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Abstract—Modeling frameworks such as Probabilistic /0 about nondeterministic algorithms apply automatically to

Automata (PIOA) and Markov Decision Processes permit both  an entire family of algorithms, obtained by resolving the
probabilistic and nondeterministic choices. In order to use such nondeterministic choices in particular ways.

frameworks to express claims about probabilities of events, one e .
needs mechanisms for resolving the nondeterministic choices. N order to formulate and prove probabilistic properties
For PIOAs, nondeterministic choices have traditionally been Of distributed algorithms, one needs mechanisms for re-
resolved by schedulers that have perfect information about the solving the nondeterministic choices. In the randomized
past execution. However, such schedulers are too powerful for djstributed setting, the most common mechanismpsrect-
fnefg?r:]naﬁgtn"Tﬁjétsggrr:}gtsirggspg’g%ﬁgggﬂ?romcm analysis, where information event scheduler, which has access to local state
Here, we propose a new, less powerful nondeterminism- and h_|story of all system comp_o_ngnts and h_as unllrr_ute_d com-
resolution mechanism for PIOAs, consisting oftasksand local ~ putation power. Thus, probabilistic properties of distributed
schedulers Tasks are equivalence classes of system actionsalgorithms are typically asserted with respect to worst-case,
that are scheduled by oblivious, global task sequences. Local gdversarial schedulers who can choose the next event based

schedulers resolve nondeterminism within system components,
based on local information only. The resulting task-PIOA on complete knowledge of the past (e.g., [PSLOQ]).

framework yields simple notions of external behavior and ~ One would expect that a similar modeling paradigm,
implementation, and supports simple compositionality results. including both probabilistic and nondeterministic choices,

We also define a new kind of simulation relation, and show would be similarly useful for modelingryptographic pro-
gott%n?%fgfu?hdefgsﬁrg\(gg flgﬂgwgn(ta&?%u\t/l\iﬁinlguﬁgeﬁget?r? tocols These are special kinds of distributed algorithms,
g s designed to protect sensitive data when it is transmitted
verifying an Oblivious Transfer protocol over unreliable channels. Their correctness typically relies on
I. INTRODUCTION computational assumptions, which say tha_t cert_ain problems
o ] cannot be solved by an adversarial entity with bounded
The Probabilistic I/0 Automata (PIOAJnodeling frame-  computation resources [Gol01]. However, a major problem
work [Seg95], [SL95] is a simple combination of iy this extension is that the perfect-information scheduler
/O Automata [LT89] and Markov Decision Processespechanism used for distributed algorithms is too powerful
(MDP) [Put94]. As demonstrated in [LSS94], [SV99] for yse in the cryptographic setting. A scheduler that could
[PSLOO], PIOAs are well suited for modeling and analyzingee aj| information about the past would, in particular, see
distributed algorithms that use randomness as a cOmput@gcret” information hidden in the states of non-corrupted
tional primitive. In this setting, distributed processes Usgrotocol participants, and be able to “divulge” this informa-
random choices to break symmetry, in solving problemgon to corrupted participants, e.g., by encoding it in the order
such as choice coordination [Rab82] and consensus [BO83].\which it schedules events.
[AH90]. Each process is modeled as an automaton with |, this paper, we presertask-PIOAs an adaptation of

random transitions, and an entire protocol is modeled g§0ag; that has new, less powerful mechanisms for resolving

the parallel composition of process automata and automajgndeterminism. Task-PIOAs are suitable for modeling and

representing communication channels. .. . analyzing cryptographic protocols; they may also be useful
This modeling paradigm combines nondeterministic ang, gther kinds of distributed systems in which the perfect

probabilistic choices in a natural way. Nondeterminism i tormation assumption is unrealistically strong.

used here for modeling uncertainties in the timing of events

in highly unpredictable distributed environments. It is alsdfask-PIOAs: A task-PIOAis simply a PIOA augmented

used for modeling distributed algorithms at high levelsyith a partition of non-input actions into equivalence classes

of abstraction, leaving many details unspecified. This igalledtasks A task is typically a set of related actions, for

turn facilitates algorithm verification, because results provegkample, all the actions of a cryptographic protocol that

send a round 1 message. Tasks are units of scheduling;
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We also define a new type aimulation relation which  obtain partial-information schedules. The latter is essen-
incorporates tasks, and prove that it is sound for proually within the framework ofpartially observable MDPs
ing implementation relationships between task-PIOAs. Thi®OMDPSs) originally studied in the context of reinforcement
new relation differs from simulation relations studied earfearning [KLC98]. All of these accounts neglect partial
lier [SL95], [LSVO03], in that it relates probability measuresinformation aspects of (parameterized) actions, therefore are
rather than states. In many cases, including our work amot suitable in a cryptographic setting. A version of local
cryptographic protocols (see below), tasks alone suffice fachedulers was introduced in [CLSV].
resolving nondeterminism. However, for extra expressive Our general approach to cryptographic protocol verifica-
power, we define a second mechanidogal schedulers tion was directly inspired by the Interactive Turing Machine
which can be used to resolve nondeterminism within syste(iTM) framework of [Can01]. There, participants in a proto-
components, based on local information only. This mechaol are modeled as ITMs and messages as bit strings written
nism is based on earlier work in [CLSV]. on input and output tapes. ITMs are purely probabilistic,
and scheduling nondeterminism is resolved using predefined
ules. In principle, this framework could be used to analyze

ryptographic protocols rigorously, including computational

X . , complexity issues. However, complete analysis of protocols
quired defining extra structure for task-PIOAs, in order tq, terms of Turing machines is impractical, because it

express issues involving computational limitations. Thus, oives too many low-level machine details. Indeed, in

we defined notions such @ne-bounded task-PIOAsind the computational cryptography community, protocols are

approximate implementation with respect to time—boundeg,pica"y described using an informal high-level language,

environments Details are beyond the scope of this paper,n nroof sketches are given in terms of the informal protocol
but we outline our approach in Section IV.

