
U w-A A

kb> IL &

-septe 197

0:. 2

Unnumbered Blank Page

Note: This page is an unnumbered
blank used to preserve the printed
appearance of the author's original
document. It is the back side of the
previous numbered page.

FILE MANAGEMENT AND RELATED TOPICS

Technical Memorandum 12

(Formerly Programng Linguistics Group
Memo No. 6, 12 June 1970)

Robert M. Graham

September 1970

PROJECT WAC

-NMa-assehk tts Institute of Technology

Massachusetts 02139

AK

Camb ridge

Unnumbered Blank Page

Note: This page is an unnumbered
blank used to preserve the printed
appearance of the author's original
document. It is the back side of the
previous numbered page.

- -~

ACKNWEDGENT

Work reported herein was supported in part by Project
an -K ,I.T. research project sponsored by the Advanced

Ree,erch Projects Agency, Departumt of Defense, under Office
of %oi *ssearch Contract Monr-4102(01).

Note: Second International Seminar on Advanqaed
Programming System, The Hebrew University of
Jerusalem and Iltam Corp., Jerusalem, Israel,
August 1969.

Unnumbered Blank Page

Note: This page is an unnumbered
blank used to preserve the printed
appearance of the author's original
document. It is the back side of the
previous numbered page.

FILE MANAGEMENT AND RELATED TOPICS

Robert M. Graham
Massachusetts Institute of Technology

1. Introduction

The subject of these notes is file management. We will develop the

problems of file management within the environment of a large information

and computing service, often called a computer utility or general purpose

time-sharing system. We do this for two reasons. First, this environment

imposes the most severe constraints. Other environments are obtained by

relaxing these constraints. Secondly, large information and computing

services will become more and more prevalent in the years to come.

Let us first look briefly at those objectives of an information and

computing service which are significant to this discussion.

a. Continuous service

The system must normally run 24 hours a day, seven days a week. This

implies a high degree of reliability. It also implies that maintenance of

the system must be done on-line.

b. Multi-user

The system must be able to service a large number of users working on

diverse applications. This implies some sort of resource management in order

to parcel out the time and storage facilities to this large community of

users. In addition, since users may very well be competitive and even

non-competitive users may storage sensitive data in the system, protection of

user's privacy must be guaranteed.

c. Permanent information storage

The system must be able to store permanently as much information as the

user desires and be able to retrieve it undamaged at some future time.

d. On-line, conversational

The system must be able to provide on-line, conversational facilities

trca large number of the users at any given time. This implies some minimum

response time for trivial requests. In addition, it implies the need to be

E) 1969 Robert M. Graham

R.M. Graham: File Management

able to simultaneously process input and output from many terminals. Finally,

it implies some kind of multi-programming is necessary.

e. Facilitate cooperative efforts

The system should facilitate cooperative efforts within groups of users.

This implies that sharing is necessary and further, that sharing must be

controlled. In addition, it implies communication among users via the system

itself.

2. The Function of an Operating System

Most operating systems have two major functions, the management of

resources and provision of an interface between the user and the physical

hardware. Let us look briefly at both of these aspects of an operating system.

2.1. Resource Management

The resource management aspect of an operating system is based on the

observation that there are a number of resources in the system which need to

be managed. These are the processors, memory (core, drum, disk,...), 1/0

devices, and information (programs, data). The naive view taken in the

early days of computing was that the user should manage all of these resources.

The user approached the bare machine with whatever cards and tapes he needed

and the entire set of resources were his to do with as he pleased. He was

also stuck with the job of programming their management. Today we recognize

that this is not practical as a method of operation. Most operating systems

today take over a large portion of the management of these resources for

the user. Within the framework of resource management our view of file

management is that it includes the entire storage management, including the

management of core memory as well as file memory and information management.

It is important in thinking about resource management to keep separate the

two aspects: mechanics and policy. There is also great advantage in

separating these two aspects in any implementation. We have the goal of

implementing the system so that the system administrator is allowed as much

freedom as possible in choosing his allocation policy. By implementing

policy decision in a module which is separate from the mechanics of allocation,

which is not easily changeable, policy can be easily changed.

Page 2

R.M. Graham: File Management

2.2. The System As an Interface

In this section we view the system as a program which implements a

mapping between the user's conception of the world and reality. There are,

in fact, several levels of the user's view of the world, depending upon

his experience and his intent. One can easily distinguish the levels: a

casual user of an application subsystem, an ordinary progranmer using

PL/I, a subsystem implementer, and finally, a system programmer. A user

may have quite different conceptions of the system at the various levels.

As an example of the system implementing a mapping between the user's

conception of, the world and reality, we will see a file system in which

the user refers to files by symbolic names and has the illusion that

memory is homogenous. The reality is that memory is not homogenous. It

is composed of disks, drums, core, etc. References to files can not be

made symbolically but must be made by using device number, track number,

etc.

We also note that resource management may hold at each of the different

levels. Again the view is different depending upon the level. For example,

in the file system the user is able to create and destroy files. He has a

limit on the total length of all files which are charged to him. The limit

may be expressed either as the maximum number of words or as the number of

dollars which he may spend. He generally has no need to be concerned with

where the files are actually stored. The system does have to be concerned.

It maintains a record of free storage for the various devices and must find

a place to put the file when the user creates it. The system has an absolute

limit on the total number of words of information which may be stored on

any particular device.

3. A Model System

In this section we give an overview description of a model information

and computing service. This is not a real system nor even a simplification

of a real system. Rather, it is an amalgam of the author's knowledge and

experience in this area, sufficiently simplified so that the important

concepts involved may be clearly exhibited. It is very similar to several

existing systems, principally Multics and TSS/360.

Page 3

R.M. Graham: File Management

3.1. The User's Conception of the System

We first look at the user's conception of the system. When a user is

active he owns one or more processes. A process is, somewhat imprecisely,

a program in execution. Each process executes on a processor which belongs

exclusively to it as long as the process exists. A process may stop itself

to wait for the occurence of some event. At some later time, when the event

occurs, it starts executing again. A process can create and destroy other

processes. Processes may communicate with one another, i.e., send signals

and messages in a stylized, formal way. Since a process is a program in

execution and runs until it stops itself, the process may be visualized as

some sort of virtual computer. We are interested in two aspects of the

virtual computer: the address space which defines the set of information

which the process may reference, and the processor that the process owns

and executes on,which we call the pseudo-processor. The pseudo-processor

is implemented by the traffic controller and the address space is implemented

by the storage manager.

The user views the address space as a hierarchy of files. The user

may freely create new files and place them anywhere in the hierarchy. He

may add additional levels to the hierarchy. He may delete files which exist

in the hierarchy. Aside from some simple space allocation, he views memory

as being essentially unlimited in size. His references are direct, symbolic

references. These references are device and location independent and do

not require any open, read, or write calls. The address space of his process

is shared with other processes so that immediate sharing of information is

possible. Finally, the memory has automatic backup with the ability for

the user to retrieve any files which become damaged.

A user's process executes in a particular environment. He sees input

as a source and output as a sink. References to input and output are symbolic

and the reading and writing are device independent. Symbolically referenced

input or output must be attached to a physical device. However, the attach-

ment is dynamic and may be modified during execution. Each process is provided

with a push-down stack for use in calling other procedures and for data of

the type known as automatic in PL/I. Each process is also supplied with an

area for use by procedures for their private data, data which is called internal

static in PL/I.

Page 4

R.M. Graham: File Management

The user controls the system using a command language which includes a

macro-command facility. The user has mobility between interactive and

absentee user type service. Movement between the two types of service may

be done upon command and does not require reprogramming. All programs,

including the system itself, commands, and user programs are written on

the same base, i.e., they use the same language processors and they observe

the same conventions, such as, procedure calling sequences and data formats.

All programs, including the system, also execute in the same address space

of the pseudo-processor.

3.2. Reality

Let us look briefly at the reality of this model system. The hardware

has either a single or a very small number of processors which must be shared

by all the processes running in the system. It is the task of the traffic

controller to multiplex processes among the processors. Every process in

the system is in one of three states: running, ready, or blocked. A process

is running if it is actually executing on a processor. A process is ready

if it could run if a processor were available although none is available at

the present time. The user is unaware of this state of a process. It is

indistinguishable from the running state as far as he knows. A process is

blocked when it is waiting for some event to occur before it may proceed.

The user may be aware of a process in this state if the event is one for which

he is waiting. On the other hand, the event may be in response to a system

imposed wait, such as an input/output completion. In this case, the user is

unaware of the blocked state of his process.

The storage manager is responsible for implementing the address space.

The address space of the real processor in the system is a segment

address space. A hardware interpretable address is a pair of integers

consisting of a segment number and a location within that segment. In order

for a program to execute a reference to data, it must have an address of

this form. Hence, the job of the storage manager is to map files, which may

infact be stored on disk, into the hardware address space in order that the

process may reference them. In addition to transforming a symbolic reference

into a machine address, the system must be concerned with moving information

from the disk to the core memory in order for it to be referenceable.

Page 5

R.M. Graham: File Management

4. Management of the Hierarchy

The user's conception of memory is a hierarchy of files. This hierarchy

is a tree structure of files. The management of this structure is the topic

of this section. It is based on the concept of segment. A segment is a

symbollically named collection of information which is a basic unit of organ-

ization used by both the user and the system. A segment is a contiguous

set of words (or bytes), e.g., a table, a procedure, etc. A segment may have

internal structure which is interpreted by the user. However, the system

assumes no internal structure other than an array of words. An example of

a segment which is familiar to all of us is a book in a library.

