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Abstract

This paper introduces a novel measure-theoretic theory for machine learning that does not
require statistical assumptions. Based on this theory, a new regularization method in deep
learning is derived and shown to outperform previous methods in CIFAR-10, CIFAR-100,
and SVHN. Moreover, the proposed theory provides a theoretical basis for a family of prac-
tically successful regularization methods in deep learning. We discuss several consequences
of our results on one-shot learning, representation learning, deep learning, and curriculum
learning. Unlike statistical learning theory, the proposed learning theory analyzes each
problem instance individually via measure theory, rather than a set of problem instances
via statistics. As a result, it provides different types of results and insights when compared
to statistical learning theory.

Keywords: Machine Learning, Measure Theory, Regularization method, Neural Network

1. Introduction

Statistical learning theory provides tight and illuminating results under its assumptions
and for its objectives (e.g., Vapnik 1998; Mukherjee et al. 2006; Mohri et al. 2012). As the
training datasets are considered as random variables, statistical learning theory was initially
more concerned with the study of data-independent bounds based on the capacity of the hy-
pothesis space (Vapnik, 1998), or the classical stability of learning algorithm (Bousquet and
Elisseeff, 2002). Given the observations that these data-independent bounds could be overly
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pessimistic for a “good” training dataset, data-dependent bounds have also been developed
in statistical learning theory, such as the luckiness framework (Shawe-Taylor et al., 1998;
Herbrich and Williamson, 2002), empirical Rademacher complexity of a hypothesis space
(Koltchinskii and Panchenko, 2000; Bartlett et al., 2002), and the robustness of learning
algorithm (Xu and Mannor, 2012).

Along this line of reasoning, we notice that the previous bounds, including data depen-
dent ones, can be pessimistic for a “good” problem instance, which is defined by a tuple
of a true (unknown) measure, a training dataset and a learned model (see Section 3 for
further details). Accordingly, this paper proposes a learning theory designed to be strongly
dependent on each individual problem instance. To achieve this goal, we directly analyse
the generalization gap (difference between expected error and training error) and datasets
as non-statistical objects via measure theory. This is in contrast to the setting of statistical
learning theory wherein these objects are treated as random variables.

The non-statistical nature of our proposed theory can be of practical interest on its
own merits. For example, the non-statistical nature captures well a situation wherein a
training dataset is specified and fixed first (e.g., a UCL dataset, ImageNet, a medical image
dataset, etc.), rather than remaining random with a certain distribution. Once a dataset
is actually specified, there is no randomness remaining over the dataset (although one
can artificially create randomness via an empirical distribution). For example, Zhang et al.
(2017) empirically observed that given a fixed (deterministic) dataset (i.e., each of CIFAR10,
ImageNet, and MNIST), test errors can be small despite the large capacity of the hypothesis
space and possible instability of the learning algorithm. Understanding and explaining this
empirical observation has become an active research area (Arpit et al., 2017; Krueger et al.,
2017; Hoffer et al., 2017; Wu et al., 2017; Dziugaite and Roy, 2017; Dinh et al., 2017; Bartlett
et al., 2017; Brutzkus et al., 2017).

For convenience within this paper, the proposed theory is called analytical learning
theory, due to its non-statistical and analytical nature. While the scope of statistical learning
theory covers both prior and posterior guarantees, analytical learning theory focuses on
providing prior insights via posterior guarantees; i.e., the mathematical bounds are available
before the learning is done, which provides insights a priori to understand the phenomenon
and to design algorithms, but the numerical value of the bounds depend on the posterior
quantities. A firm understanding of analytical learning theory requires a different style of
thinking and a shift of technical basis from statistics (e.g., concentration inequalities) to
measure theory. We present the foundation of analytical learning theory in Section 3 and
several applications in Sections 4-5.

2. Preliminaries

In machine learning, a typical goal is to return a model ŷA(Sm) via a learning algorithm
A given a dataset Sm = {s(1), . . . , s(m)} such that the expected error Eµ[LŷA(Sm)] ,
Ez[LŷA(Sm)(z)] with respect to a true (unknown) normalized measure µ is minimized.
Here, Lŷ is a function that combines a loss function ` and a model ŷ; e.g., in super-
vised learning, Lŷ(z) = `(ŷ(x), y), where z = (x, y) is a pair of an input x and a target
y. Because the expected error Eµ[LŷA(Sm)] is often not computable, we usually approx-

imate the expected error by an empirical error ÊZm′ [LŷA(Sm)] ,
1
m′
∑m′

i=1 LŷA(Sm)(z
(i))
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with a dataset Zm′ = {z(1), . . . , z(m′)}. Accordingly, we define the generalization gap ,
Eµ[LŷA(Sm)]− ÊSm [LŷA(Sm)]. One of the goals of learning theory is to explain and validate

when and how minimizing ÊSm [LŷA(Sm)] is a sensible approach to minimizing Eµ[LŷA(Sm)]
by analyzing the generalization gap, and to provide bounds on the performance of ŷA(Sm)

on new data.

2.1 Discrepancy and variation

In the following, we define a quality of a dataset, called discrepancy, and a quality of a
function, called variation in the sense of Hardy and Krause. These definitions have been
used in harmonic analysis, number theory, and numerical analysis (Krause, 1903; Hardy,
1906; Hlawka, 1961; Niederreiter, 1978; Aistleitner et al., 2017). This study adopts these
definitions in the context of machine learning. Intuitively, the star-discrepancy D∗[Tm, ν]
evaluates how well a dataset Tm = {t(1), . . . , t(m)} captures a normalized measure ν, and
the variation V [f ] in the sense of Hardy and Krause computes how a function f varies in
total w.r.t. each small perturbation of every cross combination of its variables.

2.1.1 Discrepancy of dataset with respect to a measure

For any t = (t1, . . . , td) ∈ [0, 1]d, let Bt , [0, t1]×· · ·×[0, td] be a closed axis-parallel box with
one vertex at the origin. The local discrepancy D[Bt;Tm, ν] of a dataset Tm = {t(1), . . . , t(m)}
with respect to a normalized Borel measure ν on a set Bt is defined as

D[Bt;Tm, ν] ,

(
1
m

m∑

i=1

1Bt(t
(i))

)

− ν
(
Bt
)

where 1Bt is the indicator function of a set Bt. Figure 1 in Appendix A.1 shows an il-
lustration of the local discrepancy D[Bt;Tm, ν] and related notation. The star-discrepancy
D∗[Tm, ν] of a dataset Tm = {t(1), . . . , t(m)} with respect to a normalized Borel measure ν
is defined as

D∗[Tm, ν] , sup
t∈[0,1]d

∣
∣D[Bt;Tm, ν]

∣
∣.

2.1.2 Variations of a function

Let ∂l be the partial derivative operator; that is, ∂lg(t1, . . . , tk) is the partial derivative of a
function g with respect to the l-th coordinate at a point (t1, . . . , tk). Let ∂k1,...,k , ∂1, . . . , ∂k.

A partition P of [0, 1]k with size mP
1 , . . . ,m

P
k is a set of finite sequences t(0)

l , t
(1)
l . . . , t

(mPl )

l

(l = 1, . . . , k) such that 0 = t
(0)
l ≤ t

(1)
l ≤ · · · ≤ t

(mPl )

l = 1 for l = 1, . . . , k. We define a
difference operator ∆P

l with respect to a partition P as: given a function g and a point

(t1, . . . tl−1, t
(i)
l , tl+1, . . . , tk) in the partition P (for i = 0, . . . ,mP

l − 1),

∆P
l g(t1, . . . tl−1, t

(i)
l , tl+1, . . . , tk) = g(t1, . . . tl−1, t

(i+1)
l , tl+1, . . . , tk)− g(t1, . . . tl−1, t

(i)
l , tl+1, . . . , tk),

where (t1, . . . tl−1, t
(i+1)
l , tl+1, . . . , tk) is the subsequent point in the partition P along the

coordinate l. Let ∆P
1,...,k , ∆P

1 . . .∆
P
k . Given a function f of d variables, let fj1...jk be the

function restricted on k ≤ d variables such that fj1...jk(tj1 , . . . , tjk) = f(t1, . . . , td), where
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tl ≡ 1 for all l /∈ {j1, j2, . . . jk}. That is, fj1...jk is a function of (tj1 , . . . , tjk) with other
original variables being fixed to be one.

The variation of fj1...jk on [0, 1]k in the sense of Vitali is defined as

V (k)[fj1...jk ] , sup
P∈Pk

mP1 −1∑

i1=1

· · ·

mP
k −1∑

ik=1

∣
∣
∣∆P

1,...,kfj1...jk(t(i1)
j1
, . . . , t

(ik)
jk

)
∣
∣
∣ ,

where Pk is the set of all partitions of [0, 1]k. The variation of f on [0, 1]d in the sense of
Hardy and Krause is defined as

V [f ] =
d∑

k=1

∑

1≤j1<···<jk≤d

V (k)[fj1...jk ].

For example, if f is linear on its domain, V [f ] =
∑

1≤j1≤d V
(1)[fj1 ] because V (k)[fj1...jk ] =

0 for all k > 1. The following proposition might be helpful in intuitively understanding the
concept of the variation as well as in computing it when applicable. All the proofs in this
paper are presented in Appendix B.

