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Abstract
In this work, we propose FLECKS, an algorithm which implements atomic memory objects in a
multi-writer multi-reader (MWMR) setting in asynchronous networks and server failures. FLECKS
substantially reduces storage and communication costs over its replication-based counterparts by
employing erasure-codes. FLECKS outperforms the previously proposed algorithms in terms of the
metrics that to deliver good performance such as storage cost per object, communication cost a
high fault-tolerance of clients and servers, guaranteed liveness of operation, and a given number of
communication rounds per operation, etc. We provide proofs for liveness and atomicity properties
of FLECKS and derive worst-case latency bounds for the operations. We implemented and deployed
FLECKS in cloud-based clusters and demonstrate that FLECKS has substantially lower storage and
bandwidth costs, and significantly lower latency of operations than the replication-based mechanisms.
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1 Introduction

In the recent years, the demand for efficient and reliable large-scale distributed storage systems
(DSSs) has grown at an unprecedented scale. DSSs that store massive data sets across several
hundreds of servers are commonly used for both industrial and scientific applications, and
numerous Internet-based applications. Many applications demand concurrent and consistent
access to the stored data by multiple writers and readers. Therefore, some form of consistency
must be guaranteed of the stored objects is essential for the application developer to reason
about the correctness of the application. The consistency model we adopt is atomicity,
also often referred to as strong consistency. Atomic consistency gives the users of the
data service the impression that the various concurrent read and write operations happen
sequentially. Therefore, strong consistency or linearizability is the most preferred form of
consistency guarantee. However, providing strong consistency is a non-trivial task in most
practical distributed storage systems due the asynchronous behavior of the communication
and component failures endemic in any large network. Also, the ability to withstand failures
and network delays are essential features of any robust DSS. The traditional solution for

1 This work was done while the author was still at MIT.
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12:2 Fast Lean Erasure-Coded Atomic Memory Object

emulating an atomic fault-tolerant shared storage system involves replication of data across
the servers. Perhaps, the earliest of replication-based algorithms atomic memory emulation
in asynchronous networks appear in the work by Attiya, Bar-Noy and Dolev [4] (we refer to
this as the ABD algorithm).Replication based strategies incur high storage costs; for example,
to store a value (an abstraction of a data file) of size 1 MB across a 5-server system, the ABD
algorithm replicates the value in all the 5 servers, which blows up the worst-case storage cost
to 5 MB. Additionally, every write or read operation has a worst-case communication cost of
5 MB. The communication cost, or simply the cost, associated with a read or write operation
is the amount of total data in bytes that gets transmitted in the various messages sent as
part of the operation. Since the focus in this paper is on large data objects, the storage and
communication costs include only the total sizes of stable storage and messages dedicated to
the data itself. Ephemeral storage and the cost of control communication is assumed to be
negligible. Under this assumption, we further normalize both the storage and communication
costs with respect to the size of the value, say v, that is written, i.e., we simply assume that
the size of v is 1 unit (instead of 1 MB), and say that the worst-case storage or read or write
cost of the ABD algorithm is n units, for a system consisting of n servers.

Erasure codes provide an alternative way to emulate fault-tolerant shared atomic storage,
with the added benefit of reducing storage cost. In comparison with replication, algorithms
based on erasure codes significantly reduce both the storage and communication costs of the
implementation. An [n, k] erasure code splits the value v of size 1 unit into k elements, each
of size 1

k units, creates n coded elements, and stores one coded element per server. The size
of each coded element is also 1

k units, and thus the total storage cost across the n servers is n
k

units. For example, if we use an [n = 5, k = 3] MDS code, the storage cost is simply 1.67 per
unit of data, instead of 5 as in the case of replication-based algorithms, such as ABD. A class
of erasure codes known as Maximum Distance Separable (MDS) codes have the property
that value v can be reconstructed from any k out of these n coded elements. In systems that
are centralized and synchronous, the parameter k is simply chosen as n− f , where f denotes
the number of server crash failures that need to be tolerated. In this case, the read cost,
write cost and total storage cost can all be simultaneously optimized. The usage of MDS
codes to emulate atomic shared storage in decentralized, asynchronous settings is way more
challenging, and often results in additional communication or storage costs for a given level
of fault tolerance, when compared to the synchronous setting. Even then, as has been shown
in the past [6, 10], significant gains over replication-based strategies can still be achieved
while using erasure codes. The works in [6, 10] contain algorithms based on MDS codes for
emulating fault-tolerant shared atomic storage, and offer different trade-offs between storage
and communication costs.

The performance of a DSS that stores millions of objects, and accessed concurrently by
hundreds of thousands of clients must excel in terms of several performance measures. While
designing FLECKS algorithm we focused on the following key performance metrics that are
often used by the systems researchers to evaluate the performance of such system. (i) Storage
cost is the total number of bytes stored across all servers, must be low, which essentially
increases the capacity of the storage system, and also reduces the cost of storing data for
the user. (ii) Maximum number of server failures the system can experience without service
interruption directly contributed to increases in data durability. (iii) Number of rounds per
operation reduces the latency of operations, thereby increasing the throughput of clients’
operations and also reduces overall messaging in the network. (iv) Read cost is the amount
of data transmitted in order to complete a read operation. In most practical systems reads
are several orders of magnitude more frequent than writes. Therefore, read cost, must be as
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low as possible. (v) Write cost is the number of bytes transmitted during a write operation
should be as low as possible, which would reduce latency of write and network bandwidth
consumption.