4.1. A Directory

A hierarchy will be composed of segments. Segments and files are

identical. Segment seems more appropriate to us, however the term file

will still be used, especially when the referenced information is physically

stored in file memory (e.g., disk). Certain information is needed for

each segment. The following items are obvious now (more will be added later):

a. name

b. length

c. location

(Note: In this and the next few sections we will assume that core memory is

large enough to store, simultaneously, all the segments which exist in the

hierarchy at any given time. This will allow us to simplify the description

of the location and also permit us to state the memory allocation problem

in its simplest terms. We will later remove this assumption and see the

implications of the removal.) We will collect together all of this informa-

tion about all of the segments into a directory which contains one entry for

each segment. Further, no segment shall exist without a corresponding

entry in the directory. A directory is like a card catalogue in the library.

In fact, in some systems a directory is called a catalogue.

Once we have a directory there are certain operations that need to be

done to the entries in the directory. These operations, collectively, we

will call directory management. The manipulations of the directory required

are:

Page 6

R.M. Graham: File Management

a. Add an entry to the directory, i.e., create a segment.

b. Remove an entry from the directory, i.e., delete a segment.

c. Modify a directory entry, i.e., change the name of a segment or

change the length of a segment.

d. Copy information from a directory entry.

4.2. The Hierarchy

Now we have all the information about the segments assembled into a

single directory. Are there any disadvantages of such an arrangement?

The answer is yes. Two of the principal difficulties are name conflicts

and the size of the directory. The problem of name conflicts becomes very

severe in a system with a large number of users. Each user has his own

files and it may be very difficult, certainly irritating, for the user to

always have to scan a large list of names in order to find one which is not

already in use every time he creates a new file. The size of the directory,

which will be very large in the case of a large system, certainly complicates

the searching process in addition to slowing it down.

There is another disadvantage which is not quite so obvious: a single

directory does not contain any content related structure. Content related

structure is very convenient and desirable. We are all aware of the content

related structure of a library's stacks. In a large library with a large

number of books we find the stacks divided into sections such as, History,

Science,and Philosophy. History is further subdivided into the subsections

American History, French History, etc. The American History section might

be again subdivided into various subsections pertaining to the periods in

American history, such as Pre-Revolutionary, Reconstruction Era, etc. The

convenience of such an arrangement is very significant, particularly when you

know the subject but don't know the title. You need to scan all of the

entries on that subject. If no content related structure were present one

would be faced with the task of scanning the entire card catalogue in the

library, a monumental, if not impossible, task.

This type of structure is called a tree or hierarchy. There are many

examples of this type of structure both in life and in the computing field

(e.g., PL/I structures which are all hierarchies). We implement such a

hierarchy by having a number of directories which are related to each other

Page 7

R.M. Graham: File Management

in that certain directories contain entries pointing to other directories

rather than to data segments. In order to do this we need an additional

piece of information in the directory entry: type information indicaLing

whether the entry describes another directory or data segment. Figure 1

shows part of a typical hierarchy of segments for a large information and

computing system. Only the names of segments and directories in a given

directory need be unique. The same name may be repeated over and over

again as long as each time it is in a different directory. This resolves

the problem of name conflicts. On the other hand, how does one reference

a segment in such a structure? There is one method of reference which

allows completely unambiguous references. It consists of the concatenation,

separated by periods, of all the names of all of the parent directories of

the segment being referenced. We call such a reference an absolute tree

name. For example, in figure 1 the segment marked with * has the absolute

tree name ROOT.E.A.D, while the segment marked with ** has the absolute

tree name ROOT.E.A.C.R.A.

Another useful feature in such a structure is a cross reference.which

we call a link. This is an entry which points to another entry rather than

to an actual directory or data segment. This is a form of indirection. In

figure 1, ROOT.E.A.Q is a link. It names the same segment as does

ROOT.E.A.C.R.C. In order to implement a link we expand the type information

to indicate non-directory, directory, or link. For the purpose of easy

management all other information about this segment will be kept in the master

entry. Hence, in the link entry the length is not used and the location,

rather than being the physical location of the segment, will be the absolute

tree name of the master entry for the segment.

5. Physical Storage Management

We will continue to assume that we have a large enough core memory to

hold all of the segments in the hierarchy at any given time. There is still

a problem since we are not assuming that memory is large enough so that we

never need to reclaim any of the space occupied by segments which get deleted.

This is the simplest situation in which to frame the basic problem of storage

management or allocation. We will later address the actual situation which

is that of a small core memory backed up by drum, disk, and tape, i.e., a

Page 8

R.M. Graham: File Management

projects &
allotments

ROOT

AB

E user
system system list
utility math
library library ...

A user z us
directory di

A C project2

*

user project_1
library

special R S T
library

A BC
direct

er
rectory

tory segment

non-directory segment

V7 - link

Figure 1

Page 9

R.M. Graham: File Management Page 10

non-homogeneous, multi-level memory.

An address space is a set of reference labels, such as tuples, integers,

etc. A segment is a linear array of words (or bytes) with a symbolic name,

S. The address of a word in S is the pair (S,W), where W is the offset of the

word within the segment S. (S,W) is a reference label in the user's address

space (which we will call the hierarchy name space). Since a major task of

the file system is the mapping between the user's address space and the

hardware address space, it seems reasonable that the hardware address space

reflects, as closely as possible, the structure of the user's address space.

This is part of the motivation for the hardware address space being segment

oriented, with an address composed of a segment number and a word number.

We will see later other motivations for the segment addressing hardware.

Before we turn to an examination of the actual hardware addressing,

let us look briefly at how the memory will be managed. There are two major

techniques for memory management, contiguous allocation and block allocation.

We will discuss each in turn.

5.1. Contiguous Address Allocation

When we create a new segment of length N we need to find a space of

N contiguous words, starting say at location a. In referring to a word in

the segment we use the pair (a,W). The absolute address, A, of word W in

the segment is A=catW (see figure 2). In contiguous address allocation, as

with all methods of allocation, we need a table or list of the unused, or

free, locations in memory.

Directory Entry for S Memory

a) name =S 0

b) length = N

c) type = non-directory

d) location = am

segment S

(S,W)-*(c,W)-+ A=o+W A

C+tN

Figure 2

R.M. Graham: File Management

Our problem arises when N is larger than the length of any contiguous

block of free space, even though the total amount of free space is larger

than N (this being part of our original assumption). In order to get out of

this dilemma we need to move other segments in memory in such a way as to com-

pact the unoccupied memory in order to obtain enough contiguous space for our

new segment. All the users of segments which had to be moved must be told

about this since the a of each of these segments changed. All of their

address references will now need to be recomputed. Since memory allocation

is dynamic all references to segments must either remain continuously unbound,

being bound each time a reference is made or the references must be unbindable

so that they can be unbound and rebound whenever memory is compacted.

Let us be more precise about the particular algorithm that is being used

here. We will compact all of the segments at the lower end of memory.

Whenever a new segment is created we will assign it to the free space just

above the top of the used part of memory. Whenever a segment is deleted we

will just let it go, but remember that the space which it occupied is now

empty. When the free area is small enough that a segment about to be

created will not fit we must stop and compact all of the segments in memory.

It is interesting to look at the amount of time which will be spent in

compacting.

Let M be the size of the memory and F be the fraction of memory used,

then (1-F)M is the amount of free space. Suppose further that K is the

average number of references to each of the words in a segment before the

segment is deleted. Since there is at most one reference to memory per

time unit this means that every K time units one word will be deleted.

Assuming equilibrium one word will be added every K units. Hence, the free

area will be exhausted in (1-F)MK units of time. The time required to move

the information in the remaining segments is about 2MF (assuming two

references to move one word). The fraction of time spent in compacting is

then

compacting time 2MF _ F
compacting time+time to fill free storage 2MF+(l-F)KM F+(1-F)K/2

In a time-sharing system where there is heavy use of functions such as

editing, a reasonable figure for K is around 20. With K=20 and F=50%, we

see that the function of time spent compacting is 91. With K=20 and F=75%,

Page 11

R.M. Graham: File Management

the time spent compacting is 256,. The implication of this is that to

achieve a reasonable compaction time of less than 104 we have to give up

over half of the memory.

5.2, Block Allocation

In this scheme we divide memory into blocks of K words. A segment of

length N is then divided into B = +1 pages. Each page is stored in

a block, so the segment is stored in B blocks of memory. However, these

blocks need not be contiguous. In order to achieve this non-contiguity we

need a page map which contains the location of all the blocks in the segment.

A reference to a word in the segment is again a pair (a,W). a is the location

of the page map rather than the first word of the segment and W is the offset

of the word in the segment. To find the absolute address of the word in

memory we must find two integers I and J such that I is the base vaddress of

the correct block and J is the word number within the block. The absolute

address is then, A = I+J. The page number, in the segment, is P = [.
Then I is the contents of c+P, i.e., the page table entry for page P. Finally,

J = W-PK, i.e., J = W(Modulo K). See figure 3.

Directory Entry for S

a) S

b) N

c) non-directory

d) a

(S ,W)~(, W) -+(I , J) -;o A= I+J Z ~

Figure 3

Page 12

R.M. Graham: File Management

Two memory references are required to access a word using this scheme.