Proposition 1. Suppose that fj1...jk is a function for which ∂k1,...,kfj1...jk exists on [0, 1]k.
Then,

V (k)[fj1...jk ] ≤ sup
(tj1 ,...,tjk )∈[0,1]k

∣
∣∂k1,...,kfj1...jk(tj1 , . . . , tjk)

∣
∣ .

If ∂k1,...,kfj1...jk is also continuous on [0, 1]k,

V (k)[fj1...jk ] =
∫

[0,1]k

∣
∣∂k1,...,kfj1...jk(tj1 , ..., tjk)

∣
∣ dtj1 · · · dtjk .

3. A basis of analytical learning theory

This study considers the problem of analyzing the generalization gap Eµ[LŷA(Sm)] − ÊSm
[LŷA(Sm)] between the expected error Eµ[LŷA(Sm)] and the training error ÊSm [LŷA(Sm)].
For the purpose of general applicability, our base theory analyzes a more general quantity,
which is the generalization gap Eµ[LŷA(Sm)] − ÊZm′ [LŷA(Sm)] between the expected error

Eµ[LŷA(Sm)] and any empirical error ÊZm′ [LŷA(Sm)] with any dataset Zm′ (of size m′) in-
cluding the training dataset with Zm′ = Sm. Whenever we write Zm′ , it is always including
the case of Zm′ = Sm; i.e., the case where the model is evaluated on the training set.

With our notation, one can observe that the generalization gap is fully and determinis-
tically specified by a problem instance (µ, Sm, Zm′ , LŷA(Sm)), where we identify an omitted
measure space (Z,Σ, µ) by the measure µ for brevity. Indeed, the expected error is defined
by the Lebesgue integral of a function LŷA(Sm) on a (unknown) normalized measure space
(Z,Σ, µ) as Eµ[LŷA(Sm)] =

∫
Z LŷA(Sm)dµ, which is a deterministic mathematical object.

Accordingly, we introduce the following notion of strong instance-dependence : a mathemat-
ical object ϕ is said to be strongly instance-dependent in the theory of the generalization
gap of the tuple (µ, Sm, Zm′ , LŷA(Sm)) if the object ϕ is invariant under any change of any
mathematical object that contains or depends on any µ̄ 6= µ, any ŷ 6= ŷA(Sm), or any S̄m
such that S̄m 6= Sm and S̄m 6= Zm′ . Analytical learning theory is designed to provide
mathematical bounds and equations that are strongly instance-dependent.
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3.1 Analytical decomposition of expected error

Let (Z,Σ, µ) be any (unknown) normalized measure space that defines the expected error,
Eµ[Lŷ] =

∫
Z Lŷ dµ. Here, the measure space may correspond to an input-target pair as

Z = X ×Y for supervised learning, the generative hidden space Z of X ×Y for unsupervised
/ generative models, or anything else of interest (e.g., Z = X ). Let T∗µ be the pushforward
measure of µ under a map T . Let T (Zm′) = {T (z(1)), . . . , T (z(m′))} be the image of the
dataset Zm′ under T . Let |ν|(E) be the total variation of a measure ν on E. For vectors
a, b ∈ [0, 1]d, let [a, b] = {t ∈ [0, 1]d : a ≤ t ≤ b}, where ≤ denotes the product order; that
is, a ≤ t if and only if aj ≤ tj for j = 1, . . . , d. This paper adopts the convention that the
infimum of the empty set is positive infinity.

Theorem 1 is introduced below to exploit the various structures in machine learning
through the decomposition LŷA(Sm)(z) = (f ◦ T )(z) where T (z) is the output of a rep-
resentation function and f outputs the associated loss. Here, T (z) can be any inter-
mediate representation on the path from the raw data (when T (z) = z) to the output
(when T (z) = Lŷ(z)). The proposed theory holds true even if the representation T (z) is
learned. The empirical error ÊZm′ [LŷA(Sm)] can be the training error with Zm′ = Sm or the
test/validation error with Zm′ 6= Sm.

Theorem 1. For any Lŷ, let F [Lŷ] be a set of all pairs (T , f) such that T : (Z,Σ) →
([0, 1]d,B([0, 1]d)) is a measurable function, f : ([0, 1]d,B([0, 1]d))→ (R,B(R)) is of bounded
variation as V [f ] <∞, and

Lŷ(z) = (f ◦ T )(z) for all z ∈ Z ,

where B(A) indicates the Borel σ-algebra on A. Then, for any dataset pair (Sm, Zm′)
(including Zm′ = Sm) and any LŷA(Sm),

(i) Eµ[LŷA(Sm)] ≤ ÊZm′ [LŷA(Sm)] + inf
(T ,f)∈F̂

V [f ] D∗[T∗µ, T (Zm′)],

where F̂ = F [LŷA(Sm)], and

(ii) for any (T , f) ∈ F [LŷA(Sm)] such that f is right-continuous component-wise,

Eµ[LŷA(Sm)] = ÊZm′ [LŷA(Sm)] +
∫

[0,1]d



(T∗µ)([0, t])−
1
m′

m′∑

i=1

1[0,t](T (zi))



 dνf (t),

where zi ∈ Zm′ , and νf is a signed measure corresponding to f as f(t) = νf ([t,1]) +
f(1) and |νf |([0, 1]d) = V [f ].

The statements in Theorem 1 hold for each individual instance (µ, Sm, Zm′ , LŷA(Sm)), for
example, without taking a supremum over a set of other instances. In contrast, typically in
previous bounds, when asserting that an upper bound holds on Eµ[Lŷ]−ÊSm [Lŷ] for any ŷ ∈
H (with high probability), what it means is that the upper bound holds on sup ŷ∈H(Eµ[Lŷ]−

ÊSm [Lŷ]) (with high probability). Thus, in classical bounds including data-dependent ones,
as H gets larger and more complex, the bounds tend to become more pessimistic for the
actual instance ŷA(Sm) (learned with the actual instance Sm), which is avoided in Theorem
1.
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Remark 1. The bound and the equation in Theorem 1 are strongly instance-dependent,
and in particular, invariant to hypothesis space H and the properties of learning algorithm
A over datasets different from a given training dataset Sm (and Zm′).

Remark 2. Theorem 1 together with Remark 1 has an immediate practical consequence.
For example, even if the true model is contained in some “small” hypothesis space H1, we
might want to use a much more complex “larger” hypothesis space H2 in practice such that
the optimization becomes easier and the training trajectory reaches a better model ŷA(Sm)

at the end of the learning process (e.g., over-parameterization in deep learning potentially
makes the non-convex optimization easier; see Dauphin et al. 2014; Choromanska et al.
2015; Soudry and Hoffer 2017). This is consistent with both Theorem 1 and practical
observations in deep learning, although it can be puzzling from the viewpoint of previous
results that explicitly or implicitly penalize the use of more complex “larger” hypothesis
spaces (e.g., see Zhang et al. 2017).

Remark 3. Theorem 1 does not require statistical assumptions. Thus, it is applicable even
when statistical assumptions required by statistical learning theory are violated in practice.

Theorem 1 produces bounds that can be zero even with m = 1 (and m′ = 1) (as an
examples are provided throughout the paper), supporting the concept of one-shot learning.
This is true, even if the dataset is not drawn according to the measure µ. This is because
although such a dataset may incur a lager value of D∗ (than a usual i.i.d. drawn dataset),
it can decrease V [f ] in the generalization bounds of V [f ]D∗[T∗µ, T (Sm)]. Furthermore, by
being strongly instance-dependent on the learned model ŷA(Sm), Theorem 1 supports the
concept of curriculum learning (Bengio et al., 2009a). This is because curriculum learning
directly guides the learning to obtain a good model ŷA(Sm), which minimizes V [f ] by its
definition.

3.2 Additionally using statistical assumption and general bounds on D∗

By additionally using the standard i.i.d. assumption, Proposition 2 provides a general
bound on the star-discrepancy D∗[T∗µ, T (Zm′)] that appears in Theorem 1. It is a direct
consequence of (Heinrich et al., 2001, Theorem 2).

Proposition 2. Let T (Zm′) = {T (z(1)), . . . , T (z(m′))} = {t(1), . . . , t(m
′)} be a set of i.i.d. ran-

dom variables with values on [0, 1]d and distribution T∗µ. Then, there exists a positive
constant c1 such that for all m′ ∈ N+ and all c2 ≥ c1, with probability at least 1− δ,

D∗[T∗µ, T (Zm′)] ≤ c2

√
d

m′

where δ = 1
c2
√
d
(c1c

2
2e
−2c22)d with c1c

2
2e
−2c22 < 1.

