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Abstract—Detailed information about the paths that data take
through a system is invaluable for understanding sources and
behaviors of complex exfiltration malware. We present a new
system, ClearScope, that tracks, at the level of individual bytes,
the complete paths that data follow through Android systems.
These paths include the original source where data entered the
device (such as sensors or network connections), files in which the
data was temporarily stored, applications that the data traversed
during its time in the device, and sinks through which the data
left the device.

The ClearScope system design enables this unprecedented level
of provenance tracking detail by 1) structuring the provenance
representation as references, via provenance tags, to provenance
events that record the movement of data between system com-
ponents and into or out of the device and 2) adopting a split
design in which provenance events are streamed to a remote
server for storage, with only the minimal information required
to generate the tagged stream of events retained on the device.
ClearScope also includes compiler optimizations that enable
efficient provenance tracking within applications by eliminating
unnecessary provenance tracking computations and adopting and
efficient aggregate provenance representation for arrays when all
array elements have the same provenance.

Experience using ClearScope to analyze the notorious Adups
FOTA malware highlights the significant benefits that this level of
comprehensive detail can bring. Performance experiments with
the Caffeine Mark benchmarks show that the overall ClearScope
provenance tracking overhead on this benchmark suite is 14%.

I. INTRODUCTION

Understanding the flow of information through a device
can be critical for finding and understanding information
and privacy leaks. A standard approach is to instrument the
software running on the device to tag data with information
about its source [1], [2], [3]. The information can then be
propagated through the device and read at specified points to
enforce privacy policies.

We present a new system, ClearScope, for precise and
comprehensive provenance tracking of information that flows
through Android devices. In contrast to previous systems,
ClearScope tracks the complete path that data takes through
the device, from its initial entry into the device through to its
exit point, including applications, files, binders, and pipes that
the data traverses along this path. ClearScope can also track up

to 232 combinations of information sources and intermediate
information traversal points. Previous systems, in contrast,
can track only a small fixed number of information sources
(typically between 1 to 32 sources). And the information that
ClearScope delivers has unprecedented precision, including
the time of data traversal events, the precise location in
the application where data traversal events take place, and
the initial source or sources of relevant data at the level of
individual bytes.

ClearScope includes several implementation techniques that
enable this level of information to be productively collected
from a running Android device. First, its system architecture
includes a remote server that maintains the majority of the
detailed information. This system design effectively partitions
the maintained provenance information between the device and
the server, maintaining the majority of the detailed information
on the server and only the minimal amount of information
required for efficient operation on the device. With this design,
the device streams collected provenance information to the
server as it executes. The device itself maintains only the tables
that it needs to generate the stream of provenance events.
The server retains the full provenance tracking information,
including all information required to create a provenance web
that captures the movement of data through the device.

ClearScope also includes several program optimizations.
These include optimizations that maintain a single provenance
tag for an array of values if all values in the array have
the same provenance (without these optimizations the device
does not even boot) and optimizations that remove prove-
nance propagation calculations for values that do not escape
the application. Together, these optimizations can reduce the
provenance tracking overhead from a factor of two or more to
14% (as measured in the standard Caffeine Mark benchmark
set).

We have used our implemented ClearScope system to
analyze the notorious Adups FOTA malware [4] shipped with
over 700 million Android devices. This malware implements
a persistent, hidden information exfiltration algorithm that
exfiltrates SMS messages, histories, call logs, and contacts
to an external Chinese web site, with both 24 and 72 hour



exflitration cycles. Understanding this malware took Kryp-
towire months of analysis effort [5]. With ClearScope, we
were able to analyze the exact flow, pinpoint the source of the
information leak, and characterize the behavior of the malware
with several hours examining the provenance logs.

This paper makes the following contributions:

• Provenance Tracking System: It presents ClearScope, a
new provenance tracking system for Android devices. Un-
like previous systems, ClearScope records the complete
path that data takes as it traverses the system, including
data entry and exit points, and application, file, pipe,
binder, and socket traversals. The recorded provenance
information includes detail such as times when prove-
nance actions occur and provenance information that the
level of individual bytes of data.