Our Contributions. In this work, we present FLECKS, an erasure-code based, fault-tolerant
algorithm for implementing MWMR atomic memory in asynchronous networks, with op-
timized storage and communication costs. When compared to other erasure-code based
or replication-based atomic memory emulation algorithms, FLECKS achieves superior or
comparable values for the performance metrics mentioned above. Moreover, FLECKS is
the only such algorithm that scores reasonable values across all of the performance metrics
(see Table 1), making it suitable for implementations in practical systems. Firstly, the
storage cost of FLECKS is (1 + δ)nk , where δ is the maximum number of writes concurrent
with any read. In a typical DSS, the frequency of reads is 10,000+ fold more than that of
writes [8]. Therefore, δ is rarely larger than 1 as reported in [7]. FLECKS exploits this to
provide one-round reads, but occasionally, in the presence of concurrent writes, carries out a
second round. This results in lower latency for most reads and increases throughput of the
system. Writes always take two rounds. We would like to emphasize that δ is not explicitly
hard-coded in FLECKS; therefore, is a run-time property. The underpinning idea behind
FLECKS achieving lower storage cost is to use writes help garbage collect stale values, i.e.,
values introduced by previous writes. As a result, during the course of an execution, the
additional storage cost due to the temporary increase of δ for individual object is small and
transient. In a system with several hundred or more stored objects, the fraction of reads
that experiences concurrent writes would be tiny (see third plot in Fig. 1). Therefore, when
considered system wide, FLECKS achieves storage cost very close to the optimal value n

k

(discussed later in the context of Fig. 2 (a)). FLECKS can tolerate a maximum of n − k
server crashes, which is the maximum number of erasures tolerated by and MDS [n, k] code.
The read and write-communication costs are very comparable to the synchronous EC-based
scenarios (see Table 1). We provide analytical proofs of atomicity and liveness properties
of FLECKS. We also derived bounds for the read and write latency based on maximum
message delay of ∆ for any point-to-point message in the network. Finally, we implemented
FLECKS, deployed our implementation, and ran experiments where our implementation
can emulate a large number of atomic objects. We compare our results with an optimized
replication-based algorithm adapted from ABD where we emulate a shared storage of up
to 10,000 objects of various sizes. Our results corroborate our design goals and theoretical
results on storage and communication cost bounds, and lower latency of reads and writes in
FLECKS. For example, Fig. 1 shows that FLECKS (EC) has much lower latency, compared
to the replication-based method (REP) for the read and write operations. Furthermore, it
shows that most of the reads (get) comprise of a single-round.

1.1 Comparison with Other Algorithms, and Related Work
There is a rich history of erasure coding based shared memory emulation algorithms [5, 6,
10–12, 14, 18]. In Table 1, we provide a comparison between FLECKS and other atomic
memory algorithms. We add ABD as a benchmark to compare the performance metrics of
the erasure-coded algorithms with replication based schemes. In [6], the authors provide
two algorithms - CAS and CASGC - based on [n, k] MDS codes, and these are primarily
motivated with a goal of reducing the communication costs. Both algorithms tolerate up to
f = n−k

2 server crashes, and incur a communication cost (per read or write) of n
n−2f . The

CAS algorithm is a precursor to CASGC, and its storage cost is not optimized. In CASGC,
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Figure 1 read (get) and write (put) latencies, and percentage of reads with 2 phases for the
multi object experiment. For each operation, a client accesses a object chosen uniformly at random.
We compare [n = 5, k = 3] flecks (EC) against 5-way replication (REP), for objects of sizes 10KB,
100KB and 1MB.

each server stores coded elements (of size 1
k ) for up to δ + 1 different versions of the value v,

where δ is a hard-coded upper bound on the number of writes that are concurrent with a
read A garbage collection mechanism, which removes all the older versions, is used to reduce
the storage cost. The worst-case total storage cost of CASGC is shown to be n

n−2f (δ + 1).
Liveness and atomicity of CASGC are proved under the assumption that the number of
writes concurrent with a read never exceeds δ. On the other hand, SODA [14] is designed to
optimize the storage cost rather than communication cost, where a write cost is very high
(n2). In SODA, the parameter δw, which indicates the number of writes concurrent with a
read, to bound the read cost. However, neither liveness or atomicity of SODA depends on
the knowledge of δw; the parameter appears only in the analysis and not in the algorithm.
But the effect of the parameter δ in CASGC is rather rigid. In CASGC, any time after
δ + 1 successful writes occurs during an execution, the total storage cost remains fixed at
n

n−2f (δ+ 1), irrespective of the actual number of concurrent writes during a read. For a given
[n, k] MDS code, CASGC tolerates only up to f = n−k

2 failures, whereas SODA tolerates up
to f = n− k failures.

In [10], the authors present the ORCAS-A and ORCAS-B algorithms for asynchronous
crash-recovery models. In this model, a server is allowed to undergo a temporary failure
such that when it returns to normal operation, contents of temporary storage (like memory)
are lost while those of permanent storage are not. Only the contents of permanent storage
count towards the total storage cost. Furthermore they do not assume reliable point-to-
point channels. The ORCAS-A algorithm offers better storage cost than ORCAS-B when
the number of concurrent writers is small. Like SODA, in ORCAS-B coded elements
corresponding to multiple versions are sent by a writer to reader, until the read completes.
However, unlike in SODA, a failed reader might cause servers to keep sending coded elements
indefinitely. RADON [15], an erasure-code based atomic memory algorithm which allows
servers restarts, provides liveness guarantees under most practical network settings and allows
efficient repair of crashed nodes. ARES [18] improves on the number of rounds compared
to the previously known erasure-code based algorithms. From Table 1 is it evident that
FLECKS strikes a balance among all the erasure-code based algorithms performs in all of
the measures of performance.