descriptions. We aim to provide a framework in which proofs

Adversarial scheduling: The standard scheduling mech-in the ITM style can be carried out formally, at a high
anism in the cryptographic community is adversarial level of ab_st(actlon. Also, we aim to exploit the benefits of
scheduler namely, a resource-bounded algorithmic entmnondetermlmsm to a greater extent than the ITM approach.
that determines the next move adaptively, based on its Several other researchers have added features for com-
own view of the computation so far. This is weaker thaPutational cryptographic analysis to conventional abstract
the perfect-information scheduleused for distributed al- concurrency modeling frameworks such as process algebras
gorithms, which have access to local state and history @nd restricted forms of PIOAs [LMMS98], [PW00], [PWO01],
all components and have unlimited computation power. OUMMSO03]. These approaches again use less nondetermin-
task schedule sequences are essentidilivious schedulers iSm than we do: individual system components are purely
which fix the entire schedule of tasks, nondeterministicallyprobabilistic, and scheduling is determined by predefined
in advance. This formulation does not directly capture theles. For example, in [LMMS98], a uniform distribution
adaptivity of adversarial schedulers. is imposed on the set of possible reductions for each term.

Our solution is to separate scheduling concerns into tw [MMSO03], internal reductions are prioritized over external
parts. We model the adaptive adversarial scheduler as a sggmmunications and several independence properties are
tem component, for example, a message delivery service trgsumed. In [PWO01], scheduling is based on a distributed
can eavesdrop on the communications and control the ordgheme wherein each system component schedules the next
of message delivery. Such a system component has acces81§: based on its own local information. None of the prior
partial information about the execution: it sees informatioN/ork separates high-level and low-level nondeterminism
that other components communicate to it during executiof€solution, as we do.

but not “secret information” that these components hidez,aqmap: Section Il defines task-PIOAs, task schedules,

On the other hand, basic scheduling choices are .re_scl)lv§ mposition, and implementation, and presents a composi-

by a task schedule sequence, chosen nondeterministicaliy, ity result. Section Il presents our simulation relation

in advance. These tasks are equivalence classes of actlogm its soundness theorem. Section IV summarizes our OT
ey '

Cryptographic protocols: In [CCKT06b], we applied the
task-PIOA framework to analyze an Oblivious Transfer (OT
protocol of Goldreich, et al. [GMW87]. That analysis re-

independent of actual choices that are determined during Bg,,c| case study. Section V discusses local schedulers, and
execution. We believe this separation is conceptually meagg | ding discussions follow in Section VI. Further details
ingful: The high-level adversarial scheduler is respon&blggpear in [CCK 06a].

for choices that are essential in security analysis, such a
the ordering of message deliveries. The low-level schedule Il. TASK-PIOAS
of tasks resolves inessential choices. For example, in tIAe: Basic PIOAS

OT protocol, both the transmitter and receiver make random . . . .
We assume our reader is comfortable with basic notions of

choices, but it is inconsequential which does so first. probability theory, such ag-fields and (discrete) probability
Related work: The literature contains numerous modelsneasures. A summary is provided in [CEB6a].

that combine nondeterministic and probabilistic choices (see A probabilistic I/O automaton (PIOA)P is a tuple
[SdV04] for a survey). However, few tackle the issue ofQ,q, 1,0, H, D) where: (i) Q is a countable set dftates
partial-information scheduling, as we do. Exceptions inwith start stateqg € @Q; (i) I, O and H are countable
clude [CHO5], which models local-oblivious scheduling,and pairwise disjoint sets of actions, referred toimgsut,
and [dA99], which uses partitions on the state space tutput and internal actionsrespectively; and (ii)D C



(@ x (IUOU H) x Disc(Q)) is atransition relation where
Disc(Q) is the set of discrete probability measures@nAn
actiona is enabledin a stateg if (¢, a, ) € D for someg.
The setA := T UO U H is called theaction alphabetof P.
If I =0, thenP is closed The set ofexternalactions ofP
is I U O and the set ofocally controlledactions isO U H.
We assume thaP satisfies:

« Input enabling:For every state; € ) and input action
a € I, ais enabled ing.

