
MIT /LCS/TM-55 

A CLASS OF 

BOOLEAN FUNCTIONS WITH 

LINEAR COMBINATIONAL COMPEXITY 

W. N. Hsieh 
L.H. Harper 
J.E. Savage 

October 197 4 



* 

t 

tt 

TM-55 

A Class of Boolean Functions with Linear Combinational Complexity 

By 

W.N. Hsieh, * t tt L.H. Harper and J.E. Savage 

September 1974 

Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139 
Network Analysis, Beechwood, Old Tappan Road, Glen Cove, New York 11542 

Department of Mathematics, University of California, Riverside, California 92501 

Division of Engineering, Brown University, Providence, Rhode Island 02912 
(During the preparation of this paper this author was visiting the Department 
of Mathematics, Technological University Eindhoven with the support of a 
Guggenheim Fellowship and a Fulbright-Hays Award.) 

Research reported here was supported by the National Science Foundation 
under research grant GJ-34671 at M.I .T., Project MAC, and under grant 
GJ-32270 at Brown University. 



Abstract 

In this paper we investigate the combinational complexity of Boolean 

n 
functions satisfying a certain property, Pk . A function of 11 variables 

,m 

has the Pnk property if there are at least m functions obtainabl e from ,m 

each way of restricting it to a subset of n - k variables. We show that the 

n 7n- 4 
complexity of a P

3 5 
function is no less than -

6
- , and this bound cannot 

' 
be much improved. n 

Further, we find that for each k, there are Pk 
2

k functions 
' 

with complexity linear inn. 
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I. Introduction 

The size of combinational networks, or equivalently the length of 

straight-line programs, provides a measure of complexity for Boolean functions 

which reflects the difficulty of computing them (cf. [Sa72]). A well-known 

result due to Shannon [Sh49] and Lupanov [Lu58] establishes that almost all (in a 

precise sense which we shall not describe) Boolean functions of n variables 

n 
have combinational complexity assympototic to 2 /n. Ehrenfeucht [Eh72], 

Meyer (Me74a] and Stockmeyer [St74] have shown recently that particular Boolean 

functions which encode finite portions of a variety of decision problems from 

mathematical logic and automata theory have exponential combinational complexity. 

However, the proof technique used there does not appear likely to yield lower 

bounds on the combinational complexity of functions whose complexity is bounded 

by polynomials in the number of variables. 

In this paper we investigate a property which reflects a way in which a 

function depends on subsets of its variables, and we obtain small but non

trivial linear lower bounds on the combinational complexity of functions with 

the property. Similar properties have recently been investigated by Schnorr 

[Sc74], who also obtains small linear lower bounds on combinational complexity, 

and by Neciporuk [Ne66], who obtains roughly quadratic lower bounds on the 

size of Boolean formulas. 

A f unction of n variables has the Pnk property if there are at least ,m 

m different functions obtainable from each way of restricting it to a subset 

of n-k variables. (Precise definitions appear in Section II, below.) Let 

n 
c(i~k ) be the least number of two input gates sufficient to construct 

,m 

combinational networks for one of the functions in Pn 
k,rn· 
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In Section 

we 
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n n 
IIlwE' prove c(S\ 

2
) = n- 1 and c(6\ 3) = n. In Section IV , , 

~ 7n-4 by deriving simple structural constraints on networks 
6 

computing P~ 
5 

functions and then translating these constraints into a linear 
, 

prograrroning problem. ln Section 
n V we show that c (f>
3 5

) :-:;; (20n- l)/17 by , 

exhibiting networks for P 3 5 functions . 
' 

. 7n- 4 ~ Since -
6
- ~ 1 . 167n and 

20n- l 
17 

~ 1 . 176n, the bounds are fairly c l ose . In SectionVI we consider the 

6'\ 
2
k functions. He present a simple Pk 2k function due to M. Rabin. Using 

, , 
this function as the basis, we then show constructively that there are 

infinitel y many Pk 
2

k functions with linear complexity. 
' 

II . Definitions and Preliminar ies 

We r eview the formal definitions of c ombinational networks and the 

functions they compute . 

A binary combinational network, or simply a network, is a directed node-

labelled acyclic graph '7l such that 

(i) each node of ?2 has in- d~gree either O or 2, and arcs entering a node 

of in- degree two are ordered so we may speak of the first and second input 

arcs of a node, 

(ii) each node of6h with in- degr ee two i s labelled with a Boolean_ function 

of two ar guments, and each node with in- degree zero is labelled with a distinct 

var iable, and 

(iii) there is a unique node with out - degr ee O which is called the output 

node of?l. 

A node o with in- degr ee t wo is called a gate . The node in'n that connects 

too thr ough the first (resp. second) i nput arc to Q is cal led the first 

(resp. second) input node to Q. Simi l arly, the out- going arcs from a node W 
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are called the output~ from w, and the nodes that have Q as an input 

node are called the output nodes of cp. Suppose cp and o/ are nodes in ll'h, 

such that there is a directed path in 72 from cp to o/ , then cp is called a 

source node to y, and o/ is cal led a successor node to cp. We consider cp to be 

a source node and a successor node to itself. A gate with out-degree k is 

represented schematically in Figure 1 with the associated Boolean function 

written inside the half-disc. 

k 

R 
Figure 1. ~ gate with fan-out k 

A node with in-degree O is called a variable node. A variable node with 

out-degree k is represented schematically in Figure 2. 

k 

V 

Figure 2. A variable node with fan-out k 

In a network with variable nodes labelled x1 , •.. ,xn' the variable node 

labelled with variable x. is said to compute the projection function 
1. 

U~( x
1

, •.. ,x) = x .• Proceeding inductively, a gate cp labelled with a 
1. n i 
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Boolean function h of two arguments is said to compute the function 

f (x1 , •.• ,x) = h(f (x1 , ..• ,x ), f (x1 , ... ,x )) where cp
1

, co2 and f , fM 
cp n cp1 n cp 2 n Ci'\ 'r'2 

are the first and second input nodes to cp and the functions they compute. 

The network as a whole will be said to compute the function associated in 

this way with the output node. 

