
MIT/LCS/TM-14

SUSPENSION OF PROCESSES

I A },IULTIPROCESSL G COMPUTER SYSTEM

Carla M. ogt

September 1970

Cambridge

SUSPENSIO OF PROCESSES

IN A MULTIPROCESSING COMP ER SYSTEM

Techn.ica.1 Memorandum 4

Carla M. Vogt

September 1970

(This repo , t was reproduced froru an M.S. Thesis
Dept. of Elec_rical Engineering, February 1970.)

PROJECT 1-lAC

Massachusetts Institute of Techno ogy

Mas achusetts 02139

SUSPErSION OF PROCESSES

IN A MULTIPROCESSING COMP ER SYSTEM

Ca.rla M. Vogt

MAC Technical Memorandum 14

September 1970

(This repor was re~roduced from an X. S. Thesis t 'UT .
Dept. of Electrical Engineering. ebruary 19 70 .)

545 Main Street

This 'nformal document has been publ'shed
to make the research esults quickly
available t:o a limited audience.

Massachus~tt Institute of Technology

PROJECT MAC

Cambridge 02139

Cambridge

SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPO ER SYSTEM

Technical Memorandum 14

Carla. M. Vogt

September 1970

(This report was reproduced from an M. S. Tbesis, MIT
Dept . of Elec: trical Engineering, .February 1970.)

PROJECT MAC

Massachusett:s Institute of Te.ch.nology

Massac.husetts 02139

ACKNOWLEDGMENT

Work reported her ein was supported in part by Project
I.AC, an M. 1 . T. research project sponsored by the Advanced

Research Pro j ects Agency, Departmen of Defense under Office
of Naval Research Contract Non:r-4102(01) .

I.

II.

SUSPENS 0~ CAPAB-LITY

. 1 Introduction

s

CONTE 'TS

1.2 om_utat on and process

3 Communioatio_ between proce -ses

1 .4 s spene. on C-apab1 ty

.5 Orga 1zat1oo of the thes.is

THE S_STEM

2.1 ntrcductio

7

7

9

10

12

f5

16

6

2.2 Resources 17

2.3 A a~t1ce of reso rcee 19

2.4 State of a process 25

2.5 st tes of resources and stat.e tr·ansi t1.ons 26

2.6 Shari g resources 27

2.7 Po ition1ng resources 28

.8 30

II PRO

3.1 ntroduc t.1on

32

32

34 3, .• 2 Types of need

6

3.3 Allocated variab ea

3.4 nterfe.ces

3.5 Conclu 1on

IV. Y TEM MO I -CATION

4 1 ntroduct on

v.

VI

4.2 Using old ers1ons

4.3 ea 1ng suepens1on

4.4 A difficult case

4.5 Summar

s SPE s_oN rt MULTICS

5.1 Introduot1on

5.2 Interrupt handling

~·' Process swapping

5.4 eer faults

5.S Co plete 'Uspene1o

.6 Deallocation of resources

5. esum1ns execution of a. process

8 Co puting re umab1 tty

5.9 Probab 1ty of reaump~ion

3 10 D amic 1nk1ng

REFERENCES

35

37

39

4t

41

43

46

49

50

52

52

52

53

56

57

58

61

62

65

68

73

77

1 • 1 _n,troduct1on

7

CHAPTER ONE

SUSPE S!ON OAPABIL- Y

In the pr·aat1cs.l operation of a computing system 1 t

is often necessary to balt the eecution of a ueer 1 s pro­

gram so tha..t 1t can be restarted later ju.st where 1t left

off., The 1.mpleet example is suep nding exeeut1on in order

t.o handle a hardware 1n terrupt. Sometimes 1 t 1 a ne,c ea sary

to suspend execution for a longer per1oa, aa wb.en a user

bas run out of' rund e or a user 1th higher ·pr 1or 1 ty dee ires

to use the syste · . Ia interactive t1me~shar ng s1eteme, a

us er may d. e e ire to suspend Bi.is work. 1.D order to go home '.for

the night .. In all of these ca ee a 1 t is was te•fu 1 to dee troy

the work already d.one. horeover, the j-ob may have perma. -

n,ently al te:red a cruc 1e.l e tora.ge f 1 le (such as the payro 11

re·cords for ac entire company). Hemce the need for being

able to, sust1e.nd a job, 1 e. , to ,stop it a,o the. t 1 t can be

, e eumed _a ter jue t \ihe?-e 1 t. left. off •

A 11 ttle· 1.hought g1ven to, the examples a•ove will

how that suspension tends to be ore involved as the ex­

pected period of euepens:1on gl'OWe lo•nger.. Saving a ·user's

job ove:rn ght. te more demano.:1ng than prov:1d1ne; an 1aterrupt

cepabi.11 ty I a1nce more 1nform.at1on a.bout t.b.e Ij)ob. must be

saved. Hence the te·rm suspens1on 1n th 1s tnes1s will

·usually refer to euspens1on of a user I s Job for a Long

8

per1 , W"ha a. most all 1afo,rmat1on about the ob hae to

be saved.

Ev'en epension for a long period .is not very 'tf

ficu_t 1 p it_ e omput1ng s tern The operator

pres e - a. If alt II but ton, J,ot s down the machine oo ad 1 t ons,

dumps the contents of core onto ta_ e • and saves th ee 1 tems

together th the ueeP'e input "'ape and perhaps a ecra.tcb

tape To resume the Job later is equally straightforward.

In the complex, mult1pl"ogramm1ne;; multi-access syeteme

being _mp eme ted today, suspension 1e more complex. When

many users ate t1me-ehar1ng a singe comp ter, suapene1on

of on · job must not a feet others adversely. In addition.

as user obs become lee sel:f-contained, 1t becomes more

dlff1cult toe sure the r resumption.

e sa that a system has a ue~~na1on oa0ab111ty if

it ls ab e to suspend a user's Jo o tat othe Jobs are

not harmed and tne euepende job can 'be safely re umed

later Thie thee 1s concerned with 1dent1fy1cg some of

t e mp 1cat1ons of as spension requirement for larg-,

general- r _ oe,e time• haring sy,etems. We begin by ett1ng

o • jeot 1 to focus. What 1.s the eilt1ty that is sua-

~ende~? Wh sbou d suspet1s1on ea prob em in advanced

systems? Wha are the reau1remente ~or a suapecs1on cape.­

b111 ty in such a system?

9

1 .. 2 Computat.ion and Process

Job" 1s a vague wore! or tb.e exeout 4 on of a user's

program 1n the con text of a com put 1n_g eya tem. We re_ lac: e,

the word II j.obn w1 th a oonoei;:l't wb1cb more s..ceura.t.ely def1 nes

Just. what e be1ns suspended. The following de_ 1n1 ti one

are based on the d1ecuss1ons 1D Dennis and. Van Horn and

an Horn2 ~

A computation 1s the exec -t1on o,f a. set of actions

wh1ch are pa tially ordered, in t1me and wh1ob. man1p lete

certain data variabl,e ,, some of which ma be 1nput to or

out)pu fDo:m the computat4aua The ordered se of aot1one 1,s

cal ed a • rogram. A process is a total y ord>ered ubset of

a computation, 1. ,e., he execution of a ae, uence of act one

w1 thin t e co,mputat1on. If' a program de· ,or1bea a sequence

of actions it is cal ed a eequent1al program. If it 1s not

restricted to a single sequence of actions it ia cal.led a

mul t1nrooese pr'ogrstDI and the execution of the program 1s

called a mu ti.process comp t .atlon. If we assume that the

-artia orderilJS of actions 1n a mul tiproc,ee.s proe;:ram is

th o 1 ordering enf orc.ed on the· co put a t1 on, then the

com tat1on sa1d to be aa;;nchronoue. The varl,oue compu.-

te.t1ons s 1ng on at any one tt."lle in a multi•acceas eyetem

are sa a.. to run as;yachztonou.sly of ea.ch other, e 1noe they

ar·e eepara tely proe;rammed.

A compu t.1.ng eye tem 1e a collec ti.on of hardware and

software ::resources (this ooc.cept ts further developed in

10

the . ext chapter.) A comput1n_g ac111 ty 1a a computing

syate 1n op r tion,. that 1s, with O·ne or· more com. utat_one

r nning on t.

n th1e ... hee e we make the e1mpl1f;ying assumption

that. any c,ompu ta ti.on to be su epended ,cone at s of a s ngle

~ re a:re to j t1f1oat1one o~ the Fir t1

almo ta_ resent-da general pur!)Ole computing systems

suppo!'t o - s1.cg .e pr-oc a oomputat1ons, al ~hough systems

ar,e being d signed to support m 1 tlpoooese programs.

second, the f1rst ate 1n learni g bow to suspend and

:reeu e a mu t1pi,ooess co p tation 1e lear.ning how to sus­

pe.Dd and resume it constituent roaessee

1.3 Commun1oat1on betve-n :processes

system has as spens1on capab111t1 1f it can halt

the execution of a user's process 1n such aw y that oth -r

users are not adversely affeo ed, a that be prooesa can

auccessfu ly reswne eiz:ecut1on later. Let us cona1der why

suspe eion should be a prob em ,tall.

If a collection of proeeseee is executing conourrent-

Y o com_ uter syete I and o.n.e of the proceaees et.ops. how

could other processes be advsrsel a fected? '!her

ways 1n ·which proee ee effect-- .,e I eommun1ca t e, with--each

o·ther. O:ce we may call control, that is, ca sing processes

to beg1n or halt execution. T'ae other 1 - through sharie5 of

common re our,ces. f proee e e P 1 s eus ended., :l t ma, fail to

11

make expected dee is ions tb.a t other p~ooe s see should c ,egi n

ex.ecution. After P b.as be,en sus .. ended another proce s may

decide that P should execute, not real1z1ne; thst P bas been

s spended. The thesis W1ll be on 1 1n1mall conce·rned w.l th

control problems.

Beside t.heee oontro problems are he problems which

ar1se because resources are eha:red. Here we roughly define

resource as anything a. -process needs to run (a more preo1ee·

definition can be found 1n Chapter Two) Suppose the

process has a tape ounted on a tape c1 1ve when 1t is eue.­

pende • .:.n a yet.em which manae;es tape dr1ve allocat on

within the pervisor, no o•ther process will be ab .e to

uee the tape drive.

What can prevent a process from eeum1ng ex,ecut1on?

Two recent d.evelopmenta ~n systems dee 1gn make eucceseful

~esumption of a process more d1f 1cult.

First, one of t e :reoent fundamental advances in

co puting systems · s the advent of direct sharing of nfor­

mation. I earlier systems there was either no shar rig of

inf rmatLon or cooies were shared~ Oorbato' and Saltzer3

that d1rect a ari.ng 1s desirable to e im n e

the need fo.r copies and the d1ff1culty o updating ha

mult1ple copies imply. e ultiae syetem4 ,5,6,7,8,9,

implemented at Project Mt!C, 1 s oae of the f 1 st aysteme to

incorporate direct shar1ne:; of program and data by sev,eral

user· • While direct s arlng represent a. edva.nce 1n

12

comp tin systems d,es ign, 1 t also poees procleme Iri 9ar-

t1cu er, the number of 1nterf'aces betliee.D d1rrere t ser

processes increases enormously. !ncreased commu loation

e twee programs 1 ncrea. se s nterd ependency. As a result · t

1e no lo ge_ o s1mple to spend a proce e and re·sume 1 t

seve a~ days o weeks later. For examp , s ppose orie user

11 bor:r-owa 1 a pro rem _ ro another user. n a sys tern w 1th

direct haring both borrower a ovoe use the ea e copy~

If t e orrower~e process e sus ende wb1le executing the

borrowe program, and 1f the owner meanwhile dee dee to

,change tbe program, the borrower I e proce s osnnot be re­

sumed.

~ second dev lopment n computing syeteme 1s the

adv nt of large, helpful systems wb1ch provide a mult1t de

of se"'V ces. In such systems user tend to beco e b a.vily

depen ent on system supervisor and t111ty prog ams. The

u eer · ay be considered to be "borrowing n such system pro

g~am The oneequencee of system changes are sa drastic

to uspended sel" processee ae the consaqueno,ee of a change

in the roe es or's 1nstruet1on set wou d be to e.er programs

1n a o p 1m1 tive system

1 .4 sue1'ene1on oa.pab1 1 t,:

We are now able tog ve a more precise def1n1t1on of

suspension capab11ty. We said th . ta system hes a suspen­

sion capab1 1ty 1f 1t ca halt the exeaut1on of suer e

13

process in such a way that

() other processes are aot adversely affected

{even if the suspended p:rocee never resumes

execu t1on) ,

(2*) t e proce e can auccessfUlly resume execution

later~

'What does 1t mean to" uaceas:f'ully" reeume execu­

tion? It ee.os to :resume exeeut1,oD in such a way that the

re-sumed rocese is not adversely affected by any ch nges

which have occurred sin.ce the process wa.s euepecded. ~ The

ohange in I!!. estion ma.y have been oontrol signals or changes

to resources needed b t.he process. If we 1gnore problems

of control we might r quire the system to guarantee that the

resources needed by the process w 1 l l be ava 1lable when the

user want to resume the process.

But the eyetem cannot always guarantee that a sus­

pended prooees can be resumed~ First., the user himself e:1e.y

delete a prog,ram or data table used by his proces. There ...

:fore we pa.rt_tion the resource available to processes into

those who e mod1f1cat.1on o:r delet.1.o.n :ie controlled by system

l)Olic a ·" tb.ose 1n control of users~ Tb.en a. more rea.son­

abl. · eq 1rement on the sy tem 1e the s-·ll'it:, to gue.rant.ee

that resource controlled by the system are ava:1lable when

t.be use~ wants to resume t.be p?"O,cess.