The first memory reference obtains I from the page table, the second memory

reference obtains the word of data which is being referenced. There are

two disadvantages to this scheme. The first is breakage. On the average

words are unused in the last block of each segment (in addition 1 extra block

is required as a page map for each segment). The second disadvantage is the

additional memory reference required to access each word.

5.3. Comparison of the Two Methods

The following chart is a summary of the two methods compared for

various properties.

Allocation Type Contiguous Block

Reference time (to one word) 1 2

Data movement Compacting required No movement needed

Waste space Up to 50% to reduce Breakage + Page Map

compacting time

User program reference Rebinding required on No rebinding needed

movement of segment

We note that with modern associate memory techniques the extra reference

required per word for the block allocation scheme can be significantly reduced.

In fact, hardware is available on a number of computers which make the block

allocation scheme much more attractive than the contiguous allocation scheme.

We now look at an example of hardware.

5.4. Segment and Paging Hardware

In this section we describe some actual segment and paging hardware. It

is the segment and paging hardware found on the GE645 computer. Other computers,

notably the IBM 360/67 have hardware which is practically identical to that

which is described here. A hardware address is a pair of 18 bit integers.

The first integer is a segment number, the second integer is a word number

within the segment. This allows 218 segments and 218 words in each segment.

The segment number is used as an index in a descriptor table. The word

number is further split into two fields. The high order 8 bits is the page

Page 13

R.M. Graham: File Management

number and is used as an index in a page table. The low order 10 bits are

the word number in the page specified by the first 8 bits. Figure 4

diagrams these relationships.

F-- I~-~t~ftiC~'i

iX'~j tL CT'k-

_____________ fa

Figure 4

The entry in the descriptor table contains the address of the beginning

of the page table. The entry in the page table contains the address of the

beginning of the block in which the page is stored. The absolute address of

the referenced word is then A = p+W#. Although the descriptor table and the

page table are required to be stored in core memory the mapping is applied

automatically by the hardware on each reference. The user and the system,

in general, may not refer to information in any other way, i.e., every refer-

enge to memory is a segment-page reference. Thus the hardware implements an

address mapping from a segment space consisting of segment numbers and

locations into a linear address space consisting of a set of contiguous

locations addressed by a single integer which is an absolute address. Note

r'c;' r

Page 14

(S #1 0 A -mr tv-lt

R.M. Graham: File Management

that when using this hardware the location stored in the directory entry is

the segment number, S#, rather than the base of the page table, c.

5.5. Core and Segment Management

We postulate two modules, core management and segment management. They

are responsible, respectively, for the management of core memory (i.e., the

linear address space) and the managment of segment numbers (i.e., the segment

address space).

1WI

Figure 5

The core manager has three entries: create, delete, and alter. The

create entry will find a sufficient number of blocks for a segment of length

N and a page table to go along with it. It builds a page table with entries

pointing to the blocks assigned to the segment and returns the address of the
page table. The delete entry will release to free storage the space pointed

to by the entries in a page table whose address is its argument. The alter
entry will either obtain or release space and alter the page table to reflect

Page 15

o-ev,tt- delett, -', 16', -

R.M. Graham: File Management

the change in length of a segment requested by the entry.

The segment manager also has three entries: create, delete, and alter.

However, at this level we are working with segment numbers rather than

absolute addresses. The create entry will call the core manager to obtain

space and a page table for the segment to be created. The next unused

segment number will be assigned to the segment. A descriptor for the

segment will be put in the descriptor table. It contains the absolute

address of the page table which is returned by the core manager. The segment

number of the newly created segment is returned by the segment manager to

its caller. The delete and alter entries take as arguments segment numbers

which are transformed by the segment manager, via the descriptor segment

contents, into the absolute address of a page table which is then used as

an argument to call the core manager to have the actual space released or

obtained.

6. Mapping Between the Hierarchy Name Space and the Segment Address Space

We now discuss the mapping between the hierarchy name space of tree

names and the segment address space of segment numbers. Stated in another

way the problem we are discussing here is: given the absolute tree name

of a segment, such as ROOT.X.Q.Z, obtain the segment number of that segment.

The problem conceptually is quite simple, in the sense that the segment

number for the named segment appears in the directory entry for that

segment. Hence, all we need to do is find the appropriate directory entry.

Let us review briefly the functions which the directory manager module

can perform for us. The directory manager has a number of entries. Each

entry always has one argument which is the segment number of a directory

upon which the function is to be performed. The functions are:

a. Create, which adds a new entry to the directory.

b. Delete, which removes an existing entry from the directory.

c. Alter, which modifies the contents of an entry in the directory

(such as changing the name or the length of the segment).

d. Copy, which copies the information from the directory entry.

e. List, which makes a list of all of the entries in the directory.

Page 16

R.M. Graham: File Management

Figure 6

6.1. Directory Search

Each directory is in fact a separate segment. In order to refer to any

information the hardware processor must have a segment number. Hence, in

order for any program, such as the directory manager, to refer to a directory

it must have the segment number of the segment containing the directory. This

recursive situation, i.e., the directory manager being the only program which

can find a segment number needing a segment number in order to find one, is

broken by having one fixed segment number in the system, namely, the segment

number of the root directory (ROOT in figure 1).

The algorithm then is as follows: We use an additional module called

search control which calls the copy entry of the directory manager. See figure 7

Given the name ROOT.X.Q.Z, search control calls the directory manager three

times in succession. On the first call the arguments are the segment number

of the root directory, which is known, and the name X. The directory manager

returns the segment number of X. The directory manager is then called with

the arguments, the segment number of X and the name Q. The segment number of

Q is returned. The final call to the segment manager has the arguments, the

segment number of Q and the name Z. The segment number Z is returned. Search

control is then able to return the segment number corresponding to the segment

name with tree name ROOT.X.Q.Z.

Page 17

R.M. Graham: File Management

.. ~.4 (~f i t ~ A

Figure 7

6.2. Linking of Procedures and Data

Any system which permits separately compiled or assembled procedure

segments to reference each other symbolically must provide a facility for

linking these separately compiled segments together, either before execution

begins or during execution. In order to achieve this linking at some time

other than compilation, the compiled procedure needs an appendage which contains

information regarding the symbolic names of the segments which are referenced

externally. If a reference is made by a procedure to another procedure segment

named, ROOT.LIB.TRIG, this symbolic name must be contained somewhere in the

output of the compiler.

We have been speaking so far about symbolic references to segments which

ultimately result in a segment number. Most programmers are familiar with

the concept of symbolic reference to locations within other segments. This

feature is provided in most loaders today. We see that basically the problem

is no different for this case then for the case where just the name of a segment

is symbolic. Our appendage produced by the compiler must also contain symbolic

information for any external references to locations within other segments.

-In-the previous example, we probably would be referring to a specific subroutine

within the segment ROOT.LIB.TRIG. Suppose it is the sine subroutine and

the symbolic name of the entry point within the segment is SIN. The complete

Page 18

R.M. Graham: File Management

source language reference might be ROOT.LIB.TRIG$SIN. This implies that

the appendage produced by the compiler which compiles the segment ROOT.LIB.TRIG

must contain a definition of the symbol SIN. Supposing that the entry point

were at relative location 42, the appendage would contain the pair (SIN, 42)

defining the symbolic location SIN. This concept of an appendage containing

the necessary information for symbolic references to external segments and

the definitions of symbols within the segment which may be referenced externally,

should not be new or strange to anyone familiar with the loaders found in most

modern operating systems.

As mentioned earlier there are two times at which linking can logical'.y

take place. One is before execution and the other is during execution. The

typical loader in most systems does pre-execution linking. All of the

segments which are needed to execute the program are linked together before

execution begins. In many systems this is called loading. In earlier days

the loader usually lead directly to execution. Recognition that the function

of linking a separate process which need not lead to immediate execution can

be seen in the terminology used in OS/360 where the loader is now called the

link editor.

A loader operating in the environment which we have been discussing would

build a table containing each of the symbolic references. Search control would

be called once for each name in the table to obtain the segment number of the

segment. This segment number would be added to the table entry for the

symbol. Using the known conventions for the location of the appendage to

the segment, all of the symbolic locations within segments would be looked

up in the appropriate segment's appendage. These definitions would also be

entered into the symbol table. Finally, all symbolic references would be

replaced by the appropriate segment pointer, i.e., by a pair (S#,W).

Pre-execution linking has a number of disadvantages which have motivated

the dynamic linking facilities which are available in the new, large informa-

tion and computing systems like Multics and TSS/360. The major disadvantages

of pre-execution linking are:

1. Many segments which are never used may have to be linked together in

a large complicated program complex.

2. In the system of the type we are discussing it is difficult, if not

impossible, with the tempo of interactions and the continuous

Page 19

R.M. Graham: File Management

progression from command to command to determine when execution

begins and when it ends. In fact, it is impossible to subdivide

an interactive conversation program into loading and execution

phases in any meaningful way.

3. Names of segments which are to be referenced by a procedure are

often not known until after execution begins. In fact, they may

be input data to the program which is executing. Consider, for

example, an edit program or a compiler. These programs do not

know the names of the segments they are going to refer to until

they begin execution.

Dynamic linking (during execution) is not conceptually more difficult

than pre-execution linking. A procedure which is going to be dynamically

linked is fixed by the compiler so that the first time it attempts to make

an external reference, a fault will occur. The appendage which includes

the symbolic name of the external reference is included along with the procedure

at execution time. The fault handler for the fault which occurs when the

first reference is made, establishes the link at that time. Hence, this

fault handler is called the linker and the fault is called a link-fault.