For example, the network'h
1 

in Figure 3 computes the function 

f(x1,x2,x3) = x1 A (x2 EB x
3
). (We use EB to denote sum modulo 2.) Note that 

the network '°n ? also computes f. 

n 1 n2 

Figure 3. Two networks for x
1 

A (x2 EB x
3

) 

The combinational complexity, c(n), of!! network'/2, is the total number 

of gates in ·?z. The combinational complexity, c (f) , of.!! finite Boolean 

function f, is the minimum of c(1l), where '/1, ranges over all networks 

computing f. Also , the combinational complexity, c(~) , of~ family~ 

of Boolean functions is the minimum of c(f), where f ranges over 

all functions in~-

a . € (0,1} is called an assignment of X. We also use A(x.) to denote a., 
l l l 

the value assigned to xi by A. For a Boolean function f, f: is the function 

of the variables not in X obtained from f by setting each x. € X to a. . We 
l l 

use f fX} to denote (f: : A is an assignment of X}, and (f! 'X} to denote the 
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family ( fY,X: A is an assignment of X). (This latter notation is used only B,A 

wen an are isJoint. e say_ epen son x r h X d Y d . . . ) W f d d 1· f fxO ..1 fxl • .Y_ill is the 

set of variables upon which f depends. 

De f inition; n . A Boolean function f is said to have the Pk property if 
-.-:..:..c!! - - --

n ;:: k, I\. ( f) I = n, and for every set X of k variables 

Note that f has n the P1 2 property if and only if , 

in V( f), I ( l 1 I 
lv(f) I = n. 

~ m. 
t 

We shall use 'f € Pn 'or 'f is Pkn ' to mean f has the Pkn 
k,m ,m ,m property. 

?: ,m wi ll deno t e the family of all Boolean functions with the P~,m property 

Networks are said to be Pn if they compute functions 
k, m 

with this property. 

tt 
Lerrana 2.1. ~ f € pn 

k-1, f m/2 l. 

Proof : Let f be a Boolean function with !V(f)i = n. If ff P~-l, fm/21 , then 

there is a set Y of k-1 variables in V( f) such that I ( fy} I :;; fm/21 - 1. Hence, 

!( f ~ 'y} I :;; fm/21 -1 for any set X of variables and assignment A of X. But 

( x, Y ( x 'y} U ( fx' y 1 h t t then for any x in V(f) - Y, f } = f 0 1 r as a mos 

2 ( fm/ 2 l-1) ~ m-1 members, i.e. f ¢ Pnk • 
, m 

Isl denotes the cardinality of a set S. 

Q. E.D. 

t 

t t fz l denotes the least integer greater than or equal to a number z. 
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The Weak Duality Theorem in linear programming will be used in Section 

IV to obtain a complexity lower bound for P; 
5 

functions. For the reader's 

' 
convenience we state the Theorem below. 

Suppose the primal problem (P) is to find real values for x
1

, ... ,xn which 

n 
minimize z = t C j X. 

j = l J 

n 
subject to Z a .. x = b. 

j=l lJ j l 
for i E. E, 

n 
z a .. X > b. for i E E ' j =l lJ j l 

r.' ... IJE = tl,.,.,m } 

and X. > 0 for i ~ P, 
1 

x
1 

unconstrained in sign for i E P, 

P VP= tl, ... ,n ) 

Then the duu l ( 51") to ( ~ ) is to find real values for 

y ·,, hich 
m 

m 
maximize V = z y. bi· 

. 1 1 1= 

subject to C. 
J J ~ p' 

j E P, 
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and yi > 0 for i E E, yi unconstrained in sign for 

i E. E. 

Theorem (~eak Duality) 

y = y ) 
m 

(~- J, the n 

z = 

are feasible solutions to 

n 
}: c.x.> 

j=l J J 
Y. b. = v 

l l 

(0 ) and 

For a reference on duality in linear programming, see any standard text 

on linear progranuning, for example, Lasdon [La70). 

III. Values for 

n 
In this section we investigate c(P

1 2
) and 

' 

n 
c(P2 3). By simple , 

n 
combinatorial arguments, we show that c(P

1 2
) 

, 
n 

~ n-1 and c(P
2 3

) ~ n. 
' 

We then 

demonstrate by construction that these bounds are indeed realizable. 

Lemma 3.1. (i) f € P~ 
2 
⇒ c(f) ~ n-1. 

, 

(ii ) f € P~ 3 ⇒ c(f) ~ n. 
' 
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Proof: Let f be a Boolean function with lv(f) I = n. Let 11, be a network 

computing f, le i the number of gates in•??. and !vi the number of variable 

nodes in'12. Obviously !vi ~ n. 

Note that the total number of input arcs in'il. = the total number of 

output arcs in'h. Also, every gate in'h has two input arcs, so the total 

number of input arcs in7l = 2 jej. 

(i) n Suppose f € P
1 2

. By definition every node except the ou t put node 
' 

of1l has out-degree ~ 1. Thus the total number of output arcs in ~h :--
(the total number of nodes in'il) - 1 = lei+ lvl - 1 ~ lei + n - 1 . 

~ l e i ~ le / + n - 1, and hence c(f) ~ lei ~ n - 1. 

Thus 

(ii) n Suppose f € P
2 3

. Then '12 cannot have a "subnetwork" of the form in , 

Figure 4. k 

A 
Figure 4. A Forbidden subnetwork for P

2 3
. 

----=...i....:: 

That is, if two variable nodes are inputs to the same gate, then at least one 

of them is also an input to some other gate. For if x., x. are input nodes to 
l. .1 

the gate 9 only , then we can obviously express f(x
1

, ... ,xn) as 

h(~~(x.,x.), y 1 , . .. ,y 2) where h(z,y , .•• ,y 
2

) is some Boolean function of 
't' 1. J n- 1 n-

n-1 variables, fcp is the function labelling gate cp , and y
1

, ••. ,yn_
2 

are in 

xi,xj z z z 
(x1 , •.• ,xn) - ( xi,xj). Hence (f } c (h} = (h

0
, h

1
) and has cardinality 

at most two, contradicting the assumption that f € P
2 3

• 
' 

Now since networks are acyclic, there is in any network one gate both of 

whose input nodes are variables. Thus since1/Z. cannot have a subnetwork of 
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the form in Figure 4, there is at least one variable node in Sf)_ with out-degree 

two. Hence the total number of output arcs in ·92 ~ (total number of gates)+ 

(total number of variable nodes+ 1) - 1 = lei + lvl ~ lei +n. 