Secondly, re·Sum.J:it1on of a process teed a 1:.o become

ore difficult ae t.1 e 1ncreasest because of the increased

14

proba 1 1 t o cha..ng,e - to resources. A - explained II

Corb o and Salt er3 , as well as others, future com ut1ng

systems us be able, to evolve and adapt t ,o ob.ane;1ng: con-

d1t1o • n s b systems the eyste itself undergoea fre-

quent od_f1eat1on. It is st11 possible, however for

syate mod1~1cat on to be guidea by a policy wh1a ensur · s

a h1i;t. nrobab 11 ty of resumpt1o w1 thin so e

known T time units after sus_ension~ Requ1rement (2*)

above ay therefore be eplaced bj the following:

(2) so e suspend d processes can be resumed, namely,

those unaff oted by any changes which may ha.v,e

occurred during the per1od of eu pension.

(3) the system een decide whether resumpt1on is

poe.sib~e • so that proc.ess · e are not ir:icor ectly

resumed w·tn erroneous results.

(4) system pol1oy 1.s formul ted to guaran·tee h1gh

probability (~ea~ un1ty) that a process may be

res e at any t1me within a e;i ve,n T time unit

a:fter eu .spene1on, for ome .,aoeept.a.ble" value

of T, de p1te changes to system resources, ae

log ae no user resou~ces are chan_ed.

e m_ ica.tiona of suspension on control and a.llooation of

reeoul:"ces are nteresting 1n their own right. But this

thesis will be concerned ~r1mar11y with requirements (3)

and (4).

15

1.5 0Pgan1zation of th thesis

The forego1ne; discus ion has ·served to bring the

eu bJ ee t of the the si e into ro cus. The thes 1 s 1 s co c erned

w1tb exp or1ng some _eq 1rements for a suepeCls1on capability

and with system de ie;n and yetem policy for fulf1l11ng

tho,se requ1l:"ema,nts.

Since we are concerned with syete re ources we

develo a model of a computing eyetem (Chapter Two) a.a a.

aollecti,on of resources. In Chapter Three we explore the

nature of e. p oce s s' e needs i"or reaourc,e s. Chapter Four

describes some 1mp11cat1ons for system pi:ill1cy on resource

mod f1ca.tlon. Chapter F1v,e 1a a dlsaues1on o;,, some problems

of suspension in th - Mul tic system. Chapter S1.x present,s

some conclue1on - of the 1Dvestigat1on.

Throughout. the i.he!!1! examples are drewn from tne

Mu tics sy -tem, for tb.e :reason that ult1ee m kes expl1c1t.

the d1ff1cul t1ee re.1sed by auspen ion. The· examples as ume

a me familiarity w1 th the Mult,i.ce system, as described 1:n

the refe,rence 4,5 ' 6 '1' ,B,9. Also use,t 1 are 1:.he 1n.trodue­

tory chapters of 3altzer10 and the discussion lly Bensoueean

!,l !L· ~ the !u tie - vi tual memory 11 • Aoyone who is

neither a speed reader nor already a Multics initiate can

sklp Chapter Five. Tb.,e r mainde:r of the thesis should be

understandable even w1thout the examples.

2. I troduction

CHAP ER TWO

THE f:3,YST

Since he euep~n.s1oc pr,oblem has to, do wl tn t e mod.-

1f1ce.t1o of reeourc:ee 1n a computing system, we need some

1n 1.gh t lnto comp11 ting systems 1n terms of the needs for

and a_locatio of resources in processes. The purpo e of

th- s chapter is to pre ect a. model of a modern ,computing

system: so that r q re ente f ,or suspension oan be di ecuased

1c t rm.a of the mode.

Th model 1s not intended to be a sketoh of the

Multi.cs s stem Rather, 1t 1s an 1nde_ ndently concel'ved

abetract1on, wb.1ch we w11 apply, ae a Procruste,an bed, to

the M ltics system. However, we do make some general

aesumpt1 n about systems to which tb.ie model oan. apply

Fir t . the · y stem 1 s assumed to have a modular des 1gti, 1 . e. ,

to be made up of d1 t.inct units of program (and data),

each unit ha -1ng respooe1b111 ty· or ome aspect of sy·etem

funct1on1ng. These modules are more c. o e 1 akin to

c .o e , ubro t1 es th to the blocks of an Alga program:

ueua. ya modu" e has fu_f1lled its function uet wen

contra in the process leaves t e· 1retur " D truct1on,

and the odule can be 11 oalled n from any othe,r tirogram

modu_e. Second, we a eume that the s;yatem 1s large and

comple • Third• the 8yet m aupt:iort more tnac on process

17

conaurrently~ Tbeee processes can a.nd do share resources

d1reotl.y,, end the system mu -t regu_ate the ~hared use of

ourth; the system 1 a mult. ... accee- system in

wh1oh resources may "belong 11 to different ueers, who control

tb.e sha.ri g and m,od1f1cat1oa cf resources among themselves ..

Last, but not least, we asume that suepensio.c of' e proce!!!le:

1, a po,ss1b111 ty which can occur 1.n normal system operatlor:i

So e familiarity with the ult1o system 1s assumed

on the reader's part, e.nd examples in th1e c~apter w111 be

d.Jtlawn from that yetem. However, eny other system eati r, ..
1ng the a ove aseum.ptione would provide equally good

examples.

2 2 Resources

To beg1z::i w:1 tb. a oomput1ng system may be ree;ard ' as

a. col ect1on of J"eeol.ll"oes which a prooeee oan use. The

resources can 'be claesifi.ed as phye:loal or abstrs.crt., and ae

p?-05ram or data variables. Examples are shown in the figure.

Phye1 al

program

processor
instruction.
logic

eoftva e
PTogra.m

data

ts.ties,
processor
registers.
core word

I page ta.bl e,
I process 1 iat
;

Every resource ln a computing system all int.o one of thee.a

ca.te5ories. Data le · uet 1nformat1on wh1ch ie not. intended

18

to escr1 ea comp 0 tat1on, 1 e., nonexecutable. A resource

such as a tab e of Be se funct1one or processor logia la

- a.rely od f ed, but can et-11 be con i~ered ae a variable.

A ag table or a program being debusged !a modified ore

ofte . .

The word 11 ariab e" 1n the above d1 cuss ion might be

repl ced b 'modu e or 11 aegme.nt ''. It 1 - uai t defined by

the 1 terraces it presents to the outs1de world . viz , 1ts

functional spec f1oat, on. If 1 t. value c an,ge 1t. la the

sue var- 1a ble. I - 1 ts functional spec 1 f 1 cat 10 change e 1 t

ie a _ ew _ st1nct variabl •

The concept of program is a~ucial to this discussion,

and therefore eae~ve- close in~eetlgatlon. We are can-

cer ,ea. here with program modules, ,Lhat 1 groups of one

or more external procedures (1 the PL/I senee) that co

operate ta perform a common funct1on. That a module in

th s sense 1s ua.rt1 t:!.oned 1nt•o s L.er un.1te is of no con­

cern here. Hence we speak or control entering a modu e (or

a. pro ram) and of the progl:"am modu e returning. A program

mod e 1 1 so et1 · es e cal ed a pro re. resource in order

to em . h ize s sefuloess t ,o the proces:e executing 1 t.

It m ght be poss1c e to eetablis& criteria for what

conat i.tutee a eparate program odule, from the po1nt of

view oft e system as a. oollect1on of resouroee .. netead

we aaeume that the program modules are given, and accept

them as given.

9

2.3 A att1ce of resources

In a large a.nd complex system a collect1on of

re ources, even whe catalogued, ~B not m ~b o a model.

What 1s nee ed ie t uctu:re Edegar D1jketra 2 , 13 en 1

draw ng f~om ia insight, Randall and Zurc er15 and

Parnaa 4 1 have pro osed a"" sy tams be h1erarch:1ca.lly

dea_gned, so that programs in the system can be arranged

in a a.tt!ce in the fol owing way. Ti e J)rog a.ms a.t the

ottom of the lattice are co ple el elf-contained We

say that ... e form the zeroet layer of the • tam. In

the f1rat layer are programs bat re 1 on.ly on the p~ograms

of the zeroeth ayer Pros1 .. ams n. the eeoond layer re y o,n

the zero·eth and first la.ye.rs, and so o •

lattice show thie dependence, re·1at1on

he area of the

Whe a system ie so constructed, the 1th layer acts

as an interpret.er for the (1+1)st layer. Th (1+1)st ayer

ie,, a t were, programmed to ,execute on a t•ma.ch1net1 pro-

vided y ayers O through.

*A att.1ee le a set of objects on which a part1al ordering

rela 1on, often denoted L, :le defined. ii partial ordering

rele:t1on 1 refle v • t~an 1.tive, and ant1-aymmetrio. If

a. an b ere two ob · eo:t.a 1 · the latt1c 1 1t 1s not necessary

the. t ei th.er a~ b or b ~ a. The partial Ol'der 1ng; in thi e

case ls the dependence relat1on that occurs when one pro­

gram calls another or 1 a coded w 1th the under stand 1 n· that

another rogram may I helun ~ r1 n i t.e xec tion (e .g J agine-:).

20

Even when a system nae not been h1erarch1cal y

designed 1 t 1e pose· 'ble to view 1 t h1eI"archic lly. _, e

M ltice s - tem was designed with a trace of the notion

(viz., the notions of seudo-prooesaor O and virtual

m-mor 11). But for the moat pa.rt., the system le thought

ot B.E two- evel: software prosra.m and hardware that

execute a the progra • We will view the Mul tioa eyete

somewhat d1~ferently. To beg1n with, a processor in true-

ion is itself a program. Ir the processor 1s modularly

de.signed, these P- ogra.ma may be regarded as o ccupy1ng d.1s­

t net levels, of system. (Th.is .1s moat clearly exemp-.if 1ed

1n microprogrammed processo:re.) Rat.h r then thinking o:f

c:on-t.ro as being I in I j st one program• plus ju.et one

net.ruction, we view a whole group of programs ('both ard­

wa.ra and of tware) a be1ng 11curre t n at .an7 e;1 v n t 1m , no

more han one p:er level of' eyetem. (Thie aseumptioD is

unw~ranted in systems wh:ioh allow uaer· band- 1ng of faults••

see seot1on 5.4 on ser faults.)

It 1 oe 1ble t.o view Multics 1n this way, even

though 1 t was not a•o esigned, becaue•e of 1 ts uee o

... xter.!la procedures and e eo1ally because of its mo ular

dee g • Further, the a ttent1oc: given ln the first dee1gn

and 1n subsequent rede 1gns to s1mplio1ty in the system

bas tended to result in a more b.1era.rchioa_ pattern of

dependence &Dd fewer comp_ex 1ntarrels.t1onahlps be•tween

programs.

2

"Dep~ denoe" sho - d be more prec 1 se ly def 1ned. One

program depen so another l is 1e coded to cal that pro­

gram in ome c r-cumstancee, or if 1t s coded with the

understand ng that control ay trap to that program in

some, c_rcumst s.ncea. ependency 1n thle sense prov1des jue.t

the partial ordering r ,el tionehlp we need 1n constructing

the sy tem ttlce.

Three anoma.11es present themse vea here Frat. some

programs tran fer con-t.ro to other rograme but can't be

viewed a be ng 1nternreted by these programs, as requ1~ed

by the mod,e_. se,c:ond ,, sometimes two modules call each

other. Third wna., happened to data Va?' ables 1n this

,.latt · ce of resourc.es 11 "c'

There are certain program 1n some e1erteme that don't

1t e 11y in o the picture 51ven above An example 1e the

Multic Sbe l. Th s program acts as a dispatcher. inter­

preting co,m:mand 1nes typed by e. user a.nd oaue1ng t.he

requested c,ommand progl'am to be executed. The She 1 1 teelf

de not incl de programmed calls to any commands,, yet 1t

c ausee them to be called. In th 1 g o ase we do not cone 1dez.

-;, a t the ::ne 1 epends on t .e command, becaaee ca: plet1on

of the· She ' s ork is not depend,ent on the existence or

proper funat1on1ng of the command program. The Shel e

coded eo that 1 ts job may be co na id ered f 1D1 shed wh,e·n 1 t

hae called the command A similar cas ia provided by the

f'ault inte eepto:r in Multics, wh:1.on galns control whenever

22

a. fa - t. occurs, and ca uses the e.ppr,opriat, fa.ult. b.andlera

to execute. A . the f'aul t. !nt.erceptor aa ts a.a a d1 spa tcher,

it ca.n successfully erro_m 1te funct.ion even 1f one of

the fault b.andlars 1.a 1n error. One of the fault handlers

in Mul tics 1s tb.e d1v1d cheek haridler. A u.ser may substi­

tute b.1s ow d~v1de eb.eok handler t'O?' the o.ne provided by

the eyetem. The fault 1.ntercepto~ does not depend on. tb.e

hand er. In summary, a pr,ogram whose :f'unc tlon :1 e d1 spa tch ...

ing (s oppo eed to, ee.y. calculation of· a tr1gonometr1 a

funo,t.i on) is not ipso facto dependent on programs to which.

1 t happen a to d 1 spa tch con'tro l.