Remark 4. Proposition 2 is not probabilistically vacuous in the sense that we can increase
c2 to obtain 1 − δ > 0, at the cost of increasing the constant c2 in the bound. Forcing
1− δ > 0 still keeps c2 constant without dependence on relevant variables such as d and m′.
This is because 1− δ > 0 if c2 is large enough such that c1c

2
2 < e2c22 , which depends only on

the constants.
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Using Proposition 2, one can immediately provide a statistical bound via Theorem
1 over random Zm′ . To see how such a result differs from that of statistical learning
theory, consider the case of Zm′ = Sm. That is, we are looking at classic training error.
Whereas statistical learning theory applies a statistical assumption to the whole object
Eµ[LŷA(Sm)] − ÊSm [LŷA(Sm)], analytical learning theory first decomposes Eµ[LŷA(Sm)] −

ÊSm [LŷA(Sm)] into V [f ]D∗[T∗µ, T (Sm)] and then applies the statistical assumption only
to D∗[T∗µ, T (Sm)]. This makes V [f ] strongly instance-dependent even with the statistical
assumption. For example, with f(z) = LŷA(Sm)(z) and T (z) = z, if the training dataset
Sm satisfies the standard i.i.d. assumption, we have that with high probability,

Eµ[LŷA(Sm)]− ÊSm [LŷA(Sm)] ≤ c2V [LŷA(Sm)]

√
d

m
, (1)

where the term V [LŷA(Sm)] is strongly instance-dependent.
In Equation (1), it is unnecessary for m to approach infinity in order for the generaliza-

tion gap to go to zero. As an extreme example, if the variation of ŷA(Sm) aligns with that of
the true y (i.e., LŷA(Sm) is constant), we have that V [LŷA(Sm)] = 0 and the generalization
gap becomes zero even with m = 1. This example illustrates the fact that Theorem 1
supports the concept of one-shot learning via the transfer of knowledge into the resulting
model ŷA(Sm).

For the purpose of the non-statistical decomposition of Eµ[LŷA(Sm)] − ÊSm [LŷA(Sm)],
instead of Theorem 1, we might be tempted to conduct a simpler decomposition with the
Hölder inequality or its variants. However, such a simpler decomposition is dominated by
a difference between the true measure and the empirical measure on an arbitrary set in
high-dimensional space, which suffers from the curse of dimensionality. Indeed, the proof
of Theorem 1 is devoted to reformulating Eµ[LŷA(Sm)]− ÊSm [LŷA(Sm)] via the equivalence
in the measure and the variation before taking any inequality, so that we can avoid such
an issue. That is, the star-discrepancy evaluates the difference in the measures on high-
dimensional boxes with one vertex at the origin, instead of on an arbitrary set.

The following proposition proves the existence of a dataset Zm′ with a convergence rate
of D∗[T∗µ, T (Sm)] that is asymptotically faster than O(

√
1/m) in terms of the dataset size

m′. This is a direct consequence of (Aistleitner and Dick, 2014, Theorem 2).

Proposition 3. Assume that T is a surjection. Let T∗µ be any (non-negative) normalized
Borel measure on [0, 1]d. Then, for any m′ ∈ N+, there exists a dataset Zm′ such that

D∗[T∗µ, T (Zm′)] ≤ 63
√
d

(2 + log2m
′)(3d+1)/2

m′
.

This can be of interest when we can choose T to make d small without increasing V [f ]
too much; i.e., it then provides a faster convergence rate than usual statistical guarantees. If
Z ⊆ Rdz (which is true in many practical cases), we can have d = 1 by setting T : Z → [0, 1],
because there exists a bijection between Z and (0, 1). Then, although the variation of T is
unbounded in general, V [f ] can be still small. For example, it is still zero if the variation
of ŷA(Sm) aligns with that of the true y in this space of [0, 1].
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3.3 General examples

The following example provides insights on the quality of learned representations:

Example 1. Let T (z) = (φ(x), v) where φ is a map of any learned representation and
v is a variable such that there exists a function f satisfying LŷA(Sm)(z) = f(φ(x), v) (for
supervised learning, setting v := y always satisfies this condition regardless of the infor-
mation contained in φ(x)). For example, φ(x) may represent the output of any interme-
diate hidden layer in deep learning (possibly the last hidden layer), and v may encode
the noise left in the label y. Let f be a map such that LŷA(Sm) = f(T (z)). Then, if
V [f ] < ∞, Theorem 1 implies that for any dataset pair (Sm, Zm′) (including Zm′ = Sm),
Eµ[LŷA(Sm)] ≤ ÊZm′ [LŷA(Sm)] + V [f ]D∗[T∗µ, T (Zm′)].

Example 1 partially supports the concept of the disentanglement in deep learning (Ben-
gio et al., 2009b) and proposes a new concrete method to measure the degree of disentan-
glement as follows. In the definition of V [f ] =

∑d
k=1

∑
1≤j1<···<jk≤d

V (k)[fj1...jk ], each term
V (k)[fj1...jk ] can be viewed as measuring how entangled the j1, . . . , jk-th variables are in
a space of a learned (hidden) representation. We can observe this from the definition of
V (k)[fj1...jk ] or from Proposition 1 as: V (k)[fj1...jk ] =

∫
[0,1]k

∣
∣
∣∂k1,...,kfj1...jk(tj1 , . . . , tjk)

∣
∣
∣ dtj1 · · · dtjk ,

where ∂k1,...,kfj1...jk(tj1 , . . . , tjk) is the k-th order cross partial derivatives across the j1, . . . , jk-
th variables. If all the variables in a space of a learned (hidden) representation are com-
pletely disentangled in this sense, V (k)[fj1...jk ] = 0 for all k ≥ 2 and V [f ] is minimized to
V [f ] =

∑d
j1=1 V

(1)[fj1 ]. Additionally, Appendices A.5 and A.6 provide discussion of the
effect of flatness in measures and higher-order derivatives.

One of the reasons why analytical learning theory is complementary to statistical learn-
ing theory is the fact that we can naturally combine the both. For example, in Example
1, we cannot directly adopt the probabilistic bound on D∗[T∗µ, T (Sm)] from Section 3.2, if
T (Sm) does not satisfy the i.i.d. assumption because T depends on the whole dataset Sm.
In this case, to analyze D∗[T∗µ, T (Sm)], we can use the approaches in statistical learning
theory, such as Rademacher complexity or covering number. To see this, consider a set Φ
such that T ∈ Φ and Φ is independent of Sm. Then, by applying Proposition 2 with a
union bound over a cover of Φ, we can obtain probabilistic bounds on D∗ with the log of
the covering number of Φ for all representations T ′ ∈ Φ. As in data-dependent approaches
(e.g., Bartlett et al. 2017, Lemma A.9), one can also consider a sequence of sets {Φj}j
such that T ∈ ∪jΦj , and one can obtain a data-dependent bound on D∗[T∗µ, T (Sm)] via a
complexity of Φj .

The following example establishes the tightness of Theorem 1 (i) with the 0-1 loss in
general, where ι : {0, 1} → [0, 1] is an inclusion map:

Example 2. Theorem 1 (i) is tight in multi-class classification with 0-1 loss as follows.
Let T = ι ◦ LŷA(Sm). Let f be an identity map. Then, V [f ] = 1 and LŷA(Sm)(z) =
(f ◦ T )(z) for all z ∈ Z . Then, the pair of T and f satisfies the condition in Theo-
rem 1 as LŷA(Sm) and ι are measurable functions. Thus, from Theorem 1, Eµ[LŷA(Sm)] −

ÊZm′ [LŷA(Sm)] ≤ V [f ]D∗[T∗µ, T (Zm′)] = |(T∗µ)({1}) − EZm′ [LŷA(Sm)]|) (see Appendix B.5
for this derivation), which establishes a tightness of Theorem 1 (i) with the 0-1 loss as follows:
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for any dataset pair (Sm, Zm′) (including Zm′ = Sm),
∣
∣
∣Eµ[LŷA(Sm)]− ÊZm′ [LŷA(Sm)]

∣
∣
∣ =

V [f ]D∗[T∗µ, T (Zm′)].

The following example applies Theorem 1 to a raw representation space T (z) = z and
a loss space T (z) = (ι ◦ LŷA(Sm))(z):

Example 3. Consider a normalized domain Z = [0, 1]dz and a Borel measure µ on Z.
For example, Z can be an unknown hidden generative space or an input-output space
(Z = X×Y). Let us apply Theorem 1 to this measure space with T (z) = z and f = LŷA(Sm).
Then, if V [LŷA(Sm)] <∞, Theorem 1 implies that for any dataset pair (Sm, Zm′) (including

Zm′ = Sm) and any LŷA(Sm), Eµ[LŷA(Sm)] ≤ ÊZm′ [LŷA(Sm)] + V [LŷA(Sm)]D
∗[µ,Zm′ ].

Example 3 indicates that we can regularize V [LŷA(Sm)] in some space Z to control the
generalization gap. For example, letting the model ŷA(Sm) be invariant to a subspace that
is not essential for prediction decreases the bound on V [LŷA(Sm)]. As an extreme example,
if x = g(y, ξ) with some generative function g and noise ξ (i.e., a setting considered in an
information theoretic approach), ŷA(Sm) being invariant to ξ results in a smaller bound on
V [LŷA(Sm)]. This is qualitatively related to an information theoretic observation such as in
(Achille and Soatto, 2017).

4. Application to linear regression

Even in the classical setting of linear regression, recent papers (Zhang et al. 2017, Section 5;
Kawaguchi et al. 2017, Section 3; Poggio et al. 2017, Section 5) suggest the need for further
theoretical studies to better understand the question of precisely what makes a learned
model generalize well, especially with an arbitrarily rich hypothesis space and algorithmic
instability. Theorem 1 studies the question abstractly for machine learning in general. As
a simple concrete example, this section considers linear regression. However, note that the
theoretical results in this section can be directly applied to deep learning as described in
Remark 7.

