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INTRODUCT I ON

Considering the major strides that have been made in
twenty-flive ycars in computer science and more specifically
In software design, the techniques avallable for developing
large reliable systems or even producing correct medium-slzed
programs are disappointing. Ve generally attack a problem by
choosing some programming language and then proceed to design
the program wusing an iterative process of coding and
debugging. Unfortunately after completing these steps of
program preparation, we still have no guarantee that our
product is error-free, Instead a general me thod for
developing programs which are assured to be correct is
needed. This field of rescarch coites under the heading of

Reliable programming can be defined into two general
categories. The first is the Manalytical" approach
encouraged by Floyd(l), King(2), London(3), and others who
attempt to prove a program correct after it has been written.
This is accomplished by deriving assertions about values of
variables and control patterns within the pragram. From
these assertions, one then uses mathematical methods in

trying to deduce the desired end result of the program.

The second approach, called “constructive" and primarily

Iintroduced by Dijkstra(4), 1Is to develop a nrethod for
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constructing correct programs rather than proving the
reliability of previously written programs. The poal of the
constructive approach Is writing programs that are easler to
prove correct, This Is accomplished by adhering to
established programming restrictions whlle writing a program
which, in turn, causes the program to be constructed as a
hierarchy of layers. CGuaranteeing the rellability of the
propram is then reduced to proving the correctness of each
layer. The hope is that larger programs canm be handled Ly

the analytic approach.

The general constructive method that has been developed
is structurec programming (other names used are programming
by levels of abstraction and programming Ly stepwlise
refinement). Although Dijkstra pioneered most of the early
research in this area, several other papers have now followed
including those written by Wirth(5), Parnas(i), lienderson and
Snowdon(7), Woodger(8), Haur(3), and Liskov(1l0). Thelr works
have all pointed out that what is really needed is a more
systematic way to go about programming=--a systematic
programming method that leads to clear, readable, provable,

and thus reliable programs.,
JLJ ror 1

Structured propgrarmming Is a design tool for DbLuilding

programs in a Mtop down" fashlon by means of a process of
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successive decomposition. When we say "top Jdown' we sean the
abillty to Introduce and use objects while designing a
program before the objects arc necessarily defined. On the
other hand, a "bottom up" approach==-requlred in most
present~-day prograﬁming languages~--means that an object must
be defined in the language hefore it can be used. The first
step in structured programming is to write a program which
solves the given prol:lem. However, In general this Initial
program Is not 1in a form understandable by the machine on
which we are programming but instead only on some abstract
machine. This abstract machine provides us with just those
data objects and gperations which liave keen gencrated by our
program and are therefore suitable for solving the problen.
This program is referred to as our top level abstraction. As
was earlier noted, the fact is that names of operations and
data structures may not be recognizable by the actual
machine; so we refine these names by wusing real machine
constructs as well as Jlower level abstractions which
themselves, In turn, must be subsequently developed until our

program is completely understandable by the machine on which

the program Js to be run.,

Problem Overyiew

Host higher level languages today rlve the programmer

the ability to design abstract operations through the usage




of procedural wmechanisms, However, there secms to be no
analogous me thod for handling abstract data objects.
Ubviously, If we hope to design programs by means of a
structured approach, this second requirement Is as:necessary

as the first,

Currently at the Massachusetts Institute of Techneology
research is beling directed towards the development of a new
programming language to be used specifically in conjunction
with the structured programming methodology(1ll). While it is
being assumed that current langugaes do not have suitable
mechanisms for constructing data cbjects, it is not obvious
that this opinion is justified., In an attempt to remedy this
predicament, we wWill begin by analyzing the concept of data
abstractions and how one would prograrm then In some present
day lanpuages. Although our choice of languages bhecomes
relevant to our successes and failures, it is Iimportant to

recopnize that we have chosen languagpes which have been all

designed with different concepts In mind, The languages
chosen are 1)PL/l--described by IBM as an "zll=purpose
lanpuage', 2)Pascal--a lanfuage with nume rous data

structuring facilities, 3)LLl--an extensible lanpuane, and

GISTHULAGT==a simulaltion lanpuape.

We do pot intend to evaluate these languapges in terms of

the goals of thelir designers; instead these languages will be
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judged by how well they meet our desizn criteria set forth by
structured programming . e will pay particular emphasis on
thelr abilities to represent data abstractions. As a result
of the inslghts gained by this study, we will expect to
answer the question of whether or not another programming
language must be developed for structured programming.
Furthermore, if there is a need for a new language of this

type, what we have learned from this analysis shculd prove

useful,

Before we explore these languages, we present a nore
detailed history of the problems of structured programming so
that the reader will feel more competent when judging and
trying to resolve the pros and cons of each language.

Criteria wupon which these assesments will be made will also

be presented shortly.






i1 STORY

Program reliability from the analytical point of view
has encourapred much rescarch from the latter part of the
1960's up till the present, These vyears of effort have
produced much material on the subject ranging from improved
resolution schemes for logic(12) to assertion-type
languages(13). lowever, one fact becomes fairly obvious: the
more unstructured=-in the sensc of wild control flow and
cnormous (Lut unecessary) size=-a progrum is, the mwmore
Jdifficult the problem of deriving asscritions in order to
prove the program correct, Furthermore, the increase in
difficulty seems to he more on the order of exponential (and
approaching impossible) than linear. Indeed, it seems that
if only some stralghtforward deslgn methodology for
programming were adhered to during the development of the

program, that finding these assertions would be much easier.

This has been one or the goals of the constructive
approach and in particular structured programming. As  we
noted earlier (but explain now in fuller detail), by bullding
a program in this fashion, we produce an arrangement of
layers, corresponding to levels of abstraction, each with
only one entry and one exit. The reliability of the program
is based upon the reliability of each succeeding layer, and a

change mmade to some higher level of abstraction (that is, an

earlier conceived level) has no effect on the reliability of
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lower levels. Thus proving the correctness of the entire
progran  is reduced to proving the correctness of each laver
in an orderly fashion. The correctness of ecach layer is not
too difficult to prove as a result of making the Following
restriction: control sequencing is limited to the
concatenation of assignment, |F~THEH=-ELSE, DO WHILE, and
possibly CASE statcments; the correctness of each layer
relies wupon the fact that these statements correspond to
proofs wusing mathematical methous of cnumeration, case

analysis, and induction,

it this point an example is presented to help clarify
the method followed in structured programuing and its
associated reliability characteristics, LWritten In a
PL/1=1ike languagre, the example will also display Cnglish
phrases and undcfined symbols at one level that must be
refined at lower levels. Suppose the problem is to write a

compiler -for PL/1. Then the tup level would be:
| lrite o compller for PL/L prorprams:

Now §f we had a machine capable of understanding level
then we would have no need to proceed further; however, we
will assume this not to be the case.

Instead we will refine the above program thus obtalning:
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Il program:

DECLAKRE source_program CHARACTER VARYING;

source_program = [[HPUT;

translate(source_program};
Level 11 consists of naming the variable source_program,
which is to be Lype varying length character segquence, and
two actions, IHPUT and "translate'". The assumption we will
make here is that the machine understands DECLARE, CHARACTER,
VARYING, ond [HPUT but not "translate". #Assuming that ilPUT
sets the source_program to  the program to be compiled and
"translate" does indeed produce the correct object code, it
is easy to see that level 1!l solves the problem. The
reliability of level || nust be partially intuitive since the
specifications of the action '"translate" are not defined.
Thls particular point concerning reliabkility should be well
understood and Is therefore reiterated here: at level 11 it
is unnecessary to know how "translate" works but only what it
is supposed to Jdo; furthermore since we have no semantics to
cxpress what the function of "transliate"™ is, our proof relles
partly on enumeration (concatenation of statements) and

partly on intuition.

The next refinement is a result of ~ur actual machine

not understanding the action translate.
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Il translate(x);

DECLARE x CHARACTER VARYIHNG;

DLCLANRE phrase_structure trece;

phrase_structure = recognize(x);

tenerate_code(phrase_structure);
Level 1 introduces the parameter X, variable
phrase_structure of type tree, and operations recognlze and
renerate. Of these, only x s completely understood by the
machine on which we will eventually run and the problem of

what to refine next must be resolved. (The question of what

to refine next has no simple solution=--see discussion in

following scction.)

At this point | will stop because | feel the reader
should have a reasonabhle understanding concerning the
development of the compiler program. lHe should also be able
to convince himself that it all the data types and operations
introduced so far were recognizable Ly our machine, not only
vould the program be complete but it would also be correct.
As was the case tor level |l, the way by which one can show
the reliability for level |1l results from programming In a
structured manner. For instance, to prove the rellability of
level 111, one needs +to show nothing of the details
concerning: the ovperations recognlze and gencrate and the data
structure tree hut only what the two actions are supposed Lo
do and that the representation of the data structure tree

wlill be refined at some lower level.,
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Leneral Cuestinps Concerpins Structured Prorrammine

The compiler fXarple  [1lustrates the renaral  form A
structured progeam takes, Twuo types of nrabhlers vhick aAre
encountered |n Puilding nrorrams structurally may he
fdentifled, Flrst it s evident that decisinng concerning
the next refipement must be resolved hut it is unclerar as to
how that particular choiece iIs mare, Fallne sueh decisinns i s
not limited te structured Prograrmine, Sut Is an intecral
part of constructing progrems (altroueh ¢t may he that
Structured prapramine makes  declsinns mere noticeakle hy
identifyine them with refinements). The second  probhlem s
how to represent the structured proerpm as ¢+ develans, This

involves representetion of keth structured  ecantral  and

Structured data,

Vith rerard te the secend of these tunm Issues, we remar)

that structured ¢ontrol can ke  bLroken dovin in two areas:

. control seauencine  and actian refinerent, The reauirements

of control seauenc Ing dn not sepp te present an

implementation proklem, They ean rasily  ha handled hy A

numbear of present day proprarmine lanruapres, far cxamnle PL/I

(see Mills(14) ane Sullivan(15)), with mast  1ilely saome

lmitations and Possihly some extensions, o, r, Implementing

the CASE statement In PL/).
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As was earlier recognized, refinement of action such as
"translate" in the compiler example can be expressed by the
combination of procedure=-like structures and a good 1library
system which supports 1linking of action names with action
definitions, This would allow the programmer the advantage
of being able to build the program in a top-down fashlon.
Indeed, the developnent of a lanpuage which provides the
structured logic and lilrary system to back up the compiler
would provide a solid foundation for the development of a

language specifically designed for structured programming,

On the other hand, the method In which data
specifications in structured prograiming should he handled Is
unclear. For Instance, in the compiler example how do we
represent the abstraction "tree'" and any associated operators
{eg. we may wish to Include the actlons traverse, add_a_node,
and delete_a_node operating on trees)? This Issue is closely
bound to the first problem of when and how one should define
and rafine data structures, Certainly the representation of
the data structure will have a profound effect on the
efficlency of the program and the ease of writing the
functlons which will operate on the data, But how is the
programmer to decide upon the details of the structure while

still conforming to a top=-down development of Lhe program?

The mere pencrally held belief is  to defer those
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declisions councerning the detalls of data representation as
long as possible which hopefully leads to reflnement of
program and data specifications in parallel. The following
example wlll help the reader become more familiar with the

questions of data format that the programmer must face In

structured programming.

Wirth(5) develops a program to solve the 8-queens
problem by a "successive decomposition or refinement of
speciflicatlon...(until) all Iinstructions are expressed in
terms of an underlying computer or programming language."
The 8-queens problem is described as follows: glven an 8x8
chessboard and 8 yueens, find a position for each «queen so
that no queen can take another (i.e. such that every row,
column, and diagonal contains at most one queen). The flrst
data decision that Wirth must make Is when to define the
board. he decides upon a time when it actually becomes

necessary to access and manipulate parts of the hoard,

Then the decision of how to represent the Loard becomes
of primary Importance. An obvious solution consists of
Introducing a ULonlean matrix B(1:8,1:8) such that 8(i,j) =
true denotes that saquare (i,j) is occupied. But instead
Wirth chooses the representation:

interer | (0<=j<=9)
integer array x(1:8) (0<=xi<=§)
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such that j is the index of the currently inspected column
(allowing J to equal 9 will indicate that the solution is
found), (xj,j) 1is the coordinate of the Jlast Iinspected
square, and the position of the queen in column k is given by
the coordinate pair (xk,Kk) on the board. |In justifying this
decislion, Wirth says "it Is fairly evident even at this stage
that the...(second) choice is more suitable than a boolean

matrix 1In terms of simplicity of later instructions as well

as of storage economy."

So it seems that although structured programming Is a
top~duwn process, a bottom-up justification has bLeen gliven to
support a choice of data representations. Unfortunately, if
it Is discovered that a wrong choice has been made, one will
be forced to back up. An analysis of the trade-off between a
strict top-down development and necessary backup might
improve any declision policy on what to refine next and what

format the refinement should take,

In principle there seem to be two ways of answering the
first gquestion of when to refine data. lic can do it as soon
as we recalize that a particular data structure is needed some
tlme In the program or we can postpone the definition until
that data structure must be deflned In order for us to be

able to continue along our path of refinement.
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The second way does seem ta he more In the spirlt of

structured profsramming  slince |t dnes not requlre looking
ahead to see how 3 data structure |s operated upon hefore
defining It, 1.e. Wirth uses the concept of "hoard" as long

as possihle, Alsgo hy postponing the declslion e eliminate
possible prohlens generated hy awkward Aata format that has
already heen defined. On the other hand, walting to choose a
particular data representatfon ecan result In lack of
compatihility and thus inefflclency 1€ any presupposed
operatlons on that format turn out teo he clumsy, It also
must be reallzed that we cannot Postpone decislions forever

and that the prohlem of backup will arige and have tn he

dealt with,

S0 now the problem becomes nne of trylng to formulate
some rules or tactles cencerning  the reflinement of data.
ldeally, they would ensure the programmer nf heing ahle to
tell not only when but exactly how to refine data, However,
even before we can approach thls prohlem, we must first he

able to handle data representation and refinement in the

language.

It s thisg latter prohlem to whleh this paper addresseps
Itself with the bellef that Its solution will Present us wlth
both a filrm understanding of data representation and a hetter

comprehension of the concepts of structured programming, In
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turn, we may then have hopes of belng successful in solving

the flrst prohlem of when and haw to refine data, Before

Investigating dlfferent languages, let us explore preclisely

what criteria need be satlsfied by a language acceptahle for

expressing abstract data and what examples we may wish to use

in evaluating the dlfferent lanpuages,



PROGRAMMING LANGUAGE CPITERIA FOR DATA ABSTRACTIONS

We noted ecarlier that as a result of usling structured
programming technlques, hoth abstract data ohjects and
ahstract operators are penerated, These ohjects will
henceforth be referred to as data abstractlons and operator
ahstractlons respectively., We have also estabhllished the fact
that operator ahstractions can he fairly well represented hy
procedure=11ke mechanlsms common tn most present-day
programming lanruages, So It Is at this pnlnt that we are
most Interested In establishing criteria for representation

of B8 data abstraction the must he met by a programming

language.