The seoo:nd anoma_:, ie tbe phenomenon or two program

modu es which ca 2 on each other. W , do not a k whether the

modules are nee es sar 111 mu tu:e.lly dep nden t Tba t. i e, 1f

ex:ecut 1on pa th A 1n prog)"am X ls depeniien t on program Y.,

and Y is depend.ant. ,on path B in x. then do paths A and B

ln act intersect'l This 1s a qu · stion to be allswer·ed 1n the

design or tlle system when tb.e supervisor 1a divided into

program a. G1ven the programs e.s the:, bs.ppe:n to be, we

revise our notion of what. constltutes a node of tile lattice.

A node !: a maximal eet. of mu tu ally dependent program

modules ,.

Toe thitd s:c:omaly e that the s;ystem--e. oollect1on

of reaouroes ... -b.as been layered w1 th.out any m.ent1,or.:i of data

variable resouroee. 0Dce program resources nave been

ordered 1n a latt1ce stl"uct.ure the data variable r ·eaolll"cee

23

are easily 1nauded. Namely, a data vs.r1sble .1 needed by

a :progrmm. node 1f the program use the data variable. If

th program may mod1f the var1a'ble 1 t 1 wr1te-det1e, dent

on the a , 1 ble~ otherw1ae it le rea,d-de!2!:Ildent on the var-­

iable.

We wish to s ve e. i,reci se d,ef1n1 t1on of the dep n­

denc of a ~ rogram. on a non-program ?'eso,urce,. It would seem

that program which makes the ca.11

wr1 t ,e (11 cal"dpUDob.' , da:t.a area, 1 • 100)

to pun,oh a 1 00•c e.rd f lle is dep-ande nt 1 some sense on

the exi , tence ,and avail b111ty of a card punch. However,

1 t i a po,ss1 b_e th t rr the s:yst m ay dee 1 " me:r,e ly t ,o queue

a request for uee of the oa.rdpunoh 1f none 1e available

Indeed, the pztoe;ram which contains tbat call 1s aot,ua.lly

de,pendent on the Hwrite"' proe;ram and not on the ,card punch.

At eome lower level of the system, h.oweverJ) a program me.y

ex1st which 1ssuee a conn.eat to a.n I/0 controller to cause

p nob1ng to begin. Th.is program :1 e dependent o:a the

e _stance and av·a1labi 1 ty of a cs.rd punch.

Th.is last example sugge ts another, way 1n which a

ogram is dependent on a data variable. The page fault

handler may run to completion, but if it obta1ns 1noorrect

1n ··or.ma tion about the whereabouts ,of the page on eeoo,ndary

storage, t w1 l perform its ta k incorrectly. We do not

1n this case consider the page fault handler to be depen­

dent. o:c the 1:r:r""o:rm.a t1on per !!,, 1. e., , en some part i.oular

24

a ue of the var'1able, but rat er on the data va;-iable, an:d

we me.ke the eimpl fy1.og a eumptlon that all var,1ables have

the correct value.

Any _:rocess no so ely dedicated to syatem t'unct1ons

or se?"v1ng as a. desk calc:nlator is probab y mak1 use

of reso,urces not oone1de~ed so far but 1m:portant to suspen~

e1on, hat is, user upp led resources. A computatt~mi. :cun

n1ng on beha f of a certain use?" may neeci programs and. data

ve.r1a les which are mo 1f1able by that user or other users.

Tb.eae resources are ade a.ccees1 le to the proceee through

the computi g system, and a-, be considered ae system

exte_sions, or resources in tbe extended system In fact 1

the chief d. f J.erenoes (· ro our point of view) be·tweeo

th,ese resources and e stem resources e.re: f1rst, that

system design cannot assume any maximum time 11mtt on the

exec t1 n of' a user program (e1ne,e 1 t may contain a ""ight

loop) ; and second, that modi. -1 cat ions to user programs

and data cannot be controlled by system po 1,cy. Because

the s yste cannot rely on user- .rograms or data, 1t ollowe

that no ser program or data var1e.ble may be on a level

below any yatem progra or data varlab e. That does not

re en the 1na _ _ s1o of programs 1n the system which

d ep toh control to user pr,ograme, 'but 1 t doe a req_uilr"e

reooe;n1 t1on that those rogr.ame may never re·tw:-n a

25

2.4 state of a p~oceas

~e now conoec this model of a srstem as a collection

of' resources to the ear11eP descr1pt1.on of a i,rocees as

the execu t 1on of p:roe;ram or se uenc e of programs. At

any point 1n real time the proae s 1e 'ocourr1ng" at various

levels of the system (I 111 say "syetemH rather than the

bulkier 'extended ey atem'• where the mean1cg 1s elear.)

Tha.t 1, the ~rocess is , eecr11ed by one or more programs

wh_oh have been partly executed but not oomoleted These

prog~a s may represent several layers of eyslem and many

non•progra.m resources • .As an example, consider a Multics

prooese wh oh a executing at, each of the following levels:

(a) tb.e roceseor is pe?lfo?'mlng a etch, (b) as pa. t o,f an

lda (load e.o cumula tor) ins triuc tion, (c) which occurs in the

page fault b.andl -r1 (d) rocees1ng a page fault for- the l:let

command program. At ea.ah level the process 1a using program

and other reeource,a ~ At some, level the process may be al•

tering the state of certain resources. In thle example, the

instruction 1e mod1 y1ng the accumulator register and the

page fault. handler is modif:;ying a page table~ We say t.he

µrace 1s write- dependent. om: resources 1.'t may be modifying

and read-dependent on ot ers~(aee dleo_seion of allocation,

below) • If lie know wh:leh programs are current, that 1 s •

which program resoureee the process ie using, end the

resources needed by eaon program, then we can begin t,c

oharact-erize the resources ceede-d by the computa:t1on at any

26

instant of :r-eal t1me. This will prove t ,o be us ful 1n

design1ng a euspens1on capab111ty, and we w111 return to

it late?'.

In summary. the needs of a process can (to a. f1ret

a __ roximatio) be cha?"acter1zed by the descript.1on of the

ou.rl:'ent program modules and the data v ,rt.ables needed by

each modu_e.

2.5 States of resources and eta.te trane1tlone

Sometime whe.t m1ght at f 1rst e:.~p,ear to 'be two d1s

t net data varie.blee 1n a computer system turn out, on

cloee · 1nspect on 1 to be better regarded as part,e of e

co pound va.r ·a.ble As an example from Mu1t1cs 1 cons-der

an e try in the core ap and the contents of the aesoc1ate,d

1024-wo,rd block of core. If he oore block were replaced

w1 th a : age rom seconciar:, storag , and the core map were

not upeat,ed the system must be considered to he 1n an

1noona1etent state. .4 typ1oal compound variable ,occurs

when one data ar1able 1 used to d.esor1be the state o

anothe · ar1e.ble. This compound variable, like a simple

varia.b e (e g .. , b1 t or word)' 1 has a (possibly large) number

of s ll-de . 1ned states. When a program node ,of the syatem

reso ce lattice is wr1 te-depend,ant on a certa1 0O,mpouna

ar1a e, we may say that the program module performs

state trans1t1ooa on the variable. Wh1l e 1t 1e undergoing

state transl tion · the variable is 1n an 1noons1ste.nt state.

27

We tend. to f 1 nd more complexly s true tured oom pound

variable ae we a.ecend the resource lattice. Oc the level

o t em chine instr ct1o the variable is typically a. word

o - re 1ster. At higher levels 1t may be a variable- 1 ngth

. 1 t with a count, or evec (to ae an examp e fro Multics)

segment end tts directory entry Although any d gree of

comp ex1ty s possible 1 ed ate y above the aoh1ne 1n­

truct on e e , 1 :practice the var1ab es tend. o be,come

ore com ex as a more sop 1st1cate 11 mach1ne" s ava1 able

to per or- state transi t1one.

Because co pound variables may be very comp e·x they

may not be eaa; to dent1 y A requent clue to the

p esence o ... a compound variable 1e a. ockwo,rd that regulates

access to the ariab_e. or a felt eed for such a lockword.

2~6 Shari g resour~es

A modern computing ey te supports mult1-procese1ng

wh 11oh the proc,eeees share access to var lab ee. hie

causes a pro em when the system conta.1 s compou d

varia e. SUppoee a certain compound variable, co posed

of pa-ts A and B 1s under o1ng a state transition involving

botn A and B. F1ret. A 1s mod1f1ed, then while the resource

1e nan neons stent state another process tries to use

the inconsistent data, resu ting in en error.

In order to vo d t 1s tyoe of error, system

·troduce some reg lat1on 1nto e h -r1ng of re ouroes.

28

An obvious method {o .:ee 1 t ad 'been pointed out · y Den.ois 1)

:1s as follows. To· modify a variable a process muat ha.ve

exclusive use of', or write capab,1 1tz for1 the variable~

To read a vari ble a proce as has ~ aapab!.l 1 ty for the

variab_e, thus preventing any other proc,ese from setting

WI':1 te aa:9abi 11 ty for· the variable. _ :u a pro c ese has

just one kind of c pability O,or a var1e.ble: none read.; or

WPite. Simi arly,, we eay that a ar:lable ls attached to

a _process which has e d caps.o1l1t.y for tbe varl tile and

assigned toe process which has write capability for it.

A resourc may be a.sa igned to one pro e eae I or a. t tached t ,o

one or ore procesa.ee ~ but not both. We ea.7 that a r ·e · ource

ie allocated to a proaeae if it is either attached or

assigned to the p:rooess.

We note 1n paea1ng that. attachment and a · ~1gn ent

ust of nece ei ty be or a 11m1 ted tlme only for any

sharab_e _ e·eource., When a pl"ocess hae oomp,leted an ope?"

ation with an aee1gn d variable, 1t. u.nase1gns tb.e va?'iable.

nd t h.e variable remain.a attached t.o t.he process. 'W"hen

t detach.es the variable, it no longer has any cape.c111ty

fo t · e variable.

2.7 Positioning resouroee

It 1s. 1mporta.nt, t.o d1st1cgu1sh between capability

and va.11 ab il 1 ty. Al though tb.e WO I'd "c e.p.ab1 l :tt.y 1' e eems

to imply the.t a process with write c pabil 1 ty o_ag actually

29

mod fy a variable, in fact it only ma,1 (has perm1ee1on to)

mod:lfy the variable,, i.e., as soon ae the variable is made

e.va.1la.ble (e. e;. , by pag1ng) •

A e we di a t1 ngu .eh between ca.pab111 ty and ava 1 lab 1 ~

lity,, so we d1st1ngu1sh 'between giv:tng a. capabll.1ty to a

pr-oce s (a loeet:ton) and g:lv ng a. process tb.e a.b111ty to

ea.oh a var_a.ble (poe1t1on1np; the vulable). Some1.flmes the

aat1one of allocation and poe1t!.onln,g are 1dent1ca.l~ In

Multics, for example, it is only poeei.ble for one process

a.1:. a. t · me to use the· proces or. Other processes do not

ref'l"a.1.n fr-om using 1t before 1t ie allocated. to them.

Allooa tion and po 1 t1on .ng both take place whe·n one process

executes a load-desor1pt~r-baee register 1~struct1on 1n

favor of another process.

Often allocat1on and pos1tloa1ng are not identio 1.

FOr example I Dennis 16 propo e - a a - stem 1n w'b1ch l0,ckit1g

conventions would be cod d 1nt,o the pro,ce e eor h:ardware 1!

just ae locking conventions are ~ow coded into Multice

segment control. I thi case, proeeeeor hardware !"ef:ra1ne

:f'ro mod1fy1ng a word i , memo,ry f' th.at word ie allocated to

a di.ff'erent p:rocess.

ETen · ·hem a p:ro,a e as has deallocated a. reeourc e suoh

as a tape or tape d:rive, the resource must still be re-

turned or unpos1tloned to its original state In Multics,

for example, a process 1s reepons1.'t:ll for Feturn1ne; tapes

when it is finished. wit.b 'them. However 1 sometimes other

30

processes take over the reepone1b1.11 ty o,f returning or

unpos t o 1ng resources An xample 1 wov1d.e,d by th.e

Mult i cs paging a gor1thm; othe,r ~rocee,eee clear way from

core e ory ... he no longer used p ge o,f a suepe:nded proce.ss.

In eith~r ca e, hen a process 1a suspand d, its reaourcee

must be both dea.11o ted and unpo 1 tion,ed, so th t 1 ts

euspen 1o dos not adversely affect other procesee which

1ght need those resources.

2.8 §ummaty

Th1e cha ter has a1ecueEed several features of

systems terms of a re.the:r simple model o,f a computing

ayete. At this po1cit 1t may tie advantageous to pause and

briefly rev ew the odel

A co put1ng system 1e a. collection o resources,

1. e., program and date. va.r1ab es. 'lb. ee var1a'b1lee may be

organ zed i toe. lattice struct.ur_ ocord1ng to the depen­

dency rela t1on · 1p. A program 1s dependent on another pro-

5 am _ 1te exeout1on implies or may 1mply the execution of

that _ rogram. Two mutually dependent prog:r-a.m e are co,n-

a "d r e t occupy s single node of the lattice A program

node s ependent on data node if tbe program either

r-ad or wr~tes the data variable

The reeul ting mod.el is us,eful for exam1c1ng snd

describing the use of resources by a single process, and

there:"or-e tb.e aha.ring of resources by ,several processes.

31

On: the ot er hand. it 1s a ata.t.1c model and provides no

more than a basis for desor1b1ng dynam_cal_y an s..ctua

comput_!l.g fac 111 ty on wh ch, say, three processes are

executing concurrently

CHAPTER THREE

PROCESS NEEDS

3.1 Introduction

With the insight gained 1n the previous chapter we

ca.r.i restate th.e thesis problem. A program 1n execution

has certain resource needs; the ~rogram itself. eertaln

data e.r1ab ea, interfaces w1 th other orogra.me. If the

execution _.s suspended, during the interval of euspens1on

some eeded resources may be modified in such a way "that

resumption of execution 1s impossible, or p:roduces incorrect

or meaningless results.

