
L BORATORY FOR Isl$ ~A i7~~JSEbJ5

COMP ER SCIENCE 11 'i\. T ECH~ 10LOGY
(fonnerl_y l'rojut Mil CJ

MIT /LCS/lM-87

NCIUARY fEFORTS: ~~ DESIGN PROJECT

DAVID D. CL.ARK., EDITOR

JUiE 1977

ANCILIARY REPORTS: KERNEL DESIGN PROJECT

David D. Clark, editor

June JO, 1977

MIT/LCS/TM -87

The research reported here was sponsored in part by Hooeywell
In.fonnation Systems Inc •• and in pa.rt by the Air Force Infonnation
Systems 'Technology Applications Office (ISTAO). and by the Adva ced
Resea ch Projects Agency (ARPA) of the Department of Defense under
ARPA order No. 2641 which was monitored by IS TAO under contract
No :Fl 9628,-74 -C-0193.

CAMBRIDGE

MASSACHUSETTS I STtTUTE OF TECHlWLOGY

LABORATORY FOR COMPUTER SCIE C.E
(formerly Project MAC)

MASSACHUSETI'S 02139

FOREWORD

For the past three years~ t.he Computer Systems Research Division of
the Laboratory for Computer Science has performed a series of ,engineering
studies on the Multics operating system, The goal was to demonstrate the
feasibility of producing a version of a ful 1 functi,on general purpose
operating system with a "security kernel''' simple enough that i:ts correct
ope1:ating can be certified by some form of auditing. Duri g th.is project
several re:s.ults of an interim natuTe were pub ished as internal group
memos, and we:re never s,ubseq~ent:ly published in any publicly available
fotm. This memo contains seven sue reports that contain interesting
results not otherwise reported. These seven reports deal with four areas:

- Analysis of bugs discovered in the Multics syst.em ..

• Survey of the initial size of the ultics kernel •

.. Detailed design specification of two level pt'ocesa manager •

.. P'erformance ,evalua.t!on of the multi-process page manager.

D. D Cla:rk

ii

TABlE OF CONTENTS

"FOREWORD

L Repaired Security Bugs in Multics (2/7 /73)
'by J ,.B Sa.'ltzer ,. • , •. ,. , •• - , • - ., ., Ii , ., - • • • • • • • ••

2 A C~-asus of Ring O (9/5/73)

ii

iii

1

by V "' -L. Voydock • . , • . •. ,, ••• , , ,. ••• , •• , • ,. , ••.••• , 5

3. Some Multics Security Holes which were Closed by 6180
llardwa.re (1/28/74)
by J •. H Sa.ltze.r, P.A. Jans.on~ D.H. Hunt:

4. Some Rec~nii: ly Repaired Security Holes of Mul tks 0/28/74)

22

by J .H. Sa..l t :z•er, D .. H. Hunt • • .• • • '" • • • • • .• • .• • • .•• .• ., • • • • • • 28

5. Pa~terns of Securi t:y Vio•lations: Multiple Re fer enc es to
Argume ts (ll/ 8/74)

by H.C. Forsdick, D.P .• Reed •·••· •••• .••• ·• · ·•·•·••••· ·•· 34

6~ A Two-Level Implementaeton of Processes for Multics
(9/8/76)
by R •. M. Frankston .• • •. • • . •••••••• .•

7. Further Results w·ith Multi-Process Page Control (2/9/77)

iii

50

95

REPAIRED SECURITY BUGS IN MIJLTICS

by J. H. Saltzer

-1-

A short time ago I began to compile a. list of all known ways in wbich

a. user may break down or cir,cumvent the protection mechanisms of Multics.

The list is quite interesting, and available for individual study~ but until

the problems a.re repaired, i~ does not seem wise to distribute it widely.

On the ,o,tber hand, it ould be wise to promote discussion of the topic, so

as problems a::re fixed~ I will pub ish their descriptions.

ExA11lining pos,t-mortems of fixed bug.s may initially stri.ke o,ne as unre­

"G",arding hl.l'.t there are some pot.ential payoffs. Since one of ,our objectives

is t:o discover how to construct a simple a.uditable supervhoT which has a

very low probability of such errors) the following questioas seem wo~t:hy of

discussion about. each bug:

1. Row did it get in to t.he system? What design decisions h,elped create

an. environment in which the error was made?

2. Why was it not detected immediately J at checkout: time or during

syste.m installation? What b,etter auditing tools might have. resulted

in earlier detection?

3. Was a design principle violated, thereby leading to the error?

4. ls this bug a member of a class of errors., of which there may be more

examples in Multics? What: des,ign principle or auditing technique

might be useful in eliminatin__g all such related errors?

By way of definition let us use the following arbi·trary definition of

se,curity-re lated problems: those which -permit

1) unauthorized disclosure of information.

2) unauthorized changing of informat'ion.

3) denial cf accessibility to author zed users.

A bug which may be expfoited to force a system er.ash is considered to be in

the third categ,ory. To constrain our area of concern, only security-related

problems which are part of operating system design or implementation are

-2-

of interest. For example the prac.t · ce of leaving the door t:o tb.e machine

room unlocked. is not o,£ interest to us. (Unless the cause is a bad design

feature of the operating :syst,em which prevents coni'IJ'enient system operation

inside _ocked doors.)

RecentlX Repaired Security Bugs

Several problems were fixed in the installation of system 18. O

which simp,lified the a ,ccess control strategy of the system:

l. The CACL ri"ng brackets trap. Before system 18.0 every ACL and CACL

entry contained its O'lffl separate ring bracket specification, leading

to great eas.e in slipping, up 1 especia ly if one creates a .segment n

a strange direct:ory without: first checking its CACL. Tb.is trap was

fallen. i to by the linker in the foUoving way: if a user in ring 4

called a ring 1 entry fo:r the first time, the linker tried to create

a new combined linkage section for ring 1 n the process directory.

If the user had previously planted a link with the name "combined link­

a.ge_l. 0111 in his proc,ess directory the combined linkage segment would

ac tu.ally be cl'eated wherever he wished -- in some ocher directory, for

examp e. Although the linker carefully set t.be ACL of the new .segment

to pe.rmit :ring-one access only_. the CACL of the target dtre.ct:ory could

give access in higher rings to other users.

Since Ul .0 fixed this p::roblem by making the ring bracket specification

a property of the segmentJ as specified by the creator rattler than a

property of the individual ACL or CACI, entry.

It should be noted that a contribution to this trap was made by the

au omatic system :featur,e of allowing segments to be created through

links. It would p,erha.ps make sense to allow protec ed subsystems to

spec fy that. t:hey do .!!2.!, want t.his: feature, so that when they crea.t,e

a segment by oame, it is created e:itactl:y -whei:e they expect.

Security Principle: ·f the protection status of a segment depends on

its position in the naming hierarchy~ the creator of a segment nust be

given complete ,control o,f that position; no one else may be allowed to

influence its position ..

-3

This principle is currently at odds with two system deficiencies

both of which lead to desire to put links in the process directory:

a) an infl,exible process directory record quota. scheme . which

leads to the need to pla•ce some system segments in ot.he.r

directories.

b) the automatic discarding of a process directoey contents

upon accidental process termination, which le.ads to a need

co place some system segments elsewhere so that they may be

ex.a.mined to discover the reason for the process tenuination.

It seems quite clear that solut·ons to these tt,10 practica problems

must be found before the basic security principle can be followed.

2 . AST overflow bug. Before system 18.0 was ·nstalled the.re was a re­

quirement that whenev.er a s.egment is acti:ve., all directories superior

to the segment must also be active. If a user created a directory

tree deeper than the AST size.!< he could overflow t.he AST wicti unre­

mova.ble entries. This would cause a system crash.

Although this method of systematical y crashing the system has now

been fixed by 18. 0 which does not require that superior directories

be active, it illust:rates another un.followed security pr inc "ple:

table overflows and other unexpecI:edl (impossible) events must be

handled gracefully without crashing t.h.e system, since the assumption

that the overflow (o whatever) cannot be systematically produced by

an attacker is hard t:o verify; worse a system change elsewhere later

may render the assumption incorrect ..

3 Blank names bug. If a directory contained an entry for a segment with

an al -blank name, deletion of that directory would cause a system crash..

System 18. 0 fixed t:b.is hug~ which again was based on as sump ion. that the

user could not force .an impossible condition to occur, so no -recovery

for the impossible condit · on was provided .•

4. fs_get bug. Entry fs_get$ref nrune failed to initialize its e1:ror

handler, so when it got an error :return from kst_man (e .. g •. KST

has overflowed) it attempted to reset a lock it never set, crashing

the system. This one seems to be a simple programming e.rrorJ since.

s,etting up the error handler fixed the trouble. Some techniqu,e of

auditing which detects this class of bug is need,ed.

one other bug bas been recently fi,c;ed, in s.yst.em 17 .11:

5. Argument -validation bug. The softw"are validation of arg,uments on

cross-rin_g calls permitted pointers with indirect. modifiers to be

used, but it did not follow the indirect chain to a,ee where it led,

A user could supply an tndi:rect argument pointer in a call to a super­

visor entry which wri.tes into a.n argument, and thrreby redirect the

writing back in.to a .superviso:r database. his bug was fixed by chaa,ging

the software validation to· forbid indirect modifiers n argument pointers.

Th.is bug has some. aspects sitnilar to those. of bug number 1 above in

that unexpected indirection can easily be ,overlookied.

This bug ould have be,en automatically fixed by the 6180 argument

·validation hardwareJ, which w-ill also automatically take car,e of about

30 other argument address validation troubles which have been uncovered

by sys t,ematica ' ly auditing the supervisol" e tries.

A CENSUS OF RING 0

by Victor L. Voydock

Introduct · on

-5

A major research area of the ComputeT Systems Research Group is to

investigate the problem of producing a. c ,ertifi.able computer opera.ting ays-

teui.. The first approach to thi.s problem could have been to attempt to audit

the Multics ring O supervisor as it then existed. Tha.t is, to read all of 1:he

programs wb · ch comprised the ring O supervisor and detenn.i ne "7he1:her ,or not

th,ey d'id what they were supposed to do.. It was clear that this was :not a

prac ical approach due to the size and compiexi ty of ring O and the lack of

a pt"ecise (or eveu imprecise) specification of its functtons.

An approach which immediately suggested itself was to s·mplify rtng 0

so t:ha:t it could be audited . Before this could be done i n any organized

way it \\fas aecessary to have a clearer · dea of what wa.s in ring O, so it was,

decided to take a. census o..:- ring 0.. This document reports the results of

that ceosus

Approaches

The census analyzes ring O from various points of view:

1,. A notebook of ri.og 0 interfaces.

2. A functional breakdo'l:rn of hes entries,

3. A fu:nct.i.onal breakdown of all ring O segw.e.nts.

4. A breakdown of all ring 0 segments by source language.

The :notebook of interfaces describes every way that ring O can be. ent,ered

by means of a call. It is a first (albelt crude) attempt to provide a

:fiunct:ional specif· cation of ring O It is available for study to ,anyone

who Ls interested , The fun ctional breakdown of hes entrtes will be des

cri bed h1 a lat,er RFC. The rest of this document deals with approa,ches

3 and 4.

~ethod of Census Taking

The informat'oo in Tables I-VI was gathered from the two di-rectories

which contain copies: of all r og O object segments: >ldd:>hard>bc and

>ldd>hard>o. The information describes system 20. 10a a.. 6180 syst,em in­

stalled on 8/ 5/73. The text section sizes were obtained from the object

maps. The segment count indicates the number of separately translated p,e

and ALM segments. The entry point count includes segdefs, as well as st:an.d­

dard entry points. Thus this count is slightly 'inaccurate since a few pro­

cedure segment.s (such a.s the FIM) have data segdefs lmbedded in th,em. (Th,ere

ls no way to dtstinguish a data segdef frolll a. proceduI'.'e entry potut segdef.)

The translator names l-1ere obtained from the object segments using object_i o_ .
•

The functional categories (a com.rplete list app,ears in Table II) are

somewhat arbitrary. Any attempt to put labels on ·things ts bound t .o distort

reality somewhat . Comments oo major classification flaws atre welcome.

Most of the categories are se . f-ex-plana.tory (Table V1 has a ti.st of

all segments in each category,) Physical St:ora;ge Management consiSts of

everything whi.ch is used to manage the physical storage of segments (co,re

control. page control~ bulk store control etc.). Error Handli.ng -~nd Tracing

contains al error handlers not local to one major category (e.g. syserr

verify~lock}. Major c.ategories are listed in Table I. Utility ;,{Internal)

contains ut Htty segmeats which ar,e not loca to one major category (e.g.

privi eged_mode_ut). Uti. lity (Shared with other rings) ,contains ·utility

prog a.ms which are also used by rings - othe.r than zero (e. g_ clock , Signal ,
... • '!I, ,I - -

ptl operato:r.s_). Obsolete contains segments which exist: only for compatlbility

(either with other parts of the system or with user programs), and tra.o:sf er

vectors which ca.o be · brown away when the appropriate proc,edures are conver ed

to vers· on. 2 p.tl. All obsolete Segl]lents can (eve:ntu.ally) be removed from

ring O without affect·og users.

-7-

General Observations

Finally some genera.I observations should be made,.

irst, !'J g Q is ~ smaller than exp_ected - a.bout 157,000 words of

text section (executable code and read only data). A large but not mon­

strous a:mourt: of code. For example, tbe bare bones of the p.£1 compilet:

(pa.rseJ semantic translator and code generator) take up 118,000 words of

te:i:tt and this figure more than doubles if ptl IO the file manager end the

ptl runtime library are included. Why then is ring O so comp lex and hard to

understand? Another m.easure of complex' ty is the number of distinct: func­

tional units - procedure entry points in ptl terminotogy. Ring C contains

1201 eotry points. (The bare bones p.t compiler in contrast contains 325

e try points.) A large number of enti:y po·nts [can ba• a symptom rather thao

a cause of compl ,exity (when it is elther) - reductng the number of entry points

W'i 11 not necessarily resul in a S:i.m.ple.r system. But nevertheless~ .an in­

vestigation should be made to determine why there are so many entry points .
and to wha.t extent they cootri.bute to the complex· ty of Ung O. ThiS iavesti

gatlon might provide in!iltght into how the system lllig:ht be mo,re s .bnply organized,

The second observation is that ~ amount of !ssemb ly language generated

c;ode .!]: i. og 2 £, larger ttian expected. 12. 4~ of non-obso ete riog O pro­

cedur,e text is ALM generated. If one v et.1s pll_opera.to:rs~ as an extension

of ,every object segment and exclude.s Lt from the total, the figure. drops· to

about l~. This is sti ' l qui.te high. If, as a very r ,ough est bmte one as~

sumes an average of 5 words of text section per p.tt source statement: our re­

sults indi.ca.te (see Table IV) that ring O coosists. of about 29 000 lines of

p.e l source and a.b9ut 15,000 lines of ,ALM source ..

Fortunate y the. amount of ALM ,can probably be reduced Significantly.

All 64 non-obsolete ALM procedure segmaats in riog O (see Table V), have less

than 2000 words of text s,ectio□ each an~ all but 9 have less than 4-00 words

of text section each. A cursory study has uncovered 13 segments wblch can be

lmmed iat e ly converted to ptl with no loss of syste111 eff let ency and additional

study wi 11 undoubtably uncover others., Dave Reed is cut;rentty investigat.ing

this ar,ea.

-s-

Finally. !ables I. TI and 'VI suggest a number of area.a i.n r;,,hich Simpli­

fication might yteld a significant: reduction in th Hre of rtng o~

lnlttallze lon -

salvager -

Uy dim and
ARPA net:wo rk -

interrupt
handltng -

linker
search rules - ·

A Final Comment:

One of the oldest parts of the system, can probably
b ,e reorganized and simplified

Its size i ndicates !:hat either it is a e:ollecticn of
ad hoc methods or that the sys te.m det.e. bases are not
w,e.U organized w· th respect to salvagabi Uty.

Duplicate functions should be. merged_ An investigat · on
should also be made i.nto why ·the t tydim is ~ la.l:'ge.

Rich Peiertag'Js work on Simpl · fy1ng the way interrupts
a:re handled shou. d greatly reduce the comple,i: · ty. · f not
the Size of the IO system a · d of Phys · ca 1 Stor,g Manage­
ment.

Ph i1 Jansen 1 .s work on removing tbe l lnker f rem ring O
wi l remove a complicated function from ring O but will
not greatly reduce the size of ring O (abou:t 3%).

Through the use of binding the actual umber of free standing proce~

dure segments in r· ng O · s 50 (instead of 305) and the number of accessible

entry points is 909 (instead of 1201), A more judlcious choice of b i nding

might further reduce the number of accessible ent tres. Some accessible

entries implement primitives used by outer rings and some functional &Z"ea.s

span more than one segment. Nevertheless the number of accessible entires

is a -rough measure of the connec:ti.vi ty of the ,;rar· ous fm:u::t i..ona.1 areas of

ring o. A study of the interrelations of the 50 free standing procedure

segments may lead to ins ·ghts ·nto the overall structure of ring 0.

Table I: Breakdown by Major Cat,egori..es
(System 20. 10a)

4, of Words of
ca.tegory total t ,e21:t section

File System/v· r ual Memory 36, 7 57727
Inittalization/Reconfiguation/

Shutdown 15. 4 24312
IO Syst,em 15, 23602
ARPA etwork 12. 9143
· tillty 9~ 14269
Obsolete 5 . 3 8400
Process Management 5. 7809
Interrupt/Fault Dtspatching 1.2 1966
Other (Put in ring 0 for no

good reason.) . 2 353

Tota 157581
Total (minus obsolete) 149181

Number Number
of segments of entrtes

93 476

56 102

33 17

34 158

38 122
16 71

26 95

8 59

l

305 1201

289 1130

I,
A.
B,
c.

D,.
E,
F.

II

A.
B.
C,

III.
A.
B.
c.
D.
E.

IV.

V.
A.

B.
c.

VI.

VII .
A ..

B.
c.
D.

VIII.

-10-

Tab e !I~ More Detai ed Breakdown
(System, 20. 10a)

Words o.f Number Number
Category teKt section of segmeots of entries

File Syst ern/Vi rtual Memory 57727 7 93 476
File System 18lll 24 125
Salvager 1 840 5. 41
Linker/Search Ruleel
Working Directory 4572 11 30

Segment Cont ol 7069 13 29
Physical Storage Management 1 1719 21 209·
Other (fhings which overlap

catego-r·es) 4416 9 42

Initiali2ation/RecoaiigUl'.'a~
fion;/Shctdown 2,4312 56 1 ro

I · · t ta U2ation/Shutdowc 19501 I 46 81
R,econf iguraticm 3207 4 7
0 her (Th· ngs: which overlap

categories) 1604 6 14

IO System 23602 33 117
IOM/3:55 4533 13 38
l'ypewri t ,er Control 11558 7 25
IOAM 2963 6 31
P-rinter Control 2247 4 9
Tape Control 2301 .3 14

ARPA etwork 19143 31- 158

-··

Utility ll42b9 37 122
Error Rand ' ing and
Tracing 3431 11 28

Ut: i lity (Interna) 1923 7 41
Utility (Shared l.?ith other

rings) 8915 20 53

Obsolete 8400 17 71

Process Manag,ement 7509 26, I 95
Process Creatio /Stat.us/
Destruction 465.5 19 32

later-Process Communication 18 -8 2 11
Traffi c Control 1943 2 40
Ti.mers/ i ps mask·ng 375 J 12

I

Interrupt /Fa.ult Dispat,ching 1966 I 8 59
"

Table III: :Breakdown by Bound Segment

(System 2 0, l Oa)

bound:_.:,~!>_w ired
bound ace i ve .
bo nd er ro,r _active
bo nd_er ror _ 1 red
bou nd_f i l e_ ys t em
bound_girn ac ive
bound_i nit_
bound_i n i 'C_:C:

bound io init
bo nd~iom_ac1.tve
bo nd_i om_imp_d im_
bound_iom_lmp_sta b
bow nd_ r OITL~' red
bound_m::.,eg_pr i m
bound net. orku
bo nd:pa ge_c,on T ro 1
bo nd_proce~::._cre.at ion
bound_::ia Yager
bound_~&~_ aclive:_
bound_~ ~s_ i red_
bound_~)'5 tenLfa. l s
bo nd_tc_ ired
bound_ emp l
bo ·nd_ emp_:.::
bound_cty_active

Words of
text secti ou

lu4U
11::io

L),£

llU
2 ' ~b4
L~Ob
I.:~ i,
.)2b4
LL ~b
uSt.iti
I .Hi

_)" lJ

l.19iZ
lu.t: ·
b 1 1:1 i
~ ~
7 .n!. U

1 . ;u;.