« Transition determinismfor everyq € Q anda € A,
there is at most ong € Disc(Q) such that(q, a, 1) € D.
If there is exactly one such, it is denoted by, ,, and
we write trang , for the transition(q, a, fi4.q)-

An execution fragmenaf P is a finite or infinite sequence

a = qoai g1 as ... of alternating states and actions, such tha: Task-PIOAs . .
(i) if o is finite, then it ends with a state; and (ii) for every We now augment the PIOA framework with task parti-
non-finali, there is a transitiofy;, a; 1, 1) € D With ;41 € tions, our main mechanism fqr resol_vlng nondeterminism.
supp(1), wheresupp(y) denotes the support gf. We write Definition 2.2: A task-PI_OAls a pair7 = (7_3, R) Wh_ere
fstate(r) for qo, and, if o is finite, we writelstate(a) for () P = (Q,4,1,0,H, D) is a PIOA (satisfying transition
its last state. We usErags(P) (resp.,Frags*(P)) to denote determinism) and (||)R is an equwalence. relation on the
the set of all (resp., all finite) execution fragmentsRfAn locally-controlled actions@ U H) The eqw_valence cla$ses
executionof P is an execution fragment beginning from thef R are calledtasks A task T" is enabledin a stateq if

start state]. Execs(P) (resp.,Execs*(P)) denotes the set of S0Mea € T' is enabled iny. _ _
all (resp., finite) executions gP. Unless otherwise stated, technical notions for task-PIOAs

Thetrace of an execution fragment, written trace(a), is &€ inherited from those for PIOAs. Exceptions include the
the restriction ofx to the set of exter’nal actions . 'Ilhe notions of probabilistic executions and trace distributions.

symbol < denotes the prefix relation on sequences, whichO" Now. we impose the following action-determinism as-

applies in particular to execution fragments and traces. Sumption, which implies that tasks alone are enough to
Nondeterministic choices i are resolved using sched- resolve all nondeterministic choices. We will remove this as-

uler, which is a functiono : Frags*(P) — SubDisc(D) sumption when we introduce local schedulers, in Section V.

such that(g,a, n) € supp(o(a)) implies ¢ = Istate(a). » Action determinismFor every statey €  and taskl’
Here,SubDisc(D) denotes the set of discrete sub-probability %, t most one action € 7' is enabled ing.

measures of)—that is, the measure of the entire spdeés A task scheduldor 7 is any finite or infinite sequence
required to be< 1. Thus,o decides (probabilistically) which p = Ti7>... of tasks in R. A task schedule isstatic

transition (if any) to take after each finite execution fragmerfor oblivious, in the sense that it does not depend on
. dynamic information generated during execution. Under the

A schedulers and a finite execution fragment generate —action-determinism assumption, a task schedule can be used

a measure,, , on theo-field 7 generated by cones of exe-t0 generate a unique probabilistic execution, and hence, a
cution fragments, where each cafig is the set of execution unique trace distribution, of the underlying PIOR. One
fragments that have’ as a prefix. The measure of a conecan do this by repeatedly scheduling tasks, each of which
€0,a(Co), is defined recursively, as: (i), if &’ £ o and determines at most one transition’8f Formally, we define

a £ o; (i) 1, if o < a; and (jii) €50 (Car ) fio (o (a,q), if @D operation that “applies” a task schedqle to a tas_k—'PI.OA:
o' is of the forma” a ¢ and o < o'’ Here, i, (o (a, q) is Definition 2.3: Let7 = (P, R) be an actlon-(jetermlnlstlc
defined to bes(a”)(tranisate(a),a) Histate(a''),a(¢), that is, ta_sk-PIOA* where P (Q,q,1,0,H,D). Given JS

the probability thats(a”) chooses a transition labeled byDisc(Frags™(P)) and a task schedulg, apply(y, p) is the

a and that the new state is Standard measure theoreticProbability measure ofirags(P) defined recursively by:
arguments ensure that , is well-defined. We call the state 1) apply(u, A) := p. (A denotes the empty sequence.)
fstate(a) thefirst stateof ¢, , and denote it bystate(e, ). 2) ForT € R, apply(u,T) is defined as follows. For every

distribution of ¢, denotedtdist(e¢), to be the image measure
of e undertrace. We extend thetdist() notation to arbi-
trary measures on execution fragments 72f We denote
by tdists(P) the set of trace distributions of (probabilistic
executions of)P.

Definition 2.1: Two PIOAs P; = (Q;, G, 1;, O;, H;, D),
i € {1,2}, are said to beompatibleif A,NH; = 0;N0; =
() whenever: # j. In that case, we define theiomposition
7)1”7)2 to be the P|OA(Q1 X QQ, ((jl, 672), (Il UIQ) \ (01 U
03), O1 U0y, Hy U H,, D), whereD is the set of triples
((g1, q2), a, 1 X u2) such that (i) is enabled in some;, and
(i) for every i, if a € A; then(¢;,a,u;) € D;, otherwise
w; = d(g;). This definition can be extended to any finite
number of PIOAs rather than just two.

If a consists of the start state only, we call ¢,, a
probabilistic executiorof P.

Let u be a discrete probability measure o¥engs™(P).
We denote bye, , the measure_  u(a)e, . and we say
thate, , is generated by andu. We call the measure,,
ageneralized probabilistic execution fragmegitP. If every

execution fragment isupp(x) consists of a single state, then

we call e, , a probabilistic execution fragmerdf P.