• Design: ClearScope collects an unprecedented amount of
information about the flow of data through the device. It
is infeasible to maintain this information only the device
itself — the amount of information would exceed the
storage capacity of typicaly Android devices. ClearScope
therefore adopts a new design that streams information
off to a remote server, maintaining only the information
required to efficiently generate the stream locally. This
novel split design is one of the key prerequisites to
the effective collection and maintenance of this level of
provenance information.

• Optimizations: ClearScope implements several opti-
mizations that enable it to operate with acceptably low
overhead (14% on Caffeine Mark benchmarks). These
optimizations include using a single provenance tag to
represent the provenance for all array elements when
the array elements all have the same provenance and
eliminating provenance calculations for provenance that
does not escape the application.

• Results: We have used our implemented ClearScope
system to analyze the Adups FOTA malware as well as
35 top Android applications from the Google Play Store.
These results highlight the effectiveness of ClearScope in
collecting detailed and comprehensive provenance infor-
mation for these applications.

Accurate provenance information is critical for understand-
ing device behavior and how information flows through the
device. This information can be particularly critical for un-
derstanding persistent and stealthy information exfiltration
malware. In comparison with previous taint tracking systems,
ClearScope provides comprehensive provenance tracking that
it unprecedented in the quality and detail of the information
that it can provide.

II. IMPLEMENTATION

We next present the ClearScope implementation, including
the representation of provenance throughout the system, when
provenance events are generated, the overall system design,
and the different ClearScope optimizations.

A. Provenance Events

ClearScope instruments the Android system and the DEX
executables to emit provenance events at program points where
data enters or exits the device, is stored or retrieved from files
on the device, or enters or exits Android applications. These
provenance events are then streamed off to a remote server,
which maintains the streamed provenance information. Each
event has the following fields:

• Flow: Tells whether the event is a source event (when
data enters an application), a sink event (when infor-
mation leaves an application), or other event. Examples
of other events include file events (such as file creation,
deletion, or open), binder events (such as open or close),
and pipe events (such as open or close).

• Event Type: Information about the type of the event.
Many events are triggered by system calls; this field
typically records the system call that triggered the event.

• Application Information: The application id, thread id,
and program point (summarized as debugging informa-
tion that identifies the specific point in the program where
the event occurred) for the event.

• Time: The time when the event occurred.
• Event Data: Provenance data for the event. This data

typically includes the provenance tags for each byte
of transferred data (run-length encoded for events that
transfer multiple bytes). It can also optionally include all
of the transferred data.

B. Provenance Tags

ClearScope maintains a 32 bit provenance tag for every byte
of primitive data (characters, integers, floating point numbers,
booleans, etc.) accessed by Android applications, stored in the
local file system, or transferred between Android applications.
For data in Android applications, these tags are stored in
shadow fields that ClearScope adds to the Java data structures
for this purpose. For data stored in file systems, each file
has a shadow file that stores this provenance information.
For data between Android applications, we have modified
the communication mechanism (such as Binder) to include
additional metadata that carries these provenance tags.

Each 32 bit tag indexes data structures that maintain de-
tailed provenance information about the tagged data. Concep-
tually, these data structures maintain information about the
last provenance event for the data, with the data structures
linked together to enable the reconstruction of the complete
provenance web of events for each byte of primitive data in
the system. This provenance web captures the complete path
through the device for that byte. We next detail the information
that the provenance tags index.
Provenance Sets: Some values are derived from multiple
pieces of data. For example, a value may be computed by
adding values read from a file to values read from the GPS
on the device. Provenance sets record the sets of provenance
tags that capture this value derivation information.
Previous Provenance Tag: This tag links provenance data
structures together to enable the server to reconstruct the



complete provenance web for each byte of information. The
nodes in this web are the provenance events that record the
movement and computation of data through the system. The
edges record relationships between these events. For example,
if an application reads data from a file, the provenance tags
for the data inside the application will index a data structure
that stores information about the corresponding file read event.
The previous provenance tag in this data structure will index
a data structure that stores information about the file write
event that wrote the data into the file. The previous provenance
tag for this file write data structure will, in turn, index a
data structure that stores the provenance information for the
provenance event that injected the data into the application that
wrote the file. In this way the previous provenance tags enable
the reconstruction of the complete provenance provenance web
that captures the detailed flow of information through the
device.
File Provenance: This data structure maintains information
about provenance events on files. There are several cases:

• File Write: Each file has a shadow file that stores the
provenance information for the data in that file. Each
of the tags in this shadow file references provenance
information that summarize the file write events that
stored the data in that file. The recorded information
includes the application that wrote the data and the
statement in the application that wrote the data. The
previous tag enables ClearScope to trace the provenance
of the data back through the application that write the
data.