Let Sm = {s(i)}mi=1 be a training dataset of the input-target pairs where s(i) = (x(i), y(i)).
Let ŷA(Sm) = Ŵφ(·) be the learned model at the end of any training process. For example,

in empirical risk minimization, the matrix Ŵ is an output of the training process, Ŵ :=
argminW ÊSm [1

2‖Wφ(x)− y‖22]. Here, φ : (X ,Σx)→ ([0, 1]dφ ,B([0, 1]dφ)) is any normalized
measurable function, corresponding to fixed features. For any given variable v, let dv be the
dimensionality of the variable v. The goal is to minimize the expected error Es[1

2‖Ŵφ(x)−
y‖22] of the learned model Ŵφ(·).

4.1 Domains with linear Gaussian labels

In this subsection only, we assume that the target output y is structured such that y =
W ∗φ(x)+ξ, where ξ is a zero-mean random variable independent of x. Many columns of W ∗

can be zeros (i.e., sparse) such that W ∗φ(x) uses a small portion of the feature vector φ(x).
Thus, this label assumption can be satisfied by including a sufficient number of elements
from a basis with uniform approximation power (e.g., polynomial basis, Fourier basis, a set
of step functions, etc.) to the feature vector φ(x) up to a desired approximation error. Note
that we do not assume any knowledge of W ∗.
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Let µx be the (unknown) normalized measure for the input x (corresponding to the
marginal distribution of (x, y)). Let Xm = {x(i)}mi=1 and S̃m = {(x(i), ξ(i))}mi=1 be the input
part and the (unknown) input-noise part of the same training dataset as Sm, respectively.
We do not assume access to S̃m. Let Wl be the l-th column of the matrix W .

Theorem 2. Assume that the labels are structured as described above and ‖Ŵ −W ∗‖ <∞.
Then, Theorem 1 implies that

Es

[
1
2
‖Ŵφ(x)− y‖22

]

− ÊSm

[
1
2
‖Ŵφ(x)− y‖22

]

≤ V [f ]D∗[φ∗µx, φ(Xm)] + A1 +A2, (2)

where f(t) = 1
2‖Ŵ t−W ∗t‖22, A1 = ÊS̃m [ξ>(Ŵ −W ∗)φ(x)], A2 = Eξ[‖ξ‖22]− ÊS̃m [‖ξ‖22], and

V [f ] ≤
dφ∑

l=1

‖(Ŵl −W
∗
l )>(Ŵ −W ∗)‖1 +

∑

1≤l<l′≤dφ

|(Ŵl −W
∗
l )>(Ŵl′ −W

∗
l′ )|.

Remark 5. Theorem 2 is tight in terms of both the minimizer and its value, which is
explained below. The bound in Theorem 2 (i.e., the right-hand-side of Equation (2)) is
minimized (to be the noise term A2 only) if and only if Ŵ = W ∗ (see Appendix A.4
for pathological cases). Therefore, minimizing the bound in Theorem 2 is equivalent to
minimizing the expected error Es[‖Ŵφ(x) − y‖22] or generalization error (see Appendix A.4
for further details). Furthermore, the bound in Theorem 2 holds with equality if Ŵ = W ∗.
Thus, the bound is tight in terms of the minimizer and its value.

Remark 6. For D∗[φ∗µx, φ(Xm)] and A2, we can straightforwardly apply the probabilistic
bounds under the standard i.i.d. statistical assumption. From Proposition 2, with high
probability, D∗[φ∗µx, φ(Xm)] ≤ O(

√
dφ/m). From Hoeffding’s inequality with M ≥ ‖ξ‖22,

with probability at least 1 − δ, A2 ≤M
√

ln(1/δ)/2m.

It is not necessary for D∗[φ∗µx, φ(Xm)] to approach zero to minimize the expected
error; irrespective of whether the training dataset satisfies a certain statistical assumption
to bound D∗[φ∗µx, φ(Xm)], we can minimize the expected error via making Ŵ closer to W ∗

as shown in Theorem 2.

4.2 Domains with unstructured/random labels

In this subsection, we discard the linear Gaussian label assumption in the previous sub-
section and consider the worst case scenario where y is a variable independent of x. This
corresponds to the random label experiment by Zhang et al. (2017), which posed another
question: how to theoretically distinguish the generalization behaviors with structured la-
bels from those with random labels. Generalization behaviors in practice are expected to
be significantly different in problems with structured labels or random labels, even when
the hypothesis space and learning algorithm remain unchanged.

As desired, Theorem 3 (unstructured labels) predicts a completely different generaliza-
tion behavior from that in Theorem 2 (structured labels), even with an identical hypothesis
space and learning algorithm. Here, we consider the normalization of y such that y ∈ [0, 1]dy .
Let µs be the (unknown) normalized measure for the pair s = (x, y).

10
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Theorem 3. Assume unstructured labels as described above. Let M = supt∈[0,1] ‖Ŵ t−y‖∞.

Assume that ‖Ŵ‖ <∞ and M <∞. Then, Theorem 1 implies that

Es

[
1
2
‖Ŵφ(x)− y‖22

]

− ÊSm

[
1
2
‖Ŵφ(x)− y‖22

]

≤ V [f ]D∗[T∗µs, T (Sm)], (3)

where T (s) = (φ(x), y), f(t, y) = 1
2‖Ŵ t− y‖22, and

V [f ] ≤ (M + 1)
dφ∑

l=1

‖Ŵl‖1 +
∑

1≤l<l′≤dφ

|Ŵ>l Ŵl′ |+ dyM.

Unlike in the structured case (Theorem 2), minimizing the bound on the generalization
gap in the unstructured case requires us to control the norm of Ŵ , which corresponds to
the traditional results from statistical learning theory. As in statistical learning theory, the
generalization gap in Theorem 3 (unstructured labels) goes to zero as D∗[T∗µs, T (Sm)] ap-
proaches zero via certain statistical assumption: e.g., via Proposition 2, with high probabil-
ity, D∗[T∗µs, T (Sm)] ≤ O(

√
(dφ + dy)/m). This is in contrast to Theorem 2 (the structured

case) where we require no statistical assumption for the generalization gap to approach zero
within polynomial sample complexity.

Remark 7. (Theorems 2 and 3 on representation learning) Theorems 2 and 3 hold true,
even with learned representations φ, instead of fixed features. Let φ(x) represent the last
hidden layer in a neural network or the learned representation in representation learning
in general. Consider the squared loss (square of output minus target). Then, the identical
proofs of Theorems 2 and 3 work with the learned representation φ.

5. From analytical learning theory to methods in deep learning

This section further demonstrates the practical relevance of analytical learning theory by
showing its application to derive empirical methods. The complete code of our method and
experiments is publicly available at https://github.com/Learning-and-Intelligent-
Systems/DualCutout.

5.1 Theory

We consider multi-class classification with a set Y of class labels. Then,

Eµ[LŷA(Sm)]− ÊSm [LŷA(Sm)]

=
∑

y∈Y

p(y)Eµx|y [LŷA(Sm)]− p̂(y)ÊSx|y [LŷA(Sm)]± p(y)ÊSx|y [LŷA(Sm)]

=
∑

y∈Y

p(y)
(
Eµx|y [LŷA(Sm)]− ÊSx|y [LŷA(Sm)]

)
+ (p(y)− p̂(y)) ÊSx|y [LŷA(Sm)],

where p̂(y) ,
|Sx|y |
m , ÊSx|y [LŷA(Sm)] ,

1
|Sx|y |

∑
x∈Sx|y

LŷA(Sm)(x, y), and Sx|y ⊆ Sm is the set

of the training input points x of the label y. Within the sum over y, by applying Theorem

11
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1 (i) to each first term and Hoeffding’s inequality to each second term, we have that with
probability at least 1 − δ/2,

Eµ[LŷA(Sm)]− ÊSm [LŷA(Sm)]

≤
∑

y∈Y

p(y) inf
(Ty ,fy)∈F̂y

V [fy]D
∗[(Ty)∗µx|y, Ty(Sx|y)] + ÊSx|y [LŷA(Sm)]

√
log 2/δ
2|Sx|y|

.

Assume that there exists a generative (unknown) hidden space G : (y, z) 7→ x where
the true label of the input x = G(y, z) is y for any z in the its normalized domain. We
now set Ty : (x, y) 7→ z and fy : z 7→ LŷA(Sm)(x, y) where z is the unknown hidden space
that does not affect the true label. This choice does not depend on the dataset although
it is unknown. Thus, by applying Proposition 2 with these (Ty, fy), we have that with
probability at least 1 − δ,

Eµ[LŷA(Sm)]− ÊSm [LŷA(Sm)] ≤
∑

y∈Y

c2p(y)V [fy]

√
dz
|Sx|y|

+ ÊSx|y [LŷA(Sm)]

√
log 2/δ
2|Sx|y|

, (4)

where dz is the dimensionality of the generative hidden space of z and c2 is a constant
defined in Proposition 2.

Equation 4 tells us that if V [fy] is bounded by a constant, the generalization error goes
to zero in polynomial sample complexity even with an arbitrarily complex hypothesis space
and non-stable learning algorithm. If the loss is 0-1 loss, V [fy] = 0 when (y, z) 7→ ŷA(Sm)(x)
is invariant over z. In other words, to control V [fy], we want to have a model that is more
invariant over the space of z, which intuitively makes sense.