Therefore 2IG/ ~ !cl + n, and so c(f) ~ lei ~ n. 

Theorem 3. 1 . 
n 

c(P
1 2

) = n - 1. 

' 

n 

Q.E.D. 

Proof: n EB x. is obviously P
1 2 and realizable with n-1 gates labelled with 

i=l 1. ' 

the function S. Q.E. D. 

We now proceed to develop the upper bounds on c(P2 3
). , 

Lemma 3.2. Let h be a Boolean function, let g(x,y) be a Boolean function which 

depends on the variable y, and suppose f = g(x,h) with x ¢ V(h). Further, 

suppose Xis a set of variables in V(h) and A1,A2 are assignments of X such 

Proof: Since hx 
Al 

B of V(h) - X such 

X i hA, we can by 
2 

that hX,V(h)-X 
A

1
, B 

synnnetry suppose that there is an assignment 

= 0 and hX,V(h)-X = 1. But then 
A

2
, B 

g(x,O) i g(x,l) = fX,V(h)-X since g(x,y) depends on y. 
A

2
, B 

X X 
Hence f i fA . 

Al 2 
Q.E.D. 

Lenuna 3. 3. Suppose f is p2 3 such that fy i 0 for any variable y and , a 

constant a. Let x be a variable not in V( f). Then x /\ f is also p 2 3 with 
' 

the property th.it (x /\ f) y 'f (x /\ f) 
y 

for any variable y . 0 1 
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Proof: First we show that (x /\ f) ~ f. (x /\ f)i for any variable y. I [ y = x, 

X X 
then (x /\ f ) 1 = f, while (x /\ f)

0 
= 0. But f I- 0 because f is P 2 , 3 . If 

y I- x, then (x /\ f) y,x = 0 while (x /\ f) y,xO 1. Hence again (x /\ f ) YO l-o ,0 1, 
y 

( x /\ f) o· 

Now we show that x /\ f is P2 3 . Let X be a set of two variables in 
, 

V(x/\f);weshowthat !((x/\ f) X11 ;;;:3_ IfX CV( f), then !( ? 1 1 ~ 3 

because f is P2 3 , and hence by Lemma 3.2, ! ((x /\ f/}I ~ 3. , 
X y y 

If X = ( x,y} for some y E: V(f), then ((x /\ f) } = ( f 0 , f 1 , 01 . Now 

y € V(f), so f~ f. f i · Also, by assumption, fi and f i are non-zero. Hence 

there are three dis t inct members of ((x /\ f)x}. Q. E. D. 

Lermna 3. 4. y -y Suppose f is P2 3 with the additional property that f 0 I- f 1 , 

for any variabl e y. Let x be a variable not in V(f). Then x EB f is also 

P2, 3 such that (x EB f) ~ f. 0 for any variable y and constant a. 

Proof: First note that (x EB f)y f. 0 for any variable y and constant a because 
a 

f is nonconstant and so in order to set x EB f to a constant we have to set x 

and at least one variable inf to constants. 

Now we show tha t x EB f is P2 3 . Let X be a set of two variables in , 

V(x EB f); we show i( Cx EB f )X} I ~ 3. 

If X c V( f) , t hen I (fX} I ~ 3 by assumption. Thus by Lerrnna 3. 2 

I ( ( x EB f) X} I ~ 3. 

If X = ( x, y} for some y € V(f), then ( (x E3 f/} = ( fy} U ( °2'} . But 

I (fy} I = I ( P'1 I = 2 since y E: V(f), and (fy1 n (P'1 = rJ by assumption. 

in this case. Q. E.D. 
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Theorem 3. 2 . c(P; 
3

) = n for n ~ 3. 
' 

Proof: By Lemr,1.1 3.1, it suffices to exhibit a f'11 
(unctfo11 n•.iliz;1hl1• i11 11 

2,3 
gates for every n ~ 3. 

Let f3 be the function computed by the network in Figure 5. 

Figure 5. 3 
A r->2 3 network 
-~ ----

It is easy to verify that f3 is P~,J and f~ i O for any variable y and 

constant a. 

For n ~ 2, define f 2n = f 2n-l Ax where xis a new variable not in V(f
2

n_
1
), 

and fZn+l = f 2n 91 y where y is a new variable not in V(f2n). Then by induction 

n using Lemmas 3.3 and 3.4, it is obvious that fn is P
2

,
3 

and c(fn) :<;; n for all 

n ~ 3. Q. E.O . 

n IV. A Lower Bound for c (P 
3 5

) . 

Let f be a P; 5 function, ?i a minimum gate network computing f, V the 
' 

set of variable nodes in 1l. and G the set of gates in 'il.. Assume f depends on al 1 

its arguments so V = V(f) and lvl = n. Note that for any gate Q, 

the two input arcs to Qare from different nodes, for otherwise with appropriate 
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modification to the Boolean functions associated with the other gates, we 

can eliminate q, and iz would not have had a minimum number of gates. 
,,, 

We classi fy the gates in 12 into three types: 

~ has out-degree k, and the first and second input nodes to Qare variable 

nodes with out- degree p and q, respectively. With appropriate modification 

to Q if necessary, we can suppose that p ~ q (if p < q, we can use Q' to 

replace Q, where ~•(a,b) : Q(b,a); the resulting network still computes f). 

(2) ~ is of nE- type, or Q € B~, where p 2 1 and k 2 0, if w has out-degree k, 

one of the input nodes to Q is a variable node with out-degree p and the 

other input node is a gate. By the same reasoning as in (1), we can suppose 

that the variable input node is the first input node. 

(3) Q is of Ck-type, or w € Ck' where k 2 0, if Q has out-degree k and both 

input nodes to Qare gates. 

The Apkq' B~ and Ck gates are illustrated schematically in Figure 6. 

k k k 

Fi gure 6. Three gate types 
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Lerrnna 4.1. The following restrictions on the local structure of7J. must hold: 

(a) 

(b) 

1 1 
No A k - t ype 

1 
If a B

1
- type 

gate occurs in'h, i.e. no sub-network of the form in Figure 4. 