The purpose of th.is chapter 1s to see how a proeess

needs its variou resources, which change aff et re ump­

tion and wh1c do oo • In investlgatlcg the resource oeede

of a proces we thus come to an understanding of what

constitutes 11 safe"' reeumptlon and what does not. such an

underetand1n ts t~e sine oua non for dec1d1n - whether a - ,......__. -
g1ven eue!)ended proeess can be resumed.

In the subsequent d1ecuae1on we mak two strong

assum t1o F1r t 1 we asEume t~at a.11 programs lli_

oorreot, that 1s, they satisfy the1r funot1onal spec1f1-

cat1ons and 1~ e compound variables ln consistent states,

wh1cb likewise eat1sfy functional epeclflcatioTis. Second,

we assume that when a process 1s executing it haa Rttached

or e.seigned to itself al the resources which 1t needs,

33

an that th1s allocat1on of resource fol owe the rul es

au tl 1aed n Cha.p t er T\-fo • e aia rea on for this assump-

tion is that i t serve to clarify the 1asuee by c early

dema.rc · ting when - process i e 11a le to lo e needed re,­

eoure:ee: dur-1ng execut1on the esou~ces cannot be snatched

a.way; ben the process is suspended 1t .elee.ees the , e­

souroe and accept the r!ek of being u able to resu e

a C t on. If we do not as ume e.:Llooatlon of resources,

1t is ver:r difficult to :1 t1ngu1sh between problems caused

by suspension and pro ems vaueea by uncontrolled sharing.

li secon r aeon for the SB umpt1on that sharing 1e

regulated as de -or1bed 1e that Van Horn2 has ehowo the

necessity of imple ent1og -uch regulat1on in the system

hardwa?"e It ls reasonable to ex~pct that egulat1on of

sharing w111 become standard practice in future sys ems.

Mul t1ae a cu rent y lmplem,ented does not sa.tl.sfy this

aaeum_ t1o. The hardcore supel"'V1 -or uses software loek1ng

con ent 1 one, and a _ocker rout 1ne 1 s Plr'OV1ded for user

proc eaee which car,ry out preprogrammed shar1ng. However,

mo st a r sharing 1 s ot so programmed.. F,or example one

u -er may borrow a program from another u eer, 1. e. , arr.ange

to use the tlrogram. Wh1le· the program , be1:ng executed

1n h1s pl"ocess, the 11 ownel:}" of' the prog::r m ma;y absetiti­

m1ndedl de- ete .t, causicg drastic consequences to h.1.s

fr1end procees .. It is possible that later lmplemente.

t.ions wi l remedy th1a defect., perhap:s fo l owing t.he exe. ple

34

of a aoh ne pr-opoae by Denn1 l6~

3.2 TI:p~s of eed

A proces eeds a resource to exist (in a certaln

tate) and to be a aila'ble, ~ For example, executio of

most etruct1ons in Mult1os requires the descriptor

segme t to ex1 t (d truly ref ect the loeat1on of aeg-

ent) and to originate at the word po1nted to by the

desc 1ptor baee~reg eter The problem - of uos1t1on1ng

resources re considerable, e.nd g13n re._ solut1one w1 1

no do bt place 1 porta t constraints on operating system

de sign. _.,.1 s thee !I!! ta, however• w 1 l not at tempt to dea w1 th

the pro lema o poe1 t1on1ng, but rather w1 th the eta.te ln

wb.1c a needed resource must xist By "state", then,

we ea not d 1 ,e poai t 1 on, loc at 1on, ,et,c 1 , but content and

interface.

The nterfacea of a variable w1th other var1ables

define 1t a a module The referenceable it m of a table,

the functional def1n1t1on and ca ling sequeace(e) of a

pros- am, t e calls and references to data mad,e by a program1

co sl t c constralcte on the al owed values of aompound

ar be -~these cons 1tute 1te nterface with the outside

word, and he c - it; place 1n .he eyet.em and ita definition

as a mod le. Its co,n·tent cone 1 e ts 1.n the c se o a. pro•

gram,, in the a gor1 t d,e or 1 bed by the progr m, and 1.c

the case of data 1n tbe information contained 1n th

35

rei'erenceable iteme .

We recall from Chapter TWo th.at when a v,ariable

changes 1 t interfaces 1 t ceases t.o be the same va·r1a.ble

Two variables can b,e more or ess c oeely related: or

e ample t o procedures whose on·ly d. f erence is that one

make s an add1t1onal call are closely related. In coctrast,

a t structured d ... a bae.e (as u ing that its structure

1 B an 1n terf a.c ,e, 1. e. ,. ref er enc:1 ng programs "know 11 1 ta

structure) 1a utterly unre ate~ to a matrix- truetured

data ba. e, even 1 beth contain the same infommat.ion. We

say that a ar!ab e 1e mo :tf1ed if on y ts content changes.

If its 1nte faces change, we ay it as been replaced by a

d1et1nct variable

When a process needs a v -r1a.ble,, it may need the

inter-fs.oe of the variable or the content or both. These

three modes of ne ·d 1ll ll be demons :rated in the ensuing

,di ecu.e e 1on.

3.3 Allocated var ables

W'hen a process :ls suspended, several variables may

curr ntlw be a_loaated to the :process These var1a.b es

must be det.ached, of course, and rea _loeated to the process

on reeu.mpt.1on. Tb.e list of t ese resources eonst1 tute·e a

f1rst app ox1mat1on to th,e desor1pt1,on of the process' a

neede.

There are th .. ee types of llocated variables. F1rst,

36

the -orograme which are current at su.spens1on It. might

be ossib_e to de lne a class o t,ransformat1ons to the

lnterfaces and content of a prog?'am ueh that, given the

loc O of control in the program t suspenel•on, trs.n :fo,rma­

tlons 1n that cla s wou d oot aff!eot resumption , F;or

examp_e, if control is e. out to en er the "return 11 1n­

s1.ruot1on of the program, any tra.naformat1on w:111 do, as

long as oo trol in the mod1f1ed _rogr m ls also about to

enter the return 1netruot1on. Spec1f1cat1on of euoh a

claee o~ transformat on l of d b1oue precrt1ca 1ty and 1n

any o ase beyond the scope of t • e the , 1 e. We thel!'ef ore

as ume that 1f a progr · 1e allocated (current)1 at su,a­

pen ion t1me, the ro,ces -eeds the a.me program (ea.me

nter.1.aaes., ea e contents) to resum exeout1on.

A second class of allocated variables are data

variab es needed by current p~ograms The data var1ab es

a - located to the process represent on y a fraction of those

which th:e programs a1gb t need• bee au ee actual nee·d at any

1nsta.ct depends on the locu.a of control in the program.

fa variable 1e at.teaed to tb.e process thee 1t requires

th&t ~he var able ot e mod1f1ed. That ls the meaning of

read e_ende .cy (cf. Chapter Two). Therefore both content.

and lnterface re needed.

The third a as of allocated variable · s the static

private (o the process) var1-bl Thie contains eome

infor at,ion of ls.st ne; interest. to one or more progaame of

37

the proce·se" hence 1 t remains allocated to the uroce ss

al hough no program which uses · tis current. An example

rom Mu t1ce !s the - nown S gme t 'Table. Anothe•r is the

1nter"na or extern -1 et tic et.orage (1n the PI/I sens)

for any _rogram(). Fo:r these var1ab es the content ls

n c•eeeary. ese varia la muet aleo at1sfy some inter-

face constraints : s i nd1oat d :in the next section •.

3.4 nterf'aoes

The system la.tt ... ce as deac!"1bed n Chapter Two por­

trays the tel-faces of sy t m program and datta. va:r1ables.

Suppose that a certain P9ogram 1a current when a process

e suspended and that one of 1ts needed 1nter aoee changes.

For example, the calling sequence or functional apecif1-

cat1on of some program it call might c.ange The suspended

process then cannot run properly with the mod1 f 1 ed inter·!!"

ee.

That. cons1derat1•oc: show , that the neede of a process

inclu e not o ly the programs and da t ·· variables at tac ed. to

the process, but also, the f 'ollow1ng:

(1 a ata var1ables on which current programs

ere· dependent (but no attached)

(2) all rogram var1a.bles on hich curre.nt programs

are dependent (but not attached)

(3) a . program ve.rte.blee which are dependent on

tatlc prlvate data a tached to the process.

38

These three constitute ot a necessar but a suf 1c1 nt

set ~ variables fo e um:pt1on o ts.e process. The

r aeoo for sing a larger aet tan might be necessary 1s

the e eneral 1 poss1b1 1 y of predicting the future course,

and hence the "uture needs, of a proe;ra.m 1n execution.

n what wa · does tb.e process need the three· sets

of aft_ab_es? C_ear y it 1s the interfaces rather than

the current content o""' a y which are ·eeded, since by he

assu!Ilpt_on that a 1 :rogram:3 a.re correct t e con.tent

sat1s¥ es functiona_ specif cation (which is an nte face)

and 1f the content tsel_ were needed the variable would

be allocated to the process. So 1f one of these var1abl a

1s modified but not re laced (i.e., one of its interfaces

changes} tae process oan use the mod fied version. Even

1f some interfaces change, but no inter ace needed by the

proc as changes, the process can use the mod1f ed versioc.

Tb.u aoms "Pela t1 vee n o_ ne ded modules ce.n be uaed. In

case (2), ny urelated" program may be used which ha

t e ~e.me eeded calling sequence{s) an unctional epec1-

f1ca t 1on. n case (3) any program w 1ch has the a e

1 te!":'ace w1t ad me. gs the same use of the etatic ata

can be used.

One other observation me.y be made about privat,e

stat c: de.ta. What is needed 1s the content rather than

the 1 ter:faoea of the data var1 ble. A example · s the

rul tics Known Segment Table (cf discus ion in Cbapter F1 ve)

39

·h1ch. contains the as oc1at1on bet en segment numbers and

pathnames of segment known to the process. The inter­

faces to th1e 1nformat1on re ,of no interest 1f no tirogram

that uees the ... able ie current. So the same nformation

1n any other form wou d be euff1c1ent, as long aa the

resumed process uses prosl"a.me with the correct interface

tote new data var ab_e.

3.5 Concl .;;......-----~
e &receding discussio

resource needs of a urocees.

bas attempted to sho~ the

A note of c:aut1.on 1s . n

order. T'ne discussion. assumes that all 11var ablee 11
,.

11 programs n and I data. ir are nodes of the sy e tem la. t t 1 ce.

T'ae same diacuss,io m;ght not apply to prosrama as 1nd1v1 ·

dually com_ ,1led, bee au ee mutual dependence of programs

1n roduces ties which, und r our saumpt1ons, do not have

to be consider a.. One adva.ntag., in fact, of avoiding

large, complex nodes s that the r-eple.ce ·ent o mod le

1s thereby made simp. e:r to comprehend.

Once 1t ls posslb,e to formulate, thet is, to

co • ute e needs o..,, a given pr·ocess, 1 t ie possible to

compare those need with the eta.te of the system to find

out. w ether the needed resources exist, 1.e., whether the

proce s.s can be re eumed.

It may be that a given process cannot be resumed

because some needed user reaou . ,oe has been mod1f' ed or

40

deleted. The system cannot pre ent this .. It can, however,

prevent system changes from interfering w:itb resumption.

Whene er pose1b]e, a eeumed proce s should us the new

ers1on of modifie modules. Thie ext chapter di.scu · see

what ay be one whee ew module or -era1on of a module

cann t _ e sed.

4.1 t oductlon

CHAPTER FOUR

SYSTEM MODIFICATION

One equ1rement for a sus· ension capab. 1ty is the

formu at1on of a pol1cy for ya.tem mod1f1cat1on. System

design i espons1bla for defining the locus of policy

decisio Ban prov1 es the means of 1m lemen.t1ng them.

ften a system 1e designed to enable a. particular kind of

poli•oy o 'be enforced, ·1th .system adm1n1strators given

the resJ)one _b111ty of assigning an appropr1a.te velue to

certain variables 1 tbe deeig.n. This chapter outlines

a at ateg_ for system mod1f1cat1on to a low suspension ..

The varia _e 1 . the strategy is T~ the ength of time after

uspeneion of a proces during which the sy tem supports

resump · ion of the process.

We d sire to f ,o mulate a tratee,y for system mod1-

1ca ion •t1 1ch guarantee a reeumab111 ty w1 th1n time T.

one way to uara.ntee re-umab111ty 1s to refrs.1 from making

any C· &n e to the system which would prevent the resum_ t.10n

o s spended process. That 1e, when a change 1 - pro-

posed, 1 B per1od1cally •comps.red to the needs of all

suspended]lrocesses, and implemented only when no suspended

p:rocee.s 1s endangered. This etrates- s unacceptable,

bee au ee, 1 t can re au t 1n 1ndef n1 tely one; de lays 1 n 1m

provemente and oorrect1ons to ·the ayatem, as well as huge

42

ad.m1n1 stra 1 e h ea.daohe s. fua t 1 s needed 1 e a tr tee;y

1 wh a a stem change are made lndependently o the

need or currently suspe.cded prooe see, that 1 e, a t.ra tegy

which works 1n every s tuat1on.

