MIT/LCS/TM-14

SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Carla M. Vogt

September 1970

SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Technical Memorandum 14

Carla M. Vogt

September 1970

(This report was reproduced from an M.S. Thesis, MIT,
Dept. of Electrical Engineering, February 1970.)

PROJECT MAC

Massachusetts Institute of Technology

Cambridge Massachusetts 02139

SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Carla M. Vogt

MAC Technical Memorandum 14
September 1970

(This report was reproduced from an M.S. Thesis, MIT,
Dept. of Electrical Engineering, February 1970.)

This informal document has been published

to make the research results quickly

available to a limited audience.
Massachusetts Institute of Technology

PROJECT MAC

545 Main Street Cambridge 02139

SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Technical Memorandum 14

Carla M. Vogt

September 1970

(This report was reproduced from an M.S5. Thesis, MIT,
Dept. of Electrical Engineering, February 1970.)

PROJECT MAC

Massachusetts Institute of Technology

Cambridge Massachusetts 02139

ACKNOWLEDGMENT

Work reported herein was supported in part by Project
MAC, an M.I.T. research project sponsored by the Advanced
Research Projects Agency, Department of Defense, under Office
of Naval Research Contract Nonr-4102(01).

III.

CONTENTS

SUSPENSION CAPABILITY

1.1

Introduction

Computation and process
Communication between processes
Suspension Capability

Organization of the thesis

THE SYSTEM

2.1
2y
2.3
2.4
2.5
2.6
2.7
2.8

Introduction

Resources

A lattice of resources

State of a process

States of resources and state transitione
Sharing resources

Posltioning resources

Summary

PROCESS NEEDS

S
3-2

Introdvetion

Types of need

10
12

15

32
e
34

343
3.4
3.5

6

Allocated variables
Interfaces

Conclusion

IV. SYSTEM MODIFICATION

4,1
4,2
4.3
bob
4.5

Introduction

Ugsing old versions
Delayling suspension
A difficult case

Summary

V. SUSPENSION IN MULTICS

51
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Introduction

Interrupt handling

Process swapplng

User faults

Complete suspension
Deallocation of resources
Resuming execution of a process
Computing resumability
Probability of resumption
Dynamie linking

VI. CONCLUDING OBSERVATIONS

REFERENCES

35
-}
39

41

41
43

49
50

52
52
s
53
56
57
58
61
62
65
68

73

7
CHAPTER ONE
SUSPENSION CAPABILITY

1.1 Introduction

In the practical operation of a computing system it
is often necessary to halt the execution of a user's pro=-
gram so that it can be restarted later just where it left
off. The simplest example is suspending executlon in order
to handle 2 hardware interrupt. GSometimes it 1ls necessary
to suspend executlion for a longer perlod, as when a user
has run out of funds or a user with higher priority deslres
to use the system. 1In interactive time-sharing systems, a
user may desire to suspend his work in order to go home for
the night. 1In all of these cases it is wasteful to destroy
the work already done. Moreover, the job may have perma -
nently altered a crucial storage file (such as the payroll
records for an entire company). Hence the need for being

able to suspend & Job, i.e., to stop it so that it can be

resumed later Just where 1t left off.

A little thought given te the examples above will
show that suspension tends to be more involved as the ex-
pected period of suspension grows longer. Saving a user's
job overnight is more demanding than providing an lnterrupt
capability, since more information about the gob must be
saved. Hence the term suspension in this thesis will

usually refer to suspension of a user's job for a long

8
period, when almost all information about the job has to
be saved.

Even suspension for a long period is not very dif-
flcult in a primitive computing system. The operator
presses & "halt" button, jots down the machine conditions,
dumps the contente of core onto tape, and saves these items
together with the user's input tape and perhaps a scratch
tape. To resume the Job later 1s equally stralghtforward.
In the complex, multliprogramming, multi-access systems
being implemented today, suspension is more complex. When
many users are time-sharing a single computer, suspension
of one Job must not affect others adversely. In addition,
as user Jjobs become less self-contained, 1t becomes more
difficult to ensure their resumption.

We say that a system has a suspension capabllity if

it is able to suspend a user's Job so that other jobs are
not harmed and the suspended job can be safely resumed
later. This thesis is concerned with identifying some of
the implications of a suspension requirement for large,
generzl-purpoge timessharing systems. We begin by getting
ovr subject into focus. What 1s the entity that is sus-
pended? Why should suspension be a problem in advanced
systems? What are the requirements for a suspension capa-

bility in such a system?

9
1.2 Computation and Process
"Job" is a vague word for the execution of a user's
program in the context of a computing system. We replace
the word "job" with a concept which more accurately defines
Just what is being suspended. The following definitions

are based on the discussions in Dennls and Van Horn‘ and

Van Horng .

A computation is the execution of a set of actlions

which are partially ordered in time and which manipulate
certain data variables, some of which may be input to or
output from the computaidorns The ordered set of actions is
called a program. A process 1s a totally ordered subset of
a computation, i.e., the execution of a sequence of actions
withlin the computation. If a program describes a sequence
of actions 1t is called a sequential program. If it is not
restricted to a single sequence of actions 1t is called a

multiorocess program and the execution of the program is

called a multiprocess computation. If we assume that the
partial ordering of actions in a multiprocess program 1is
the only ordering enforced on the computation, then the
computation is said to be asynchronous. The various compu-
tations going on at any one time in a multi-access system
are sald to run asynchronously of each other, since they
are separately programmed.

A computing system 1s a collectlon of hardware and

software resources (this concept is further developed in

10
the next chapter.) A computing facility is a computing
gystem in operation, that is, with one or more computations
running on it.

In this thesés we make the simplifying assumption
that any computation to be suspended consgsts of a single
process, There are two Jjustifications for this. First,
almost all oresent-day general purpose computing systems
support only single process computations, although systems
are being designed to support multiprocess programs.
Second, the first step in learning how to suspend and
resume & multiprocess computation is learning how to sus=-

pend and resume its constituent processes.

1.3 Communication between processes
A system has a suspension capablility if it can halt

the execution of a user's process in such a way that other
users are not adversely affected, and that the process can
successfully resume execution later. Let us consider why
suspeneion should be a problem at all.

If a collection of processes is executlng concurrent-
ly on & computer system, and one of the processes stops, how
could other processes be adversely affected? There are two
ways in which processes affect--1l,e., communicate with-=-each
other. One we may call control, that is, causing processes
to begin or halt execution. The other 1s through sharing of

common resources, If process P ls suspended, it may fail to

11
make expected decisions that other processes should begin
execution. After P has been suspended another process may
decide that P should execute, not realizing that P has been
suspended. The thesis will be only minimally concerned with
control problems.

Beside these control problemes are the problems which
arise because resources are shared. Here we roughly define
resource ae anything a process needs to run (a more preclse
definition can be found in Chapter Two). Suppose the
process has a tape mounted on a tape drive when 1t 1ls sus-
pended. In a system which manages tape drive allocatlion
within the supervisor, no other process will be able to
ugse the tape édrive.

What can prevent a procesa from resuming execution?
Two recent developments &n systems design make successful
resumptlion of & process more difficult.

First, one of the recent fundamental advances in
computing systems 1s the advent of direct sharing of infor=-
mation., In earlier systems there was either no sharing of
information or coples were shared, Corbato’ and Saltzer-
have shown that direct sharing is desirable to eliminate
the need for coples and the difficulty of updating that
multiple coples imply. The Multics system4’5’6’7’8’9,
Implemented at Project MAC, 1s one of the first systems to

incorporate direct sharing of programs and data by several

users., While direct sharing represents an advance in

12
computing systems design, it also poses problems., In par-
ticular, the number of interfaces between difrerent user
processes lncreases enormously. . Increased communication
between programs increases interdependency. As a result it
igs no longer so simple to suspend a process and resume 1t
several days or weeks later. For example, suppose oOne user
"borrows" a2 program from another user, In a system with
direct sharing both borrower and owner use the same copy.
If the borrower!s process is suspended while executing the
borrowed program, and if the owner meanwhile decides to
change the program, the borrower's process cannot be re-
sumed.

A second development in computlng systems is the
advent of large, helpful systems which provide a multitude
of services. In such systems users tend to become heavily
dependent on system supervisor and utility programs. The
user may be considered to be "borrowing" such system pro=-
grams, The consequences of system changes are as drastic
to suspended user processes as the consequences of a change
in the processor's instruction set would be to user programs

in a more primitive system.

1.4 Suspension Capabllity

We are now able to give a more precise definition of

suspension capability. We sald that a system has a suspen-

sion capabllity 1f 1t can halt the execution of a user's

13
process in such a way that
(1) other processes are not adversely affected
(even if the suspended process never resumes
execution),

(2#) the process can successfully resume execution

later.

What does 1t mean to "successfully" resume execu=-
tion? It means to resume execution in such a way that the
resumed process is not adversely affected by any changes
which have occurred since the process was suspended. The
changes in question may have been control signals or changes
to resources needed by the process, If we ignore problems
of control we might require the system to guarantee that the
resources needed by the process will be available when the
user wanis to resume the process,

But the system cannot always guarantee that a sus-
pended process can be resumed. First, the user himself may
delete 2 program or data table used by his process. There-
fore we partition the resources available to processes into
those whose modification or deletion is controlled by asystem
policy and those in control of users. Then & more reason-
able regquirement on the system is the abhility to guarantee
that resources controlled by the system are avallable when
the user wants to resume the process.