1 gate Q is an input node to another B
1

- type gate ❖, then v 
1 

cannot be an input node to Bk-type gates, fork~ 0, i.e. no subnetwork of the 

form in Figure 7. 

Figure 7. Condition (b), a forbidden subnetwork for P
3 5 --~ 

(c) An Ai'
1
-type gate cannot be the input node to a B!-type gate, i.e., no 

subnetwork of the form in Figure 8. 

k 

Figure 8 . Condition (c ) , a forbidden subnetwork for P
3 5 ----- ------ --~ 

(<l) A variable node of out - degree 2 cannot be an input node o f both an 

2 1 2 1 
Ak' -type gate .md an A ~ - type gate for j ~ 0, k ~ 0, i.e. no subnetwork 

.I 
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of the form in Figure 9. 

k 

Figure 9. Condition (d) , a forbidden subnetwork for ~J 3 5 
----- ------ -- ___::_i_::_ 

Proof: 

In Lemma 3.1 (ii) we proved that condition (a) was satisfied by P2 3 , 

networks. But P
3 5 

implies P2 3 
by Lemma 2.1, so (a) is proved. We now 

, ' 
prove (c), leaving the similar proofs of (b) and (d) to the r~ader. 

Suppose Q is an Api 
1
-type gate in 71 and Q is an input node to a 

B~- type gate v in~. Let ~,xi be the variable input nodes to Q and xj the 

variable input node to V• Then we can express f(x1 , ..• ,xn) as h(fV(xj' 

fQ(~,xi)), y1 , ••. ,yn_ 2) where h(z,y1 , •• • ,yn_2) is some Boolean function of 

labelling Q and o/, and n- 1 variables, fQ and fV are the functions 

Y1 , • •• , Y 2 E: ( x1 , •.. , x 1 - ( x. x. ) . Hence 
n - n 1. J 

x. ,x. •¾ z,~ 
( f 1. J l c { h } which 

has cardinality at most four (since ther e are only four possible assignments 

to (z ,xk)), contradicting the assumption that f is P
3

,
5

• Q.E.D. 

From the restrictions (a) - (d) in Lennna4.l we will be able to deduce 

that c(f) = lei ~ 7n-4 _ Note that (a) - (d) only concern the local 
6 

connectedness structure of?(. These local constraints imply linear inequalities 

relating the number of Apkq' B~ and Ck- type gates in'n. which we use to derive 

our lower bound on c(f). 
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Let apkq' bt and ck be the number of Apkq' Bt and Ck type of gates 

in ii. respectively. Thus 

lei I: bt + I: ck. 
p~l, k~O 

(II) 

k~O 

Some of the variables in equation (I') can be eliminated. Note that 

1 1 
by Lemma 4 .l (a), we have~, = 0 for all k ~ O. Also, in any network, 

variables entering the unique output node must obviously have out-degree 

exactly one, so ag,q = 0 for p ~ q ~ 1 and bb = 0 for p ~ 2. 

With these variables eliminated, we require a simplifying notation for 

sums and unions over indices p,q,k. When the range of k is k ~ 1, mention of 

this range will be suppressed, as will be the range of p and q when this 

range is defined by the pair of conditions p ~ q ~ 1, p ~ 2. 

Thus, under these conventions equation (I') becomes 

From Lemma 4.1, we obtain the following additional inequalities. 

Lemma 4 . 2. ~ 2,1 
u a k 

(I) 

(II) 

Proof: 2 1 
An A k -type gate has a unique variable input with out-degree 2. 

Thus we can define a mapping 

2 1 
g : u A k ➔ G 

by g(~) = co' if the input variable node to Q of out-degree 2 is also an 

input node to CD '. 2 1 By Lemma 4.l(d), ~• cannot be an A k -type gate, so Q ' is 

either of type Apk
2

, p ~ 2, k ~ 1, or of type B~, k ~ 1. Thus if we let 
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K = I J APk
2 

U u n~, Lhen Range(g) c K. 
p?2 

Since each gate has at most two variable input nodes, 

1 p 2 2 jg - (rp')i ~; 2 for all 9 1 
E: K . Moreover, if CD' is in I J A k U U Hk' then 

p:--- 3 
Q' has only one variable input node with out-degree 2, so jg - l(t+"l') j ,, 1. 

- 1 2 2 
Thus g (Q') = 2 only if<;?' E: A k for some k 2: 1. 

, ,, - 1 • I ) l The inequality (11) now follows directly: Range(g) c K, so l ,, ti;'.> ,
0

, € K 

gives a partition of Domain(g) = U A2k1, and hence 

~ a 
2 k 1 

= IU A 
2 k 11 = I U g -\Q') I = E I g - l (co ' ) I ~ 

Q'E:K co'E:K 

Q. E.D . 

Lemma 3.3. b ~ s E b 
1 

+ 2 ( !: b~ + 2 ~ c - 2) a P' 
1 

) 
k'fl k p2:2 k2:0 k p2:2 l 

(III) 

Proof: 1 
A B1-type gate has only one output arc, so it has a unique output node. 

1 Thus there is a unique node Q' which is the first non- B
1 

successor node of a 

1 
B1-node CD. 

- 1 _ 1 1 1 
I.et B1 '-- B1 be the family of B1-type gates which have Bk-type gates, 

1 k # 1, as the first non-n
1 

successor node. 

Let ~i c Bi be the family of B~-type gates which have nt- type, or Ck- type 

1 gates, p 2: 2, k 2: 0, as the first non-B
1 

successor node. 

Clearly Bi = Bi U ~i, and Bi n !~ = ~. 
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Define 

g 

by g(Q) = Q 1 if Q 1 is the first non-Bi successor node of Q. No te that if 

-g(~) = Q', then by Lemma 4.l(b), Q is in fact an input node to Q'. But a 

1 
Bk-type gate has only one input node which is a gate. Hence g is one-to-one, 

and so 

y is an arc from a gate to a B~-type or Ck-type gate , 

p ~ 2, k ~ 0) . 