• File Read: Data that was obtained by reading a file has a
provenance tag that indexes a data structure that records
information about the file read events that generated the
data. The recorded information includes the file, the offset
within the file for the data, and the time of the read.
The previous tag indexes the corresponding file write data
structures that summarize the events that wrote the data
into the file.

• File Open, Close, Delete: The indexed data structure
records information about the file open, close, or delete
operation. This information includes the application and
statement within the application that performed the oper-
ation.

Binder Provenance: Android uses the Binder mechanism [6]
to communicate information between Android software com-
ponents. ClearScope maintains detailed provenance informa-
tion for information communicated via the Binder, including
byte-level provenance for all communicated data. Support-
ing this detailed provenance information required extensive
changes to the Binder implementation to support passing ad-
ditional provenance information through the Binder interface.

Android applications also access Android services via the
Binder. To support these services, we developed 81 provenance
types to identify the specific service that generated each byte
of data. Examples include the camera, the microphone, the
GPS, and a wide variety of sensors. So, for example, if an

application reads data from the camera, the provenance tags
for the camera data inside the application will index data
structures that identify the data as coming from the camera
along with metadata such as the time when the data was read
from the camera.

Binder performs file descriptor translation across binder
calls — a file descriptor in one application can be transferred
via the Binder to another application, which can then use the
translated file descriptor to read the referenced file. ClearScope
augments the Binder implementation to appropriately config-
ure the file descriptors for the shadow file in the application
receiving the information from the Binder.
Network Provenance: Network provenance data structures
record information about provenance events for the network.
The recorded information includes the IP address and port and
the time of the network read or write. It is also optionally
possible to record the transmitted or received information.
ClearScope also records provenance events that open or close
network connections.
Pipe Provenance: Pipe provenance data structures record
information about provenance events involving pipes. The
recorded information includes the two communicating appli-
cations and the time of the communication. ClearScope also
records provenance events that open or close pipes.

C. System Design
By streaming much of the provenance information off the

device to a remote server, ClearScope avoids the need to
accumulate all of the provenance information on the device.
This design decision is critical to enabling ClearScope to
function on Android devices such as smartphones, which
typically have limited storage capacity in comparison with a
remote server.

The decision to structure the provenance system as events
referenced by provenance tags enables this productive division
of responsibility between the device and the server. With this
design, the events, which contain the vast majority of the
information, are stored on the server and available for analysis.
The device stores the shadow files for the file system on the
device and per-application provenance tag mappings that store
just enough data to enable the device to memoize provenance
lookups and generate the stream of provenance events. This
approach enables ClearScope to deliver unprecedented levels
of provenance detail, including the construction of a complete
byte-level provenance web, while still operating on devices
with limited resources.

With this system design, each application has its own
provenance table, stored in application memory in the (mod-
ified) Dalvik runtime. This table enables the application to
perform the required quick memoized provenance tag lookups.
Provenance tags are unique across applications and allocated
to applications in blocks by a tag system service built for this
purpose.

D. Provenance Propagation
We next present an overview of the provenance propagation

algorithm in ClearScope. We start with the basic algorithm,



then discuss several optimizations: aggregate array prove-
nance, loop specialization, method specialization, and dead
provenance elimination.
Basic Provenance Propagation: The basic provenance prop-
agation algorithm instruments the DEX code to appropriately
propagate the provenance across individual computing in-
structions within the Android application. The instrumentation
augments each primitive Java value with a shadow provenance
tag. Provenance information for composite values such as
Java objects are comprised of the union of the provenance
information for the primitive values contained in the object.