Secondly, resumption of a process tends to become

more difficult as time inecreases, because of the inereased

14
probability of changes to resources. As explained by
Corbatd and SaltzerB, a8 well as others, future computing
gystems must be able to evolve and adapt teo changing con-
ditions. 1In such systems the system itself undergoes fre-
quent modification., It is still possible, however, for
syster modification to be gulded by a policy which ensures
a2 high probability of resumption within some
known T time units after suspension. Requirement (2#%)
above may therefore be replaced by the following:

(2) s=ome suspended processes can be resumed; namely,
those unaffected by any changes which may have
occurred during the period of suspension.

(3) the system can declde whether resumption is
popesible, so0 that processes are not incorrectly
resumed, with erroneous results.

(4) system policy is formulated to guarantee a high
probabllity (near unity) that 2 process may be
resumed at any time within a given T time units
after suspension, for some "acceptable"” value
of T, desplte changes to system resources, as
long as no user resources are chanced.

The implications of suspension on control and allocation of

resources are interesting in their own right. But this

thesis will be concerned primarily with requirements (3)
and {4) .

15

1.5 Organizatlon of the thesis
The foregoling discussion has served to bring the

subject of the thesis into focus. The thesis is concerned
with exploring some requirements for a suspension capabillty
and with system design and system policy for fulfilling
those requirements.

Since we are concerned with system resources we
develop a model of a computing system (Chapter Two) as a
collection of resources, In Chapter Three we explore the
nature of a process’s needs for resources. Chapter Four
describes some implications for system pélicy on resource
modification, Chapter Five 1s a discussion of some problems
of suspension in the Multics system. Chapter Six presents
some conclusions of the investigation.

Throughout the thesis examples are drgwn from the
Multics system, for the reason that Multics makes explicit
the difficulties raised by suspension. The examples assume
some famlliarity with the Multlce system, as described in
the referenceak’5’6’7’8’9. Also useful are the introduc-

tory chapters of Saltzer1°

and the discussion by Bensoussan
2t al. of the Multlics virtual memory“. Anyone who is
neither a speed reader nor already a Multics initiate can
skip Chapter Five. The remainder of the thesis should be

understandable even without the examples.

CHAPTER TWO
THE SYSTEM

2.1 Introduction

Since the suspension problem has to do with the mod-
ification of resources in a computing system, we need some
insight into computlng systems in terms of the needs for
and a2llocation of resources in processes, The purpose of
this chapter is to present a model of a modern computing
system so that requirements for suspension can be discussed
in terms of the model.

The model 1s not intended to be a sketch of the
Multics system. Rather, it i1s an independently conceived
abstraction, which we will apply, as a Procrustean bed, to
the Multics system. However, we do make some general
assunptlions about systems to which this model can aprply.
First, the system 1s assumed to have a modular design, 1l.e.,
to be made up of distinct units of program (and data),
each unit having responsibllity for some aspect of syatem
functioning. These modules are more closely akin to
closed subroutines than to the blocks of an Alzol program:
usually & module has fulfilled its funetion jJuet when
control in the process leaves the "return" instruction,
and the module can be "called" from any other program
module. Second, we assume that the system 1s large and

complex, Third, the system supports more than one process

17

concurrently. These processes can and do share resources
directly, and the system must regulate the shared use of
resources, Fourth, the system iz a multi-access system in
which resources may "belong" to different users, who control
the sharing and modification of resources among themselves.
last, but not least, we assume that suspension of 2 process
is a possibility which can occur in normal system operation.

Some familiarity with the Multics system is assumed
on the reader's part, and examples in this chapter will be
drawn from that system. However, any other system satlsfy-
ing the above assumptions would provide equally good

examples,

2.2 Resources

To begin with, a computing syastem may be regarded as
a collection of resources which =2 process can use. These
resources can be classiflied as physical or abstract, and as

program or data varlables. Examples are shown in the figure.

| Program i data
Physlecal procassor tapes,
instruction processor
logic | reglsters,
‘ core word
Abstract l software page table,
Program | process list

¥

Every resource in a computing system falls into one of these

categorles. Data ls Just information which 1s not intended

18
to describe a computation, 1.e., nonexecutable. A resource
such as a table of Bessel functions or processor logic is
rarely modified, but can still be considered as a variable,
A page table or a program being debugged is modiflied more
often.

The word "variable" in the above discusaion might be
replaced by "module" or "segment". It is a unit defined by
the interfaces 1t presents to the outside world, viz., its
functional specification. If its value changes 1t 1s the
same variable. If its functional specification changes it
is a new, distinct variable,

The concept of program is cruclial to this discussion,
and therefore deserves close investigation. We are con-
cerned here with program modules, that is, groups of one
or more external proceduree (in the PL/I sense) that co-
operate to perform a common function. That a module in
this sense is partitioned into smaller units is of no con=-
cern here., Hence we gspeak of control entering a module (or
a program) and of the program module returning. A program
module willl sometimes be called a program resource, in order
to emrhasize its usefulness to the process executing it.

It might be possible to establish criterla for what
constitutes a separate program module, from the point of
view of the system as a collection of resources. Instead
we assume that the program modules are given, and accept

them as given.

19

2.3 A lattice of resources

In a large and complex system a collection of
resources, even when catalogued, is not much of a model.
What is needed is structure. Edsgar Dijkstra'?:13 ang,
drawing from his insights, Randall and Zurcher'2 and
P&rnas14, have proposed that systems be hierarchically
designed, eso that programs in the system can be arranged
in a lattice*® in the fcllowing way. The programs at the
bottom of the latiice are completely self-contained. We
say that they form the zeroeth layer of the system. In
the first layer are programs t$hat rely only on the programs
of the zeroeth layer. Programs in the second layer rely on
the zeroeth and first layers, and so on. The arcs of the
lattice show the dependence relation.

When a system is eo constructed, the 1th layer acts
g8 an interpreter for the (i+1)st layer. The (i+1)st layer
is, as it were, programmed tc execute on 2 "machine" pro-

vided by layers 0 through 1.

*A lattice is a set of objects on which a partial ordering
relation, often denoted <, is defined. A partial ordering
relation is reflexive, transitive, and anti-symmetric., If
a and b are two objects in the lattice, it is not necessary
that elther a<b or b<a, The partial ordering in this
case is the dependence relation that occurs when one pro=-
gram calls another or 1ls coded with the understanding that

another program may "help" Auring its execution (e.g.,paging),

20

Even when a system has not been hierarchically
designed it is possible to view 1t hierarchically. The
Multice system was desipned with a trace of the notion

10 and virtual

(viz., the notions of pseudo-processor
memnry11}. But for the most part, the system is thought

of as two=-level: softiware program and hardware that
executes the program. We will view the Multics system
somewhat differently. To begin with, a processor instrue=-
tion is itself a program. If the processor is modularly
designed, these programs may be regarded as occupylng dls-
tinet levels of system. (This is most clearly exemplified
in microprogrammed processors.) Rather than thinking of
control as being "in" just one program, plus just one
instruction, we view a whole group of programs (both hard-
ware and software) as being "current" at any given time, no
more than one per level of system. (This assumption 1is
unwarranted in systems which allow user handling of faultse-
gee section 5.4 on user faults,)

If is poseible to view Multlcse in thls way, even
though 1t was not so designed, becruse of 1ts use of
external procedures and especially because of its modular
design. Further, the attention given in the first design
and in subsequent redesigns to simplicity in the systenm
has tended to result in a more hierarchical pattern of
dependence and fewer complex interrelationships between

programs.

21

"Dependence" should be more precisely defined. One
program depends on another if is 1s coded to call that pro-
gran in some circumstances, or if it is coded with the
understanding that control may trap to that program in
some circumstances. Dependency in this sense provides Just
the partial ordering relationship we need in constructing
the system lattice.

Three anomalies present themselves here. First, some
programs transfer control to other programs but can't be

viewed as being interoreted by these programs, as required

by the model. Second, sometimes two modules call each
other, Third, what happened to data wvarlables in this
"lattice of resources™"?

There are certaln programs in some systems that don't
it easily into the plcture given above. An example is the

Multicse Shell. This program acte 28 a dispatcher, inter-

oreting command lines typed by a user and causing the
requested command program to be executed. The Shell 1tself
does not ineclude programmed calls to any commands, yet it
causes them to be called. In thls case we do not consider
that the Bhell depends on the command, becasse counpletlon
of the Shell's work is not dependent on the existence or
proper functioning of the command program. The Shell is
coded so that its Job may be considered finished when it
has called the command. A similar case 1s provided by the

fault interceptor in Multies, which gains control whenever

22

a fault occurs, and causes the appropriate fault handlers
to execute. As the fmult interceptor acts as a dispatcher,
it can successfully perform its function even if one of

the fault handlers 1s in error. One of the fault handlers
in Multics 1s the divide check handler. A user may substi-
tute his own d&vide check handler for the one provided by
the geystem, The fault interceptor does not depend on the
handler. In summary, & program whose function is dispatch-
ing (as opposed to, say, calculation of a trigonometric

function) 1s not ipso facto dependent on programs to which

it haprens to dlspateh control.

The second anomaly is the phenomenon of two program
modules which call on sach other. We do not ask whether the
modules are necessarily mutually dependent. That is, if
executlon pata A ln program X is dependent on program Y,
and Y is dependent on path B in X, then do paths A and B
in fact intersect? This 1s & quéstion to be answered in the
design of the system when the supervisor is divided 1into
programs. Given the programs as they happen to be, we
revise our notlon of what constitutes a node of the lattlce.
A node is a maximal set of mutually dependent progranm
modules.