The linker, using information given to it by the hardware when the fault

occurred, is able to work its way back to the procedure which caused the

fault and find the symbolic information necessary to define the external

reference. Using this information, i.e., the tree name of the segment being

referred to, the linker calls search control to obtain the segment number of

the referenced segment. The linker than replaces the faulting reference with

the appropriate segment pointer and restores the machine conditions. Execution

then continues at the point the fault occurred.

6.3. Local Names

It is highly undesirable to require the user to always use absolute tree

names in writing his source language program. The user is usually working

in a well defined context within which local names can easily be interpreted.

Ear example, the names of any referenced segments which are not in his user

directory should be interpreted as system library procedure names.

Let us modify the linker so that it is able to deal with local names.

In order to achieve this we need to interpose between the linker and search

control a module which expands the local name into an absolute tree name.

Page 20

R.M. Graham: File Management

This module uses as its principal data base a set of context rules which are

used to transform local names into absolute tree names.

VN\(kV~Q

/k) I L 4se A I k- 4I'-C d\,

':)V%~ r~i

Figure 8

The simplest kind of context rule is simply a directory name in which to

look for the local name. Thus a set of context rules would be a list of

directory names. The mapping in this case is quite simple. The first directory

name is prefixed to the local name, making an absolute tree name. This tree

name is passed to search control in an attempt to find a segment with that

name. If search control is not successful, the next directory name on the

list is prefixed to the local name. Search control is again called to see if a

segment can be found with the new name. This process continues until the

list is exhausted. If no segment was found it is assumed not to exist and

appropriate error action is taken. An example list of context rules begins

with the name of the working directory. This is a directory declared to the

system by the user to be his home directory. It is usually his user directory

or one of his project directories. The second directory on the list would

be the system utility library directory. Succeeding entries on the list

might be other system library directories. The user must be able to control

Page 21

R.M. Graham: File Management

this list of context rules; reorder them, add to them, or delete from them.

For example, the user may wish to include several of his own private library

directories between the working directory and the system library directories

on the list. The definition of context can be made more flexible by allowing

conditional rules, iteration, etc. In other words, the context rules can be

expressed as a program in a simple language.

6.4. Local Associative Memories

In any complex of programs it is highly probable that more than one

procedure will refer to a given segment. Each such reference initially

requires the invocation of the linker, an application of the context rules,

and a number of directory searches. It is possible to avoid these additional

directory searches and context rule applications if the linker maintains a

table whose entries consist of local names and their corresponding segment

pointers. The linker then searches this table for a local name before

calling local name expansion. If the local name exists in this table there

is no need to make any further calls. If the local name can not be found in

the table its segment pointer is obtained by calling local name expansion.

The local name along with its segment number are then entered in the table.

We call this table a local associative memory since it is used in essentially

the same way that the hardware associative memory is used in remembering

references to segment numbers and page numbers. The table may be of limited

size and infrequently referenced entries can be deleted to make way for other

entries which are more frequently referenced. Thus.the most referred to

local names will be in the table. A future reference to a local name which

gets deleted from the table will work correctly but will just take a little

longer, as long as it did the first time it was ever referenced.

There is another place where we can use this technique, in search control.

Search control can maintain a table whose entries are tree names with their

corresponding segment numbers. We can make a significant gain in efficiency

by using this table if we change slightly our search algorithm. We change

to a recursive type search, i.e., we work from right to left in the tree name

rather than from left to right as was previously done. The rule for a recur-

sive type search is: peel off the rightmost component and see if what remains

is ROOT, if not, call search control. This is a recursive call to get the

Page 22

R.M. Graham: File Management

segment number of the prefix which we have retained. The prefix which we

have retained is, in fact, the name of the directory in which we expect

to find the segment whose name is the rightmost component. Applying this

algorithm to our previous example we would make in total three calls to

search control. The original call would be a request for the segment number

of ROOT.X.Q.Z. The second call is by search control to itself requesting

the segment number of ROOT.X.Q. The third call is again a call by search

control to itself requesting the segment number of ROOT.X. This is the last

call since we are left with ROOT when the rightmost component, X, is

removed. The segment number of root is built in. Now we are able to search

the root directory for X.

Seauence of calls to and

Ist (original) call

2d call

3d call

return from 3d
d

return from 2

return from 1st

Contents of associative table after above sequence of calls

tree name segment number

ROOT ROOT# 4- this is a per

ROOT.X X+

ROOT.X.Q Q+

ROOT.X.Q.Z Z#

manent
entry

Figure 9

The recursion begins unwinding at this point and ultimately we reach

thS segment number of Z. After this search is performed our table will

contain the entries shown in figure 9. If search control consults this

table before calling either itself or directory manager, any subsequent calls

to search control for the segment number of ROOT.X.Q.Z will produce Z#

returns from search (for tree name ROOT.X.Q.Z)

input argument segment pointer returned

ROOT.X.Q.Z

ROOT.X.Q

ROOT.X

Page 23

R.M. Graham: File Management

immediately. No further calls are required since ROOT.X.Q.Z will be found

in the table. In addition, we also gain when search control is called to

search for the segment number of any segment in any directory which has

previously been referenced. For example, a call to search control for the

segment number of ROOT.X.Q.W would proceed as follows. ROOT.X.Q.W would

not be found in the table, the rightmost component would be removed and

ROOT.X.Q. would be found in the table. Thus, we obtain the segment number

of the directory in which to search for W immediately without any further

calls.

The use of software local associative memories is fairly common in a

large system such as our model. It should be emphasized that the use of

local associative memories adds no new facilities. They are used

strictly for the purpose of greater efficiency. Often the use of such a

feature is not explicitly realized although it is used. Hence, the

mechanism of the software associative memory is confused with the concepts

which are being implemented. Sometimes it is not clearly recognized, even

by the designer of the system, that the capability of the system would not

be restricted even if a much simpler but less efficient algorithm were used.

We are not impling that systems should be implemented without the use of

such techniques. However, it is our feeling that systems should initially

be designed without the use of such techniques so that the designers can

focus clearly on the essential facilities to be provided by the system.

Questions of local optimization should be treated later when they do not

confuse the fundamental structure or fundamental problems that the system has

to deal with.

7. Controlled Sharing of Segments

In stating the objectives of our model we saw that they implied the

necessity of being able to share information which is deposited in the system.

In this section we explore the implications that this ability to share

information has on the structure and working of the file system. We further

eamine how sharing of information can be controlled so that the privacy of

each user can be guaranteed.

Page 24

R.M. Graham: File Management

7.1. Basic Requirements

First we state two fundamental requirements in order for any control of

access to information to be effective.

a. Authentication of user identity. It is absolutely critical that the

system be able to authenticate the identity of any user who approaches the

system. If one can approach the system, pose as another user, and be

accepted by the system as that other user, then the system can not enforce

any effective control on access to information in the system. An effective

method of authenticating the identity of the user, which is secure enough in

most cases, is for each user to be assigned a password which he and he alone

knows. If he is unable to supply the password the system will not accept

him as who he says he is.

b. Restriction of the use of hardware instructions. It is absolutely

necessary that certain of the hardware instructions be prevented from being

executed in user programs. The hardware must have the equivalent of a

system mode and a user mode. In system mode all instructions may be executed.

In user mode only a subset may be executed. If a user is able execute all

of the instructions then he can get any of the information stored in the

system simply by programming the proper sequence of input/output commands

for the disk. These instructions must be blocked from execution in user

mode. In system mode all instructions are executable because the system

must be able to read and write information belonging to the user on his behalf.

Additionally, there must be some hardware partitioning of memory so that the

user is unable to modify the system programs themselves. Otherwise he could

make changes in them which would allow him to circumvent all of the other

protection features in the system.

7.2. Software Considerations

For the purpose of controlled sharing we are going to let the owner of

a segment designate who may share this segment. In addition, he specifies

what kind of access is permitted for each of the users who may share it.

(Note: If the owner himself is included in this access specification he has

some self protection.) The kinds of access permitted and specifiable are:

read, write, and execute, or combinations thereof.

Page 25

R.M. Graham: File Management

Additional information must be added to each directory entry. The

additional information required is:

a. Identification of the owner.

b. An access control list (ACL).

The access control list is a list of pairs of the form (userid, access).

The user id is either the name of an individual or the designation of some

group (which may be everyone). The access is either read, write, execute,

or a combination thereof.

Each process has.a small private data base which contains information

which is peculiar to that particular process. The information includes

such things as: who owns this process, the time logged in, the account

number which charges are to be charged against, etc. In a sense, these are

the machine conditions of the pseudo-processor. Whenever the file system

is asked to reference a file the access control list in the directory entry

is checked. If the owner of the process which is currently executing, and

hence making the request, is not on the list, or is not included in one of

the group designations on the list, then the file system will refuse to

manufacture a descriptor for the segment.