The ClearScope compiler instruments the Android DEX
code to include additional instructions that propagate the
provenance tags. For each load or store instruction, the
compiler adds a corresponding load or store that propagates
the provenance tags to the corresponding shadow fields. For
compute instructions (such as instructions that add two values),
the ClearScope compiler inserts a provenance join operation.
This operation takes the provenance tags for the operands of
the compute instruction and returns a new provenance tag for
the join of the two operand provenance tags. This returned
join value typically indexes a provenance set containing a list
of the two operand provenance tags.

The ClearScope instrumentation memoizes calls to the
provenance join operation. If the two operand provenance
tags have been previously joined, the instrumentation simply
returns the provenance tag from the previous join operation.
This memoization improves performance and eliminates the
excessive creation of new operand tags that would otherwise
take place.

The instrumentation also augments procedure calls with
shadow parameters to hold the provenance information for any
primitive parameters. There is a single global object that holds
the provenance information for the return value. Binder and
pipe calls are also augmented to pass provenance information
in addtion to the values. This provenance information is
maintained at the level of the individual bytes of transferred
data.

The DEX instrumentation can be added either offline or
on the device. ClearScope implements a mechanism that
intercepts the call to the DEX compiler, adds the instrumen-
tation, then proceeds on to invoke the DEX compiler on the
instrumented DEX code.
Array Aggregation Optimization: Many arrays store data
with homogeneous provenance information, i.e., all array ele-
ments have the same provenance tags. ClearScope optimizes
for this common case by storing a single provenance tag
for all array elements when these elements have the same
tag. This optimization substantially reduces the ClearScope
memory footprint and makes the difference between a feasible
and infeasible system — without this optimization the device
will not boot.

Because of this optimization, the ClearScope DEX instru-
mentation has to check several cases on each array access (in
the absence of the loop specialization optimization described
below). Each array can be in one of two states: aggregated

(in which there is a single provenance tag for all array
elements) or expanded (in which there is a shadow array that
holds the provenance information, with each element of the
shadow array holding the provenance for the corresponding
array element). Array reads check array the state to determine
whether to fetch the provenance tag from the aggregate tag
or the shadow array. Array writes check the array state along
with the provenance tag for the written value to determine if
the instrumentation should 1) leave the aggregate provenance
tag intact (if the array is in the aggregate state and the written
array element has the same state as the array’s aggregate state),
2) write a shadow array element (if the array is in expanded
state), or 3) expand the array and write a shadow array element
(if the array is in aggregate state and the provenance tag for
the written element does not match the aggregate tag).
Loop Specialization: The loop specialization optimization is
designed to work with the array aggregation optimization. This
optimization adds a loop header to loops that access arrays.
The loop header checks for common optimizable cases, then
jumps to specialized code generated for each such case. The
most common optimizable case occurs when the provenance
can be precomputed in the loop header for all accesses in the
loop. To apply this optimization, the ClearScope compiler:

• Array Extraction: The ClearScope compiler analyzes
the loop body to find all arrays accessed in the body.

• Aggregate Checks: For each extracted array, the
ClearScope compiler checks to see if the array is in
aggregate state. If so, it retrieves the provenance tags for
each array.

• Write Checks: For each array written in the loop, the
ClearScope compiler checks that all of the writes will
write values into the array whose provenance information
matches the aggregate provenance tag.

If the aggregate and write checks succeed, the loop will
not change the provenance information and the ClearScope
compiler generates specialized loop code that completely
omits the provenance tracking code.

The ClearScope compiler also implements more sophisti-
cated checks that, for example, check that the loop writes
every element of an array and that all written elements have
the same provenance. In this case the generated code inserts
a single provenance assignment operation into the header that
sets the provenance tag to the new value and again generates
specialized code that completely omits the provenance tracking
code.
Method Specialization: In some cases, depending on the
calling context, ClearScope can detect that method calls wil
leave the provenance information unchanged. In such cases
ClearScope generates and invokes a specialized version of the
method that omits provenance tracking instrumentation.
Dead Provenance Information Elimination: ClearScope
does not need to maintain provenance information for com-
puted values that do not escape the application in which they
are located. Such values often occur, for example, in con-
ditionals or loop bounds. ClearScope implements a program



analysis that detects such values and eliminates all provenance
instrumentation for these values.