1.2 Other related works
In [19], the authors consider algorithms that use erasure codes for emulating regular registers.
Regularity [16] is a weaker consistency notion than atomicity. Applications of erasure codes
to Byzantine fault tolerant DSS are discussed in [5, 12].
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During the last few years several erasure-code-based DSS with strongly consistent dis-
tributed storage have become available. Cocytus [20] is an in-memory key-value store that
guarantees strong consistency and reduces storage cost using erasure codes. The values are
erasure coded and the coded elements are stored among a subset or group of servers, referred
to as coding group, from the set of available servers.

Table 1 Performance metrics of replication-based, flecks and other algorithms with erasure-
codes (for MDS code of dimension [n, k]) for atomic read/write memory emulation. δ is the maximum
number of concurrent writes with any read during the course of an execution of the algorithm. In
practice, δ < 4 [7]. The optimal case is the use of EC in a synchronous system.

algorithm max rounds/ rounds/ repl or storage read write explicit
failures write read EC cost cost cost δ?

ABD [4] bn−1
2 c 2 2 Repl. n 2n n -

CASGC [6] bn−k
2 c 3 2 EC (δ + 1) n

k
n
k

n
k

Yes
SODA [14] n− k 2 2 EC n

k
(δ + 1) n

k
n2

k
No

ORCAS-A [10] bn−k
2 c 3 ≥ 2 EC n n n Yes

ORCAS-B [10] bn−k
2 c 3 3 EC ∞ ∞ ∞ -

RADONc [15] bn−k
2 c 2 2 EC (δ + 1) n

k
(δ + 2) n

k
n
k

Yes
ARES [18] bn−k

2 c 2 2 EC (δ + 1) n
k

(δ + 1) n
k

n
k

Yes
FLECKS n− k 2 ≤ 2 EC (δ + 1) n

k
(δ + 1) n

k
n
k

No
synch EC n− k 1 1 EC n

k
1 n

k
-

Giza [7] is a recently proposed strongly-consistent multi-version object store and heavily
used in Microsoft’s OneDrive storage system. Giza is designed for cross-data center (cross-
DC) object storage, which is deployed over 11 data-centers around the world. Giza uses
FastPaxos [17] which, in the absence of concurrent writes, completes in one round trip, but
in the case of concurrent updates, uses the more expensive consensus algorithm Paxos.

Recently, a large class of new erasure codes have been proposed and employed (see [9] for
a survey) in DSS where the focus is on the efficient storage of immutable (like archival) data.
Recovery of contents in failed servers is an important operation in such systems. These new
codes offer the dual benefits of reduced storage cost as well as reduced repair cost during
recovery from server failures. It remains to be seen whether the advantages of these codes
carry over to systems that have consistency/concurrency requirements.

Document Structure. In Section 2, we provide the models and definitions. In Section 3
we describe FLECKS. Section 4 provides the proof for correctness and liveness guarantees
for FLECKS along with bounds for storage and communication costs, and latency analysis
of the operations. In Section 5, we discuss the implementation and experimental validation
of FLECKS. Finally, in Section 6 we conclude our paper. Due to lack of space some of the
proofs are omitted.

2 Model and Definitions

A shared atomic storage can be emulated by composing individual atomic objects. Therefore,
we aim to implement a single atomic read/write memory object. Each data object takes a
value from a set V. We assume a system consisting of three distinct sets of processes: a set
W of writers, a set R of readers and S, a set of servers. Servers host data elements (replicas
or encoded data fragments). Each writer is allowed to write the value of a shared object,
and each reader is allowed to read the value of that object. Processes communicate via
messages through asynchronous, reliable channels.

OPODIS 2019
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Executions. An execution of an algorithm A is an alternating sequence of states and actions
of A starting with the initial state and ending in a state. An execution ξ is well-formed
if each client does not invoke a one operation until it completed the previously invoked
operation and it is fair if enabled actions perform a step infinitely often. In the rest of the
paper we consider executions that are fair and well-formed. When process p crashes it stops
executing any further step.

Write and Read Operations. An implementation of a read or a write operation contains an
invocation action and a response action (such as a return from the procedure). An operation
π is complete in an execution, if it contains both the invocation and the matching response
actions for π; otherwise π is incomplete. We say that an operation π precedes an operation π′
in an execution ξ, denoted by π → π′, if the response step of π appears before the invocation
step of π′ in ξ. Two operations are concurrent if neither precedes the other.

Erasure Codes. Background on Erasure coding: In FLECKS, we use an [n, k] linear
MDS code [13] over a finite field Fq to encode and store the value v among the n servers. An
[n, k] MDS code has the property that any k out of the n coded elements can be used to recover
(decode) the value v. For encoding, v is divided2 into k elements v1, v2, . . . vk with each
element having size 1

k (assuming size of v is 1). The encoder Φ takes the k elements as input
and produces n coded elements c1, c2, . . . , cn as output, i.e., [c1, . . . , cn] = Φ([v1, . . . , vk]).
For ease of notation, we simply write Φ(v) to mean [c1, . . . , cn]. The vector [c1, . . . , cn] is
referred to as the codeword corresponding to the value v. Each coded element ci also has
size 1

k . In our scheme we store one coded element per server. Without loss of generality, we
associate the coded element ci with server i, 1 ≤ i ≤ n.

Liveness of operations. We require algorithms to satisfy certain liveness properties, spe-
cifically, in every fair execution that satisfies certain restrictions in terms of the number of
failed nodes, we require every operation by a non-faulty client completes, irrespective of the
behavior of other clients.

Storage and Communication Costs. We define the total storage cost as the size of the
data stored across all servers, at any point during the execution of the algorithm. The
communication cost associated with a read or write operation is the size of the total data that
gets transmitted in the messages sent as part of the operation. We assume that metadata,
such as version number, process ID, etc. used by various operations is of negligible size, and
therefore, ignore this in the calculation of storage and communication cost. Further, we
normalize both the costs with respect to the size of the value v; in other words, we compute
the costs under the assumption that v has size 1 unit.