_at constraint 1m~l1es that the proce ure to be

-f'ol_or,fe when a modu .e is mod1f1ed or replace - may depend

on the nature oft e module but def1n1te y not on the

ourr e t eta te of a.ny proc es ae,s. The I'O ced:ure to be

follo ed in resum ns a process depande on whether needed

mod _es have been mod_fie or replaced. The atrateg - ,or

repla .. ing mod lea t erefo e consists of two part• that

fol o· ed i ey tem modif1c t1on and th.at followed in p?"o,cess

rasu-~tion. Cooperation between the two activities 1s

possible if each module _n the system ls uniquely identi­

fied; its interfaces are um1quely 1dent1f1ed; e "t1me­

last-moci1f1 d 11 tag 1e aeeocis.ted with each ariable . nd

system mod1f1cat1oo 1.e understood to include correct

updat~ns of these ltems.

We f rst oon 1d.e - th,e :procedure to be followed when

a module is mod1f1ed or replaced. S1nc,e we do not w1 h to,

con 1der he needs o,f all suspended prooeeeee, e must

aseum thet eome ~ recess needs any module which 1,s changed

and that t cannot se the new ver ion. (Later 1n the

discussion we will eee that some exceptions to the genera

ruls may be made for specla modules.)

To re·aume a ..:rocess, we observe that if 1t were

43

a.lwe.ys possible to use, the latest vera1on of every system

module no ormulat1on of strategy wou_d be needed at all.

o minimize complexity, there~ore, we will use leteat

versions wherever pose ble, an ~hen formulate strate y

for the rem 1 1og cases. The discues1on of a process 1 s

n eds presented 1 Chapter Three 1mplies that the auspended

process may need the content a or one or more interfaces

to system modules and that the ~odules may have been modi•

fled (content changed) or replaced (lnterface(s) changed).

By co paring the process's needs w1th the 1cformat1on

aseooiated with each mo ule~ we can a certain whether the

proce•a can ue.e the latest version of the module.

The remainder of the cl'1apter concerns what to do if

the latest ve ion cannot be used. There a.re two tech­

niques: use old vers1ons~ or make eure .tm suspended process

"Sver needs a g.1ven modu e. We discuss these technique ,

showing how the basic strat~gy out 1ned above can 10eor­

porate the,ae techniques to ensure resumption of proces ee

that cannot use the latest ve~sion of needed modules.

old versio s

One poss bL ty when a newt version ce.n_not be used

1s to use the old vers1on. Th1e is !'Qss1b e if the old

module 1 terraces correctly w1th other modules and wit

other processes. Ch.apter Tw'o presents a system model that

exposes the interface between modules. Th t model does not

44

1-, dlcate an::, interfaces b twe,en processes.

any m ti_ rocess1ng system 1 t 1s _ o,ss1 ble to

var ous proc sses to cooperate w1th oce anot

exam e, 1 observing locK1 g con ent1one

Ho,wever,

·program

er, ast

Sometimes

in

the

or

the

proces es a.re Programmed to cooperate in ca r71ng o t , an

algor ithm. n example 1a Multics page oontro, which 1 orks

a p ogrammed only f' al prooeese use the eme paging

progr am. Th s 1 example o ao nterprocees interface

wh1o pro 1b1ts using an o d v re1on or program. (or

furt er d sc salon of thi examp_e eee Chapter Five.)

The requirement of correct 1nterfac -s w1th other

vari ables _n the same o,:roce s 1s ore manageab e. \~e can

cal an o_d era on of a module !!f!. if

(1) tis ot dependent on any other variable: or

(2) no varia le on which 1t depende hae changed; o:r

(3) her exiete a safe version of any v riable on

which it depe de.

If~ e system preserves safe versions of changed program

the it ie 1 _r1nc1ple po 1ble o~ a suspended proees

to be re ume using the safe versions.

This trate 1 o es so e serious conatr nts on

system desi n as well a on eyetem management. First,

the rocese uet 0 abl to ee the aare ere1on of a

program a we las the mod1f1ed version. The safe version

1a used because 1t 1s curre tor needed by a current pro

gram. The modi 1ed ver ion may be needed by a new ey tem

45

_rogram tha.t w:1 l be invok d later 1n t e process. So both

must be a le to coexist in the ame pro,ce,se !

Second, s1gn_f1c-nt bookkeeping is required 1n order

to know when ar1ab e e e f ,e: t •o know vb ether a ig

lee_ va -1able 1 eafe 1t my be neoe eary t in ea e

var e ion e o var 1able a on many lower le,vel e.

Third, afe versi.ons of ar1ablee muet be retalned

until n longer needed . If the s~ · atem guarantee a near

unity p:robab111 ty of Pee - pt ion w1 thin time uni ts, then

ord nar1 y safe ve:-slon need be reta ned for- only ti.me

unite. _t- _s conce1vab e, bowever, that a process might be

suspended an resum.ed several t1. es, so that 1 t total

lifetime is aeYeral times T. The system adm1n1stra.t1on

ust hen decide whether to advertise that such processes

are not suoport.ed or, 1 such processes are needed, to

extend t:e time or which safe versions of variables ar e

etalned.

We ow pause to review what has been done so far

W'he v~r a ey tem odule 1 ,s changed, sy te mod1f1cat1o

~o c. st take l o account that some process might not

e eble to use the ne~ version or replace ent of the

odule. If a syetem 1a d,ee1gned according to Qerta1n

strong conetrs.inte, then for most modules it 1s possib e

to . re ·,er,re the old ve•rsion of the module as a safe version.

For a certain c ass of pr grams th1e 1s not possible; 1.e,

those r-hose 1.nterpDDOess int.erfaoes :require th.at the same

46

version be ed 1n very· P- ocess. We now oons1der how

to eal w1th uch mo ules

4 3 e ay1ng suepene1o'

~en ne1 ther the,)old version nor the new vere on

(or replacement) of a mod le oan be used; t le awkward for

a proces.s to be su.spended while the• module is aeeded.

The obv oue so ution to the d1ff1c:ulty s to post­

pone 1;uspension u 11 the module .1e no lone;er needed. We

may d et1nguish two cases• the module may be allocated,

or aome interface o the module ay be ne,eded. In the

first case, 1 t 1e not d1rf1cu t for the system to '1know •t

that the module 1s eeded and to refrain from suspending

the· roe e es. For example, allo,ca ting such a module could

a.utoma.t1cally a.dd one o a oo nt~r associated with t e

proceas. Deallocating tb.e module could decrease the

counter. I an attempt were made to suepeod the process

whi e b.e counter was non-zero, eu pension wou d not tak:e

e fee i the counter's va ue wae zero~

Suspe s1on sbould not, however, be subject to ar

b:!.trary delay. ie wish to make con traints on aay hared

mod e which .nhiblts euspe,nelon while 1t 1e a locat,ed to

the process. This 1s equ valent to put.ting a 11m1t on

the execution time of very sensitive progr.ame (e1nc: eenei­

ti ve shared data variables are a locat d only b,y ,such pro­

grams and pr:1 va te stat 1o data 1 s by def 1n1 t 1on not shared) •

47

We define for each orogl"am node an execution~

r presenting he aximum ength of real time that progra

may be current. If th execution time of a. proe;ram 1a

1ndete min te t e rogr is ald to e unreliable; other­

wise the ~ rogram 1s ·said to b, r 11abl f1n1 te. If the

execut1o time _s lea than E, the pro~ram 1s sa1 to be

'E ... rel1able, or ust reliable (Of course, we a -sume that

a _ p!'O rams whiah we wish to cla.ssify as re 1ably f1n1 te

are b g reel)

If Q is the maximum tole~able t me for wh1eh ue­

pens1on can be poe:tponed, then we m.ey constrain 11 very

sene1 "1ve { _n the sense, th t au pension 1B awkward 1 the

modu e s needed) programs to be Q-:reliable. Then when

a process has een chos,en for suepens1on., the eystem can

allo 1 t ... o execute f 'or time (less than Q.) until none

of those se sit1ve modules are current.

We et.ated amove t.h.at auepena1on should not be

subject to arb1 tra.ry d,elay • More precisely, there are

s1tuat1ons in wh oh suspension must take place very quickly,

for exam p e, whe•n a: u . er ha:s run out of funds er when t e

s · · te 1 beiog shut down 1n an emergency. For theee

situations, 1t 1 neoessary t.h ta vs. ue for Q be determined

and nf'o:rced on th,e very ens 1 ti ve module

Ic other oases, however• sue pens 100 can be de la ed

for a longer time. Indeed, the·r s o ten an advantage

to be e;a1ned by allowing a process to run on before

48

sue_ nalo. There 1 · cost assoc ated with preserving

1 ers_ons of modules, a cost of bookkeepin and, more

eepec lly, of etorage. It m y be poe.a1ble to reduce

hat oat · 'by del ·y1ng suspeneion unt11 the l)roces.s 1e

de~endent on very few modules.

First we observe that 1.f we know which old vere1ons

of mod es are needed by uapended procee es we can delete

the rest But the old vere1ona needed by euepen ed pro­

oes e re Jet those which were allocate to the proceseee

and t e safe module on wb1ch those depend. If, wbe·n a

process' _esouroee re deallocated on euspena1an, they

are ma.r ed a n eded by that, process, then unneeded old

versions ca be deleteci.. Then it s poaelble to associate

the cot of storage with the process.

Po tponine_: u pens1on en now be seen to be advan­

tageo 1_ the coat o the d lay (the proc or coet, d1aa

advantage to other users, etc., may be reflected 1n a

price &e.soo ated w1t po t:pon1ng sepene1on) 1s less than

the cost of kee~ing o d - ere1ons of modules.

Lower programs 1n tb.e syet.em lattice have sma.l er

exec tio time than _roe;rame wb1c' depend on (call) them.

Th.ere!'ore, 1t 1a uose1ble to def ne rel1ab1l1ty zones on

the l tt1ce 1ncluding thos programs whose execution ttme

fall w1 thlo a certain brackei! of ti ·es One interesting

rel1ab111 ty zone coo,si sts o,f programs w1 th execu t1on time

between zero and Q (m xim.um tolerable time for emergency

49

euapene on) The proe;,rame 1n th1s zone neea never he needed

by a. · uape,nded proo,es , and old versions of these progr ma

can always be -1scarded.

Fram the point o view ,of the system, user programs

cannot e cons1dered reliable. However, a user may believe

hat h- program 1s N-r,el:iable and request that uepeaaion

of is process cede aye ' unt.11 either the p?"oces 11runs

out of' the reliability zone bracketing ex:ecu.t1on times,

say,~ to N, or suepenaion bae been delaJed t1me un1te.

wh1e ever o ceur - fire t ~ 1.ng su.c a rac 111 tr the user

could avoid the, costs associated with saving the pr,ogram

for h s nrocess.

4.4 A d_ff1cult case

,,e ave said that postponement of suspen· 1on can

,ensure hat a :9rocess 1s not suspended hile any module

1 e alloc a. ted to 1 t , f o , Wh t:ch an o _d vere ion cannot be

u ed (viz., because every process must use t.he aam ver­

s1o • owever, such a odule my he needed by process

evsn whe not llocated to the process, 1.e .. , when an

ter:f c e to the modu e 1 ,s .a_eeded.

For example, euppose a process 1 uepended while

pro.gram P 1 a eu::r-ren t _ r,ogram P depends. on R, a. program

for which the ea.me, version mu.st appear .in every process.

While the proeeae 1s suspended, R is replaced bys, wh1ch

uaes a d:iff eren t dee lara t1.on ror· one ar13umeat. Tile proc ea s

50

can no longer be safely resumed, s1nee it cannot use R

1f other • - oceases use s, yet ,.t cannot uee !., •

Chang!n i nterfaces poses d1fficul t problems ucde·,

an c1roumstancee. Frog am - have to be, r ,eprogrammed to

us - n w c 111.ng sequence or to reflect a mo,d1f1ed func-

t ons.1 e"Oeoi 1 at1on. But the pec1&1 d1ff1culty for a

sue.-ended. rooese 1s h t curr nt p?'Ogr m ma have to

be l"!p?'Ogrammedl We describe three possible approaches to

handl ing this case.

One ap,proaoh would be to require that ,a.11 prog::c-am e

wb.ioh oe.11 very sen itive (1n the a. ove sense) variables

mua·t e reliable. Thie is a very ee,rloua oonetra1nt on

tne y S;tem. I te mpl 1c at 1on·s have not een explored.

A seoond approach would be to lter the etate of

the suspended proce,se ao that 1 t a.a the ~oper int rfaoe

with the e version of tae eeded module. This strategy

r qul ~es e. better und.erste..cd:1ng of pr08rams and proc sses

than now ex1ets.

A third a:pproa,ch would b to examine 1nte:rproceB

nterface of mod lee or,e clo!!ely to , ee under what

1rcume a.ncee two d :f_erent modules can be u ed.

4. 5 SUmmacr,

The eyste.m can, f properly designed, perm1 t pro­

cess to resume execution with old, 11 aafe ve:rs1one. of

needed module '• For so.me system modu ee th1s may be

51

1mpo e1'ble, hence 1t is desirable to make :some programs

re11a· le and postpone euepens1on until they ere no longer

current. The device of' postponing auep,eneion can al so

be used toe iminate the ,eed of the p?"ocess for some

other e stem or user modules, and thu to reduoe the

number of o d versions which muet be retained in storage.

CH.APTER FIVE

S S El SIO LTICS

5 1 trodue:t1on

Tb.1 ohapter pre ents some examples of suepene1on

in M ties. The first few are e epens o -11ke pheno ena,

not at all un gue to .Multlcs, but 1nclu.ded as 11luetre.t1ons

of ~ suspension phenomenon. e chapter ends w1th s.

disc 3 ion of suspension 1n the usual sense 1n Multics,

and 1.1 part c lar of why 1t is d1ff1c]t.