III. PERFORMANCE ANALYSIS

We use the CaffeineMark benchmarks [7] to measure the
performance overhead that ClearScope imposes. We ran all
of the benchmarks on a Samsung Nexus 6 running Android
5. The table below presents the resulting Caffeine Mark
performance scores. We compare the scores without instru-
mentation (Original score) and with instrumentation (Instru-
mented score). The results show that the overhead ranges from
negligible to 42%, with the overall Caffeine Mark score of
approximately 14%.

Original Instrumented
Test Score Score Overhead

Sieve 39076 44332 -13.45%
Loop 58831 55424 5.79%
Logic 81698 92731 -13.50%
String 27504 20245 26.39%
double 28608 16394 42.69%
Method 34240 26139 23.66%
Overall 41434 35426 14.50%

With this overhead, the instrumented Android systems re-
main responsive and the ClearScope overhead is typically not
noticeable for most interactive tasks.

IV. ADUPS FOTA: FORENSIC CASE STUDY

This section discusses our analysis of Adups FOTA, a pre-
installed firmware Android application that, at the time of
discovery, included undocumented gathering and exfiltration
of sensitive information. Ostensibly, the Adups application and
service is a user-behavior monitoring and analytics solution
distributed by Shanghai Adups Technology Company. OEM
device manufactures often install these types of analytics
and data-harvesting services to derive added value from their
devices by accumulating (and analyzing and/or selling) data
on their users. The company claims an installed base of
over 700 million devices as of 2017 [8]. In the US, Adups
software was distributed as pre-installed system applications
on Android devices marketed by BLU and sold at leading
retailers including Amazon.

In November of 2016, the computer security company
Kryptowire released an analysis that claimed that Adups FOTA
harvested and exfiltrated personally-identifiable information
(PII) including device IMEI, SMS message history with mes-
sage bodies, call logs, contact database information, installed
and uninstalled applications, and application execution time
and order [9]. Kryptowire noted that there are two distinct
exfiltration cycles, a 24-hour cycle and a 72-hour cycle, both
of which encrypt PII and send data to servers in China. The
version of the application they analyzed is persistent and
system-privileged as it comes pre-installed on a device. It is
difficult to uninstall, and has the ability to be updated without
user intervention.

Considerable manual analysis was required for Kryptowire’s
report on Adups FOTA, upwards of multiple analyst-months
(based on personal communications with Kryptowire employ-
ees). Firstly, the discovery of the threat was purportedly
due a “happenstance” series of events [10]. Furthermore,
Kryptowire was able to extract the private key for which
data was encrypted and using this key, they were able to
inspect the network traffic of Adups FOTA for values that
signified PII. Without the key, which may have been exposed
due to careless or incorrect cryptography implementation, it
is possible that the analysis of Adups could not have been
performed via analysis of communication at all. Their analysts
also performed manual analysis of decompiled source code
to verify their findings guided by communication analysis, a
difficult and time-consuming process, made more difficult by
byte-code obfuscation.

Kryptowire extracted the APKs for the version of Adups
FOTA which they analyzed and sent the packages to us for
analysis with ClearScope. We instrumented the APKs with
our static instrumentation system, and installed them on a
Nexus 6 device running a stock Android Open Source Project
(AOSP) version 6.0.1 release 74. We had to sign the system
operation application (see below) using the system key prior
to installation. We sporadically used the device for 4 days,
including making calls, sending and receiving SMS messages,
installing / uninstalling apps, and running applications (includ-
ing the stock AOSP browser and email applications). We then
analyzed our provenance event stream from the device.

The version of Adups FOTA analyzed included 2
APKs, identified by their package names: com.adups.fota,
com.adups.fota.sysoper. The former is installed as a normal
3rd-party application with many privileges, its code obfuscated,
and includes 3,580 classes and 25,806 methods. The latter
is installed as the system user (essentially giving it root
privileges), its code obfuscated, and is comprised of 775
classes and 5,326 methods.

In the remainder of this section, we present findings from
our analysis of Adups FOTA. We were able to elicit and verify
all of the behaviors reported by Kryptowire, except we did not
see an update of the application. The salient different is that
our analysis was performed in 4 hours of a single analyst’s
time. Our analysis employed tools that summarize, for each
sink provenance type, the sensitive sources that flow into the
sink. So within minutes our analyst was able to see that,
for example, SMS message data was exfiltrated via network
communication to particular IP addresses. We did not look at
decompiled code, and our sinks report values and tags prior
to encryption.