The thit®d anomaly is that the system-=a collection
of resources--has been layered without any mention of data
variable resources. Once program resources have been

ordered in & lattice structure the data variable resourceas

25
are easily included. Namely, a data variable.is needed by
a program node 1f the program uses the data variable. If
the program may modify the variable it is write-dependent

on the variasble: otherwise it 18 read-dependent on the var=

lable.

We wish to glve a precise definition of the depen-
dence of a program on a non-program resource. It would seem
that a2 program which makes the call

write ("cardpunch", data_area, 1, 100)
to punch a 100=card file is dependent 1n some sense on
the existence and availability of a card punch. However,
it is possible that "the system may decide" merely to gqueue
a request for use of the cardpunch if none 1s avallable,
Indeed, the program which contains that call is actually
dependent on the "write" program and not on the card punch,
At some lower level of the system, however, a program may
exist which issues a connect to an I/0 controller to cause
punching to begin. This program is dependent on the
existence and availability of a ecard punch.

This last example suggests another way in which a
program 1s devendent on a data variable. The page fault
handler may run to completion, but if it obtalins incorrect
information about the whereabouts of the page on secondary
storage, 1t will perform its task incorrectly. We do not
in this case conslder the page fault handler to be depen-

dent on the information per se, i.e., on some particular

24

value of the variable, but rather on the data variable, and
we meke the simplifying assumption that all variables have
the correct value.

Any process not solely dedicated to system functions
or serving as a desk calculator is probably making use
of resources not considered so far but important to suspena
sion, that is, user supplied resources. A computatioacrun=
ning on behalf of a certaln user may need programs and data
variables which are modifiable by that user or other users.
These resources are made accessible to the process through
the computing system, and may be considered as system

extensions, or resources in the extended system. In fact,

the chief differences (from our point of view) between
these resources and system resources are: first, that
system design cannot assume any maximum time limit on the
execution of a user program (since it may contain a tight
loop); and second, that modifications to user programs
and data cannot be controlled by system policy. Because
the system cannot rely on user programs or data, it follows
that no user program or data varlable may be on a level
below any system program or data variable. That does not
prevent the inclusion of programs in the system which
diepatch conirol to user programs, but i1t does require

recognition that those programs may never return.

25

2.4 State of a process

We now connect thls model of a system as a collection
of resources to the earlier description of 2 procesas as
the execution of a program or sequence of programs. A4t
any point 1in real time the process is "occurring" at various
levels of the system (I will say "system" rather than the
bulkier "extended system" where the meaning 1s clear.)
That is, the process 1s described by one or more programs
which have been partly executed but not completed. These
programs may represent several layers of system and many
non=-program resources, As an example, conslder a Multics
proceses which 1s executing at each of the following levels:
(a) the processor is performing a fetch, (b) as part of an
lda (load accumulator) instruction, (e¢) which occurs in the
page fault handler, (d) processing a page fault for the list
command program, At each level the process is using program
and other resources. At some level the process may be al-
tering the state of certain resources. In thls example, the
instruection is modifying the accumulator register and the
page fault handler is modifylng a page table. We say the
process 1s write-dependent on resources it may be modifying
and read-dependent on others.(see discussion of allocation,
below). If we know which programs are current, that is,
whiech program resources the process ie using, and the
resources needed by each program, then we can begin to

characterize the resources nesded by the computation at any

26

instant of real time. This will prove to be useful in
designing a suspension capability, and we will return to
it later.

In summary, the needs of a process can (to a first
approximation) be characterized by the description of the
current program modules and the data varisbles needed by

each module,

2.5 States of resources and state transitions

Sometimes what might at first appear to be two dis-
tinct data variables in a computer system turn out, on
closer inspection, to be better regarded as parts of a
compound variable. As an example from Multics, consider
an entry in the core map and the contents of the associated
1024~word block of core, If the core block were replaced
with 2 page from secondary storage, and the core map were
not updated, the system must be coneidered to be in an
inconsistent state. A typlcal compound varlable occurs
when one data variable is used to describe the state of
anotner variable, This compound variable, like a simple
variable (e.g., bit or word), has a (possibly large) number
of well=defined states. When a program node of the system
resource lattice is write-dependent on a certain compound
variable, we may say that the program module performs
state transitions on the variable. While it 1= undergoing

state transitions the wvariable is in an lnconsistent state.

27

We tend to find more complexly structured compound
variables as we ascend the resource lattice. On the level
of the machine instruction the variable i= typically a word
or & register. At higher levels 1t may be a variable-length
list with a count, or even (to use an example from Multics)
a segment and its directory entry. Although any degree of
complexity is possible immediately above the machine in-
struction level, in practice the variliables tend to become
more complex as a more sophisticated "machine" is avallable
to perform state transitions.

Because compound variables may be very complex they
may not be easy to identify. A frequent clue to the
presence of a compound varliable 1s a lockword that regulates

access to the variable, or a felt need for such a lockword.

2,6 Sharing resources

A modern computing system supports multi-processing
in which the processes share access to variables, This
causes 2 problem when the system contains compound
varliables, Suppose a certain compound variable, composed
of parts A and B, 1s undergoing a state transition involving
both A and B. First 4 i1s modified, then while the resource
is in a2n inconsistent state another process tries to use
the inconsistent data, resulting in an error.

In order to avoid this type of error, systems

introduce some regulation into the sharing of resources.

28
An obvious method (once it had been pointed out by Dennie!)

is as follows. To modify a varlable a process must have
excluslive use of, or write capability for, the variable.
To read a variable a process has read capablility for the

varliable, thus preventing any other process from getting
write capability for the variable., Thue a process has

just one kind of capability €or a variable: none, read, or
write. Similarly, we say that a variable 1s attached to

a procese which has read capability for the wvariable, and
assigned to 2 process which has write capabllity for it.

4 resource may be assigned to one process, or sttached to
one or more processes, but not both. We say that a resource
is allocated to a process 1f it is elither attached or
assigned to the process.

We note in passing that attachment and asgignment
must of necesslty be for a limlted time only for any
sharable resource. When a process has completed an opera
ation with an assigned varlable, it unassigns the varilable,
and the varlable remains attached to the process. When
it detaches the varlable, 1t no longer has any capability

for the variable.

2.7 Positloning resources
It 1s important to distingulsh between capability

and avallability. Although the word "capabllity" seems
to imply that a process with write capabllity can actually

29
modify a variable, in fact 1t only may (has permission to)
modify the variable, i.e., 28 soon as the varlable 1s made
avallable (e.g., by paging).

As we distingulsh between capabllity and availasbi-
1lity, so we distinguish between giving a capability to =
proceas (allocation) and giving a process the ablility to
reach & variable (positioning the varlable). Somettimes the
actions of allocation and positioning are ldentical. 1In
Multies, for example, it is only possible for one process
at a time to use the processor. Other processes do not
refrain from using 1t before 1t is allocated to them.
Allocation and poeitioning both take place when one process
executes & load-dsscriptér-base-reglister instruction in
favor of another processa,

Often allocation and positloning are not identical,
For example, Dennis!® proposes a system in which locking
conventlons would be coded into the processor hardware,
Just as lockling conventions are now coded into Multics
segment control. In this case, processor hardware refrains
from modifylng a word in memory &f that word is allocated to
g different process.

Even when & process has deallocated a resource such
as a tape or tape drive, the resource must still be re-
turned or unpositioned to its original state. In Multics,
for example, a process is responsible for eeturning tapes

when it is finished with them. However, sometimes other

20
processes take over the responsibllity of returning or

unpositioning resources., An example is provided by the
Multice paging algorithm; other processes clear away from
core memory the no longer used pages of a suspended process,
In either case, when a process 1s susganded, lts resources
must be both dealloesated and unpositioned, so that its
gsuspension does not adversely affect other processes which

might need those resources.

2.8 Summary

This chapter has discussed several features of
systems in terms of a rather simple model of a computing
aystem. At this point 1t may be advantageous to pause and
briefly review the model.

A computing system is a collectlon of resources,
i.e., program and data variables., These variables may be
organized into a lattice structure according to the depen-
dency relationship. A program is dependent on another pro-
gram 1f its execution impllies or may imply the executlon of
that program., Two mutually dependent programs are con-
gidered to occupy & single node of the lattice. A progranm
node 1s dependent on a2 data node if the program either
reads or writes the data variable.

The resulting model is useful for examining and
describing the use of resources by a2 single process, and

therefore the sharing of resources by several processes.

31
On the other hand, it is a statlic model and provides no
more than a basls for describing dynamically an actual
computing facllity on which, say, three processes are

executing concurrently.