Each B~-type gate has one input arc connected to a gate, while a Ck-type 

gate has both input arcs connected to gates, so 

JG ! L, bt + 2 I: ck. 
p~2 k~O 

We can define a mapping 

z 
by g(Q) = y if y is the input arc to the first non-Bi successor node Q' of o 

such that y is in the path from Q to Q'. By Lerrana 4.l(b), if y s G, then 

-1 
g (y) has at mos t two members , so 

node. 

An AP'
1

- type gate Q also has a unique output arc and so a unique output 
1 

1 . 
By Lemma 4.l(c) , t he output node of Q cannot be a Bk-type gate , so 1t 

has to be either a Ck-type or a B~-type gate for q ~ 2 and k ~ O. Hence the 

output arc of Q is in G., and we can define a one-one mapping 
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h 

by letting h(m) be the output arc of~- Thus 

>' p,l 
" a l 

p?.2 
lh(UAPi

1)1. 
p?.2 

. 1 Also, if y E: ,§, (_~
1
), then y is 

1 the output arc of some B1-type gate, so 

p 1 l 
y f. h( U Ai). Hence ~(A1) 

p?.2 
c G - h( U Ap'l), and so 

p?.2 1 

I 1/I .--; 2 IE,(~,~)I ~ 2( IGI - lh( u Ap' 1 1) 
~l ...,.2 l p~ 

2( ~ bp + 2 6 C -
:r, P, 1) 

k k?.O k 
a 1 • 

p?.2 p?.2 

Thus we conclude that 

bi= IB!I = !Bil + l,~~I 

~ 6 bt + 2 ( 6 b~ + 2 6 c - :r, a P' 
1) 

k#l p?.2 k~O k p?.2 l 
Q.E.D. 

Lerrona 3.4. + 6 (k-l)bk + LJ(k-2)ck = O. 
p?.l k?.0 

(IV) 

Proof: Note that total number of output arcs from gates= 

;. kb~+;, kck. 
p?.l 

On the other hand, one input node to a B~-type 

gate is a gatet and both input nodes to Ck-type gate are gates. Since each 

arc from a gate is both an input arc ang an output arc, the total number of 

output arcs from gates= total number of input arcs that come from gates= 

L b~ + 2 6 ck. Thus 
p?.l k~O 

;. kapkq + t kbt + Li kck 
p?.l 

bl+ 6 bp + 2 z ck' and (IV) follows. 
O p?.l k k?.0 

Q.E.D. 
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Lemma 3.5. n = lvl = total number of variable nodes in 12 

= ~ cl + l)ap,q + bl + I:.! b~. (V) 
p q k O p~lp 

Proof: We assign weights to arcs in ·n as follows. Each output arc of 

bl d . h d . . d · h l d h a varia e no e wit out- egree pis assigne weig t - , an every ot er 
p 

arc is as signed weight O. Evidently the sum of weights over the output 

arcs from a variab le node is p,l = 1, and the sum of weights over all 
p 

arcs is n. 

A
p,q 

Now, an k -type gate~ has two variable input nodes, one with out-degree 

p and the other with out-degree q, and so the sum of weights over input arcs 

to cp is l + l. 
p q 

gate is 1 
- and p' 

Similarly, the sum of weights over input arcs to a B~-type 

the sum of weights over input arcs to a Ck-type gate is O. 

Hence we also have the sum of weights over all arcs 

(sum of WP.ights over all input arcs to~) 

1: <l + l) + 1: 1 
+ !: 0 

AP, q 
p q 

BP 
p 

Ck 
k k 

= 1:cl + l)ap,q + bl + ;. .!., bp' and (V) follows . P q k 0 p~lp k 
Q.E.D. 

Finally, since 12. has only one node (the output node) with out-degree O, 

C ( f). 

b
1 + c = 1 0 0 

(VI) 

With inequali ties (I) - (VI) we are now ready to find a lower bound for 
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Theore~ . . ~n 7n- 4 If f is u- 3 5 , then c(f) ~ - 6-. 
' 

lToof Suppose f is ~,
3 
~ 

5
, 1)1 is an optima l network 

computing f, G is the set of gates 1n 'ft , and a 1>k,q, bp 
k 

and ck are the number of Apkq , Bk and Ck type gates in ?l 

p .:::_ q .:::_ l, k > 0 , Then c(f ) = /GI , and n, sat isfies 

inequalitie s ( I) - (VI) above. Hence if z* is the z - value 

of the optimal •solution to the followin6 linear program 

( ~; ) , th en c ( : ) > z * . 

Minimi ze z = 

subject to in equal ities (II) - (VI) above and also 

ap,q ~ 
k 

o, for p ~ q ~ 1 , p ~ 2, k ~ 1. 

bl ~ 
0 0, 

hp~ 
k 

0 for p ~ 1, k ~ 1, and 

ck ~ 0 for k ~ 0. 

In fact, by th e Weak Duality Theo r em, if vis the 

v - value of any feasible solution y to the dual ( ~fr ) of 

( 'Y) , then c(f) .:::_ z* .:::_ v. Hence we only need to find 

a feasible solution to the dual (,9-) . 

The dual ( S.';) of ( ~) is as follows . 
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( s) Maximize V = ny4 + Y5 

subject to 

- 2y2 + Y3 + 
3 < 1 (a2 ,l ) - yl zY4 - 1 

(1 + 1 1, p~) (ap'l) 
-2y2 + Y3 + p)Y4 < - 1 

kyJ + 3 < 1, k>2 (a2kl) 
- yl 2Y4 -

(1 + 
1 1, P?), k~2 (ap'l) 

kyJ + p)y4 < - k 

2yl ky 
3 

+ Y4 < - 1, k>l (a2~2) 

1 1 s 1, (ap,2) 
Y1 ky) + ( - + -)y4 p~J,k~l p 2 k 

1 1 
1 ' (ap'q) 

ky) + ( p + q) YLi. < p~~J , }:~l - k 

Y2 - Y3 + Y4 + Y5 < 1 bl ) - 0 

-Y2 + Y4 < 1 ( bl - 1 

Y2 + (k - l)yJ + Y4 < - 1 ' k>2 ( bl 
k 

) 

Y1 +2y2 + (k-l )y) + iY4 
,., 

< 1, k>l ( 
,:_ 

) - bk 

2y2 + (k -l )yJ + l 
bp "j/4 < l, p~J I k~l ( ) - k 
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< 1, k>l 

unconstrained in sign. 