5.2 _ntarr pt hand11µs

In M\.tlt1ca, a system interrupt ie one directed to

a. p.rocessor, rather than to a. particular process. .I\ typice.

interrupt 1s a a gnal from e.n /0 contro ler to a processor

signifying completion o,f some I/0 activity.

One way to v1 ew he interrupt h.andl 1ng (although

not the MU tlcs ew 10) is to see the 1nterrupt as a short

terms spens on of e· execut1ng process. i'rnen an interrupt

1a received the processor resources are deallocated from

the ~ocess and al_ocate to handling the 1nterru_ t~

.fhat a.re the rocese s needs or processor variables

at tne moment of interr ' ption? The process may be execu­

ting a.ny of the instruction programs w1r,ed into the proces­

sor Int.errupt ha.nd 1ng norma. ly does not modify the

1nst uctions. The procee.s may neeci any or all of th

53

various machine reg1stersJ which the instructions use, or

the cont o un:tt 1n_orma.t1on., used by the lower leve.ls of

the ay tem. (An anomaly of the GE645 dee 1gn 1 s that 1 t

is necessary to be able to inter upt the processor during

'f:.he e - ecut1on of an instruction,) What th,e process needs

1.s t e preo .. ae value of each de.ta variable. On interrupts,

thereto e the values ,of registers and he control unit

are coped and stored away. Within a shot time the process

re umee exec t1,on and replaces the values of the processor

data va.:.1aales.

This examp e o suspension shows how preo1ae, delim-

1 ta.tion of whs.t resources may be modi 1ed during 'euepen ...

a1on 11 fac 1 tates the design of the 11 euspens1onn eapa­

b111 ty. (It also departs from t e ultics ooncept of

proces.s 1n the 1nterest of · 11um.1nating the not1on of

suspension In Mult1cs a process 1 closely identified

w1 th an address space. and proc.essor interrupts are handled

1n the addr,esa space of the, executing proeeae. Hence· 1n

MUlt1 the rocess 1s not cone1dered to be suspended:

only the locus of control hae changed.)

Two flll"ther, yet still simple, e.xamplee of suspen­

sion a.re provided b:Y the m.eohan1ema for process a app1ng

When a Mul t 1c s process '. s incapable of proceed1 ng because

of some needed input, it relinquishes 1ts processor to some

54

ot,b,er process. Usua 1 that do e not require uc o,ading

the rocesa. We consider fi2st the ease o :proeeeeor

swapp1ng, then the eee frequent case of unload1ne;.

Processor swapping 1s d1et1nct from 1nter:rupt hand­

ling 1n two ree:pecte. F1:ret,. tbe number of variables

dee.l_ocated le greater. An example is the associative

memor in wh1c eome page and segment descr1ptore are

stored f017 quick reference. _nter:rupte are handed 1n

the same address space a that 1n which tb.e interrupted

program runs. Both the interrupt hal'ldlers and the inter•

z:iupted programs use the same as oeiative memory, but it

1s not necessary to store the aasoc1at1ve memory when an

inte~rupt ovcurs because, although ts vs. ues will change,

no inco,r:r-ect nformatlon will. be put 1n the associative

memory.. BUt when,J s. dletlnct process with 1 ta distinct

memor space takes over the P,l"Oceasor, the aseoc1at1ve

memory wl 1 record page and segment deeorlptore for the

distinct memory space. Ta1e information ls worse than

· eeless for the interrupted process It 1a undes!:table

t o record the value of the aeeoe1at1ve memory (control

ay remain away from the proce s .or a long enough t1me

that ~he nformati on becomes 1nva d) so instead the

aseoc·ative memory 1s c ea.red when the process resumes~

In tb1s case tbe variable be•ing rel1oqui ·shed ie

one whoa oontent 1e needed. Aa 1 ts value changes 1, t e

procees does not want to use the old value, but 1t also

55

does not waot an incorr ct value. Since 11 undef1ned •, or

"empty 11
, 1 a poss1b e value fo,r .any item in the - ssocia•

t ve me ory 1 the process usee the.t value on resumption

When a. process he.e been runn1ng for eome t1 e it

y be 11 suepended11 for a longer period of time. When this

happens the proceae gives up core memory which 1 a locate

to 1t In Multics e·rm:1nology, the prooess s unlo,aded

Dur:\ng ex.ecution the· Multlcs system, by dynamic

binding, introduces ce · ta1n deoe,nd -nc1es into the roceee

in add:1 t1on t ,o dependencies implied by the system la tt1ce.

For example, Page Control 1s dependent on a :portion of

core emory c,onta1n1ng the process de 1n1 t 1 one a egment.

Page Coctrol can only opera.t,e if th1e block: of core, 1 s

"latched down 11
, i.e., a located to the pro,cesa. In ad­

dit on, the execution of most 1nstruat1ons equ1res the

pres,esce _n oore of a descripto,r segment, which must be

1n a prea1ee bLock of core 1nd1ce.ted by the processor•

descriptor base register., When a pro,ceas 1a unloaded

th oore memory allocated. to the process is released an.d

a be mod1f1ed~ When. tb.e pro,eese 1 s resumed 1 t must

be r aded, 1. ,e, •. , , o rta1n amount . of core memory must

be allocated to 1t, including the par-t1cular 'block apec1-

fied by the deacr.iptor base register In th1 e ex.ample the

core memory a. located to the proceea 1s a variable wh1,ch

must be reallo•oated when the p:rooese ie resumed.

5 .4 uaer f_a!l -J:,e

Faults 1n Multics may be syatem faults, or whiob

standard, mandatory eye:tem hand e·rs are provid d ., or uaer

fau t , for which the ser may spec.ify his own fault

handlers. In the latter category are divide check and

over ow aults, among othe~s The possib,111ty ,of user­

provided fault handlers 11lustrat.ea a situation wh1oh can

occur w1 t· n a e1 • gle process. 1~ Mul ties, but which pre­

sents the p:robleme of suspen ion. Suppoe.e a user fault

occur for wh 1 ch the user ha e p:rov1d,ed a fault handler.

The Fa 1 Interee~ tor Module of M.Ult1cs acts as a d1 -

patcher n th1 s ca e. Ther·e 1s :co guarantee that the user' e

fault handler will ev·er return; therefore the resources

alloc ted to the proc e prior to the fault should be

ea _ocated, so that other pro,ce,se,es are not advere,ely·

affected. uppo e that fault handler runs for a long

time- -even a week--and then at t.empt,s to re turn cont.r-ol to

th,e po nt at \\'hie the aul t occurred. The attempt present a

the same . roblems ae resumption of a euepended process •.

Any transfer of control tio a 1dispatoheri causes the

same a1 tua t on: execution take a an un.programmed che.nge

n d rec 1on, from which return w1th1n a short or even

f1n1 te per od of time cannot be guaranteed. A e1m1.lar

s 1 tu.a. t101n, al tho · gh one which is programmed., occur e vb en

any progr.a.m invokes ,an unreliab e program or one which 1s

E-reli.e.ble, where Eis a longer t1me than acceptable for

57

a resource to b,e allocated to the process, ...

In theee caeee, as 1.n the case of euspens1on of the

proce s for a ong period of time, e.ny resource .needed by

the roceas may be od.1f1ed. If the oroceas I s depe.ndence

on hardware 1nstruct1on 0rogrema, for xa:mple, or on other

progr und -retood, 1 t bec,omes :possible to calculate

whether the euepend,ed proo -ss or :;>1eoe of prooe s (before

au er fault, for example) can be resumed

~~Jtlet~ ~UBcPeDsion

We now consider suspension of a Multioa, pl'lo,oess f'•Ol',

say, a lfeek. Such suspension, s might ooour when a ueer

runs out of funde or the system und,e?",goe , emergency shut

down, 1e t e true eucjeot of th1e tbes1e, because 1t

requ res t:.at all, and not ust a portion, of the process's

resources be r leased. Implementing a eusp ns1on capability

1n Mult1o has proven to be difficult. The re -ainder of

this cha_ ter s concerned vith explor1ng the n -ture of the

d1fflc lt!es.

We begin by reviewing the requirements for a sus-

pe,nsion caps.bi. it prea,ented 1n Chapt r One ,A system

has as spens1on c pability 1f :1t can b.al.t the execution

of a. ueer 1 s process in such a way that

() other processes are nd>t affected.

(2) s,ome susp,e.nd d processes ,can be resumed· namely,

tho e e naff eo·ted by any chan5e a. which oo curred:

5.6

58

during the peJ"1odl of suspene1on.

(3) the system can decide whether resumpt:l,on 1s

posslb,l · for any g1ven suspended proocess at

any @ii en time.

(4) system pol cy 1s formulated to, guarantee

high probability (near u.n1ty) that a process

may be resumed at any t1me w1th1n a e;:1ven T

time unite aft.er suspension, despite ch.angee

to the system.

The first requirement for- a suspension ca:'0ab111 ty 1s

the ab1lity to stop the process without adversely affecting

other- procesaes. Tb.is means that other proceesee muet not

expect con-t.rol signals from t.bis p!"oceee ancl. that th.le

process must release all reeourc:ee allocated to it that

might be needed by other prooeaeee We will not discuss

contro signals here, b:u't. i .nstead consl.der t..he allocation

of resou~oee in Multics •

• !\ fundamental feature of tile Mul t1cs s:,stem 1 s that

r a.d and w te capa.b111 tles (ln the sense o per 1.sai.ons ...

see apter_ o) are not 1n genera required for reading

and WJ>1 ting That. 1s, two processes ma.1 mod1 y a variable

simultaneously and 1.n:cooe1atently, ol' one process may read

a var1e.ble that 1e 1n an :1ncone1st.ent state beca.uee another

process e perform ng a eta te tra.ns:1 tion on the variable~

59

Th s feature of ultics 1s not, be it notedt an

essent1a. one, but mere _y reflect the state of' t e art

of ult1process ng in the m1d.-1960's .. Tt would be possible

to imple en revised Mul tlcs that enforced atta.chment and

assignment of var1ables f ·or reading and wr1 ting. Dennis 16

ad Van ij~ro 2 sug_eet machine desl~ne ha enforce alloca­

tion as a prerequ site for use of resources. The present

disc s1o therefore must be regarded a.a ap-oly1:ng only to

Multics 1 its current implementation.,

Becau e lock ng (attachment an assignment) is not

im eme ted 1 Multics processor 1nstruct1on.s, 1 t 1s not

enforced f'or all programs, since the instruction level of

the syete s the highest level that i .s sed by ill higher

levels. The ~ .t cs system attempts to provide voluntary

loo 1ng fa.c lities or higher levels Ilock 1n the havd-

core ing and the Locker in outer r ngs mplement locking

conventions,. We consider only the locker• e1nce :1lock

opera tea n t e hardcore r1ng, whic is never cnrren,t at

s:us_ension time.

The oc er can make no assumptio_a about e1ther the

p o rame ,,, ich se t or the variables which it locks.. In

part oular, it cannot. define what oonstltutes e. ve:rl ble

and what oes not. Tha.t task 1s l ,eft up to the progra:me

that call the locker. But. the locker can only be successful

1f the programs are cod,ed to 0OO,pera·te in use of the

variable, an. aeau.mpt1on that eb,ould be avoided 1n the

60

intere t of programm1ng e.;enerallty. For example, a ~certa1.n

segment 1ght be ueed b two edltor programs and several

programs tha.t extrac:t 1n ormation fro the segment for

·theL own use. Some o the latter m1ght be interested 1n

tablera or lists itb.i the segment, an define ock words

ec ,t ere through the segme·nt. The ed1 tors should not be

requ red to know about such rando_ loc s, nior to cooperate

1th 9ach other. In a system uch as that d•esor1bed by

Denn s 16 the hardware definee what may c:onetlt.ute a var­

iable and also 10rov1dea e. locking eonventio,n for use of

the e.rlab_es: thus attachment and aseignment conventions

are en ore ror a 1 levels of ystem.

What. are the 1m~l1oat1ons of this feature of current

Mult cs? rom our point of v1ew, 1t means that Multics

doesn rt · 1 t the system model of Chapter Two. Re,ad1ng and

w 1t1ne; go on 1ndeoendentl of al oca.t.lon~ One of tbe

elements needed to oomp11 te re eumabi.11 ty 1s a 11 st of

resources needed by the prooeee. But just be·caue:e there

is no sl ocat O- of segment resources 1n Mul tice, there

is no 1..nformation available about what resom"'ces the nrocee

act a_ly using.

The oat se-r1ous consequence 1s that e1nce there 1a

no 1nforms.t1on about r.hat variables are being modified

there 1s no poss1b111ty of putting those va.riablea ,nto

a ,cone1stent ata te. Therefore tbe system cannot guarantee

that suspending a process will not. adversely affect ,other

6
processes. Various pa.111at:lvee have een suggested to

overcome the basic difficult:, for reliable (hec.ce: system)

programs; 1 t no complete eolut_on ca.n be found I since

the rob_em t ,ems from a basic feature of tne y stem.