We note that therace function is a measurable function

a € Frags™(P), apply(u, T) () := p1 + p2, where:
e p1 = p(a)n(q) if a is of the forma’ a ¢, where
a € T and (Istate(a’), a,n) € D; p; = 0 otherwise.
e po = p(a) if T is not enabled ifstate(a); p2 = 0
otherwise.
3) For p of the form p/ T, T € R, apply(u,p)
apply(apply(u, p), T).
4) For p infinite, apply(u, p) lim; o (apply (42, pi)),
wherep; denotes the lengthprefix of p.

from Fp to the o-field generated by cones of traces. Thus, In Case (2) abovep; represents the probability thatis

given a probability measure on Fp, we define thetrace

executed when applying tagk at the end of»’. Because of



transition-determinism and action-determinism, the transitioto the external actions already presenfinOur definition of
(Istate(a’), a,n) is unique, and s@; is well-defined. The implementation is influenced by common notions in the secu-
term po represents the original probability(a), which is rity literature (e.g., [LMMS98], [Can01], [PW01]). Namely,
relevant if T is not enabled after. It is routine to check the implementation must “look like” the specification from
that the limit in Case (4) is well-defined. The other two casethe perspective of every possible environment. The precise
are straightforward. notion of implementation is formulated in terms of inclusion
Next, we show thaspply(u, p) is a generalized probabilis- of sets of trace distributiorfer each environment automaton
tic execution fragment generated lyand a scheduler for An advantage of this style of definition is that it yields simple
P, in the usual sense. Thus, a task schedule for a task-PI@ampositionality results (Theorem 2.9).
is a special case of a scheduler for the underlying PIOA.  Definition 2.8: Let 7; and 7, be comparable action-
Theorem 2.4:Let 7 = (P, R) be an action-deterministic deterministic task-PIOAs, that id; = I, and O; = Os.
task-PIOA. For each measure on Frags*(P) and task We say that7; implementsT;, written 7; <, 7o, if
schedulep, there is scheduler for P such thatapply(u, p)  extbeh(7;)(E) C extbeh(73)(E) for every environmeng for
is the generalized probabilistic execution fragmeyy,. both 7; and 7. In other words, we requiredists(77]|E) C
Any such apply(u, p) is said to be ageneralized prob- tdists(72||£) for every&.
abilistic execution fragmenbf 7. Probabilistic execution ~ The subscriptd in the relation symbok, refers to the
fragmentsand probabilistic executionsare then defined by requirement that every trace distribution tdists(7:(|€)
making the same restrictions as for basic PIOAs. We writélust have an identical match iuists(73||€). For security
tdist(y, p) as shorthand fotdist(apply(u, p)), the trace dis- analysis, we also define another relatign,., ,:, which
tribution obtained by applying task schedylestarting from allows “negligible” discrepancies between matching trace
the measurg: on execution fragments. We writelist(p) ~ distributions [CCK 06b].
for tdist(apply(6(7), p)) the trace distribution obtained by p Compositionality

applyingp from the unique start state. (Recall that the Dirac gecause external behavior and implementation are defined
measure for an element, 4(z), is the discrete probability jn terms of mappings from environments to sets of trace
measure that assigns probabilityo {x}.) A trace distribu-  gistributions, a compositionality result fet, follows easily:
tion of 7'is anytdist(p). We usetdists(7 ) to denote the set  Theorem 2.9:Let 7;, 7; be comparable action-
{tdist(p) : p is a task schedule far}. Finally, we define geterministic task-PIOAs such thaf; <, 75, and let
composition of task-PIOAs: 7; be an action-deterministic task-PIOA compatible with

Definition 2.5: Two task-PIOAST; = (Pi, R;),i € {1,2},  each of7; andT;. ThenT;||T; <, T3 Ts.
are said to beompatibleprovided the underlying PIOAs are ] ]
compatible. In this case, we define theamposition7; || 75 Proof. ~Let7, = (P4, R4) be any environment (action-
to be the task-PIOAP; || P2, R1 U Rs). deterministic) task-PIOA for bothr;||7; and 7||75. Fix

It is easy to see thaf;|Z; is in fact a task-PIOA. In 2@ny task schedule, for (7,7;)|7,. Let = be the trace
particular, since compatibility ensures disjoint sets of locallydistribution of (7:]|7Z3)[|7s generated byp;. It suffices to
controlled actions,?, U Ry is an equivalence relation on Show thatr is also generated by some task scheduje
the locally-controlled actions of;||Zz. It is also easy to fOr (72[|7)[|7:. Note thatp, is also a task schedule for
see that action determinism is preserved under compositiofi,| (Z3[|74), and thatp, generates the same trace distribution
Note that, when two task-PIOAs are composed, no nefyin the composed task-PIOA, || (75| Zs).