5.2 Methods

The above result provides a theoretical basis for a family of consistency-based regularization
methods, including Π-Model (Laine and Aila, 2016), virtual adversarial training (Miyato
et al., 2016) and regularization with stochastic transformations and perturbations (Sajjadi
et al., 2016). These consistency-based regularization methods have been empirically suc-
cessful heuristics. These methods are based on the intuition that perturbations of a data
point x 7→ x̃ should not change the output of a model as ŷ(x) ≈ ŷ(x̃) if the true label is
invariant under the perturbation; i.e., y∗(x) = y∗(x̃) where y∗ outputs a correct label. This
intuitive goal is achieved by minimizing d(ŷ(x), ŷ(x̃)) with respect to the trainable model
ŷ, where d(, ) measures a distance between the two outputs. In Equation 4, these methods
can be viewed to control V [fy] by making the model ŷ more invariant over the space of z.
Therefore, our theory formalizes the intuition of these regularization methods in terms of
the generalization gap.

In order to more effectively minimize the bound on the generalization gap in Equation
4, we propose a new regularization method, called dual-cutout. For each training input x,
our dual-cutout method minimizes the following regularization loss `reg(x, θ) with respect
to θ (in addition to the original classification loss):

`reg(x, θ) =
∫

(x1,x2)
‖h(x1, θ)− h(x2, θ)‖

2
2dP (x1, x2|x),

12
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where h(x′, θ) is the post-softmax output of the last layer of a neural network with param-
eters θ (given an input x′), and (x1, x2) ∼ P (x1, x2|x) are two randomly sampled inputs of
two random cutouts of a given natural input x. Here, we set P (x1, x2|x) = P (x1|x)P (x2|x),
and P (x1|x) = P (x2|x) is the probability distribution over random cutout input x1 given a
original (non-cutout) input x; i.e., P (x1|x) = P (x2|x) represents the same random cutout
procedure as single-cutout method in the previous paper (DeVries and Taylor, 2017). As
this additional regularization loss gets smaller, the model becomes more insensitive over the
hidden space of z, implicitly minimizing V [fy] and the bound on the generalization gap in
Equation 4.

Table 1 compares the test error of dual-cutout against single-cutout and the standard
method for three benchmark datasets, namely CIFAR10, CIFAR100 and SVHN. Dual-
cutout outperforms baseline methods by a significant margin.

Table 1: Test error (%) with different regularization methods.

Method CIFAR-10 CIFAR-100 SVHN

Standard 3.79 ± 0.07 19.85 ± 0.14 2.47 ± 0.04

Single-cutout 3.19 ± 0.09 18.13 ± 0.28 2.23 ± 0.03

Dual-cutout 2.61 ± 0.04 17.54 ± 0.09 2.06 ± 0.06

We conducted all the experiments with the WideResNet28 10 (Zagoruyko and Ko-
modakis, 2016) architecture and report the test errors at the end of 300 training epochs.
We used SGD with the learning rate 0.1 and the momentum 0.9. At each step of SGD,
to minimize the regularization loss `reg(x, θ) of dual-cutout, we used the sampled gradient
∇θ‖h(x1, θ) − h(x2, θ)‖22 where (x1, x2) is sampled as (x1, x2) ∼ P (x1, x2|x). The learn-
ing rate was annealed at epochs 150 and 225 by a factor of 0.1. We used standard data-
augmentation and preprocessing for all the datasets. For each dataset, we choose the cutout
size as reported in (DeVries and Taylor, 2017). We performed five trials of each experiment
and report the standard deviation and mean of test error in Table 1.

6. Discussion

Table 2 summarizes the major simplified differences between statistical learning theory
and analytical learning theory. Because of the differences in the assumptions and the objec-
tives, the proposed learning theory is not directly comparable in terms of sample complexity
against previous learning theory. Instead of focusing on comparable sample-complexity, an-

Table 2: A simplified comparison, wherein GG denotes the generalization gap

Statistical Learning Theory Analytical Learning Theory

GG is characterized by hypothesis spaces H or algorithms A a learned model ŷA(Sm)

GG is decomposed via statistics measure theory
Statistical assumption is required can be additionally used
Main focus is when a (training) dataset Sm remains random a (training) dataset Sm is given
Bounds on GG are not strongly instance-dependent strongly instance-dependent

13
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alytical learning theory focuses on complementing previous learning theory by providing
additional practical insights. Indeed, the real-world phenomena that are analyzed are dif-
ferent in statistical learning theory and analytical learning theory. Typically in statistical
learning theory, some upper bound holds over a fixed H or a fixed A with high probability
over different random datasets. In contrast, in analytical learning theory, some upper bound
holds individually for each problem instance.

An another difference between statistical learning theory and analytical learning theory
lies in the property of strong instance-dependence. Any generalization bound that depends
on a non-singleton hypothesis space H 6= {ŷA(Sm)}, such as ones with Rademacher com-
plexity and VC dimension, is not strongly instance-dependent because the non-singleton
hypothesis space contains ŷ 6= ŷA(Sm), and the bound is not invariant under an arbitrary
change of H. The definition of stability itself depends on S̄m that is not equal to Sm and Zm′
(Bousquet and Elisseeff, 2002), making the corresponding bounds be not strongly instance-
dependent. Moreover, a generalization bound that depends on a concept of random datasets
S̄m different from Sm and Zm′ (e.g., an additive term O(

√
1/m) that measures a deviation

from an expectation over S̄m 6= Sm, Zm′) is not strongly instance-dependent, because the
bound is not invariant under an arbitrary change of S̄m.

Data dependence does not imply strong instance-dependence. For example, in the data-
dependent bounds of the luckiness framework (Shawe-Taylor et al., 1998; Herbrich and
Williamson, 2002), the definition of ω-smallness of the luckiness function contains a non-
singleton hypothesis space H, a sequence of non-singleton hypothesis spaces (ordered in a
data-dependent way by a luckiness function), and a supremum over H with the probability
over datasets S̄m 6= Sm (with Zm′ = Sm) (e.g., see Definition 4 in Herbrich and Williamson
2002 with contraposition). As exemplified in the luckiness framework, one can usually
turn both data-dependent and data-independent bounds into more data-dependent ones by
considering a sequence of hypothesis spaces or sets of learning algorithms. However, such
data-dependent bounds still contain the complexity of a non-singleton hypothesis space
(and dependence on the definition of the sequence). The data-dependent bounds with
empirical Rademacher complexity (Koltchinskii and Panchenko, 2000; Bartlett et al., 2002)
also depend on a non-singleton hypothesis space and its empirical Rademacher complexity.
Moreover, the definition of robustness itself depends on S̄m, which is not equal to Sm or Zm′
(Xu and Mannor, 2012). Therefore, all of these data-dependent bounds are not strongly
instance-dependent.

The fact that Theorem 1 is invariant to the complexity of hypothesis space H and certain
details of a learning algorithm A can be both advantageous and disadvantageous, depending
on the objective of the analysis. As we move towards the goal of artificial intelligence, H
and A would become extremely complex, which can pose a challenge in theory. From this
viewpoint, analytical learning theory can also be considered as a methodology to avoid such
a challenge, producing theoretical insights for intelligent systems with arbitrarily complex
H and A, so long as other conditions are imposed on the actual functions being computed
by them.
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Appendix

Appendix A contains additional discussions to facilitate understanding this paper. Ap-
pendix B includes all the proofs of the theoretical results.

Appendix A. Additional discussions

A.1 An illustration of discrepancy

Figure 1 shows an illustration of the local discrepancy D[Bt;Tm, ν] and related notation in
two dimensional space.

Figure 1: The local discrepancy D[Bt;Tm, ν] evaluates the difference between the empirical
measure of the box Bt (the normalized number of data points in the box Bt, which is 4/10)
and the measure ν of the box Bt (the measure of the blue region)

A.2 An illustration of a difference in the scopes of statistical and analytical
learning theories

Figure 2 shows a graphical illustration of a difference in the scopes of statistical learning
theory and analytical learning theory. Here, µm is the product measure.

In the setting of statistical learning theory (Figure 2 (a)), our typical goal is to analyze
the random expected error Eµ[LŷA(Sm)] over the random datasets Sm by fixing a hypothesis
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space and/or learning algorithm over random datasets. Due to the randomness over Sm,
we do not know where q exactly lands in Q. The lower bound and necessary condition in
the setting of statistical learning theory is typically obtained via a worst-case instance q′ in
Q. For example, classical no free lunch theorems and lower bounds on the generalization
gap via VC dimension (e.g., Mohri et al. 2012, Section 3.4) have been derived with the
worst-case distribution characterizing q′ in Q. Such a necessary condition is only proven to
be necessary for the worst-case q′ ∈ Q, but is not proven to be necessary for other “good”
cases q 6= q′. Intuitively, we are typically analyzing the quality of the set Q, instead of each
individual q ∈ Q.

In this view, it becomes clear what is going on in some empirical observations such
as in (Zhang et al., 2017). Intuitively, whereas statistical learning theory focuses more on
analyzing the set Q, each element such as q (e.g., a “good” case or structured label case)
and q′ (e.g., the worst-case or random label case) can significantly differ from each other.
Data-dependent analyses in statistical learning theory can be viewed as the ways to decrease
the size of Q around each q.