7.3. Hardware Considerations

This leads us to the point where it should be clear that in order to

inforce access control some hardware help is required. First, since the

hardware cannot reference any information except by a segment addressing,

if there is no descriptor for a segment in the descriptor table a process

is unable to make any reference to the segment. In order to inforce the

type of access, once it is known that access is permissable, we need some

additional information in the descriptor. The additional information

needed is the kind of access (i.e., read, write, or execute) which the referee

may have to the segment. By using different descriptors, different users may

access the same segment, but with different privileges. In the diagram the

owner has read and write access and the sharer has only read access. The

abpolute address in the two different descriptors points to the same place,

namely the page table for the segment. Notice also that we have added a

length field in the descriptor so that the hardware may prevent references

to non-existent pages. To summarize, each process then has its own private

Page 26

R.M. Graham: File Management

descriptor table, which is pointed to by the descriptor base register. As

a result of this each process can have different descriptors, each process

may have different access to the same segment, and each process may have

different segment numbers for the same segment (which aids allocation of

segment numbers). Finally, a process may not access any information other

than that which is reachable through descriptors and the descriptor table,

even when using machine language instructions.

C1UL C e C~c V 41-N- z

Figure 10

7.4. Immediacy of Sharing

There are two degrees of immediacy of sharing. When designing a system

such as our model we must decide which of the two degrees will be permitted.

The first degree is to interlock the entire segment while any user is modifying

it-for the entire duration of his modifications. Anyone attempting to read

the segment will have to wait until the segment is released by the writer. In

order to capture a segment for writing the writer has to wait until all users

who are reading the segment have released it. The second degree is one in

Page 27

R.M. Graham: File Management

which interlocking is left upt to the users. This degree of immediacy is

sufficiently broad so that the previous degree is a special case of it. If

the previous choice is made, then one does not have the alternative to

implement, as part of the system, the second degree of immediacy. We

choose, as was implied above, the second degree. This is made possible

because of the ability to have multiple descriptors for the same segment.

The system will of course supply some utility routines to assist the user in

managing the interlocking of portions of data segments. However, no

presumption is made by the system that one particular interlocking discipline

is better than another.

7.5. Sharing of Procedures

The sharing of procedures has further implications which we now explore.

The ability to have pure procedures (i.e., ones which do not modify themselves),

especially when they are system procedures or popular commands, gives a rather

significant payoff in terms of space saving. It is a fact, however, that most

procedures need some private data in order to function properly. One common

example of private data are links to external segments. Recall that the

environment of a process provides a private data area for procedures. It is

to be expected that if several processes are sharing the same procedure

segment the private data required to make that procedure segment function

properly for each process will be different for each process. Hence, one

implication of the sharing of procedures is that the private data area will

have to be duplicated for each distinct process sharing the segment.

The private data area in the environment of the process is then private to

the process, as is the stack and the pseudo-processor machine conditions which

were mentioned earlier.

The information needed to make up the links which are part of the private

data area are an appendage to the procedure and we wish to have only one copy

of the procedure. Hence, the linker is faced with an additional chore. When

establishing a link to a segment for a first time the linker must make a copy

ofL the appendage, which is a template of the procedure's private data area,

into the private data area of the process. The private data area of the process

is sometimes called the linkage segment. The standard calling sequence used

to call procedures is designed to maintain a hardware base register which

Page 28

R.M. Graham: File Management

always points to the appropriate private data area for each procedure while

it is executing. In addition, the standard calling sequence also maintains

a base register pointing to the stack area available to the executing

procedure.

S.- ref) ~ -s

~ hL'-

I ~ ~

I '.41 L~(~¶~(~'$.. ri c-,

-~ - - I - - -~

~.. t'-~ k
.1 ,At'rI

7;9,

da v tr

I!

- ?'~-~~ A

-W

le."~ I' otcc.

t ail___ i%_-._P i

K

I ___

v r

CL

-OX

.4 j'1*

Figure 11

Page 29

R. M. Graham: File Management

8. Paging

So far we have assumed essentially unlimited core memory. We have proceeded

a long way in our discussion of the problems of a file system: management of the

hierarchy, mapping between the hardware segment address space and the hierarchy

name space, and several other topics. We now descard the assumption that memory

is essentially unlimited and examine the consequences of core memory being quite

small. Remember that information must be in core memory in order for the processor

to use it. Thus, the file system, as we view it, must be concerned not only with

the mapping between the hierarchy name space and the segment address space, it

must also be concerned with the movement of information between the file memories,

such as, disk, drum, etc., and core memory where it can be directly referenced.

One simple, straightforward solution to the problem of a limited amount of

core memory is to restrict the user address space to be only that size and force

the user to reuse the addresses. This forces him to program all of the memory

allocation. This has been the common solution in the past. Systems which choose

this solution usually have a feature called chaining or overlays. All these

facilities do is to help the user manage core memory, especially the interchange

of programs between the core memory aid the disk or drum. These facilities

typically provide no help in the management of the program's address space. We

reject this solution for the following reasons:

1. The user has to be concerend with the details of address space managemenr.

Our philosophy in building ever more complicated systems is to provide more and more

services for the user, making the system more convenient for him to use and re-

lieving him of concern for problems which are not basically part of the problem

he is seeking to solve.

2. The user will probably not do an efficient Job of memory allocation.

In fact, in a time-sharing, interactive environment the user cannot do a good job.

Given the frequency of interaction, the resultant rapid movement of user informa-

tion in and out of core memory is required in order to achieve a suitable response

time. In this situation the user is unable to predict when or how to move his own

information around. The system must work with a global view of all activity in

the system.

3. All users can benefit from the sophisticated memory management algorithm

which the system designers are able to implement. Further, they need not pay the

price of having copies of their own management algorithms which, although they may

Page 30

R. M. Graham: File Management

be equally sophisticated, will not be significantly better.

4. If the system is responsible for the management of all memory, then when

the size of memory, the type of memory, or the file memory devices are changed or

modified in such a way that a change in tactics is required, only one program,

namely the system memory management program, need be changed. The user programs

will continue to execute unaware of the change having taken place.

8.1 Models of Program Behavior

We are going to discuss some memory management techniques and some of the

considerations that go into the design of a memory management algorithm. First,

we look at two models for program behavior. In order to design a reasonable

memory management algorithm we must have some model, some idea of the behavior of

programs in general. For the purpose of discussing the two models, let us suppose

that (N-n) words of bulk (B) memory are available with access time (to an individ-

ual word) T and n words of local (L) memory are available with access time t, with

t<<T and a<<N.

Our first model is one of completely random access. We assume that the

probability that any given word will be referenced next is the same for every

word in memory. We are interested in two probabilities: the probability that

the next reference will be in local memory, which is P - and the probabilityY L N
that the reference will be in bulk memory,which is PB = - . We see that the

B N
average time for a reference is T - - t + (1 - S) T. Figure 12 shows T

ref N 14 ref
plotted as a function of the size of the local memory while the total memory

size is kept fixed.

LA 'V.'

Figure 12

Page 31

R. M. Graham: File Management

We see that Tref is largest when all of the memory is bulk memory and smallest when

all of the memory is local memory. Let us look at the case for a typical system

existing today. Common sizes are, n - 128K (approximately 10 5) and N - 10 million

(approximately 10). Common access times are t - 1 microsecond (approximately

10-6) and T - 10 milliseconds (approximately 10- 2). Using these values we see,

T - 10-6 + (1 - 0 9.9 milliseconds
ref 10 10

a rather high average reference time.

In this model there is no corrolation between successive references. In

general this is never true for an actual program, hence, this model represents the

wordt possible case. Any program which executes very long has loops in the program.

Furthermore, instructions usually follow in sequence, thus there is a high proba-

bility that, after having referenced one word in a procedure, the word in the

next sequential location will be referenced next. A loop tends to concentrate

the references in a small area of the program for some substantial period of time.

Another property is that many data manipulations deal with contiguous blocks of

data, e.g., matrix and vector operations, table searching, and text editing. This

again increases the probability that the next reference will be to a word which

is contiguous with the previously referenced location. Again the references over

a period of time will be concentrated in some area. Thus, both procedure and

data tend to concentrate references in some small area or areas.

We state this fact of program behavior as the principle of locality: The

next reference is most likely to be to a word near one which has recently been

referenced. Let At be some small time interval. Figure 13 shows the frequency

of reference plotted against memory location. For the random model we see the

frequency of reference is evenly distributed across the entire memory with very

little variation. The actual situation is more like the second graph in which

there are a number of peaks which are areas of frequent reference.

Random Model

0 location N

Actual Situation

0 location

Figure 13

Page 32

R. M. Graham: File Management

In the second model we collect all of the words with a high frequency of

reference into the local memory. We further assume that k references to local

memory are always followed by one reference to bulk memory. Our formula for

the average reference time is

T • kt+lTTref k + 1

In figure 14 we have plotted Tref against the size of the local memory for

At - k+l. We notice that the curve for n - 0 starts at T and slopes down quickly

to an average reference time of just slightly longer than t when M - k. Increas-

ing the size of the local memory beyond k decreases the average reference time

very little. We conclude from this that if the local working memory is large

enough to hold the frequently referenced information then little gain in over-

all average reference time is achieved by making substantially more memory avail-

able. We define the working set to be the collection of words which are referenced

during a time period At. Thus, we see the average reference time is quite de-

pendent upon the working set being small enough to fit into local memory or

alternatively, the local memory being large enough to hold the working set. Of

course the working set changes with time as the reference pattern changes. Thus,

in order for our storage management to be effective we must design the algorithms

so they adopt to changes in the working set insuring that on the average the

working set is in local memory. This is the problem in paging; namely, when are

pages brought into local memory and what pages do- we push out to make room for

them. Given a particular model of program behavior it may be possible to find an

optimal algorithm for making these decisions based on that model. However, at

present no single model seems to be good enough.