~·i'JJ"
.;i:,,;,ti

J.:JJ. (I

l ;;,
od:l.lo

·ti
n,uu

Words cf
linkage
,eec.t ion

:, Cl

4 u
bb
7 ll.J
.>lo
1t l Li
;,44
(l d

'-
v l u
ll.i.:1

i. 7 "­
lU
Lill

Number
of en:1:rles

l .>
1~
Li

l
lllJ
1
1
7
;I

(J

;i {i

"~
2~
7
LL
1~
l7
.))
It,;,

H,
1 1
l
.J.J
)

21

-12-

Table IV: Breakdown by ta.nguage
(Systeul 20. lOa)

4; of Words of Text umber of Segments
category A'LM ALM PL/I ALM PL/l.

I nter-rupt /Fault Dispatching 70. 2 1381 585 7 l

Ut.ility 41. ,4 5907 8362 tS 23

Obsolete 35.5 2989 5411 9 7

Process Management 23. 6 1842 5967 4 22

Initialization/Configura-
t ion/Shutdown 14, 3406 20906 10 46

ile System/Virtual Memory 7 .. 4 4273 53454 19 74

IO System 6.9 1628 21'974 8 25

ARPA Network .s 92 1905 . 1 33

Other o. 0, 353 0 l

Total 13,6 2148.S 136093 73 232

Total (minus obsolete) 12.4 185.29 130652 64 225

Total (minus obsolete and
p.£1_ operators) 10. l l47U 1306'.52 63 225

-13-

Tab le V: L · st of ALM Procedure Segments by Categor

Category language

1-S I
-SJ

1-SI
1-S I

-Sf
1-~I
1-s1
1-S I
1-S I
1-s1,Hc
2 ID
2-ID
2- 1D
2 r D
2-1D
2-10
2-ID
3-Fs,sc,..s
3-L
3-l
3-L
3-S
3-SC
3-SC,SSM
3-SSM
3- SSM
3-SS~i
3-SSM
3- SM
3-SSM
3-SSM
3- SM
3-SSM
3- -st-1
3-SSM
3-SSM
4-PC
r.-PC

-T
~-TC
5-J
5-1
5- 1 oc
S-IOC
5-IOC
5-P
5-P
5-TP

a lm
a l m
a lm
a 1 Ii'!

al r.,
aim
alrn
a l m
alm
aim
alm
al m
a 1m
alm
alm
al rn
alm
alm
a rn
alm
alm
a lm
am
a lm
al rn
alm
a m
alm
,a lm
a m
alm
a lm
alm
alm
al m
alm
alm
alm
.a lm
alm
alm
alm
a l'm
a lm
a lm
a rn
a 1 in

a lm

Words of t ords of Number of
text linkage entry points Segment Name

l lti
1712
:l42
262
272
.30
38
382

4
288
220
240
272
28
2 7
320
4
58
172

2
!:l6
154
46
80
lOLJ
1300
136
14-2
218
220
220
234
33-b
52
563
80
3~
6
28
1774
12
38
22
511
8
430
587
20

Sb
8
8
8
8
22
10
36

4
76
32
90
18
8
102
74
8
8
14
8
8
20
10
12
60
142
72
36
52
36
Sb
42
36
16
12
2~
16
8
18
Hlll
12
8
a
24
10
8
10
g

0
0
0

1
1
1
1
L;

3
5

21
1
3
1.5
9
2
2
2
1
3
G
2
5
2b
21
6
7
5
l !J
2
2
15
7
19
5
2
1
3
39
1
1

"' 9
1
1
1
1

boot~s t rap2
bootstrapl
s1t_manager
pre_link_2
pre_link_l
build_template_pds
s,hu t down_s.\ i tch
tape_rea der
prtv·leged_mode_init
init processor
signaller
wi red_f irn
faul t_error
parity_checl<
i i
f im
return_to_ring_O_
hash_ l ndex
ge t_defp tr
datmk_ut i 1_
lot maintainer
salv_free_store
kst_man
get_ptrs_
page
pag,e_f au 1 t
device_control
free stor,e
bulk- store control

- - -
pc_ t rac,e
master_pxss_page
pre_page
pd_ ut i 1
meter_ disk
page_ error
page_ut i 1
level
gate-init
vclock
pxss
ioam_check
cal detacher
dn355_ uti1
iom manager
dstint
p .r t_300 conv
prt_ccnv
tape_checksum_

Category

u-E
G-E
G-E
6-UJ
b - U I
b - I
li-UI
b-L I
6-US
b-US
6-US
b-US
G-US
b-US
6- US
7-h
8-U
8-(J
8 -0
s-u
8-0
8-0
8-0
8-U
8-
8-0

Ta.ble V - page 2

T..a.nguage

alm
alm
a m
alm
a lm
alm
alm
alm
a 1 rn
a 1 rn
alm
alm
a m
a1m
alm
a lm
a 1 r.1

alm
a,m
a111 Iii

alm
alm
a lm
alm
a 1 rn
~11

Words of
tex.t

101.J
18
24
138
22
2L
501
61
10
1 It
18
206
28
3818
917
92
113
12
11!3
2571!
30
50
53
IJ

8
220

-14-

Words of
Hnkage

56
10
16
34
8
16
7~
ll;j

12
8
8
8
10
!i 2
8
8
8
lb
10
lll
8
.5 ll
8
10
12.
32

umber of
entry points

3
1
l
3
l
3
18
1
1
2
3
6
2
5
2
1

4
l
13
1
23
2
l
2
2

Segment Name

emergency_shutdo,.,m
check_t rai ler
syserr
w i re_stack
fm_checksum_
get_proc_i d
privileged_mode_ut
absadr
clock
um'linder _ut i 1_
a 111 _r i ngs_ut i
condition_
wi red....:ut i . i ty_
pll_operators_
fo ml 1 ne -
imp_status_ drlver
old-fr-een
fas _hc_i pc_ tv
old_a11oc:_
p ll l_ope rato rs
move
sss_act · ve_tv_
o]d_area_
t ty_read_t v
tty_ ,r i te_tv
accept_a m_obj

Note: see Table VI fol-" an expla.nation of category abbreviat i ons.

-15

Table VI: List of Ring O Segments by Category
(System 20. Oa)

The follow·ng category abbreviations are used;

l. 1 ni ia U2a t ion /Reconflgurat ion/Shutdown
RC - Reconii.guration
St - Shutdown

2. 1H - Interrupt/Fault o· spatc:hing

3. Fi le System/Virtual Memory
FS - File System
L - L · nker /Search Rules /Working Di rectory
S - Salvager
SC - Segment Control

SSM - Physi..ca Storage Management

4. P ocess Management
PC - Process Creation/Status/Destruction

IPC - Int er-Process Communlca ion
T - Timers/ips masking
TC - Traffic Control

5, IO System
I - IMM

IOC - I0M/355
P - Printer Control
TP - Tape Control
TT - Typewriter Control

6, Utt lity
E E1:ror Handling and T acing
ur - Utility (Internal)
US - Utility (Shared with other r ings)

7. - ARPA Network

8. 0 - Obsolete

Mult"ple tags indicate segments which fall ·n multiple catego~ies.
e.g. a tag of FS S i.nd·cates a segment used both by the F1.le System and
the Salvager.

Tabt,e VI ~ page 2

category

1-~c
1-RC
1-R.C
1·- C
1-SI
1 .. SI
1-sr
1-SI
1-SI
1-SI
1•SI
1- SI
1- SI
1-SI
1-SI
1-S I
1-SI
1-SI
L-S I
1-s l
1-S I
1-s1
1-s1
1-SI
1-SI
-SI

1-SI
1-SI
1-SI
1-SI
1 - SI
1-Sl
1-s1
1 51
1-s I
1-SI
1-SI
1-SI
1-SI
1-s1
1-s1
1-SI
1 ... SI
1- SI
1-S I
1 SI
1-S I
1 SI
1-51
1-SI
1-Sl, RC
1-SI,RC
L•SI,RC
1,,.,.51, R.C

Language

11
v2o • 1
kl 2p t 1

2P 11
ah
aim
aim
al
a 11m
-3 Im
a 11
a1 111
a I Tl

t, 11
oH
~11
DI
cH
olil
PU
ell
Dll

11
pit
oU
pit
011
II 2p I 1
v2p 1
1120 1
v2o 1
v 2o l
v2o 1
v2o 1
v 20 :'I.
vlo 1
v2p 1
1120 1
v2o 1
v2p 1
V 2P 1
1.1 2.o 1
\120 1
vzo
I.I 2P 1
v2o l
v20,1
v2p 11
v2p 11
w 2p 11
a im
011
pll
\1'2o I 1

T,ext Si ze
(words)

~bb
~o z
~31
il,j
llb

712
2 2
'-Ei2
272
30
3; jj
B2
to-4

19::3
Ld-:l
192
354,
397
-+&9
.. 7 iJ
33
o, '
13
7 't't
363
312'
1:18
1957
137

520
1f":)l

16
17 l
1137
223,
252
27
3 □□
325
30.,;,
3 62
+3b
~

527
":>58
ll
75
7-:,7

9
~56
2~Hl
.. so

L2J

-16-

Li nkage Size
(words)

32
6t
34
Jti
Su
a
B
d
8
2Z

3b
l ct
..,8
38
4+ •1+

62
36
11~
42
26
2b
3b
&8
20 :i
22
3 L,,

72
32
34
38
2b
7&
6b
36
2&
18

I+
22
38
36
10 ~
14
2t.t
28
12
3u
i+ U
2Ll
Lt
lb
62
22
26

Number
of entries

...
1
l
>

J
)

1.

1
-+
.s
1
l

1
l
1
1
1
l
2

1
l
l
l

l

1

1
2
~

2
11
1
1

1

l
-+
:5
3

Segment Name

-:dsu2?0_r-!co f =1

i:C::Jn f ·~
ii d d_rn e :nor v
j~I t~- j_r~cords
oootstrao2
:i otst ciol
s I _in .3""1 a ~er-
:> e_ll k_2
ore_ I 1, -<_1 •
Ou Id_ emplarl_pa~
:;, nut d::,. _s pj l. T C

tao~_ ... ~a1~r
or-b1il gH1_mc ~- 'lit

n t 3 I . ze: _ , s
s.vs.~rr nit
".ll:. I oe fi?_S-t ~S

s iJ JJ<1n
lc..aa_s.,.ste
tc_ln t
se;pne"lt_loaael"'
:: lock:_i iT
bultd_te~plat~_,s~~;
_n!tla l lzer
up ate_sst _o • 1
in tl:, 1 lze_ aul ts
f :ierion rid
t c:_shu t :::10~•
sc:s._l""llt
,nLt_narjcore_~5T&s
T Y- "lit
i · t _iys_va r
1nlfl3 lze_ J. li"
1nit_:>-anc,es
i it_:::ilLPctI;;>is
! n 1 t .. o or _l.l l

n35:;,_1n ' t
o_ln t

,.. i r 2 d_S,h..Jt down
a~e_s j , ..i

r rac~ _l n iT
tao e: la
r ao.:_lri, l f

! n 1 T _st r _- e J
o _JaT-at_l !t

ma e_o~ancnes
o ul ,-c_store_!n

T -~:; f
SC3~_lriit
ori~,ter _1n1 t

su13 • _lnlt
lnlt ::irocessor
it;:>::>_:::: :HJ

f1nj
:irJ:;_!"'1 l t

Table Vt - page 3

Category Language

1- I, RC
1- I, RC
2- ID
2-I 0
2• ID
2-I D
2 .IO
l-r □
2•Iil
2-I D
3- S
3 .. S
3 FS
.3-FS
3•FS
3-FS
3-FS
J• FS
l•FS
3-FS
3.. S
3-FS
3-FS
.J• FS
3-FS
3•FS
3•FS
3- S
l•FS
3•FS
J•FS
3•FS
3 ... FS
l•FS
3•FS,
3•FS, C
3 FS SC
3-FS,SC
3-f S, SC
3-F S, SC, 5
3 FS,SC,:i
3 L
3-L
J ... L

-L
3• l
3•L
3•L
3 .. L
3-L
3-L
3 L
3 S
3 S
j-

3-S
3-S
3-S
3-S

v2p 11
V 2c, 11
at I

Im
atm
a I .,
aim

a •
a I - 1

v2o 11
oli
pll
ol
D '1
p 11
ol
Pll
pll
D 11
p 11
oU
pH
p 11
v2o 1
v2p 1

2o
v2o 1
v2o 1
v2o 1
v2p 1
V2D 1
v2 1
V2p

V2P 1
pl

011
01
pl!
pl1
a I
pl1
a I 1

aim
a I
p 11
v2o
v2o
V2p I l
'V2Dl1
v2o 11
v2ol
v2p I .
aim
pl1
pll
oil
pll
ptl
o I

Text She
(words)

1S3
53
22 ·
l'f
272
Zd
297
320 ..
585
1050
1bl
176 .
'2.li
2~5,
275
2d2
337
S5
355
:> 9
oSO
'362

056
lo

1232
1 81+
H:102
212
2!.+,37

37
91

559
566
1087
197

0
337
46S
SB
:;i72
172
u2
:"lt>
13-+
J. (I 36
125
~3
313
i:132
7H
398
15,

87
1C67
1207
l .:I 8
194
1979

-17-

Linkage Si:te
(words)

22
84
32
g, •
1
5
102
7 '+
8
3 '
So
2B
15 ~
3
3lJ
22
52
40
26
40
72
78
1 ,2 8
So
9-.
76
Bu
70
2
104
3
3 '+
Ei ..
62
52
30
5&
52
7~
d
:56
ti+
8
8
2
b8
20
28
30
36
:,,

ob
21J
.. a

0
82
60
32
10

umber
of entries

2
2

2

::,

1
5
3
2
1
1
-t

2
;) ,
~
l
5
3
1~

l
lJ
2
1.7
i
>

3
3i

...
2

s
1

1
l

7 ,
,;)

2

1
5

Segment a.me

f reec.:>r-e
-:.ra,-.t_cp
sl~aill~
,...lr-ej_f lin
f au 11 T _c: rror
oar 1t _ch11:c K
l
f 111

ret~r,_t~_rl g_J_
::ia · ty_Lu.11 t
3C I_
cnec _ga e_~cl_
SOOl j

ri.n~O_!nit
~cc_llsf_
marcn_star_
forc~_3ccess

IJOta-,
;i o a_utll
f s_a I • ~
r n310,r _
.:iel_d!r_tree,
llnj_
s a
J e Lan v
set
uof

s atus_
'!l ake_:s.~
3 ;;, -

I eve:: 1 _a_
ts_ 011e
en arne

r nca t fiJ

~cc_n
nove_ o ·
d c _er- r

~u
aSh_l ' dex

"l3Srl

~et _d;a, f o,tr
~at -ut.11_
I ot _~na! nta! ,er
et_d~fname
1 l<_&'liO

J nsna,p_s~r ice
,st_of _jat

et_.jefnam
lnit!~te_searcn_rJlts
f s_s~ rcn
I nK -1an
sa,11 free_stor-?
safv_c ec~_threQd

alw_ch c _ma
sal~_reouif _dtrec ,ry
s li,age_entrv
sa I _c • ean_as t
safvage_ lrector1

Table VI - page 4
Text Size

Category Language (words)

3 .. S
3 - S
3·5
J•S
3-S
3 .. S
3-S
l S
3 ... $ C
3-SC
3•SC
l-SC
3• SC
3-SC
l•SC
3•5C
3•SC
1-sc
J•SC
J•SC
3-SC
3 .. sc,
3-Sc, SS
J•SS'1
3 .. S S"1
J-Ss~
3-S S'1
3•SSl1
3 - S S'1
3•5S1
3-SSM
3-S S'1
3'-SSM
1-ss~
3-SS"f!
3•SS'1
3•SSM
3-SSri
3-SS;-t
3•SSM
3-SSM
3 • S S'1
3•SS'1
5-SS-1
«+-lPC
't- I PC
<lt•PC
+•PC
+-PC
~-PC
.... C
+- PC
.... p C.

t+· C
- C

.. -P C
+• F>C
.., .. PC
.,-?C

pit
pl1
Pl1
p I

11
pl1
pll
v2ol1
ah1
i:>U
011
011
p 11
OU
v2p 11
112pl
v2o 11
v2'o • 1
v2o I
V 2011!,
v2o I 1
v 2p 11
a1 rn
a rn
.a m
a
a rn
a
a m
a1 m
a
a m
a rn

a '111

p 1
p 1
p 1
p 1
p 1
C 1
v2Pll
v20 11
V2P 11
pU
v2pll 1
a m
a1 Iii

p 1
p 1
p 1
p 1
p 1
Q 1.
p .1
p 1
r:i 1

1
vz 111

2 7
- 69
37Z
-+2
;j1b
5~7
7b1
1 1
-tb
1 5
373
-t3 6,

➔

:; 9
_l l) 1.t'-'

5a:
o,:>2
0 7
6d9
7 2 □1
732

296
:HI
10
1 □ D
136

't2
2 8
220
22[1
23
,336
52
%3
~o

23
2Y[I
3~8
+ZO

37
7i+2
15 8
l8 7
2:2513
358
-166
3 't
6
132

61
2: 4-
2. 1
2b1
283
371
-+ 85
1
ill
12 5.0

- 18-

Linkage Si.ze
(words)

+ ti
5 ti
s

8
54
38
4-8
88
10
3,2
30
4,b
34
4,
76
6
6
52
5b
~~

C
01)
12'
&O
142
72
36
52
3b
?'U

.. 2
36
lb
12
21.t

3"
6U
5·8
58
32
76
SJ
52
82
b {j

54
lb
6
42
1+8
2i.
1-8
58
➔ 6
60
31:l
-+ 0
26
88

umher
of entries

3

,
l

2
l

2 ,.
'-

2

.l

-+
lJ

1.3
1
19
j

1
3
1
l

..
lo
l

0

1
j

?
l
l
3

3

3

Segment N..Ime

salv t 1ncatE
sa Iv_, 21, ~

s QI v_de: I ·3 f e_d ,
:i a I v _.') ~ i n t
salv_ "lee _r.- tr

::1 I _ e ti , i o _ n a m13 s
salv_ eoulh.l_a.::•
o _ I "H! _ :. a I a 9-= r
1<st_113
-<st_~1t -,,_.: e
:!ICtiviitP­
se:tfaul ts
~stsr:n

i:;da ~ :>

nKll :i-nn
3 U ~ f

iv a e
5i:;l_f :HJ IT

nj t =it e
~at_ast~
riiak~knono
f s _ Jet
::]£ _otrs_
;:i ci9'-:

;;ia;ic_f .aiJ 1, t
1ev_c~_cor, ol
t ree_s t or-E:
oo i K_:s;to e_coritr-o
oc_rr-~c!::!
11asto::~_o:.:ss_pa ~

pre_o:;.1~
:> 0- 11
-n~ter_ 1:;:f{

03,l~_ rror
::Hi, ::J8_1..1 t l 'I

ss l , _ ev ce
~ _ 1~k-rnP.t~r-s

il ova_oe v l ce
oc_ 1~a~
l"l.ira_=iroc
oc_tr-ace:_ol1
::i c_.aos
jsu 3 ~ _cJnt r-o I
.') C:

fa,; t _hc_i PC
c_ DC

I ava I
3a l!'_ln t
olm
lr,Jt_orac
st oo_oroces s
actlv;riite_sE'gs

eact_ r-.:>c
j eac .Ii. \I at~-s ':I~
er rn r,3 t _proc
a esta,c

or c._ln f o
aiccass_11 lo I
,n_rroc

Table VI - page 5
Text Si.ze

Cat.egory Language (words)

1t--P·C
It-PC
it-PC
lot-PC

". PC
1t-PC

I+-'
lt,@ -r
.. -r
~re

-t-T C
5- I
!>·'"' I
::i•l
Si• I
S·- I
:i- I
5-Io:
i IO:::
5-IOC
5-10:
5-10:
s-10:
5-IOC
5-IOC
5• IO"'
, - roe
5-IOC
j 10:
5 10;
5, - p
7 ?

,-P
, p

5-TP
i·fP
5-TP
5-TT
5-T r
:::, TT
5 TT
S-JT
5•TT
5- TT
0-E
t>• E
o·E
6-E

:>·E
b•E
o-E
o•E.
i:,•E
6• E
i.•Ul
6 · ... UI
6-i.H
&-IJJ'

V ,2.g I 1
v2ol1
v2p I
v2p 111
v2p 11
v2o 11
a L 111

v 2p 11
v2o 11
aim
pf, l
a 1111
aim
p 1' 1
pt1
p 111
V 201 t 1
aim
am ­
aim
v2p I
v2p t
v2c 111
v 2p Ii
v2g I 1
v2.p 11
v 2p 11
v 2;) 11
v2Pl1
v2p I
aim
aim
v2ol1
v2p J 1
atm

2o 11
V 2P I 1
pl1
pll
1PH
p 11
v2o 11
v2pl1
v20, 11
a W

a t rn
atrn
oH
g, 11
pU
vlp 11
v2ol1
v2o 11
v2o 11
V 20, i 1
a,m a. I

al
a J .