A feasible solution to (.i)) is 

- ( It) YJ - -1/J, y4 = 7/6, Ys = - 2/J } , which gives 

( -2/J) = (?n-4)/6. Thus c(f) > v = (?n -4)/6, 

v = n(?/6)+ 

Q.E.D. 

ln fact, the z*-value of the optimal solution to 

( CV ) is (?n -4)/6. If set all variables except 2,1 l we a 1 , bo, 
bl 

' 
b2 and cl to 0 ' and make all the ineq ual it ie s into 1 1 

equalities, then ( CP ) reduces to 

z* 2,1 + bl +bl+ 2 = a 1 bl+ cl 0 1 

subject to 
2,1 

+ b2 
0 ' a = 1 1 

2 2,1 + bl bl 2 + 4c
1 - a 1 + 2b

1 = 0' 0 1 

2,1 bl 
0 ' a l cl = 0 

(*) The values corresponding toy of the left-hand side of 
the constraints in ($-) are, in order, = 1, ~ 8/9, ~ 1, 
~ 8/9, ~ 1, ~ 13/18, ~ 4/9, = 1, = 1, ~ 1, ~ 1, ~ 13/18, = 2/3 and~ 1. 
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J 2,1 
+ bl + 2a 1 0 

bl 
l + ~b2 

2 l = n, 

bl = 1. 0 

and all variables are non-negative. 

Solving ~he above system of linear equations, we 

obtain a
2i1 

=bf= c 1 + 1, b~ = 1, b~ = 4c 1 + 1, and 

, so z* 

'rhe optimal solution to ((?) contains some important 

clues about the kind of gates to use in constructing 

small networks for @3 ,
5 

functions. The "low-cost• (P
3

,
5 

networks described next were discovered using these clues. 

We remark that our lower bound does not take into account the labels 

of (operations performed by) the gates. Attending to these labels may 

yield additional constraints on the numbers of different kinds and connections 

of gates, and may thereby yield a slightly improved lower bound. However, 

such an analysis appears to be quite tedious, and as the results to follow 

will show, our bound cannot be much improved. 
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In this section we develop a procedure for generating new P 3 5 functions , 

and networks from given P
3 5 

functions and networks. By an argument similar , 
n 9n-5 

to the one used in Theorem 3.2, we prove in detail that c(P3 5) $ - 7-, 
for infinitely many n; we also indicate how to obtain a slightly better 

upper bound of (20n-l)/17. 

Lemma 5.1. Suppose f
1

, f
2

, g
1 

and g2 ar e Boolean functions such that 

f
1 

I f
2

, gl I 0, g
2 

f O and (V(f
1

) U V(f2)) n (V(g1) U V(g2)) = 0. Then 

fl /\ gl 1 f2 /\ g2. 

Proof: Let F = V(f
1

) U V(f2 ). Since f
1 

I f 2 , we can, by symmetry, suppose 

that there is an assignment A of F such that 

F g
2

)A 1 A g
2 

= g2 . But by assumption g2 

is a non-zero function, so (f
1 

/\ 
F F 

gl)A 1 (f2 /\ g2 )A and hence 

Q.E.D. 
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Lerrana 5.2. Suppose f and g are such that V(f) n V(g) = 0 and fx gx are 
a' a 

non-constant for any variable x and constant a. Then (f Al I- (f Ag)~ 

for any set X of two variables and (not necessarily distinct) assignments 

A,BofX. 

Proof: Let X be a set of two distinct variables and A,B assignments of X. 

Since V(f) n V(g) = 0, there are only two possibilities: either (1) 

lv(f) n x i = 1 and lv(g) n x i = 1, or (2) V(f) n X =~or V(g) n X = ~-

case 1. lv(f) n x i = 1 and lv(g) n xi = 1. 

...x vcf)n x ...x 
In this case fA = f a for some a€ {0, 1) , so by assumption FA 

is non-constant. Similarly g~ is non-constant. Thus there is an assignment 

D of V(f) - X such that ~,V(f);X = 0, and hence 

)X, V(f)-X _ ;<, V(f)-X A gX = O. On the other hand, 
(fAgA D - A D A , , 

(f
" )X,V(f)-X = -...x,.V(f) -x v - x , 0 b ....x,v(f)-x 
" g B D r D g B -:,.: ecause rB D is a constant while 

-X gB is non-constant. 
X --X 

Hence we conclude that (f A g) A I- ( f A g)B. 

Case 2. V(f) n X = 0 or V(g) n X = ($. 

By symmetry we can suppose X n V(f) = ~- Since fx is non-constant, 
a 

neither is f itself, so there is an assignment D of V(f) such that 

1. Hence, we conclude that (f Ag)~ I- (f Ag)~. Q.E.D. 

Theo~ 5.1: Suppose f and g are P3 5 functions such that V(f) n V(g) = 0 
' X X and f, g are non-constant for any variable x and constant a. Suppose 

a a 

further that y is a variable not in V(f) U V(g), and h = y '1l ( f Ag) . 
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Then h 1·s .., lso O a11cl hx 1·s t t f · bl d ... , '3, 5 a non-cons an ·or any var1a e x an 

constant a . 

Proof: Let X be a set of three distinct variables in V(h). There 

are two cases: Either (1) y f. X or (2) y € X. 

Case I. y ¢ X. 

By Lennna 3.2, it suffices to show that l(( f A g)X} I ~ 5. There 

are two sub-cases: 

(a) X C V(f) or X C V(g ) , and (b) x n V(f) -I 0 and xn V(g) -I 0. 

Case l(a). X C V(f) or X C V(g). 

By symmetry we can suppose X c V(f) . Thus ( (f A g/} = (? A g} . 

But from the assumption, I ( ? }I ~ 5, so by Lemma 5.1, I (? A g) I ~ 5 . 