In contrast, analytical learning theory (Figure 2 (b)) focuses on each q only, allowing
tighter results for each “good” q ∈ Q beyond the possibly “bad” quality of the set Q overall.

It is important to note that analyzing the set Q is of great interest on its own merits, and
statistical learning theory has advantages over our proposed learning theory in this sense.
Indeed, analyzing a set Q is a natural task along the way of thinking in theoretical computer
science (e.g., categorizing a set Q of problem instances into polynomial solvable set or not).
This situation where theory focuses more on Q and practical studies care about each q ∈ Q
is prevalent in computer science even outside the learning theory. For example, the size
of Q analyzed in theory for optimal exploration in Markov decision processes (MDPs) has
been shown to be often too loose for each practical problem instance q ∈ Q, and a way
to partially mitigate this issue was recently proposed (Kawaguchi, 2016). Similarly, global
optimization methods including Bayesian optimization approaches may suffer from a large

q

q'

(a) Statistical learning theory

q

(b) Analytical learning theory

Figure 2: An illustration of a difference in the scopes with Zm′ = Sm: q represents a query
about the generalization gap of a learned model yA(Sm), which is a deterministic quantity
of the tuple (µ, Sm, LŷA(Sm)). Intuitively, whereas analytical learning theory analyzes q
directly, statistical learning theory focuses more on analyzing the set Q that contains q.
The set Q is defined by the sets of possible measures µ and randomly-drawn different
datasets Sm and the hypothesis space H or learning algorithm A.
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complex Q for each practical problem instance q ∈ Q, which was partially mitigated in
recent studies (Kawaguchi et al., 2015, 2016).

Furthermore, the issues of characterizing a set Q only via a worst-case instance q′ (i.e.,
worst-case analysis) are well-recognized in theoretical computer science, and so-called beyond
worst-case analysis (e.g., smoothed analysis) is an active research area to mitigate the
issues. Moreover, a certain qualitative property of the set Q might tightly capture that of
each instance q ∈ Q. However, to prove such an assertion, proving that a upper bound on
∀q ∈ Q matches a lower bound on ∃q′ ∈ Q is insufficient.

A.3 On usage of statistical assumption with Zm′ = Sm

Using a statistical assumption on a dataset Zm′ with Zm′ 6= Sm is consistent with a practical
situation where a dataset Sm is given first instead of remaining random. For Zm′ = Sm, we
can view this formulation as a mathematical modeling of the following situation. Consider
Sm as a random variable when collecting a dataset Sm, and then condition on the event
of getting the collected dataset Sm once Sm is specified, focusing on minimization of the
(future) expected error Eµ[LŷA(Sm)] of the model ŷA(Sm) learned with this particular specified
dataset Sm.

In this view, we can observe that if we draw an i.i.d. dataset Sm, a dataset Sm is
guaranteed to be statistically “good” with high probability in terms of D∗[T∗µ, T (Sm)]

(e.g., D∗[T∗µ, T (Sm)] ≤ c2

√
d
m via Proposition 2). Thus, collecting a training dataset in a

manner that satisfies the i.i.d. condition is an effective method. However, once a dataset
Sm is actually specified, there is no longer randomness over Sm, and the specified dataset
Sm is “good” (high probability event) or “bad” (low probability event). We get a “good”
dataset with high probability, and we obtain probabilistic guarantees such as Equation (1).

In many practical studies, a dataset to learn a model is specified first as, for example,
in studies with CIFAR-10, ImageNet, or UCI datasets. Thus, we might have a statisti-
cally “bad” dataset Sm with no randomness over Sm when these practical studies begin.
Even then, we can minimize the expected error in Theorem 1 by minimizing V [f ] (and/or
D∗[T∗µ, T (Sm)] as deterministic quantity) such that V [f ]D∗[T∗µ, T (Sm)] becomes marginal
without the randomness over Sm.

A.4 Supplementary explanation in Remark 5

The bound is always minimized if Ŵ = W ∗, but it is not a necessary condition in a
pathological case where the star-discrepancy D∗ is zero and A1 can be zero with Ŵ 6= W ∗.

In Section 4.1, the optimal solution to minimize the expected error Es[1
2‖Ŵφ(x)− y‖22]

is attained at Ŵ = W ∗. To see this, we can expand the expected error as

Es

[
1
2
‖Ŵφ(x)− y‖22

]

= Ex

[
1
2
‖Ŵφ(x)−W ∗φ(x)‖22

]

+ Ex,ξ

[
1
2
‖ξ‖22 + ξ>

(
W ∗φ(x)− Ŵφ(x)

)]

= Ex

[
1
2
‖Ŵφ(x)−W ∗φ(x)‖22

]

+ Eξ

[
1
2
‖ξ‖22

]

,

20



Analytical Learning Theory

where the last line follows that ξ is a zero-mean random variable independent of x. From the
last line of the above equation, we can conclude the above statement about the minimizer.

A.5 Flatness in measures

It has been empirically observed that deep networks (particularly in the unsupervised set-
ting) tend to transform the data distribution into a flatter one closer to a uniform distri-
bution in a space of a learned representation (e.g., see Bengio et al. 2013). If the distribu-
tion T∗µ with the learned representation T is uniform, then there exist better bounds on
D∗[T∗µ, T (Zm′)] such as D∗[T∗µ, T (Zm′)] ≤ 10

√
d/m′ (Aistleitner, 2011). Intuitively, if the

measure T∗µ is non-flat and concentrated near a highly curved manifold, then there are more
opportunities for a greater mismatch between T∗µ and T (Zm′) to increase D∗[T∗µ, T (Zm′)]
(see below for pathological cases). This intuitively suggests the benefit of the flattening
property that is sometimes observed with deep representation learning: it is often illus-
trated with generative models or auto-encoders by showing how interpolating between the
representations of two images (in representation space) corresponds (when projected in im-
age space) to other images that are plausible (are on or near the manifold of natural images),
rather than to the simple addition of two natural images (Bengio et al., 2009b).

If T∗µ is concentrated in a single point, then D∗[T∗µ, T (Zm′)] = 0, but it implies that
there is only a single value of LŷA(Sm)(z) = f(φ(x), v) because (φ(x), v) takes only one
value. Hence, this is tight and consistent. On the other hand, to minimize the empirical
error ÊZm′ [LŷA(Sm)] with diverse label values, T∗µ should not concentrate on the small
number of finite points.

If D∗[T∗µ, T (Zm′)] is small, it means that the learned representation is effective at
minimizing the generalization gap. This insight can be practically exploited by aiming to
make T∗µ flatter and spread out the data points T (Zm′) in a limited volume. It would also
be beneficial to directly regularize an approximated D∗[T∗µ, T (Zm′)] with the unknown
µ replaced by some known measures (e.g., a finite-support measure corresponding to a
validation dataset).

A.6 Effect of higher-order derivatives

Example 1 suggests a method of regularization or model selection to control higher-order
derivatives of a learned model w.r.t. a learned representation. Let f(t) = `(Ŷ (t), Y (t));
here, Ŷ and Y represent the learned model ŷA(Sm) and the target output y as a function

of t = T (z), respectively. Then, for example, if ` is the square loss, and if Ŷ and Y are
smooth functions, V [f ] goes to zero as ∇kŶ −∇kY → 0 for k = 1, 2, ..., which can be upper
bounded by ‖∇kŶ ‖+ ‖∇kY ‖.

Appendix B. Proofs

We use the following fact in our proof.

Lemma 1. (theorem 3.1 in Aistleitner et al. 2017) Every real-valued function f on [0, 1]d

such that V [f ] <∞ is Borel measurable.
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B.1 Proof of Proposition 1

Proof. By the definition, we have that

∆P
j1,...,jk

fj1...jk(t(i1)
j1
, . . . , t

(ik)
jk

) = ∆P
j1,...,jk−1

(
∆P
jk
fj1...jk(t(i1)

j1
, . . . , t

(ik)
jk

)
)

By the mean value theorem on the single variable tjk ,

∆P
jk
fj1...jk(t(i1)

j1
, . . . , t

(ik)
jk

) =
(
∂kfj1...jk(t(i1)

j1
, . . . , c

(ik)
jk

)
)

(t(ik+1)
jk

− t(ik)
jk

),

where c(ik)
jk
∈ (t(ik+1)

jk
, t

(ik)
jk

). Thus, by repeatedly applying the mean value theorem,

∆P
jk
fj1...jk(t(i1)

j1
, . . . , t

(ik)
jk

) =
(
∂k1,...,kfj1...jk(c(i1)

j1
, . . . , c

(ik)
jk

)
) k∏

l=1

(t(ik+1)
jk

− t(ik)
jk

),

where c(il)
jl
∈ (t(il+1)

jl
, t

(il)
jl

) for all l ∈ {1, . . . , k}. Thus,

V (k)[fj1...jk ] = sup
P∈Pk

mP1 −1∑

i1=1

· · ·

mPk −1∑

ik=1

∣
∣
∣∂k1,...,kfj1...jk(c(i1)

j1
, . . . , c

(ik)
jk

)
∣
∣
∣
k∏

l=1

(t(ik+1)
jk

− t(ik)
jk

).