13
175
175
Zl
067
75
ZS
,58
':i9
17 7-
169
12
38
1b1
198
•,) 8
1d5
~2
::>· 1
a.
l.4
'016
173
21a
32
38d

393
=>·'+
HB
)'+,

-.3 il
587
21+2
32.B
20
1792
-.89
116
+153

79
576
1i,.s3
2. - 3
2 ;b
10b
id

108
l1
Z5
1 ll 3 iJ
1.9
!?3
ob
J 3 d
13R
.!' l
2 'j
,:o 1

-19'-

Linkage Size Number
(words) of entries

2b
26
38
12
46
2 (l
18
3

20
19::;
30
12
8
3~
56
52
lb
8
2
10
18
So
1 lj
30

3,2
32'

8
72
18

10
20
8b

3 .

28
2 d :i
2{.J
46
3u
3ll
b
5c
1u
lo
2d
b+
$b

52
16
2l
12
7
31+
8
i6
7:+

L
1
5

i
1
3
3

J.

1

:3
7

13
-t

3

l
J

z

l.

l
1

1
1.
l
C

11
2
1
7
t
7
1
2.
-!
3

J.

l
s
i

5
J
3
1
i

Segment Name

or-a c_ ,"'It _nand I er
o twdi-O ~,, no 11 __ ,..
,.. 1 nJ_=t I arm
~et_o3~e_t a<.e
Ir.1't311Z..:_S
~~, - ~~)c~ss _usa e
11cloc~
s _t_alilr'll_t mtr
1 os_
0 xss
Nir"eJ_::> 11

ioa ~= nee
ca ,ll_ic:tac ,er
10;1m_ t1
.:1 $ 11_

oa _..it
loa _
:t 335 _ ..i t1 I
lom_Tlor''li;, J'll"'

:I j t i n
:;i im-+
dln355
-llOC:_=otcllt
Ji m_a .I J oc
c:n.a , _ ,
,l ~

tml
: i: C

.} 'll _ d .. : 1 n
~,m2
0 t_3 J J _.C'"I V
ort_c:"'lv
or-in er_status
Jl"'inter_jc

aiot_cl"le k:sum_
t de
tcJcm st:itus
tty_ ilo~ ,
t1y_lri _r

ty C.J1

ttv_traE
ttv_re·aJ
tty_,... .. ita
t V _ i J ''' ,C

e ile:-- J:! '1 cy _,:; ri t d o...i n
c n~c _1' r ii ~r
syscr"'
jet:iu-1 _c nee
::: ,:di nos
r 1 ::1-□ _p~E:K

.: .:ioy_f JU 0

n~_ z~r _cl1:an l u
11er!fy_l,c
Tr:::iC:i!

sys,o:<r _r-:!.jl
fllre_stac'<

c: h.e k;. um
J~ _rJ".lC_.ld
o r!vll~~~ -~cu~_

Tab le VI - page 6

Category

6-UI
6 Ul
16- I
s-us
G-US
s-us

s
~- JS
:i•JS
o,• s
o- "JS
0- S
0-US
o• S
o-us
5-US
o- s
5-us
o- US
o-US
o•US
o-U5
7- 1
7 N
7-
7-N
7-N
7-N
7•N
7
7 ~
7- N
1-
1- '
7-
7-
7-N
7 N
7-
7·
7-N
7-N
1-N
7-
7
7-
7• N
7-~
7-N
7-N
7-N
7-~
1-
1-
1-
7, .. N

Language

a I rn
p 1
v2o 1
a t rn
aln
aim
a I'll
a i'"
aim
a 1
ol
p 1
P I
oil
011
011
v2ol1
v2p 11
v 2p I 1
v2p I
v2o &

v2o 11
a I 'TI

pl1
PH
pll
cit
oil
oil
cl
011
DU
p 1
p 1
D 1
p 1
p 1
p

D 1
p 1
D 1
p 1
p
p 1
P l
pH
oil
ol
D 11
oil
011
c:> I
pH
pl1
pl1
pll

Text: Size
(words)

61
183
;j92
10
1.1+
1d
!'16
~8
38 8
~ 7
l.

) ;s
9

585
336
130
2.11 Z
.355
365
s>27
~
32
Ul.l
1(,3
11 S
123
12b8
l o
ltd

182
~3

19
l
202
211
222
2~29 ,-­-:;),
Z?l
'?.7
277
293
3 9
H7
32
t 6
;31
::>'+9
012
iJ,~7
726
7<.t-1
773
d&7
-j 7

-20-

Linkage Size
(words)

lb
32
52
12
8
8
8

2
8
28
32
32
2t
51J
4(1

1d
li
20
16
16
20
e
3
21+
Jc
13?
14,.
2
17~
It
3v
38
-+4
30
Sb
... t)

2 4-t
ou
1tl 2
3d
3&
-+2
SG
5b
2b
Sb
52
9 I:!
13~
5b
7d
15~
72
6b
,) Ci

Number
of entries Segment ame

::10Sd r-..
11

'

j

5
}

;,

♦

t

,
L

L
J.

1
3
j

1
;

♦

3

+
l
j

1
;

~

7

t hraa::i
I oc
-10::,(_
u n 1 n dc r _1..1 l I_
d 11 I _r i n ;;_u t 1 1 _
: O'lj it O r)_

.., i r ri! 1_ t I ! t y _

::i I i_:>:n r- H .)r.;
0 11 11 i ... ~_

C\I_Dl'"l_

· e_c,.:irs_
:1i1_0 c_

rd ua olt:!i - -
,:1c:1ta_t Ill.: _

oblect info
,H .. aa_2ti$ 9n­
fr~a
:1 I I oc
:1rea
.il~n:!3
trv_to_u~,oc _Ive~
lmo _stat · ~-d iv~r
l mo_Ji?f _out f r

o _ I o o i I _stat s
o~_ fllO_ c ,11_rea

l oni_l TI:>_ ::ic11_ nit
rico_maln_

mo _ t'"I e~a
'"ICO_

1 mo_,..;-< eJo
iom_i~o_jc _writ~

rno _u r i I _.,. r ,.:1

o_ ti r
lmo_~ lt?_se vl~e
1rno_s~ vice
'"l.:o_r!1g_
l:, _ '1HJ_~Tatus
lmo_rn s
1co_to;:,p_
lrno _ Ht_,. r-eo_ouff __
1:no_.JI o 1_ tn:ue
i mn_,m:3rk_nos:1
1 mo_re3 ti

;,~ :> k

l mo_c I? ;;inv.>
!mo _ o1r-It~

,o _ l'"lout_oroccs5Jr
imp _ nlt
imo_~rrcr
1 p_o er
"ICp_ut l I_
"lico_sta t1.1s_
l o_J out_;n· c,c~s:;;or tnt

o_a tdCh

~o_ elaase_~1r~1_0J far

-21-

Tab e V . page 7

Text Siz;e Li..nkage Size umber Category Language (wot"ds) (words) of ent i.es Segment Name

~-o alm J.;, b oici_trP.rr,_ o-U a lm i. u f.ast_ tic ipc_ tv o-0 a J rn l :J l CJ .L old_a 11 oc_ u-(.J a Ill J74 li.. l :) pll_uP,.ra or~ 1,1 0 a I l .HI
mov u 0 a Jm ::,u ~ LJ !) 5 S ac i v ,p - V ---u a lm :, ,) b L old _area_ ,;,-0 al l u .L. .L tt),_ read V o•U a 1 rn u

.I. ' ' t i. _ writf"_ V ~ u p 1 .L. .Lu. l.t, '- u u ercode -u Pl J.H,7 '+ ·v de);JC k o- p] .a.
,) '- accep _a fo_vhj t. -.u p 1 • .. :.,!;) .. 1 is t_c. i r I) •O pl .L. i b;, i+ (J

~La s Q V pl L h J. ~et_entr~_naf"' t, . .. \I p 1 .L .l:J .)b 7 !, ex_.srl o-u V.tplJ. 7u (I IJ u ac1
ut her V pl j:,.)

date _lilc'Utle_

-22 ..

SOME MULTICS SECURITY HOLES WHICH WERE CLOSED BY 6180 HARD¾IARE

by J. H, Sal tzer, Ph· llippe Janso,n., and Douglas Hunt

This, note is the. s ,ec.ond of a series* which describes design and imple­

mentation. errors in Multics which affect its a.bility to protect: information a 'nd

provide. service. The purpose of the series is to cry to diSC.llSS what incorrectly

laid groundwork permitted each trouble to creep in.

It is interesting {aad comforting) to note that no security problem yet

discovered has required any change in the original overall design of Multics·

the problems have univexsally been at the level of detailed design errors or

implementation slipups; the repairs have been conceptually simple readjustme11ts

l!:o bring the design or implementation back to the originally intended one.

A fairly large number of security probl ,ems were fixed automatically by

conversion from the Honeywell 645 to the Ron.eywell 6180, which has built-in

argument validation hardwar,e. As will be seeo, replacement of a complex soft­

ware package with a relatively simple hardware mechanism was remarkably effec­

tiveJ suggesting that it ~as a move in the right direction.

Unva.lida ted Gates.

In the 645 the following gates to ring zero had no validation of

arguments at all:

absentee test (all entries)
hphcs_ - (all entries)
phcs_ (all entries)
phnxbcs_ (all entries)
admin_ga te_ $guaranteed e lig ibi li ty _off
admin _gate:... $guaranteed_ e lig ibi 1i ty _ on

Argument validation cos.sists of checki:ng each .argument to a gate entry to be

sure it refers to an address to which the caller is p•el."mit ted access. For ex-

amp le J if the ring zero program intends to write into t:he argument (e . g. . an out ­

put value) then the caller of the entry should specify an address in which he is

penn:itted to write. Failure to perform argument validat:ion would mean tha he

caller could specify an address somewhere inside. ring zero; if b.e did t:he cing

zerp program could be LISed for unauthorized patching of t:he supervisor. le. is

slightly h.arde.r but still possible to exploi~ a gate. which only r-ea.ds its arguments.

* Previous !y is sued memo in the series: see page 1 of this memo .

-23-

The unvalidated gates had one thing in common; they were all con-

1:Io l led by access co,ntrol ists which limit their use to supposedly resp on-

sib le. individuals. his control was probably the c ief ra t.ional · z.ation for

not putting in tbe extra effo t required to specify the argument validation.

On the. 6180 all arguments are automatically validated by hardware

checks on the ring of origin of every argum.ent. This approach el imina.tes

both the extra (and sometimes neglected) effort needed to specify validation

a.nd also a y possibility of errors in that specification ..

Incorr,ect_!I_ va l.ida t .ed arguments

In the following en.tries s ome argument was v a lidated with more.

leniency than appropriate,, permitting the user . typically t:o cause the sL1per­

vi sor to write in to an area i.n which l:ne user has no, access.

hcs_$g,et se.g_connt
hes $get ent y nam~
hcs:$get=dbrs -
hes $assign channel
hcs_ $check_device
hes $get search rule
hcs:$get=couut_linkage
h.cs _ $ipc _ init
hes $list dir
hes - $makeJ tr
hes $list dir acl
hcs-$set _d.td -
hcs-$status
imp= dim _.ga·te _$imp_ read_:order
imp_dim_gate_$imp_,;n-ite_order
net-p_$ncp_pr ·'V_status
netp _ $acp _priv __ prder
net $ncp status
net- $nc.p-order - -
hcs_$acl_ Ust

last argument u.nv al ida ted .
argument validated for wrong type.
argument validated for wrong usage.
1st a rgument valida ted for wrong usage ..
2nd argument va.lida ted for wrong usage.
argument validated for wrong usage .
2nd argument validated for w1roog usage.
argument valudated for wrong usage.
2nd argument validated for wrong usage.
1st at:gument validated for wrong usage.
31:d argument validated for wrong usage.
3rd argument validated foT wrong usage.
entire argument s pec is wrong.
3rd argument validated for wrong usage.
3rd argument validated for wrong usage .
3rd argument validated f or wrong usage.
3rd argument validated for wrong usage.
3rd argument validated for wrong usage.
3rd argument validated for wr,ong usage.
5 h argumen.t validated for wrong usage .

This list represents the accumulation of errors over several ye.ars of

specifying argument validation for about 150 user- cal lab le gates. When an

argument is validated for nwrong usa.ge:11 it typically means that the gate

specification says that the gate only r eads the argument, ~hen the gate

actually vrites into it. Thus the va idato checks only to make su_re t.hat

the user can read data at the specified address. If he user provides a

pointer say to some location. in t:he 11 sys __ info" segment in whicb be has

read-o,nly permission the gate.,. which can write into 11 sys_info11 by virtue of

its r ·ng- zero location would then overwrite some · em there.

Again~ the value of t:he automatic hardware. argument validation feature o .f

the 6180 is clear: the opportun.ity for an incorrect software-declared speci­

fication is completely eliminated.

Unv a 1 ida table argmnents

In the foll0"1'ing entries, some e11try could~ be checked by t.be

automat.ic validator, since the correct method of validation depends on the

value of some other argume · t.

hcs_$acl_list

hes_$ x_ a.cl_ list

hcs_$ex_acl_d,elete

hcs_$initia!:e_seg_counl:

bes_ $list:_dir_acl

hcs_$replace __ sall
hes_ $Teplace_dall

3rd argumen~ t1sed a:s hot:h in.put a:nd
output.
3rd argwnent used as both input and
output.
3rd argument meaning depends on
4th argument.
6th a.:rgument meaning depends on another
argum.ent.
4 .. 5th arguments meaning depend on tbe
value of 3rd argument.
3rd argument unvalidatable.
3rd argument umTalidatable.

The problem in each cas,e here was deeper than in the previous one: the

particula:r cho · ce of arguments lead to impossib ity of validation~ and

therefore to no validation: at all. For exavipleJ :suppose that the third

argument is a.n input a:i:gument for some values of the first argumentJ but: is an

output value for others . Then a protection specif"cation which says that

the third argument~ be writable would cause some correcc programs which

intentionally provided a read-only third argument to be declared illegal.

If~ when these entries were fi.rst introduced, their documentation bad speci­

fied that the argument in que:s tion mus Ii: be writable whether or no c it is

actually written into by tbe. supervisor then t:he trouble could have been

a.voided (at tbe cost of an additional obscurity in the user interface).

Unfort:unately an after-the-fact change to requ ·re writeability might cause

some correct. user programs r::o stop working, so compatibil i ~y preve.n ts

correction.

Again the automatic argument va idation hardware a the 6180 provides

a solution. Since every refereoce to an argument is separately checked, orily

if the .argument is actually used as an output argument will it be checked for

writeabi l i ty.

-25-

EPL argument validation t:rap

The argument validator did not completely check out some of the more

complex .specifiers of arguments prov· ded. by EPL (the first Mu 1t ics PL/I

compiler) pl"ograms. hus_. a user could construct an argument descriptor

which indicated that an EFL specifier was in use, and. the- eby induce the

argument validator to allow the call to go unchecked. This problem wa.s

basically one of historical compatibility: the EPL specifier format and

organiz.ation was designed befor,e the 'mplications of argument validation

had been considered. When it became clear that certain argument ypes were

hopelessly comp ex to validate a.n attempt was m.ad,e. to prohibit (by edict)

the use of those types of arguments in sup,etvisor entries. After the later

PL/I c ,ompiler e imina.ted the need for a restriction, sOD1e gates were insta led

which utilized the forbidden argument typ,e.s. The argument validate unfor-

tunately, provided a de.fault of uacceptablen for EPL arguments of u.nva 'datable

type, so it turned out that one could call tbe nm, entries with programs:

written in EPL which was still an available comp' le .. The alterna ives of

cha:ng · og tbe default to Hun,accep tab ten would have effective y denied acce.ss

to the new gates for those users not yet ready to rely upon a new unseasoned

PL/I compiler. Thus, through a series of design slipupsJ errors in judge-

ment: and bad practices this protection bypass g ,ot int,o the system.

The 6180 argumea t va.lidat.ion hardware again automatic ally per forms

the appropriate access checking at ergwnent usage time independent: of the

format of he structure passed as an a gument.

m terminate !!,._ug

The design of th~ In er Process Communicatiotl. (!PC) event channel

table (ECT) had t e. following flaw: when the user-ring IPC created an ECT

it then cal led a ring~ zero entry o inform the ring- zero part of PC of t e

loca t · on of the ECT. The pointer in questio,n was stored by the ring-zero part

of IPC in a ing-zero data base, for future use in passing IPC messages back

to the user. The user cou d now terminate the segment containing the EC'l\

and initiate some other segment (to which he bad only read access in the user

ring) with the same segment: nu..mber as the former ECT. Then~ the ring zero

pa.rt of t.he IPC, using its stored pointer would write the us,er '' s messages in

a place the user had no business writing into,

-26-

With the 6180 ha:rdware., the pointer passed by the user to tne ri.ng­

zero -part of the lPC facility and stored there contains the ring number of

t.he user's ring. Thus all reference -made by ring-2:ero IPC using that.

pointer will be validated as though they came from the user ring. If a seg­

ment for which the user did not have write access is substii.tut,ed, t.he attempt:

of the :ring-zero procedure to write in it: ·will fail.

Exploitation of ~-ring ma.s,ter-mode procedures

The 645 processor had a 11master-moden prop,erty which bypassed all

protection checks; certain procedures such as the fault int,erceptor and

signalle.r had to operate in master-mode, yet in the ring of the user causing

the fault or receiving the signal. To prevent exploitation~ the hard.ware

permitted calls t:o a master-mode procedure only l:o an entry point: at location

zero in the segment; the procedure was expected to very carefully examine r.he

circUlll8eaD.Ces of its entry to insure that it was not being exploited.

Upon review of the standa.~ entry sequence code. actually being used

it was discovered that the design did not prevent exploitation at all. Three

dist~nct problems were found each of which could be exploited i.n several

ways. FirstJ the entry sequence was designed on the assumption that index

register one had been set to indicate which of several actual entry points

to 1:he segment was desired. The entry sequence correctly assumed that the

caller might place an out-of-bounds value in index r ,egister one so it

checked to make sure that the value was within reasonable limit:s. Unfortu­

nately. if the value was out of boundsJ it called out to the system trouble­

handling procedure which proceeded to ncrash 11 the sys tern. Thus 1 any user

could caus,e a crash by transferring to location zero of Uie signaller., wit.h an

appropriate value in index 'register one. The second problem is that the call

to the system troubLe handler was done by an indirect transfer out through

he linkage section of the master-mode procedure~~ but this call occurred

before verification t:hat the 1 ·nkage pointer had been set to the currec

value. Thus the user could plant a special value in the linkage pointer

transfer to location zero of the signaller, and cause the master-mode proce­

dure to transfer an~here he wished -- including into the. middle of another

maste·r-11ilode procedure. Again, by preparing registers tin advanceJ and choos · ng

-27-

carefully the code sequence to trans fer · to, one could deve op an ,exp lo· -

tation. Fina. ly the third p oblem is that safe-storing of the proce.ssor

t'egisters was done assuming that the regist,er va ue in the stack base regis­

ter did not need to be cheeked since it was locked. Unfortunately, a 1971

modif ,·cation to the system resulted in. the stack base register being unlocked

so tbe user could by loading tbe stack. base register and transferr · ng t .o a

legal ,entry point of the signaller, cause. it to safe st9r,e th@ proceeaor

register almost anyw-here.

Although the concept of securing a master mode procedure stills ems

viable, the implementation is apparently very fussy. By checking the Multics

System Programmers I Manual it can be established that: the f rst two problems

have existed at least since 1967, and probably earl i,er. It was precisely be­

cause of uneasiness about the securing of master-mode seg:ments that the 6_80

was designed without a master-modeJ and with ,co•nsisteot and builtia hardware

call and fault facilit'es.

Execute in traction user e_ecial protection checks

On the 645 processorJ the checki:ng of permission 'l,l'aS special cased

when an "execute" instruction was encou te:red since the time of decoding

of the instruction to be executed is de ayed to a ti.me when mos instructions

are in the midst of execution.

Apparently as a result oi a field change.! one of t:he special cased

cbecks was accident.ally disabled if the execu e instruction was located

1n an odd location and ii: addresse.d an offset of zero in another segment.

tn this situation write permission was not cnecked . so o,ne could write

1-nto a read-only segment.

Here we have an e~ample of th.e danger of special cases - they tend

to cover rae occur1;ences which means that routine operation does oot

exercise them. It also points out the :recertification problem: even if a

design is originally sound, every at.er modifkation should be accompanied

with a recertification.

-28-

SOME RECENTLY REPAIRED SECURITY HOLES OF MULTICS

by J. H. Saltze:r and D Hunt

This note is the third of a series* which describes d,e .sign and imple­

me.n.tation errors in Multics which affect its ability to protect information and

pr,ovide service. The purpo.se o,f the series is t:o try to discuss vha t incorrectly

laid groU111dwork permitted each .. trouble to creep i.n,

It is interesting (and comforting) to note that no security problem ye

discovered has required any change. in the original overall des ;i.gn of Mu1 tics ·

the problems h.ave unive.rsany been at the lev,el of detailed design e.rrors or

imp lem.entation slipups.; the repairs. have been conceptually simple readj us tmen rs

to b:r ing the design or implementation back to tbe orig insi lly intended one.