The current mplemen1:.at. ' on of Multics cannot aat.iefy the

f 1rst requirement for a sue pension aapab111 ty ~

5.7 ~esuming execution of a p~ocees

The second requirement for a suapens1on capao111ty

:is the ability to resume a process, assumlng resum tion

ls. sa.fe. Multics is designed. eo tha a procese can be

suapend.e - indefinite y an,d later Pesumed. Procedures

can he cons ructed for t.ualting away the per-process inform­

ation, then later recreat.1ne; an ao t1.ve prooe s s which. can

be caused f.o execute. The only mechanical d1ff1e:ult1es

wh1ch exist have to do with repos1t1on1ng resources needed

by the procese. Current procedures for moun t1ne; t .apes,

for example;, call for the 11.ser to telephone an operator

e.nd reques~ a tape to be mounted. W'han automatic pos1t1on

ing of tapes 1s available, tb.e system should include pro­

gram for 1scover1ng the desired postt1on for the tape

and repo e 1 t1on1ng th tape. Suoh repo si tlon1.ng 1 s o·nly

possible 1.f' /o system design perm1t.s ?"elevant poeit1ocing

1nforme.t1on to be obta1ned ln a. stra1ghtforwa.rd s.y

t should be noted that repos1't1on1ng 1a in general

e;reat.11 e1 p if1ed in Mult1cs by demand pa51ng of most

62

programs and data. Th.us t.o resume ex.,ecut1on of a pnocess

1 t, 1s on y nee e e.eary to add an e try to the proc e e e table.

The _roeess will automatically be oved orwa.:rd 1n the

exec t1on queue untl lt becomes el1 1 le to exe~ute.

At that time a few blocks of core will be allocated to

the pro c e .s s by th.e normal mechan 1 em and when 1 t start e

toe ecute 1t w_ll allocate core to 1tself a.s needed.

Thus the mod le 1n charge of resumption does not need to

conc ern itself w1th either processor or core allocation.

5. 8 Com:2u tins re suma.'b11 i t.y

How can the system c:lecide whether a given nroeese

can be resumed. at a. given time? It must compare the

resource -needs o the process with ava.1.lable resources.

· ere we w cons 1 der only the o st common (end mo, et fre-

quently mod fied) type of riesour-ce 1.n Mul t.lcs ~ informatioo

contained n segments. S1noe Mult1ce act1vate ~ segments

on dem.and, one poss1b111 ty tor comput1ng resuma.b111ty is

to start up the auepended process and let it run uct11

1t ettemuts to a.ctive.te a segment wh1ah it needs and

discovers that the ee5ment has been modified or repla.oed.

f th1 happens the dec1s1on 1s me.de tha.t 1.he pz-ocees can

not be re au.med; o therw1 se 1 t e ari be resumed.. The ad vantsg,e

of such a st~ategy 1a tnat it usee already existing mecha­

nilsms e.nd avoids a specially coatI"1ved interface between

reaumpt1on and Segment Contro16' However, eome epecial

63

.mach!.ne:tty mu.st be created to 1nd1ca te that not just a..ny

segment w 1 t,h pa th . Bl!lll X w 111 c1o. Un :1que segment 1d ent 1-

~ 1er s may be use to d.1et1nsu1sh between 11 versions 11 fa

module, v1 z. , be twe,en e. module and i ta replacement (d 1 et 1 nc t

1nterfacee) • A retrieval ech!m1sm ca.:n then be used to

fe't.ch the ' safe•• version of a segment from the backup

~stem.

There are three disadvantages to the etra tegy •

First the type of need for each segment ie not recorded

in the Known Segment Table. Indeed t 1s bur-i.ed and.or

scattered throughout the proceaa 1 s data baeea Henae the

syete.m cannot easily know wh.eth.er a segment a content or

in'te!"fa.ces are needed. To find out would requ1re co ple.x

and undesirable 1nt.erfaces between segment aontrol (which

is activating needed segments) an- various other pieces

of sy tem. Heme e we must as eum.e that the type o need 1 s

unk:cown and unknowable, and, except for a few epecla.1

oasa hardcore segments, assume that the process car.not

be resumed (i.e., mu t be forthwl th aborted) if any needed

segment hes been modified. at all. 'I'h1e e1mp11f1cat.:1on

unnecessarily reduces the proba'b111 ty o resumpt,1on.

A second difficulty 1s that it 1s only poee1ble to

ascertain in Multics when a se5me!l!:, has be, n mod if 1 e,d,, not

wb.en some small var :labl · 1 n the eagme·nt has been mod 1 f 1 ed.~

A Mult.lcs e gment oan tb.eoretioe.lly be very small or very

lal'"ge. But there is no provision for segments w1 th1n

64

segments. Further, reasons of cost and ffio1e:ncy encourage

segments to be large (page size 1a 1024 words, hence a

1-word eee;ment co ts 1024 words of core). These two facts

combine to men that small variables are usually laced

1n large segments. If any word of tb.e segment changes

one u t. aeaume that t e des1red word might hav·e c ane;ed,

and bort ... he resumption of the process.

A th1rd d1ff1oult.y 1 - that aom , perhaps moat,

eegm nts 1n the Known Segment Table a.re not needed by the

proc ss. Yet beca se process needs are not known ex:aot.ly,

and also for r ·easons d!acuss,ed 'oelow 1n section J .1 O; th ­

unneeded segm nts cannot be purged rom the Known Segment

Table. Hence 1f the p?-oeess later needs a. program which

it once needed, the system must attempt to get the same

version. If the same vers1.on ie not a:vailable, the proceee

1 a (:pe,rhap s nnec e, aae.r1 ly) aborted.

In summary• the Known Segment Tabl•e ie an approxi­

mation to the p11:ocesste abstract (e oppoeed to physical or

hardware) needs. The approximation provides a way (the only

way in the present 1ncarna.t1on of Mul tic e) to compute the

resU!!labil_ ty of the ::pro,cess. It can be used to ensure that

a process :is not unsafely resumed, but it:t that ca.se it 1s

practically guaranteed to prevent the resumption of some

processes unnecessarily. Hence, by satisfying the third

eond1t1on fo~ a suspension capa.b111ty, it works a.ga1ast the

fourth, e high probab111ty of resumption.

65

5 9 .?robability of raeumpt1on

The ourth requi:rement for a suspension capab111.ty

a a near- n1 ty probabill ty that a suspended proc,ess can

be resumed within eome advertised and rgasonable time

units after auspene on, eepite changes n the ey .stem.

Chanters hree and Four d scues way·s of' ohang._ng th,e yetem

withe t axing suspended p.rooesse The prevlou.s sect 0

the p~eeent chapter -howed how one fea ure of ul ic

practically assures a non- n1ty proba ility of ::r-esu ption

wheneve,r eha.ngee a.re a.de to user or system resources in

the process 11 s address spaoe, even whe the process oo ld

safe resume execution desp1 te the, changes.

e now apply the reaul ts of· Cha& ter Pour to a

coneidera. tion of the Mult1c s dlstr1buted supervisor, to,

see b.ow the system supports reswnpt1on wnen challenged

by a d1stributed euperv1aor. (To avo1d any possible mis­

understanding, I wish to point out that the strategy to

a old awkward suspen.sion described below is not mine.)

or

In ul tics the s . er sor appears 1n every process ..

_ ... s arrane;ement :1s referred to as a distributed super­

v~sor 1 • Its motiva.tiD!; strategy 1s to allow eaoh u er

recess to supply 1ts own needs, ae opposed to having user

processes place requests 1n the que es of eupe.rv1sor

One, consequence of the strategy 1 s to make

mandatory cose cooperation among processes, and therefore

strong lnterdependenc les. We exam1ne the consequences o,f

66

suspending a. process h1le some pr,ogrem of the auperv1eor-

1s current, and then. attempting to resume the proces after

mod.1f.1oat1ons have been ma.de to the euperv1sor The

examination is not intended as an exbaust1ve treatment

but ra ... her to indicate the naturie of the d1ffioulties

1nvo_ved ln suspension.

Suppose that a rooees 1e sue9ended when so e super­

v1sor program is current, and that wh11e the proces - 1B

suspended that program 1s mod:l:f1ed. We assume that tb.e

new- -program cannot be transplanted .&nto the procee.s. Can

the rocess resume wtth the old version of that program?

To re hraae the question: can two, processes b.ave different

versions of a supervisor program? There are several reasons

for avo1d1ng such a situation.

tt1rst, the euccese of some algorithms used in ... u1tioe

requires hat each proceee use the same a.lgor:1tbm. Two

examples are page control and the locking mechan1s:m. It

is d1ff1cul t to ensure, that two proees.see are supporting

as ng_e paging algorithm 1f each process uses a d1ff rent

paging program. Sim±larly, the looking strategy in Multics

s uc: th~t each process relies on ot.her prooeesee to

inform it -that needed data variables have been unlocked.

Second, even when differe,nt algor1 thms might mean-

1:ngfu_ly be u.aed by dl.ff'erent processes• the 1nt.erfa,cee

between prooesses must be constant., For example, the

11st-d1r pr1m1t1ve of d1re,cito,ry c:ontrol lists the oon1.ents

6

of a directory. One process might reasonably list the con-

tents in a differant order from another process; yet bot

must know the correct structure of the · 1recto?"y. S1milarly

segm nt contl"ol and. the traf:f 1,c controller in ,each process

communicate y means of comm.on tables, a.nd e. l must ab.a.re

the same dealarat1on for the structure of the tables.

A third ,oon sid,eration r ·enders suspension 1n the ha.rd­

c o e sup rv1 eor unwise 1n the current 1mpleme.nta t ion of

Kul tics. While prooesaes aha.re the t -xt of proe;rame,

certain other per-program 1nforma.t1on such aa the, linkage

se,e t 1on unique to ea.en pr,oce s ·e For reasons of ef r 1-

c 1ency a proae·sses share common linkage e,ections for

supervisor segments. Th1s greatly reduces the oorie re­

_u1rements of the supervisor, but increases the 1nter-

dependence of processes Two proceeses - ay have d1f:ferent

versions o a. program only 1f the vers1ons have 1dent1cal

link.age sections.

For these reasons 1t !s untlee, although theoret.1-

cal_y possible, ""o replac,e modulei::i ,of the distributed super-

1 sor 1 1th. uc k and a.et1d1ous boo,ltkee ping, e. eube ti

tut oc is pose ble. That 1s, if a procesa ha..s been sue­

pended wh_ ea program of the distributed superv1sor 1e

current, then it can theoretlcally be resumed.

Sine,e t . e eyetem ea.n e;;ua.rantee, however, tha al

ha.rdoore p:rograms are reliable (remember we assume no

program bugsl), 1t can ensure that all nrooeeses have the

68

ame er ions of hardcor,e programs by cot allowing eu s­

in the supervigor. This dee e1o has be,en imp-

1n Mul t1c s by no,t -11ow1 g suspens!on 1n the

pens o

lemente

hardcore ring. It should be noted, ho ever,. that s1 - 11ar

cons deratlons apply to acy programs w oh rel on or-

cause c ose 1nterdepende ce between prooeesea, "o xem le

acco ti po rams using common account data. bases or

program f o 1n-terc on eo la co.m:mu.n lea t ion. The a 1mpl e way

to avo1 nsolub e transplant problems 1nvolv1n these

rograms is to in 1 ton their · e 1ab1 ity and to forbid

sue eLs1on · hen thy ar cu~rent.

e conclude by r marking that even a. ,cursory ex­

am1nat1on o the ultics d1str1buted. s pervisor has 1. -

... minated some prob ems inherent 1n the suspension of

closely coo eratlng processes

5 10 Dy a.mic _ick1ng

One way to decre se th,e probab111 ty of riesumpt1on

of a suspe ded proc ss 1e through binding. Binding

prosr toast of mac:h1ne instruot1ona (comp11 t1o)

c este~ dependencies as reflected 1n the system lattice.

Dynaml.c b1n _ 1n.g creates de,pendenc1es not reflect.ed le the

system attiee If' the, binding. is 1riterpret1ve no .new

needs a.re introduced into the 10Do,cess. An e,xample 1 s

the in erpreta tlon o..., core, addl essee 1n Multics If a

page is located one t eat th1s address, oDe time at

69

that, the terprat1ve pae;1ng hardware operates to f nd

the correct absolute acldre.ss, and t . e process doee not

need the particular block of memory where the· ps. ·e wae

first located. I - .
Corbato and Sa tzer-' have re erred to this

1nterpret1 e b cding as reverslb111tz g___ binding We now

conei er a example of dy·nam1c binding 1n Multics which

a , ot :r ve:rsible, and which theriefore introduces new

needs for the process and owera the probab111 ty of re·­

m.unpt1on

As the grand finale to this chapter., ·we explor,e the

conaeq ence for suspension of one feature of Mu.l tics,

1 te•r egm nt linking. Every segment ree!ding tn the

Mul t . c f e syete• can be re·ferred t ,o by a pathname de­

s1goa.t1ng 1ts place 1n the hier rchy. .A pathname howeve·r,

can 'be a very long a,tr ng of etters, and leads to 1n-

e f1c1ency 1n intereeg;ment references if 1t le used as

the me,ans of addressing segments.. .For t is reason the

address space of a Mul t1oe proces.s is .not the f 1le hier­

archy but a vector ,of segments. In the first referenoe

of a. process to any seg _ent X, the segment 1e assigned

a place 1 the ecto, 1.e • ., a segment number. Thereafter

a l ref er-enc es to X . u t be made by segment numbe·r. One

way to make such refer ncee would be for the process to

compute the segment number at ever•y reference to X. '!'hat;

ho rever, is a time•-consum1ng prooedure. It must be done

ea,ob. tlm,e a new segment references x, but later references

70

to X y t e same segment can 'be expedited if the segment

reta1 e a copy of XI s segment number .

o a.ccomp ish this, the system makes pointers, or

segmsac~o feet addresses, available to referencing pro­

grams. The linker places pointers n a egment's linkage

eectio!I, e.nd system progr me freely copy po1ntere into

theL stack ramee acd static data areas.