CHAPTER THREE
PROCESS NEEDS

3.1 Introduction

With the insight gained in the previous chapter we
can restate the thesis problem. A program in execution
has certain resource needs; the program itself, certain
data variables, interfaces with other programs. If the
execution is suspended, during the interval of suspension
some needed resources may be modifled in such a way that
resumption of execution 1s impossible, or produces incorrect
or meaningless results,

The purpose of thls chapter 1s to see how a process
needs lts various resources, which changes affect resump-
tion and which do not. 1In investigating the resource needs
of a process we thus come to an understanding of what
conetitutes "safe" resumption and what does not. Such an

understanding 1s the sine gua non for deciding whether a

given suspended process can be resumed.
In the subsequent discussion we make two strong

agsgumpntions., First, we assume tkat all programs are

gcorrect, that is, they satiafy their functional specifi-

cations and leave compound variables in consistent states,
which likewlse satisfy functlonal specifications. Second,
we assume that when a process is executing 1t has attached

or assigned to itself all the resources which 1t needs,

33

and that this allocation of resources follows the rules
outlined in Chapter Two. The main reason for this assump-
tion is that it serves to clarify the 1issues by clearly
demarcating when 2 process is liable to lose needed re-
sources: during execution the resources cannot be snatched
away; when the process 1s suspended it releases the re-
sources and accepts the risk of being unable to resume
execution., If we do not assume allocation of resources,
it is very difficult to distingulish between problems caused
by suspension and problems vaused by uncontrolled sharing.
A second reason for the assumption that sharing is

B has shown the

regulated as described is that Van Horn
necessity of implementing such regulation in the system
hardware. It is reasonable to exgact that regulation of
sharing will become standard practice in future systems,
Multice as currently lmplemented does not satisfy this
assumption. The hardcore supervisor uses software loeking
conventiona, and & locker routine is provided for user
processes which carry out preprogrammed sharing. However,
most user sharing ls not so programmed. For example, one
user may borrow a program from another user, 1i.e., arrange
to use the program. While the program is being executed
in his process, the "ownep" of the program may absehs-
mindedly delete it, causing drastic conseguences to hisa

friend's process. It is possible that later implementas
tions willl remedy this defect, perhaps following the example

34

of a machine proposed by Dennis‘s.

3.2 Types of need

A process needs a resource to exist (in a certain
state) and to be avalilable. For example, execution of
most instructions in Multics requires the descriptor
segment to exist (and truly reflect the location of seg-
ments) and to originate at the word pointed to by the
descriptor basezregister. The problems of positioning
resources are considerable, and general solutions will
no doubt place important constraints on operating system
design. This thes&s, however, will not attempt to deal with
the problems of positioning, but rather with the state in
which & needed resource must exiest, By "state", then,
we mean not disposition, location, ete,, but content and
interface.

The interfaces of a varlable with other variables
define it as =2 module. The referenceable items of a table,
the functional definition and calling sequence(s) of a
program, the calls and references to data made by a program,
conslstency constraints on the allowed values of compound
variables--these constitute its interface with the outside
world, and hence its place in the system and 1ts definition
as a module. Itas content consists, in the case of a pro=
gram, in the algorithm described by the program, and in

the case of data, in the information contained in the

35
referenceable itenms.

We recall from Chapter Two that when a variable
changes its interfaces it ceases to be the same variable.
Two variables can be more or less closely related: for
example, two procedures whose only difference is that one
makes an additional call are closely related., 1In contrast,
a2 list=structured data base (assuming that its structure
is an interface, i.e., referencing programs "know" its
structure) is utterly unrelated to a metrix-structured
data base, even if both contaln the same infommation. We
say that a variable is modified if only its content changes.
If its interfaces change, we say 1t has been replaced by a
distinct variable.

When a process needs a variable, it may need the
interface of the variable or the content or both. These
three modes of need X1ll be demonstrated 1n the ensuing

discuseion.

3.3 Allocated variables

When & process 1s suspended, several variables may
currently be allocated to the process. These variables
must be detached, of course, and reallocated to the process
on resumption, The list of these resources constitutes a
first approximation to the description of the process's
needs.

There are three types of allocated variables, irst,

36
the programe which are current at suspension. It might

be posslble to define a class of tranaformations to the
interfaces and content of a program sueh that, given the
locus of control in the program at suspension, transforma-
tions in that class would not affect resumption. For
example, if control is about to enter the "return" in-
struction of the program, any transformation will do, as
long 28 control in the modified program is also about to
enter the return lnstruction. Specification of such a
claess of transformation is of dublious practlicality and in
any case beyond the scope of this thesis. We theeefore
assume that if a program is allocated (current) at sus-
pension time, the procese needs the same program (same
interfaces, same contents) to resume execution.

A second class of sllocated varliables are data

variables needed by current programs., The data variables
allocated to the process represent only a fraction of those
whiech the programs might need, because actual need at any
instant depends on the locus of control in the program.
If & wariable i1s attached to the procegs then 1t requlres
that the varisble not be modified. That is the meaning of
read dependency (ef. Chapter Two). Therefore both content
and interface are needed.

The third cdass of allocated varlable is the statlc
private (to the process) variable. This contains some

information of lasting interest to one or more progzams of

37

the process, hence 1t remains allocated to the process
although no program which uses it is current. An example
from Multlics 1s the Enown Segment Table. Another 1ls the
internal or external static storage (in the PL/I sense)
for any program(s). For these variables the content is
necesesary. These varlables must also satisfy some inter-

face constraints as indicated in the next section.

3.4 Interfaces

The system lattice as described in Chapter Two por-
trays the interfaces of system program and data variables.
Suppose that & certain opogram is current when a process
is suspended, and that one of its needed interfaces changes.
For example, the calling sequence or functional specifi-
cation of some program it calls might change. The suspended
process then cannot run properly with the modifled inter-
face.

That consideration shows that the needs of a process
ineclude not only the programs and data varlables attached to
the process, but also the following:

(1) all data wvariables on which current programs

are dependent (but not attached)

(2) all program varisbles on which current programs

are dependent (but not attached)

(3) =all program variables which are devendent on

statlc prlvate data attached to the process.

38

These three constlitute not a2 necessary but a sufficient
set of varlables for resumption of the process. The
reascn for using a larger set than might be necessary 1is
the general impossibility of predicting the future course,
and hence the future needs, of a program in execution.

In what way does the process need the three sets
of variables? Clearly 1t 1s the interfaces rather than
the current content of any which are needed, since by the
assunption that all programs are correct the content
satisfies functional specification (which is an interface)
and if the content itself were needed the variable would
be sllocated to the process. So 1f one of these variables
i1s modified but not replaced (l.e., none of its interfaces
changes) the process can use the modified version. Even
if some interfaces change, but no interface needed by the
processe changes, the process can use the modified version.
Thus some "pelatives” of needed modules can be used. 1In
cage (2), any "related" program may be used which has
the same needed calling sequence(s) and functional speci-
fication. 1In case (3) any program which has the same
interface with and makes the same use of the static data
can be used.

One other observation may be made about private
static data. What is needed 1s the content rather than
the interfaces of the data variable. An example is the

Multics Known Segment Table (cf. discussion in Chapter Five)

39

which containe the assoclatlon between segment numbers and
vathnames of segments known to the process. The lnter-
faces to this information are of no interest if no program
that uses the Table is current. So the same informatlon
in any other form would be sufficient, as long as the
resuned process uses programs with the correct interface

to the new data variable.

3.5 Coneclusion

The preceding discussion has attempted to show the
resource needs of a process. A note of cautlon 1s in
order. The discussion assumes that all "variables",
"programs" and "data", are nodes of the system lattice.
The same dlscussion might not apply to programe as indivi-
duelly compiled, because mutual dependence of programs
introduces tles which, under our assumptions, do not have
to be considered. One advantage, in fact, of avolding
large, complex nodea is that the replacement of modules
is thereby made simpler to comprehend.

Once 1t is possible to formulate, that 1is, to
compute the needs of a given process, it 1s possible to
compare those needs with the state of the system to find
out whether the needed resources exist, 1.e., whether the
process can be resumed.

It may be that a given process cannot be resumed

because some needed user resource has been modified or

40

deleted. The system cannot prewent this. It can, however,
prevent system changes from interfering with resumption.
Whenever possible, & resumed process should use the new
version of modified modules. The next chapter dlscusses
what may be done when a new module or version of 2 module

cannct be used.

CHAFPTER FOUR
SYSTEM MODIFICATION

4.1 Introduction

One requirement for a suspension capabllity is the
formulation of a policy for system modification. System
design is responsible for defining the locus of polilcy
decisions and provides the means of implementing them.
Often a system is designed to enable a2 particular kind of
volicy to be enforced, with system administrators given
the resvonsibility of assigning an appropriate value to
certain variables in the deslign. This chapter outlines
a strategy for system modification to allow suspensilon.

The varlable in the strategy 1is T, the length of time after
suspeneion of a process during which the system supports
resumptlon of the process.

We desire to formulate a sirategy for system modi=-
fication which guarantees resumability within time T.

One way to guarantee resumabllity is to refrain from making
any change to the system which would prevent the resumption
of any suspended process. That is, when a change is pro-
posed, 1t 1s pericdically compared to the needs of all
suspended processes, and implemented only when no suspended
process 1s endangered. This strategy 1s unacceptable,
because it can result in indefinitely long delays in im-

provements and correctlons to the system, as well as huge

42
admlnistratlive headaches. What is needed 1s a strategy
in which system changes are made independently of the
needs of currently suspended processes, that 1s, a strategy
whiech works in every situation.

That constraint implies that the procedure to be
followed when a module is modified or replaced may depend
on the nature of the module but definitely not on the
current state of any processes. The procedure to be
followed in resuming 2 process depends on whether needed
modules have been modified or replaced. The strategy for
replacing modules therefore consists of two parts, that
followed in system modification and that followed in process
resumdtion, Cooperation between the two activities is
possible 1f each module in the system 1s uniquely identi-
fied; its interfaces are uhicquely identifled; a "time-
last-modified" tag is assoclated with each variasble; and
gystem modification 1s understoed to include correct
updating of these ltems.

We first consider the procedure to be followed when
2 module i1s modified or replaced. Since we do not wish to
consider the needs of all suspended processes, we must
agsume that some process needs any module which is changed
and that it cannot use the new version. (later in the
discussion we will =see that some exceptlions to the general
rule may be made for special modules.)