The four days of data for the Adups FOTA capture com-
prises 27 million provenance events (sources, sinks, non-
provenance events, provenance tag definitions, etc.). In un-
compressed human-readable ASCII form this is approximately
4GB, and includes all primitive values passed to and returned
from sources, sinks, and non-provenance events, and run-
length encoded provenance tags on the argument and return
values.
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Fig. 1. Adups Advanced Persistent Threat Lifecycle.

POST /dm/pushInterface.do HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 483
Host: push5.adups.com
Connection: Keep-Alive
Accept-Encoding: gzip
User-Agent: okhttp/2.7.5

mid=20161230195154YU2238&module=register&appv=V3.3.0&model=AOSP%20on%20Shamu&project=unknownoem_unknownpro
duct_en_other&channel=unknownoem_unknownproduct&product=fota5&imei=990005302945978&imsi=310260517339036&wi
fimac=5c%3A51%3A88%3A48%3A74%3A1d&operator=310260&sn=8901260515773390367&sim=14136298485&sdklevel=22&sdkve
rsion=5.1.1&apn=WIFI&language=en_US&resolution=1440*2392&oem=motorola&buildnumber=aosp_shamu-
userdebug%205.1.1%20LMY48B%20eng.jeikenberry.20161229.134919%20test-keysiso-8859-15, iso-8859-2, iso-8859-
3, iso-8859-4, iso-8859-5, iso-8859-6, iso-8859-7, iso-8859-8, iso-8859-9, jis_x0201, jis_x0212-1990, 
koi8-r, koi8-u, shift_jis, tis-620, us-ascii, utf-16, utf-16be, utf-16le, utf-32, …

24-Hour Exfil Cycle

SSL_write(…)to push5.adups.com/118.193.187.35:443

Fig. 2. Adups 24-hour exfiltration HTTP post.

Figure 1 provides an overview of the life-cycle of what we
interpret as an advanced persistent threat. The light reconnais-
sance takes place on a 24 hour cycle, after which it opens an
outbound connection and sends the retrieved information to the
Adups server. The 72 hour reconnaissance cycle takes place
when the device receives the command and control message
from the Adups server. The ensuing heavy reconnaissance
retrieves SMS messages and other data, packages the data,
then sends it off to the Adups server. We next discuss this
process in more detail.

A. 24-Hour Exfiltration Cycle

Every 24 hours, Adups sends a message to a server that
includes PII. The message includes the device IMEI and
IMSI (both of which by are considered sensitive), and device
hardware and software information. In Figure 2, we show an
annotated example of the HTTPS post for this exfiltration
cycle. Distinct colors of the text denote distinct tags on the
character of the post (black characters are program constant
data). This data appears in a ssl_write sink call that is
included in Google’s Conscrypt secure socket library, and the
data is sent to push.adups.com at IP 118.193.187.35 port 443.
Here we can see that ClearScopeis providing character-level
provenance that associates with this simple encoding scheme,
i.e., fields of the HTTP post.

In Figure 3 we provide summarized provenance derivations
for three of the tags used in the post of Figure 2. The

24-Hour Exfil Cycle
990005302945978

com.android.internal.telephony.ITelephony.getDeviceId()

8901260515773390367

com.android.internal.telephony.IPhoneSubInfo.
getIccSerialNumberForSubscriber(int subId)

iso-8859-15, iso-8859-2

src NETWORK remote: fota5.adups.com/118.193.254.13:443 
NativeCrypto.SSL_read(…)

Fig. 3. Three provenance examples from Adups 24-hour exfiltration.72-Hour Exfil Cycle

211@1872300 4@1872334 2230@1872300 4@1872376 255@1872300 
4@1872414 163@1872300 4@1872438 845@1872300 4@1873047 
65@1872300 4@1873052 1124@1872300 4@1873057 8@1872300 
16@1873059 4@1873060 65@1873059 4@1873061 56@1873059 
4@1873062 64@1873059 4@1873063 58@1873059 4@1873064 
62@1873059 4@1873065 61@1873059 4@1873066 67@1873059

SSL_write(…)to bigdata.adups.com/118.193.254.27:443

4@1872414

Fig. 4. Beginning of run-length encoded provenance tag stream for Adups’s
72-hour exfiltration communication. Communication is compressed prior to
exfiltration, so ASCII representation of data is not helpful.

figure presents that the provenance on the IMEI data repre-
sents data returned from the com.android.internal.
telephony.ITelephony.getDeviceId() RPC call
on the telephony service (via Binder). Also, we can see the call
that retrieves the IMSI. Finally, we show that data that looks
like character encoding schemes was originally retrieved from
an Adups server, and read via the Conscrypt library.