Reused address

Following a sys,tem crash, the salvager may discover that a. single disk

or dru:m page is being used by two o,:t more page. tables, a. situation which should

n.ever occur intentionally, but may appear if a crash occurs while upda t; ng a

page tab e value. In the original design~ the page in question was ~arded to

the first page table encountered by the salvager., ,and later users of that page

were assigned new page.s containing zeroes. Since there is no way tote l which

of the multiple users was the legitimate one he pre.sent, safer design gives

all users of a reused page dis tine t pages of zeroes. This improved design

helps reduce the chance. of one u.se.r seeing another user I s data because of a sys.­

tem crash. Ideally_. one would make the storage space which holds a page la.rger

~han the page itself., and stor,e a copy of the segment unique identifier wi.th each

page when it is assigned to a segment. Then since pages are id,en tifiab 1,e los 11:;

or multiply-used pages could be returned to their proper owners with less chance

of accidental i nterchange.

This problem "llustrates an · ssue wb.ic.h is as yet not very systematically

approached in large sys ems: the initial design almost always assmnes erfectly

functioning hardware and software, and as experience is gained about wh ' ch

failures are most common patches are. added to protect. The design of the

* Previous y i ssu,ed: memos are reprinted on page 1 and 22 of this memo.

-29-

second CTSS file ~yst:em included forward~ backward pointers with every

record of a file; the system always checked the back p,oio.ters to see that

they contained the expected Ralues. As a result" parts of u.ser files were

almo,st never interchanged .. _ a distinct: imp·rovement: over the first CTSS file

system whicb used forward pointers alon,e, and i which it was a colllllon occur-

rence to fh:1d someone else's data in your fi e Unfortunately this parti-

cular CTSS lesson did nol: get transferl'.'ed to Multics, probably because of the

e:x:tra overhead that m:ight have been involved in dr1m1 manage.men t.

Opera tor logffi window

Whe bootloading Multics, tbe operator dialed a telephone number to

log in the ''initialize:r11 cons ,ole, whi,ch co · trols all .system operation. A

h.ostile user, with careful timing.,, could dial the number and take ove.r the sys,­

tem aa it come·s up. The design was adopt,ed so that syst.em initialization could

be perfonued from any available terminal; it was originally intended that the

operator supply a pasSl.Tord, but for some reason that intent was never implement.ed.

The design was ~ecently -changed to permit use of a terminal which is permanently

wired to ·the system; security is higher but when that: · eTillinal breaks., system

operation may be awlnira:rd. The a~kwardness can be e imiu.ated by havin.g •~erst

available. hardw•ired tennin.ab.

F'SDCT update: problem
The Hfile system device configuration table., (FSDCT) contains a bit

for every storage block in e'8:ery secondary storage device. A 'one" means

the block is ·unused, a u .zeeo11 means it is used. If several devices become

completely used a page of the FSDCT may become filled l.Ti th zeroes. Sinc,e

it is an. important table it is frequently backed up by copying it out to

secondary storage. The procedure invoked for this copying is- the standard

page re1I10val procedu_re.~ ~hich has been des ·gned to discard pages o,f zeroes

rather than writing them out. Th.e routines which read the FSDCT from

secondary storag,e at syst.em initia.JLization time (before the standard paging

progra.D works) was a non-standard one which did not know that pages of ze:roes

we:re given spe.cial treatment; a. system crash resulted whenever the system

was :initialized. In principle., at least a user with a very large. storage

allotment could. exp oit ttillis, bug 'by Ct"eating, tnany aepents ju&,t be.fore a

yetem shutdown. Tbe. sya.tem, would shut d,Clffl with · n FSDCT containing blank

-30-

·pagesj and all future at:.temp,t:e to boot load tbe system wou.ld fail. The bug

was fixed by revising the PSDCT reading procedure to correctly re,cognize the

blank pages during initialization.

This i:s a category of bug which does not pe.rmit the exploiter to

read information, but merely to deny use of the system to other legitimate

users. The particular pr,oblem illus t.rates the effect of first using a

special trick for efficiency foll.o"Jjled by later use of an old procedure

for a new purpose without evie-wing its opera,tjon for special tricks.

Lo_g_1n table overflGlY'

the ist of logins during a single bootload of Multics was stored i n

a single segment with no overflow procedure. A singe user, by logging in

several thousand times,. could overflow the segment, making further log~ns

by authori ed user6 im_po,aaible.

Thh ia another ,ex.ample of a ''denial-of-u.se" bug but a e. which

could be ra.pidly rec(mlered from by reinitializing the system. It origin

lies in the period bet.ween 1968 and 1970 when a. combina ti,on of pressure t ,o

get going and also a short av,erage 1'system. up" time mad,e programmed provi­

sions for table overflow look like a non-essential luxury It has been

long since fixed. by adding an overflow procedu.re, but its origin is inst::ru,c­

tive since there may be yet unsuspected protection bugs with the same origin.

P~ge ontrol ~agic number

An old hardware bug trap places magic numbers in core where a page

is to be read in, then after reading the page checks . the numbers. If stil l

t_here it assumes th,e page didn t come in~ and reports a page read error to

the user. If a user places c ,ontrived names containing the magic bit patterns

strategically in a directory to which he has o ly append access, he ca.n

effectivel y delete othet' entries in the directory .

The trap has been left in the system, but it has been placed. under

strict operations control by requiring a special 11 debug11 card in the configu.r~

ation deck loaded by the system operator before lootload; operation with

th,e debug card in plac•e is d,one. only with special authorhati,on, and leaves

n audit trail.

-31-

Retriever .!£.!-swing bqg

The retrieverJ used t:o ob ai[il old copies of files f-rom backup tapes

used to wor k as follows:

l. Create. a new empl::y segment in the user 1 s di:rectoryJ with a.n
access-control-list permitting access to anyone.

2 . Copy 1::he data from the tape into the. new se~t.

3. Read the appropriate access-control-H:st fr.om the tape.

4. Re.place the initial access-control-list with the one r ,ead
from the tape.

If an errol'.' of any kind occurred aiter completion of step 2 the ret:ri,ever

would exit: leaving the data reloaded but unprotected;. the user received no

warning of the co11dition. As a result, an explorer of the directory hierarchy

wauld typically discover sev,eral files to which he had access but should not

have.

The problem lil'as repaired by making the initial .accese-cont:rol-lbt

grant acceee to tb:e retrimrer process only; any erro,r.s after that point

reslll t . in a fail-safe: ina,ccess · b ility of the segment. Since the user who

-r,equested the retrieval Yill usually try to immediately use his retrieved

segment, its inaccessibility will tend t:o be discovered quickly~ and a

locksmith can be calLed upon to adjust the situation.

This problem is a good ,e,i:ample of design which did not take.

i nto account all the implications of an error encountered in an otherwise

acceptable sequence.

Process directory record overflow

lf the user generates too much stoi:;age (more than 500 pages) in

h , s process dir-ectory~ an error is signalled to him. In the original design,

the signaller used the wrong: stack, crashing the system. This bug could be

exp oited to deny service to others at the user• s whim. It. was repaired by

having the signaller use. the correct stack. lt h a good example. of !:.he

effect of complexity (.t.he need for several possible stacks) compounded with

t.he diffi ·culty of testb:1,g un.uaed and limit conditions~ Basica ly~ the

handlexs for rare and unusual conditions tend to be poorly tested simply be­

cause normal use~ li'h · ch uncover a mo,s t bugs in today• s .systems~ does not

exerci.ae them.

-32-

Locked stack.!!.!.!; problem

In the design of the 645~. a pr,ovision ~as made for the supervisor t:o

ock the value o,f any base register. This feature was includ,e,d primarily

because ;twas planned to handle faults and interrupts using a stack and i t

was uot certain at the time whether or not use of a stack was possible unles.s

the stack base registeJ: (containing the stack segment nU?llbe:r) as locked against

user tampering. For several years, Mult1~s operated wil!:h a locked stack base

register whose value wa changed by a master-mode procedure as part of the

ring-8\i'itching operation.

The fault and interrupt interceptors were coded assuming a locked

stack base at three points, although after the ring design was c,omplete,

it became clear that the user could, · n principle, be safely allowed to

modify t.he stack base register.

With the evolution of the design of the PL/I compiler it became appar­

,ent that the extra flex bi:Uty of allowing the s.tack base register to be· user

changeable. was quite handy, so the stack base t'e,ister was unlocked. Unfortu-.
nately ! no, one followed through with the three one-line changes to the fau1 t:

and interrupt inte.rceptors required to eliminate their dependence on a locked

stack base r ,egister. As a result one could load the stack base register with

the segment numbers of one of the ring-zero stacks, and theu wait for the

nex.t fault or interrupt, which would go to an interceptor which incorrectly

assumed that because the stack base register had t.he expected value, the

stack pointer reglster mus also be loaded correctly. The resu twas

possible overwri ting of a :ring zero data storage are.a at the direction of

the user.

The problem was fixed by addin.g the three one-line checks mentioned.

The underlying trouble here seems to be a failure to f ,ollcw through all the

implications of a change in a fundamental ground rule; cl,early such changes

a:re dangerous and must be approached with .all possible caution. (see also

REC 46 ~ dhcussion of user-rin_g master-mode procedures.)

JL! r!n.a s ~•c_k Jo_g
Th• 1ty1tem hes an intei-nal pt:ocedure., named •append_branch"' which

cr~Hteo n ne ses,men. and a utility named 11makeseg• wh i..ch either creates

a nl!~ 11epent (by calling n•ppe,nd. __ branch 11 } or returns e pointer to n ,old

-33-

one f it already e.xiets. Since "a.ppend_branch 1 requi e many argument:.& t:o

describe the newly created eegment, and "make eg" supplies uaeful defaults

for most of the. arguments, there is a tendency among system programmers to

call *'makeseg 11 rather than 11 append ... branch11 , e\f,en when use of an. old segment

would be inco:i:rect. In the case of the procedure which creates stacks for

newly en~ered rings, the user could create~a segment with the stack name of

a previous y uDused inner ring but with ring brackets allowing him to

read ,and writ: the stack conte.nts. Then, upon calling a procedure in the

i.llller ringJ stac creation would be aut: - 1tically triggered. The itAck

c:reat:i.ng progra.10 ca led 11 makeseg r and thus would receive a pcin.te to the

- eviously planted stack rather than an indication of an error. The nner

in,g procedure would then proceedJ oblivious to t:be fact that its stack

was then accessible to programs in outer rings ..

The problem was fixed. in moving to the 6180 since the sack

creation. strategy had to be modified anyway; procednre app,end_branC:h is now

used We ha.ve here an example of how a p•articular combination of too many

conveniences. in one utility program can lead t:o sloppy considera ion of

:!::he implications of using it.

-34 ..

Patterns of Securlty Violations: Multiple References to
Arguments

by Harry C. Forsdlck and David P. Reed

l. I ntr·oduct ion

A arge class of Potential holes ln the security of an
ope rat i .ng system 1 s character I zed by the us,e of an all"'gumen t mo,r e
than once. On the surface, tnrs situation appears to be
harmless: multiple references may be rnefflclent, but they seem
to be fun ctr on.a 11 y equ I val ent to a s l ng 1 e reference. But, are
they? If the value of an argument could change between one
reference and the next, the possibility of an error ln the loglc
of the program ustng the argument exlsts. The assumotlon ade by
the author of the program that an argument could only be altered
by the program or agents of the program is vlolated. How could
an argument change 1n th s rnvalld way? A simple conceptual
scheme oin a mu t I pl e pr,oces s sys tern 1 s for one process to execute
the call, supplying the arguments and a second process whlch has
access to the values of the arguments, to perform, at the
appropriate time, the alteration on the arguments. Whether or
not a multiple argument reference leads to a breach of security
depends on how the lnformat[~n gained from each reference Is
used. If he resu ts of a test ,on one reference to an argument
determtne how the lnfor ation of a second reference rs used, then
a exploltable hole in the system probably exists. More specific
conclusions on the correctness of multfple references to an
argument de pend on the s,emant r cs of the part I cu 1 a r program under
analys(s Rlchard B(sbey of the lnformatlon Sclences mnstltute
of USC brought this subject to our attention. He descrlbed the
multiple referenclng of arguments as a general pattern for a
class of securlty ho es and clted several Instances of thls
pattern in Multics.

With these ideas as ,otlvation, the Multics gate entrances
to r(ng 0 were examined to determlne ff such multfple references
to arguments were being made and f so, the implications of such
f l aws Of the approxrmateTy 170 entrypoints to ring O through
the hes_ gate, about 50 were found to make mult(p e references to
their arguments. Nine of these rnstances were potentially
serious breaches of securlty In the Multrcs system All of these
breaches are easlly fixed by copylng arguments and then

referencing the local copfes

2. How to Change the Value· of an Argument

The multlple process method of changing the value of an
ar gumen·t is conceptua Hy s I mp e, a 1 though in pr act 'Ice, rt a· s
necessary to coord(nate the two processes so that the argu ent
gets changed at the proper time. Tis task rs often mposslble
to accomplish except by c ,ance. A s1(ghtly oore coMDlex
mechanism owever, nakes the alteration of an argu ent trivial•
The comb Ina t I on of [nd (rect and Lngexed - au t,q 1 nc;rement
addressing and the ability to cascade these modes of addressing
al lows a programmer to set up an ,argument 1 i st so · hat ~
reference to an argu ent accesses a different value. On the
H6180, rndl rect the1n a ly (IT) address mod(,f(catlon Is one of
the kfnds of ind(rect addressing and the Enere~ent Address -
Decrement ally - Cont nue (IDC) varratton on the AT modifier Ts
an ex.amp e of ndexed - au to Increment address r ng ,.

F rst, consider Indirect addressing. Typ(callY, there Is a
field I an Jnstructlon which can soec fy that the operand
address points to a cell (the "Indirect ~ord") which contains the
actual address of the operand In addTtron, with cascadlng, a
field in the indirect word can specify that the lndirectton
process should continue at least one ,more. ·1evel. For example,
the diagram below depicts three levels of lndlrec ron:

f ~structlon l~t n 1 rect word ;;-2 ... n_d l _n~l"'!'l'"-;;;.....ii~
. l * I • ' ➔ fL ___ -1[.:.*LI -....!•!::➔i-----------~➔ --- - --....

"'- I ndt rec t fl e 1 d __;If...------------........ ---
Indirect

1 I
word

•-~
Oeerand

t
-'t,_no ndlrectlon

For the lndexed autol crement mode, there are two addltlonal
f elds rn lndlrect words: the fndexed-autolncrement field and
the c,oun1t (ta 1 y). When an ind r rec t word \rd th th .e
1 ndexed-auto r ncr,ement address Ing mode ls a,cces sed, the count · s
added to the address and used as the effect ve address of the
lndlrect i..iord~ tn addlt(on, the count 'fleld is Incremented by 1
Thus, each t lme an Ind I rect r ,ef ere nee ls made th rough an r ndl r ,ect
word with the r ndexed-au t ,o Increment address 1 ng mode, the
effectrve address Is one location higher. This rs very useful in
accessing tables -- rn our particular ease, tables of values
for a s l ngl e argument. For examp 1 e, the d r .agram below d,epl cts
two consecutive references to an argument. The Indirect word rs
part of the. argument l 1st set up by the cal 1 fng procedur,e. In
the first reference, the count rs zero and thus the value
accessed is the flrst value In the array of va ues.

-36-

Frrst Reference
fl nd I rec t r r ndexed-auto I ncrenient

! load I*] 9""'3~-..;a,., [) 0) J*l1
~] > val ueO

/
valuel

accessed value ·
value2

Second Reference
[i.oad [* I .. 3 ... --,..➔ t I 1 J {,.I -• 1---,- va -1 u1e01

....,!I) val uel- j
accessed value...,.......- ~

va ue2

The count ls automatically rncre 1ented by one so that on the
second reference, the va 11 ue ace es sed wt 11 be th ie second member on
the ar r.ay

lf arguments are accessed by Indirection (as th -Y are In
Multics) lt rs quite easy for a (mallclous) programmer to set up
an argument list so that each reference to an argu ent accesses a
different cell. A number of machines (for exampl(t H6180, U IVAC
1108) have the addressing features similar to e ones described
above and thus systems running on these machines are susceptible
to the problem of arguments changing values at unexpected but
predictable times.

3. Classes of Errors Caused by Multlple Argument References.

The last Section established that multiple argument
references can cause problems There are four types of errors
that arise from multlple references to arguments that are
charac:tertzed by patterns of readlng and/or setting the
arguments. The rllustratlons below are stated rn terms of double
references, although the discussion applies equally well to any
number of multiple references.

1. Double Reads: In this class of error, an argument Is read
twice. The value read the flrst time is tested and the result of
that test dete rm Ines how the va ue read th,e s ec:ond t I me is used.
The following program fragment l lustrates this type of error:

if argument= 'pds' then swltch O;

. .
if switch = 0 thien .••• ;

else-~ (reference to argument) .
■I • iii,

The value obtained by the second reference to argunent could very

we 1 i be I pds ' , a st ate hat r s J neons T st en t .,., I th the or T g i na 1 11.
statement.

2. Setting then Reading: Another commo class of error occurs
when a p~ocedure nitlal fzes an output argument to a certain
value and then relies on the integ;rlty of that value The scheme
outllned fn Section 2 works equally well for reading or settfng
arguments. Thus, ; is posslble for a user to cause a called
procedure to use a va ue that Is outsfde of Tts control The
fol low ng program fragment 11 lustrates this type of e ,rror:

a_ename = 1 mal box•; . .
• .
call delentrySdfile(dlrname,a_ename,code);

Between the points a_ename was set and 1 sed, ts valuie· c,ou d be
changed to any value the user desired

3 Settlng twrce: A slightly less obvious, yet potentially
eQually damagfng error arises when an output argument 1s set
twice. Damage results tn situations where the value to which the
argument is first set ls to be hfdden from the cal fng procedure
by storing the second value. Again, sf nee the sche e of Section
2. \'101rks equally wel for reading and wr I ting a history of
argument values can be deve oped. his history ls a potentla
privileged (nformatlon leak. The follov ng program Illustrates
th Is po Int:

argument_code = error _tab Te$ en t ry no t_fou nd;
• ,.
•·
argument_code = error _t,ab 1 e$ no_aicces s_to_fT 1 e;

I* Hide exJstance or non-exlstance of fl le from user.* I

i.. Pass Ing an Argument .: A I de1ayed11 error can a1rl se when an
argument to one procedure Is passed dfrectly without copylng to
another procedure Thts Is because the value of the argument
res(des In an address space that Is not protected (the user's
address space) In Multlcs1 the scheme descr[bed Tn Section 2
does not cause a proble because an entry in an argu~ent list for
an argument to the call fng procedure Points directly to the value
of the argument. Thus, there can be no malicious address[ng
modlffers In the ar-gument 11st The more general mult pie
process scheme, however, s still effective En changln~ the value
of the argument,. f ,or examp 1 e, r f procedure A Ts ca 1 ed T th
argu ent X by a user procedure, and A in turn calls B suPplylng X
{without copying) as an argument, then the value of X can be
changed by the mu 1 tr p 1 e process scheme durl ng the t 1 e B, 1 s
running Thrs proble 1s made more serious by the tendency for
argument va11dations to be dropped (for efficiency reasons) ln

-38-

procedures that are 1nterna1 to the protected part of a system.

s. Multiple References to Pointer Quallfled Arguments: Quite
often a pointer to an argument ls passed to a procedure when t e
actual argument Ts a complex data structure. Again, the muTtlp1e
process scheme can cause the actual data ltem to be altered
dur T ng the runn 1 ng of a ca 11 ed rout I ne. Copy Ing the Po 1 nter I nito
a loca 1 varlable and performing references through this local
copy does not solve t e problem s rnce the a,ctual yalue of the
argument can be changed by the multipl e process scheme.

4. t~ethods of Recogn 'i z l ng Mul · E p 1 e 'References

In a large system rt rs very difficult to discover Instances
of the errors ourl I ned In Sect ron 3. Two alternative methods of
attack were taken ln out study of ~u tlcs. One technfque ls to
perform an analysis of the text of all procedures that are
Interfaces between the er It I call y sen·s i tr ve pa rt of the opera t l ng
system Cring O gates 1n Multlcs) and user programs. Thts
analysis rs -aided by the cross reference listing produced by the
PL/I compiler. Certain patterns Tn the cross reference l[stfng
for arguments indicate that multlple references are being made.
The mar n advanta,ge to th Is approach Is that 1 f done correct 1 y, rt
w1111 yield ill instances of multiple a,rgumenit refer ,ences The
main disadvantage ls tat It is a time consuming task

There a re two defects, ·r n the ,cross reference techn I que.
First, all references are , lsted together; thus 'l't ls 1m1posslble
tote 1 by looking at the 11st which kind of reference (read,
write~ appearance tn an argument 11 st) occurred. The rnabilfty
to dfstlngulsh In the cross refe~ence listing between argument
·11 st app,earances and reads and wrl tes makes the anal ys Is more
difficult. The second defect of the cross reference technique Is
more serious9 The appearance of a reference to a name fn the
text of a Pl/I program does not guarentee that there w111 be a
corresponding reference to the value of the name rn the
tnstructlons emitted by the compiler There cou d be z ,ero or
more references depending on optlmlzatlons perfor ed by the
comp! 1 er and t .he form of the actual reference~ As an example of
the 1 as except Ion,. the statement

x ~ convert(argu ent,z);

doesn't ac al]y reference the value of the argument. The value
of z is converted to .a va 1 ue whose ty,pe Is the same as the ~
of argument and stored fnto x~ Similarly, a reference to the
length of a str(ng does not reference the string, but rather the
descriptor of the string. Thus, searching the cross reference
list for multiple references can cause false alar s. On the
other ha . d, the cross referen,ce 1 i st prov I des no help r n spott Ing

-39-

references to arguments that are eontatned within loops.
It is conceivably possible to mechanize thls process so that

multfple references to arguments could · e discovered by an
automatlc analysis. This task would flt In easr y in the
framework of the P /I compiler since a11 of the necessary
i nformat Ion is al ready aval 1 able wl th 1 n t e com·pt 1 er.