Some of the lesser data structuring regulirements wlill
become clear as we analyze the languaces with the aim of
producling programs through the use of structured programming.
llowever, the major criterla should be made very precise at
this point In the paper so that we have hanth set roals around

which programs should he deslgned In our glven lanpuape and a

model for comparison of programs,

Nne ohvious and possibly the most Impertant requlrement
Is that of helng ahle to express data ahstractlons within the
confines of the language. More expllicltly, our view Is that
the data abstraction Introduces some ahstract data type, and

varlables of this type may only assume values corresponding
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to this type (just as in ALGOLGO, say, variables of type real
may only assume values that are real numhers), The abhstract
data type Is expliclitly defined hy some set of operations
which may operate on varfahles declared of that type. The
Implementation of the abstraction may then bhe viewed as 2
form conslsting of two parts: 1)the underlying
representation of the akstract data type and 2)the actlons
deflned to operate on varfahles of that data type by

manipulating Tts underlylng representation,

For example, 2 common ahkstractlon In mathematl!cs ls the

concept of a set which we might deflne by the operators

unfon, memhership=-testing, and Intersectlion., To Implement
the set abstraction, we choose somp lower level
representation for a set, Our choice of representation

depends on the kind of operatlions which will predomlinate In
the application expected. We could represent a set as an
array or possibly as elements 1inked torether by polnters.
After choosing one of these underlylng representatlions, we
would program the operators glven above. This would complete
our [mplementation of the set abstractlion although It may he
the case that further refinement wlith respect to the
representation chosen and the operators deflned s necessary
so that our program |s completely understandahle hy the

actual machlne,
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It is also a fact that at a hirgher level we need not nor
should we have access to the lower level (underlying)
representation of some data ahstractlnn. This restriction
has been Implemented by most hirher level programming,
lanpuages for primitive types and there is no reason that we
should Ignore it while programming by levels of ahstractlon,
For Instance, a real numbher In a nroprammling lanpuare Is
usually represented as a seaquence of hlits whiech glves the
mantissa and exponent parts of the numbker, However, there [s
certainly no reason for the prosrammer to know which hits
represent which part or even to allew the programmer access
to any bit, Indeed, this lower level representation of real
numbers Is no concern to the programmer using the higher
level tool of a programming language, This argument applies
In a similar fashion to our example of the set abstraction,
We are Interested In declarine variables to represent sets
and In accessing Information about these varlables through
the operators assoclated with the set ahstraction, Rut the

data structure that was chosen to represent a set should he

of no concern to us,

In summary, a data ahstractlon defines an ahstract data
type as a set of operators, Furthermore, the user |Is not
permitted to know how this type |Is represented In the

abstraction; Instead, only the specified operators can

manipulate varlahles of thls type. It Is these criterla
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around which thke lanpuare for structured propramming,

mentioned earlier, Is being develaoped at M.I1.T,

When judging the chosen programming languages, we must
do so In terms of these requlirements. Can we represent
abstract data concepts and at the same time adher to the
accessihility restrictions? |If the answer is yes, then with
what ease can this bhe accomplished? DNoes any syntactical
format or semantic concept of the glven lanruage encourage
the " use of structured programming as the desirner's tool aor,
on the other hand, cause any serious handicap while using the

technique of structured programming?

Before leaving the tople af criteria for data
abstractions, we should focus on ore more issue upon which
discussion ought teo be based durineg the examinatlon of a2
language, Suppose that we have conceptually formulated the

model for a glven ahstract data type; that Is, we have

declded upon the representatfon of the type and the
operatlions which can manlpulate okjects of that type, Our
next step Is to program this data abstraction Tn our chosen

programming lanfuage, We should be concerned about the task
of conceptualization versus the task of programming the data
abstraction, Was the abstraction much more difficult to
program than Its conceptuallzation leads us to helleve? |If

the lanpguage does not meet this criterlon of
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"eonceptuallzation ease Implylng programming simplicity" then
the language must he regarded as a disappolntment from this

viewpolint,

§L’aQE Ab§::agl;lgn

Let us now examine a data ahstractlon example we have
chosen to program In our lanpuages, e  wl11 name It the

"stack abstractlon",

The stack Is a 1llnear 1lst in which insertlion,
deletlons, and accesses tn values are made at one end of the
1lst, The usages of stacks are many Including the
implementatlion of 3 polish-nntatlion Interpreter, the
supporting of recursion, and the desliening of parsing
algorithms (er. for operator precedence grammars we might

wish to use two stacks called the "operator" and "operand"

stacks).

When describing the concept of Aan  abstraction earller,
we noted that it ecan bhe separated Into two parts: 1)a
representation of the data ohject (In this case the stack),
and 2)operatlons on the ohject, The underlying
representation we have chosen for a stack will he an array te
hold the stack elements and a8 polinter which points to the top
fllled location of the stack, Operations on a stack that we

will conslider are the followlng: 1)"push"--adding an element
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to the top of the stack, 2)"pop"--deleting the top element
from the stack, 3)"top_element"--accessing the top element
value from the stack, and h)"inltlalIzatInn"--lnTtIaszIng

the bottom element of the stack. Thus the stack ahstraction

Is conceptually defined.

Linear | Ist Abhstractlion

A second example we will lank at will he referred as a
linear_11st abstraction, Ve wish to model three distinct]ive
types of linear llsts: a stack, a aueue, and a deaueue (see
Knuth(16))., At the top level of abstractlon all linear lists
can be represented as arrays of locatinns, At A lover level
this representation may he further speciflad depending on
what type of linear 1lsts v are usking, A stack abstraction
would add as part of jts underlylng representation a polnter
to the top of the stack and add operations that we have
outlined earlier. A aqueue ahstractior might add "“front" and
"rear" polnters to Its representation and Implement nperatlion
of "enter"--which viould Insert an element in the rear of the
queue, and "remove'"--which would delete an element from the
front of the queue. A dequeue abstraction could add
"eftmost" and "rightmost" pointers ta Its representation and
operators--call them "Insert" and "delete"--whlch make

additions and suhtractlons to both ende of the 1ist, Thus we

have introduced the notlon of hlerarchical data tvpes and It
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is of Interrst to wus teo examlne how our languages can

represent this concept.

We will analvze each chosen lanpuage with two goals In
mind: 1l)we wish to see what can bhe learned from programming
In each language whlle attempting to meet the speclfications
of structured programming, and 2)we want to determine [If the

language can he used as a structured proprarmming lanFuage.
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PLZI

The block structured language, PL/1(17), was developed
by IBM Jduring the mid 1960's well before the concepts of
Structured programming as a deslgn mechanism for constructing
programs were expliclitly Introduced by Dijkstra. PL/I was
designed to cover as wide a range of programming applicatlions
as possible. The desligners consider one of its prime
features to be the case with which modular programs are
built, encouraged by the fact that a PL/1 program is composed

of blocks of statements called procedure &nd Legin blocks.

It should also be mentioned that PL/I is an extremely
large language and it is inconcelvable to this writer how
anyone could be knowledgeable of the complete language. The
designers of the language recognlized this as a possible
drawback that would discourage programmers from learning PL/I
(and companies from adopting the language) and have made
programmers aware of the fact that one needs to learn only a
small subset of PL/I in order to write most medium-difficult
programs, (After all, this covers the bulk of written
programs, ) However, the language does contain such optlons
as multi-tasking so that one Is able to solve more=-difficult
problems wusing PL/I. As | present some of the language
constructs and the examples, | may also be unaware of some
"simpler" technique (although it is my belief that due to the

enormous size of PL/I! this is not my fault). llowever, | am
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also quite sure that any "missed" feature could not change
the overall outcome of the language with regards to data

abstractions of structured programming.

One might argue that PL/l was not developed with
structured programming in mind and therefore it is unfair to
evaluate PL/l as a structured programming language. On the
other hand, structured programming is Intended to be a desisn
method based upon reflnfng levels of abstraction until they
are expressed in terms of whichever language--may it be PL/I
or any other--that the programmer is using. Thus it seems to

be perfectly justificd to examine PL/I in these terms.

Pata Structurine Facilities of PL/I

We begin Ly describing some of the data structuring
facilities of PL/I; however, it will be assumed that the
reader s 50mewhaé familiar with the language or at least
some block structured language (eg. ALGOLG6O0). Therefore we
will describe wunly those data facilitles that we might come
into contact with when wusing the process of structured

programming to write programs In PL/I.

Ve berln with variables and data attributes. Variables
may be considered to Dbe single elements, arrays, ' or
structures. Assoclated with each variable is a symbollec name

and a value that may change during the executlon of the
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program. The attributes of a variable consist of |Its Dbaslic
type and storage class. BbDasic types in PL/Il are FIXED(*),
FLOAT, CHARACTER, u&IT, and POINTER; storage classes of a

variable are STATIC, AUTOMATIC, BASED, and CONTROLLED.

While basic types should be clear, an explanation of
storage classes Is warranted. The storage class attributes
are used to specify the type of storage allocation to be used
for a data variable, The default class s AUTOMATIC, which
means that storage is allocated upon entering the block and
is released (freed) upon exit from the block. The STATIC
class, on the other hand, specifies that storage is to he
allocated at locad time and not released wuntil program
execution has bLeen completed. BASED and CONTROLLED give the
programmer two different ways of explliclitly controlling the

allocation and freeing of storage by using the ALLOCATE and

FIREE statements,

A number of other possibly useful data structurling
facillties with respect to structured programming exlst as
part of the PL/! language. These Include block structuring
techniques (signified by BEGIN...END and PROCEDURE...END
blocks) which partially allow wus to think in terms of

abstractions (associating an abstraction with a block)

(*)
Upper case letters will be used to signify keywords in PL/I.
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especially with regard to operators., A second construct is
the data attribute LIKE. Its function is to copy the
structuring, names, and attributes of structures. For
instance, suppose we wanted to declare a varlable, s, to be a
set (see Chapter 3). Assuming '"set" were declared as a
structure variable, we might write "DECLARE s LIKE set;".
The result would be that s has the same structure as the
variable set. A third facility of PFL/l which we will
Investigate is LHTRY points into a procedure, This feature
not only allows ane to enter a procedure at some deslipgnated
point (other than at the beginning) but also permits us to
specify pararmeters and return attributes. Thus we may be

able to set up numerous 'operator" ENTRY polnts within a

ziven procedure, which as @& whole might represent a data

abstraction.
lig i i

Three stack abstraction examples In PL/I will be
presented, This number of examples is due to language
restrictions in conjuntion with program requlrements. A
detailed analysis of each example will follow the

presentation of all three examples.

In PL/! the stack abstraction outlined In the previous
chapter might be programmed as shown in flg. 4-1. For now,

it is important that we wunderstand how the procedure
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create_stack works. HMNote that wupon entering create_stack,
not only is space allocated for the stack but also the bottom
element is initlallzed, Ve should also be aware that this
first example is capable of handling only one stack at a time
in existence. The operators seem fairly straightforward
although one should note that pop deletes the top element
merely by decrementing top and does not return that element,

while top_element performs the function of accessing the top

element but not deleting it from the stack.



create_stack:

push:

pop:

top_element:

PROCEDURE(RN);
DECLARE n FIXED BIN(15); /* stack size =/
DECLARE stack(n) CHAR(1) COMTROLLED;
DECLARE top FIXED BIN(15) STATIC;
/* topmost filled location =/

ALLOCATE stack;
stack(l) = '1'; /+ Initial both the bottomw/

top = 1; /* element and the polnterw/
RETURL; /* to the stack *f
ENTRY(a); /* Insert the value of a «/

DECLAR:E a CHAR(1);
top = top+l;
stack(top) = a;
RETURHN;

EMTRY; /* delete the top element #/
top = top=-1;
RETURHN;

EHTRY RETURNS(CHAR(L1)); /* get top elem */
RETURN(stack(top));

END create_stack;
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Before proceeding further, we should also note that
representing a stack as a controlled array is not the only
representation one might think of. Indeed, the argument to
represent a stack as a list of chalned elements is solld and,
in fact, this stack description will be programmed in a later

example (see fig., U4=2). Our declaration for a stack might

have been written as follows:

DECLARE 1 stack BASED(p), /% p is as pointer =/
2 next PTR,
2 value CHAR(1):;

Pictorially our stack would have looked like:

next - R —— —
value f

So instead of allucating the whole stack at once, upon each

call of the operation push (pop), a single element Is

allocated (freed).

The Lig limitation of fig. =1 Is in trying to represent
several different stacks at the same time. This problem of
multiple stack wusage can be solved by rewriting the stack
example using the LIKE attribute. EBefore doing so, a further
characteristic of LIKE should be revealed: to write "PECLAR:

a LIKE b;" requires that b be declared on the same or higher
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block level (a global declaration) than a. Realizing this

restriction, the example Is programmed as shown in fig. 4-2,



DECLARE x FIXED BIN(15);

DECLARE 1 s

tack BASED(p),

-3 7=

2 m FIXED BINCL15),
2 body CHAR(m RLFER(x)),

2 top FIXED BIN(15);

stack_aops:

PROCEDURL ;

/f* plobal decl., for stack

/* Contained within are the followlng oper-

/* atians
/* the oper of

inltialize.
/* stack_ref and elem refer to the stack In
/* concern and hold the value of the element
/* to which we are referring respectively
RETURN; /* no reason to call stack_ops

push: EHNTRY(stack_ref, elem):
DECLARE stack_ref PTR, elem CHARC(1);

DECLARE 1 name BASED(stack_ref) LIKE stack:
name.top = pname.taop + 1:

name.body(name. top)

RETURM;

pop: ENTRY(stack_ref);
DECLARE stack_ref PTR:
DECLARE 1 name BASED(stacl_ref) LIKE stack:
name.top = name.top = 1:

RETURH;

top_element:
ENTRY{stack_refJHETUHHS[CHﬁR{1}};
DECLARE stack_ref PTH;
DECLARE 1 name BASEL(stack_ref) LIKE stack:

initialize:

RETURH(name,bouy(name.tnp]];

e glem;

ENTRY(stack_ref,elem);
DECLARE stack_ref PTR, elem CHAR(1):

DECLARE 1 name BASED(stack_ref) LIKE stack;
name .body{l) = elem:

name.top = 1;
RETURI

END stack_ops;

flg.

L-2

push, pop, and top_element plus

The parameters

w/
»f
*/
L7
b
®f
*f



-3 8-

In conjuction with fig. b-2, at an outside block level
(corresponding to a higher level of abstraction--although no
higher than the one on which the stack is declared), we can

now write the following lines of code:

DECLARE 1 operator BASED(p) LIKE stack;

/* operator stack =/
DECLARE 1 operand CASED(p) LIKE stack;

/* operand stack %/

L]

X = 100;
ALLUCATE operator; /+* the slzes of the hodlies =/
x = 10; /* are now established for */

ALLOCATE operand; /* the operator and cperand «/
5 /* stacks respectively */

CALL initialize(p,'!");/*Initialize each stackw/
CALL initialize(q,"'s");

IF...THEN CALL push(p,'a')
/* push '3
ELSE CALL pop(q);

/* ur pop the operand stack w/

ontc the opertor w/

-
-

Yy = Lop_clement(q); /* ¥y fets sct to the »/
/* top element of the operand */

These statements in conjunction with the comments should be

easily understood as to thelr meanings and results.