Figure 14

Page 33

R. M. Graham: File Management

8.2 Paging Techniques

One technique which does work rather well in practice is demand paging. The

system assumes that the working set is contained in those pages which were most

recently referenced by the process. Hence, whenever a new page, one that is not

currently in memory, is referenced it is added to the working set: that is, it

is paged into local memory. No attempt is made to page in any page before it

is referenced; this is because there is no reasonable way for the system to pre-

dict which pages will be referenced in the near future if they have not been

referenced in the near past.

In order to make this kind of prediction the system would have to know more

about the structure of the program, particularly with respect to the flow of

control through the program. It might be possible to make this kind of prediction

in the future with some assistance from the language processors. If a language

processor were able to construct a skeleton of the control flow and include with

it information about the frequencies of loops and the transitions from one part

of the program to another, it is conceivable that this would be sufficient for

making valid predictions. However, flow analysis of existing languages is at

best difficult. Thus, it seems unwise to build a system around this predictive

paging decision without a great deal more study of program behavior models.

Demand paging is a page-in technique. As a companion of any page-in algorithm

there must be an algorithm for replacement (or page-out). A replacement algorithm

must decide which page to put out when more space is needed in local memory.

Using the working set concept, we assume that page which was referenced longest

ago is no longer part of the working set. It is the first candidate for paging

out. Again without more information about the program's behavior this is proba-

bly the best that can be done.

Within the framework of a system with many interactive processes, other

considerations for paging in and paging out may actually be more significant

than the question of which page to page in and which page to page out within a

single process during its execution. In our model with many users and many

processes simultaneously active, it is expected that control will be uwitched

rather rapidly from one process to another; hence, the processes are in competi-

tion for local memory, each needing enough local memory to store its working set

if it is going to execute rapidly enough to respond in a reasonable time. The

local memory must be large enough to hold all of the working sets of all of the

processes which are currently being executed by any of the processors. Further,

it must be able to hold the working sets of all processes which are candidates

Page 34

R. M. Graham: File Management

for executing next. The local memory should be able to hold the working set of

all the processes that are on the ready or running lists. Otherwise the follow-

ing problem arises.

A process needs a new page. While waiting for the page to arrive it goes

blocked. The traffic controller now attempts to execute the next process on the

ready list. If this process's working set is not in core, the system will

have to page in a page before being able to execute the process. In general,

the system will need to page out a page of the process which it just blocked

in order to make room for the new page of the next orocess. While the new process

is waiting for a page of the old process to be paged out and its page to come in,

the required page of the old process arrives. The old process now resumes execu-

tion, but, immediately references the page which just got paged out. To make

room for this page, a page of the new process gets paged out. Around and around

we go. This is thrashing. It can be avoided only by having enough local memory

to hold the working sets of all the processes that are on the ready and running

lists.

What about processes that are on the blocked list? There are three considera-

tions here. First, if it's blocked waiting for a page to come in we certainly

don't want to put out any of its pages unless we absolutely have to. Second,

if the process is blocked waiting for typewriter input we know the typewriter

response is relatively slow, in the order of seconds, even if the user at the

typewriter console can react very fast. All pages belonging to this process that

are currently in local memory are excellent candidates for page-out since they

will not be needed for some time. Third, when a process interrupted by the system

because its time slice was used up, is restarted its working set is probably the

same working set that it had when it was arbitrarily terminated by the system.

Hence, some prepaging at this point is reasonable and the working set should be

restored to local memory before starting execution of the process.

Two further observations should be made. There are some pages that can not

be paged-out at all, e.g., the pages containing the paging procedures themselves

and interrupt handlers. Secondly, pages which are unaltered need not be written

out. In other words, page-out of a page which has not been modified since it was

paged in consists of returning the block to the free storage and marking the page

as having been paged out. The next time the page is referenced the page-in

consists of rereading the original copy.

Page 35

R. M. Graham: File Management

8.3 Hardware Considerations

In order to implement the techniques of the last paragraph, we need to expand

the page table word to include some additional fields. The page written field is

set by the hardware whenever a store operation refers to any word in the page.

The page reference bit is set by the hardware whenever a reference of any kind

is made to the page. The page missing bit is set by the software to indicate that

the page is no longer in core. The field which contains the absolute address of

the page when it's in core is used to indicate, indirectly, where the page was

stored in secondary memory. Its contents will be used as an index in the file

map for the segment. The file map is a table indicating the location of each

page in secondary storage.

Any attempt to reference a page when the missing page bit is set causes a

fault. The fault handler is the paging program. The paging program, using the

fault information finds the information describing the location of the page in

secondary storage, finds a free block in core, and sets up a request to read the

page into that block. Once the request is started, the process is blocked until

the page arrives so that some other process can use the processor. When the process

awakens the page will have been read into its assigned block. The pager then puts

the absolute address of the block into the page table word and clears the reference

and written bits. Control is then returned to the place in the program where the

page fault occurred.

Ce) C'r YrC 1- e e O ~ '

Figure 15

8.4 Memory Swapping

We mention at this point an alternate method of memory management which has

been used in several systems in the past and which still receivesconsiderable

support: the complete swap. In the complete swap, all of the program and data

for a user is swapped out whenever his process stops execution and all of the

program add data for the next user is swapped in before he starts execution.

Page 36

R. M. Graham: File Management

This method enjoys the advantage that it is very simple to implement. On most

of the older hardware it is also rather slow, however, some of the modern hard-

ware alleviates this problem with special design which makes swapping very ravid.

The method suffers two significant disadvantages:

Much more information is moved than is needed to be moved. With the

paging algorithms described above it is clear that a large part of the data and

program in a large program complex is not in memory much of the time and is never

read into memory except when it is needed. The counter argument in favor of the

complete swap is that this movement of redundant information really costs nothing

since the entire swapping process is so fast. This may be the case in terms of

speed if the hardware file storage devices are sufficiently fast. However, this

probably results in higher cost for the hardware. The second disadvantage is that

the complete swap method makes flexible sharing impossible or difficult enough so

that it is practically impossible. Flexible sharing depends uron the users'

physical information being fragmented into small enough entities so that they can

be moved around at different times rather than beine welded together into i single

piece all of which must be moved at the same time. It is clear that flexible

sharing may result in many users sharing one segment with small subsets of these

users sharing disjoint sets of segments, until the pattern of sharing becomes

quite intricate and complex. The only possible way to permit this kind of sharing

is to physically fragment the information. The separate segments can then be moved

in and out of local memory based on their usage, rather than based on the status

of any particular user of a segment.

8.5 Management of Multi-level File Storage

We have been looking so far at the movement between local memory and the first

level of secondary storage. As mentioned earlier, secondary storage actually comes

in a number of different levels. Local memory is usually core memory. The first

level of secondary storage is either drum or large core storage. Since both drum

and large core storage are too small to store all of the files in the system

additional levels of memory are necessary and must be used by the system for

storage of information. The next level is ordinarily disk. The level beyond that

would be tape, data cell, or some other similar device.

A decision algorithm is required for the movement of information between

each pair of levels. We have looked only at the decision algorithm for the move-

ment of information between core memory and drum. It is not our intent here to

Page 37

R. M. Graham: File Management

discuss decision algorithms for movement between the other levels. We will simply

state a philosophical principle which can be used for guidance in determining

the algorithms. The principle is that the oldest information, in terms of last

reference, should be stored on the slowest device. So, in a sense, the movement

algorithms are attempting to order the information on the various devices in such

a way that the information which has been most recently referenced is stored on

the fastest access device and information which is the oldest is stored on the

slowest device.

9. Address Space Mapping and Paging Combined

Let us look at the complete picture of the management of the hierarchy name

space, the management of the segment address space, the mapping between them, and

local memory management (paging) which we have just discussed. A directory entry

now contains the following information:

(a) name of segment

(b) length of segment

(c) type of segment

(d) access control list

(e) location of segment

(f) date segment created

(g) date segment was last used

(h) date segment was last modified

The location in the directory entry is no longer a simple segment number, since

segments may be scored on a number of different devices. If it is stored on disk

or tape the location will consist of the device identification and other informa-

tion which locates the segment on the device. The last three items, which are

dates, are new items that are needed in order to implement the movement algorithms

between the various levels of storage. Figure 16 shows a flow diagram of the

various pieces of the file system which we have discussed. The circles are data

bases which the modules reference. The flow diagram represents the complete

file system which is active whenever a process is being executed. That portion

of the program which implements the movement between disk and tape is a separate

part of the system which we will look at in the next section of these notes.

9.2 Segment Address Space Management

Management of the segment address space is somewhat more complicated than

the simple picture presented earlier. The argument to the segment address managei

is the segment pointer to a directory entry for the segment that is to be acrivat.

Page 38

R. M. Graham: File ManagemenC

Lam -- we

Stre

CcearcI

Iss

Frlm'\

C cr

Figure 16

Page 39

Page 40R. M. Graham: File Management

The action of the segment address manager is as follows:

(a) Build a descriptor for the segment using the access control information

in the directory entry. Enter the descriptor in the descriptor table, thereby

assigning a segment number.

(b) Call the memory manager who sets up the page table for the segment and

fills in the page table entries. Initially all the entries in the page table

will have the missing page bit set, since none of the pages are presently in core

memory.

(c) Build a file map which indicates the location of each page in secondary

memory.