By taking supremum for
∣
∣
∣∂k1,...,kfj1...jk(c(i1)

j1
, . . . , c

(ik)
jk

)
∣
∣
∣ and taking it out from the sum, we ob-

tain the first statement. The second statement follows the fact that if ∂k1,...,kfj1...jk(t(i1)
j1
, . . . ,

t
(ik)
jk

) is continuous, then |∂k1,...,kfj1...jk(t(i1)
j1
, . . . , t

(ik)
jk

)| is continuous and Riemann integrable.
Thus, the right hand side on the above equation coincides with the definition of the Riemann
integral of |∂k1,...,kfj1...jk(t(i1)

j1
, . . . , t

(ik)
jk

)| over [0, 1]k.

B.2 Proof of Theorem 1

The proof of Theorem 1 relies on several existing proofs from different fields. Accordingly,
along the proof, we also track the extra dependencies and structures that appear only
in machine learning, to confirm the applicability of the previous proofs in the problem
of machine learning. Let 1A be an indicator function of a set A. Let Ω = [0, 1]d. Let
1 = (1, 1, . . . , 1) ∈ Ω and 0 = (0, 0, . . . , 0) ∈ Ω as in a standard convention. The following
lemma follows theorem 1.6.12 in (Ash and Doleans-Dade, 2000).

Lemma 2. For any (T , f) ∈ F [LŷA(Sm)],

∫

Z
f(T (z))dµ(z) =

∫

Ω
f(ω)d(T∗µ)(ω).

Proof of Lemma 2. By Lemma 1, f is a Borel measurable function. The rest of the
proof of this lemma directly follows the proof of theorem 1.6.12 in (Ash and Doleans-Dade,
2000); we proceed from simpler cases to more general cases as follows. In the case of f
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being an indicator function of some set A as f = 1A, we have that
∫

Z
f(T (z))dµ(z) = µ(Z ∩ T −1A)

= (T∗µ)(Ω ∩A)

=
∫

Ω
f(ω)d(T∗µ)(ω).

In the case of f being a non-negative simple function as f =
∑n

i=1 αi1Ai ,

∫

Z
f(T (z))dµ(z) =

n∑

i=1

αi

∫

Z
1Ai(T (z))dµ(z)

=
n∑

i=1

αi

∫

Ω
1Ai(ω)d(T∗µ)(ω)

=
∫

Ω
f(ω)d(T∗µ)(ω),

where the second line follows what we have proved for the case of f being an indicator
function.

In the case of f being a non-negative Borel measurable function, let (fk)k∈N be an in-
creasing sequence of simple functions such that f(ω) = limk→∞ fk(ω), ω ∈ Ω. Then, by what
we have proved for simple functions, we have

∫
Z fk(T (z))dµ(z) =

∫
Ω fk(ω)d(T∗µ)(ω). Then,

by the monotone convergence theorem, we have
∫
Z f(T (z))dµ(z) =

∫
Ω f(ω)d(T∗µ)(ω).

In the case of f = f+ − f− being an arbitrary Borel measurable function, we have
already proved the desired statement for each f+ and f−, and by the definition of Lebesgue
integration, the statement for f holds.

�
Proof of Theorem 1. With Lemmas 1 and 2, the proof follows that of theorem 1 in

(Aistleitner and Dick, 2015). For any (T , f) ∈ F [LŷA(Sm)],

∫

Z
LŷA(Sm)(z)dµ(z)−

1
m′

m′∑

i=1

LŷA(Sm)(zi) =
∫

Z
f(T (z))dµ(z)−

1
m′

m′∑

i=1

f(T (zi))

=
∫

Ω
f(ω)d(T∗µ)(ω)−

1
m′

m′∑

i=1

f(T (zi))

where the second line follows the condition of T and f and the third line follows Lemma 2.
In the following, we first consider the case where f is left-continuous, and then discard the
left-continuity condition later.

Consider the case where f is left-continuous (for the second statement): Suppose that
f is left-continuous coordinate-wise at every point in the domain. Given a pair of vectors
(a, b), we write a ≤ b if the relation holds for every coordinate. Let f̃(ω) = f(1−ω)− f(1)
for all ω ∈ Ω. Then, by theorem 3 and equation (20) in (Aistleitner and Dick, 2015),
there exists signed Borel measure µf̃ on Ω such that f̃(ω) = µf̃ ([0, ω]) for all ω ∈ Ω and

|µf̃ |(Ω) = V [f ] + |f̃(0)| = V [f ]. Let νf be the reflected measure of µf̃ as νf (A) = µf̃ (1−A)
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for any Borel set A ⊂ Ω where 1−A = {1− t : t ∈ A}. It follows that νf is a signed Borel
measure and

|νf |(Ω) = |µf̃ |(Ω) = V [f ].

By using these, we can rewrite f as

f(ω) = f(1) + f̃(1− ω)

= f(1) +
∫

Ω
1[0,1−ω](t)dµf̃ (t)

= f(1) +
∫

Ω
1[ω,1](t)dνf (t)

= f(1) +
∫

Ω
1[0,t](ω)dνf (t),

where the second line follows from {1− t : t ∈ [ω,1]} = [0,1− ω]. Then, by linearity,

1
m′

m′∑

i=1

f(T (zi))− f(1) =
∫

Ω

1
m′

m′∑

i=1

1[0,t](T (zi))dνf (t),

and by the Fubini–Tonelli theorem and linearity,
∫

Ω
f(ω)d(T∗µ)(ω)− f(1) =

∫

Ω

∫

Ω
1[0,t](ω)d(T∗µ)(ω)dνf (t)

=
∫

Ω
(T∗µ)([0, t])dνf (t).

Therefore,

∫

Ω
f(ω)d(T∗µ)(ω)−

1
m′

m′∑

i=1

f(T (zi)) =
∫

Ω

(

(T∗µ)([0, t])−
1
m′

m′∑

i=1

1[0,t](T (zi))

)

dνf (t),

which proves the second statement of this theorem by noticing that f(t) = νf ([t,1]) + f(1).
Moreover, this implies that

∣
∣
∣
∣
∣

∫

Ω
f(ω)d(T∗µ)(ω)−

1
m′

m′∑

i=1

f(T (zi))

∣
∣
∣
∣
∣
≤ |dνf (t)|(Ω)D∗[T∗µ, T (Zm′)]

= V [f ]D∗[T∗µ, T (Zm′)].

Discard the left-continuity condition of f (for the first statement): Let f be given and
fixed without left-continuity condition. For each fixed f , by the law of large numbers
(strong law of large numbers and the multidimensional Glivenko–Cantelli theorem), for any
ε > 0, there exists a number n and a set Ān = {ω̄i}ni=1 such that both of the following two
inequalities hold: ∣

∣
∣
∣
∣

∫

Ω
f(ω)d(T∗µ)(ω)−

1
n

n∑

i=1

f(ω̄i)

∣
∣
∣
∣
∣
≤ ε,
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and
D∗[T∗µ, Ān] ≤ ε.

Let Ān = {ω̄i}i=1 be such a set. For each fixed f , let fn be a left-continuous function
such that fn(ω) = f(ω) for all ω ∈ Ān ∪ T (Zm′) and V [fn] ≤ V [f ]. This definition of
fn is non-vacuous and we can construct such a fn as follows. Let G be the d-dimensional
grid generated by the set {0} ∪ {1} ∪ Ān ∪ T (Zm′); G is the set of all points ω ∈ Ω
such that for k ∈ {1, . . . , d}, the k-th coordinate value of ω is the k-th coordinate value
of some element in the set {0} ∪ {1} ∪ Ān ∪ T (Zm′). We can construct a desired fn by
setting fn(ω) = f(succn(ω)), where succn(ω) outputs an unique element t ∈ G satisfying
the condition that t ≥ ω and t ≤ t′ for all t′ ∈ {t′ ∈ G : t′ ≥ ω}.

Then, by triangle inequality, we write
∣
∣
∣
∣
∣
∣
∣

∫

Ω
f(ω)d(T∗µ)(ω)−

1
m′

m′∑

i=1

f(T (zi))︸ ︷︷ ︸
=fn(T (zi))

∣
∣
∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∫

Ω
fn(ω)d(T∗µ)(ω)−

1
m′

m′∑

i=1

fn(T (zi))

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

1
n

n∑

i=1

fn(ω̄i)︸ ︷︷ ︸
=f(ω̄i)

−
∫

Ω
fn(ω)d(T∗µ)(ω)

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

Ω
f(ω)d(T∗µ)(ω)−

1
n

n∑

i=1

f(ω̄i)

∣
∣
∣
∣
∣
.

Because fn is left-continuous, we can apply our previous result to the first and the second
terms; the first term is at most V [fn]D∗[T∗µ, T (Zm′)] ≤ V [f ]D∗[T∗µ, T (Zm′)], and the
second term is at most V[fn]D∗[T∗µ, Ān] ≤ εV[f ]. The third term is at most ε by the
definition of Ān. Since ε > 0 can be arbitrarily small, we have that for each (f, T ) ∈
F [LŷA(Sm)], (deterministically,)

∣
∣
∣
∣
∣

∫

Ω
f(ω)d(T∗µ)(ω)−

1
m′

m′∑

i=1

f(T (zi))

∣
∣
∣
∣
∣
≤ V [f ]D∗[T∗µ, T (Zm′)].