Referring Lack to fig., 4=1, we recopgnize the fact that
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this first program would work only for a single stack usage.
On the other hand, this last example allowed usage for a
multiple number of stacks; however because we have used LIKE,
we have had to separate the representation of a stack from
its operations. Suppose we did not want to break up the
abstractlon and yet would like to take care of the case when
we had the need to use more than one stack. The resulting

program might resemble that in fig, 4-3,



stack:

- Lo

PROCEDURE;

LECLARE 1 stack_element BASED(sep), /w struc., w/
2 last_stack_element PTR
2 value CHAR(1);

DECLARE sep PTR;

DECLARE wp PTR:

DECLARE pet_stack_descriptor EHTRY(CHAR(32), PTR)

RETURNS(PTR);
RETURMH

L4

create_stack:

push:

EMTRY(stack_namel, init);
DECLARE stack_namel CHAR(32), init CHAR(1);
DECLARE 1 stack_descriptor ZASED(sp),
2 last_stack_descriptor PTR,
Z name ClIIAR(32),
£ top_pointer PTR; /» descr. stack =/
DECLARL sp PTR:
DECLARE stack_descriptor_top PTK STATIC
INITCHULL ) ;
wp = jet_stack _descriptor(stach_namel,
stack_descriptor_top);
IF wp 7= HULL THEN SIGNAL error: /% stack has
never heen previously created =/
ALLOUCATE stack_cdescriptor:
sp=>last_stack_descriptor=stack_descriptor_top;
stack_descriptur_top = sp; /* new top =/
sp=2nane = stack_namel; /* name of stackw/
ALLOCATE stack_element; /+* get first clement /
sep=>value = init; /* and set to inlt value w/
sep=>last_stack_elenent = NULL;
sp->top_pointer = sep; /* polnt to top of stk */
RETURH;

ENTRY(evalue, stackname2);

DECLARE evalue CHAR(1l), stackname2 CHAH(32):

wp = get_stack_descriptor(stacknamel, ‘
stack_descriptor_tapl:

IF wp = HULL THEN SIGHAL error; /+* not found =/

ALLOCATLE stack_element;

sep=»value = cvalue:

sep=>last_stack_element = wp=>top_polnter;

wp=>top_pointer = sep;

RETURM;

fig. b=3(page 1)
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pop: ENTRY(stack_name3);
DECLARE stack_name3 CHAR(32);
Wp = pet_stack_descriptor(stackname3,
stack_descriptor_top):
IF wp = NULL then SIGNAL error; /* not found =/
Sep = wp->top_polinter;
wp=>top_polnter = last_stack_element;
FREE stack_element;
RETURH;

top_element:

ENTRY(stack_nameh)RETURNS(CHAR(1)):

DECLARE stack_namel CHAR(32);

DECLARE top_value CHARC(1):;

WP = get_stack_descriptor(stack_namel,
stack_descriptor_top);

IF wp = NULL TIHEN SIGHAL error; /+* not found %/

wWp = wp=->top_pointer:; /* indlrection =/

IF vip = HULL THEN SIGHAL error; /* no element =/
top_value = wp->valuce;
RETURH(top_value);

END stack;
get_stack_descriptor:

PROCEDURE(ename,G)RETURNS(PTR);

DECLARE ename CHAR(32);

CECLARE (q,mp) PTR;

DECLARE not_found BIT HHT('1'8);

mp = q; /* call by ref tricks avoided */

CO WIILE (not_found & mp ~= HULL);
IF mp=>name = ename THEN not_found = "0'B;
ELSE np = mp=>last_stack_descriptar;

END;

RETURNC(rip);

END get_stack_descriptor;

fig. 4=-3(conclusion)
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Ubviously, fig. 4=3 needs some explanation as to what is
going on. The overall intent of the program Is to allow the
creation and manipulations of more than one stack. This
requirement is solved by construction a stack_descriptor list

whose function it Is Is to keep track of both the stacks

created and the elewments of each stack. Suppose, for
instance, that auter program began with:

CALL create_stack('operand', '$');

CALL create_stack('uperator', '1');
Then fig.b=-U depicts the results of these calls, |t the

statements:

CALL push('operand', 'a');

CALL push('operand', 'bL');
follow, the resulting modifications are illustrated in Flg.
4=5. It should be fairly obvious to the reader that push,

pop, and top_element correctly perform thelr intended

functions.
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Wle should make a note at this time concerning our
awareness of the fact that instead of naming stacks one mlght
merely have pointers to stacks. The usage of polnters would
certainly decrease the stack access time since we would
Immediately have the location of the stack instead of having
to go through the extra procedure get_stack_descriptor in
order to find the stack. However, the stack would now be
completely a§ai!ablc to anyone programming at some level
hlgher than the stack abstraction. lie would not have to go
through the wperators to access the stack but merely use the
pointer to the stack to change and information about the
stack. For reasons of preventing these accessibility
properties, the naming of stacks has been chosen as the

method for maintainence of a multiple number of stacks.

Analvsis of PL/]

We are now at the stage of analysis--that is, we are
ready to judge the merits of PL/I with respect to the
facilities it provides us for describing data abstractlions.
We will take each of the three examples (figures 4=1, 4=2,
4-3) and present first the good polnts and then the bad based

upon the structured programming criteria that rmust be met.

Regarding the sinpgle stack example (fig. 4-1), probably
the most important point in PL/I's favor is the fact that the

representation of the stack and the operators we introduced
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are well-contalned within the procedure create_stack.
Furthermore the stack, Dbeing CONTROLLED by the programmer,
can be dynamically allocated and freed, thus allowing the
designer a preater flexIbillty in determining the stack slze.
In addlition, contrary to the usual hazards of flexibillty,
the requirement that the stack cannot bke accessed from
outside create_stack is satisfied. Programmer convenience is
further increased bLy the wvariable attribute STATIC which
designates that the last valuc of top Is remembered upon
reentering the procedure through create_stack or any one of
several ENTRY points (cerresponding to operators). And
fortunately one is not permitted to access the variable top

(thereby possibly chengling its value) from outsi de

create_stack. Overall then, an air of safety surrounds the

abstraction create_stack.

How we present the defects of PL/I that this example
illustrates. First of all stack is not really a data type as
we would prefer but instead a varlable. That is, we cannot
say that x is a stack since stack is not a data attribute.
In our exanple stack Is not only the abstraction we wish to
define but also the name of the variable. Obviously to
extend this program to handle a rultiple number of stacks, we
must usc more declarations. For example, ‘e would be forced
to write something 1like "DECLARE (stackl(nl), stack2(n2),

stack3(n3)) CONTROLLED CHARCL);" and similarly "DECLARL
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(topl, top2, top3) FIXED BIN(C15) STATIC;" and finally rewrite
the operations to make sure they will know ﬁn which stack
they are operating. Thls really points out the fact that our
operators have not bheen written to operate on the
representation of some data type but Instead on the variable
itself, Unfortunately hecause there Is also no syntactlc
connection between stackl and topj, the housekeeping chaores
involved in implementing the usage of more than one stack in
this manner become sizeable while the cuncept of a stack and
operators push, pop, and top_element are still simple., The
question to consider at this stage Is, "Why should the
implementaticn of multiple stacks be so nuch rmore difficult
than implementation of a single stack when the concept of
nmore than onc stack and assocliated operators has not become

more compllicated?"

Mso reparding the ENTRY statement, we see that one can
simulate operation descriptions within a data abstractlon.
Howvere, a cuuple of minor criticlisms with regard to syntax
should DbLe brouprht to the attention of the reader., We must
include each operator section wlith a RETURH statement==which
has no syntactic connection with the operator=--or eclse
execution will continue with the next LNTRY statement. It
might make more sensc to write "EHD <operation_name>;" (usling
LNF notation) to terminate each operation block. Secondly,

implementatlion restrictions require us to Jdeclare procedures
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and entry points at the level from which they are called
(unless, of course, one wlshes to try hls luck with default
condlitions). Thls causes a syntactle confusion since the
declaration takes the form NECLARE <name> FMTRY... . That
Is, there Is really a second usage of the keyword ENTRY--2

word which we depend on heavily,

In defense of PL/1, we must reallze though that these
last two polnts are baslcally Implementation and language
design considerations that had to be dealt with--although a
more satisfactory way of handling these prohlers might bhave
been Invented. However, the first criticlsm invoalving the
extension of example one tn handle more than one stack and,
In turn, realizing that this extension problem Is caused hy
the fact that stack is not an ahstract data type hut the name

of a variable seems to he a very serious defect of the

languarge.

The necessity of a multiple number of stacks hring us to
example two (flg, 4=-2) which Introduced a usage of the LIKF
attribute, Presented [n this example |Is the favorable
Impression that stack Is now a data type in the sense that we
can declare other variables to take the same structure as a
stack. As a result, there is no need to even confront the

question of Programming one stack as oppnsed to many stacks

as had to consldered In the previous PL/1 example,
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However, we must also examine why the usage of LIKE in
this manner s not as promising as it inftially scems. The
declaration of stack nmust occur outside the stack_ops
Procedure in order to be understood by declarations of the
form "DECLARC...LIKE stack;" (eg. DECLARE operand BASED(q)
LIKE stack;). A result of this non=structured requirement
is that access to such elements as operand.top is possible at
Programming levels clobal to the stack_ops procedure
(correSpondlng to higher levels of abstraction), In fact,
one can even allocate storage for "stack" and manipulate its
parts, say stack.top, although one would hope this not to be
the case; after all, stack is merely supposed to play the
role of a data type and not a variable which can take on
different values. A part of the stack structure we should
examine is the variable m, It is required simple to allow
dynamic allocation of the body part of the stack, Even
though when considering the representation of a stack m would
not come into focus, as It now stands m Is as much a part of

the stack structure as are body and top.

Suppose we look a little more carefully at the stack_oups
procedure. One soon realizes that calls to the different
operators rely on the "overiay" implenentation of PL/1. For
Instance if we write "CALL push(a, 'a');", push increments
name.top (which is really operand.top) and assigns "3" to the

top location of name (really operand.body(operand.top)).
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This type of programming is both unclear and
Implementation-dependent. lNote also that in order to group
the operator definitlions, we designate them as ENTRY polints
within0 the procedure stack_ops; however, we certainly hope

that stack_ops, itself, will never be called.

The last unfavorable polnt to be made here is that, In
general, one must refer to stacks by pointers rather than
names (although the program could have been wrltten wusing
names~--sece flg. U-3--but this 1Is more difflcult). A slide
issue to bLe discussed here |Is the usage of polinters.
Pointers are with respect to data as ggltgs are to control
sequencing=--unstructured(18), Perusing a program full of
gotos Egenerally means that at some point one will come to a
line In the program and not be able to tell how one got there
because that spaghetti-like sequencing structure of go tos
that has led one to that 1ine has long since been tangled and
retangled in his mind, The same holds true for any extenslve
use of polinters. Once a plece of data has been accesssed, it
Is often the case that one is really not sure which series of
pointers has been used to retrieve this piece of information.
These problems of multiple access-paths means that attempts

to prove these programs correct will fail almost from the

start.

It has already been noted that example three (fig. u-3)
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"

has gotten around the extenslive usage of pointers by
accessing stacks by name in conjunction with the procedure
get_stack_descriptor. Example three has certainly proven
that it is possible to describe in PL/I the stacl abstraction
(its representation and operations) within a single procedure
(called stack 1in this case). Also we may not access stacks
directly from outside the procedure but must o through the
stack operations in order to manipulate stacks. In general
the messiness within the stack procedure is hidden from the
higher 1level and thus this major requirement of structured

programming concerning data and operator abstractions is

satisfied.

llowever, the process of designing the stack procedure of
fig, 4-3, while conceptually clear, produces a relatively
unclear and unreadable program. Kkeeping track of both stack
descriptors and stack elements is indeed messy and confusing.
Also due to our determination to wuse names Iinstead of
polnters we have incurred an additlional lower level procedure
pet_stack_descriptor which was not part of our original stack
abstroction, The point to be made here is that overall the
complexity of this solution in PL/l In no way reflects the

simplicity of councepts invelved in solving the problem.

Suppose we now 1ist the major favorable and unfavorab le

points of PL/Il we found when attempting to use the language
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for structured programming:

Bro

1) Single stack abstraction consisting of the stack
representation and deflned operations can be fairly well
represented In PL/I (fig. L=1).

2) Use of the ENTRY statement allow us to deflne operators as
part of the stack abstraction.

5) The LIKE attribute can be used to simulate abstract data
types (fipg., L=2).

4) The general stack abstraction can Le programned in PL/I
(fiﬁ. h-3)-

5) Except for use of the LIKE attrlibute, the underlying
representation of a stack can bLe nade inaccessible from
outside the stack abstraction.

Con
1) One is unable to define stack as an abstract data type.
2) Use of the LIKE attribute means that the programmer will
be able to directly access the underlying representation of

varlables declared to have a structure LIKE stack (fig. 4=2).

3) Use of the LIKE attribute means extensive use of pointers
(fig. 4-2),

4) In order to represent a general stack abstraction (ie. one
that 1is able to handle a multiple number of stacks) a fairly
complex program nust be written. Whille the concepts of the
stack abstraction are simple, the PL/I program required to

simulate this abstraction is both difficult to wrlte and
difficult to read. (fig. 4-=3),

Wle now yive @2 peneral critique resulting from our
analysis of wusing PL/l in conjunction with the design

philosophy of structured programming. A quick glance at the
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control features of PL/l shows that with a bit of flxing up
it is perfectly reasonable to assume that the control
requirements of structured prngrammiﬁg can be adhered to.
This fix=up would Involve adding the CASE statement(L) and
eliminating all other control constructs except | for
concatenation e, | F-THEM=ELSE, and DO-WHILE.
Furthermore, its block structuring facllity is definitely an
Improvement (over, say, FORTRAN) for describing control

abstractiaons.

Certainly the strict top-down approach with respect to
data of program development cannot be adhered teo in PL/I and
in fact the bottom-up approach is almost always taken. For
example, to design the stack program we would first bulld the
stack procedure and test 1its operators; then the program-
would be further ‘developed around the stack
procedure--creating stacks, pushing on or popplng off

elements when regqulired for the seolution to the problem,

With the EWTRY statement we can syntactically 1ink
operators to a cdata structure, althouph certalnly the
desligners of PL/! dld not intend for the EHTRY statement to
be used in this manner. In the first place these operators
would have been programmed as separate procedures while the
ENTRY statement would be used to signify a secondary polint

within a procedure where the caller may wish to begln
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execution.

The fallure of PL/I to provide the programmer with the
ability to create abstract data types and make use of these
in lower level declarations substantially Increases the
difficulty of wusing PL/I in conjunction with structured
programming. Certainly a basic concept of structured
progranming Is the fcpresentation of programs In terms of
abstract data and operators. Abstract operators can be
simulated by procedural mechanisms but one is left without
any credible faclility for representing abstract data types,
Although one might argue that the LIKE attribute is a
substitute for abstract type declarations, the fact is that
nothing could be more untrue. The LIKE attflbute deals with
the creation of a similar structure to one already defined;
an abstract type declaration corresponds to the creation of a
new data type (not necessarlily a part of the Jlanguage) and
then the declaration of a variable whose range of assumed
values and permissible operations are defined by that new
type. The LIKE attribute hardly encourages the thought

process of abstraction which is the basls of structured

programming.

For further analysis of PL/I let us attempt to program
the linear list problem outlined earlier in Chapter 3, lic

want to write a program the defines a linear list and, in

Ay
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particular, stacks, queues, and dequeues. Each of these
llsts has a body associated with it and in fact the top level
abstraction would simply consist of linear lists and the
underlylng representation of the body. At a lower level
abstraction stacks, queues, and dequeues would be represented

as refined linear 1lists together with particular operators

associated with each type of list.

Without thinking too long, one might try to program this
in PL/1 as sketched in fig. U~6. lowever, after a bit of
review one should realize that thls program Is nowhere near a
solution to our problem. For one thing, there Is only one
body and therefore only one list. (To extend this to more
than one body would bhe a somewhat complex problem that
conceptually does not appear to he 50 difficult.)
Furthermore we can only access the stack, queue, or dequeue
procedure from within the linear_llst procedure. This
requirement Iis not necessarlily 2 bhad restriction; it just is
not what we intended to design. !lowever, if we chose to get
around this problem by writing linear_1lst, stack, queue, and
dequeue as four separate procedures, we would be in
disaggreement  with the results of aur abstractlon
process--that the latter three are lower level abstractions

of linear lists.
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linear_list: PROCEDURE(in, n);
DECLARE body(m:n} CHAR(1l) CONTROLLED;

stack: PROCEDURE;
DECLARE top FIXED;
push: ENT&§.
pop: ENTRY

LND stack;

gqueue! PROCEDURE;
DECLARE (front, rear) FIXED;

enter: ENTRY
remove: ENTRY
END queue;

dequeue: PROCEDURE;
DECLARE (leftmost, rightmost) FIXEUD;

insert: ENTRY
delete: ENT&Q'
chl dequeue;

EHD linear_list;

fig. =6
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Une point that has not been previously mentioned is the
possibility of "conflicting names', It secems perfectly
reasonable that we might have named tihe operations of queue
in fig., -6 to be push and pop--although they would act
differently that the push and pop operators of stack. (For
Instance the wmost recent element placed on a stack gets
popped off (LIFO) while the element in the queue for the
longest amount of time gets popped {FIFQ) ] So let us
suppose that both the stack and queue procedures had ENTRY
points named pop. Certainly at a higher level if we wanted
to pop an eclement off a particular linear list, we would know
which pop to refer to if we knew which type of list (a stack
or a gueue) we had. However, there is no way to do thils in
PL/1 and In fact we would receive a naming conflict error
message for hLaving two EHMTRY polnts (whether in the same
procedure or not) deslgnated by the same name, In all
honesty, there are at Jleast two reasons why we should not
expect PL/] to handle this in any different manner: l)a stack
or a queue is not rcally an abstract data type that can be
desirnated as a variable attribute, and 2)FL/I does not have
the facility to allew the programmer to desipn o  data
abstraction consistinn of a representation and assoclated
operation in a manner that means the language is now cxtended

to include this new abstract data object.
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Uveraell, it should be clear that using structured
programming as a design tool for writing programs in PL/I is
nearly impossible, When one sees papers titled something
like "Structured Programming in PL/1" one can be sure that
this paper simply addresses itself to the issue of control
and, In particular, leaving out the GOTO statement. This is
a start but also close to the end regarding the extent that
one can follow the structured programming approach to
designing programs in PL/1. (1 have never seen the usage of
the ENTRY statement included in papers of this sort.) Due to
the restrictions of the language, PL/I is far from being abkle

to meet the criteria set forth by structured programning.
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PASCAL

Pascal(1l9) was developed in 198Y by Hiklaus Wirth. The
design philosophy of the programming language was based on
two principal aims: first, to create "o lancuare sultable to
teach programming as a systematlc discipline," and second, to

construct a languape implementable as part of a reliable and

efficient progranming system,

In reference to the latter of these two polnts, by early
1973(20), Pascal hau been successfully implemented on the CULC
6000 and the ICL 1900, Furthermore, implenentations on the

IBM 360, Sigma 6, CI! 10070, and PODP-10 are in progress at

various locaticns,

In order to evaluate the success of the first aim, we

can refer to Wirth's recent bock Systenatic Programming: An
dntroduction(21) which uses Pascal as its programming

language. In this bouok, Mirth is very much concerned with
the explanation of systematic programming techniques, many of
which are similar to concepts of structured programming.
Wirth shows how programs desipgned in this fashion can be

easily written in Pascal.