(d) Start any information transfers which may be required.

(e) Return the segment number to the caller.

A strategy question arises with regard to the movement of a segment which

is stored on the disk into core memory. The particular strategy depends on the

specific hardware: the transfer time between disk and core, the transfer time betweem

drum and core, and the number and nature of the transfer paths. In the typical

modern computer configuration it is probably best to page a lightly referenced

segment directly to and from the disk, while a heavily referenced segment should

be paged to and from the drum. It probably is unwise to begin an en masse move-

ment of the segment from the disk when it is first referenced for the same reason

that prepaging is ineffective. However, if the segment is stored on tape action

to retrieve the segment should be initiated immediately.

Onefurther problem arises. A process may reference enough different segments

that local memory gets filled up with page tables. It Is clear that we need a

way to get rid of page tables, the page tables for segments which have not been

referenced in some time. If a segment has not been referenced in a long time all

of its pages will have been paged out. Clearly, there is no need for the page

table until the segment is referenced again. Hardware assistance is needed. The

segment descriptor is extended to include a missing segment bit. When the missing

segment bit is set the page table may be discarded. If an attempt is made to

reference a segment whose missing segment bit is set, the hardware will generate

a missing segment fault. The fault handler for the missing segment fault will

reactivate the segment by building a new page table for the segment and a file map.

R. M. Graham: File Management

Figure 17

10. Backup and Retrieval

In this section we discuss the following problem. No hardware device and

especially no software system is totally and continuously reliable. The question

then arises: What do we do when a malfunction occurs? Presumably we wish to

pick up the pieces as best we can, restore service as soon as possible, and mini-

mize the amount of lost information. The malfunctions range from complete dis-

truction (e.g., all of the disk platters are scored) to minor destruction (power

failure, minor hardware or program bug) where most of the information is intact

and only a small amount is lost. To recover from any information loss, backup

copies of all the information is required. Lost information is then restored

from one of the backup copies.

10.1 Complete Dumping

A straightforward solution to the problem is to dump everything on tape one

or more times per day. When trouble occurs everything is reloaded. This solution

has a number of disadvantages. It requires an excessive amount of time to dump.

In CTSS on the IBM 7094 with more than 30 million words of disk storage used,

the required time was 4 to 5 hours to dump. While dumping was taking place essen-

tially nothing else could be done with the computer. An excessive amount of

information must be stored in this solution, most of it is redundant. Again in

CTSS a complete dump required 6 to 8 reels of tape. Service can not be restored

rapidly. The reloading procedure on CTSS took from 5 to 6 hours before service

could be restored again. Finally, since the periods between dumps will have to

be at least a day if any useful work is going to get done on the computer, the

amount of information lost when trouble occurs is not very minimal. Some scheme

Page 41

R. M. Graham: File Management

is required which avoids storing so much redundant information. Such a scheme

will of course be more complicated than the simple straightforward solution posed

in this paragraph.

10.2 Incremental Dumping

Three situations may occur which should be distinguished when considering

the problem of backup:

(a) The situation is hopeless, the entire contents of the disk must be re-

stored.

(b) Most of the disk is alright and only selective restoration is renuired.

(c) No restoration at all is required, a few inconsistencies exist which

need to be resolved.

We name these three situations respectively, reload, retrieval, and salvage. If

we are to avoid saving excessive redundant information then we must dump only

information which has been changed recently (since the last copy was saved).

Note that some redundancy is desirable; saving two copies is not considered ex-

cessive redundancy. Tt is good insurance against failure to make one of the

copies correctly. In addition to backup, which we are discussing, we intend

to couple the last stage of multi-level file storage management with the backup

mechanism, i.e., old files will be kept only on the backup rapes. In other words,

the last level of file storage is tape, the backup copies of the files.

In an attempt to satisfy the objectives of restoring service quickly and

minimizing the amount of redundant information stored we will use three differ-

ent kinds of tapes; incremental dump aapes, system checkpoint tapes, and user

checkpoint tapes. The incremental dump tapes are written by a system process

(the daemon) which is continually active (although it spends much of its time in

a blocked state) dumping files onto the incremental dump tape. All of the sepments

belonging to a user which were modified during his operating session are copied

at the end of the session onto the incremental tape. If a session runs longer

than a day then the files modified will be copied onto the incremental tape once

a day. In addition, any directory entries which have been modified during the

session are also copied onto the incremental tape. Hence the incremental tape

contains a copy of all information which is modified during the day. These tapes

are created continuously. Figure 18 shows the creation of incremental tapes

and system and user checkpoint tapes plotted against time.

Page 42

R. M. Graham: File Management

I ~~~~~ ~- I~ me~' ~><*p'

C, 4 e %J

-S

Figure 18

Since some parts of the directory hierarchy and some of the supervisor seg-

ments may not have been modified for a long time, the reload process would have

to scan through a large number of incremental tapes in order to get the system

started if this information existed only on the incremental tapes. Hence, we

need some sort of checkpoint tapes if we are to restore the system to its operating

state in a short amount of time. The system checkpoint tapes will contain all

the information needed to get the system operating on-line. This includes the

supervisor segments themselves, the accounting allocation records, and the complete

hierarchy skeleton (i.e., the contents of all the directory entries). The user

checkpoint tapes contain all the user data segments which have been referenced

since the last user checkpoint tape was written. Notice on the chart that the

system checkpoint tapes are written every few days and the user checkpoint tapes

every few weeks. These parameters are adjustable to get the best balance between

fast restoration of service and excessive time spent in writing these tapes

initially.

All of the tapes are written in the same format. A record on the tape con-

sists of either the tree name of a data segment followed by the data segment

contents or the tree name of a directory entry followed by the information in

the directory entry.

10.3 Reloading

The reloading procedure which is used in the case of total destruction is

as follows. The incremental tapes have been written with a header record which

Page 43

R. M. Graham: File Management

contains complete instructions for the reloading, including the identification

of tape reels to be used by the operators in each of the following steps.

(a) Start with the incremental tape being written at the time of the crash.

When this tape is loaded by the reload program it prints out, for the operator's

benefit, a list of tape-reel identifications in the sequence in which they are

to be loaded by the reloader.

(b) All of the incremental tapes written since the latest system checkpoint

tapes are reloaded in reverse order, that is, the most recent one first.

(c) The latest system checkpoint tape is now loaded. Note that in the re-

loading process as each incremental or system checkpoint tape is processed no file

is loaded which is already in the hierarchy. This means that the latest copy

of each file is the one that is retained, even though there may exist copies of

a file on several of the incremental tapes. After this step normal on-line opera-

tion begins. The supervisor has been restored, the user account information is

present, and the hierarchy is complete. Since the hierarchy is complete, we

now have complete information on the location, in the backup system, of all files

that have entries in the hierarchy. This means that normal operation can begin

and users who attempt to use the system will be given precise status information

on any files that have not yet been restored to the disk.

(d) Continue teloading all of the incremental tapes written since the latest

user checkpoint tape and before the latest system checkpoint tape.

(e) Load the latest user checkpoint tape.

The reloading process stops at this point. Any file which is not now restored

has not been referenced since the next to the last user checkpoint tape was written.

This is true because the user checkpoint tape copied all files that had been ref-

erenced since the previous user checkpoint tape. Thus, we have restored all

segments which have been referred to within the past several weeks. Any segments

which have not been restored by this process exist on some incremental tape. The

directory entry for the segment has complete location information, including tape

reel identification. If it should be referenced by the user the system will

automatically retrieve it from the appropriate incremental tape. This retrieval

is automatic. The system instructs the operator what tape reel to mount. The

system then searches for the segment and reloads it without user intervention.

10.4 Multi-level Storage Management

It was mentioned that the backup would serve as the last stage of the multi-

level storage management. When the disk gets too full, we examine the oldest

Page 44

R. M. Graham: File Management

segments on the disk. After being certain that they have been dumped on incre-

mental tape, their storage is released to the free storage pool. Their directory

entries are appropriately marked. Any future reference to one of these segments

will automatically cause the segment to be retrieved from the incremental tape,

just as it was in the case of the older files which did not get reloaded after

a disaster.

10.5 Consolidation of Incremental Tapes

Let us look at the life time of the various tapes which have been created

by the backup. Only the latest two or three sets of user and system checkpoint

tapes need to be saved. More than one copy needs to be saved only in case a

problem arises in attempting to read the tape. Extra copies are insurance. The

incremental tapes form the permanent backup copy of segments in the system. These

need to be saved as long as they contain any segment which is known to the system,

i.e.,which has an entry in the hierarchy. As time passes and months turn into

years, the number of tapes that need to be saved can get very large. There are

two ways to reduce the number of tapes which need to be saved.

The first method is consolidation. When the cost of tape storage approaches

the cost of execution of a consolidation program, it makes sense to consolidate

the old tapes. The old incremental tapes probably contain very few files which

have not been explicitly or implicitly deleted. The consolidation program processes

the old incremental tapes and compacts all of the files still known to the system

onto a smaller number of new tapes. These have the same format as the incremental

tapes, in fact they are indistinguishable from original incremental tapes. The

hierarchy entries for these segments then need to be undated to reflect the numbers

of the tape reels on which the segments are now stored.

The second way to reduce the number of tapes that need to be saved is to

impose some absolute time limit for the retention of unused segments, perhaps a

year is a reasonable time. The user would then have to take some explicit action

if he wished his old segments to be retained longer by the system.