3 The FLECKS algorithm

The FLECKS algorithm is presented in three parts in Pseudocodes. 1, 2 and 3, corresponding
to a writer, reader and server, respectively. The erasure-code parameter k is chosen as
k = n− f , where f is the desired server-fault tolerance. By assumption, f < n/2, and thus

2 In practice v is a file, which is divided into many stripes based on the choice of the code, various stripes
are individually encoded and stacked against each other. We omit details of represent-ability of v by a
sequence of symbols of Fq, and the mechanism of data striping, since these are fairly standard in the
coding theory literature.



K.M. Konwar, N. Prakash, M. Médard, and N. Lynch 12:7

Algorithm 1 Writer protocol in FLECKS: write(v) at writer w.
V ariables:
opnum, indicates the operation number for the writer. Initially 1.

2: put-data:
Compute coded elements c1, . . . , cn from v

4: Send (opnum, ci) to server si, 1 ≤ i ≤ n.
Wait for responses from k servers. Let the responses be {zi, 1 ≤ i ≤ k}.

6: Compute z = maxi zi

8: put-tag:
Let t = (w, z)

10: Send (t, opnum) to server si, 1 ≤ i ≤ n.
opnum+ +. Terminate after receiving k acknowledgments.

Algorithm 2 Reader protocol in FLECKS: read at reader r.
get-tag-data:

2: Request final tuple from all servers
Wait for responses from k servers.

4:
if all k responses have common tag then

6: decode the corresponding value
return the value.

8: else
compute the maximum received tag and call it treq

10: Let opnumreq be the corresponding opnum.
collect all coded elements corresponding to treq in list DL

12:
get-data:

14: Send (treq, opnumreq) to all servers.
Collect every response (t, opnum, c) into DL.

16: for received tuple (t, opnum, c), do
if ∃ k coded elements t in DL then.

18: decode the value v for tag t
send read-complete to all servers

20: return v
else

22: if t > treq then
send commit-tag(t, opnum) to all servers,

24: Continue to wait for more tuples.

we get that k > n/2. The algorithm relies on the notion of quorums during both phases of
the write operation, and the first phase of the read operation. The parameter k denotes
the size of quorum in these phases, and is at least a majority since k > n/2.

Tags are used for version control of key values. A tag t is defined as a pair (z, w), where
z is an positive integer and w ∈ W denotes the writer ID. We use T to denote the set of all
possible tags. For any two tags t1, t2 ∈ T we say t2 > t1 if (i) t2.z > t1.z or (ii) t2.z = t1.z

and t2.w > t1.w. The relation > imposes a total order on T .
Server-side Local Variables: Each server maintains the following local variables: a) a

List L ⊂ Tags × N × coded elements × {Pre, F in}, which forms a temporary storage for
tag and coded-elements pairs during write operations. The second entry indicates the
operation number (opnum) of the writer whose entry is stored. The last entry’s meaning will
be described further in the text. b) A finalized tuple (tf , opnumf , ci,f ). We refer to tf as
the finalized tag, opnumf as the finalized opnum, and ci,f as the finalized coded-element,
c) Op(w), w ∈ W, indicating the last opnum received from writer w, and d) the set R of
outstanding read requests. An element of R is the form (r, treq, opnumreq).

We now describe the write and read operations with the help of Pseudocode 1, 2 and 3,
and a high-level schematic diagram for the read and write operations are given in Fig. 2.

OPODIS 2019
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Algorithm 3 Server response protocol in FLECKS: at server si, 1 ≤ i ≤ n.

V ariables:
List L ∈ Tags× N× F256 × {Pre, F in},

2: initially empty.
Last Opnum received from each writer: Op(w), w ∈ W
Final tuple (tf , opnumf , ci,f ), initially (t0, opnum0, ci,0).
The set R of outstanding read requests.
An element of R is the form (r, treq, opnumreq). Initially, empty.

4:
put-data-resp received (opnum, ci) from w :

6: Op(w) = max(Op(w), opnum)
/*change from Fin to Pre for writing of algorithm*/

8: if ((w, z̃), opnum,⊥, F in) ∈ L then
L← L ∪ {((w, z̃), opnum, ci, P re)}

10: Do commit-tag((w, z̃), opnum)
else

12: Let tin = (w, tf .z + 1).
L← L ∪ {(tin, opnum, ci, P re)}.

14: Send tin to writer w.

16: put-tag-resp received (t, opnum) from w :
Do commit-tag(t, opnum)

18: Send ACK to writer w.

20: get-tag-data-resp request received from r :
Send final tuple (tf , opnumf , ci,f ) to reader r

22:
get-data-resp received (treq, opnumreq) from r :

24: R = R∪ (r, treq, opnumreq).
if tf ≥ treq then

26: send (tf , opnumf , ci,f ) to reader r.
Do commit-tag(treq, opnumreq)

28:
read-complete-resp request received from r :

30: R = R\(r, ∗, ∗).

32: commit-tag-resp(t, opnum) :
Let t = (w, z).

34: if ((t.w, ∗), opnum, ci, P re) ∈ L then
Update final tuple:

36: if t > tf then
(tf , opnumf , ci,f )← (t, opnum, ci).

38: Relay: Send (t, opnum, ci) to every r, (r, treq, ∗) ∈ R s.t. t ≥ treq.
Remove from list: L = L\{((w, ∗), opnum, ci, ∗)}.

40: else if opnum > Op(t.w)
For Future:L← L ∪ (t, opnum,⊥, F in)

Writer(   ) 

Round 1 Round 2

• Update 
• Remove from List
• ACK writer

(a) write operation.

reader 

Round 1 Round 2

reader 

• Register  reader
• Relay during 2nd round 

of write-operation

Writer

Round2: Finalize (t, c)

1/35

(b) read Operation.