¥lhen analyzing this language with respect to structured
programming and, in particular, the representation of
abstract data objects, we should consider the following

point., Pascal is the only one of the four languages



- 0=

presented in this paper that was specifically desipgned around

the concept of programming practices considered as a

discipline.

Lata Structurineg Facilities of Pascal

In Pascal data are described by declarations and
definitions. tach variable must be introduced by a yariable
declaration which assoclates a type and identifier with that

variable. A dat; tvpe defines the set uf values that the
associated variable may assume. A data type may be directly

described in the variable declaration c<r uy means of an

explicit type definition,

It should Le noted that Pascal is pot a hlock-structured
lanzuage in the sense that its predecessor ALGOLED was.
Variables are cdeclared either at the beginning of the
program=-in which casc they are local to the whole program,

or in a proceagure--in which case they are local to that

procedure.

While variable declarations In Pascal are similar to
those of PL/I, we should take a closer look at types and type
definitions, Types  are  broken down Into three catepories:

simple, structured, and pointer types.

The Jdefinitlon of o simple type indicates an ordered set

of values. Sinmple types are divided into scalar and subrange
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types. The standard scalar types in Pascal are [golean(«),

interer, ¢har, and repl. Other possible examples of scalar

Lypoes are:

(rhammal, reptile, bird, fish, amphibian)
(subcompact, compact, Intermediote, full)
Ca, @, 1, G, )

Consider the following variable declaration:

yar dJdewon:(subcompact, compact, Intermediate, full)

Thus "demon" can Le assigned preciscly any of four possible

values--compact, subcompact, intermedlate, and full.

Suppose, however, that we wish to construct several "car"

variables. We mlipght then construct the following type

definition:

car = (subcompact, compact, Intermediate, full)

and then program the followiny code:
yar demon:car

so that “dewon" is now of type "car". The subrapnre of a
scalar type crcates a new type defined by Indicating the

lower and wupper bound values in the subrange. Two cxamples

of this are (1..13) and (ec..u).

(=)
Reywords in lascal will be underlined.
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Structured types In Pascal are characterized [y

assoclating a type (or types) with components and Indicating

a structuring method, of which there are four. The first of
these is the garray type which is comparable to PL/I arrays
except that Pascal arrays are restricted from being

dynamically allocated. Examples of array types are:

array 1..1’)0] gf char
arrav [1..5,1..5] gof inteser
The second structurlng method to consider is called the
record type. FEach component of & record type is called a
ield and is designated by an identifier and its type. For

example, letting "alfa" denote & character string type, we

mipght write:

record name:alfa;
are:0..99;
ssnum:integer

o

So far this facility Is similar to PL/! structures. Ffield
access Is accomplished by the dot (".") notatlon selection

mechanism, also common to PL/I.

One added feature within the Pascal record types is that

. 5 " [

a tap fleld denoted by the keyword gase may e indicated as
part of a record, This powerful facility allows one to

speclfy several optional variants. The actual variant to bc

used will be determined by the value of the tag fleld whieh
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is specified by the programmer at or after the time the ty.e

is assigned.

For example, suppose that we have defined "1list" to bLe a
scalar type such that "list = (stack, queue, dequecue)'". Then
the following record type could define a lincar list.,

rocorl hodv:ﬁ[[ax[}luﬂ..IUﬂ] al ghar:
case s:list pf
stack:(top:interer):
yueue:{rear:interer;

front:inteser);
dequeue:(leftmost:jntegor;

rishtmost:inteser)
Then assurme at scme later point in the program o wvariable x
is declared to have the above type. Then if "x.s", say,
evaluates to the constant '"queue", associated with that
corresponding record type variable is a '"body", "rear", and
"front", (Since x represents 2 queue, expressions such as
“"x.top" and "x.leftwost" are conceptually inaccessible. The

precise <details concerning storage allocation far the

variable and manipulation of "inaccessible" record flields are

left up to the inplementor.)

Set types are a third method of structuring.
Lharacterized bty the keywords set of, sect types define the
range of wvalues as the powerset of the specified base type.
(In fact, in the first version uf Pascal, the keyword was

powerset.) |If we write "set of(red, yellow, bLluel)", then the
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possible wvalues a wvariable of this type way | ave dar {},
{rud}, {yellow}, 1blue}, {red, yellow}, {red, blue}, {yellow,
biue}, and {red, yellow, b1uei. In addition, the operations

union, Intersection, set difference, and membership are

defined for all set types.

The file type, which s the fourth me thod of
structuring, specifies a sequence of components all of the
same type. For example, In order to construct the type

character string we could write "file of char".

Finally, we mention pgjnter types of the Pascal
language. Pointer types define an unbounded set of values
(comparable Lo memory addresses) pointing tu elements of the
designated types. For instance, '"4integer" denotes that
variables dJesignated to be of this type may polint to
integers, . Pointer types dre comnonly used In conjunction

with the standard procedure pey which generates a value of

the specifled type and returns a pointer to it.

This completes our description of the data facllities
available 1in DPascal. Wie now give some instances of type

definitions just to make clear how one uses them,
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Vowel = (a, e, i, o, u)
List = (stack, queue, degueue)

Board = array [1..8,1..8 of Booglean

Text = file of char

Linear_list=record bodv:g:ray[}loﬂ..lﬂﬂ]gi char:
gase s:list of

stack:(top:interer);
queuec:(rear, front:inteser):;
dequeue:(leftmost,

rightmost:integer)

Before we proceed to understand the stack abstraction
example given in the next section, we should examine the
rules of pararneter passing adopted by Pascal. ldentifiers
introduced in the procedure heading are called
formal parapieters, and the objects to be substituted for the
formal parameters are called actual paraneters. There exist
four types of formal parameters In Pascal: l)value
parameters ('"call by walue"), In which case the actual
parameter must evaluate to some expression and its value |Is
substituted inta the formal parameter (the default case for
Pascal), 2)variable parameters ("call ULy reference"), In
which case the actual parameter must be a variable and Is
substituted for the formal parameter, which must be preceeded
by the symbol yor, 3)procedure parameters, where the actual
parameter must be a procedure identifier, and t)function

parameters, where the actual parameter must be a function

identifier.

At this polnt in the chapter we are ready to read and

understand the PFascal solutlion to the stack abstraction.
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We would now like to construct a scolution to the stack
abstraction problem described in Chapter 3. Fig, 5-1 depicts
a proposed solution to the problem written in Pascal. First
of-all we note that stack is a record type consisting of two
flelds: l)a "body" which is an array of 100 characters, and
2)a "top" of type inteper. To declare variables of type

stack we would simply write at the heginnine of the program:
var s,t:stack

tLach of the four routines Iis simple,. Three of
them==-push, pop, and initiallze--are wrltten as procedures
while top_element is coded as a function., (Functions, as
distinct from procedures are characterized by labelling the
type of varlable to be rcecturned--in this case ghar.) In all

four routines Lhe g¢har and stack parameters (where

applicable) are passed by value ang variable respectively.
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stack = record body:array [1..100] of char:
top: i nLeser

procedure pusin (y:gliar; var x:stack):
begin

X.top = x.top + 1;

If x.top » 1Q0 then error;

x.body x.topﬁ LY

*

procedure pop (yar x:stack);
begin

Jf x.top < 1 thep error;
Xetop 1= x.top - 1
end;

fupncticn top_element (yar x:stack):cihar:
herin
if x.top > 100 thep error;
if x.top < 1 then top_clement := 'g!; i
¢lse top_element x.body[x.topj

n

end;

icedure initialize (y:ghar; yar x:stack);
berin
x.body[l] 1= gy
X.top := 1
end;
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The structure selection mechanism says that if x is of
type stack then "x.top" and "x.body" are its constituents.

0f course "body" is an array type and so in general we would

write "x.body[i]“ for some integer i such that 0<i<101.

It should he cbvious that these routines in conjunction
with the stack type definition correctly salve the problem of
programming the stack abstraction. Ve now proceed to analyze
this example and Fasecal in general, paying partlicular

attention to its data mechanisms with respect to structured

programming.

We are now at the stage of analysis and are planning Lo
examine both the Pascal language and the stack abstraction
exanpla, This examination will be based on the criteria

established by the structured programming techniques.

Vescribing first the faverahble points of Pascal, we must
be Impressed by the ease wlith which one can describe abstract
data types using the different Pascal data facllitles. This
area of data types is such a central issue of the languagpe
that one is very ruch encouraged to think and program in

terris of abstract data tynpes.

Just as the data type '"stack" was casily expressed

within Pascal, so also were operatlions on a stack. Lach of
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the four routines is short, correct, and easy to understand.
Thus as tle operations were conceptually simple to dJdefine, so

also were they casy to code wlithin the Pascal langaure.

Another favorable point alon;z the lines of the stack
abstraction program 1Is that obviously there are no
difficulties incurred by attempting to use more than one

stack (remember that multiple stack usage in PL/! caused us

problems). A declaration such as "var vperator,
operand:stack;" means that we have declarcd two variab les,
"operator" and "operand", both to be of type stack.

Furthermore, stack functions are casily expressible, e

o

poploperator)
push(y, opcrand)

Finally we must again emphasize the outstanding quallity

that Pascal poussesses: clarity and simpllicity. This feature

conibined with the ability to express abstract data types must
commit us to be favorably impressed with l'ascal.

tlowever, Pascal does have some drawbacks concerning
structured programming., We should be aware that a Lot tom=up

approach is still required for writing prosrams. That is, we
are not able to code in terms of stacks and its assoclated
operations hkefore the stack type and operators are deflined.
This point is minor, however, since it could be corrected

with the implementation of a library system which keeps track
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Pascal has a more serious fault that is well-illustrated
by the stack abstraction example. Pascal oprovides no
facility to syntactically link an abstract data type with its
associated operators. In the example, the four routines are
not defined as part of an encompassing stack type definitlon
but are merely snall routines within some larper procram. |t
is furthermore unclear what happens If in a call to push,
say, the second actual parameter is not of type stack-=-the
type speclfied Ly the corresponding formal parameter.
Perhaps some form of automatic conversion takes place. Mhat
we really want is  for this call to give the pProLrammer an
error. In Uirth's Look(21), he says that the '"type of the
actual parameter is determined by the type of the formal
parameter, as specified In the procedure heading." This
statement seems to imply that the type of the actual
parameter nced not be specified at the time of proced ure

invocation which hardly makes sense and furthermore does not

answer our question,

A further criticism 2s a result of our inability to
syntactically link a data type with its operators is that the
lower level representation of o variable declared to be of
that data type is accessible from anywhere in the program

rather than only through the data type operations., For
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instance in our stack example, if "operand" were uoclared to

he of type stack then we could change the value of

"operand. top" from any place in the progran. ilo longer can
we he sure  that "top" will only be incremented and
decremented by routines "push" and "pop" respectively, He
cannot even say that "top" is only set within the routine

"initialize", Similarly, the "hody" of any stack wvarliable

can be manipulated from any point within the program.

A~ related problem 1Is that of name duplication. We
cannot have different operators with the sane name associated
with dlfferent data types since there is no syntactic

assoclation of operations to types.

One flinal criticism of Pascal concerns the desipgner's
decision to disallow dynamic array allocatlon, The lack of
this facility mcans that a great deal of flexibility is taken
away from the propgrammer, l'er example, in our stack cxample
we may wish to have different si<n stacks, whose sizes are to
be determined at run tirie. liovicver, this problem can not be

solved within the Pascal languare.,

For the sake of reference, we list those major pro and

con criticisms we have ade about Pascal.
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Fro

1) The programmer has the ability to represent abstract data
types and code routines which operate on variables of
particular types.

2) NHo difficultics are incurred from nultiple stack usage.

3} Pascal is concise, simple, clear, and understandable--and
yet a powerful langauge,.

kon

1) Pascal provides no syntactic linkare mechanism to bind
operators to thelir data type.,

2} Lower level representation of abstract data types are
completely accesslible throughout a Pascal program.

3} Pascal does not provide dynamic array alloucation.

Uverall Critiqgue of Pascal

The niost striking ubsgrvation one makes when learning
Pascal is the compactness of the language and vyet the
richness of the facilities for the construction of data
types. Thus it seems that a language need not be so
complicated in order to permit the process of abstraction in
writing programs. This process Is certainly the foundation
of structured programming, and for that reason Fascal, looked
at In terms of a structured programming lanpguage, nmust be

regarded as a step in the ripht dircction,

The control structures of Pascal, which we have for the
most part ignored, are perfectly adeguate for meeting

structured programming regquirements,. lHowever, it does seem
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odd that for all of WUirth's intentions of intraduclin-

programming as an art, the goto statement Is a part of the

language.

Suppose that we look at how one wouldl code the linear
list abstraction that was prescnted in Chapter 3, Filgs.s 5=2
presents an outline of the program. ''e notice flrst that the
£43¢ construct is both o powerful and useful feature of the
Pascal language. It plays the najor role in discriminating
among the lower level representation and, in turn, the
appropriate operations, In terms of clarity and readability,
the linear 1list Pascal program is certainly a success;
however, ve must be aware that the sawe structured
prograrming criteria regarding data type and vperator

association and access restrictions are violated.
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Lisk

= (st acP queue, dequeue)
Linear_lis

record body: ;;rraz[-lUO..lOU] of char:
case s:List 1,2___
stack:(top:interer);

queue:(rear, front:ipnteper):
dequeuc:(leftmost, rightmost:interer)

procedure put_on (y:ghar; yar x:Linear_list);
LéQ = l |
case x.s of

5tacL::n-U1 {push}

Ltop := p+l
huuy D topi
p[nl

queue:tbhepin {enterl

LY

ond;

dequeue b in {insertf
ene;
ond put_on

funtion take_off (yar xiLinear_list):clar;
begin
case x.s5 of

stack:Lerin ipon‘
X. top 1= x.top-1;
take_off 1= body[a tnp+1]

end;
quede rporin {rcmnvnf
dequeue:lbeyin {dolnte}

cnu;
end take_off;
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An Interesting paper we must consider 1Is an article
written by Habermann(22) which criticlzes Pascal on several
grounds, Hahermann points out that one of Pascal's pitfalls
cONCerns Its fallure to Incorporate the ALGOLG0D block
structuring technlque, reminding us that "“a sound programming
princlple Is to declare a varlahle at the place where It s
used." One must apgree with him on this point especlally when
looked at from the structured prepramming view, Rlock
structuring seems to be a valuable techninue when programming

by levels of ahstraction.

With respect to data representation, the maln ecriticlism
of Pascal that Hahermann makes Is Its fallure to distingulsh
between types and structures, He makes the following
definitions: 1)a type defines a domalin for the ohjects
declared of that type and determines the operations that can
be performed on those ohjects, and 2)a structure defines a
rule for connecting ohjects into larger units, but operatlons
are not on the structure bhut are expressed 1In terms of

Iindividual elements of the structure.