Case l(b). X n V(f) -I~ and X n V(g) #- ~-

By symmetry we can suppose Ix n V(f)I = 2 and Ix n V(g) j 1. Let 

X n V( f) = [xl,x2) and X n V(g) = ( X3) • 

f is P
3 5

, so by Lennna 2 .1, it is P
2 3

, and thus I ( /1 'x2: I ~ 3. , 
' 

Let Al, A2, A
3 

be assignments of (xl' x2) such that 

(i) 
xl,x2 xl, x2 xl,x2 

are distinct, and f A f A ' f A 
1 2 3 

(ii) 
xl,x2 

o, 
xl,x2 

-Io. f A -I f A 
2 3 
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By Lemma 5.1 we have 

(I) 

for P, q E: [1,2,3), p -1- q and a, b E: (0 ,1). 

Also, by Lenuna 2.1, g is 6\ 2' 
X3 

-1-
x3 

Again by Lemma 5.1, so g
0 gl . , 

we have 
xl,x2 

/\ 
X3 

-1-
xl,x2 

/\ 
x3 

f A go f A g 1 p 
q 

for P, q E: ( 2, 3} • 

Hence the following five functions in ( ( f /\ g/) 
xl,x2 

= ( f /\ 
X3 

g 1 

are distinct: 

Case 2. y E: X. 

Let X = ( y) UY where Y c V(f) U V(g); then hX = ((f /\ g)y} U (( f /\ g)Y}. 

Note that Case 1 in fact shows that f /\ g is P
3 5

• Thus by Lemma 2.1, , 
f /\ g is P2 3• Hence (( f A g)Y) and (( f /\ g)y) each contain at least three , 

distinct functions. Moreover, by Lemma 5.2, ((f A g)Y) n (( f /\ g)Y}= 0. 

Thus (hX) = ( (f A g)Y) U ((f A g)Y) contains at least six distinct functions. 

Q.E.D. 

m 
Suppose we have a P3 , 5 function h(x1, ••• ,xm) with the property that 

hx is non-constant for any variable x and constant a. Also suppose that a 
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we have a network with p gates and m variable nodes computing h. 

Define h(l) 1 h(x , ••. ,x ) and 
1 m 

h(n+l) = yn EB (h(xn11 , ••• , xn:l) A h(n1, for n ~ 1, 

i n+l n+l (n) where x., yk are distinct variables (so that (x
1 

, ••• , x m) n V(h ) = 0 
J 

and y ¢ (~n+l~ •.. , xn+l} U V(h(n))). 
n n n 

Then by n applications of Theorem 5.1, we have 

h(n+l) € p(m+l)n+m 
3,5 

and h(n+l) is computed by a network with (p+2)n + p gates. If we let 

_(p + 2)N - 2m + p N = (m + l)n + m and P = (p + 2) n + p, then P - m + 
1 

Hence we have the following corollary to Theorem 5.1. 

Corollary 5.1. m Suppose there exists a P3 5 function computable by a 
' 

network with p gates. Then for infinitely many N > O, there exists a 

PN function f with c(f) ~ ( p + 2 )N - 2m + P 
3,5 m + 1 

The network :Dl of Figure 10 computes a P~ 
5 

function with the property 
' 

that, even with any two variables in~ set to constants, the network does 

not compute a constant function. (This claim can easily be checked by 

hand or by computer. Note that because of symmetry, there are only nine 

sets of two variables and twelve sets of three variables to consider.) 
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Figure 10. A P
3 5 

network~ 
-~----

l'fTl has 7 gates and 6 variable nodes, thus by Corollary 5.1, for 

9N - 5 
7 

Corollary 5 . 2. N 9N - 5 For infinitely many N > 0, c(P
3 5

) ~ 
7 , 

Now consider the network ';F with subnetwork 1/- as shown in Figure 11. 

Figure 11. Network~ 
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Note thnt without considering·,+-, the network '.r - 9f hns 20 gates 

and 17 variable nodes. Let V(~) denote these 17 variables. 

Hsieh [Hs74b] proves the following theorem. 

Theorem 5.2. Suppose his such that 

his P 3 5 , (i) 

(ii) hX is non-constant for any set X of two variables and assignment 
A 

A of X, 

and~ is a network computing h. If V(':J) n V(h) = Cl, then the 

function f computed by the network~ satisfies the same two properties 

( i) and ( ii ) • 

The network '.lJl in Figur e 10 satisfies properties (i) and (ii) of 

Theorem 5.2. Thus by n applications of Theorem 5.2, we have a P 3 5 , 

network with F = 20n + 7 gates and N = 17n + 6 variable nodes. Hence, 

F 20(Ni;) + 7 = 2~~- 1 

Corollary 5.3. 
N 

For infinitely many N > 0, c(P3 5 ) , 

VI. 
n 

A Linear Upper Bound for c(Pk 2k) , 

20N- l <;; 
17 

In this section we first develop a procedur e, similar to that in 

Section V, for generating new Pk zk functions from a given Pk 2k , , 

function. We then present a simple Pk zk function due to M. Rabin in , 
(k + 1)(2k + 3) variables with complexity no more than 13(k + 1)(2k + 3). 

We conclude that fromthe Pk proper ty alon e only a linear lower bound 
,m 

on combinational complexity can be obtained. 
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The proofs of the following two lenunas, Theorem 6.1 and Corollary 6.1 

are similar to those in Section V and are omitted. (Detailed proofs may 

be found in [Hs74a.] 

Lemma 6.1. If f € Pk 2k, then for any set X c V(f) such that !xi < k, 
' 

and for any assignment A of X, ~ is not constant. 

Lemma 6.2. If f and g are Pk 2k functions and V(f) n V(g) = ~. then 
' 

f Ag is also Pk 2k and for any set Y of k-1 variables in V(f) U V(g) 
' y -- Y 

and assignments A,B of Y, (f A g)A i (f A g)B. 

Theorem 6.1. Suppose f and g are Pk 2k functions with V(f) n V(g) = ~ 

' 
and xis a variable not in V(f) U V(g). Then x EB (f Ag) is also 

Similar to Corollary 4.1, we have the following corollary to Theorem 6.1. 

Corollary 6.1. Suppose there exists a~ 2k function computable by a 
' 

network with p gates. Then for infinitely many N > O, there exists a 

~k 
2

k function f with c(f) ~ (p + 2 )N - 2m + P 
, m + 1 

M. Rabin [Ra74] observed the following simple function to be Pk 
2
k. 

' 

Definition: Let~ be the family of all undirected graphs on (2n + 3) 

Define a function f on jJ as follows: 
n 
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For G € ~, 

f (G) 

if there are two adjacent nodes in G both with 
degree~ n + 3. 

n 
otherwise. 