Figure 2 High Level schematic overview of the write and read protocols of FELCKS.
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The write Operation. Assume that a writer w wishes to write (update to) value v. The
writer computes the n coded elements [c1, . . . , cn]. The write operation consists of two
rounds. At a high level, the first round is the temporary storage phase, where the server
adds the coded element into the list. Once the writer gathers that k servers have done so, it
starts the second round where a commit command is issued whereby the server updates the
finalized tuple using the entry in the list (if the entry is newer). A pictorial overview of the
write protocol appears in Pseudocode 1. We now explain the two rounds in detail.

In the first round put-data, the writer sends the pair (opnum, ci) to server si, 1 ≤ i ≤ n,
where opnum denote the writer’s operation number for the ongoing write operation. The
server responds via put-data-resp. Upon receiving the message, under normal circumstances
(the else part of the if statement), the server computes a new tag for this write operation.
This is obtained as tin = (w, tf .z + 1), where tf denotes the finalized tag stored by si, and
tf .z denotes the integer part of the tf . The server adds the tuple (tin, opnum, ci, P re) to
the temporary storage list L, and responds to the writer by sending tin. The if part of the
pseudo-code is to take care of the rare case, when the message from the writer arrives too
slow at the server, where the server has already learned by other means that the write
operation has already been committed by a quorum of servers. In this case, server si directly
commits the message (opnum, ci) in round 1. The commit step, under normal circumstances,
is part of the second round response of the write operation, and is explained below. The
writer waits to hear tags from k servers, and computes maximum z of the integer parts of
the received tags. This completes round 1.

In the second round put-tag, the writer w creates the new tag t = (w, z), and sends the
pair (t, opnum) to all servers. Upon receiving the message, a server performs, via put-tag-resp,
the commit-tag step. Under normal circumstances (the if clause of commit-tag-resp), as
part of the commit-tag-response, the server updates the finalized tuple with the entry in the
list corresponding to (t.w, opnum), if3 t > tf . The server also removes the entry from the
list. This ensures that for any successful write operation, every non-faulty server eventually
automatically garbage-collects the temporary storage entry in the list. The if clause of the
commit-tag-resp contains a Relay step that is used to server outstanding read requests. This
is explained as part of the read operation below. The else part of commit-tag-resp step is
executed during rare circumstances, when the server initiates the commit-tag step not as
part of the round 2 of the corresponding write operation, but learns from a reader that the
write operation has already begun the second round but this server has not even received
the first round message form the writer yet. In the case, the server adds an indicator entry
to the list L (using the forth Pre/Fin part of the entry), so that when the writer message
arrives in future, the server can directly proceed to commit the coded-element. Finally, the
writer terminates after receiving acknowledgments from k servers.

The read Operation. The reader during the first round contacts all the servers for the
finalized tuples, and waits for responses from k servers. If all the responses have the same
tag, clearly the reader can decode using the k responses, and the read ends in the first
round itself. Otherwise, the reader computes the maximum tag from among the tags received
as part of the finalized tuples, and we call this the request tag treq. The corresponding

3 It is possible that the local temporary tag for corresponding the entry in list is higher than the received
tag t. The reason is that the writer computes the tag by computing maximum among a quorum, and
not all the servers. This local temporary tag is simply ignored, and the finalized tuple is saved using the
tag received from the writer. The local temporary tag is used during the second round only to identify
the correct entry in the list that must be committed.
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opnumreq is called request opnum. The goal in the second round is to use the relay-technique
to let the reader decode a value corresponding to a tag that is at least as high as treq. A
pictorial overview of read protocol appears in Pseudocode 2.

In the second round, the reader sends the pair (treq, opnumreq) to all servers. Any server
that receives the message registers the read-request, as part of the get-data-resp by adding
the tuple (r, treq, opnumreq) to the set R of outstanding read requests. Further, if the
finalized tag is at least as high as the request tag, the server sends finalized tuple to the
reader. The goal of the reader registration is to enable relaying to the reader until the reader
gathers k coded elements corresponding to some common tag. The relaying (to outstanding
read requests) happens whenever the server executes the commit-tag-resp step for a pair
(t, opnum) such that t ≥ treq. Recall that commit-tag-resp step is executed as part of the
second round response of write operations. It may be noted that a server only sends those
(tag, coded-element) pairs that are committed, and thus form potential candidates for the
finalized tuple. In this regard, from the point of view of the reader, the temporary storage
list L can be thought as elongating the channel from the writer to the server such that a (tag,
coded-element) pair is ready for consumption by the server only after the writer executes the
second round.

As part of the get-data-resp step, the server also performs the commit-tag step for the
pair (treq, opnumreq). This is to handle the case where the writer crash fails half-way into the
second round for the write operation corresponding to (treq, opnumreq). In this case, only a
partial set of the servers would have performed commit-tag step for the pair (treq, opnumreq),
while the rest of the servers still hold the coded elements in the temporary storage list L.
The execution of the commit-tag step as part of the read operation is in spirit analogous to
the reader-write-back (read-repair) operation performed replication algorithms [4], and helps
complete a partially completed write operation.

The reader collects (tag, coded-element) pairs until it receives k corresponding to a
common tag, say tr, whose corresponding value is decoded. During this process, if the reader
receives a coded-element for a tag t > treq, then (while waiting for further pairs), the reader
sends out commit-tag(t, opnum) message to the servers. The purpose of this commit tag
is exactly the same as that of the commit-tag(treq, opnumreq) described above. It may
be noted that the utility of these messages only arise when the write corresponding to
(t, opnum) failed half-way. Under normal circumstances, these messages are simply ignored
by the server that has already seen the writer commit-tag message. In fact, as we shall see
in the experiments, even with read-write ratio of 1, the number of reads needing the second
round is a tiny fraction.

