planning

involves continuous variables. There may also be discrete sources of risk. For exam-

ple, when driving to the neighborhood in our disaster relief scenario, we may be forced

to take a detour if a road is too heavily flooded. Our backup route’s temporal dis-

tribution will be fundamentally different, so we must evaluate that separately in our

61

risk assessment. Integrating stochastic sources which affect time, state, and choice

poses challenges through mixing tightly coupled continuous and discrete variables.

However, the capability would lead to truly deployable decision-making systems that

perform rigorous risk assessment .

62

Bibliography

[1] Hossein Arsham. Managing project activity-duration uncertainties. Omega,
21(1):111–122, 1993.

[2] Lars J. C. Blackmore. Robust Execution for Stochastic Hybrid Systems. PhD
thesis, MIT, September 2007.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optiization. Cambridge Uni-
versity Press, 2004.

[4] Jon Dattorro. Convex Optimization and Euclidean Distance Geometry. Meboo
Publishing, 2012.

[5] Nashwan Dawood. Estimating project and activity duration: a risk manage-
ment approach using network analysis. Construction Management & Economics,
16(1):41–48, 1998.

[6] Rina Dechter. Constraint processing. Morgan Kaufmann, 2003.

[7] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Ar-
tificial Intelligence, 49(1):61–95, 1991.

[8] Dimitri Golenko-Ginzburg. A two-level decision-making model for controlling
stochastic projects. International journal of production economics, 32(1):117–
127, 1993.

[9] Hoong Chuin Lau, Jia Li, and Roland H. C. Yap. Robust controllability of
temporal constraint networks under uncertainty. In Proceedings of the 18th IEEE
International Conference on Tools with Artificial Intelligence. IEEE, 2006.

[10] Jia Li. Robust controllability of temporal constraint network with uncertainty.
Master’s thesis, National University of Singapore, 2006.

[11] Paul Morris, Nicola Muscettola, Thierry Vidal, et al. Dynamic control of plans
with temporal uncertainty. In International Joint Conference on Artificial In-
telligence, volume 17, pages 494–502. LAWRENCE ERLBAUM ASSOCIATES
LTD, 2001.

[12] Masahiro Ono. Robust, Goal-directed Plan Execution with Bounded Risk. PhD
thesis, MIT, September 2011.

63

[13] Matthew J Sobel, Joseph G Szmerekovsky, and Vera Tilson. Scheduling projects
with stochastic activity duration to maximize expected net present value. Euro-
pean Journal of Operational Research, 198(3):697–705, 2009.

[14] Ioannis Tsamardinos. A probabilistic approach to robust execution of temporal
plans with uncertainty. pages 97–108. SETN, 2002.

[15] Ioannis Tsamardinos, Martha E. Pollack, and Sailesh Ramakrishnan. Assess-
ing the probability of legal execution of plans with temporal uncertainty. In
Workshop on Planning under Uncertainty and Incomplete Information.

[16] Thierry Vidal. Controllability characterization and checking in contingent tem-
poral constraint networks. In Proceedings of Seventh International Conference
on Principles of Knowledge Representation and Reasoning, 2000.

[17] Thierry Vidal and Helene Fargier. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of Experimental & The-
oretical Artificial Intelligence, 11(1):23–45, 1999.

[18] Peng Yu and Brian C. Williams. Diagnosis of temporal planning problems. In
Prepared for 22nd International Conference on Automated Planning and Schedul-
ing. ICAPS, 2012.

64