A graph on k vertices can be identified with its kxk node-node incidence 

matrix. Thus~ is also the family of all (2n + 3) X (2n + 3) Boolean 

symmetric matrices with O's along the main diagonal. Hence f can be 
n 

regarded as a Boolean function of the (n + 1) (2n + 3) Boolean variables 

a .. where 1 $ i < j $ 2n + 3. 
l.' J 

Lemma 6.3. fn 8 
p(n+l)(2n+3) 

2n • n, 

Proof: Let P = (a . . } 1 $ i < j $ 2n + 3. Note that each assignment, T, 
l.,J 

of P corresponds to a graph Gin~, and(fj = fn(G). Henceforth we omit 

the subscript on f. 
n 

Suppose N is a set of n variables in P, and A,B are two distinct 

assignments of N. We need only show that f~ ~ !~. Thus it is sufficient 

to find an assignment C of P-N such that f~:P~N = 1 and f~:P~N O. 

Without loss of generality we can suppose a
1 2 

E: N, A(a
1 2

) = 1 and 

' ' 
B(a1 2 ) = O. (Recall that for any assignment D and variable x, D( x) 

' 
denotes the value assigned to x by D.) N ~ (a

1 2
J has only n - 1 members, 

' 
so we can certainly find n + 2 indices k1, ••. ,kn+2 € (3,4 , ••• , 2n + 31 

such that a 1 k , ••• , a1 k ¢ 
' 1 ' n+2 N. Similarly we can find q1, ••• ,qn+2 

€ (3,4, ••• , 2n+3} such that a2 q , ••• , a
2 

¢ N. 
' 1 ,qn+2 
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Let C be the assignment of P-N such that 

C (al ,k. ) = 1 for i = 1, ••• ' n + 2, 
1 

C (a2 ) = 1 
,qi 

for i 1, .•• ' n + 2, 

C (a. . ) = 1,J 
0 otherwise. 

Let G1 ,G2 be the graphs associated with assignments (A,C) and (B,C), 

respectively, so that f N,P-N = f (G
1
), and f N,CP-N = f (G

2
). We 

A, C B, 

claim that /(G1) = 1 and /(G2) = O, which will complete the proof. 

A(a1 2) = 1, so v1, v2 are adjacent in G
1

• 
' 

Moreover, 

from the definition of C, Vk , ••• ,Vk 
1 n+2 

are also adjacent to Vl' so 

degG (v1 ) ~ n + 3; similarly, degG (v2 ) 
1 1 

~ n + 3. Hence f (Gl) = 1. 

Next consider f(G
2
). B(a

1 2) = O, 
' 

so v
1
,v2 are nonadjacent in G2" 

We assert that for i ¢ ( 1, 2) , degG (v.) 
2 1 

$ n + 2, from which it follows 

that f(G 2 ) = O. Thus let i ¢ ( 1,2} . The arcs in G
2 

that come from 

assignment C of P-N are incident with either v
1 

or v
2

, and hence at most 

two of them can be incident with v .• However, assignment B of N gives at 
1 

Q.E.D. 

A. Meyer [Me74b] observed that surprisingly f has complexity linear in 
n 

the number of its variables. 

Lemma 6.4. c(f) $ 13(n + 1)(2n + 3). n 
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Proof: Note f (P) = V f . . (P), 
n . ,, . . i,J 

l. ·~J 

where 

For i 

i f a . . = 1 , I: a. . + L- a 2 n + 3 and 
1.,J k<i K,1. k>i i,k 

f. . (P) 
1.,J 

I:¾ . + I: a 2 n + 3, 
k<j ,J k>j j,k 

otherwise 

1, ..• , 2n + 3, let g. be such that 
l. 

/I [1 g.(a. 1••·•,a .. , •.• , a . 2 + 3) = 
i i, 1.,1. i, n 

0 

if I: ak. + I: a. k 2 n + 3 
k<i , l. k> i l. , 

otherwise 

Then for each pair (i,j) with i < j, J . . = a .. /\ (g . /\ g.). 
1.,J 1.,J l. J 

Thus if we have networks computing g
1

, •.. ,g2n+
3

, then for each (i,j) with 

i < j, we only need two /\-gates to construct a network for each 

f . . and (n + 1)(2n + 3) - 1 V-gates to combine them. Thus 
l.,J 

2n+3 
c(f) ~ [(n + 1) (2n + 3) - 1] + 2•(n + 1) (2n + 3) + I: c(g.). 

i=l 1. 

Now, it is known (for example, see Savage [ Sa74]) that for any k, 

if g is the threshold function defined by 

then c(g) ~ Sm. 

m 

if I: xi 2 k, 
i=l 

otherwise, 

Thus for i = 1, • •• , 2n + 3, c(g.) ~ 5(2n + 2). 
l. 
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Hence we conclude that 

c(f) ~ 
2n+3 

3(n + 1) (2n + 3) - 1 t I: 
i =l 

C (g.) 
l. 

~ 3(n + 1) (2n + 3) + 5(2n + 2) (2n + 3) 

13 ( n + 1) ( 2n + 3) • Q. E. D. 

The bound in Lemma 6.4 can probably be improved. But the important 

fact is that we have obtained a Pk 2k function with linear complexity. 
' 

Combining Corollary 6.1, Lemma 6.3 ,and Lemma 6.4, we have the following 

theorem. 

Theorem 6.2: For each k > O, there are infinitely many n > 0 with 

It is observed in [Ha73] that the func tion match on bipartite graphs 

with 2n vertices: 

-- ' 01 match(B) ( 

2 

if there is a perfect matching in B 

otherwise, 

n 
is P(n-l), 2n-1, as is the determinant function (modulo 2) of an nxn 

Boolean matrix [Sa74]. All known networks computing match or the determinant use 

3 
at least O(n) gates, and we conjecture that their combinational complexity 

is not linear in the number of variables. Theorem 6.2 reveals that other 

properties of these functions have to be considered in order t o prove a 

nonlinear lower bound on c (match) or c (determinant). 
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