The second technique for discover Ing mul tl 1pl e argument
references Involves monl tortng the actual use of arguments p.assed
to Interfaces .. and not Ing any a1rguments that were referenced mo,r e
than once. The mechanism used to exploit . ultlple references to
arguments noted ln Section 2 can also be used to detect
multiple references to arguments at runtlme. Wh le a 1 multlply
ref,erenced arguments cannot be detected In th Is way, many wh I ch
can be exploited via the autolncrement mechanism wl 11 be found.
Since these are particular y easy to exploit, detectton of them
Is Q u I te us efu 1 .

r n order to det ct these bugs, a set ,of spec: r a transfer
vectors were substituted for the ring O and rlng 1 gates rn
several users 1 processes These transfer vectors constructed a
n1ew argument 11 st whlch made us ,e· of the autol ncrement features
of Multics Indirect addressing to keep a count of references to
arguments via the pointers in the argument 11st. This argument
1 (1st, whtch ul tlmately referenced the or ginal arguP1ent 11 st via
a serles of Indirect ons, was passed to the real rtng O or ring
l gate Upon return, the transfer vector code observed the
number of references to eac argument, and recorded the ~axl™J
nur:tb,er of argument references r n any ca 1 in a net err - g data base
~hich had one entry per argument per entry point.

For those lnterested, the argument list constructed is
detaHed below. Its ould be noted t ,at th s t ,ec nfque can only
worlk. if the number of argument references can be bounded and
small (I.e., references to arguments do not appear in loops).
Unfo rtuna te.1 y, this was not the case fo ·r t ty_:wr i te, tty_rea.d, and
tty_order. Cons,equ ,entl y, these entry pol nts were n.o measured
by this method after the Initial tests.

J ts,
r de

/ [address _(ta / :C Tally Word

I
: ~ I)

Constructed , "')
Argument ~

LI st '")

*
* ;s

*
f3

Its

Users Argument
LT st

There are severa deficiencies 1n usJng this scheme to
detect multlple references. Ffrst of all, Et ls necessary to
exercise all possible cot ol paths of the system procedure in
order to flnd al of the cases of ltlple references (so so~e
holes may pass unnoticed). Secondly~ th ' s technique produces
many false alarms, since t e code produced by the PL/I

compiler may produce multtple rndirectrons through the argument
for one loglcal reference (thrs may or may not be a bug).
Also, structure or array arguments may have subparts, all of
which are singly referenced, but through the same argument
pointer. Another probl1 em rs that Pl/ I sometl mes eop res argument
pointers by Indirection uµon entry to a multlple entry point
procedure (the case occurs 'If the same name ap,p,ea rs l n d I ffer en t
posrtrons In several formal parameter lists). This results Tn
only a single reference being detected by chis technique, even
though mu It I pl e references may be made. The 1 as prob I em is
that a r gUment s wh I ch are pa,ssed on to r nte rna 1 rout Ines w i 11 not
be caught, s l nee PL/ I Ind I rec ts through the a.rgunent 1 rs t once
to get the address of the argument whrch is passed on. Even if
the argument Is referenced multiply by the lnterna ~outine
which receives it, this wlll not be done via the Tndlrect chaln
provided to the external routlne by the transfer vector, and
will not be counted by this teehnlque.

Most of the bugs which were found ln the current system bv
the auditing method were also found by the ilf!Onltorlng method.
This suggests that the latter technlque might be useful ln
attempt r ng to prevent pass Ible bugs in the system from bal ng
exploited, by c~ashing the user's process if an argument is
referenced more than once. (Thl s cou1 d be accompl I shed by
causing a fault on the second reference by using a fault tag 3
indirect word as the second entry In a two element array of
indirect wo,rds refer 1enced by the J de au to increment ode ,.)
Certainly .. such a f i rewal 1 has I ts costs, bot r n runtime
efficiency, and in the fact that all 1nnocent multlple argument
references must be purged from the system, as we 1 as the
secu rl ty holes., In order for the f 1 rewa 11 to work. ~everthel ess,
th rs ay wel 1 be wort wh 11 e T n attempting to prevent
retrogresslon in the security of the system for some users with
high security requirements

5~ The Semant Tes of Multiple References

Once multlple references to arguments have b@en discovered,
the re Is a fl na 1 step needed to determ I ne 1 f a J)Ot:ent I a 1 breach
of the secur I ty of the sys t ,em ex I sts. Th 1 s requ 1 res match t ng the
information about multiple references gained from the essentially
syntactic check on the Program with the semantics of the program
in rel at l on to the rest of the sys t ,em and the bas Tc assumpt 1 on
that arguments can change at any mom,ent. This step I ·s qu 1 t e
difflcu t. To be complete,. a stmilar effor-t wou 'd be required to
justify that a mult1ple reference doesn't cause a security hoe
as to just I fy that the program .u_ secure. 'But, shortcuts can be
taken: knowledge of the meanlng; assigned to arguments helps in
lsolatlng serious problems from harm ess mistakes.

Of all of the steps ln the technique for discovering errors
due to mu 1t: ! p 1 e argument references, th Is 1 s the mo,st c:U ff I cult
step to mechan lze~ A v,ery 'large amount of knowledge about the
operatlon of the system ust be used to determine whether or not

-41-

a multlple reference 1s a se ious error. The ajor benif t of
search Ing for the pat t ,ern of mu 1 t T p 1 e references 1 s that areas
of the program text whlch deserve close analysis are rsolated.

6 Resu ts of Applying t rs Approach to Multics.

An analysis of the M ltJcs rfng 0 gate entrances ~as
performed Ffrst, multiple references ,o arguments were
d scovered using both the cross reference 1st ng technique and
the monitor technlque. Next, each entrypoint that had argu ents
that were multlp y referenced was analyzed to determine the
effect of t ,e multlp e reference A list of the entry po nts
tested and the results of those tests are found In Appendix
Numerous multip e argument eferences were uncovered. In ost of
these c.as,es we were ab 1 e to c,on cl ude ,11th a h · gh 1 eve 1 of
confrdence that no errors result from t ese references In a
number of other cases, however, serfous breaches n secu lty were
d scovered.

The s(mplest and most glaring error was due to a ltlp,le
argument reference 1 n 11 stop,_process. 11 By exp o It Ing the u 1 t P 1 e
1ref ere nee r n the manner previous 1 y des er I bed, a.rri. process t n the
sys em ,cou d be stopped c, cludlng the nftlalizer process)1

•• A
I es s se -ect T ve den 1 a 1 of service ex I st ,ed 1 n "status_" and
nstatus_ ong11

; by setting up a1 cer ta In form of argument 11 st,
these routines cou d be made to 1 ock a 1 ock t .hat wou d never be
un 1 ocked., Th rs wou 1 d eventua ·11. y cause the sys tern to •Crash. I t
is possl'ble to direct 'tty_wrfteu to send an unending stream of
characters to a terminal. This has the effect of tylng up the
ent I re sys tern and caus Ing · he a.ppea ance of a era sh

Other errors were found that were either deemed less serious
or less obvlous how to exploft. Because of a multlple reference
to, an a,rgument r n "add I nac.1 entrf es 11 It Is ooss Ible for a us er
to s.peclfy the rnftlal-access control list fQ.c Allll LJ..L!K on any
d I rector I es t at he may create. Th 1 s seems Tl ke -a ser I ous error,
but lt is dlfftc:ult to s ,ee how to exploit It., In npr1nter_dcm'
it seems posslble, once a prl ter has been selzed, to address any
other pr Int er In I tdcm_message11

, multiple argument references
make 1 t poss.1 b 1 e to p,r 1 nt 1 neons I ste nt messages on th,e· oper.a tor s
cons o 1 e. F I na 1 1 y., ass um I ng th a. t t 1 s poss [b 1 e to get past t e
"hphcs_u gate, It appears poss [b I e to set up r nco,ns 1 sten t
information rn tables hat record the state of tape drives by a
call to "t:dcm_add_drlve".

One addltfonai error due to a mu~t ple argu- ent reference is
now known At frrst we had classffled the entrypornt "sfblock 11

as be(ng Int e class of entrypoints that did not have mu tiple
references •. A subsequent corrrnunlcatlon from Richa1 d Bisb,ey
pol ted out a fairly subtle error Jn t is entry to the
supervisor A portion of one oft ' e ar~uments contarns an Index

nto a bit string stored Into the PDS (an 1mPortant rrng 0 data
base), and Is first valtdated to be wlth n range. It ls then
used to select a blt in the bit string to be set to one. If the
second reference gives an out of bo _nds ndex, then any blt in
the PDS may be set. Both of the multfple reference detectio

techniques had farled to find th s error The monitor technique
failed beca se the argument is r ,eferenced rvfa a generated
pol nter, the au to Increment techn11 qu e for exp 1 o I ting such ho 1 es
w 11 I not wor-k for th ls Instance. The cross refer e•nce l i, sting
technique probably faJled due to human error.

Several direct conclusions come out of our experience with
Multics First, each of the multiple reference detectlon
tech JQues dlscovered multiple references that the other did not
unc,o\le 'r. In add Itron, both ml ss ed at east one 1 ns tance of a
multlple reference. Tedium accounted for the missed occurances
r n the cross reference 11 sting techn l que, an automated vers 1 on of
thfs method would Presumably not suffer from th s llmltatlon. In
the mon l tor method, mu 1' tr p I e references we 1re mi sse<i bee au s,e so e
program p,aths \"'ere not taken., Second, even when al 1 multiple
references have been uncovered, one ust be~ conservative in
analyzlng programs for correctness. Further, when such programs
are mod T f I ed, the.re Is a st ro,ng chanc,e: that ha rml es ·s mu 1 t; p e
references may lead to serious holes; such programs w 11 need t.o
be au d 1 t ed on each new r ns ta 11 at r on I n many cases th f s l s an
extreme 1 y t ,ed i ous task for wh I ch people are not ""e 1' su l ted. To
be ent I r ,e l y sure that a mu l t 1 pl e r efer-ence ts, harm ess, .i1.l paths
that a pr,ogram may take must be traced. C 1 early there s a ne-,ed
to develop algorithms which would perform the analysls
me ch ,a n1 I ca 1 1 y •

A 11 of the secur I ty holes re•pa,rt.e d above have been f 1 xed 1 n
the current Multics system.

7 Solutions to the Problem.

In the past there have been a number of dlfferent reasons
for copying arguments. Most of these are characterized by the
need to avold a fault (dlrected faults: segment, page, no access,
rlng violatlon; or Indirect address fault: l(nka,ge, fl, f3,
111ega1 procedure) \hi1e a lock rs locked In May, 1967 a
protocol similar to the one described below was detarled ln MSPM
BD.9.02. The suggestion was made that al argu ents to a
procedure be copied and that on · y these coples should be used Sn
the procedure. As var lous r mprovements T n the system have
occurred, some of the reasons for copy l ng .arguments ave been
el ml nated and some programmers have ceased to copy arguments.
The res u 1 ts o f th 1 s wo r k s how th a t because of the d I ff I ,cu 1 t y r n
analyzing the effect of m ltiple references to arguments, iLl..l
arguments should be co~led and valldated upon procedure
Invocat ion. To be entlre1y safe, the followfng pattern of coding
should be followed for ail ring O interfaces:

-43-

F: procedure(a_argl, a_ar g2, • • • , a_ar gn L,

copy the va 1 ues o-f a1 I I np,ut and r ni:i,u t/ou t put argu en ts,
lnto local variables~

val rdate local copies wtth respect to semantics
associated with hem rn this rocedure.

; {- use local coJ::d es \

set outpu~ arguments to values of correspondrng
local variables.

I return J
end;

By us Ing t hI s cons,erva t 1 ve cod f ng sty 1 e, a proc,eriure can be more
strongly Isolated from lts callers. In effect, we are making a
better (by no means perfect) s 1 m 1 at 1 o of separate doma ! ns by
f o 1 1 ow r n g s u l tab e res t r T ct ions 1 n p, r o gr a mm r n g s t y 1 e • I t s o u 1 d
be noted that there are s1tuatio s where it Ts dlfflcult to
adhere to his style because of efficlency considerations~ For
example, lt would be very Tnefflclent to copy an argument that ls
a I ar ge structure occupy Ing many words of sto rag·e~ Just as there
are syntactlc patterns for recognlzlng bugs ln progra~s, the
Inverses of these patterns appear to be guldes for secure
pro g ra,nm I ng.

The general Idea of patterns of errors se~ s to be a
powerfu tool that can be used In an ana 1 ys Ts of a system. In a
very short time we have d1scovered several serlous holes ln the
security of Multics. The success oft rs error patte~n resulted
from 1ts simpllcTty. The main obstacle ln discovering other
patterns Is not so, much the nature of th,e error ut rather the
suitable £lmple pattern for which to search. For exa pie, one of
the recurring types of errors reported In RFC's 5, 46 and ~7 and
T n the Mul t I cs Change Requests is overf ,ow Ing the c.apac i ty of a
table Because of the f1exibl1Tty of the Pl/I language~ there
are lilany 1ays to Implement tab es.. I ·t: would be d If f I cu It to co,-,,e
up with a general pattern that matched all of these ways because
of the many d.egrees of freedom 1 n t e Pl/ I 1 anguage The
cone uslon Is obvious: What we need are ore highly structured
languages which require a programmer to [dentrfy the objects
being used (for example the language "CLU 11 being developed 1n the
Comp,u tat I on Structur ,es Group of Project MAC at M 1 T}. In th i s
way, s mp 1 e pa terns fo :r comp 1 ex e 1rro rs can be deve 1 o,ped.

Appendix.

Classlflcation of Entry Points rn hes

Of the 170-odd entrypolnts rn the hardcore gate hes_, some 50
have multiply referenced arguments which were found by the
aud T tr ng and onli ne mon r tor Ing techniques. We may c 1 ass T fy these
further into five classes:

l. Those which are probably not security holes. To the best of
our knowledge, with the way the system Is currently
structured, these multiple references do not cause any
p,roblems. Of course, we would feel even safer lf al 1
arguments were 00p I ed and t e cop I es ref er ,enced.

2. Multiple references which cause the procedure to be fragile,
but wh I ch probab Jy do, not ca1use securl ty v Io 1 at 1,ons. By
fraglle, we are trytng to dramatize the fact that the ulti0le
references to arguments cause the procedure t ,o be very
dependent on the current order In hlch tasks are carried o t.
A teratEons In the procedure are very llke1y to upset this
del rcate balance.

3. Multiple references that have not been explored to the depth
necessary to assign them to one of the other classes

~. Multiple refe~ences which look as If they produce holes in the
system, but we can't. think o,f a way to expl ,oi t the hole.

5. Multiple references which cause holes which we know how to use
to p,enetrate the system.

The follow(ng 1 i,st of entr~polnts te11s 11htch a.rgumrents,, If any,
,are mu 1 t t p 1 y ref erenc.ed The not at Eon 'entrypo r nt (l, 3 J Means
that the first and th]rd arguments of entrypo[nt are referenced
more than once. If any arguments are referenced l"lore than once,
rema rk.s are ade about w . ch ,of t e above f ve ,c 1. .asses, the
references belong to.

-45-

Summary of Results

A su ,mary of the resul s obtained in our study rs prese ted in
the fo lowing tab1 ,e

Humber of entry points exa -1ned in hes. 170
Number of entry pofnts \odth mu ttple refere ces 51
Classlflcat[on of multiple references:

Type 1 Probably O.K. 23
Type 2 - Fraflle, but Probab y O.K. 8
Type 3 -- lilon t know., lack of Information 3
Type 4 - Hole without obvlous explo(tation 8
Type 5 -- Hole with known exploitatton 9

Untested entry points 3

Entry,poi nt -- Anes referenced more than once .,._ Type, Remarks

ac,cept a 1 m_obj ,(1, 2)
ac:l_add
ac 1 _add 1 C 3, 5)

ac ·l_del ete
acl _ 1 i st
acl replace
add-acl ... entr I es
add_d(r_acl_entries
add_d 1 r 1 nacl_en rl es ,(5)

add_inacl_ent- es (5)1

app,end_b ran,ch
appEmd_bra nch x
append_ 1 i nk
appendl
ass i gn_channe 1
ass[gn_linkage (1)

block
chname
ch name_f 11 e
chname-seg
c:pu_tlme_and_paging_
del_drr_tree
de1entry_ft l e
de 1 e·ntry-seg

1

l

Pr,obab 1 y O .. K.

P obably O.K. Arg 3 val(dated
after 2nd reference, arg S rs
an array whose e ements are
referenced once each.

4 -- Hole~ without obvious
exploitation Can operate on
a ny r I ng I n • t 1 a 11 a c: 1 , s I nee
argument [s validated before
copying

4 - See add_d r r _I nacl_entr I es ,.

1 Probably 0.K. This program
could run n the user ring.

delete_acl_entrles
de 1 et e_,channel
de ·1 et e_d Ir _ac 11_entr I es
de] et,e_d Ir r nae 1_ent r I es C 5)
delete_inacl_entrles (5]
ex ,ac l de 1 ete
ex:ac -11 st -
el(._.ac:l_replace
fblock 1(1, 2)
fs get_brackets (3)

fs_g ,et_ca l l_name
f s_get_d T r _name
f s,_getJnO de
fs_get_path_name
f .s_get_ref _naime
fs_ get_seg_ptr
f s_mo ve_·f i 1 e
fsJTIOve_s.eg
fs_search_get_\'fd Tr (l)

fs_search_set_1dlr
get_al a rm_tl mer
get_author
get_bc_au thor
get~: oount_l I nkage
get_defname_
ge Ld Ir _r f ng_brackets (:3),

get_ent ry_name
get_lnftlal_rlng
get_i ps..JilaS k
get_ 1 i nk_ta r get

get_ 1 i nkage (2)
get_ 1 p (1,, 2)
get_max_ llengt h

(4),

get_rnaJL 1 ength_s.eg
get_page_t race
get_process_usage Cl)
get_rel_segme!nt
get_r 1 ng_bra,cket s C 3)1

get_safety_sw
get~safety_sw_seg
get_s ea rch_ru 1 es
get_seg_coun t
get_segment
get_usage_val es
ge _ _ us er _ _ ef f mode (5)
high_ l O\PJ_seg_cou:nt

46-

i. -- See add_dir inacl_entrles.
~ See add....:d Ir _I nae,1ent r E es~

2
l

Fragl le·,,
Probab l1y
elements
ea,ch.

but probably OK.
O.K. Array w ose
are referenced once

1 -- Probably O.K. Referenced twice
ln copy of pointer using old
ve~slon 2 parnter copy.

1 -- Probably OK. Array elements
referenced once eac.

1

1
1

I

1

-
Probably O.K Return value,
insenslt ve.
Pro,ba1bl y 0 K
Probab 1 y (LK

robably O.K.

Probably O.K. Array elements
referenced once each

l -- Probably O.K.

Initiate
nil ti at ,e ,count

in T tr at ,e:_search_ru 1 es

inltlate_seg
f nit i a t ,e_se·g_coun t
I oam_ 1 I st (1)

foami_release
loam status
lpc_Tnit {6)

level_get
I evel_set
111 nk-force
11 st_acl (3}

list_dlr
1ist~dlr_ac1 (3)

Ii st_dl r-1 nacl (3)

1 i s t_i nae 1 (3)

ma'ke_ptr
make_se•g

makeunknown

(1 ,, 2, 5)

mas,k_ p,s
pre_pagELlnfo
pdnter_attach (2)

prfnter_order
prlnter-wrlte_speclal
printer_detach Cl)

pr 1 niter _write C 1, 2, 3)

groc_i nfo
Quota_get (2)
quo ta_r,ea d
quotaunove
read_events (1, 2)
rep 11 a ,ce_ac 1
re-p,lac:e di r _ac.
repl .ace d • r_ nae 1 (6)

(7) 1 - Probably o K. Twice referenced
in copy operation.