It is my bellief that Habermann's complalint Is justified,
Suppose that Pascal had actually provided a means for
constructing a stack ahstraction that satisfied our criteria,
Then from outside the abstraction, stack would he considered

a type defined by certaln operations (e.r. push, pop):
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however, from within the definitlon of the stack ahstractlon,
stack would be a structure such that it Is composad-éf a body
and top, and the operations are coded in terms of these
Individual components, The fact Is that Pascal fails to
provide the proprammer with the ability to construct the
stack abstraction as a syntactlc unit, thereby permitting
stack to he viewed as hbhoth a type and A& structure, In
general, the languare does not distinguish the use nf a data
abstraction from its implermentation, Without such a
distinction, the confuslion between types and structures is

Inevitahle,

Overall, Pascal falls short of heing a suitahle tool for
structured progpramming, We must concur though that If our
earlier criticlsms plus a top=down prograrming mechanism were
Incorporated Into the languarme then Pascal would he ldeally
suited for structured programming. Of course augmenting the
language In this fashlon Is Aan ambitious step forward, and
the Pascal desligners knew just how far to proceed wlithout
Ineurring the major probhlems of designing a2 structured
programming language. However, we must reiterate the point
that this lanrunge was developed with the concept of
systematlic proprarmming as Its foundatinn, and from the
results obtalned Tt should be ohvious that this specliflcation

le a heneficial desipn criterion for any successful language

development,




EL1

The programming language EL1 is the work of Len licgbrelt
and  was first described In his doctoral dissertation Studies
in Extensible Longuopes(23) in  June 1970, Although the
philosophy of this language remains unchanged, a more recent

description of CEL1 can Dbe found in the ECL Prosrommer's
Mapual(24) written in September 1972,

One can divide any extensible language into two parts:
1) the core language defined by some set of syntactic and
semantic rules, and 2) extension facilitles permitting the
programmer to design a more powerful language from the small
core language. The core lanpuage of CL1 does not differ
significantly from ALGULGO or, indeed, any other algorithmic
language. Following along the 1lines of any extenslble
language, LL1 provicdes the programner with a number of
facillties for defining extensions so that the programner can
reshape the language to the problem at hand. These extenslon
facilities exist in the following four areas: syntax, data
types, operations, and control. Our investigation of EL1
will focus specifically in two of these arcas: 1) data type
cxtensions, which allow the praogrammer to defline new data
types and new information structures necedod to model a
particular problem, and 2) operator extensions, which permit

the prograrmer to deflne new operations on new data types.
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The following question must be answered. Using CL1, how
easy Is it to construct data abstractions, each of which
consists of a representation and operations defined on that
representation, and yet adhere to the establlished criteria of
structured programaing? Lefore attempting to  resolve this

question, a description of the relevant data structuring

facilities of ELLl rmust be presented,

We now zlve a rather detailed yet informal explanation
of EL1l's duta structuring facilities. This description will
Include treatment of variables, mades, mode-producing
operators, data generation, procedure and cenerle forms, and

user=defined mode tunctions,

We begin as in FL/I with the description of variables.
Associated with each variable is its name, mode, scope, and
value., For example if we write "DECL one:INT  BYVAL  1;"(%)
then we can make the following deductlons: 1) the variable
name is 'one", 2) the mode of one is INT, that is its value
may take on any integer number, 3) its scope, although really
relative to a propran, is that bleck to which the declaratlion
is internal, but cxcluding all contalned blocks to which

another explicit dJeclaration of the sane identifier 1is

(*)
Upper case letters will be used to signify keywords In ELL.
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internal, and 4) its initial value is 1 by the actlon '"QBYVAL
1".

There are seven primitive modes in EL1 denoted by the
mode-valued constants [WT, REAL, LABEL, BOOL, CHAR, WOWE, and
REF. While the meanings of the first flve are fairly
obvious, the semantics of the last two should be described.
NOHNE means that no type is associated and Is the only means
provided by EL1 for denoting that no varlable is to be
returned from a procedure. REF is equlvalent to PTR in PL/L;
that Is a variable of 1ode REF is a polinter unrestricted as

to the mode of &n object to which |t may point,

Just as one can define varlables of mode 11T, thereby
restricting them tc having INT values, so also cah variables
be declared to liave mode IMODE, to which only NMODE values can

be assigned. For instance, suppose we write:

DECL truthvalue:MOUL;

truthvalue <- S00L
Then "truthvalue" is of mode IMODE and its assoclated value is
BOOL. Thus the result of some conditional part “"truthvalue =
LOOL" would evaluate to TRUE. Furthermore, we are now able

to wuse "truthvalue" as a data type in variable declarations,

for example:

DECL marital_status:truthvalue
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Thus "marital_status'" is a variable which can accept values

TRUE or FALSE.

Hoviever, the use of I'OUE would be very uninteresting If
all we could do is use different variable names |n place of
our seven primitive modes. Ve would like to have the ability
to create new data types by operating in some fashion on
those primitive modes we already have. In order to meet this
objectlive, CL1 provides the programaer with five
mode=producing operators: SEQ, VECTOR, STRUCT, PTR, and
OHEOF. These are discussed bLelow. Ve will use m, ml,

=4

m2,...,mn to represent modes.

1) SEQ{m): The type result of this application to n is the
construction of a Jength=-unresolyed row of
coripnnents, cach of mode m. For example, If we
write:

DECL string:MODE;

string <- SLQ(CHAR)
then the mode "string" is defined as a row of any
number of characters. The length of a variable
declared to be of node string tust ke resolved at

the time of declaration.

2) VECTOR(i,m): For some integcr i, the new type defined s

a Jencth-resolved row of i components each of mode
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. If we write:
DECL int_array:MODE;
int_array <= VECTOR(C100,I11T)
then the "int_array" is constructed to be type "row

of 100 integers'.

3) STRUCT (namel:ml,
name :m2,

[
.

namen:mn): Given that namel,...,namen are symbolic
names, the resultant mode Is the type structure
consisting of n fields {coiponents) whose
respective nodes mi may differ from one another.
As an  example, suppose we wish to Jefine a type
named person as lhaving a name, age and sex.
Assuming the cxistence of ocur earlier definition of

string, the followlng statements would construct

the desired rode:

DCCL person:HODE;

person <= STRUCT(name:string
ape: 1T
sex:B0QOL)

4) PTR{ml,...,mn}: The result of this application is the

mode pointer restricted to point to variables of
mode ml or m2 or...or nmn. For Instance, if the

type string were avallable tc us, we could write:
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LECL string_ptr:tiODE;

string_ptr <- PTR(string)
Then any varliable of type string_ptr may only point
to elements of type string. ilote the difference
between PTR and REF: PTR operates on a nmode Lo
produce & new data type and restricts tlho range of
that type; RFF is itself a data type that Joes not

make the above restriction.

5) OHEQOF(ml,...,mn): The result is the mode union of
alternative modes Mml,...,mn wherc a variable of
this type takes on a specific alternative based on
its initial value. That is if We writes

DECL tcken:NODE:

token <- CHEOFC(CHAR, I1NT)
then any variable of type token can have types CHAR
or lilT associated with it. ile should note that a

primary wuse of ONEQF s to describe acceptable

types for formal paramcters of procedures.

Thus the wuse of these five oaperations permits the
programmer to construct nmodes sufted for his purposes, In
contrast with PL/I, this added flexibility provided by EL1
will become a central issue during the analysis of this

lanpuage.
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bie now come to the area of «creating objects of any
mode=-a process vwhilch comes under the heading of data
weneration. [L1 provides the programmer with two forms for
renerating  data. The first s CONST which creates a new
instance of some data class; the second is ALLOC which does
the sanme thing as CONST but then returns a pointer to that

new Instance. Far example, suppose we urlte:
DECL stistring CYVAL COMST (string SI1ZE 25)

mere st is declared to have type string  (unresolved lenpth

mode ), The wobject naned by st has been created and riven a

Tength (as a result of "S|zE 25")., e could also write:

DOCL splistring_ptr;

spl <= ALLOC (string OF "Mark")
In this case the right hand side of the sccond statement
creates a new object of mode  "“string", initializes that
chject to the literal string "ark", and returns 2 puinter to
the object; the assignment uperation copies this pointer into

spl.,  llaturally the length has been autematically resolved to

b,

Procedurcs in (L1 are identified by the keyword EXPR
(similar to PROCEDURE  in PL/1). The procedure name is

considered to have mode ROUTINE., Ve remark tiere that EL1 i

[%5]

an "expression-oriented" languarce, i.c. the final value
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calculated within a bleck is considered to be the value of

that block. The following procedure calculates the remalnder

when k is divided by j for integers j and k:
Rem<=EXPR(K: IIT BYVAL,j:IUT BYVAL: INT)Y(k=(k/jIvj);

Rem has parameters L and j which are given specific values
whenever lem is called (e.z. r <~ Rem(5,4)). LWriting DLYVAL
implies that the "call by value" Implementation will be used,.
The INT following the ";" witiln the parameter list

designates the type of value to be returned (namely the

result of k=(k/j)*j).

Proceeding we might use the [en procedure in the
tollowing (inefficient) routine which determines whether or

not a number is prime:

Validprime <= EXPR (number:!NT DBYVAL; GOOL)
CEGMN
DECL w:BOOL BYVAL TRUE;
DECL §sIHT;
FOR i FROM 2 TO (number/2 + 1)
VHITLE b = TRULE DO
[) Rem(number, i)=0 ->
b<=FALSE(];
H
END;

Hote that [J...(] is eauivalent to the PL/I BEGIMN...END
construct and p => g Is equivalent to the PL/| staternent IF p

THEN q. The effect of .the routine Validprime can be

expressed as:
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TRUE If p Is prine
Validprime(p) =

FALSE otherwlise

where p is some intener,

We might be concerned about what would happen if a LREAL
number were used as an argument for Validprime, Instead of
trylng to determine the "standard" default mechanisms (which
might prove insufficient for our purpnses anyway), suppose we
rewrite the routine, calling it Validprime2, in which FALSE
will be returned if number is REAL or [f It is not prime.

This would be progrommed as:

Volidprime2<=CXPP(nurber:OHEOFCINT, DEAL)BYVAL; BOOL)
GENERIC(pumber)
[REAL] => FALSE;
[teT] =
GEGIII
DECL b:300L BYVAL TRUE;
DECL 1:IHT:
FOR i FROM 2 TO
{numher/2 + 1)
WHILE b = TRUC DO
D rem(number, 1)=0
-> LS=FALSC(];

EHn;
END;
The GEHERIC form of LEL1 provides us an efficient ieans for
choosinp a particular execution pattern within the GEHERIC
Lody determined by the mode(s) of the argument(s) of UGENERIC
(in Valldprime? we examlned the node of "number"). Also the

CL1 form "p => ¢" is read as "if p is TRUE then exit the
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block with a value g". For reasons of compilation
efficiency, cacl statement within the GENERIC body must be of

the form "“p => AL

The last topie We will  examine s the area of
user-defined functions; we may best approach its explanation
Ly example. Suppos. e have defined the type 'complex" ip
the following Ways

BECL complex:MODF;
coriplex <= MECTOR(2Z, INT)
Furthermore suppeose, after having defined some variable X to
be type complex, wo wish to access the first integer in X
which will represent the real part of the complex variable x.
We  might write "xC1)";  on the other hand, for the sake of
readability, we might wish to write “x.re®. In order to use
the latter notation, we can define a selection function for
"complex" numbers which, in  turn, wil) be called by the
constructions x(i) and x.s where | is some interer and s is a
symbol . The complex sclection" (coms) function would then
be written as follows:
coms <£- EXPR(a:cnmplcx,m:ONEDF(IHT, SYMBOL); 11T)
GEMERIC(m)
IHT] => a(m);
SYMBOL] => [Im="re" =) a(1);
m="Im" => 4(2)

(];
EHD;
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However, upon closer Inspection one should realize that coms
will not work satisfacterily. e said earlier that whenever
we use the notation LT A coms  will be called.
Unfortunately then, once coms s called, it will recurse
forever slince we are returning one of values a(m), a(l), or

a(2)=--all of which will force calls back to the selectlion

routine coms.

We now analyze how the deslgner of EL1 has solved this
problem of infinlite recursion by introducing the operator

"::", Instecad of defining "complex" as we did, we should

have defined it as:

complex <= QL("complex",comec,coma,coms, comp)
:tVECTORCZ, {HT)
This says that tke rioddle complex has an underlying
representation (UR) consisting of a VECTOR(Z, IHNT) and
associated with the nawme complex arce the operations of
conversion (comc), asslpnment {(comal), sclection (coms),
printing (conpl), and peneration (comg). These vperators are
identified Ly position within the (L (quoters list)--that s,
QL(l) gives the name of the mode, 0OL(2) identiflies the
conversion routine, and so on. Thesc routines will be defined
by the user (as we attenpted to do for coms) and are to be

invoked In place of any default mechanism when that
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particular type of opcration needs to be performed. For
instance, the assignment routine would be invoked when a new
value is assigned to an object of the particular mode for
which the assignment routine was written. The assignnent
routine can be called ejither explicitly by the " ¢= n
operator or implicitly by the OF or BYVAL constructions
within ALLOC or CCHIST. Similar rules exist for the other

four operations.

ile now introduce LIFT and LOWER as reneral prinitives
which permit the user to attribute different modes to the
sale object. llith this ability, user-defined node funtlions
are able to mnmanipulate objeccts of a riven mode without

recursively calling thiermselves,

Lonsider thic followine exanple. Lot x he a particular

complex number, say x = y+7], In  LL1, assuming that tie
assignment routine (coma) s previously deflned, we can

describe this by:
DECL x:coriplex CONST (complex OF q9,7)

Then we can talk about LOWER(x)  which refers to the
VECTOR(2,1T);  specifically, LovER(x)[1] = v and Lower(x)[2]
= 7. Thus use of the LOVER focility glives us the abillty to

present a corrected version of coms:
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coms <= EXPR(a:COmplex,m:OHEDF(IHT,SYHBOL); [NT)
GEHER!ijJ
I4T] =) LowERCa)[m];
S?MBOLi => [) m="re" => LoWERCa)[1]
mj"Tm” => LOUER(a)[2];
(];

-

END;

Wle thereby get around the recursion problem and successful |y
define the selection rountine for complex numbers. Hote that
coms will he called whenever we write x(1), x(2), x.re, or
Xx.im. llowever, it would 21so be called if we \rote x(3) or
X.5q and so obviously "Erecakpoints" signifylng errors in
selection should be placed in appropriate sections of cons.,
As  one would cxpect, the LIFT function has cxactly the

opposite cffoct s the LAWER facllity.

Althourh  this description of EL1 has been rather
informal, it should rive the reader & fairly good idea of
the concepts around which the lanpuare was developed. In
addition, one should have pained a Jworking knowledie of the
relevant parts of EL1 in nrder to understand the examples to
be presented (next section) and to accurately examine the

lanfuare's usefulness with respect to structured programming.,

Stacl: Abstraction in EL]

We now present the stack abstraction written in EL].
Obviously any example can bLe programmed in many dJdifferent

ways and, in fact, an EL1 program could be wrltten whieh is
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completely analogous to the Pascal solution tu the stack

abstraction we examined in the previous chapter. ilowever, in
analyzing this lonpuage or any other, we aro attempting to

adhere to structured programming requirements and use the

lanfuape's fullest capabilities to Jdo so. From my readings

and discussions with peouple involved in the rdesign of ELL, it
is clear that the ability te propram by ahbstraction was one
of the goals that this language desizn was intended to meet.
Thus this example will be written in a style such as the

developers of the language would have programmed Jt.