B. 72 Hour Exfiltration Cycle

We next discuss the 72 hour exfiltration cycle. This cycle
starts with the reception of a command and control packet
from bigdata.adups.com/118.193.254.27:443. When the device
receives this packet it reads the SMS and contacts databases
and writes the information to analytics.db. It then reads
the data back from analytics.db and writes the data to
intermediate JSON files. It zips the files, deletes them, the
sends the zipped files to bigdata.addups.com:443.

Figure 4 presents the start of the run-length encoded prove-
nance tag stream for the 72 hour exflitration cycle. We capture
the data before SSL encryption and that we maintain accurate
provenance information even through the compression algo-
rithm code.



4@1872414

src DB /data/data/com.adups.fota/databases/analytics.db
CursorWindow.getString()

FILE /data/data/com.adups.fota/source/source.zip

FILE /data/data/com.adups.fota/zip/DcTellMessage.json

src DB /data/data/com.adups.fota/databases/analytics.db
executeSQLForCursor(): ”SELECT DISTINCT * FROM tel”

sink DB /data/data/com.adups.fota/databases/analytics.db
executeSQLForCursor(): ”insert into tel (one, two, three) values (?,?,?)”

v2: "8900:0:1:1:1483145769190:0"
md: 4@1034870 5@0 1@1034870 1@0 13@1034870 2@0 

src CONTENT_PROVIDER 
/data/data/com.android.providers.telephony/databases/mmssms.db

Fig. 5. Example of one provenance tag derivation from 72-hour exfiltration
cycle.

src CONTENT_PROVIDER 
/data/data/com.android.providers.telephony/databases/mmssms.db

src CONTENT_PROVIDER 
/data/user/0/com.android.providers.contacts/databases/contacts2.db

src INSTALLED_PACKAGES
android.content.pm.IPackageManager.getInstalledApplications(…)

src BINDER
sink SYSTEM_SERVICE (APP START)

src FILE /system/priv-app/TelephonyProvider/TelephonyProvider.apk
Posix.read(…)

… (so much more!)

SSL_write(…)to bigdata.adups.com/118.193.254.27:443

-3 days

Time 0

-20 ms

-20 ms

-30 s

-1 day

Fig. 6. Timeline of reads of sensitive information relative to network send
operation for 72-hour exfiltration.

Figure 5 presents the provenance web for 4 bytes of trans-
mitted data with provenance tag 18723414. This web traces
the data back starting from the source.zip file containing
the zipped JSON data. The zipped JSON data came from the
DcTellMessage.json file, then from the analytics.
db via a call to CursorWindow.getString() and
executeSQLForCursor(). The provenance web eventu-
ally traces the transmitted data back to the SMS database con-
taining the SMS data (red text in Figure 5), clearly indicating
the exflitration of that data.

Figure 6 presents information that shows the relative timing
of various events involved in the exfiltration. This timing
information shows that these events are spread over several
days up to the actual exfiltration. All of these events are
opportunities to observe the impending exfiltration.

C. Discussion

As the Adups case study indicates, the detailed provenance
information can provide insight into the flow of data through
the device that can immediately highlight the operation of

the information exfiltration malware. The generated prove-
nance web can immediately surfaces the sequence of events
that caused the exfiltration, in this case reducing the time
required to understand the exfiltration from months to hours.
ClearScope makes the information immediately apparent and
can deliver detailed information available via no other mech-
anism or system.

V. RELATED WORK

There have been numerous taint systems that have tracked
from one to thirty-two binary properties by instrumenting
binaries [11], [12], [13], [14], virtual machines [1], [2], and
source/byte code [3], [15], [16], [17], [18], [19].