3 --- Don• t know,. h.aven I t 1 ooked at
re close enough .

1 -- Probably O.K. Tw ce
referenced rn copy operat ion.

2 -- fragile~ but probably O.K.
User can cause fault, but no
locks locked.

2 -- Fragile, but probably O.K.
See 11' s.t_ac 1

2 - Fragile, but probably O.K.
See · 1st_acl.

2 Fraglle1 but p obably O.K.

2

See 1 I st ac 1 •

Fragile, but p obab1y O.K. Can
cause strange KST state with
blank name.

4 - - Hole without obvlous
exploitation. Event channe
saved In user area, then
refer ,enced

Not checked. No listing avallab1e.
Not checked. No 1rstEng available.
5 -- Kole. Can cause Inconsistent

attachment states, since
device index s validated,.
then used.

5 Hole. Can write on different
printer than the one asslgned.

l Probably O.K.

1 - Probably O. K.

4 -- Hole without obvJous
exploitation. See

replace_inacl (6)

r es et_ I ps_rnas k
reset_worklng_set
res t_of _da tmk_
set_alarm
set_a1 arm_timer
s,et_au t oma t I ,c_ r ps_mas k
s e t_back up_dump_ t I me
set_backup_ times
set be:
set bc:-seg
se·t_copysw
s ,et_cpu_t I mer
set_dates
set_d Ir _r I ng_brackets C 3),

set_dtd
set_ ps._mas k
set_lp
set...,ma)(... J ength
s et_rna1x_ 1 engt h_:seg
set_p11 l_mach I ne_mode
set_safety_sw
set_safety_sw_seg
set_r l ng_brackets 1(3)

set_timer
sfb 1 ock (1)

star
star_1Jst_
status
status_ (II, S),

status_long (4, 5)
status_minf
status_mlns
s tatus_seL;act Iv I ty
stop~process (l) ·

tdcm_detach
tdcm_local 1
tdcm_message, (2)

-48-

add_d I r I nae l_enitr i es.
4 - - Hole without obvious

1

expl ,oJt:atfon , See
add_dlr lnacl_entrles.

Probably O.K. Array elements
referenced once each.

1 -- Probab y O.K. See
set_d Tr r l ng_JJ rackets.

5 - Hole. Uncopled value used
when copied value ava(lable! !

5 -- Hole. User's argument controls
whether lock Is locked, and
then whether lt Is unlocked.
Can leave lock locked.

5 -- Hoe~ See status_.

5 -- Hole. Can stop any process.
a g used after validation.

A 11 tdcrn ent r (, es use a segment as
argument .. I t I s not c 1 e ,a r
whether changes to this
se~ment can cause problems.

4 -- Hole without obv(ous
exploltat on. Can oosslbly

tdcm_promote
tdc11Lreset_s1gnal
tdc~_set_signal
tdcm_moun t_b 1 t_get (l),
termlnate_flle
termlnate_name
ter,m I na t: e_no name
term l na te:..,.s.e.g
t ,o ta l_cpu_t l me_
t 1race_ma r ke r
truncate_f T 1 e
t run ca te_se·g
try to unlock lock
tcy:abort (2)

tt y_attach (2., ~, S)1

tty_detach (3,. ~)
tt y_de tac h_new_pr·oc C 3, t4,)
ttv_event C 2, 3, i.)

tty_lndex (~, 5)

tty_order (2, 3)

tty_read (3, 5" 6)

tty_state
tty_wr rte (3, 4,. 5, 6, 7)

unmask_lps
unsnap_serv l ce {1, 2, 3)

us, age_ va 1 u es.
vlrtual_cpu_t1me_
wakeup ~ (4)

-49-

cause message inconsistent
with system's ldea of tape
name .•

1 -- Probably O.K.

3 -- Don't know effect of multlale
reference~ Not sure whether
this Is a probl ,em or not.

2 -- Frag11e, but probably OK.
Flnally cop[es second argument
Inside second level ca 1 to
I oam_~ O ·t: er ar gs O K+

1 Probably O.K.
l Probably O.K.
2 Fragile, but p~obab y OK~

See tty_attach.
5 ~- Hole Code Is referenced

twice in dn355Sget_devx.
Cou 1 d return Information ~'ll'h t ch
might be sensitive about
a 1 1 ow,ed de v 1 ce I d I s _

3 Don't know whether this
multiple reference Is a hole
or n,ot.

5 -- Hole~ Perhaps hard to
exr,lolt.

5 -- Hole. Arg 3 referenced In a
loop. Can cause the system to
ap,pea r era shed.

1 -- Probably 0.K Th[s program
need not be 1n ring o.

1 -- Probably O.K.

-50-

A TwoMlevel Implementation.
of Pr•ocesses for

Multics.

September 8 1976 21:23:
R. :Frankston

This is. a description of an impleroenta'tion of Multics Proceises usmg
mu ltiple level·s of abstraction. The· imp ementaE.ion is being done m
tonjunction with David Reed and is based on the mocte,I described in his
Master's Thesis itl.ed Processor Multiplexing in a Lay.ered Operating
System.

Thi.s draft contains many im,ptementation details, some of which have:
been modified in ac .ua11y wdting l'.he code and will be described in a. later
memo. Some sections. are only super.fitial and are meant as a guide for
later re·visions and ,extensions. Warnh1g; Since this document is being
modified as d,esign changes are being mi'.de without a complece rewnre
there milly be inc.onsistencje.s in the des.criptions.

If you have commems, suggestions or questiions either see me persona.Hy or
s:en,d mail to Frank.ston.CompSys.eMIT-Multics or RMFaMIT-MC.

-51-

Two- eYel Process lmplemen ta ion

Table of Contents

1·ntroductjon. , .. , . i I .. • .. • • • • • • .. • 1

The· Processor· __ ssignme11t Manag,er and pritnitiVe5,.... • . • 3

PAM Deta.ils. . . . ,, ,. ,. . . ~ ,. , . . 5

Th1e1 ca.'llp opera.tor • ...• ... ••...... , , 11

The VPJ interface.. . • • • • ••..•. .•. •.•.•. JS

VPC Operation ~ 21

Modifications t:o pagie contJ10] •••••..••• .• , ..••.•..••••.•. ..•... 23

The Active· Metering TabJe.••...•..•. , •.... ... ••. 25

No ification and E'l'enu. • • • • • . • . • . • 29

The L1evel Two Traffic Controner. • • • . . • • 81

The Implementation of old IPC and IPS ...•.•••.....••..•..... S2

lmple1nentation. • • ••......... :8.B

lnitializ:ati,on. " ,, , I ,. •• ,. J-4

Transition , , .. , . , , ! •••• 36

Ex tens ions. • • • • • • 38

The exbthtg implementation. • • • • • . • . . 40

Clo.s.s.ary . .. ,. , , ,. "' , , ,. . . . 42

-52-

Two--level Process Imp1:ementa ion

Introduction

The desc.ription of the implemen ation below is ooncerned with relatively narrow is.sues involved m
actualfy coding a.tg,onthms which implement rile· mode described in David ReecPs thesis. The
implementation includes some. a.rbit ary de.~isiom necessary for the embodiment of the alg,onthms.
This. description assumes faimmarit)' w'th the current Multics .sy!tem. David Reed's thesis should be
consulted for a fuHer discussion of che issues involved. To make the document at least somewha.r
re.a.dab e for a. wider audtenGe a:s well as to reduce the problem of the proUferaUon of strange
abbreviations there is il gloi-sary on page '1:2.

The key difference between the current Multics ·cnplementation and the multi evel one is thait a
distinction is made berwee:n ~ehedu1ing decisions 1(i.e. traffic control) that involve pol1ky .a:nd those
[hat don't. For the ones that don't involve policy the decision is re, aiCi vely rr vial -- the next
processor a.vailable to run wUl be .nm, a rel:utvely cheap oper.ation. n order to achieve this
simplicicy the primitive leve1, level one, consists of a fb;ed number of virtual proceuors chat are
considered ar higher levels. to be a ways assigned to a. ,processor- ln fact physical processors are a
relauve y ,expensive and therefore s.carce resourGe requiring the bas,ement of the implementation [o,

in fac , multiplex the. vircual processors on physica.L processors on a fin:t come. f nst-served boisis
within a. predelffmined prior cy astignmenr.

The advantages of he o level approach to traffic control include:

i. The system i.s simplified since on~ can view a. Multics prooess as being
buih upon the i-e~atlvely sirn_ple semantics or a vtrtua · pr,oc:essor as ,opposed
to the complex semantics of the cur.rent trarflc control ai.nd interrupt.
strucru r•e-

H. The imp,1ementa. ion of the system prirnitiv,es for process ,ooordjnarions can
be more efficient rhan the: current ones because of the simphrled
environment in which they run.

m. By improving he structuring of ·he S}'stem, che system an become more
understandable and thereby more reUa.ble.

iv. Robustness is enhanced by isol:ating Virtual Prooessor multiplexing within
the PAM. One ca.n assign properties such ais encacha.bUity to indh•.1dua1
proc,esso,rs. .Since the PAM does all stor.ing and resm.ring of physical
processor states it can be resp.onsib e, for al Ehe complexity of mamn:iining
such sra.res.

v. By handling the fault within the PAM outslde of the virtual processor, the
VP itself need not be capable of handling pag,e faults thereby simplifying
the semanEics a.nd remov ng specia1 restrictions which requi·re the wiring
of the descriptor segment. Fur her more faults due to processor fanures
ca.n be handled by anocher VP that does not ust the partkular feature.
For example, rhe can be a proceis [ha.t does not rely on the cache so that 1t

can diagnose cache failures.

Two- evel Process Implementation

vi. By sepa.rating processor multiplexing fr-om scheduUng the implementation
of he poHcy portions of che scheduler re .simplified by sepa.ra ing: hem
out a.nd are infrequent enough to remove the need for .he efficiency of
assembly language programming.

'The cunem imp ementation ptan consists of three p:a.rt"5:
I. A basic level one system witho t paging.
2. Level one with pag"ng.
9,_ A full Multics system With the second . evel traffic cont:r,olter.

A presen. a. basic version of level] has been debugged and nm. It js. described on page pa,ge 4!0.

-54-

Tw,o-tevel Process Implementation

The Processor Assignme.nt Ma.nager and primitives

This basemenit (1eve1 z.ern) program {cor·responding to the GPP ailgodthm in the thesis) 1s referred
~ as the Processor Ass.igRm1ml Manager (PAMY. The PAM is to be cons,ldered as part of che
physical processor -- [he-re exists o e logical nscaruie of the PAM per processor. n ilddition to the
funcdon of multjplexing the physical proc-e.nors, the PAM also s-erve.s to enhance the bask 63/80
processor by rationa.Uling its operation so as to provide a. better basis for Ehe other levels of
i1mp lementaUon.

The PAM is entered whenever an interrupt or fault occurs. The currently ex,ecuting vntual
processor 1s nb-ound from the physical processor by sa.vmg its st.a.Ee rn its Virtual Processor Table
Entry (VPTE). As part of saving the stue ,or the process the metering information is updated and ai

check. ts made to see if the proce:.ss has exceeded Lts fmit for CPU us.age. The nexc step m
prooessing depends on ,the reason for entering the PAM.

E1uernal interrupts are [nnsformed into, evems thaiE can be serviced by processes awaiting theu
oc.c;urance. If an internal imerrupt (fault) can be handled by the VP itself. the fault information is
s:a 'led in a. communicat1ons area in the VPTE. the VP is marked as beang unable to process
further faults and its state js mooJfied to execute jt5 fault handler. If the fault cannot be handled
by the VP. the VP is mark.ed as un.;aft and the v ·nual Processor Coordinator (described below) JS

expected to do further processing. One fault is handled speciaUy; the mme4 execured Ill a pnvd1ged
segmenc JS treated as a ca 11 p operation by the PAM and serves to e1nend the capab1hhes of the
physia1 processor. ca 11 p is described in more d,eta.iJ below. When the PAM has f imshed the
interrup1t processing, it ptaces the VP into a new state. If nothing that affects the abmty to run the
VP has occured, it is placed in the runna-ble sta e.

The state.s, that a VP may beman:

ru1111ing indicates that the VP state is c.urrently bemg interpretced by a physical
processor and hat the, verston in the VPTE i,s therefore invalid.

ru.nnable indicates that the VP may be assigned to a, phym:al process.or as soon as
there are no lugher priority runnable VPs. A VP enters the runnable sta e when it is
unbound from a phys.teal processor, but may 0011 inue to, execure.

v:nsaft indicares tha.c the VP cannot be run withciu rurcher handling by the Vi,rmal
Prooessor Coordinator. A VP enters the unsafe state if it takes a fault H cannot handle
or does somethjng the PAM does not ex:pect. Cummtly t:ltis state is not used. in.stead
the VP is stmplJ placed ,fr: th, stop/ml stalt for examination b-y tlie level two traffic

con tralle r.

! For li,Jstorical reasons this module is aJs:o referred to as Ehe Proc;essor Bindjng- Mai.nager (PBM).

-55-·

Two-level Process rmplementation

st92ped indicates ha.t a VP is no, longer runnable and wnt not be handled ftm:her by
the VPC. Once a VP enters thi.s state· it is eligible for unbinding by the· revel two
traffic controller. Furthermo:n~ hat is the only operation that may be performed on it.

A VP enters this state when i exceeds its resource lim' ; ,or otherwise req,uires higher
revel pr,ocessing Eo continue. The level tw,o traffic controHer explicitly places a VP in
this s'ta.te when it w·shes ro unbind it so hat lhe LZTC my modify its state. StoP/J!,d
VP's aire kept on a queue for actton by the L2TC.

atuailing_ .i:s a state the VP enters when iC goes blocked waiUng for an eventcoum to be
advanced.

fl PC blocked is a special S!tate indicating the VPC is waiting for :s,omethjng lo do. The
VPC may only be in this. state, ru1ni®le or running.

Aft1er placing the VP in ts. new state the PAM can do som:e standard processing: including
processing requests for ,cteartng the cache a.nd po~sibly deleting the CPU on which it is running.
(Some of this standard p,roce.ss.ing, is done earHer Jn the sequence than indic:ned in this descnp ion
in order to minimize the time between entering the PAM and performing the function.}

Once the PAM has finish ed its processing, it t'hen searches he VPT for next TU1l'l'la.blt VP. It
places the VP ·n the running staite to lndi,cate that no o her processor may examine the YPTE
state. After checking r.o make sure: th·a.t the VP may indeed run on 'the available CPU, i then
loads. the VP's state in effect binding i to the processor and running the VP

The support of the virtual pro e.s-son i5 spilt betw,een the PAM and a. dedicated VP; he Virtual
Processor Coordinator. This: supporc includes the ha,ndling or faults and interrup :s and mapping:
hemi imo the appropriue functions.. It also includes the support of the extended operations

described in the section on VPl and on the CALLP operaitor. The VPC runs in a v,rrua1
Processor so ,that it may take adva.n age of rhe process environment to s.implify its ·mplement3-tion.
The details of che VPC operation are given in a la[er sec io of this memo. The VPC is made
runnable whenever an event occurs rhat requires. .its attention. The VPC is. a ways the highest
p.rlority process so rh,u it runs as soon as it is made runnable, Eve.nrs requiring rhe VPC include
the transiUon of a process to the unsr1[~ or JtoJ,Jed states. the oocurarrne of a.n interrupt or the
transmission of a message to1 the VPC via cal p u descr.ibed below

Other dedi.caled VP's perform func ions, such as interrupt handling: and page fa.ult handling. A
key dedicated processor is the po\icy module· for schedurng us.er pr,ocesses. This. process is referred
co as the evel two t11afftc oontrotter. Becau~~ of the limited number of virtua processors 1the leve1
two Sc.'.heduter must mutt p1ex these processors.. The details or this operations are not reteven for
this memo. What is important is how a user (or level ,two} process s bound to a. virtual processor
nd ate.r unbound. This i similar o the func l·on performed by the PAM and is. done via the

VPllbind and V1Pllunbind primi ·ves.

-S6-

Two-level Process lmplemen uon

P'AM Details

There are a number of details associated with actually accomprshing the functions required of the
PAM. These are discussed in he relat vely unordered sections below. Dera.iled knowledge of the
68/80 processor is assumed. This mformation 1s ooma·ned in the CMAP manual, the 6180
processor manual and the Multics debuggers handbook.. None of them ruuy or accurately
described. che cuuen 68/80 processor.

General fJow througl lbe P M.

i. The PAM is entered vi Ehe interrupt or fa.ult vector.

ii. The control unit state a.nd processor registers a.re saved. The current value of the real
ume clock is saved.

iii. Any requests to clear the cache of an associative memory are honored. Th.is is described
bel.ow under headlng of connect fa.uh proc,essing.

iv. Virtual CPU time is computed. If there is a process awajting the realrirne· event count,, it
is is notified.

v. Any special processing associated. with the particular fault or interrupt ts done.

vi. The virtual processor that was executing is placed m a new state. NormaUy n is placed
into the runnable s~ue unless the fault handJ"ng changes the process' charaictensUcs. rr
the resource Umi for virtual CPU c·me has been exceeded the process is p~aced in o t.he
sto~ptd state.

v.ii. If the CPU is lQ be deleced, it notes that it in fact has been deleted and then goes to
sleep here. The incerrupc indicating tha.t 1t has ba!n added back continues from th ,s
pomt after intializmg the proc.essor state.

viii. The VPT is locked. If chere js a. pending wakeup for the VPC and the VPC is m the
Y PC_blocked state, it is made runmzblt.

ix. A virrnal processor that is runnabie and does no have any restriction aga.uut the current
physical processor is. placed in the running: state.

x. The tmer register ls set as descnbed below.

xi. The state of the virtual processor is loaded mco the physical processor and begm~
execution.

-57 -

Two-leve Process Implementation

Oszerating ~odes

Sance the PAM is meant. to ac as an extension of the processor and form the basU for other
mechanisms ·t operares in absolute mode, so as not to, depend on the correct funotJo,ning of the
memory management software or hardware. This also removes 1the need to treat the de.scrip,[Or
segmen speciaUy (s.uch as wiring the zeroth page) since he PAM is even more primitive than the
le\l'els re·lying on the appending ha.rdware. Whell the PAM does use the appending hardware jn
implementing the callp operation, it is able to take faults tn the same manner thal any •other
hardware inscruc:tion mjgh and process.es hem as if they had occured in an arbitrary hardware
instruction. Since PAM pr1ocesses interrupts by simply noting that t.he event cook place and then
restoring the processor state it operates. inhibited. -

Interrupt ~nd Fault Handling

The 68/80 does no have any physical processor registers that can, be used to, dist!nguash between
phystca.l prooessors when address.ing memory tio stor,e the mac;hine state when an interrup1 is taken.
Furthermore there ls only ,one address as.sociated with each interrupt handl r. without r,egard co the
processor on 1111hich the interrupt is taken. Because in errupts are handleci by processes. the
prooessor need no be ma.sked. f,or ·ncerrupts at any time it is assjgned a virtual priocessor.
Therefore there is, no need for complex masking s ra~egies - the proces.sor can run with an
interrupts unmasked at all irnes with the PAM using the inhibit bit ro prevent in ,e:rrupts.

Since any interrupt can be caken on any prooessor it is: necessary to b a.bl,e to save• 1the machine
state without regard co [he processor it is taken on until suffici.ently far into the· PAM to, enable the
pr,ogram to de ermine which processor it is on and where the associated VP E is for deassigning
ch,e vinual processor. The algort hm used was. inspired by Andre Bensaus:san's work and w,orked
out i,n conjunecion. wi h B,ab Mabee (of course Dave R.ted contributed. but then his contrjbutions
are assumed throughout}. Ther,e eidst two tables with ,enough capacity to .store SCU data. for e-ach
process.or that may be· configured. There is a pointer with a de1ta modifier equa1 ,o the length of
an SCU entry. The inrerrupr vector is niUaliZied co :store rhe SCU data using an AD modifier.
Thus when the in-ienupt occurs an address is obtained ro store the curreflt data and the po·ncer is
updated in sto:ra.ge in an atomi,c operation .so hat if any orher processor takes a. fault ic will not
interfere. Control is tben transferred ~o a common disambiguating routine tha.t operates under a
lock The ·10ck it:s,elr is grabbed using the sznc inst:ructjon which does not require the use of
r,eglsters. The res of the regiscers are then sco:red, he processor Jd i.:s determined a.nd chus the ,per
processor smrage address to which the registers are tran,sfered. The pointer to the SCU tab1e Is
then res,et to point to1 the beginning of the other table Md the first table is scanned from its
beginning uslng he AD modify. Each en ry is checked to see Jf s belongs to the •currentl;y runnmg
physical processor. If it doe!>. then Ehe data is simp y copted auE into per processor storage. If ·c
does not, · he data is chen copied in~o, the new table. agam using an AD modifier to grab and
reserve a slot. When this prnc:essing is don.e, he lock is relea..sed (via an s ·tc l) and the next
processor looping on the· lock can repeat the operation with SCU tab es switched.