To resume a process, we observe that 1f it were

43
always possible to use the latest version of every system
module no formulation of strategy would be needed at all.
To minimize complexity, therefore, we will use latest
versions wherever possible, and then formulate strategy
for the remaining cases. The discussion of a process's
neede presented in Chapter Three implies that the suspended
process may need the content andor one or more interfaces
to system modules and that the modules may have been modl-
fied (content changed) or replaced (interface(s) changed).
By comparing the process's needs with the information
agssoclated with each module, we can ascertain whether the
proceas can use the latest version of the module.

The remainder of the chapter concerns what to do if
the latest version cannot be used. There are two tech-
nigques: use 0ld versions, or make sure no suspended process
ever needs a given module. We discuss these techniques,
showing how the basic strategy outlined above can incor-
porate these technigues to ensure resumption of processes

that cannot use the latest versions of needed modules.

4.2 Usinz old versions

One possibility when a new version cannot be used
is to use the old version. This is possible i1f the old
module interfaces correctly with other modules and with
other processes. Chapter Two presents a system model that

exposes the interface between modules. That model does not

I

indicate any interfaces between processes. However, in

any multiprocessling system 1t 1s possible to program the
various processes to cooperate with one another, as, for
example, in observing locking conventions. Sometimes the
processes are programmed to cooperate in carrying out an
algorithm. An example is Multics page control, which works
a8 programmed only if all processes use the same paglng
program. This i1s an example of an interprocess interface
which prohibits using an old version of a program. (For
further discussion.of this example, see Chapter Five.)

The requirement of correct interfaces with other
variables in the same process 1s more manageable. We can
call an old verslon of a module safe if

(1) 4t is not dependent on any other variable; or

(2) no variable on which it depends has changed; or

(3) there exists a safe version of any variable on

which it depends.
If the system preserves safe versions of changed programs
then it 1s in principle possible for a suspended process
to bes resumed using the safe versions.

This strategy imposes some serious constraints on
gystem design as well as on system management. First,
the process must be able to use the safe version of a
program as well as the modifled version. The safe version
is used because 1t is current or needed by a current pro-

gram. The modified version may be needed by a new syetem

45
program that willl be invoked later in the process. So both
must be able to coexist in the same process!

Second, significant bookkeeping is required in order
to know when a variable is safe: to know whether a high
level variable 1s safe 1t may be necessary to find safe
versione of variables on many lower levels.

Third, safe versions of variables must be retalned
until no longer needed. If the system guarantees a near
unity probability of resumption within T time units, then
ordinarily safe versions need be retained for only T time
units. It is conceivable, however, that a process might be
suepended and resumed several times, so that its total
lifetime is several times T. The system administration
must then declde whether to advertise that such processes
are not supported or, 1f such processes are needed, to
extend the time for which safe verslons of variables are
retained.

We now pause to review what hes been done so far.
Whenever a system module is changed, system modiflcation
voliecy must take into acecount that some process might not
be 2ble to use the new version or replacement of the
module., If a system 1s designed according to certain
strong constraints, then for most modules it is possible
to preserve the o0ld version of the module as a safe version.
For a certaln class of programs this is not possible, i.e.,

those whose lnterprpbcess interfaces require that the same

46

verslon be used 1n every process. We now consider how

t0 deal with such modules.

4.3 Delayving suspension

When nelther the:old version nor the new version
(or replacement) of a module can be used, it 1s awkward for
a process to be suspended while the module is needed.

The obvious solution to the difficulty is to post-
pone suspension until the module is no longer needed. We
may distinguish two cases: the module may be allocated,
or some interface to the module may be needed. In the
first case, 1t 1s not difficult for the system to "know"
that the module is needed and to refrain from suspending
the procees., For example, allocating such a module could
automatically add one to a counter assoclated with the
process. Deallocating the module could decrease the
counter, If an attempt were made to suspend the process
while the counter was non-zero, suspension would not take
effect until the counter's value was zero.

Suspension should not, however, be subject to ar-
bitrary delays. We wish to make constralnts on any shared
module which inhibits suspension while it is allocated to
the process. This i1s equivalent to putting a limit on
the execution time of very sensitive programs (since sensi-
tive shared data variables are allocated only by such pro-

grams and private’ static data is by definition not shared).

47

We define for each program node an execution time,

representing the maximum length of real time that program
may be current. If the execution time of a program 1s

indeterminate, the program is sald to be unrellable; other-

wige the program is said to be reliably finite. If the
execution time is less than E, the program is sald to be
E-rsliable, or Jjust reliable. (Of course, we assume that
all programs which we wish to classify as reliably finilte
are bug=-freel)

If @ ig the maximum tolerable time for which sus-
penslon can be postponed, then we may constraln all very
gensitive (in the sense that suspension is awkward if the
module is needed) programs to be Q-reliable. Then when
a process has been chosen for suspension, the system can
allow it to execute for a time (less than Q) until none
of those sensitive modules are current.

We stated above that suspension should not be
subject to arbltrary delays. More preclsely, there are
situations in which suspension must tske place very quickly,
for example, when a user has run out of funds or when the
system 18 being shut down in an emergency. For these
sltuations, it is necessary that a value for Q be determined
and enforced on the very senslitive modules.

In other cases, however, suspension can be delayed
for a longer time. 1Indeed, there 1s often an advantage

to be galned by allowing a process to run on before

48

suspension, There is a cost associated with preserving
0ld versions of modules, a cost of bbokkeeping and, more
especially, of storage. It mey be possible to reduce
that cost*by delaying suspension until the process isa
dependent on very few modules.

First we observe that if we know which o0ld versions
of modules are needed by suspended processes we can delete
the rest. But the o0ld versions needed by suepended pro-
cesses are Jjust those which were allocated to the processes
and the safe modules on which those depend. If, when a
process's resources are deallocated on suspension, they
are marked as needed by that process, then unneeded old
versions can be deleted. Then it is possible to associate
the cost of storage with the process.

Postponing suspension can now be seen to be advan-
tageous if the cost of the delay (the processor costs, dils=-
advantage to other users, etc., may be reflected in a
price associated with postponing suspension) is less than
the cost of keeping 0ld versions of modules,

lower programs in the system lattice have smaller
execution times than programs which depend on (call) them.

Therefore, it is possible to define reliabllity zonee on

the lattice, including those programs whose execution times
fall within a certain bracket of times. One interesting
reliability zone conslsts of programs with execution time

between zero and 2 (maximum tolerable time for emergency

49

suspension). The programs in this zone need never be needed
by & suspended process, and old versions of these programs
can always be discarded.

From the polnt of view of the system, user programs
cannot be consldered rellable. However, a user may belleve
that his program is N-reliable and reqguest that suspension
of his process be delayed until either the process "runs
out of" the reliasbility zone bracketing execution times,
say, O to N, or suspension has been delayed N time units,
whichever occurs first. Using such a facility the user
could avoid the costs assoclated with saving the program

for his orocess,

4,4 A difficult case

We have sald that postponement of suspension can
ensure that a orocess is not suspended while any module
is allocated to it for whéch an old version cannot be
used (viz., because every process must use the same ver-
sion). However, such a module may be needed by a process
even when not allocated to the process, i.e., when an
interface to the module 1is needed.

For example, suppose &8 process 1s suspended while
program P 1ls current., Program P depends on R, & program
for which the same version must appear in every process.

Whlle the process 1s suspended, R 1s replaced by S, which

uses a different declaration for one argument., The process

50
can no longer be safely resumed, since it cannot use R
if other processes use 3, yet it cannot use 8.

Changing interfaced poses difficult problems under
any circumstances. Programs have to be reprogrammed to
use 2 new calling sequence or to reflect a modified fune-
tional specification. But the special difficulty for a
suspended process is that a current program may have to
be reprogrammed! We descrlibe three possible approaches to
handling this case.

One approach would be to require that all programs
which call very sensitive (in the above sense) variables
must be reliable. This 1s a very serious constraint on
the system. Its implications have not been explored.

A second approach would be to alter the state of
the suspended process Bo that 1t has the proper interface
with the new version of the needed module. Thls strategy
requires a better understanding of programs and processes
than now exists.

A third approach would be to examine interprocess
interfaces of modules more closely to see under what

circumstances two different modules c¢an be used.

4,5 Summary
The system can, if properly designed, permit a pro-

cess to resume execution with old, "safe" versions of

needed modules. For some system modules thls may be

51

imposeible, hence it is desirable to make some programs
reliable and postpone suspension until they are no longer
current. The device of postponing suspensicn can also
be used to eliminate the need of the process for some
other system or user modules, and thus to reduce the

number of 0ld versions which must be retained in storage.

CHAPTER FIVE
SUSPENSION IN MULTICS

5.1 Introduetion

This chapter presents some examples of suspension
in Multics. The first few are suspension-like phenomena,
not at all unique to Multliecs, but included as illustrations
of the suspension phenomenon., The chapter ends with a
discussion of suspension in the usual sense in Multics,

and in partiecular of why it is difficult.

5.2 Interrupt handling

In Multics, a system interrupt is one directed to
a processor, rather than to a particular process. 4 typleal
interrupt is a signal from an I/0 controller to a processor
signifying completion of some I/0 activity.

One way to view the interrupt handling (although
not the Multics view‘o) is to see the interrupt as a short
term suspension of the executing process. VWhen an interrupt
18 received the processor resources are deallocated from
the process and allocated to handling the interrupt.