Putting together: for any (T , f) ∈ F [LŷA(Sm)],
∣
∣
∣
∣
∣

∫

Z
LŷA(Sm)(z)dµ(z)−

1
m′

m′∑

i=1

LŷA(Sm)(zi)

∣
∣
∣
∣
∣
≤ V [f ]D∗[T∗µ, T (Zm′)]

Thus,
∣
∣
∣
∫
Z LŷA(Sm)(z)dµ(z)− 1

m′
∑m′

i=1 LŷA(Sm)(zi)
∣
∣
∣ is a lower bound of a set Q = {V [f ]

D∗[T∗µ, T (Zm′)] : (T , f) ∈ F [LŷA(Sm)]}. By the definition of infimum, |
∫
Z LŷA(Sm)(z)dµ(z)

− 1
m′
∑m′

i=1 LŷA(Sm)(zi)| ≤ inf Q, if inf Q exists. Because Q is a nonempty subset of real and
lower bounded by 0, inf Q exists. Therefore,

∣
∣
∣
∣
∣

∫

Z
LŷA(Sm)(z)dµ(z)−

1
m′

m′∑

i=1

LŷA(Sm)(zi)

∣
∣
∣
∣
∣
≤ inf

(T ,f)∈F [LŷA(Sm)]
V [f ]D∗[T∗µ, T (Zm′)],

which implies the first statement of this theorem.
�
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B.3 Proof of Proposition 2

Proof. From theorem 2 in (Heinrich et al., 2001), there exists a positive constant c1 such
that for all s ≥ c1

√
d and for all m′ ∈ N+,

P
{
D∗[T∗µ, T (Zm′)] ≥ sm

′−1/2
}
≤

1
s

(
c1s

2

d

)d
e−2s2 ,

where we used the fact that the VC dimension of the set of the axis-parallel boxes contained
in [0, 1]d with one vertex at the origin is d (e.g., see Dudley 1984). By setting s = c2

√
d for

any c2 ≥ c1, we obtain the desired result.

B.4 Proof of Proposition 3

Proof. From theorem 1 in (Aistleitner and Dick, 2014), for any m′ ∈ N+, there exists a set
Tm′ of points t1, . . . , tm′ ∈ [0, 1]d such that

D∗[T∗µ, Tm′ ] ≤ 63
√
d

(2 + log2m
′)(3d+1)/2

m′
.

Because T is a surjection, for such a Tm′ , there exists Zm′ such that T (Zm′) = Tm′ .

B.5 Proof of the inequality in Example 2

Let µT (Zm′ )
be a (empirical) normalized measure with the finite support on T (Zm′). Then,

Eµ[LŷA(Sm)]− ÊZm′ [LŷA(Sm)] ≤ V [f ]D∗[T∗µ, T (Zm′)]

= max{|(T∗µ)({0})− µT (Zm′ )
({0})|,

|(T∗µ({0, 1}))− µT (Zm′ )
({0, 1})|}

= |T∗µ({0})− µT (Zm′ )
({0})|

= |1− T∗µ({1})− 1 + µT (Zm′ )
({1})|

= |T∗µ({1})− µT (Zm′ )
({1})|.

Rewriting µT (Zm′ )
({1}) = EZm′ [LŷA(Sm)] yields the desired inequality in Example 2.

B.6 Proof of Theorem 2

Proof. Let LŷA(Sm)(x) = 1
2‖Ŵφ(x)−W ∗φ(x)‖22 (Z = X ). Since

1
2
‖Wφ(x)− y‖22 =

1
2
‖Wφ(x)−W ∗φ(x)‖22 +

1
2
‖ξ‖22 − ξ

> (Wφ(x)−W ∗φ(x)) ,

we have

Es

[
1
2
‖Ŵφ(x)− y‖22

]

− ÊSm

[
1
2
‖Ŵφ(x)− y‖22

]

= Eµx [LŷA(Sm)]− ÊXm [LŷA(Sm)] + A1 +A2

≤ V [f ]D∗[φ∗µx, φ(Xm)] + A1 +A2,
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where the last line is obtained by applying Theorem 1 to Eµx [LŷA(Sm)]− ÊXm [LŷA(Sm)]

as follows. Let T (x) = φ(x) and f(t) = 1
2‖Ŵ t−W ∗t‖22, where t ∈ Rdφ . Then, LŷA(Sm)(x) =

(f ◦ T )(x), and (T , f) ∈ F [LŷA(Sm)] in Theorem 1 if V [f ] <∞. Therefore, by Theorem 1,
if V [f ] <∞,

Eµx [LŷA(Sm)]− ÊXm [LŷA(Sm)] ≤ V [f ]D∗[φ∗µx, φ(Xm)].

To upper bound V [f ] and to show V [f ] < ∞, we invoke Proposition 1 as follows. We
have that ∂f

∂tl
= (Ŵl −W ∗l )>(Ŵ −W ∗)t, and ∂f

∂tl∂tl′
= (Ŵl −W ∗l )>(Ŵl′ −W ∗l′ ). Because

the second derivatives are constant over t, the third and higher derivatives are zeros. Let
t̃l = (t1, . . . , tdφ)> with tj ≡ 1 for all j 6= l. Then, we have that

d∑

l=1

V (1)[fl] =
d∑

l=1

∫

[0,1]
|(Ŵl −W

∗
l )>(Ŵ −W ∗)t̃l|dtl

≤
d∑

l=1

‖(Ŵl −W
∗
l )>(Ŵ −W ∗)‖1

∫

[0,1]
‖t̃l‖∞dtl.

=
d∑

l=1

‖(Ŵl −W
∗
l )>(Ŵ −W ∗)‖1,

and

∑

1≤l<l′≤d

V (2)[fll′ ] ≤
∑

1≤l<l′≤d

|(Ŵl −W
∗
l )>(Ŵl′ −W

∗
l′ )|.

Since higher derivatives exist and are zeros, from Proposition 1, V (k)[fj1...jk ] = 0 for k =
3, . . . , d. By the definition of V [f ], we obtain the desired bound for V [f ], and we have
V [f ] <∞ if ‖Ŵ −W ∗‖ <∞ (where there is no need to specify the particular matrix norm
because of the equivalence of the norm).

B.7 Proof of Theorem 3

Proof. Let Wl′l be the (l′, l)-th entry of the matrix W . Let LŷA(Sm)(s) = 1
2‖Ŵφ(x) − y‖22

(Z = X ×Y). Let T (s) = (φ(x), y) and f(t, y) = 1
2‖Ŵ t−y‖22 . Then, `(s) = (f ◦T )(s), and

(T , f) ∈ F [LŷA(Sm)] in Theorem 1 if V [f ] <∞. Therefore, by Theorem 1, if V [f ] <∞,

Es

[
1
2
‖Ŵφ(x)− y‖22

]

− ÊSm

[
1
2
‖Ŵφ(x)− y‖22

]

≤ V [f ]D∗[T∗µs, T (Sm)].

To upper bound V [f ] and to show V [f ] < ∞, we invoke Proposition 1 as follows. For
the first derivatives, we have that ∂f

∂tl
= Ŵ>l (Ŵ t−y) and ∂f

∂yl
= −(Ŵ t−y)l. For the second

derivatives, we have that ∂2f
∂tl∂tl′

= Ŵ>l Ŵl′ ,

∂2f

∂yl∂yl′
=

{
1 if l = l′

0 if l 6= l,
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and ∂2f
∂tl∂yl′

= −Ŵl′l. Because the second derivatives are constant in t and y, the third and

higher derivatives are zeros. Then, because | ∂f∂tl | ≤M‖Ŵl‖1 and | ∂f∂yl | ≤M , with l = j1,

dφ∑

j1=1

V (1)[fj1 ] ≤M
dφ∑

l=1

‖Ŵl‖1,

and
dφ+dy∑

j1=dφ+1

V (1)[fj1 ] ≤ dyM.

Furthermore, for j1, j2 ∈ {1, . . . , dφ}, with l = j1 and l′ = j2,

V (2)[fj1j2 ] ≤ |Ŵ>l Ŵl′ |.

For j1 ∈ {1, . . . , dφ} and j2 ∈ {dφ + 1, . . . , dφ + dy}, with l = j1 and l′ = j2 − dφ,

V (2)[fj1j2 ] ≤ |Ŵl′l|,

and for j1, j2 ∈ {dφ + 1, . . . , dφ + dy},

V (2)[fj1j2 ] ≤

{
1 if j1 = j2

0 otherwise.

Thus,

∑

1≤j1<j2≤dφ+dy

V (2)[fj1j2 ] =
∑

1≤l<l′≤dφ

|Ŵ>l Ŵl′ |+
dφ∑

l=1

dy∑

l′=1

|Ŵl′l|

=
∑

1≤l<l′≤dφ

|Ŵ>l Ŵl′ |+
dφ∑

l=1

‖Ŵl‖1.

Therefore,

V [f ] =
dφ+dy∑

k=1

∑

1≤j1<···<jk≤dφ+dy

V (k)[fj1...jk ]

=
2∑

k=1

∑

1≤j1<···<jk≤dφ+dy

V (k)[fj1...jk ]

≤ (M + 1)
dφ∑

l=1

‖Ŵl‖1 +
∑

1≤l<l′≤dφ

|Ŵ>l Ŵl′ |+ dyM.

Here, we have V [f ] < ∞ because ‖Ŵ‖ < ∞ and M < ∞ (and the equivalence of the
norm).
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