mechanisms are required to schedule actions of the twoNOW: 73[|74 is an (action-deterministic) environment task-
components—the tasks alone are enough. PIOA for each of7; and7;. Since, by assumptioffy <, 73,

we infer the existence of a task schedplefor 75||(75||74)
C. Implementation such thatp, generates trace distributianin the task-PIOA
We now define the notion of external behavior for a task?z||(73|72). Sincep. is also a task schedule 675 || 73)|| 74
PIOA and the induced implementation relation between tasknd p, generates, this suffices. O
PIOAs. Unlike previous definitions of external behavior, the
one we use here is not simply a set of trace distributions. ) ) ) . )
Rather, it is a mapping that specifies, for every possible We define a new simulation relation notion f_or_closed,
“environment”& for the given task-PIOAT, the set of trace actlon-d_etermlnlstlc tas_k—_F_’IOA_s, and show that it is spund
distributions that can arise wheh is composed witt€. for proving <,. Our definition is based on three operations
Definition 2.6: Let 7 be any task-PIOA and be an mvolvmg probability measures: ﬂattemng, lifting, apd expan-
action-deterministic task-PIOA. We say thtis an envi- SION- These have been previously defined, e.g., in [LSVO03].
ronmentfor 7 if (i) £ is compatible with7 and (ii) the A. Flattening, lifting, and expansion
composition7 ||£ is closed. Note thaE may have output  The flatteningoperation takes a discrete probability mea-
actions that are not in the signature Bf sure over probability measures and “flattens” it into a single
Definition 2.7: The external behaviorof 7, denoted by probability measure. Formally, letbe a discrete probability
extbeh(7), is the total function that maps each environmentneasure orDisc(X). Then the flattening of), denoted by
£ to the set of trace distributionslists(7 ||E). flatten(n), is the discrete probability measure &hdefined
_Thus, for each environment, we consider the set of tradsy flatten(n) = 3_ cpisc(x) ()1 _
distributions that arise from all task schedules. Note that The lifting operation takes a relatio®® between two
these traces may include new output actiong§ ,ah addition domainsX andY and “lifts” it to a relation between discrete

I1l. SIMULATION RELATIONS



measures ovek andY. Informally speaking, a measurg  states to states, but rather, probability measures on executions
on X is related to a measure, onY if u, can be obtained to probability measures on execution$he use of measures

by “redistributing” the probability masses assignedihyin  on executions here rather than just executions is motivated by
such a way that the relatioR is respected. Formally, the certain cases that arise in our OT protocol proof, e.g., cases
lifting of R, denoted byC(R), is a relation fromDisc(X) to  where related random choices are made at different points
Disc(Y') defined by:ui L(R) po iff there exists aveighting in the low-level and high-level models (see Section I1I-D).
functionw : X x Y — R=Y such that Definition 3.3: Let 7; = (P1, Ry) and T3 = (Ps, Rz) be

1) For eachr € X andy € Y, w(z,y) > 0 impliesz Ry. two comparable closed action-deterministic task-PIOAs. Let
2) For eachr € X, - w(z,y) = i (2). Rbea rela_tlon fronDisc(Execs™ (P1)) to Disc(Execs*(Pg)_),

3) For eachy € Y, 3 w(z,y) = pa(y). such that, ife; R ez, thentdist(e;) = tdist(ez). ThenR is

Finally, the expansionoperation takes a relation between? slmulatlon from’7; to TQ if there ex_lstsc : (31* x Ry) —
discrete measures on two domains and returns a relation ‘of such that. t.he following properties hold:
the same kind that relates two measures whenever they chhStart condition:6(q1) R 6(gz). _ _
be decomposed into twé(R)-related measures. Formally, 2) Step conditionif e; R €3, p1 € Ri”, € is consistent
let R be a relation fromDisc(X) to Disc(Y). Theexpansion ~ With p1, €5 is consistent withfull(c)(p1), andT" € Ry,
of R, written £(R), is a relation fromDisc(X) to Disc(Y') then e} E(R) €, whereey = apply(e;,T) and e, =
defined by, E(R) p. iff there exist two discrete measures ~ apply(ez, ¢(p1,T)).
n andn, on Disc(X) and Disc(Y"), respectively, such that ¢ soundness

pu = flatten(i), pz = flatten(np), andm L(R) n. _ Lemma 3.4:Let 7; and 7> be comparable closed action-
We use expansions directly in our definition of simulationgeterministic task-PIOAsR a simulation from7; to 7.

Informally, 1 R p2 means that it is possible to simulate| et ¢, and e, be discrete probability measures over finite

from 4, anything that can happen from,. Furthermore, eyecytions off; and7;, respectively, such that £(R) e,.

wy E(R) psy means that we can decompgsg and s into Then tdist(e) = tdist(es).

pieces that can simulate each other, and so we can say thaje following theorem says that, for closed task-PIOAS,

it is also possible to simulate from; anything that can e existence of a simulation relation implies inclusion of

happen fromy.. This intuition is at the base of the proof of gets of trace distributions. Our main soundness result for (not

our soundness result (cf. Theorem 3.5). necessarily closed) task-PIOAs then follows as a corollary.

B. Simulation relation definition Theorem 3.5:Let 7; and7; be comparable closed action-

We need two more auxi”ary deﬁnitions_ The ﬁrst expressééeterministic taSk-PlOAS. If there eXiStS a Simu|ati0n re|ati0n
consistency between a probability measure over finite execliom 71 to 7, thentdists(7;) C tdists(72).

tions and a task schedule: informally, @ measuoger finite Proof. Let R be the assumed simulation relation fr@in
executions is said to be consistent with a task schegile 1 7, | et ¢, be the probabilistic execution of, generated
it assigns non-zero probability only to those executions thgy g and a (finite or infinite) task schedul®&,, Ty, - - - . For
are possible under the task schedulVe use this condition each; - 0, definep, to bec(T; ---T;_1,T;). Let e be the
in order to avoid useless proof obligations in our definitiony gpapilistic execution generated gy and pips ---. We

of simulation relation. _ claim thattdist(e;) = tdist(e), which suffices.