Fault processing is s·milu to interrupt p,rocesslng except tha.t we ,can have a separate fault vector

-58-

Two-1evel Process [mplementacion

for ea.ch processor to, save the need for having to determine dynamically the identity of the
processor on which the ha.ndl,er is running. The processing for both raults and interrupts. is th,e
same onae we have copied the machine cond.Uons into per processor storage.

Faults while in the PAM.

When the PAM u processing a ca lp request or a page fault, a further raut may be :aken. In
order to handle these a separate fault handler is used that assumes the fault. is expected and that
the PAM is in a "good" slate. The handler does nol sa.ve any registers and assumes that control
reg:mers (pointers o the V PT entry and the perproce$sor information) are Jntact. The detaded
hand Ung depends on the PAM state. If a ca 11 p operation .is being performed then rhe machine
conditions are ~t to indicate that che fault occured while proces,fng the caHp operation itself and
the fault is pro~~ed as if it had oa:ured at the beginning of he operation. For page faults a:
message js sent to the page fault process for the fault (which muse. be on the descripmr segmem)
and the machine conditlom are set to continue with the appending cycle when the descriptor
segment becomBs ava' la.ble.

The descriptor segment.

It should be noted that by operating in absolute mode. the PAM avoids dependence, upon the
desCTipror segment. Current Multics takes adnntage of appending mode by usrng the fillet that
the descriptor segment can be, used to addre.ss different memory in the PROS for each processor.
The. elaborate scheme de.scribed above is comp\ica.ted by not having thb mechaniSm available but
as a consequence removes the requirement that descriptor segments be different on each process.or
and aUows processes to share de:scrlptor segments. This can be, of great importance in permm,ng
many s.mall process wJth a single de·eriptor segment. The idle process is a. simple example of a
process sha.rjng a single descriptor segment

Details, of callp imp1ementaition.

The cal lp is supposed to 1oolc Uke a normal machine in.muc ion that may take fau1ts. It is firn
validated to make sure rha.t the jns ruction was executed 1n a pr ·vmged segment (maybe just the VP
program's segment?). If not, it is treaced as a standard (mme4) fault and reflected back. to the
virtual processor. If he uutruction is acceptable, the p•am sta.te is sec to indicate hat he cal lp is
being processed and a copy of the ma.chine condiuons is saved. The opera.ti.on number In che. A­
register is then examined. r Lt is invaHd the irruai processor is made urna._ft and the VPC is
notified (this should never occur).

The specific processing is done according to the request. TypkaUy it wou d involve copying the
data. pointed to by poiriter register o into VPTI or copy ng Che data from the VPTE. The
detailed operation of each ca 11 p is described in the section on the cal 1 p operator.

When the processing is done, the PAM c011cinues by placing the virtual processor Jnto the runnable
state and reset ing the ca.lip-in-progress flag. The PAM then continue5 as for any other fault.

-59-

Two- evet Process Implementa ion

If a fault occurs while the ca 11 p is being pmces:sed, the h. I oonditio11s are reset co those at the
beginning of the ca 11 p instruction wuh the exception of he data address being referenced which
is taken from the new SCU data associated with the raul . When (and if) the ca 1 p is restarted
after che fault, ic ill begjn from the beginning of the inst uction. This al ows rhe fault handhng
program m use the ,ca l :P operation itself and n,ot have restricti.ons on using the communicanons,
area in the VPTE.

Page f3ult processing.

The SCU data. is examined to deEerrnine he ype of fault A message ~s sent to he page fau It
process consi,st ng of the ASTE ernry pointer, a unique, segment 1d (in case the AST entry ts
deactiv,ued), the de--Scriptor segment AST emry pointer, he page number and a ,eveintcoun er
a.ssoet.Hed with the fauit The process is then left awaiting this event, ready to continue address
evaloa ion.

Prooe.s.sing the connect f auJt

The pr,ocessing of the connect fa.uh .is very simpl'e - ic i.s. igno!f'\erl. Its purpose ,· s to force a
processor tio enter the PAM. :r achieves irs effects nee whene,ier the PAM is entered at p-erforrns
standard housekeeping functlons. In particular ai connec · fa.ul ls ssued after a mes.sage JS left
when dearing th , cache or when adding/del.eting .a prooessor.

Clearing the Cache

The table of pending clears has one en ry per processor. When the PAM wants. to clear the cache
in other processors, ic places in ea.ch table en ry the appropriate ·nstrunion. l does this via a stacq
instruc ion to make sure that it is replacing a nop. If it does find an instru.c ion other than a nop.
it as.sumes ·that another processor has lef a instruction anid loops attempting ~o ex:ecu~e t·he
instrucuo- in i s ntry and leaving an i11struc ion, for the othe·r pro,essor. _[makes sure the other
processor enrers the PAM by issuing a connect to the other prooessor.

Process addi ion and deletion. .

When a processor ts a.did ed, af er some initia lizat. on, it enters the ood.e to scan the· V PT and f md
work co do. When a processor •s being deleted .. it checks for he reques immediately p:riori to
s.cannmg the VP for more· work o do and djsable-s itself. 1n either case an eventcount as
incremented and the VPC is notified of the change.

-60-

Two-' evel Process Impleme.nta.tio:n

Makin~the VPC ru.nnable and prooessing the VPT

Whene,ver there is an event that. requires the VPC's a.uention, a wakeup-wailing flag associated
with the VPC ls set using the stcl Instruction. The lasE part o,f the PAM locks he VPT. The
wakeup wa ing switch is cleared with an sznc instruction. If I was set, then the VPC is .p~aced in
che rtunzabte stare from the V PCJlocked srate, us"ng the sznc instruction.

The VPT is lhen scanned for the firn (and therefore highest priority) process that is in the
rznnable state. One wm alw ys be fou d since ther,e Js alwaya a lowest priorjty idle process
a;vailable. When the entry Is found. it is placed in the running state. A check is made to see 1f the
process has re.striaion against he airre11t processor and if so, ma.kes it a.gain rnmiablt and
conUnues the scai.n. Otherwi~ the YPT is untock.ed and the virtual processor is run.

Running tb 1e VP

This is the finaJ part of proceuing thal is done arter a VP has been found m the VPTE and has
been placed into the running .na[e. The appropriate pointers a.re set in the per priocessor mbles for
storing fa.ult dara and referenc ng the VPTE, the clock time is saved for ,oomputing virtual CPU
time and the registers are loaded. f the VP 1:s: being run on a different processor chan it had last
time. the cache for the curren processor is cleared. Final proce.ssing is done with separate code per
processor so that the appropr'aite SCU data may be tiestored. The VP is chen off and running-

p roceu Sig na Is {IP S)

The process signalling rnechan,i.sm corresponds to Ehe current IPS mechanism. It i5 implemented by
setting a flag in the VPTE oo indiolle that a.n interrupt is pending. When the Virtuatl processor is
hJ be run a check is made to see if the nag is. se.c and faul :s are permitted. If so a faul 15

simulated. If raulrn are not .perm-ueci, the acUon is defer1ed 1i.1ntU the nag is reset lo indicate that
it is safe for the virtual proce'.ssor t:o take faults again , 1 he details of using this sign a 1 ue
discussed in the section on notification.

The interrupt pending: flag is set by the LZTC. If a running process is m be imerrup[ed, it h first
stopped, the flag is set and then i s rebound [o a VP. The choice of this method 1s motiva~ed by
a desire to rnimmize pr mitives a nilai.ble for accessing the VPTE. A tradeoff can be made
between number of such primitives and the frequency wjt which the l'2TC must unband a VP m
order Eo access parts of its description.

-61-

Twerlevel Process lmplem ntation

Special macb ·n~ state infor111u .ion

This section. explains ho,w hiscory regiS-ers, fault registers, ala.rm regls~er are managed. 1n addition
there i.s sor ware s.tue information such as the VP state which is discussed e'ls.ewhere. This wm nor
be addressed a, the moment since U is more a matter of retaining current Mu tics details without
reqoiring a major changes for the PAM. Note, however, bat since the PAM is aware of the V Ps
it is fea.sib .e, possib y, to c;;ontrol history reg.ister handling on a. per-VP basis, ,(and therefore on a.
per prooess basis.

Virtual CPU lime measurement and Umits

Associated with each prooessor running a VP ls the dock lime a which :the currendy running
virtual processor started running (the, PAM was las exited). When the PAM is entered the starting
time ·.s subtracted from the dock time a which. the vb'tua. , processor stopped (the PAM was
en~ered) to de[ermine ho,w long the VP has been executing. This. value is dded to the value
accumulating the in he VPTE. A check is hen made against he VCPU Umit fo,r the VP. If t-he
Umit has been exceeded, the process is sropped for dea.ssign.ment by the level two ra.ffic controUer.

As a. refinement to this scheme is an estimate ,of the overhead tnv,olved in nvoking the PAM
before the clock is read on entry and afler the is read ,on exit This can be subtracted from the
VCPU in an attempt to isolate the charge for a processor from hu or running the PAM.

T)ne.r reg,ster s,etting and usage, by PAM

The timer registe- is used ro make sure that t e PAM gets invoked periodica ly so as to en1force
q

1
ua um 'length restrictions 01e. Vilitua] ,time quota) and to r:na.ke sure the VPC gets invoked so,
hat t can advance the real time eventeount. For simpUcicy the PAM is run at leas every 50(?),

mm secionds. The a1temaUve wou, d be ro cakulate the minimum of the Virtual time Umit for the
pf\ocess belng bound nd the time che VPC is to be run. This would be mon'! complicated and the
additional resolution is no necessary.

Other processes

Proper ,operation of he· PAM depends on two kinds of VP's. The fir.st is the Vir u:a:I Process1;1r
Coordinator t'hat ·s described n grea,c deraU below. It i.s always the highest priority virtual
processor and is made runnable whenev,er there is something requiring its attention and theref'ore
run immedia ely. Second are the lowest. priority pr-oc~sors - the idle procesrors. There is one idle
processor for each phys cal processor. S.ince the jdle VP is low.es priority it is run only if there is
not.hing: else for the· physical processor ro do. The idle processors a.re quite cheap since they can
sha.re a descriptor segment or nm in absolut!e mode without a descriptor segment Other than that
no special consideration need be gIYen ~ rhe .idle process.

-62-

Two-level Process Implementation

The callp operator

As noted above the cai 11,p instruction is used to 1exrend the operation of the virtual processor. Jt ss
implemented within the PAM. Ir ta.k,es an operation number in the A-register a.nd .a. data
pointer. if any, in pointer reg ster zero. Llke any other norma ·nscruction it may take fau1u.
When the fault occurs the machEne cond tions, are se to restart the· execution of the instruction
from th.e beginning so tha. th;ere is no need o save partia\ state informa.Uon associated with
copying information into the· VPTE buffers.

The oper,arions a.re:

I: AWAIT rakes a 11st of evemcount names and values (as described be1ow under VPllaw,ait
a._nd plaoes the process, in the awawng state unti one or the named events is notified.
It is pos.sible for one of the awaited events to be advanced white the process is being
placed in the awaiting stare. h: is therefore necessary to make .sure that the none of the
eventcounts has passed fhe a.waited va.lue after the process is in the awaiting sta.te.
Since the process is no longer oonstdered running 1t is necessary that no faults occur.
In order to prevent faults the absa. is used to gee the address in primary memory of' lthe
counter value for each eventcount A fault can occur during [his opera.tion in which
case the normal page fault prooe~ing is done and che await is restarted from the
beginning. Th s pointer can then be used OOi reference rhe value while the process is
awatu:ng. We are ass.ured c'hat no fau1c wHI Ot"--cur since primary memory addresses are
being used for the reference and the virtua. memory support is not invoked. We are
as.sured that the address is vaUd since any o her proc.essor that is updadng the page
tables. cannot assume all references to the pag-e frame are; completed until it receives an
acknowledgement form the other processors. The process.or performing the await wm
not g1ve this ack.nowledg~ment until it finishes processing the await reques.t.

The real time clock is. a special eventcount in that the minimum value of au such
events, must be srored so that the timer can be :s.et to notify the even at the specified
real t•me.

2: WAKE VPC is used when a. change lS made to a VPT entry hat requires VPC a.nention. For
example, when a message is queued for the VPC.

9: STOP' 1s used to forcefuUy stop a spectfted proceScs. If a pm~s.s ts in an atomic operation, bm
i!: to be stopped. a flag is set to indjcate hat it js to e stopped when the atomic
operatjon count reaches zero.

4: BEGIN ATOMIC OPERAIIO is used when a.. proce.s.s is executing a critical section of code. It
increments a.n atom c: operation counter in the VPTE.

-63-

wo-level Process Implementation

5: END ATOMIC O,?ERA ION decrement the a.tomic operation count,er. lf the' count :reaches. zero
and as .op ·s pending, the process is plaoed jn the stopped state.

6: GET FAULT DATA copies faulit data out of 1che prooess' state nto pageable storage. Nore that
page faults. are permit ed dudng this operation since they are handled by another
prooeu. Segment raulcs are no permuted because hey are handled by .he faulling
process and will require he use of the fau t data u,ea. Nole ha the atornk opera ion
counter was. incrieme.nred at the (me of che fau t and che process was marked as not
being safe to take faults.. The sa.fe_to_takeJaultJlag is. reset by this operation. The
atomk operation coun must be decremented by restor ng the p,roce.ss.or state ,or
explicit!~ endjng Ehe atomic operatic .

7: RESTORE PR!OCESS.OR STATE restores rhe ima:chine oonditions as spedfied and decrements the
atomic operation counter. r his n erfacei is no used the end atomic operation
interface mu:s.t be used co decrement the counter.

8: ADD CPU sends an AOO CPU message to the VPC.

9: DELETE CPU sends a DELETE CPU message to the YPC.

10, CLEAR. CACHE used when an object: loses encachability. Its parameters consist .of a
uboperation number and the page id for suboperation cache clearing by page. The

sub 1;1pera ions a re:

1. Cle-.u- PTW cache vi:a a ca.mp.

2. C ear SDW cache and PTW cache via ca111s and C•arnp.

S. Clear PTW cache and memory cache by page~ camp 4. + page id.

4. Clear memory cache, SDW cac.he and PTW cache wath c,aims 4 and camp.

These are used by 0,3} page control, (2) segment control and (i) access con.trot They
apply co aH processors. The actua:i method b·y which the· processors execute the
tns ructions is ex,plained ln the secuon on PAM detaUs..

ll; VPC BLOCK is used by 1chfi!• VPC so "5 ~o cause checldng of the VPC s wakeup wait ng
switch. It takes as a. parameter the next real -ime before which the VPC is to be run.

-64-

Tw,a~tev-el Process Implementation

The VP1 interface

'fhe VPI program provides a. PL[I compatable interface to the ca11p 1nstructjon, the VPC and the
VPT. It hrnirs the operations the can be performed; no other 'nterface exists.. The use of the
common segnunt name of VP l is primarily for convenience; the entrjes are essentiany indepen,denr.

A bask service pro\lided by rhe VPI routine is the management of assignment of level rwo
process.es (those managed by che level two traffic cont·roller) co vjrtual processors. There are a
number of .semantic models Ehat can be assocl.ated with this operation. The primary one ls thac of
binding and unbJnding. An alternative yj,ew is that one loads and unloads a processor state to a.nd
from a vir ua.1 process.or much as ,one loads and unloads a process che current Multics
implemencation. A better understand. of what is actually happening can be achieved by rea Hzing
that the bind operation is really taking a. process,1;1r state desi;r ption maH11tained by the level 1wo
TC which has no e:,:lmmc.e other than as an entry in a data.base and is creating a level •one
processor wHh an Jnitial scace for execution. The unload operation demoys rhis proces.5or and
returns a descnpticn of u:s final state. K~y co the understanding is that the PAM does not enforce
any oonhnmty between the process descrjption returned by an u.nbind operarjen and hat provided
to a bind operach:m. While che description is being maintained by rhe level two rraffic comroUer,
the L2TC b permmed to perform arbiuary upera.Uons on its description including h.brkatting new
de.s.criphon:s and discard ng old ones.

VP l communitarei; with the VPC Vii. a communications ,queue. The queue is managed without the
use of exp1icit locks. The stacq instruction ,s us-ed to perform interlocking.

The information ma.inta.ined in 1he VPTE coosim. of two parts - that which ls communicated via
the VP l jnterface and that which JS imemal ~o VP support. For convenience the pornan that is
passed through the Jnterface is kept in the same forma.t by the level two traffic controller as in the
VPTE, but this Ls not nece.s:s.ary.

-65-

Two--levet Process Implement.a ion

The Process_Description por ion of the desc;ription is used to store information that mairuarns
the identity of a Muhics. process as een by the user.

declare: 1 Process_Oescription based a.l igned, '* 16 words aligned! *'
2 process_1d bit(36),
2 l ock_id bit(J6}.
2 excluded_processors ,aligne,cl,

3 excluded_proces.sor(O ~3) bit(l) unal gned,
3 padd ng bit(32) unal gned,

2 BAR bit(36), '* for 6080 e 11,lation *'
2 IDS BR bi t (7 2)1 , '* 'Des,cr ip tQ r S,eg:me n t Base IR: e s•I
2 ring_ala m_word bit(36),
Z PD_ lags aligned,

3 safe_to_ta,ke fau ts blt() unaligned, '* Fa.ult dat can be copied? *'
3 pen di ng_process_ 1 n terrupt bit (l) una 1 gned.

2 es,ource_meteri g. /* Metering and 1 imits *'
3 vi rtua 1 _t ime_u.sed fixed bi n.ary(71) J

3 virtua _tirru:!_Hmit fixed bi ary(71),
3 1memory _usage_meter_reference i Ike meter _reference~

Z proces.sor_state,
3 achine conditiQns like mci

-66-

Two-level 'Process Implementation

Th.e VP'_Description contains information that is only avaHable to the VP supporic and is no
passed through rhe VP interface.

declare l VP_Description based aligned,
2 next_VPTE l 'ke VPT_pt,r a , 1 g ed,
,? VP_id bit(36), I* ldent fication of this VP *'
2 VP _state fi.xed bi,n, I• ruinnable when bound *'
2 VP _prfority fixed bililary,
2 last_processor fl.xed b1n(2). '* F,or cache rnaintainance·" *'
,2 atomic operation_com1t fixed btn(35). I• Iflitia11y z.ero *'
Z pad16(10) bit(36) alignedj
2 f au 1 t_con.d1 t ioins 1 i e proces,sor _state, '* Communication with ha.ndler *'

l• For :s 'mpl city I am. put ti ,g the awaited ev,ents
in the VPTE. Event ally they wi 11 be man~ged

separately by the VPC. *'
2 e:veJltcounts.

3 n mber_even ts f · xed bi n,ary.
3 event_names(4) like global_eventna e al"igned, '* 4 = ax_nu111ber_of_ll_events

2 VPD_flags a1igned,
3 pending_stop b1t(l) unaligned~
3 padding bit(35) una 1gned,

2 pad8b(6} bit(36) a igned;

•I

declare I VPT_ptr based aligned,
2 abs_ptr bit(18) unaligned,
2 rel_ptr bit(18) una igned:

'* P,o1nter entry for VPT */ '* For use in absolute mode •I '* For 11se in appending mode *'
The VPTE 1tseff contains, both pa.res:

declare 1 VPTE based,
2 VP_info like VP_Description,
2 Process_ i1nfo like Process_Oescription ·

Two,..1evel Process lmplementcnlion

Th 1e awa1ting_events ... table ls used in he interface betw,een Vllawait and callp/awa1t.

declare awaiting_events_tab1e based,
2 number_events fixed bioary,
2 ev,ents(mi:IX.Jli·11mber _of_1 l _eve11ts) 1,

J, lgc:a _name pointer. '* Only va id n owner.,s address
space •I

3 globail_name 11ke· g1oba.l_eveotname.
3 value fixed binary(35); '* Va ue process is await.ing *'

declare l global_eventname based aligned.

VP1Sb1nd

Z seg ent_u ' q e~id b1t{3,6) una1iy1ned,
2 word_offset bit(l8) unaligned,
2 pad bit(l8) unaligned;

dee 1 are VP lib ind entry ,(bi t(36), 1 1 ike Process_Descr 'ption ~ fixed
binary(35 J);

cal 1 VP lib ind (VP _id. p ocess_desciiption,, code);

The sernamlcs ,of the bind operafon has been discussed above. The caller of VP19bind
shoutd set che approprm.te f a.g in the ASTE to k~p he descripcor segment of the specified
process active. I nitialh:es the values in VP _info as pare of the transformation hom the
representation maintained by the L2TC and hat ill the YPTE. The pfioc.ess_state ·s stoptml,
the las processor is "~1" (i.e. none), and he atomic opera on count is zeroed. It hen uses the
callp/lo,ad operation to toad it in[o a free YPTE. The opera·t"on will faU if there are no
VPTE slo s avai able. 1.t would be expected, however, that che se~ond level TC wm not ,caH
the primitive un e.u it know!. hat there is one available.