Finally, once the reader decodes, it sends a read complete message so that the servers
can stop relaying. Note that no responses are expected for these read-complete messages.

Handling Client Failures. While we show that FLECKS ensures linearizable executions
and wait-freedom availability corresponding to non-faulty client processes despite failure of
a reader or and writer process, we note that a failed reader/writer process introduces the
need for additional intervention for performance optimization. A failed reader can result
in servers relaying to the reader indefinitely. While it is definitely possible to stop relaying
algorithmically as in [14] via a gossip protocol among the servers, the protocol is redundant
for successful reads, and thus contributes high burden on the system from a practical point
of view. Alternate practical solutions include letting the server stop the relaying after a
certain timeout duration or threshold number relay messages. In fact, if point-to-point
channel latency is bounded by ∆, any read operation completes within 6∆ (see Section 4),
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independent of the number of concurrent writes. In the rare event when the relaying stops
even before the read completes (when the point-to-point latency bound is not respected),
one can always timeout the reader, and restart the read.

Similarly, a write that fails during the first round leaves entries in the temporary storage
list L that is not garbage collected by the algorithm. In our implementation, each server
additionally garbage collects any entry in the list that is older than a certain threshold time
that is set sufficiently high from a practical viewpoint.

4 Liveness and Atomicity of FLECKS

Liveness. Now we state and prove the liveness property of FLECKS. We recall that the
algorithm uses an [n, k] MDS code. We assume if a client has already started an operation
(say π), the (same) client will wait until π is completed before starting a new operation.

I Theorem 1. (Liveness) Consider any well-formed execution of FLECKS in which at
most f = n− k servers crash fail during the execution. Then, an operation corresponding to
a non-faulty client completes irrespective of any past, ongoing or future successful or failed
client operations.

Proof. Liveness of a write operation is easily verified from an inspection of the algorithm.
For a read operation, there is nothing to prove if the read completes in the first round
itself. The non-trivial part is proving liveness of a read operation that executes the second
phase. Let π be such a read operation corresponding to reader r. As in the algorithm, let
(treq, opnumreq) denote the message sent by the reader during the get-data phase. Without
loss of generality, let s1, . . . , sk denote the set of k servers that never fail during the execution.
Let Ti denote the point of execution when si receives the get-data request from reader r.
Let Tmax = max1≤i≤kTi. Next, let ti = si.tf |Tmax

, i.e., ti denotes the finalized tag stored
by server si at Tmax. Further, let tmax = max1≤i≤kti. The tags tmax and treq are not
necessarily ordered in any specific way. We now divide the discussion into the following cases:

Case a) tmax ≤ treq: In this case, we show that corresponding to every server si, 1 ≤ i ≤ k,
there exists a point of execution T̂i when si will send the message (treq, opnumreq, ci) to
reader r, unless si received read-complete message before T̂i. In this case, it is clear that the
reader gets k coded elements corresponding to the tag treq and thus, can definitely decode
the value corresponding to treq, after receiving the kth coded-element, unless the read is
complete even before. We consider two sub cases here:

Subcase i) Sever si did not receive put-data request with message (treq.w, opnumreq, ci)
until Ti: We know that the server si registers the read request at Ti (by adding the
corresponding entry to R). Further, by assumption the channel from every writer to
every server is ordered, and thus if the server has not received the put-data request with
message (treq.w, opnumreq, ci) until Ti, this means that si.Op(w)|Ti

< opnumreq. In this
case, the server adds the tuple (treq, opnumreq,⊥, F in) to its list as part of the execution
of commit-tag step of get-data-resp. Let T̃i > Ti denote the point of execution when si
receives put-data request with message (treq.w, opnumreq, ci). Such a point in the execution
necessarily exists because the tag treq is committed tag, and thus at least one server received
the put-tag request with message (treq, opnumreq) directly from writer treq.w. This means
that the writer treq.w necessarily completed the put-data phase in which messages were sent
to all n servers (since it already executed at least a part of the second phase). We recall here
our channel model assumption that once message is placed in the channel, it is eventually
delivered to the destination process, as long as the destination is non-faulty. In the current
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proof, the server si is non-faulty, and thus will eventually receive (treq.w, opnumreq, ci). This
completes our justification of the existence of the point of execution T̃i.

To continue with the proof, we note that during the put-data-resp action corresponding
to (treq.w, opnumreq, ci), server si finds that the write operation has an entry in the list
with Fin in the last field, and consequently executes commit-tag for the same write
operation. In this case, if si did not receive read-complete message until T̃i, it is clear
that server will relay the tuple (treq, opnumreq, ci) to reader r, as part of the execution of
commit-tag-resp(treq, opnumreq). Note that in this case, we have T̂i = T̃i.

Subcase ii) Sever si received put-data request with message (treq.w, opnumreq, ci) before
Ti: In this case, we first note that si.tf |Ti

≤ si.tf |Tmax
≤ tmax ≤ treq. If si.tf |Ti

= treq, then
the server sends the tuple (treq, opnumreq, ci) to reader r as part of execution Step 2. of
get-data-resp corresponding to message (treq, opnumreq). If si.tf |Ti < treq, then it is clear
that si never received commit-tag(treq, opnumreq) request until Ti, and hence it must be true
that the tuple (treq.w, opnumreq, ci) ∈ si.L|Ti . In this case, the tuple (treq.w, opnumreq, ci) is
relayed to the reader r as part of the execution of Step 3, commit-tag-resp(treq.w, opnumreq),
of the get-data-resp action.