Definition 3.1: Let 7 = (P,R) be a closed, action-  ror eachj > 0, let e1; = apply(@,Ti---Tj), and
deterministic task-PIOA¢ a discrete probability measure ., = _ apply(qa, p1 - - ;). Then for eachj > 0, ¢, <
over finite executions ofP, and p a finite task schedule 61’;“ and 62j, < 62]j+1. moreover hm]:oo €1 j’] —

for 7. Thene is consistent withp provided thatsupp(e) C (" and i, 62’]_ = €. Also, for everyj > 0,
supp(apply(3(q), p)), Wh?req is the start state oP. _apply(er 4, Tj+1) = €1,541 and apply(ez j, pj+1) = €2, +1.

For the second definition, suppose we have a mappingopseryve that; o = 6(q) andes o = 6(g2). The start condi-
that, given a finite task schedufeand a taski’ of a task- jon for a simulation relation and a trivial expansion imply
PIOA 7,, yields a task schedule of another task-PIGA  thate, | £(R) e,. Then by induction, using the definition of
The idea is that(p, T') describes howZ, matches task’, 5 simulation relation in proving the inductive step (this uses
given that it has already matched the task scheguldsing 5 series of lemmas; see [CCR6a] for details), we show
¢, we define a new functiofull(c) that, given a task schedule 4t for eachj > 0, ¢, ; £(R) €. Then, by Lemma 3.4,

p, iteratesc on all the elements o, thus producing a “full”  ¢,, eachj > 0, tdist(ef,j) — tdisé(eg}j). Now, tdist(e;) =

task schedule of, that matches all of. lim, o tdist(c; ), and tdist(e;) — lim; o tdist(ez ;).
Definition 3.2: Let 7, = (Pl’Rl,Z and 7, = (7)*27R2) Since for eachj > 0, tdist(e; ;) = tdist(ez ;), we conclude
be two task-PIOAs, and let = (R," x Ri) — Rp” be @ hattdist(e; ) = tdist(ey), as needed. O
function that assigns a finite task scheduleZefto each )
finite task schedule of; and task of7;. Define full(c) : Corollary 3.6: Let 7; and 7, be two comparable action-
R,* — Ry* recursively as followsfull(c)(\) := A, and deterministic task-PIOAs. Suppose that, for every environ-
full(c)(pT) := full(c)(p) ~ c(p,T) (the concatenation of Mment¢ for both7; and7;, there exists a simulation relation
full(c)(p) andc(p, T)). R from 71| € to T,[|E. ThenTy <o Ts.

We can now define our new notion of simulation for task- _ L L
PIOAs and establish its soundness with respect to<the It would be nice to simplify this definition so that it involves measures
- > ' A p R on states instead of measures on executions, but we don’t yet know how to
relation. Note that our simulation relations do not just relateéo this.



D. Example:Trapdoor vs. Rand crete measures over finite execution fragmentaipdoor
The following example, from our OT proof, was a keyand Rand, respectively, then we define@;,e2) € R ex-
motivation for generalizing prior notions of simulation rela-actly if the following conditions hold: (i) For every €
tions. We consider two closed task-PIOAByapdoor and supp (Istate(e;)) and u € supp (Istate(ez)), s.z2 = wu.z.
Rand. Rand chooses a number randomly and outputs it(ii) For everyu € supp (Istate(es)), if u.z = L then either
Trapdoor, on the other hand, first chooses a random numbdstate(e; ).y is everywhere undefined or else it is the uniform
then applies a known permutatighto the chosen number, distribution on[n]. The task correspondence mappings
and then outputs the result. (The naffieapdoor refers to  defined by:c(p, Choose) = X, ¢(p, Compute) = Choose,
the type of permutatiorf that is used in the OT protocol.) c¢(p, Report) = Report.
More precisely,Rand has output actionseport(k), k €
[n] = {1,...,n} and internal actiorchoose. It has tasks IV. APPLICATION TO SECURITY PROTOCOLS
Report = {report(k) : k € [n]}, and Choose = {choose}. In [CCK™06b], we use the task-PIOAs of this paper to
lts state contains one variableal, which assumes values model and analyze the Oblivious Transfer (OT) protocol
n [n]U{L}, initially L. Thechoose action is enabled when of Goldreich et al. [GMW87]. In the OT problem, two
zval = 1, and has the effect of settingval to a number input bits (z¢,z;) are submitted to a Transmittérrans
in [n], chosen uniformly at random. Theport(k) action is and a single input bii to a ReceiverRec. After engaging
enabled whenval = k, and has no effect on the state (son an OT protocol,Rec should output only the single bit

it may happen repeatedly). See Figure 1. x;. Rec should not learn the other bit; ;, and T'rans
should not learni; moreover, an eavesdropping adversary
report(l) _ should not, by observing the protocol messages, be able
hoose to learn anything about the inputs or the progress of the
_report(2) _ protocol. OT has been shown to be “complete” for multi-

party secure computation, in the sense that, using OT as the
only cryptographic primitive, one can construct protocols for

repori(n) _ securely realizing any functionality.
The protocol of [GMW87] uses trap-door permutations
Fig. 1. Task-PIOARand (and hard-core predicates) as an underlying cryptographic