Unlike these systems, ClearScope tracks detailed prove-
nance information rather than a short list of binary properties.
Significant information included in ClearScope’s provenance
information that cannot be provided by such systems in-
cludes: detailed program point information (class function,
line number); date and time the data enters/exits the program;
pathname for data read from a file; and previous processes that
have manipulated the data. The split device/server ClearScope
design, which is unique in this field, is critical to enabling this
level of provenance tracking detail.

A. Android

TaintDroid [1] tracks 32 bits of taint information with a
modified Android VM at the level of primitives, strings and
arrays (conflating the taint over array elements). TaintDroid is
designed to track information leaks specifically and sets the
32 bits to track different information sources. For efficiency,
TaintDroid encodes each information source in a different bit
and can therefore track at most 32 information sources.

TaintART [2] applies an approach similar to TaintDroid
but applies it to newer versions of Android that use the
Android RunTime (ART) environment. ART uses ahead-of-
time compilation for Android applications. TaintART modifies
the ART compiler to track taint. Like TaintDroid it conflates
string and array elements for efficiency.

Unlike TaintDroid and TaintART, ClearScope tracks de-
tailed provenance information for each value in the application.
Instead of tracking only 32 information sources, ClearScope
uses its 32 bit tag to index provenance information data struc-
tures, enabling it to support many more information sources
with much more precision. And the ClearScope design, which
stores the majority of the provenance information on a remote
server rather than locally, enables ClearScope to maintain
detailed information on the complete path that each byte of
data took through the device. And ClearScope is precise for
all primitive values, including characters within strings and
elements within arrays.

Aurasium [20] applies a security policy to APKs. These
policies monitor for possible security and privacy violations
such as attempts to retrieve a user’s sensitive information, send
SMS covertly to premium numbers, or access malicious IP
addresses. Aurasium does not track provenance and cannot
apply policies that depend on the source of the data.



Unlike Aurasium, ClearScope tracks detailed provenance
information for each value in the application allowing it to
support more fine grained policies (such as data written from
a particular file should never be sent to the network).

Dagger [21] tracks application behavior at runtime includ-
ing system calls, Android binder transations and application
process details. It builds a data provenance graph of the
interactions between the application and the phone system.
It is intended to be able to dynamically identify patterns that
indicate malware in the application. Dagger does not track data
within the program and is thus unable to identify the source
of application data at system calls.

Unlike Dagger, ClearScope tracks precise provenance in-
formation for each value in the application. This allows
ClearScope to provide specific provenance information for
application data in system calls. ClearScope also provides the
information required to track the complete path of each byte
of data through the system, including the precise source and
path of each byte of data that appears at system calls.

B. Non-Android systems

Ninja [22] is a malware analysis framework that uses
ARM hardware debug features to enhance its transparency to
malware. It is not intended to be deployed on user devices but
can be used to analyze captured malware. It does not track taint
or provenance information and is instead focused on system
calls, call stacks and other debugging features.

Unlike Ninja, ClearScope can track detailed provenance
information on user devices. Its performance is sufficient to
allow it to be used at runtime. Runtime analysis provides
complete transparency since malware that hides in the presence
of analysis presents no danger.

[23] instruments programs using LLVM to track programs
at the level of function calls. It can build a graph that relates
callers to callees and capture the arguments of the function
calls. Users can specify the function calls of interest. It does
not track data so it is unable to identify the source of data at
system calls.

Unlike [23], ClearScope tracks precise provenance informa-
tion for each value in the application allowing it to provide
much more detailed and pertinent information. It is focused
on data flow rather than on function calls.

VI. CONCLUSION

Detailed provenance tracking provides information that can
be critical to the rapid understanding of information and
privacy leaks. To date, however, the overhead and complexity
of obtaining such information has hampered the development
of systems that can deliver this information. ClearScope, with
its combination of split device/server design and effective
compiler optimizations, enables, for the first time, the ability
to collect the information required to build a complete, byte-
level provenance web that tracks the complete path each byte
follows through the system. Experience using ClearScope on
the Adups FOTA malware highlights the benefits that this
information can deliver in this context; performance results

highlight the performance benefits that its compiler optimiza-
tions can deliver.
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