Case b) tmax > treq: In this case, we show that corresponding to every server si, 1 ≤ i ≤ k,
there exists a point of execution T̂i when si will send the message (tmax, opnummax, ci) to
reader r, unless si received read-complete message before T̂i. In this case, it is clear that the
reader gets k coded elements corresponding to the tag tmax and thus, can definitely decode
the value corresponding to tmax, after receiving the kth coded-element, unless the read is
complete even before.

To prove this, observe that there exists a server sj ∈ {s1, . . . , sk} such that sj .tf |Tmax
=

tmax. We know that Tj ≤ Tmax, and hence sj .tf |Tj ≤ sj .tf |Tmax = tmax. If sj .tf |Tj = tmax
(trivially true if Tmax = Tj), the server sj sends the tuple (tmax, opnummax, cj) to reader
r as part of the execution Step 2 of get-data-resp. If sj .tf |Tj

< tmax, it is clear that
there exists a point of execution T̂j , Tj < T̂j < Tmax, where server sj executes commit-
tag-resp(tmax, opnummax) and changes the finalized tag to tmax. Thus, the server sj relays
the tuple (tmax, opnummax, ci) to reader r at T̂j , if the server sj has not yet received read-
complete response. In summary, we have shown that there exists one server sj among the set
of non-faulty servers that will definitely send the tuple corresponding to (tmax, opnummax)
to the reader. Once the reader gets the first coded element corresponding to the pair
(tmax, opnummax), since tmax > treq, the reader sends the commit-tag(tmax, opnummax)
message to all the servers.

It remains to be shown that every other server si ∈ {s1, . . . , sk}\{sj} also sends coded
element corresponding to (tmax, opnummax) to the reader. To show this, we once again
observe that si.tf |Ti

≤ si.tf |Tmax
≤ tmax. If si.tf |Ti

= tmax, it is clear that the server si
sends the tuple (tmax, opnummax, ci) to reader r as part of the execution Step 2 of get-
data-resp. Now consider the case si.tf |Ti

< tmax. The read request is clearly registered.
From the discussion so far, we note that the server si will eventually receive both the
put-data request corresponding to message (tmax.w, opnummax, ci), and also the commit-
tag request corresponding to message (tmax, opnummax). The put-data request is eventually
received since the writer has definitely completed the Phase 1 of the write operation, and we
know from the channel assumption that once a message is placed in the channel, it eventually
arrives at the destination. The commit-tag request is eventually received since as observed
above the reader sends the commit-tag(tmax, opnummax) message to all the servers (useful
if the writer failed during the execution of Phase 2 of the corresponding write operation).
Further, the algorithm is designed in such a way that the ordering of the arrivals of these
two messages does not matter; arguments (using the Pre/Fin indicator) similar to those
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used in Case a) can be used to show that the tuple (tmax, opnummax, ci) is committed at
the earliest point in the execution when both these messages are received. In this case, the
server si relays the tuple corresponding to (tmax, opnummax) to the reader, if si did not
get read-complete message yet. This completes the proof of Case b), and hence the proof of
liveness of a read operation corresponding to a non-faulty reader. J

Atomicity. Below we state and prove the atomicity property of the FLECKS algorithm.

I Theorem 2. (Atomicity) Any well-formed execution of FLECKS is atomic.

Latency Analysis and Storage Cost. Although FLECKS is designed for asynchronous
message passing settings, in the case of a reasonably well-behaved network we can bound
the latency of an operation. Assume that any message sent on a point-to-point channel is
delivered at the corresponding destination (if non-faulty) within a duration ∆ > 0, and local
computations take negligible amount of time compared to ∆. Thus, latency in any operation
is dominated by the time take taken for the delivery of all point-to-point messages involved.
Under these assumptions, the latency bounds for successful write and read operations in
FLECKS are as follows.

I Theorem 3. The duration of a write or a read in FLECKS is at most 4∆ and 6∆,
respectively.

Recall that read operations use the technique of relaying for completion, and a new
relay to the reader potentially occurs due to every concurrent write operation. While this
may happen, the above result guarantees a bound on the read completion time that is
independent of the number of concurrent writes experienced by the read.

Storage Costs. We now provide bounds on the total storage cost incurred by FLECKS under
the bounded latency model. The storage cost at any point in the execution is the total
amount of data that is stored in the servers. The cost at any server arises due to the storage
of finalized coded-element as well as the storage of temporary coded-elements in the list - we
account for both of these in our calculation. Costs contributed by meta-data are ignored
while ascertaining either storage costs.

Consider a system storing N key-value pairs, where each pair is implemented via an
instance of FLECKS. We assume using an [n, k] MDS code for each of these instances.
Further, every value is assumed to have the same size, and let us normalize it to 1 unit of
space. Let ρ denote the average number of writes per second experienced by the system,
where each write can happen on any of the N objects allowing for concurrency. Further let
θ denote the fraction of writes that fail (due to writer crashes). We know from the algorithm
that the coded elements from such writes can potentially linger around in the temporary list
until an external mechanism garbage collects them. Let τ denote the maximum duration for
which any entry is retained in the list by a server - we assume that after τ seconds of adding
an entry into the list, the server simply garbage collects the entry if it was not removed until
then (automatically by the algorithm). The following theorem gives the average storage cost
in the system in terms of the above parameters under the bounded latency model.

I Theorem 4. The average storage cost per key-value pair incurred by a system running
FLECKS under the bounded latency model is given by n

k

[
1 + (4∆+θτ)ρ

N

]
.
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Figure 3 (a) Average storage cost per object for ABD (5-way replication) and FLECKS using an
[n = 5, k = 3] erasure code is plotted as a function of number of writes per second with N = 104

objects. Even for one write per object per second, FLECKS significantly saves storage over ABD,
for similar fault tolerance. (b) The total bandwidth consumed by each reader after executing
50, 000 reads. (c) The average latency to encode or decode a value. The plots are for runs with
frequency of read and write is 1.