primitive. It uses three rounds of communication: First,

Trapdoor has the same actions d2and, plus internal T'rans chooses a random trap-door permutatfoand sends
action compute. It has the same tasks d2and, plus the itto Rec. SecondRec chooses two random numbeis, y1)
task Compute = {compute}. Trapdoor's state contains and sendgzo, z;) to Trans, wherez; for the input index
two variables,y and z, each of which takes on values ini is f(y;) and z;_; = y1—;. Third, Trans applies the
[n] U {L}, initially L. The choose action is enabled when same transformation to each ef and z; and sends the
y = 1, and setg to a number in[n], chosen uniformly at results back agbo,b,) Finally, Rec decodes and outputs
random. Thecompute action is enabled whep # L and the correct bit. The protocol uses cryptographic primitives
z = 1, and sets: := f(y). The report(k) action behaves and computational hardness in an essential way. Its security

exactly as inRand. See Figure 2. is inherently only computational, so its analysis requires
modeling computational assumptions.
o) o (o rerentf () Our analysis follows t_he t'rusted party par.adigm.
hoose _ of [GMW87], with a formalization that is close in spirit
g ) compute (et to [PW00], [Can01]. We first define task-PIOAs representing
. thereal system (RS)the protocol) and thé&leal system (IS)

(the requirements). INRS, typical tasks include “choose

compute _ (¢ m}pertt () random (yo,y1)”, “send round 1 message”, a_nd “deliver
round 1 message”, as well as arbitrary tasks of incompletely-
Fig. 2. Task-PIOATrapdoor specified environment and adversary automata. Note that

these tasks do not specify exactly what transition occurs;
We wanted to use a simulation relation to prove thae.g., the send task does not specify the message contents—

tdists(Trapdoor) C tdists(Random). In doing so, we these are chosen l#rans, based on its own internal state.
decided that the steps that defineshould correspond in  Then we prove thaRS implements/S. The proof consists
the two automata, which meant that thkoose steps of of four cases, depending on which parties are corrupté.
Trapdoor, which definey, should map to no steps &fand. the two cases wher€rans is corrupted, we can show that
Then, between thehoose and compute in Trapdoor, a RS implements/.S unconditionally, using<y. In the cases
randomly-chosen value would appear in thecomponent whereT'rans is not corrupted, we can show implementation
of Trapdoor's state, but no such value would appear ironly in a “computational” sense, namely, (i) for resource-
the corresponding state @tand. Therefore, the simulation bounded adversaries, (ii) up to negligible differences, and

relation would have to relate a probability measure on states

of Trapdoor 10 @ single state oftand. cortipted. e prove il foir Casos i [CERS) Ut ang 4 ess uneral
g
We were able to express this Correspondence usmgdé‘flnltlon of task-PIOAs than the one used here and in [¢0Bb], and

simulation relation of our new kind: I€; and e; are dis- with non-branching adversaries.



(iif) under computational hardness assumptions. Modeling V. LOCAL SCHEDULERS

these aspects requires additions to the task-PIOA framework

of this paper, namely, defining time-boundedversion of With the action-determinism assumption, our task mech-
task-PIOAs, and defining a variatioss,cy ¢, On the <,  anism is enough to resolve all nondeterminism. However,
relation, which describes approximate implementation witlction determinism limits expressive power. Now we remove
respect to polynomial-time-bounded environments. Similahis assumption and add a second mechanism for resolving
relations were defined in [LMMS98], [PWO01]. Our simula-the resulting additional nondeterminism, namely,logal

tion relations are also sound with respectig., ;. We also  schedulerfor each component task-PIOA. A local scheduler
provide models for the cryptographic primitives (trap-dooffor a given component can be used to resolve nondetermin-
functions and hard-core predicates). Part of the specificatiggtic choices among actions in the same task, using only
for such primitives is that their behavior should look “ap-information about the past history of that component. Here,
proximately random” to outside observers; we formalize thigve define one type of local scheduler, which uses only the

in terms of <,,cq p:. current state, and indicate how our results for the action-
The correctness proofs proceed by levels of abstraction, réeterministic case carry over to this setting.
lating each pair of models at successive levels using, . Our notion of local scheduler is simply a “sub-automaton”:

In the case where onlyzec is corrupted, all but one of \we say that task-PIOAT" = (P',R') is a sub-task-PIOA
the relationships between levels are proved using simulatieft task-PIOA7 = (P, R) provided that all components
relations as defined in this paper (and so, they guarafi®e are identical except thab’ C D, where D and D’ are
The only exception relates a level in which the cryptographighe sets of discrete transitions &f and P’, respectively.
primitive is used, with a higher level in which the use ofThys, the only difference is thaf’ may have a smaller
the primitive is replaced by a random choice. Showing thiget of transitions. Alocal schedulerfor a task-PIOAT is
correspondence relies on odr,, ,.-based definitions of the any action-deterministic sub-task-PIOADf A probabilistic
cryptographic primitive, and on composition results for timesystenis a pairM = (7, S), whereT is a task-PIOA and
bounded task-PIOAs. Since this type of reasoning is isolatgél 4 set of local schedulers faF. A probabilistic execution
to one correspondence, the methods of this paper in fagf a probabilistic systera\t = (7, S) is defined to be any
suffice to accomplish most of the work of verifying OT.  probabilistic execution of any task-PIO& € S.