That tre.tegy promotes eff1c1ecey, but it also

introduces depende oy 1n the process that is not in­

herent in the system latt1oe. Namely, the ee ment using

the pointer 1 now dependent on the assoc 1at1on ,of X and

a part cul ar nu.m ber. Tb.a. t 1 s • the compound of the po inter

and the ntry 1n the Known Segme t Table which defines

the as oc1at1on beoomee a static private variable on

which the process 1s deoendent.

One reau t of the de,pendency 1s to mak termination

of segments, that 1s, d1saoc ation of a number and a seg­

ent, extre ely dangerous. W1tn1n the proceee the super-

·1sor aho d ensure that no segment is terminated wh1 e

any modu e 1s st1 dependent on the association of e

p01nter a d the Known Segment T'able entry for that segment

{ e.s there 1 s no echan1am 1n current ul t1o e fo trac tne;:

reference to a segment number, th1s implies that no

segment can be terminated). FUrther, the Known Segment

Table entry must be regarded as att ched to the process, eo

tat the process 1s not :resume.ble 11' the entry 1a modified.

71

(Actually the easentiel element of the entry 1s the

as.soc ia tion of' segme t and numb er ~~ ny tran e format o.n

of the Known Segment al:ile wh1ch preserve·d that as soc1a.­

t1 on wo ld not render suspension 1mpo e ei b e • Such a

transformation is in theory possible beca.uae the -crocess

is dependent ust on the con ten ts of the en tr,r--eee Chapter

Three.)

&ul tics intersegment 11nkag;e makes a. referencing

progt"am _ d.ependent not only on the segment number of x,

but also o the entry po1nts or X That 1 sJ Y' a 11nkage

section records for X and a symbolic entry name (i.e.,

any location which can be symbolically refere,nced :from other

segments) a num.erlca:.l offeet w1.thin X. As a reeult 1 the

urocesa is dependent en the asaociatio,n of e. symbolically

refers.nceable name 1n X and. the word number to which the

name corresponds. This s:.esoctat1on ls recorded :1n the

linkage sect1on fo X when X 1s e.saembled After the

::..1nkage 1s made. Y cannot exeoute correctly 1f that asso­

ciation of 1ntercal name and word number :te changed.

Thus interseg ent linkage creates dependencies 1n

a prooees ;.thlc are not implied by th.e system lattice~

ot on ya.re current proir:;rams and static data va.r1ab es

needed but also, 1 f in the fu tu:re execut 10 n of the proce ea

any reference 1s made to e. prev1ouely-known segment, the

u:rooese must use some v.ers1on or replacement of the seg­

ment that satisfies very strict 1nt,erface constraints~

72

The result. is tt.~,ofold: statement of m1n1mal requirements

for resumpt1oa 1s made more complicated, and th,e poae1b111 ty

of resumption 1s reduced as the needs of ~he proces are

increased.

The Multics strategy of intereegment linkage may

be cont.rested with a hypothetical system proposed. by Van

Horn 2 and a. p:raot1oal proposal by Denn1e16 Ea.ah of theee

advocates abolishing the d1et1nct1on between file system

orga.niza.t1on and process address space. Ve.n Horn proposes

a.ddress1ng by segment numbers to the excluslon of pathnames,

wh.il Dennis advocates, and apparently intends to implement,

proc ess1ng hardware that allows 1netruct1or:Hi! to address

hi.erarch ca memory w:t thou. t eegm.ent number e. E1 the r of

these schemes elim1nat.es the need :tor Multics-type inter­

segment linkage and the r ,esul 'ting gratuitous dependenc 1 es

created 1n processes

CHAPTER SIX

CONCLUDING OBSERVATI NS

Th.e fe general purpo _e com:;,ut1ng systems which

::i.ave eus e.ns1on capa:b1 1 ties have demonstrated t .b.e uae­

fulne se of auch .a c apab111 ty, a usefulness which 1s rac­

ti ca lye 1valemt to a need. M I.T. 1 s CTss17 has such

a ca._ ab1li ty, an I have heard peop e make euoh remark,e

n converea.t1o ae, "CTSS beCeJ.lle really useful once 1t

started sav_ng m.y job waen ws.s thrown or·r. 11

11 auspens 1on ca ab 111 ty, 'then, would eee,m to b a

requirement 1n future systems.. But 1 t cannot be a.dd,ed

as an af erthought .. careful des1f>tl is necessary, espec1ally

1n a.. s stem bu1_ t to ve ve, '1 the suepensi,on module is

not to be changed ae often ae the syate, or indeed, if

the eyste 1s to hav a suspension capability at al.

Thia thesis has been ac att,e: pt to contr1b te to

the des1g of systems simuly by setting down in writing

t e ne,ed for a sus ens on capab111 ty, and def1.n1ng 1 ts

cons ituent cape.bi !ties. I have attempted to show eome

i p 1c t ons of a suspension cape.bill ty fo,r eyetems 1n

w · 1ch nfo:rm.ation., an.d !IDt Just copi s of informatio , le

shared .

The the·s1s has fo,cused attention pr1mar1 y ,on two

related requ1s1 tee or a euspens1on capab111 ty :· to know

a procees'e needs so that it is not incorrectly resumed

74

(i.e. allowed tor eume ue1:ng s.n incorrect replacement

for some needed resource): and to maximize the probability

of resumpt on cf a. process w1th1c some acceptable period

after suepanaion. despite system changes.

The latter ::requirement has been called by Corbatd'

and Sa tzer3 the need for 11revers1 b1.l 1 ty of" b1nd 1ng '1 •e

conclude with few rem rks on reve:rs1b1 1.ty of b1.Did1ng~

B1nd1ng 1.s 11 e:n opers.t1on whlcb. occn1rs at e. var1et.y of levels

in a oompu ter sy etem: the choosing; of a part1oulaD hardware

and super-v1 sor environ.me.at in wh ic b. to impl t1ment a pr ogre

construct. 113 On 1nspect1•on, 1 t. seems :reasonable tc consl.der

blnd1:C.S 1n t.hree d1st1nct aategories= program to program

b:lnd1ng, ae in compilation of a FORTRAN program in terms of

machine 1netruct1ons a.cd other programs; program to data

b1n:d1ng, ae whes a program 1nclue.es tab e lookup· and

1.nform:a t ion to ma.ch1ne b1nd1ng. Tbe last o,ccurs when

physica_ p1ecea of hardware e.re chosen fol" representation

or execution of' inform 't1on. Examples are loading registers

in core memory w1 th '1::11 t patterns of 1nformat1on, or ca.using

e. processor to exeou.t.e a. stored program

The 196o's have seen a recogn1t1on of tbe need for

the reve:r-s1b!l1ty of th.e th1?"d k1nd of b1nd1ng. Segment.a;!(;~

t1on, co?"e memory management, and file system managemer:1t

of secondary storage in Multics, for example, all enable

a pl:'ocese 1 s need for a particular unit of hardware to be

1gno ed as eoon s.s the process deallocates the um.it: the

75

process may be resumed later with other, 1nterchan eable

pieces of hardware Th a the process 1s made 1ndepe, dent

of a. par c _ ar h,ardwa.re configuration.

Informa.t1on-to-mach1ne b1nd1ng 1s reversible in th.e

-ense that :1 entic!i ha?9dware un.1te may be use,d 1nter­

chang,-,ab1y. The f rst. two k1nd e of bi nd1ng are of a.

dif- e ant nature, s nee what 1s ound to 1s abstra.ct and

e·asily mod fled We ay that binding is 11 revere1ble 11 1n

1'.hese cases (1nformation-to-1nforma.tion blndlng) if the

module to wh1c something 1s bound can be replaced by a.

module of d fferent. content or, more demand.Ing, by a module

r.J1 th different 1. terfaces. as we l Thus the requ.irements

of revers lb 1 ty of binding are str·onger for software than

f'or hardware.

The system model presented in C:hap't.er T'Wo ref'lecte

the eta. 1e 1nformat1on-to-1nformat1on binding in the syetem.

A e the s stem runs, dynamic binding takes place, 1ntro due 1ng

further de end enc i e ,s w1 th1n the co Ilt -xt of a e 1ngl.e pro e e e e

Sometimes this is also desirable or necessary, as wh n the

choice of' a particular equar•e root routine 1s left u.rrt11

of the pro,c es s ~ ~e Mu t1a s dynam ie 11nk1ng

strategy introduces another kind of dynamic bincling, int.hie

case undes1re.ble, as shown 1n Ca.apter Five,, To fac1 1 ta.te,

rav·er.sibi 1 ty of blndl.ne; and henoe the design of a auspen"',, ..

s1on capability., systems should e designed. so that dynaml

cally introduced bindings are reversible or, wher 1e not

76

explicit y de 1 ed 1 avoided altogetner.

77

REFERENCES

1 Denni · , J B., and E. Van Horn, 11 Frogramming Sema.nt1cs

for ,i tlprogrammed Comp:utat1ona., 11 Go:mmun1cat1ons of

th~ ACM 9 (March, 966), pp. 143-155 ..

2. an ~ orn, E'., ,, . omputer Design for Asynchronously

4.

Re"t,roduc1ble Multi_ roceaeing,.' Ph.D. Thes!s, M I .T

Deue.t"tment of Electri.cal Eng1n,eer1ng. September, ·1966 ..
.,,

Corbato, F.J .. , and J'. H. Saltz.er, nsome considerations

of Su_ erv1 sor Prog!'am De s1gn f O?" Mul t 1pl exed c.,o put er

Systems, ' .IFIP Congree 968 _nv1 ted PapeI"sJ North-

or and Publishing Comp ny (Amst.erdam), pp. 66 - 71 •
. . I

Corba. to , F.. J. , and V. A. Vy s ot,sky, "Intro,duo t 1 on

and Ove·rv1ew of the Multics System.., 11 A FIPS Oonferenee

Proceedings. 27 (965 FJCC), Spartan Books, Waah1agton

-. c., 1965, P:~ 185-196.

5. Glaser, E .. L. 1 !! !!.•, "Sy tem Design o a Computer for

Time Shar1ng Ap,p 1c.ation, 11 AFIPS Conference Proceedings

27 (965 ~ 00), S~a.rtan Books,

pp~ - 9 -202.

shi gton, D. c., 1965,

6. \ v e o tak. , V. .A. , !! !! . , t• structure of the Multics

Supervisor 1
11 AFIPS Conference Proceed1ngs 27 (1965

FJCC), Spartan Books~ Wa.sh1ngto,n, • C., 1965 1 pp. 2<D3-

212.,

?. Da ey, R. C., and P .. G. Neumann, n enera.1-Purpo se

Fi s System for, Secondary Storage. 11 .AFIPS Conference

78

?roceedlnga 27 (1965 JCO), Spartan Books, a.sb.1ngton,

~. c .• 1965, pp. 213-229.

8. Ossanna, • F., et !:!•,, 11 Commun1catio,n and Input/Output

w ... tchlng 1n a Multiplex Computing Syetem,H AFIPS

onfe. ence Proceedings 27 (1965 FJCC), Sparta.D Books,

a.sh1ngton, D. C. 1965, pp. 2$il-2@.t.

~ • avid, E. E. , jr. , and R. • Fe.no, 11 S0m,e Thoughts about

... e Social Impl1cat1ona of .Acoeesibl,e Computing,"

AF PS Conference P!'oceed1ngs 27 (1965 FJCC} 1 vpartan

Books, Washington, D. c., 1965, pp. 243 247.

10. a. tzer., J. H., 11 Traff1c Control in a ul t1olexed

Computer System, 11 Sc .. D Thesis, M.I .T. Department of

Eleotrioal Eng1neer1ng, June. 1966

11 Beneouaean, A. , • T. Clingea, and R. a. Daley,

"The ~ul tics V1?'tua Memo,ry, ' pa pe:r pre aen ted ,at the

Second liC_ SympoelUJill on Operat1ng System Prine 1plee,

October, 969.

12. Di ketra, E.W., tructure of tb.e THE M'U.1 t.iprogra.mmlng

System, 11 Commumlcat1on.s £!. !b.!_ !Ql:! f (May, 1968),

pp. 34 -346.

13. Dijkstra, E. W. 'Complex1 t;y aontrolled by H1erarch1c:al

Order1ng of Funct1on aJ'ld Variability," Software ID1-
51neer1E5, report one. conf renoe sponsored. by the

NATO Sc1ence Comm1ttee, Garmisoh, Germany, published

1969, pp. 18 -185.

14,. Pe.rnae, D., ''More on Simulation Languagee and Design

79

ethodoLogy for Computer Systems," AFIPS Conference

Pro,c eedinss 34 { 1969 SJC C) , Spa:rtan Booke • Washington,

D. C., 1967, pp 739-743.

15. Randa. 1, B., and F'. W. Zur·c1h.er, "Mul t1-level Modelling-­

A Methodology for Computer System Design, n IFIP Congre!,!

1968, ortb Holland Pub 1sh1cg, Company (Ame terda.m) ,

D138-D142.

16. De nis, J. • , U.tdoe;ramm1ng GEtnerali ty, Parallel1sm

and Computer Design, t .I .,T. Computation Sti"uctures

Gro .p Memo #32.

1 • Cz-1sman 1, P. A (ed1 tor) , The Com_pa t1 ble T:1me Shari!!,5_

System: ! Fro5.ramm · r~e Guide, .aeao,nd ed1t,1on, M. I.

Press., Cambridge, 1965 •