What are the process's needs for processor variables
at the moment of interruption? The proecess may be execu-
ting any of the instruction programs wired into the proces-
sor. Interrupt handling normally does not modify the

instructions. The process may need any or all of the

53
various machine registers, whieh the instructlions use, or
the control unit information, used by the lower levels of
the system. (An anomaly of the GE645 design 1s that 1t
is necesgsary to be able to interrupt the processor during
the execution of an instruction,) What the process needs
is the precise value of each dazta variable. On interrupts,
therefore, the wvalues of reglsters and the control unit
are coplied and stored away. Within a short time the process
resumes execution and replaces the values of the processor
data variebles.

This example of suspension shows how precise delim=-
itation of what resources may be modified during "suspen=-
sion" facilitates the design of the "suspension" capa=-
bility. (It also departs from the Multics concept of
process in the interest of illuminating the notion of
suspension. In Multics a process 1s closely identifiled
with an address space, and processor interrupts are handled
in the address space of the executing process. Hence in
Multics the process is not considered to be suspended:

only the locus of control has changed.)

5.3 ZProcess swapping

Two further, yet still simple, examples of suspen=-
slon are provided by the mechanisms for process swapping.
When & Multlcs process 1s incapable of proceeding because

of some needed lnput, 1t rellinguishes 1ts processor to some

54

other process. Usually that does not require unloading
the process. We conslder fiest the case of processor
swappling, then the less frequent case of unloading.
Processor awapping 1s distinet from interrupt hand-
ling in two respects. First, the number of wvariables
deallocated is greater. An example is the associative
memory in which some page and segment descriptors are
stored for quick reference. Interrupts are handled in
the same address space as that in which the interrupted
program runs. Both the interrupt handlers and the inter-
rupted programs use the same assoclative memory, but it
is not necessary to store the assoclative memory when an
interrupt owcurs because, although its wvalues will change,
no incorrect information will be put in the assocliative
memory. But when=a distinct process with 1its distinct
memory space takes over the processor, the associative
memory will record page and segment descriptors for the
distinect memory space. This information is worse than
useless for the interrupted process. It is undesgrable
to record the value of the associative memory (control
may remain away from the process for a long enough time
that the information becomes invalid) so instead the
agsociative memory is cleared when the process resumes.
In this case the variable belng relinquished i=s
one whose content 1s needed. As its value changes, the

process does not want to use the old wvalue, but it also

55

does not want an incorrect value. Since "undefined", or
"empty", 1= a possible value for any item in the associa-
tive memory, the process uses that value on resumption.
When a process has been running for some time it
may be "suspended" for a longer period of time. When this
happens the process gives up core memory which 1s allocated
to it. In Multics terminology, the process is unloaded.
During executlon the Multiecs system, by dynamic
binding, introduces certaln dependencies into the process
in addition to dependencles implied by the system lattice.
For example, Page Control is dependent on a portion of
core memory containing the process definltlons segment.
Page Control can only operate if this block of core is
"latched down", i1.e., allocated to the process, In ad-
dition, the execution of most instructions requires the
preseace in core of a descriptor segment, which must be
in a precise block of core indicated by the processor's
descriptor base reglster. When a process 1s unloaded
the core memory allocated to the process is released and
may be modified. When the process 1s resumed it must
be reloaded, i1.e., a2 certain amount.of core memory must
be allocated te 1t, inecluding the particular block speci-
fied by the descriptor base register. 1In this example the

core memory allocated to the process is a variable which

must be reallocated when the process is resumed.

56

5.4 User faults

Faulte in Multics may be system faults,for which
standard, mandatory system handlers are provided, or user
faults, for which the user may specify his own fault
handlere. In the latter category are divide check and
overflow faults, among others., The possiblility of user-
provided fault handlers 1llustrates a situation which can
cccur within a single process 1n Multics, but which pre-
sents the problems of suspension. Suppose a user fault
occura for which the user has provided a fault handler.
The Fault Interceprtor Maodule of Multics acts as a dis-
patcher in thls case. There 18 no guarantee that the user's
fault handler will ever return; therefore the resources
allocated to the process prior to the fault should be
deallocated, so that other processes are not adversely
affected. Suppose that fault handler runs for a long
time--even 2 week--and then attempts to return control to
the point at which the fault occurred. The attempt presents
the same problems as resumption of a suspended process.

Any transfer of control to a dispatcher causes the
same situation: execution takes an unprogrammed change
in direction, from which return within a short or even
finite period of time cannot be guaranteed. 4 similar
situation, although one which is programmed, occurs when
any program lnvokes an unrellable program or one which is

E-reliable, where E is a longer time than acceptable for

57

s resource to be allocated to the process.

In these cases, a8 in the case of suspension of the
process for a long period of time, any resource needed by
the process may be modified. If the process's dependence
on hardware instruction programs, for example, or on other
programs is understood, it becomes possilble to calculate
whether the suspended process or plece of process (before

a user fault, for example) can be resumed.

5.5 Complete suspension

We now conslder suspension of a Multics process for,
say, a week., Such suspension, as might occur when a user
runs out of funds or the system undergoes emergency shut-
down, 1s the true subject of this thesis, because 1t
requires that all, and not just a portion, of the process's
resources be released., Implementing a suspension capabllity
in Multics has proven to be difficult. The remainder of
this chapter is concerned with exploring the nature of the
difficulties.

We beglin by reviewing the requirements for a sus-
pension capabllity presented in Chapter One. A systenm
haes & suspension capabllity if it can halt the execution
of a user's process in such a way that

(1) other processes are nét affected.

(2) some suspended processes can be resumed; namely,

those unaffected by any changes whlech occurred

58
during the period of suspension.

(3) the system can decide whether resumption 1s
possible for any given suspended process at
any glwen time.

(4) system policy is formulated to guarantee a
high probability (near unity) that a process
may be resumed at any time withln a given T
time units after suspension, despite changes

to the system.

5.6 Deallocation of resources

The first requirement for a suspension capability is
the ablllty to stop the process without adversely affecting
pther processes, Thls means that other processes must not
expect control signals from this process and that this
process must release all resources allocated to it that
might be needed by other processes. We will not discuss
control signals here, but instead consider the allocation
of resources in Multies.

A fundamental feature of the Multlcs system is that
read and write capabllities (in the sense of permissions-=
gsee Chapter Two) are not in general required for reading
and writing. That 1s, two processes may modify a variable
simultaneously and inconslstently, or one process may read
a variable that is in an inconsistent state because another

process is performing a state transltlon on the variable.

59

This feature of Multlies 1s not, be it noted, an
essential one, but merely reflects the state of the art
of multiprocessing in the mid-1960's. It would be possible
to implement a revised Multics that enforced attachment and
agssignment of varlables for reading and wrlting. Dennis16
and Van Rorn? sugzest machine desipne that enforce allcca-
tion as a prerequisite for use of resources. The present
discussion therefore must be regarded zs applying only to
Multics in its current implementation.

Because locking (attachment and assignment) is not
implemented in Multies processor instructions, it is not
enforced for all programs, since the instruction level of
the system 1s the highest level that i1s used by all higher
levels. The Multlics system attempts to provide voluntary
locking facilitles for higher levels. Ilock in the hard-
core ring and the locker in outer rings implement locking
conventions., We consider only the locker, since 1lock
operates in the hardcore ring, which is never canrrent at
suspension time.

The locker can make no assumptlons about either the
programs vhich use 1t or the variables which it locks. 1In
particular, 1t cannot define what constitutes a wvariable
and what does not. That task 1s left up to the programs
that call the locker. But the locker can only be successful
if the programs are coded to cooperate in use of the

varlable, an assumption that should be avoided in the

60

interest of programming generality. For example, a-=certain
segment might be used by two editor programs and several
programs that extract information from the segment for
their own use. Some of the latter might be interested in
tables or lists within the segment, and define lock words
scattered through the segment. The editors should not be
required to know about such random locks, nor to cooperate
with each other, In a system such as that described by
Denn:s15 the hardware defines what may constitute a var=
iable and also provides & lccking convention for use of
the variables: thus attachment and assignment conventions
are enforced for all levels of aystem,

wWhat are the implications of this feature of current
Multics? From our point of view, it means that Multics
doesn't fit the system model of Chapter Two. Reading and
writing g0 on independently of allocation. One of the
elements needed to compiite resumability is a list of
resources needed by the process. But Just because there
is no allocation of segment resources in Multies, there
18 no information avallable about what resomrces the process
ig actually uslng.

The most serlous consequence is that slnce there 1is
no information about what wvarlables are being modified
there i1s no possibility of putting those variables into
2 coneistent state. Therefore the system cannot guarantee

that suspending a process will not adversely affect other

61
processes, Various palliatives have been suggested to

overcome the basic dlfficulty for reliable (hence: system)
rrograms; but no complete solution can be found, since

the problem stems from a basic feature of the systen.

The current implementation of Multicse cannot satlsfy the

firast requirement for a suspension capabllity.

5.7 Resumling execution of a process

The second requirement for a suspenslion capability
is the ability to resume a process, assuming resumptlon
is safe., Multics is designed so that a process can be
suspended indefinitely and later resumed. Procedures
can be constructed for tucking away the per-process lnform-
ation, then later recreating an active process which can
be caused to execute. The onky mechanical difficulties
which exist have to do with repositionlng resources needed
by the process. Current procedures for mounting tapes,
for example, call for the user to telephone an operator
and request a tape to be mounted. When automatle poslitlon-
ing of tapes is available, the system should include pro-
grams for dlscovering the desired position for the tape
and repositioning the tape. Such repositioning 1is only
possible if I/0 system design permits relevant positioning
information to be obtained in a straightforward way.