We begin by constructing "stock" as a user-defined mode

function:

stack ¢- "iYstaekY, stE, SEN, SES. .S5ER)

1 :STRUCT (top: IHT, body:SEQICIHARY)
Thus "stack" will have an underlylng representation of &
structure consisting or flelds “top", which will represent
the toprnost filled location of the stack, and "body", which
wlll hold the elewments of the stack. llote that the size of
the body is unresolved and must, therefore, be resolved at
the time of stack reneration. Associated with a stack are
operations of conversion {stec), assignment (sta), selection
{sts), and pencration (stg)., (1 have chosen to iprnore the

construction of a printing routine as it is not pertinent to

this example.) These four operations will correspond to pop,
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push, top_element, and infitiallze respectively.

The first of these routines that we wil] examine s stc:

stc <~

LXPR(x:stack, fin:MODE; CHAR)

LEGIHN
DECL f:INT CYVAL LOWER(x).top;
NECL temp:CHAR;
tiw "= CHAR =) TYPE_FAULT(stack, fm);
f=0 => PREAK("stack cripty');
temp <= LOWLR(x).hody(f);
LOWER(x).top <~ f-1;
tenp

CND;

The routine, stc, will be used as a popping  routlne.
Suppose j and s are variables of types CHAR and stack
respectively, Then {f we write the conditional statement s
-3 N tie conversion routine, stc, will be invoked since s
Is not of type ©00OL. All  conversion routines take two
arguments: the object to Le cenverted and the desired node
of the converted result. llere the desired mode is the formal
rode of the second barameter when it is equal to ClIAR, (Ve
should note here that the internal representation of all
forms in EL1 s LISP(25) and so ste would be called by (=) s
J) such that the "->" js responsible for calling ste with
parameters s and j.) low stec  takes over by creating
temporaries 1, assijpned the value "top of s", and temp, in
which the wvalue of the block will be stured and returned,

Initially, two clecks are made to nake sure that ] is type

CHAR and s is not empty. |[f either of the outcomes is FALSE
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then the corresponding system routine, cither TYPE_FAULT or

OREAK, will bhe invoked. |If both outcomes are TRUE, we set

temp, decrerient the top of s, and return temip  which

rets
stored  into ., Thus we have popped off the tep clement of
the stack s and placed it into the character variable j. e

should make a note here that in the previous pop routine in
PL/1, we simply decremented the tup-of-the-stack pointer but
did pot return o value. The reasen for this difference is
only a matter of personel choice and indcpendent of which

languarge ve use,

Wle now present and discuss the assirnment routine:

sta <~
CXPR{x:stack, vy:CHA!}; CHAR)

BEGI!I
LECL F:INT BYVAL LOWER(x).top:;
f <= LOVWLR(x).top <~ f+1;
f > LENGTH(LOWER(x) .body)
=> BREAK("stack overflow"):;
LOGWER(x) .body(f) <- ¥y
CHD;

Let s and k be variables of modes stack and CHAR
respectively. Then the assignment statement "s <= k" wil)
have the effect of pushing the value of k onto the stack s.
The internal representation (<= s k) will inftiate o call to
the routine sta wvhich, int turn, berins hy declar ing the
interer variable f and inftializing its value to the top of

the stack s. Then after Incrementing top and f, a check is

made to see whether or not the stack size of s, which can Le
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determined by use of the LENGTH function, has been exceeded,

If not, then the value of k is pushed onto s,

Hext we examine the selection routine:

sts <~
EXPR(x:stack, fd:SYMBOL; CHAR)
GENERIC ()
fd = "top" =) BEGIN
LOVER(x).top ™= ( =>
LOYER(x).body
(LUWER(x).top):
BREAK("stack empty')
EMD
TRIJE = SCLECTIOQH_FAULT (stack, fd)
EHD;
If s and y are variables of modes stack and CHAR
respectively, then the assignment "y <- s, tgp", having the

internal form (<- y (, s top)), causes the invecation of sts
in order to process (. s top). In sts we take advantage (of
compilation efficiency) of the GEMERIC form with no arguments
which in this case has the effect of the PL/ I
IF=THEN=ELSE...IF-THEN format. First, sts makes sure that we
are anly selecting the "top" element, If this is TRUE, then
upon confirming that the stack is not empty sts returns the
value in location top of stack s namely
"LOHEH(x).body(LowLH(x).top)". I'f vie try to access any other
element of the stack bhesides the "top" element, the system

routine SELECTIOH_FAULT will be invoked. Thus the overall

effect of sts is the same as  the top_element procedure in

PLI] »
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We now take a look at the final routine, the generation

procedure:

eXPR(L:BOOL, s:SYMBOL, 1:FORH;
OHEDOF(stack, PTR(stack)))
LEGIHN
b => ALLOC(ANY BYVAL stg(FALSE, s, 1))
s = "SIZE" =>
BEGIM
DECL n:INT CYVAL EVAL(1.CAR);
n LT 0 => UREAK("Cannot CONST
stack of rnepgative size");
DECL r:stack.UR CUNST(stack.LUR
SIZE n);
r.body(l) <- "3";
r.top <= 1;
LIFT Lr;stack)
EMD
BREAK("CONST FAULT--stack COilST only
Ly SIZE")

.
4

EHD;

This routine is explicitly called by the COHST and ALLOC
forms. Suppose we write: "DECL s:stack CQIST(stack SIZE
100)". Then the job of stg is to renerate a stack consisting
of the "top" tield and a "body" fleld of 100 CHAR locations

and perform certain initiallzatinns associated with any

stack. In greater detail, wupon reading CONST, stp gets
called. The parameter b, which the system provides,
specifies heap generation If TRUL--in which case stg returns

a pointer to the stack object--and stack reneration |if
FALSE==in which case the actual stack object is returned.
Then st makes sure that we have used the SIZE generator (as

opposed to the OF or BYVAL possibillities which we have
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decided not to permit). lext, the temporary variable n is
created and set to the value 100 ("1.CAR"). Given that nis
not less than 0, ye declare r and construct it as the UR
(underlying representation) of a stack having a body of 100
CHAR locations and a ton. At this polnt the rencration
procedure initializes the bottom element of r and sets top
cqual to 1. Finally “LIFT (r,stack)" returns the value of r

by sharing with stack, thereby constructing s as we wanted.

The stack cxample s  now complete with the possible
excaeption of g printing routine which vias felt irrelevant to
this context. Thus we arc at the pcint of analysis, taking
both the stack abstraction exauple ancd the language EL1  and

examining them as they relate to aur structured programning

criteria,

Analysis of EL1

This section, which is concerned with the analysis of

CL1, wil) bheiin by describing the favorable featuroes of the
language with respect to structured programming, (ln  some
situations, it will nhe casiest to refer bLacl to analopous

PL/1 discussions to make explanations more clear,)

For instance, when constructing the stack abstraction in
tL1l therce was certainly ne need to consider the problem in

terins  of one stack Or a multiple number of stacks as was the
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case in PL/I. The ability to po from concept to prosram was
made easier to code in EL1 as a result of being able to
consider stack as a data type rather than a variabhle., So one

of our basic criteria=--that of being able to talk about

abstract data types--is satisfied within the TL1 language.

Continuings along the lines of data abstraction, It
should be noted thet one of \legbreit's proals during the
design of ELl was to pgive the programmer the ability to
construct new operations on new data types. Furthermore with
the usage of the "::" form one can actually restrict access
of new operations to some particular data type. In our
example, for instance, those four operations are restricted
to variables of type stack, The faet is that we were able to
syntactically represent our complete stack abstractlon

consisting of a stack representation==STRUCT(top: IHT,

body s SEQ(CHANR) ) =-=-and four vperators=--stc, sta, sts,
stg=-describing pop, npush, top_element, and initialize
routlnes respectively. Thus this structured prozramming

criterion regarding the representation of a data abstraction

scems to be ret Ly ELl=-=-at least in this poxample.

Another impartant area that must be niven a favorable
wark is that of oaccess restrictions, For instance, the
selectlon routine (sts, In our case) can restrict what parts

of a data type are accessible from outside the definition of
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the data type abstraction, feferring to our stack
abstraction as it now stands, given that s Is g variable of
type stack at a higher level than the stack ahstraction, we
can talk about "s,top", liowever, if we try to access
"s.body(i)" for some integer 1, the sts routine will pive us

a SELECTION_FAULT error. Thus we can control the access of

variables,

The last favorable point we should review concerns the
introduction and usage o0f the "::" operator. khile the
reader has alrecaly seen its basic use, it should be noted
that the "::" can Le used for multiple level descriptions,
For instance, wo minht write "listiistacks:,. " where the
underlying representaton of a 1ist is a stack and the
underlying representation of o stack is the structure we fave
previously, Thus the "string of pearls"(4) description of
structured prograomiing commonly wused by Jijkstra can be

Frogremmed in LL1 using the "::" Torm.

Ve now procroed to examine the difficultics of using . EL1
in conjunction vith structured proframming techniques. The
First issue to ilscuss is that althourh we can talk about
abstract data types, we must still prozran [In a bottom=up
fashion, That is, we must define "stack" as a mode-defined
function before we can write "DECL s:stack...", iowever, the

desipners of L1 view this programning restriction as an

-
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implemnentation decision rather than a result of the language

description(26).

A more important argument against the use of [EL1 comes
up during the examinatien of the staclk abstraction we
programmed earlier. One preblem that always came up was the
necessity of having to use the LOWER operator to avoid the
problem of infinite recursion. In defense of this lanpuage
construct, onc might say that LOVWLE (or something like 1t) is
necessary to solve the recursion problem; hLowever, this
problem is a result of the language design in that the only
way to operate on a stack is to use some variable of type
stack as a parameter of the routines. The fact is that we

need not wperate on this parameter but rather on the

representation of the ;iven stack. vhat ve want is the
ability to construct aperations which operate on the
representation of  the abstract data type instecad of

constantly having to use the LOWER (ur LIFT) facility.

A sccond issue to be taken up against CL1's method of
defining a stacl abstraction is one that 1is very obvlous,
What happens if there are more than five operatlons to he
defined on sume abstract data type? Cr Jjust as critical is
the fact that there wight be some operation that cannot be
expressed in terms of having to bLe Invoked by selection,

assignment, conversion, gencration, or printing mechanisms,
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Then all one can do is program those "excess" operations or
that particular operation as standard routines not to be
assoclated with the particular data type for which it was
conceptually defined., This programming restriction, however,
introduces many of the same violations of structured

programming criteria that occurred in Pascal.

The above defect, in itself, violates the structured
prozramming criterion concerning the ability to associate any
cheration to a data  type. But let us censider the five
routines that are part of the user-defined mode function, and
in particular suppose we cxamine the stack abstraction
example, Tlie conversion routine, ste, was written as a
popping operator, First of all, this routine seems  to
violate the gfreneral meaning of conversion which normally
means converting a value represented as one type ta the
corresponding vulue represented as another type. Although
the stc routine is initially involted by the requirerment for
type conversion, the function of the routine is rwuch more
than that. The foct is that the function of stc is not even
related to type conversion. This type of programmineg can he
exceedingly confusing and obscure. Hext, we should note that
a program which makes use of the stack abstraction might use
"-3" to mean pop and "¢-" g mean push or top_clement
depending on the types of variables on which the arrows (<=

or =>) wuperate. On the other hand, the arrows may refer to
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assignment and conditional expresions repectively. These

ambiguities mal:e for code which can be dIfficult to

understand.

How suppose we reexamine the issue of accessibility., It
was caplained carlier that from outside the stack abhstraction
for some stack variable s, s.body(i) was inaccessible. e
noted however that s.top wias accessihle from anywhere in the
propram because the selection routine, sts--programmned as
part of the stachk chstraction--defines the meanlng of s. top.
Then if we assume that "." Is an operator particular to stack
and invokes the cperation, named sts, when s.top [s written,
then the proprram is expressed alonzg the 1ines of structured
programming requirenents. A conflict, however, is bound to
arise here since if we had not defined sts, then by system
default s.top would produce the value of the highest locatlon
filled in the stacl; wun the other hand, with the definition
of sts, s.top procduces the value in the stack nf that topmost
location. Thus vepending on whether ar not "M s
specifically user-deflined for a piven mode the effect of the
operatar can produce completely different results, Lut we
know that "." is a legal ovperation on any structure mode and
therefore the programrmer must be completely aware of which
modes have user=-defincd selection routines and which respond
to the default routine--both invoked by the eperator ".".

The point to be made here is that if any of the five special
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functions is not user-defined, then the system provides a
meaning for these undefined functions; the programmer must be
knowledgeable of which alternative is taken in cach of the

five cases for cach mode used in the program.

To add further complexity to the above situation, a
Programmer mipght really decide that he wants to talk about
"s.bodvy(!)" from outside the stack abstraction. Consi der the

following style in vhich this program could be written:

DECL sl:stack.un CCNST(stack.UR SIZL 100);

sl.body(i) <= "sume character value';

sl.top <= "some integer value";
The mode of s1 |is "stack.ui" which is equivalent to
"STRUCT(top:IHT,budy:SEQ(CHﬁHJ}”, the underlyling

representation (UR) of the user-defined niode "stack".

Thus althourh sl s not really a staclk, one might be
perfectly happy with this type of progracming since by using
"UR", the program reads as if sl is type stack but behaves
differently. For instance, one can now write "sl,hody(j)"
and access the value or assign a value to the ith locatlion in
the bLody of s1. novwiever, if sl had instead bLeen declared to
have niode "stack'" then the coding of "“sl.Lody(i)" would have
resulted in the invocation of the selection routine, sts, and

mean a SELECTION_FAULT error. S0 the programmer can
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seemingly circumvent the access rules.

However, the wuse of UR is not the only way that access
restrictions can be avoided. Suppase that the variable s
were declared to liave node stack, and let us examine ano ther
use of the LOWER facllity. EL1 allows wus to propram
expressions such as "LOVER(s).top" and "LOVER(s).body(i)" for
some integer variable i. fach of thesoc cxpressions invoke
the system=defined routine for selection, signifled by the
dot ("."), instead of calling the uscr-defined routine, sts,
Thus use of the LUWER facility also permits the user to get

around access restrictions.

As a final criticism, let ne remark that the routine
definitions within an LL1 data abstraction can he confusing.
Far instance, suppose vie look at stc in the stack
abstraction. This routine was written as & poppine procedure
for some staclk s and some character variable j. The fact s
that if one were to write an instruction which pops the top
element off s and places it into j, It would seem riuch more
likely to use an assirnment statement ") <- s'" rather than a
conditlional statement "s => j". The latter of these was uscd
thouph to accormplish popping Lecause conversion vas required.
It is not so simple as writing something 1like "oopls,j)"* if
we want to keep our stack abstractlion intact; thus we must

Le gom : aware of our data routines in that it may
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actually be a different (and possihly awkward) type of
statement that performs the intended functlion., If we are not
extremely careful in this manner, trouble can result that was

not evident during our conceptualization of the problem,

Finally, we 1ist the major pro and con criticisms made

of EL1 in this section of analysis:

Pro

—

1) We can code abstract data types by wusing the FEL1
mode-producing operators,

2) It Is nossible tn associate operations with a particular
data type by usine the "::" operator,

3) Accessibility restrictions along the structured

programming critieria can he established within the
user-defined mode functions,

k) The "“string of pearls'"  programming style descrihed by
Dijkstra can be represented by the "::" pperator,

Con

1) Use of the LOWFR facility within the drfinition of a type
abstraction ohscures the fact that operations are defined |n
terms of the underlylne representation of the data type,

2)(I) An operation associated with a data type must he
written in terms of one  of filye routines--conversion,
assignment, selection, printing, and reneration,

sild IE Is impossihle ta associate morn than fiwve onerators
with a data type,

(FiT) The meanine of any of the five user-defined routines
can he (and must be in certaln cases) completely ohscured.,

(iv) Code whieh mAy invoke user-defined or system-defined

routines can be seemingly ambipuous and difflicult to
understand.
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(w) Lxpressiaons which invoke wuser=-defined routines may
make code difficult to read and understand.

3) Established access restrictions can be avoilded by use of
both of the UR and LOVUER facilities of CL1.