Proof. Cost at server s is given by Cs = Cs,1 + Cs,2, where Cs,1 is the cost due to finalized
entries, and Cs,2 is due to the entries in the list. The total storage cost C is then given by

C =
∑
s

Cs,1 +
∑
s

Cs,2 = N
n

k
+

∑
s

Cs,2, (1)

where Nn/k is the total cost in the system due to the finalized entries. Note that the total
number of servers in the system does not appear anywhere in our analysis. To estimate the
second term, we note that any point T in the execution, the average number of active writes
retained by the system is given by 4∆ρ. This follows because we know the from Theorem
3 that a write completes within 4∆ seconds, and on average there are 4∆ρ writes that
started within the time interval [4∆− T, T ] that remain active at time T . We also need to
count the number of failed writes retained by the system at time T . The average number of
failed writes retained by system at time T is given by τθρ, and the argument is similar to
the one for active writes. Thus, if

∑
s Cs,2 denotes the average cost due to the entries in the

list across all servers, then this is given by
∑
s Cs,2 = (4∆ρ+θτρ)n

k . Now, the average cost per
key-value pair in the system is given by C/N = n

k + (4∆ρ+θτρ)n
Nk = n

k

[
1 + (4∆+θτ)ρ

N

]
. J

An illustration of the storage cost bound is provided in Fig. 3 (a). In this example, we
assume an [n = 5, k = 3] code for a system storing N = 104 key-value pairs, where 0.01% of
writes fail, i.e., θ = 10−4. We fix ∆ = 100 ms and τ = 100 s, and these two numbers are
based on observations from our own experiments. The storage cost is plotted as a function
of writes per second in the system. For comparison, we also plot the storage cost that would
be incurred by a 5-way replicated system.

5 Implementation and Experimental Validation

Here we briefly describe our experimental evaluation of FLECKS against an optimized version
of the ABD algorithm. The algorithms (FLECKS and ABD) are implemented in Golang
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version go 1.6.3 with additional libraries for messaging (ZMQ [3]), erasure-coding (ISA-
L [1]) and stats collection (libstatgrab [2]). The software is deployed via docker containers.
For point to point communication among the processes, we use ZMQ 3.2.0 [3], which is a
distributed (without a centralized broker) messaging library built on top of TCP/IP sockets.
For the erasure-coding part of the implementation we use the open-source version of Intel’s
ISA-L [1]. We use the Cauchy matrix based MDS codes. We chose Galois field of size 256,
since GF (256) is fairly standard in the storage industry.

System Setting. We deployed each server and client process on a separate virtual machine
(VM) running Ubuntu Linux 16.04 LTS configured with 8 GB of RAM and a 4-core CPU.
The VMs were part on an OpenStack cloud platform. The bisectional bandwidth of the
platform is about 10 Gbps.

In our experiments we stored up to 10000 atomic objects, where each object is implemented
via an independent instance of FLECKS. Each server runs as a single threaded process
handling all the objects associated with that server. A client process can access any of the
objects. All data is stored in memory. For simulating crash failure of server process, we
simply kill the process.

Latency of read and write operations. In Fig. 1, we plot average latency for reads and
writes while accessing multiple objects (1, 10, 100, 1000 and 10000 objects) in executions of
FLECKS and ABD. For this scenario, we use 5 readers, 5 writers, and 5 servers. We compare
5-way replication ABD with FLECKS based on [5, 3] erasure-code. We notice that FLECKS
has substantially reduction in latency and this improvement is more prominent as the size of
payload increases.

Bandwidth cost for operations. Fig. 3(b) shows the total incoming and outgoing network
bandwidth (BW) consumed by a single reader client in FLECKS and ABD. With 50000
operations and 5-way replication ABD, we expect incoming BW to be about 250 GB when
object size is 1000 kB. From Fig. 1, we see that about 27% of that reads have two phases in
ABD, and thus outgoing BW, dominated by two phase reads, is around 0.27∗×250 = 67 GB.
In FLECKS, the incoming BW is dominated by 1 phase reads, and is about 1/3× 250 = 83
GB. Unlike replication, the 2 phase reads (roughly 3%) in FLECKS does not write-back
actual data, and hence outgoing BW of FLECKS is negligible.

Latency due to encoding and decoding. Fig. 3(c) also shows the contribution of erasure
code encoding and decoding time during a write or a read in FLECKS. Clearly, latency is
minimally affected by the erasure-coding operations, consistent with other recent works in
literature [20].

Server failures. To test the effect of server failures, we setup 1000 objects on 10 servers as
in the experiment. After deployment, we kill two of the server processes (chosen at random).
In agreement to our liveness guarantees the read and writes operations continue to complete.
For a replicated system, increasing the number of replicas per object increases latency of
operation.

Effect of Increasing Number of Readers. For a practical system, one expects to see a
near-linear scaling of overall read throughput against the number of readers. While we
see this behavior for both replication and FLECKS, we noted that FLECKS permits a
significantly better throughput scaling. The advantage can be directly attributed to the
lower read latency of FLECKS.

6 Conclusion

We investigated the feasibility of erasure-codes in atomic memory algorithms to reduce
storage cost, bandwidth costs and latency. With that in mind We designed FLECKS for
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asynchronous networks, that reduces, storage cost for the stored object and bandwidth cost
for the operation. FLECKS completes the read operations in just one round in the absence
of concurrent writes. FLECKS design is based on practical settings. FLECKS guarantees
liveness of operations in the present of any client crash failures and up to n−k server crashes.
We proved the atomicity and liveness properties of FLECKS. We implemented FLECKS
according to our algorithmic specifications. We performed extensive experiments on an actual
network environment. Future work will invoke extending FLECKS to allow repair of crashed
servers.
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