10.6 Retrieval

The retrieval program is a special program which restores a given segment

fro.m the incremental tapes. The retrieval program is used by the file system to

retrieve segments when they are referenced by a user after the file has been

deleted from the disk due to age. It is also used by the system to repair minor

damage done by a malfunction, i.e., when only a few files are destroyed these f

are eliminated from disk, then when they are first referenced by the user thev

Page 45

R. M. Graham: File Management

will be restored from the backup.

10.7 Salvage

The salvager is a program which checks for inconsistencies in the hierarchy,

in the free storage pool for the various devices, etc. It will attempt to resolve

any inconsistencies that it can and will report all inconsistencies to the operator.

The basis for this program is redundancy in the structure of the hierarchy which

can be used to detect inconsistencies. However, we operate on the following basic

principle: It is better to lose information than retain incorrect information.

So, unless we have a high degree of confidence, information is considered to be

bad and will be restored from the backup.

The following are examples of the types of tests that can be made to check

the consistency.

(a) Check the format of the directory entry. Directory entry formats are

in general variable length since the access control list is of indeterminate

length. The counts of the variable portions of the directory entry should be

reasonable.

(b) Some of the contents of the directory entry can be checked. The length

of the segment given there should not exceed the user's quota. Dates given in the

directory entry should all be sensible, i.e., beyond the date at which the

system started operating. The location information of files should be meaning-

ful, i.e., device numbers should in fact be numbers of devices that actually exist.

Track numbers should be within the range of track numbers for the given device.

(c) All the file maps can be scanned making a list of the disk tracks which

are mentioned in the file map. This list of used disk tracks can be compared with

the free storage list maintained for the disk. The two lists should not have any

numbers in common and the sum total of the two lists should account for all the

tracks on the disk.

(d) A check can be made that no track on the disk is assigned to more than

one segment, i.e., appears in more than one file map.

(e) The length of each segment can be checked against the number of tracks

which are assigned for that segment in the file map. The length of the segment

shpuld be less than or equal to the sum total of the number of tracks. On the

other hand the length of the segment should be greater than the number of tracks

assigned minus one.

Extra redundancy can be built into the system for the purpose of making

the salvager more effective. For example, it may be worth the additional cost

Page 46

R. M. Graham: File Management

to put forward and backwared pointers in each of the tracks on the disk. While

these are not necessary because of the file map, they give independent checks

on the organization of the segment on the disk. If the forward pointer, for

example, pointed to the track which was recorded in the file map then we have

additional support for the consistency of the information. If forward and back-

ward pointers made sense but the file map didn't we might feel it would be safe

to use a two out of three vote and fix the file map entry so that it pointed to

the track which the forward and backward pointers of surrounding tracks pointed

to.

A salvager program was used in the CTSS system and proved to be very suc-

cessful. In general, there was a need to run the salvager several times a week.

In general, use of the salvager enabled the system to recover from numerous minor

problems without having to completely restore the disk. The design of the salvager

is based very heavily upon the details of the particular implementation and must

be worked out in that framework. In designing the system one should keep in mind

the value of additional redundancy in terms of making she salvager effective.

11. Input/Output

There are two basically different ways of accessing information: Direct

reference (random access) and source/sink (sequential; read takes from a source

and write deposits in a sink). File systems have been built using either one or

both of these concepts as a basis for referencing files. The most common seems

to be some variation of the source/sink concept. We have been calling the direct

reference method of accessing, the segment concent. We call the source/sink method

the stream concept. We chose the segment concept for the basis of our file system

because we feel it is more natural for the user and provides a better model for

the problems of address mapping and storage management than does the source/sink

idea. The problems of storage management and address mapping have to be faced

in the design of a file systam no matter which method of accessing is used as a

foundation.

In the following paragraphs we will discuss the input/output part of our

model system. We do this for two reasons: To exhibit its inherent simplicity

and to see that by proper structuring files can easily be treated as sources or

sinks, i.e., as I/0 devices. An input/output system is quite naturally viewed

using the source/sink idea.

The basic entity is a stream, either an input stream or an output stream.

Streams have symbolic names. The basic operations on streams are read and write.

With the exception of some system defaults, a stream must be explicitly attached

Page 47

R. M. Graham: File Management

to a device, i.e., attach (name, device-spec). A stream may be detached and re-

attached to another device if desired. The attachment is dynamic and takes place

during execution whenever the attach entry of the I/O system is called.

Figure 19 shows a block diagram of the I/O system. The attach entry causes

the name of the stream and the device specification for the stream to be recorded

in the stream-name/device table. In addition, attach decides which device control

module (DCM) is appropriate and enters its name in the table. The I/0 control

program's action for read and write is relatively simple. On a read or write entry

the name of the stream to be read or written is looked up in the stream-name/device

table, the appropriate device control module is identified and the read or write

call is passed on to the appropriate DCM.

~dka~~t riAA #i i`

Try h ~ecr' h

I)CA4

P~ AlI 4

t

UbAM

Figure 19

The DCM performs a number of functions. Each DCM has a read entry and a

write entry. The DCM converts a device independent request into a device-

dependent one. In doing this it must compile a program for the hardware input/

output controller (IOC). This program reflects the idiosyncracies of the particu-

lar device to which the stream is attached. It may include line controls in the

case of remote terminals, select instructions in the case of tapes, and so forth.

In addirtion, the device control module may need to convert the internal character

code used by the system into an appropriate character code for the device. Type-

writer terminals, for example, come in many different varieties. Virtually ever-

Page 48

R. M. Graham: File Management

different variety has a different character code. The device control module after

compiling a program for the TOC calls the TOC manager to start the 1/0 using

this IOC program. It is the DCM's responsibility to interact with the OC manager

until this I/0 request has been finished. This may reouire several calls to the

IOC manager depending upon the particular format of the programs which the TOC

can execute.

The IOC manager is responsible for the overall management of the I/() controller.

In general with a large number of different users on the system the TOC manager

will have to queue tasks for the various channels of the IOC. The TOC manager

is responsible for overallmonitoring of the operation of the TOC. This requires

answering interrupts, recognizing comnletion of tasks, and starting new tasks

from the queue when channels become free.

The file system interface DC, functions like any other DCM. However, it does

not call the IOC manager. The file system interface DCM is used to make a segment

look like an I/O device. The principle data base for the file system interface

DCM is a table which contains status information for each segment which in; bein,-

referred to as a device. When an attach call is made to the I/O control nrogram

attaching a stream to a segment, the requested segment is activated. The file svstem

interface DCM maintains in the segment status table an index of the current position

in the segment where reading or writing is taking place. Read and write calls

are processed by the file system interface IDCM and consist of copying the request-

ed information into or out of the segment at the position of the index. After

the copy is made the index is undated to the new position in the segment.

Page 49

R. M. Graham: File Management

BIBLIOGRAPHY

1. B. W, Arden, B. A. Galler, T. C. O'Brien and F. H. Westervelt: Program and
Addressing Structure in a Time-Sharing Environment; Jour. ACM, .Tpn. 1966

2. W. T. Comfort: A computinR System Design for User Service; Proc. FJCC, 1965

3. R. C. Daley, P. C. Neumann: A General-Purpose File System for Secondary
Storage; Proc. FJCC, 1965 -

4. R. C. Daley and J. B. Dennis: Virtual Memory, Processes, and Sharing in
Multics; Comm. ACM, May 1968

5. C. T. Gibson: Time-Sharing with IBM Svstem/360: Model 67; Proc. SJCC, 1966

6. E. L. Glaser, J. F. Couleur, and G. A. Oliver: System Design of a Computer
for Time-Sharing Applications; Proc. FJCC, 1965

7. R. M. Graham: Protection in an Information Processing Utilitv; Comm. ACM,
May 1968

8. M. Schroeder: -Classroom Model of an Information and Computing Service;
S. M. Thesis, MIT, Feb. 1969

9. V. A. Vyssotsky, F. J. Corbato and R. M. Graham: Structure of the Multics
Supervisor; Proc. FJCC, 1965

10. P. J. Denning: The Working Set Model for Program Behavior; Comm.
ACM, May 1968

Page 50

UNCLASSIFIED
Security Classification

OUT-OF-PRINT

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP

None
3. REPORT TITLE

File Management and Related Topics

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Memorandum
5. AUTHOR(S) (Last name, first name, initial)

Graham, Robert M.

6. REPORT DATE 7a. TOTAL NO.OF PAGES 7b. NO.OF REFS

September 1970 53 10
8a. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S)

Nonr-4102 (01)
b. PROJECT NO. TM-12

96. OTHER REPORT NO(S) (Any other numbers that may be
assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
3D-200 Pentagon
Washington, D.C.

13. ABSTRACT

This paper traces the evolution of a segment based file system. The final system

is typical of the virtual memory systems found in large general purpose time-sharing
systems. The contents of the file system is a collection of symbolically named
segments organized in a hierarchial structure. The user directly references seg-

ments in the file system. All movement of information between the different levels
of physical memory is done automatically by the system using paging. Complete pri-

vacy of user information is guaranteed, although controlled sharing is possible.
The system includes file backup facilities to protect users from information loss
due to system failure.

14. KEY-WORDS

File System Virtual Memory Paging Segmentation Time-Sharing Systems

Input-Output Memory Management Multi-level File Storage File Sharing
File Protection

DD ".. 1473 (M.I.T.) UNCLASSIFIED

Security Classification