It should be noted that repositioning is in general

greatly slmplified in Multlcs by demand paglng of most

62
programs and data. Thus to resume execution of a process
1t 1s only necessary to add an entry to the process table.
The proeess willl automatlecally be moved forward in the
executlion queue untlil 1t becomes eligible to execute.
At that time a few blocks of core will be allocated to
the process by the normal mechanism and when 1t starts
to execute it willl allocate core to itself as needed.
Thus the module in charge of resumption does not need to

gconcern itself with elther processor or core allocation.

5.8 Computing resumability

How can the system decide whether a given process
can be resumed at a given time? It must compare the
resource-needs of the process with avallable resources.
Here we will consider only the most common (and most fre-
quently modified) type of resource in Multics: information
contained in segments. Since Multics activatesd segments
on demand, one posseibllity for computing resumabllity is
to start up the suspended process and let it rum until
it attempts to activate a segment which it needs and
discovers that the segment has been modified or replaced,.
If this happens the decision 1g made that the process can
not be resumed; otherwlse 1t can be resumed. The advantage
of such 2 strategy is that 1t uses already existing mecha-
nisms and avolds a speclally contrived lnterface between

resumption and Segment Control. However, some speclal

63
machinery must be created to indicate that not Just any

segment with path mame X willl do. Unigue segment identli-
fiers may be used to distinguish between "versions" of a
module, Vviz., between a module and its replacement (distinct
interfaces). A retrieval mechanism can then be used to
fetch the "safe" version of 2 segment from the backup
gystem.

There are three disadvantages to the strategr.
First, the type of need for each segment 1is not recorded
in the Enown Segment Table. Indeed it is buried andor
scattered throughout the processa's data bases. Hence the
system cannot easily know whether a segment's content or
interfaces are needed. To find out wauld require complex
and undesirable interfaces between segment control (which
is activating needed segments) and various other pleces
of system. Hence we must assume that the type of need 1s
unknown and unknowable, and, except for a few speclzal
case hardcore segments, assume that the process cannot
be resumed (i.e., must be forthwith aborted) if any needed
segment has been modified at all. Thie simplifilcation
unnecessarily reduces the probabllity of resumption.

A second difficulty 1s that it 1ls only possible to
ascertain in Multics when a segment has been modifled, not
when some small variable in the s=zgment has been modified.
A Multics segment can theoretlically be very small or very

large. But there 1s no provision for segments within

64
segments. Further, reasons of cost and efficlency encourage
segments to be large (page size is 1024 words, hence a
1=word segment coste 1024 words of core)., These two facts
combline to mean that small variables are usually placed
in Xarge segments. If any word of the segment changes,
one must assume that the desired word might have changed,
and szbort the resumption of the process.

A third difficulty 1s that some, perhaps most,
segments in the Known Segment Table are not needed by the
process. Yet because proceses needs are not known exactly,
and also for reasons discussed velow in section 5.10, the
unneeded segments cannot be purged from the Enown Segment
Table. Hence if the process later needs a program which
it once needed, the system must attempt to get the same
version. If the same version s not avallable, the process
is (perhaps unnecessarily) aborted.

In summary, the Known Segment Table is an approxi-
mation to the peocess's abstract (as opposed to physical or
hardware) needs. The approximation provides a way (the only
way in the present incarnation of Multics) to compute the
resumability of the process., It can be used to ensure that
a process is not unsafely resumed, but in that case 1t 1s
practically guaranteed to prevent the resumption of some
processes unnecessarily. Hence by satlafying the third
condition for a suspension capability, it works against the

fourth, a high probability of resumption.

65

5.2 ZProbabllity of resumptlon

The fourth requirement for a suspension capability
is 2 near-unity probabllity that a suspended process can
be resumed within some advertised and reasonable T time
units after suspension, despite changes in the system,.
Chapters Three and Four dlscuss ways of changing the system
without axing suspended processes. The previous section of
the present chapter showed how one feature of Multiecs
vractically assures a non-unity probability of resumption
whenever changes are made to user or system resources in
the process's address space, even when the process could
safely resume execution despite the changes.

We now apply the results of Chapter Four toc a
conslderation of the Multics distributed supervisor, to
gsee how the system supports resumption when challenged
by a distributed supervisor. (To avoid any possible mis=-
understanding, I wish to point out that the strategy to
avold awkward suspension described below is not mine.)

In Multics the supervisor appears in every process,
This arrangement is referred to as a distributed super-
viscr11. Its motivating strategy is to allow each user
process to supply its own needs, as opprosed to having user
processes place requests in the queues of supervisor
processes. One consequence of the strategy is to make

mandatory close cooperation among processes, and therefore

strong interdependencies. We examine the consequences of

66
suspending a process while some program of the supervisor
is current, and them attempting to resume the process after
modifications have been made to the suvervisor. The
examination is not intended as an exhaustive treatment
but rather tc indicate the nature of the difficulties
involved in suspension.

Suppose that a process is suspended when some super-
visor program 1s current, and that while the process is
suspended that program is modified. We assume that the
new program cannot be transplanied into the process. Can
the process resume with the old version of that program?

To rephrase the question: can two processes have different
versions of a supervisor program? There are several reasons
for avoiding such a situation.

First, the success of some algorithms used in Multics
requlires that each process use the same algorithm, Two
examples are page control and the lockling mechanism. It
is difficult to ensure that two processes are supporting
a single paging algorithm if each process uses a different
vaginz program. Similarly, the locking strategy in Multics
is such thst each process relies on other processes to
inform 1t that needed data variables have been unlocked.

Second, even when different algorithms might mean-
ingfully ba used by different processes, the interfaces
between processes must be constant. For example, the

list=-dir primitive of directory control lists the contents

67
of a directory. One process might reasonably list the con-

tents in a different order from another process; yet both
muet know the correct structure of the directory. Simllarly
segment control and the traffic controller in each process
communicate by means of common tables, and all must share
the same declaration for the structure of the tables.

4 third consideration renders suspensgion in the hard=-
core supervisor unwise in the current implementation of
Multics. While processes share the text of programs,
certaln other per-program information such as the linkage
gection is unigue to each process. For reasons of effi-
ciency all processes share common linkage sectlons for
supervisor segments. This greatly reduces the core re=-
quirements of the supervisor, but increases the inter-
dependence of processes. Two processes may have different
versions of a program only 1f the versions have identieczl
linkage sections.

For these reasons it is unwlse, although theoreti-
cally possible, to replace modules of the distributed super-
visor. With luck and fastldlous bookkeeping, a substl-
tution 1is possible. That is, if a process has been sus-
pended while a program of the distributed supervisor is
current, then it can theoretically be resumed.

Since the system can guarantee, however, that all
hardcore programs are relliasble (remember we assume no

program bugs!), it can ensure that all processes have the

68

same verslons of hardcore programs by not allowing sus-
pension in the supervisor. This decision has been imp-
lemented in Multics by not allowing suspension in the
hardcore ring. It should be noted, however, that similar
considerations apply to any programs which rely on or
cause close interdependence between processes, for example
accounting preograms using common account data bases or
programe for interconsole communication. The simple way
to avoid insoluble transplant probleme involving these
programs is to insist on their reliability and to forbid
suspergion when they are current.

We conclude by remarking that even a cursory ex-
amination of the Multics distributed supervisor has il-
luminated some problems inherent in the suspension of

closely cooperating processes.

5.10 DBynamic linking

One way to decrease the probability of resumption
of a2 suspended process is through binding. Binding a
program to a set of machine instructions (compilation)
crestes dependenciss as reflected in the system lattice.
Dynamic binding creates dependencies not reflected in the
system lattice. If the binding is interpretive, no new
needs are introduced into the process. An example 1is
the interpretation of core addresses in Multics. If =a

page is located one time at thils address, one time at

69
that, the interpretive paging hardware operates to find
the correct absolute address, and the process does not
need the particular block of memory where the page was

first located. Corbatd and Saltzer3 have referred to this

interpretive binding as reversibllity of binding. We now
consider an example of dynamic binding in Multies which
ig not reversible, and which therefore introduces new
needs for the process and lowers the probability of re-
sumption.

Ags the grand finale to this chapter, we explore the
consequencesg for suspension of one feature of Multics,
intersegment linking. Every segment residing in the
Multics file system can be referred to by a pathname de-
signating 1ts place in the hierarchy. A pathname, however,
can be a very long string of letters, and leads to in-
efficiency in intersegment references if it 1s used as
the means of addressing segments. For thlis reason the
address space of a Multics process is not the flle hier-
archy, but a vector of segments. In the first reference
of =2 process to any segment X, the segment 1s assigned
a place in the vector, i1.e., a segment number. Thereafter
all references to X must be made by segment number. One
way to make such references would be for the procees to
compute the segment number at every reference to X. That,
however, 1s a time-consuming procedure. It must be done

each time a new segment references X, but later references

7O
to X by the same segment can be expedited i1f the segment
retains a copy of X's segment number.

To accomplish this, the system mskes pointers, or
segmentsoffset addresses, avallable to referencing pro-
grams. The linker places polinters in a segment's linkage
section, and system programs freely copy pointers into
their stack frames and static data areas.

That strategy promotes efficlency, but it also
introduces a dependsncy in the process that is not in-
herent in the system lattice. Namely, the segment using
the pointer is now dependent on the association of X and
a partlcular number, That 1s, the compound of the pointer
and the entry in the Known Segment Table which defines
the a2s33ociation becomes a static private variable on
which the process is dependent.