Each of our system models, at each level, includes an M = (T1,8) and My = (T5,S,) are two prob-
explicit adversary component automaton, which acts as gyijistic systemsi, and; and 7, are compatible, then their
message delivery service that can eavesdrop on Communi%mposition/\/ll | M is the probabilistic syster(; | 7, S),

tions and control the order of message delivery. The behavigf,are s is the set of local schedulers 6% || 75 of the form
A |S,, for somesS; € S; and S € Ss.

of this adversary is arbitrary, subject to general constraints
(7,S) is a probabilistic system, then @mviron-

its capabilities. In our models, the adversary is the same at al M —
levels, so our simulation relations relate the adversary StatﬁTQ‘entfor M is any environment (action-deterministic task-
PIOA) for 7. If M = (7,S) is a probabilistic system, then

at consecutive levels directly, using the identity function

This treatment allows us to consider arbitrary adversar'efﬁeexternal behavioof M, extbeh(M)), is the total function

without examining their structure in detail (they can dothat maps each environment task-PI@Afor M to the set
,Uses tdists(S||€). Thus, for each environment, we consider

anything, but must do the same thing at all levels).
Certain patterns that arise in our simulation reIanthe set of trace distributions that arise from two choices: of

proofs led us to extend earlier definitions of simulation relaé1 local scheduler o and of a global task schedute

tions [SL95], [LSVO03], by adding the expansion capability

and by corresponding measures to measures: (i) We often'fb/\t/)l.ll. = (7, 51) and My :d?(_TQ’SQ) are corglparakl?le
correspond random choices at two levels of abstraction—f&y 0P |||st|c systems ("‘.313 an 2<are compara q %)’ th en
instance, when the adversary makes a random choice, froif{: ImPlementsMy, written M, <o My, provided that

the same state, at both levels. We would like our simulatio tb.eh(ﬁ/ll)(g). < gxtbehl((MQ)(S)fforbevre]ry envirgnment
relation to relate the individual outcomes of the choices afiction-deterministic) task-PIO& for both M, and M.

the two levels, matching up the states in which the sam g_optain a suffic_ient c_ondition for implementation of prob-
result is obtained. Modeling this correspondence uses t ilistic systems, in which each local scheduler for the low-
expansion feature. (ii) Th@rapdoor vs. Rand example level system always corresponds to the same local scheduler
described in Section |1l occurs in our OT proof. Here, thf the high-level system.

low-level system chooses a randaynand then computes ~1heorem S.1:iLet M, = (7;,5,) and M, = (T3, S;) be

z = f(y) using a trap-door permutatiof The higher level two comparable probabilistic systems. Suppose thid a
system simply chooses the value ofrandomly, without total function fromS; to S, such that, for evenys; € Sy,
using valuey or permutationf. This correspondence relatesS1 <o f(51). Then My <o M.

measures to measures and uses expansion. (i) In anothekVe also obtain a compositionality result for probabilistic
case, a lower-level system chooses a random vahred then  systems. The proof is similar to that of Theorem 2.9, for the
computes a new value by XOR’ingwith an input value. The action-deterministic case.

higher level system just chooses a random value. However,Theorem 5.2:Let M1, M5 be comparable probabilistic
XOR’ing any value with a random value yields the sameystems such thamM; <, My, and let M3 be a proba-
result as just choosing a random value. This correspondenuiistic system compatible with each ¢f1; and Ms. Then
relates measures to measures and uses expansion. My M3 <o Ma||Ms.



VI. CONCLUSIONS

We have extended the traditional PIOA model with a task
mechanism, which provides a systematic way of resolvin
nondeterministic scheduling choices without using informa-
tion about past history. We have provided basic machinery
for using the resulting task-PIOA framework for verification,
including a compositional trace-based semantics and a ndf 05!
kind of simulation relation. We have proposed extending the
framework to allow additional nondeterminism, resolved b
schedulers that use only local information. We have illu (Chad6]
trated the utility of these tools with a case study involving
analysis of an Oblivious Transfer cryptographic protocol. [CLSV]

Although our development was motivated by concerns of
cryptographic protocol analysis, partial-information scheduldago]
ing is interesting in other settings. For example, some dis-
tributed algorithms work with partial-information adversarials sz
schedulers, althrough the problems they solve are provably
unsolvable with perfect-information adversaries [Cha96][G 0
[Asp03]. Also, partial-information scheduling is realistic for olo1]
modeling large distributed systems, in which basic schedukLcos]
ing decisions are made locally, and not by any centralized
mechanism.

Many questions remain in our study of task-PIOAs: Our
notion of implementation<,, is defined by considering all
environments; can we characterizg using a small subclass p gsog
of environments? Can our simulation relation notion be sim-
plified without sacrificing soundness or applicability? Also,
our notion of local schedulers needs further development. g3

It remains to consider more applications of task-PIOAs, for
cryptographic protocol analysis and for other applications. A
next step in cryptographic protocol analysis is to formulatg rgo;
and prove protocol composition results like those of [PWO00],
[Can01] in terms of task-PIOAs. Finally, we would like to[MMS03]
model perfect-information schedulers, as used for analyzing

randomized distributed algorithms, using task-PIOAs.
[PSLOO0]
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