Overall Critique nf [CL1

In judging EL1 with respect to structured programming,
let us first give quick reference tu its control structuring
mechanisms, Obviously with its loop and routine facilities,
EL1 can adequately lead to well=structured programs when
considering only control., The GLOTD statement should be
eliminated especially since the "=>" form tokes the place of
any structured uscs of the GCOTO., Also the CENERIC form can
be wused to simulate the case statement and thus its use is

approved by this writer,

Hloww with respect to data structuring, the first and most
obvious point to be praised Is EL1's facility which permits
the creatlon of modes and definitions of operations on them.
After all, that is & basic requirement of structured
programming. ilowever, for some reason, we are limlted to
five of thesec operations when in general the programmer may
nced more, Of course vue could define another proce dure to
operate on some rode but that routine will no more be
assoclated with & particular abstract node than, say,

addition is with integers, e.g. we can also add real numbers

and matrices.
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Along these lines, the point was brought up earlier that
it might be difficult to write an operation of some abstract
mode in terms of one of the five standard calling
routines--sclection, assignment, conversion, printing, and
generation, It is also a fact that it is not always clear
when these routines are called, explicitly or implicitly as
is sometimes the case. One has to be conpletely aware of how
the Jlanguage implements the usage of these special routines
and, in fact, the internal representation of any language
form and the knowledge of LISP are required to be part of
this awareness. !ly point here is that it is often the case
that the oprogramming of cne of thesc Jata type routines is

seemingly more difficult to accomplish than it ourght to he.

Furthermore, one of the basic criteria of structured
programming says that while the abllity to use a data
structure at scre proframming level higher than its
definition is suaranteed, one should not be aware of the
lover level details of the structure. An obvious corollary
to this rcquirement is that in no way 2t the higher level

should the prograrmer be able to access any of these details

of description, Unfortunately the LR (underlying
representation) and LOWER facilities, while useful in
preventing the recursion problem mentioned earlier,
contradict the above criterion. Fer Instance, one can

discover the rcpresentation of stack by writing "stack. BB",

Al
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Ur if s were a variable of type stack, then cne could virite
"LOWER(s).top" and LOWER(s).body" to avoid the selection

routine, sts, and make assignments to the components of s

= .

Another issue that should be discussed is the view taken

that one is able to represent a "string of pearls" using the
x operator in EL1. Although thls type of programming is
possible, the difficulty of simulating levels of abstraction
is yet another problem. Suppose we take the example of
linear_list (given earlier in Chapter 3) which could be
refined as elther stacks, queues, or cequeues-~-each of which
would have a set of associated operators. The problem Is how
to represent the type linear_list. Obviously we would
appreciate the <ciscriminated union facility (sece roare(l));
then the linear_list abstraction might be written as
"linear_llst::(stack;queue;dequeue)” which implies that a
llnear_list is either a stack, queue, cor dequeue, From a
structured programming vievi, this type of facility Is one

that EL1 should incorporate into its language.,

Our overall feelinmg about EL1l is that it approaches
acceptability with respect to the techniques cencouraged by
Structured programming but does not go far enough in
satisfying the necessary structuring requirements. The
Issues that have led us to this criticism of CL1 have already

been mentioned. towever, before the dlscussion of LEL1 1is
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ended, one more guestion must be posed. ilow  easy or
difficult is It to yse the extension facllities provided by
EL1? Because, if it beccomes too awkward to use the extension
mechanisms, the programmer simply will not attempt to use
them. Instead he will do all his programming in the core
language and most likely be successful in producing a
finlshed product. llowever, the final product will not be one

resulting from the application of structured programming

techniques; thus the issue of whether or not to use an
extensible languare in conjunction with structured
programming is dJdefeated hefore it can even be considered., Iy

experlience was that the cxtension facilities of EL1 were
somewhat difficult to learn, and I believe that the above
problem would exist for proszrarmers using ZL1, However, the
language is fairly younr and in a state of change, and so it

is stil)l my hope that this problem willl be remedied.

Finally, it is oy impression that the roal upon which
the lanpuape was develeoped=--that of helnp able to construct a
data abstractlion consisting of an  abstract Jata type and
operations which operate on variables of that type-=is
well=founded. The mistakes that the designers made were to
limit the propgrammer in the way tliese operations could be
constructed and poermlt too much flexibility in programming
around a data abstraction and its impased restrictions,

Thus, althouprh most of the structured prosramming criterla
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can be satisfied by the languare, the above desipgn errors
mean that, in gencral, structured programming techniques need

not be used to construct EL]1 programs.



SINULAEY

Developed in 1967, SIMULAG7(27) was designed as a
general purpose simulation language by 0le=Johan Lahl, Gjorn
Hyhrarrp, and Kristen yiaard at  the horwegian Computing
Center. While SINULABY includes most features of ALGOLLO as
a subset, its augmentations are directed toward the area of
simulation. The hope of the desizners was that SIMULAG?
would be flexible ang powerful enough to allew the programmer
to orient the languace towards specialized fields. To reach
this goal, the concept of aggregates useful as building

blocks for programming was introduced.

In  dealing  with larze problems with many details,
decomposition is of oprime importance. The fundamental
mechanism for decomposition in ALGOLEO is the block concept.
A block contains local variables and procedures; as far as
these local quantities are concerned, 2 block s completely
independent from the rest of the program. JSIMULAG? was able
to extend this notion by considering that the execution of &

block wouuld result in 2 dynamnic [pnstapnce of Lha block Leing

Lenerated. Llock instances provide the capability for
senerating  soveral instances of a riven block tovether wilth
its local variables ang procedures, If we consider that a

block could be used for defining a data abstraction, where
its local variables and procedures are to represent the lower

level description and operators respectively, then already we
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arc aware of why SINULALT might be successful as a structurcd

programming languapge.

Ve will examine how the above concepts of SINULAGT apply
not necessarily to simulations as was orginally intended, but
to structured programming and the ability to represent data
abstractions, However, we first describe some of the

important lanpuare constructs.,

[oto Facilitiocs of SINMULAGYT

The new concept of SINULAGY? in which we are interested
is the instance of a blocli which is calles an ohject. LEach
object has its own lucal data and actions deflned by a class

declaration. Our examination eof class reclarations will also

include a description of gbiect gencration.

The reneral format of a «class declaration is as

follows(*):
class <main party (=)

where the <main part> can be defined as:

(=)
Keywords in SIMULAGZ? will be underlined.

(ww)
"M oand'">" are BIF meta symbols.
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<{id> (<parameters T S U -
{declarations for v1,...vn>;
{declarations for variables XlivenpXn2s
<declarations for actions Al cssg@nde
{class body>;
end <id>;
Then <id> in the above definition is the name of the class.
The generation of any object belonging to class <id) will
have parameters vi1,...,vn associated with that rencration,
The object's local attributes will consist of parameters

vl,...,vn, variables xl,+..,%xn, and actions al,...,an. When

the object is wencrated, the <class body> will bLe performed.

To help clarify the preceeding <efinitlons and
explanations, cocnsider the fellowing example of a class

declaration:
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class square_matrix(n); lipterer n:
berin intexer array Tll:n,l:n];
procedure transpose

begin linteger i,j,temp;
i = 2:
J o= 1;
for i o n do
for j to 1-1 do
bepgin
temp 1= TC(i,i);
TCi,5) 2= T(),i);
T(j,i) 1= temp
end;

and;
cnd squarc_matrix;

The above declaration lefines the class of
squarc_ratrix. The assonciated data of each object of this
class are the pearaneter n, which represents the size of a
matrix object, om! the local wvarlable T, which holds the
elements of the natrix., Also described is the local action
transpose which operctes on T. Fallowing the action
transpose, woe have urltten a section of code which sets the
array elements of T to 0. This section, which is the <class

body>», 15 executed upon cach uvbject generation.

Suppose that we want to fenerate two square_matrlx
objects--one of size 10 and the other of size 25, Ve would
first declare tvwo pointers to reference objects described by

the class square_natrix:
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Lgﬁ(square_wutrix]a,b;

(We remark here that the seneral statement "ref (<class id>)
pointer variables)" really  means that the {pointer
variables)> are bound to an object denoted by the {class [d>
or any of jts subclasses (subclasses will be explained

shaortily).) Ceneration of the desired objects s completed as

follows:

a - pew square_riatrix(1lv);

i= pow square_riatrix(25);
The built=in function peyy crcates an cobject of the specified
class (in this case "square_r.atrix") and returns a reference
to the object: the operatur ":e" (road: "Jenotes") indicates
the assipgnment of @ reference to a reference type variable,
Data belonging to the cbject may Le referenced through use of

the "dot notation' as the follewing expressions demonstrate:

a.n
eT(1,2)
d.transpase
The notion of subclasses s the next construct of
SIMULAG?  we  willd explore, First of af) ve extend the
definItIon of a class to include an opticnal <prefix partd,

The syntax now becomes:

prefix pared cloass <main party;
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Semantically we mean that the class for which <{prefix part>
is the <id> contains the <main part> as a subclass. Then the
attribute list of an object corresponding to the <main part>
includes those attributes described in the <main part> as
well as those described in the definition of the <prefix

partd>. The two parts are "concatenated" to form one compound

object.

Take, for example, the following class hlerarchy

]

consisting of slx classes A, &, C, D, &, and F.

u/ e
C D F
This model is described In SIMULAL? bty the following class

declarations:

-
S W mE W wE e

m>c o=

Y A o KJ

a o 2
A n

If we say that the corresponding lower casec letter represents
the attributes of the <main part> of an object belonging to
that class, then the complete attribute list for each <class

is depicted in the following table:
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attribute list

class
A a
B a, b
G a, b, ¢
[ a, b, d
E a, o
F a, e, F

It should Le noted here that if we write "ref(B)x"
followed by "x :- new(D)", the attribute 1list corresponding
to x (assuming that no attribute has been declared as
yirtual-~a concept to be explained later) will be a, b and
not a, L, dJd. This fact is a result of having bound x as a

reference to objects of class 0.

A more concrete exanple of subclasses might prove
useful, Suppose a program is required to handle real and
Gausslian numbers. (iaussian numbers are that subset of
complex numbers where the real and imarinary parts are
restricted to be integers.) \hile each type of number may
have Its own attributes, there are certain characteristics
common to both types Ly virtue of the faect that they arc
nuithers, In outline form, we might corde this program as

follows:
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class number;
berin integer whole_part;

cnd number;

nunber glass real_no;
berin interser dec_part;

-

cnd real_no;

number ¢l raussian_no;
Lerin lnteser im_part;

¢nd paussian_nn;

Then, for example, the real_nec (.033 vould he rep resented  as

having a vhole_part cqual te 6 and the dec_part equal to 030;
the representation of the paussian_no 2+u4i would consist of

the whole_part and the ir_part equal to 2 and 4 respecctively.

At this point it is wuseful to ralse the question
concerning the possibility of conflicting attribute names.
This problem would result from cdefinlng two operations with
the same name--one defined in a class and one deflned in a

subclass of that class. Then the attribute 1list of

S a
reference variable bound to the subclass would contain two

vperations with the same name.

For instance, usinp the previous example, suppose that

an action "add" werec coded as part of the class number and
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llkewise another action "add" were Programmed within the
subclass saussian_no, Then the question of two different
"add" actions associated with 3 baussian_no object st be
resolved. The semantic rules of SIMULAG7 stipulate that for
any given class f this conflict arises, then only the most
locally defined action s associated with that class,
Referring to our cxample, the Mgadh action deflined in
raussian_no is the enly Madd" vperation in the attribute list
of gaussian_no, Obviously this solution is what we viould

hope to bLe the result.

It should Le mentioned, hewever, that the direction of
this binding mag he reversed by use of the yirtual facility
in SIMULAGT. Consider the following sltuation where A s
defined as g class and . s defined as o subclass of A,
Suppose also that both A and © contain definitions for an
aperation named  "twiddle" and that we |ave declared a
variable x as "ECF(AIX". Then If e write "x :ie pow(p)"
followed by 4 reference to "x.twiddle", e would be referring

to  the definition of twiddle given in A (because x was bound

to the class #), However, if we define twiddle In N to lbe
Yirtual, the eXPression "x.twlddle" would access the
definition for twiddle psiven by L. Thus, g top-down

Programming approach can be Partially used for writing a
program in SINULAGT, lie say "partially" because only

Procedure labels and swWitches (see ALGOLoQ) ay be bound as
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virtual quantitics.

Other featurcs of SIHHULAG7 include the '";roup access"

feature. Supposc that m references a squarc_riatrix object

and we are interested in examining the attributes of m.

Usinp the ipspect facility, we can write:

- a |"" Sl-il I]O"' H

nmanipulations of n and T, use
of transpose, all these part
of the object referenced by m.

.

en d

whieh eliminates the need to use the dot notation for cvery
attribute of a iven object. thLowever, it should bLe clear
that the lnspec feature is mercly "“syntactic sugaring" to

the lanpguare.

Another facllity provided by SINULAGY? s instantaneous
qualification. For Instance, suppose that ve have written:

ref(raussion_nolx
rof (number)y

Then “x gqua number.whole_part' and y gua real_no.dec_part"

are lepal expressions for accessing the attributes whole_part
and dec_part respectively. Thus the gua facllity provides an

increased flexibility for referencing attributes of
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concatenated class objects.

The ahility to examine subclasses is also provided by
SIMULAG7. This feature and use of the when construct are

displayed in the next cxample:

ref(nuniber)g;

20Ct < when complex_no do pepin...end
vhen real_no do beginp...ond
Qt c l'ti EQ-.;
lle have now been exposed to most of the data faclility
features present in SIMULAGT. So we are ready to dlscuss a
SINULAE? solution teo the stack ebstraction problem and

analyze the language «ith respect to the structured

programming view of dJdata orpanization,

stack Abstraction in SINULAGT

A solution to the stack abstraction problem, riven iIn
Chapter 3, is coded any vrescented in fip, 7-1. This
representation of the class "stack" is fairly
straightforward. An object zenerated of this class consists

of the following attributes:

n==which represents the size of a stock;

body=-=an array of sjize n which holds the e¢lements of the
stack;

top=-which holds the index of the topriost filled location in
the body and s initially set cqual to zero;
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push, pop, top_element, and Inltlallze--operations which
perfory the desired functions on objects of class stack.




class stack(n); interer n;

berin chor array hody[l:n];
interer top;

procedurc push(val); char val;
beein:
top = top + 1;
Jf top > n then erro
clse hody[top] t= yal:
end push;

Rrogec.yure pop;
berltn;
if top < 1 th error
else top := top - 1:
€na pop;

char procedure top_element;
benlo:
if top > 100 then error;
if top < 1 then top_element := 'e!

£lse top_element := hody[top];
end tep_elemnent:

progcedurc initialize(y); char y;
beein:
tep ;=_1:
!JO{ly[l] IEoys

epnd initialize;
top := (:

4
end stack;
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A progran making use of this class miaht

follows:

reflstack) vperator, operand;

operator := pew stack(lu0);
operand - pew stack(75);

Attributes of each stackh

following style:

operator.inlftialize('!');

ODE;Uﬂd.DUSH('x'};

ir ;perand.ton > 100, ¢a

lnspect operator do M
top
body[10]

!‘ rJ

mieht then be manipulated

begin

d5

in the
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e will now cxamine SIMULAGY7 much more closely and focus
our attention on some important issues that have been

fenerated from the solution to the stack problem,

Analysis of SIHULAG 7

The most favorable feature that SIMULAGT offers us Is
the ability to Syntactically construct a dJata abstraction as
a well-orranized cluster of information, This cluster
consists of 4 lower level Ferresentation of 2 data type and
Cperations whjeh perform functions on objects of this type,
plus an initia]ization ability represented by the <class
body), The ease viith which this orsenizational feature can
be coded in SIMULAGT s demonstrated by the stack abstraction
exarple. In our SINULAG? Program solution to this problem,
We were alle to describe 3 stack type in terms of the "top"
and "Lody" Fepresentation and four operations vhich uper ated

on this lower leve] representation.,

The ability to Use paraneters 45 part of a class
dnfinition, such as was used in the stack type dofinition,

also proves useful. For instance, our use of the parameter n

wlithin  the stacl class provided yus with the ability to
allocate stack objects dynamlcally. The <class body> can
also malie use of class pareameters for initiulization

Purposcs,
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Continuing our presentation of the favorable features of

SIFULAGLZ, we note that this language also provides the

programmer with the ablility to partially program in a

top=-down fashian. First, the construction of subclasscs

encourages us to propram in this style:

second, the yirtual

facillity permits the programmer tn refine a procedure whlch,

in turn, can hec Invoked by 2 line of code which Initially

invoked the older, "ariginal" procedure.