One result of the dependency 1s to make termination
of segments, that is, dissocdatlion of a number and a seg-
ment, extremely dangerous. Within the process the super-
visor should ensure that no segment 1s terminated while
any module is still dependent on the association of e
pointer and the Known Segment Table entry for that segment
(as there 18 no mechanism in current Multiecs for tracing
references to a segment number, this implles that no
segment can be terminated). Further, the Known Segment
Table entry must be regarded as attached to the process, so

that the process is not resumable 1f the entry 1s modified.

T1
(Actually the essential element of the entry 1s the
association of segment and number. Any transformation
of the Enown Segment Table which preserved that zssocla-
tion would not render suspenslon lmpossible. BSuch =2
transformation is in theory possible because the process
1s dependent Jjust on the contents of the entry--gzee Chapter
Three.)

Multics intersegment linkage makes a referencling
program Y dependent not only on the segment number of X,
but also on the entry points of X. That 1s, Y'e linkage
gsection records for X and a symbollec entry name (i.e.,
any location which can be symbolically referenced from other
segments) a numerical offeet within X. A4s a result, the
process 1s dependent on the aesoclation of 2 symbollcally
referenceable name in X and the word number to which the
name corresponds. Thls assoclatlion i1s recorded in the
linkage section for X when X is assembled. After ths
linkage is made, Y cannot execute correctly if that asso=-
clation of internal name and word number %is changed.

Thug intersegment linkage createz dependencles in
a procesgs which are not implied by the system lattice.

Not only are current programs and static data variables
needed but also, if in the future execution of the process
any reference 1s made to a previously-known segment, the
process must use some version or replacement of the seg-

ment that satisfies very strict interface constraints.

T2

The result 1s twofeold: statement of minimal requirements
for resumption 1ls made more compllcated, and the possibility
of resumption 1s reduced as the needs of the process are
increased.

The Multies strategy of intersegment linkage may
be contrasted with a hypothetical system proposed by Van
Horn2 and =& practical proposal by Dennis16. Each of these
advocates abolishing the distinetion between file system
organization and process address space. Van Horn proposes
addressing by segment numbers to the excluslon of pathnames,
while Dennis sdvocates, and apparently intends to implement,
processing hardware that allows instructlons to address
hilerarchical memory without segment numbers. Either of
these schemes eliminates the need for Multlecs-type inter-
gsegment linkage and the resulting gratuitous dependencies

created in processes.

CHAPTER SIX
CONCLUDING OBSERVATIONS

The few general purpose comvuting systems which
have suspension capabllities have demonstrated the use=-
fulness of such a capablility, a usefulness which is prac-
tically equivalent to a need. M.I.T.'s c7ss'7 nas such
a capability, and I have heard people make such remarks
in conversation as, "CTSS became really useful once it
started saving my job when I was thrown off."

A suspension capablility, then, would seem to be a
requirement in future systems. But it cannot be added
ag an afterthought. Careful design 1s necessary, especlally
in a system buillt to evelve, 1f the suspension module 1is
not to be changed as often as the system, or indeed, if
the system is to have a suspension capability at all.

This thesls has been an attempt to contribute to
the deslign of systems simply by setting down in writing
the need for a suspension capability, and defining its
constituent capablilities, I have attempted to show some
implications of a suspension capability for systems in
which information, and mot just coples of information, is
shared.

The thesls has focused attention primarily on two
related requlsites for a suspension capablility: to know

a process's needs so that it i1s not incorrectly resumed

T4
(1.e., allowed to resume using an incorrect replacement
for some needed resource); and to maximize the probability
of resumption of & process withln some acceptable period
after suspension, despite system changes.

The 3atter requirement has been called by Corbatd
and Saltzer® the need for "reversibility of binding". We
conclude with a few remarks on reversibllity of blnding.
Binding is "an operstion which occurs at a variety of levels
in 2 computer aystem: +the choodlng of a2 particular hardware
and supervisor environment in which to implement a program
construct." On inspection, 1t seems reasonable toc consider
binding in three distinet categories: program to program
binding, as in compilation of a FORTRAN program in terms of
machine instructions and other programs; program to data
binding, as whem a program includes table lookup; and
information to machine binding. The last occurs when
physical pieces of hardware are chosen for representation
or execution of 1lnformation. Examples are loading registers
in core memory with bit patterns of informatlion, or causing
a processor to execute a stored program.

The 1950's have seen a recognition of the need for
the reversibility of the third kind of binding. Segmentasl.s
tion, core memory management, and file system management
of secondary storage in Multics, for example, a2ll enable

a process’'s need for a particular unit of hardware to be

ignored as soon as the process deallocates the umnit: the

75
process may be resumed later with other, interchangeable
pleces of hardware. Thus the process 1s made indeprendent
of a particular hardware configuration.

Information=-to=machine binding 1s reversible in the
sense that identical hardware units may be used lnter-
changaably. The first two kinds of bindling are of =
different nature, since what is bound to is abstract and
easily modified. We say that binding is "reversible" in
these cases (information-to-information binding) if the
module to which something 1s bound tan be replaced by a
module of different content or, more demanding, by a module
with different interfaces as well. Thus the requirements
of reversibility of binding are stronger for software than
for hardware.

The system model presented in Chapter Two reflectis
the statlec information-to-information binding in the eystem.
As the system runs, dynamic binding takes place, ilntroducing
further dependencies within the context of a single process.
Sometimes this 1s also desirable or necessary, as when the
cholce of a particular sguare root routine 1s left until
execution of the proecess. The Multices dynamic linking
strategy introduces another kind of dynamic binding, in this
case undesirable, as shown in Chapter Five, To facilitate
reversiblility of bindfng and hence the design of a suspena::
slon capabllity, systems should be designed so that dynami-

cally introduced bindings are reversible or, where not

76
explicitly desired, avolided altogether.

77
REFERENCES

Dennis, J. B., and E. Van Horn,"Programming Semantics

for Multiprogrammed Computations,"” Communicatlons of

the ACM 9 (March, 1966), pp. 143=155.

Van Horn, E., "Computer Design for Asynchronously
Reproducible Multiprocessing," Ph.D. Thesis, M.I.T.
Department of Electrical Engineering, September, 1966.
Corbatd, F.J., and J. H. Saltzer, "Some Considerations
of Supervisor Program Design for Multiplexed Computer

Systems," IFIP Congress 1968 Invited Papers, North-

Holiand Publishing Company (Amsterdam), pp. 66-T1.
Corbatd, F. J., and V. A. Vyssoteky, "Introduction

and Overview of the Multics System," AFIPS Conference

Proceedings 27 (1965 FJCC), Spartan Books, Washington,
D. C., 1965, pp. 185=-196.

Glaser, E. L., et al., "System Design of a Computer for

Time Sharing Application," APFIPS Conference Proceedings

27 (1965 FJCC), Spartan Books, Washington, D. C., 1965,
©P.-197-202.

Vyrssotsky, V. A. , et al., "Structure of the Multlcs
Supervisor," AFIPS Conference Proceedings 27 (1965

FJCC), Spartan Books, Washington, D. C., 1965, pp. 203~
212,
Daley, R. C., and P. G. Neumann, "A General-Purpose

File System for Secondary Storage," AFIPS Conference

10.

11.

12,

13.

14,

78
Proceedings 27 (1965 FJCC), Spartan Books, Washington,

D' c.’ 1965, pp. 213‘229.

Osseanna, J. F., et al., "Communication and Input/Output
Switching in a Multiplex Computing System," AFIPS
Conference Proceedings 27 (1965 FJCC), Spartan Books,
Washington, D. C., 1965, pp. 237-24%,

David, E. E., Jr., and R. M. Fano, "Some Thoughts about
the Social Implications of Accessible Computing,"”
AFIPS Conference Proceedings 27 (1965 FJCC), Spartan

Books, Washington, D. C., 1965, pp. 243-247.

Saltzer, J. H., "Traffic Control in a Multiplexed
Computer System," Sc.D. Thesis, M.I.T. Department of
Electrical Engineering, June, 1966,

Bensoussan, A, , C. T. Clingen, and R. C. Daley,

"The Multics Virtual Memory," paper presented at the
Second ACM Symposium on Operating System Principles,
QOctober, 1969,

Dijkstra, E. W., "Structure of the THE Multiprogramming
System," Commumications of the ACM 11 (May, 1968),

pPP. 341=346,

Dijkstra, E. W., "Complexity Gontrolled by Hierarchical
Ordering of Function and Varlability," Software En-
glineering, report on a conference sponsored by the

NATO Science Committee, Garmlsch, Germany, published
1969, pp. 181-185.

Parnas, D., "More on Simulation Languages and Design

15.

16.

17.

79

Methodology for Computer Systems," AFIPS Conference

Proceedings 34 (1969 SJCC), Spartan Books, Washington,

Dl Cc s 1967’ pp‘ ?59-743’
Randall, B., and F. W. Zurcher, "Multi-level Modelling=-=-
A Methodology for Computer System Design," IFIP Congress

1968, North-Holland Publishing Company (Amsterdam),
pp. D138-D142.

Dennis, J. B., #Bdogramming Generality, Parallellsm
and Computer Design,”" M.I.T. Computation Structures
Group Memo #32.

Crisman, P. A. (editor), The Compatible Time-Sharing

System: A Programmeris Guide, second edition, M.I.T.

———_

Press, Cambridge, 1965.