One final point in favor of SIMULAGT should b

mentioned. Ohviously there is no need to he concerned about

multiple stack problems Incurred during our use of PL/I.

Thls programaing Tortune is a result of belng able to

represent a "stack" as a «data type (SIMULAGY calls it

class). Indeed, the simpllicity with which the stack
abstraction is cxpressed in SIMULAGY? leaves the programmer

with a favorable Impression of the lanpuape.

e now  present some problems one finds  when using
SIMULAGZ? as a structured pronramming languapc. Dne of the
most plaring faults ovccurs in the arca of class definitlions,
Uslnr our stack abstractlon cxample, we note that a stack can
be syntactically represented by a class definitlion; however,
some mathematical properties of stacks aore vielated., For

Instance, consider the relation between "top" and "body" such

that "top" always points to the flrst available Jlocatlon of
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the "body". In our stack abstraction, "body" and “top" can
be accessed from outside the class definition, MNot only can
these variables he manipulated by Invoking anvone of the four
defined operations but also by simply writing such
expressions as 'operator.top" and "operand.bodylil]" where
operator and operand are references to stack objects and | is
some integer. DNy allewing the latter of these two methods

for attribute access, we permit the ahove mathematical

relation to be destroyed,.

Another issue which we commented on earlier (see Chapter
4) is the danpger that can result from the extensive use of
pointers, Unfortunately, SITHMULAET dors not give the
programmer the choice of wkether or not to use pointers, Al
objects must be pointed to by reference varlables, therehy

Implying that all ohject attributes are manipulated through

the use of pointer variahles,

The usape of pointers seems to he the reason for the
implementation decision that a lepgal assimnment hetween
reference variables be carried out by "sharing". For
example, consider variables x and y declared as references to
the same class and x referring to some class object gencrated
by the function pew. Then the assignment "y:-x" assigns to vy
a reference to the object which Is the value of x. Thus any

change made to an attrihute of y results In a "side-effect"
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on that attribute of x. Sharing can be useful; however, as

the default mechanism for reference assienments, the user

must be on constant guard aralnst slde-pffrets.,

Finally the polnter Issue is further complicated hy the
fact that the statement "ref(m)n" says, in fact, that n may
reference  any subclass of m, This unrestrictive feature in
conjunction with the gua faclility means that aﬁy attribute of
a class or Its subhclasses can be accessed, and furthermore
that accessihillity must proceed throuch » reference variable,
Thus polnters are just too much an integral part 6f SIMULAGY
for us not to strongly ohject to this mechanism of the

languapre with respect to structured progreamming.

We now list the Impartant pro and con critleisms we have

made of SIMULAGT.

Pro

1) The programmer pnssesses the ahility to syntactically
organize a data ahbhstracticen consisting of a lower level
representation and operatlions aperating on the
representation.

2} Class parameters achleve a flexibillity In generatinr
objects.

3) Subclasses permit the organfzatlon of prorrams into levels
of abstraction,

4) The virtual facility In eonjuction with the suhelass
feature provides a partlal top-down prorpramming abillty.

) The programming of the stack abstraction In SIMULAGT
corresponded In ease to the conceptualization of the solutlian
to the problem.
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Con

1) We can access attrihutes from outside thelr eclass
definitlions.

2) Class objects can be referred tn only by polnters.

3) The ref and gua facllities complicate the pointer issue,

Overal]l Critique of SIMULAGY

It Is interesting to note that SIMULA6? was developed
before most of the concepts propounded hy Dijkstra an
Structured programming were well known; vet, this Tlanguage
captures one very Important program deslgn technique--that of
providing the programmer with a means for developing an
abstraction which consists of a data representation and
actlions manipulating the representation. In partliecular,
within the syntax of the Jlanguage, one develops a class

consisting of attributes-- data and aperaticns.

Unfortunately, SINULAGRT still falls short as a
structured programming lanruarge in the following respect,
Data attributes, wkich make up the lower level representation
of an abstract data type, are accessible from outside the
class definition. Thus the prosrammer can manipulate these
attributes vihen In fact he should have no knowledpe
concerning the lower level representation of a data class.
The polnt should be made, however, that due te the clean

syntactic representation of a class, It seems that the above
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fault could he corrected by sipnallinem an error during
compilation 1f one tries ton access a data attrlibute from

outside its respective class definition,

The unfortunate desipgn decislan to access objects
through polnters s not so easily corrected, As  was noted
earller during the discussion of PL/! (Chapter L), a polinter
Is data's answer to the control's goto. Especially since ref
does not explicitly say to wkat ohject 2 varliahkle may point,
It hecomes difficult at tlmes, for Instance during the usare

of qua, to tell where we came from In accessing a reiven

aohject,

The virtual facility of SIMULARY and the usage of
suhclasses prove useful in programming top-down by levels of
abstraction. Concerning subclasses, fies, 7-2 demonstrates
the ease by which we ean code the linear 1ist ahstraction In
SIMULABTY. This pregram  deserlhes stacks, queues, and
dequeues all as linear lists with badies but with different

list markers {e.r. top, front) and different operations.

Indeed, It seerms that reparding the representation and
organizatlon of data ahstractions, the desligners of SIMULAGT
should he npralsed faor their Insipht., The lanpuare provides
us with a gonod foundation for the development of a structured

programming lanfuane.
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class linear_llst(n,ul); intercr 11,m;
hecip char array boedy[n:ia];
cny linear_list;

linear_list glass stack;
20 -]“ i[l;q ’FJ- tDP;
procodyure push

Er\”-,: btac.'[\;

linear_list ¢class wueue}
beoin dinterer front,rear;
pruccdure enter

*E“F“HHFP remoave

ond qucue;

linear_list asE doqueue)

Lavns Loy il]tl]ﬁﬂ[‘ ]Cftfﬁnst;rif‘,ht“\@st;
arpeedurn insert

L*.rl\g;ng!!!rl’ tip 1 ote

cre deoueue;
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LcarcLusion

The purpose of this thesis has Yeen to study various
prograniing  languapes for tuo reasons: 1)to see what can Le
learned from analyzing the use of these languages in
conjunctien with a structurcd programnlng methodology; 2)to
determine if it is neccessary to develop a new language for
structured prograruing., The success of these languanes has
veen neasurcd in terms of thelr ability te represent a data

lIE!Stf’(ICtiun.

ldeally, Wi vanted a languarxe to  support a  type
abstraction nechanism that would Tnclude: 1)tke ability to
describe  an underlying representaticn wihich vould be unknown
to a user of thet type; 2)a nethod by uvhich noerations couléd
be defined within the abstraction. le also judred the
languages on iov vell & pronran represented  the conceptual

solution to the problew at hantd.

Sl raary
Ve Lesin this scction Ly susmarizine our (indings for
cach lanpauge. L/ was the first languase o analyzoed.

FLAY, while described os on all-purposc lanruarse, lirited the
user's ability te construct data abstractions. The stach
abstracticn had to Le pro;rammed as a procelure consisting of
declarations and entry points--corresponding tc 2 lower level

representation and operations, & ceneral solution to  the
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stack ahstraction (l.er. one able to handle A multiple number

of stacks) became a complex prograrm that was dIffleult hoth

to write and to understand,

For all of its power, then, PL/! ecannot be used as a
structured programming language--Its most bhasic fault helng
that of restricting the prograrmmer tn certain data types. An
attempt to circumvent thils limitation results in a program

that does not reflect the conceptual simplicity of a problem

solutlion.

The language Pascal wes relatively simple to understand
and wuse; furthermore, it oprovided us with the abllity to
construct data types,. However, this construction was
hasically syntactie and not semantic hecpuse we could only
descrihe a data abstraction in terms of a representation,

The oprratlions wern defined separestely from the type

definitlon.

Due to this restriction, our stack ahstractlion could
only he prorrammed as a definition of the data type stack
followed by procedure definitions which operate on a stack.
Unfortunately the result could nat be considered a
well-defined stack abstraction since the definition was not
closed. The representation of the stack was totally
accessible from anywhere In the propram and thus, operations

which manipulate the underlying representation of stacks
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Pascal is an inprovement over PL/1 in that it allows the
construction of dJdata types, It is necessary to conclude,

however, that Pascal s inappropriate as a structured

Programming language.

ELl was a poverful and complex language that introduced
several useful concepts. I't certainly permi tted us to
construct data types and analyze theso types with the uENERIC
facility., The ":.n Operator, when used In conjunction with a
data type definition, &1lowed tor the construction of a data
abstraction consisting of that definition and operations

vhich manipulzate the representction uf that definition.

Using  these features, we were able te construct g
program solution to the stack abstractlon, The wunfortunate
problem was that the uperaticns which menipulated stacks had
to Le written in ternis of  certain s¥stem  routines (e.p,
conversion, selection). Lach operation would then be invoked
in place of the corresponding system=defined routine. This
Progracming restriction made the Rrosram  difficult Loth to
construct and to understand., e also noted that by using the
iwysterious LOVES Yeature, the lower level representation of a
stack variable “as  accessible from outside the stack

abstraction definitiaon,
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The ability to construct data abstractions in ¢L1 is an

issue that was considercd by the CL1 designers. This fact

is
cvidenced by their introduction of the "::" operator.
llowever, the restriction regarding operations imposed on the

user when constructing o data abstraction makes it difficult,
if not impossible (i.e. when wore than five operations
exists), to desizn a given abstraction. [LI in Its present
stape cannot be considered o lanpuare well-suited for
structured programning; however, a serious study siiould be

made to investigzate how certain changes to FL1 could make it

appropriate for structured programriing.

SIMULAG7 provided wus with class definitions whereby
objects of a given class could Lc created and referenced.
Associated with cach object were certain attributes defined
Ly the class to vwhich the objecct belenzed. Thesc attributes
could be viewed in terws of a lower level representation  of
the object and operations which could ranipulate the

representation.

A program solving the stack abstraction prohlem was
constructed in & straightforward way and reflected the
conceptual solution to the problem. Stack objects could then
he penerated and referenced. Unfortunately, we found that
the representation of stack objects was accessible from

outside the class uefinition,
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The concept of class deflnitions certainly seems
analorous to the definltion of data ahstractions, It ig
Interesting ta note, thourh, that the desleners of SIMULAGRY
mUst not have thoupht of a class deflinitien In the same way
that we view a data abstraction., The hasie Alfference Is
that a ¢class s viewed as helne deflined by Its attrihute
list. This 1ist Includes parametor names, simple varlahile
names, and procedure IdnntTFiqrs. A Aata abstraction, on the
other hand, 1sg thourht of as censisting of a lownr level

representation and oneratinns whilch manipulate the

representatifon,

The SIFULARY view of the class defirition Is the cause
for our objection te SIMULAGT  as a structured preerammling
language, One is allewed to refarence anpy ohjert attrihute;
5¢ not cenly Is ane permitted to |nvele A class-deflned
operation, bhut one 1g also allownrd tn ACCRSS ANy part nf the
lower lavel Arscription of the ohjprt, The latter vielates

onnr of qur structured Prorramminge rriteria,

Concluding Pemarks

Suppose that we conslider the following auestlion: |f
only operator Attrihutes were made available outside the
class definitlon, would SIMULART he sultakle a5 a Sstructured

programmine lanpuare? Pur hellef Is that thls restrictlon

would he a3 simple change to the lancuapr, and that If the
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answer were vyes, then SIMULART would auallfy Aas A& structured

pragramming lanruare,

Morris(28) provides us with seme [Insickt Into answerine
this question, 0One of the most sericus dIifficultles which
arises Involves hinary operations, for Instance "equal'.
Consider the proklem of determining whether or nnot two stacks
are eaual., Ve vould Vlke to define "epoval" as an onerator
within the c¢class definftien for staek siven in fie, 7=-1,

Without paylng attenticn to the atove acerss restriction, the

pracram outlined In flre, 8=1 would solve the preklem,



ot . A

class stack(n); Inteper n:
begin Integer tan:

char array hndy[l:n];
procedure push

procedure pnp

char progcedure tep_element

Boolean procedure eaual(x); ref(stack) x:

hegin

1f top # x.tep thep eauzl := false
else hprin

Poolegn ra; Integer 1|:

fq 1= true;

I &= 1;

while 1<top & eq o
hepin

aq := (Hndy[i] = x.hnﬂy[P])'

[ zm 1%}

goc
end eaunl;
end ;Eank;




=158~

If s and t are drfined as stack ohirct references, then

the expression "s,eaual(t)" Invekes "eaual", The operator

“"equal", In turn, returns the PRoolean value true If the

stacks are eaual and false otherwlse. How consider any

solutlon to the "eaunl" operator whieh daes not violate the
above access restrictlien, In ceontrast to the solutlon just

presented, we are not allowed to use any expressions

Involving "x,tan" and “n.hndy[T] within the procedure

"equal". Instead o€ writineg "x.tep", we enuld eonstruct an

operator named '"size" such that whren we write “x.slze", the
value of "x.top" 1s returned, I'n order to replace
"x.hndy[l]", we micht huild an aperator, ecalline 1t "copy":
then the statement "y := x.rcepy" would invake 'econy" which,
In turn, would copy tte "hedv" af x inton the array variahle

"y". We could then procerd te analyze My" It should ke

noted that the "copy" aperator weuld alsn tate advantape of
the "slze" operator, This methnd of selutlon, however,
Involves makine chaneges to our orleipal definition of the
stack ahstraction merely to facilitate tke caonstruction of
“"equal'. The resulting proeram is alse unsatisfactory

hecause It 1s hoth mare complicated and 1rss efficlent than

the oririnal prorram rlven In fle, B-1,

Supnose that we relax our restrictlion hy saying that

from within a particular class, one can access nll attrikhutes

correspondling to any nhject of that class, Then, nsing our
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pPrevious example, while e would nat permit the use of
"t.top" outslde the stack class, 1t would he acceptable tn
write "x.top" from within, Nf rourse, thils frature would
Involve changing the implermentation ta handle thig particular
case. Even so, It seems that we could Imaeline problems where
the orlrinal data Abstractlon would have to he aurmented to

compensate for the partial access restrictlion,

The point tn he emphaslzed g thot with the Access
restriction, onerations within class definltions can only ke
deflined as unary aperators, Operations which are bhinary
(such as "equa1™) hecome difelcury, i+ net  Impossible, to

program or reaulre that  additlonal rules he added just to

handle them,

Another proklem encountered in SIMLART is the

following: Wo  mipght vrish  fFap net a1 operations te he

external, that Is arcessihle fram the outside of the class
deflnitlion, Considrr  onee araln  tha staeck ahstractlion,
Within 1ts class definition, we mickt consider Aeflinlne  an
"errar" nrocedurs which ecoutd hr called fram push and pop If

we try to refer to a stack hody lTocation which Is oqut of

hounds, While there I's & need tq refer to "errop" from

within the class drfinitinn af stack, there |s certalnly na
reason to permit "orrar"  from helne acressed outside the

class, e should ke akle tn spercify suhrautinesg Aas  heing
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external or Internal to an ahstraction,

Thus SIMULAG?, even with the acdded restriction of
1imiting outside access to operators, is nnt flexthle enoueh
to be completely sultahle as a structured propramming
languape., While SIMULAG? may be a start in the right

directlion, a new  language needs to ke developed feor

structured programming,

However, this lanruaee sheuld Incorporate what we have
learned from atterpting to use thrse current
lanpuapes--especially SIMULABT. Ntvlously, the ablility to
descrihe a data ahstractlon rmust ke a eentral cnncern of the
lanpuage desipn, Furthermore, aparatlenrs declared within a
data abstractlon should he descrihed 2as reutTnes which
manipulate the underlying representation of the type helng
deflined. (In contrast to SIMIAE?, "eaual" would he
constructed usling two parameters carrespon-ine to the
underlying representatlions of ctacks s and t.) Also within a
type ahstraction, one must he ahle tn spec!fy whether or not
a glven operaticon con he invobed from nutside the
ahstraction, A laneuare desipned around such features [s

necessary for use In ennjunction with strucrtured prograrminm.
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