VPJlunbi d

dee are VPllunbind entry (b,1t(35). 1 i e Protess-Oescription, fixed
b ' ,nary(35)).

ca 1 VPllunb ind (VP_ id, process,_descri pt ion. code);

The seman ·cs of unbinding has been discussed above. h issues a. cal lp/ nload operation

-68-

Two-level Process lmplement:anon

to reque.st the contents of an stopped VPTE be re:cumed. Wh.en this operation has been
done the VPT£ ws available, for a subsequent bind opera ion. It is e pected tha VPil!:unbind
woutd be used repeatedly m unbind all stopped VLrtua1 processon so that the associated
process descriptions would be a.vaUa.ble to the level rwo traffic controller. Nme thac an
eventcount is inc:remerued any lime a. process is stopped so that by awaiting that event count
the L2TC can immedia[ely perfW"m the unbind operation.

VPllstop

declare UPISstop ~ntry (bit(36), fixed binary(35));

cal 1 VPlSstop (VP'_ 1d. code);

The srop enn-y ms uted to force a. process associated ich a VP to stop, executing. The deta tis
a discussed in the description of the cailp/stop operation. The VPISstop operati0,n is med
whenever the Jevet two traffic controller needs. till ma.nipulate the process' diestription. For
example, to destroy a proc:eS-s, che L2TC would note rhat H wants a particular process
destroyed. If i a:kea.dy has full control over the des,ripUon, i.e. the process u not bound to a
VP, l can perform the operation immediately. Otherwise it would issue a VPllstop for he
pr,ocess. As soon ai.s rhe process is sr-opped, rhe ·stop process" eventcounc would be
incr,emented. VPllnext_stopped would locate the VP, and VPlluobind would copy out the,
pr,oce.ss descnpuon. For eac'h process description returned by the VPllunbind operation the
L2TC would check the notes associated wJth the jt and perform any nece-5Sary operauons;. m
this, case the proceS!i would gee des royed.

VPllnext stopped

declare Vflllnext_stop:ped entry (b t(36L fixed binary(35));

cell VPllnext stopped (VP_id,code);

This entry fs used by the L2TC to get the id of the 11ex avaUa,b?e stopped VP. It is
invoked in response to an advance on he stopped evem:count

VPllrun

dee are IJPllrun ,entry (b1t(36), fixe binary(3.5,));

call VPI ~un (VP i , code):

-69-

Two-]eveJ Pr,o~ess [mplemen Jion

This places a makes a stopped VP runnable. It is n,o:rmaHy u~ after the VP Jbind
operation.

VPlSawait

declare VPllawait entry (l (*), 2. p1ointer. 2 f ·xed binary(35L fixed
binary, fixed binary);

ca 11 VP lSawa t (events.. number _events. advanced),:

The p:uamerers consists of a. table of event names (pointers) and valu,es to be a waited. The
number parameter specir:es the number (up untU the maximum value) .of ,events that are to
be awaited. The index of the event which caused i::he return from awa 'ting is given as
"advanced~.

The table of event_councs is completed by fHling he evei:n name· a:s derived by the VP
interface f['iom the segment Jd and che word address and passed co the cal lp,/awa ·· t
operation. ,ote thar there is a maiumum fior Ehe number of entries in this table. The user
level interface to VPlhwait must permit an arbitrary number of event nam~s to be
specffied whUe only passing a imited number of event name£ to VPltawait. The detains of
chis a re described in the section on notification.

VPlladvance

declare VP1lladvance· entry (1 Hk.e await 111.g-'events);

call VPlSaiclviu-1ce (ev,ent_:table);

As with VP'llawa • t, the n ,em_name is filled in. The await_value ·s, an this case abo filled
iri after incrementing the associated ooun er with the new value. The ta.bWe 1s hen passed m
ca 11 p/not ity

'VPlSadd cpu

declare VPil<1,dd cpu en ry (fixed bi,nary,. fixed binary(3S)):

cal VP Sadd _cpu (cpu_- umber. code).

This emry interfaces to ca llp/add_cp111.

-70-

Two-level Process Implementation

VPllde ete cpu

declare VPlldelete_cpu ,entry (fixed biftary. fixed bhary(35));

ca 1 VP llde 1 ete_cpu (cpu...nu111ber. code);

Thi.sentry interfaces to callp/delete_cpu:.

VPllcrash system

declare V?'llcraslil_syste:m entry ():

ca 1 VPllcrash_systam ();

Deletes a.11 physical processors f'rom Ehe system, and forces cme of the processors to ex:e,ute a
sp,eciJ 1 deb ugg.ing p:r,ogra m.

VP lclear

dee 1 are VPllcl e,;1r eililtry (fixed binary. ,bi t{lB}. fixed bi nary(35 H;

cal 1 VPllclear (suboperation, page_id, code);

in~erfaa:s to ca 11 p/cl ear _cache to clear cache the specified associative memory.

VPlSbegin atomic operat on

declare VPllbe~un atomic operation entry(); - -
call VPllbegin_atoroic_operation:

Interface to cal lp/begin~atorn'ic_operation.

VPlSend atomic operation

-71-

Two~level Process Implementation

declare VPlSend_atomic_operation entry():

C!t 11 VPllend_ato ic_opera t 1 on ·

Interface to ca p/end_atomic_J>p,eration.

~Pllget~ fa

declare VPllget_fault_dat.a entry ,(like faulit conditions):

cal I VPllget-faiult_data (fault_cond~tions);

Interface to cal lp/get_fault_data.

VPllrestore proc~ssor state

decla,re VPllrestore_processor _state entry (1 like processo _state):

ca 11 VP I Ires tore_processor - state (p oe,essor _state) i

nrerface to cal p/1restore;.,J>rocessor _state.

-72-•

Two-revet Procrss Implementation

VPC Operation

As nored above, the V PC is run when,ever an event oc.cun tha needs it auen son. For example, a
proce:Ss leaving the runnable (o,r running) stale an interrupt event occunng er a mes.sage bemg
sent from a process:. In later implementa ion so.me of the'-Se oc.curances might bypass. the coordinator.
but for no,w lt is assumed that all complicated low le"el operations involv.e the ooordina.tior.

The basic operation of the VPC consists of three loop~:

l. Scanning for processes, by state, i,e. unsar e and exceeded Hmits.
2. Scanning for advanced imerrupt cells. This means that there is a.n implicic. rather than an

ex.plic.it advance done on the c--ells by the PAM.
3. Processing of exp icit messages to the coordinator.

Note that each oop is. entered only if an associated flag has been set ro, indicate that chere may be
work. of che specified type to be performed. When he· processing is d·one the VPC unbinds a set
of physical processors so, tha.c they may adjust ro the new nate of the world. It is oniy necessary to
unbind chos.e· processors that are runn ing the "n~ lowest priority ,processes where ",t i.s 1the number
of process.es that have been made runnable by the VPC .

.In more detail, he proc;esslng- oonsis s of:

I. This loop scans the V irtuaJ Processor Table (VPT) examining Che· .state of ,each process that is
found. Each sropped VP is, removed from the chain of runnab1e processors and a.n
eventcount is a.dvanc,ed to notify the l,evel two traffic: ccmtro11er. Note that kernel processes
should never ll e stopped. If an unsa[t process is found. a. debugging process s.h ou ld be
notified or the system crashed. 111?

2. Next the interrupt and fault counters are scanned for any Chae have been incremented by
comparing agl:l ins.t an earlier set star d in the VPC and che appropria e waiting process.es are
notified. (F,or the interim implementation with a single. "in~errupt side• processor there is a.111

additional event counter to ind tea e rha any .interrupt has occured). As a special ease of
mterrupt handling, the syst.em clock can be intero-gated and compared with che value for the
nex timer even of interest.

S.. Scan for messages, frnm other prioces~es.

. RUN. P1a~s the specined VP into the runnable state and chains it .into the queue of
runnable VP's.

i t NOTIFY notifies processors tha:t are AWAITing chat counter.

Two,-leveL 'Process lmptemen ation

iU. DELETE CPU. L.eave a no e for · he s,pecified p,roceuor to deconfigure itself and then
unbind from any v·nua.1 p.rocessor it may be runn ng it v ai. a connect.

iv. DD CP,U. leave a messag,e e l'ing a CPU to come to ff,e and s,end a oonnect co u,
forcing 11, co inHializ;e itself.

A final note on ock.ing. NormaHy the VPC looks, at the VPT withou setting a lock because n u
1the onl,y process that may change che VPT. When lt doe.$ cha.ng-•e the VPC it loop, locks to, prevent
conflicts with che PAM thatt may be s.earching th.e chain. The VPC i'tse1f is ruri whenever iu,
wakeup-waiting switch is set by the PAM ind.icating that there may be work. for it EO do. Thi flag
js :reset whenever the VPC is. placed in ,che rn11nable. Any ev,ents. of int resr that occur after thi5.
time wi I set the VPC wakeup-waiting sw· ch in case i h m•t done all of i'ES processing in ats
previous incarnation. Thus for example, ff no paging communication buffer is available when the
VPC looks and one becomes available while the VPC is running, no race cond·uon arises because
the YPCJt.m flag w'll be .set anyway so tha.r the VPC wiH be run again lo make use· of the buffer
immed ·ately after it unbinds ro waiL

A1so some efficiency c-0nsiderations. As pointed out above i, is :pass ble to bypass some of the·
mechanism described abo,ve shou cl the running of he VPC be cons,idered too expensive. The
VPC need not be ,expensive. lls operations are simple and n av,oids the major expensjve o:pe·ration
in PL/I. the ruH subroutine call. The only ca] it needs make js to an ALM procedure tha.t is U.'ied
for basic utmty operati.ons. This caH only nvolves minimal housekeeping making it mor,e efficient
han a f ul, Pl/I call.

-74-

Tw,o-level Process Impl,ementation

Modificat10,ns to page oon.trol

Unlike {he current Multjcs, page fault is nor handled by the process taking the fau t. This
approach greatly simplifies he const:ruc ion ,of a process because it removes the need to handle
·awkward· :situation such a.s a page fault occuring when the fault handler ts copying fault data. out
of the VPTE. It also makes t possible to take a page fault on any page of the user"s descriptor
segment removing the necessilY for wiring any pages of a. process since he othe·r requirement ror
wired pages - external interru,p handlirig, is also removed by having interrupts handled by
ded ·cared processes.

The pa.ge fault prnces.sing itself 1.s simplified since lhe use of a process dedicated to this functions
greatly reduces the locking problems as:sociat.ed with page fau\t handlmg. The modificauons t.o
pag,e fault handling are minima.I since page fa.ult alr1tady .runs in an environment that has httle to
do· with its host process and is thus easUy decoupled. Some oonsideraiUon has been given to usjng
th modified version of page con rol designed by Andy Huber and refined by Bob Mabee.

The PAM gene.rates a message to the p.aige fault' process by extracting the releven d,ua from the
SCU data. Faults on page zero of the descrip or segment are permi teci. The messages is placed m
a ring buffer. The format on an entry is:

de·c are l page_requ,est based,

2 pointer fixed b1nary. '* In AMT or WMT *'
2 segment.

3 astep pointer, '* ASTE Entry 'If.I
3 uid bit(36) aligned, '* To make sure still same .*'

2 event,c,01.mt_index fixed binary: I• To notify process •I

The meter poimer is dbcussed in more detaU beiow in the discussion of the Ac ve Metering Table.
When he fiequest as queue ·che AMTE wire count is incremented. Miter he meter is increm nted to
charge fo,r the processing, the wire count ls decremented to relea~e the meter. The evem counl h
derived from the segment unique~id and the page number wi hin the segment. This value is
hashed into a wired table of pa.ge events. le is the index of chis entry that 1s placed jn rhe page
request. The use of a preallocaCJed table remo,ves the problem of aUocatmg wired storage. We can
use a small table without hmuing he number of outstanding page fallUs by not requiring har che
assignments o,f eventcounts to pa.glng operations be un.ique. There is no requirement that the ,event
be unique it is on ,y a matter of eff1ciency. At worst a proce-s.sor may get a spurious nor'fy, a temp
to execute. and fau1t again.

The modifica ions to page c:oncrol cionsi.sl of;

Removal of the code cha ha:ndtes he fault directTy as this is. now done by the PAM.

Removal of the explicit interactions with pxss.

-75-

Two-level Process Implementation

Removal of" the c-ode involved in locking the page table since this process has exclusive
accw to its databases.

Changing the references co metering data in che APT entr es: to use the AMT.

-76-

Twl't-levet Process Irnp!ementu on

The Active Metering Table

Note: The discussto•n of the active metet111g table is included for
completeness. The aetua.1 de'taUs of the mechanism are net yet fuUy
worked our and the 1mptementation of a layered sysrem ne,ed not be
dependen[upon the current AMT design.

ln a "'rear system ir is necessary to accoum for re-.source usage and to limit such usage a.gainsc
predetermined Uroits. In the curr-enr Mu'ltics .system, many or the re.source measurements a.re
associated wHh processes. Since the proce~es are known to che k1west levefa of the system. not even
dea.oHva.ted, the Active Process Table (APT) has b!!corne a repository for such information, or at
least the resource measurement informa.Uon.

1n the multnevel system, only virtual processors eXi.'it al rhe lower levels. S nc.e the processes
assigned to this virtual processors do not exhibit the continuity of the present Multics process.es it
i.s nece~ary to develop a .separate meGhanis.m for measuring resource usage. Furthermore, if we
look beyond just supporcf.ng the current mea.surements, a restructuring or rhe ml!tenng would
permit the offer·ng: of improved mechanisms such as resouroe Umits a.nd shared meters cl\t Ehe base
level: mechanisms which have been proposed in the pasc buc which have no been 1mplememed.

There are two primary c.omponents co resource measurement - th.e long rerm and the short term.
The long term measurements ln current Multics are stored in the PDT (Project Definition Table)
a·nd cor1sist t:l'f dollar usage and more det.lUed re.source usage measurements. Short term
measurements are maintained in the APT. PeriodicaHy the: Aniwering S-ervice copu~s
measurements from .short term to long term storage.

In the proposed Multics a. similar mechanism ts used except tha.t the choice of short term meters is
more expHc:it aml nae directly rel ced to processei. Ac present we a.re rna.mly concerned with me,ters
that must be a:vailab]e to ri.ng zerr/l - those chat correspond to the APT inrorma.cion. In addit ion,
to simplify che design of page control, che meter (and limit) for storage 5ystem usage is a1so or
intere.st. For the duracion of ks existence1 each such meter rel1des in the Active Meter Tabie. It is
only necessary ror a meter to exisI: as such while the n~sou.roe it is measuring may incur charges.
For example. the meter of a process• processor usage can only be im:remen ed. whne the processor is
bound ~o a VP. Thus the level UiJo raffic comroller can create the meter at the r,me that it the
process gets assigned co a VP and destro~ ir (after re,a.ding out the value) when the process .Ls.

dea.ssignedlli. In conrras.t a. pro,e-,ss ca.n ncur memory usage cha.rges af er cbe process ha.s been

• Need bet er term

• In race, che VCPU meter is a. special c:ase a.nd is kept i.n the VPT£ in the current PAM dengn~
but could reasonably be incorporated into che AMT mechanism as soon as he operatlori of the
AMT u beuer descnbed, i.e. when l finish writing this section

-77-

Two-f,evel Process lmplementa.rion

deassigned from its VP. A hird example or a meter is the ston.ge quota meter. Since this meter
mun be accessible from page control when assigning a.ddittona~ pages to a segmen , it seems logical
to associait, the nforma.tion wiEh he jred AST entry. Because the meter s actually shared by
MuSt pl,e segments, ic is acrually kept separately m ithe AMT. Nme that as a beneflt of this
aproach the, quota , imi is jndependent of the dtre,c,tory hierarchy and that storage system us.age, tan
be assiociated directly with accounts insread ,of Jtn to, superior quota.

Nor.e that the meters de.scribed thus far share, a special property - they must be a.xessible w thout
taking a page fault; Le. they must be wired. This i:s a.ccomp ished by main ining a Wired Meter
Table (WMT).

An entry in che Actlve Meter ng Table ra es che fiorm:

dee ,are 1 AHTE based.
2 id b1t(72),
2 value fixed b1nary(7l),
2 limit

3 limit_set bit(l).
3 va ue ffxed binary(7l)t

2 eventcount fixed binary(71),
2 wire_count fixed b nary·

When a. meter is to be incremented (via a tmlladd) be meter id is used to hash into the WMT
and then the AMT to find the en ry. I nGIH! is found., one is created in the AMT. To, make the
search more efficjent a meter_reference js used which contains a meterJndex in a.ddi ,,on o
address, the tab e entry. When the entry ts found vja he jndex, it is checked a ma.ke sure he
meter Jd ·n the entry matches that in he reference., lf it does not, rhe hash search musl be u.Sied
and the sndex b upda'ted to make .rhe next re.ference more efficient.

dee lare l meter _referenc,e based,,
2 index fixed binary.
2 home ·xed binary(l).
2 id bit(72);

/* Index in AHT or WHT *'
/* AMT or Wf1T */

A merer may reside in ,either th AMT or the WMT, bu not both in order o make Umit checking
work When the· w·re count changes to ,or from zero the enrry is mo11ed. This move is not
necessary ·r he meter is being created .in one or the other. or is bejng read and c1eared.

The AMT is managered by the active_meter _tab e_ image (a111tm). The following entnes.
are a. va ilab le.

Two-level Process Implementath:m

declare amtmlset_l imit entry (l 1 ike amte l 1 ik,e meter _reference,
fixed b1nary(35lli

ca 11 amtllllset_ liroi t (amte, meter _refer Hee code);

As noted a.bove, meEer emrjes a.re created when a.n attempt ls ma.de to use them. For entr.ies such
a.s page quotas, it js necessa.ry ~o initia.liz.e the entrjes with a. limit value. It ,s necessa.ry for
programs sttting and using limits to cooperate such that programs do noc check limits unless the
limits have been set. For exa.mpte, as part of activating a segment. a quota limit is set in the AMT.
Thi~ entry is cleared when an segments sharing that imit are deactivaced.

declare amtmll:rea.d entry (l ike amte~ l 11ke meter reference. fiixed
bin<iry(35))t

call amtmlread (a te 1 meter_reference_ code):

Returns va 1ue,s for 'the .specifie:d meter entry. If the entry does nor e1d.st. zerm are returried fot the
values.

declare amtmlread_clear entry (1 1i lc.e amte. l 7 He meter _reference,
fi:<ed .binary(35)) ~

ca 1 amtmlread_clear (amte. meter _referem;e. code);

Same a.s the read entry. except clears tlte va.1ue. This is he en ry used to read a meter ou, so i can
be updated in a: higher level table. The AMT entry may be deleted if n js not wired and does nor
have a Um1.t set.

dee: 1 are amtm'lread_c 1 ear_ limit entry (. like amte, l 11 ke
meter _reference, fixed
binary(35));

con amtmlread_clear _1 imit (amte, meter _reference. code) i

This enrry is similar to the previous but also clears the limit settjng so hat the emry may be
deleted from the AMT ff noE wired.

dee l are amtmladd entry (fixed bi nary(] I) t l 1i ke meter _reference. fixed
b 1 nary(.35)) ;

c,a 11 amtmladd (va 1 ue t meter _refereRce. code);

Adds. the specified >1a.tue to the given metli!r. A code iS returned jf the value exceeds the meters
li.m it. If the meter does not e:d t, it is cr,eared.

79-

Two~level Proce-ss lrnplementation

declare amt111ladd_conditi ,onany entry (f xed 1nary(71). l like
meter _r'eference, f xed
binairy(3S));,

,c; 11 amtm1add_conditiona.11y (va ue, eter _reference. code):

This is l" ke the add entry except the merer value ls left unchanged if the lim,1 is eKceeded.

declare amtm&w1re e,ntry (1 like meter _r,efer,ence, fixed b1nary(35,));

cal amtmlw:1 re ,(mete,r _reference code);

The wire oounr for the specified me:cer ·s incremetued. If the meter is ,already in the AMT ·i is
moved to the WMT., fit .sdoes: no e,(st at all, it ·s cr,eated in rh.e WMT.

declare a.mtmSunwire entry (l 1 ike meter_ efenmce, fixed b ·nary(3S))1
•

can amtmSunw1re (meter _refere,111ce, code);

The wire count for the specified m.e er is dee:remented. Ir ithe count rmche'S z.ero,. it is moved from
tn.e WMT o the AMT.

declare amteSunwire_reiiid_clear ent,ry ,(1 tke amte, 1 1 ike
meter _refe.rencer fixed
bi nary(35));

c 11 amtelunw1re_read_clear {v,alue, eiter _reference, code);

Combines unwire and rea:d_slear.

-80-

Two-leve'I ProceS-s Implementation

N o:tlficaUon and Even.ts

The ba le mechanism for coordinating processes in the proposed system is the event. More
precisely, event counts are used to store state information about events.The eve:ntcounts are
discussed in deta_U in a CSR/RFC by Dave Reed and Raj Kanodia. When an event occurs the
value of the eventcount associated with he event is adva.nud. A process in erested in the
occur-ance of che event can await this advanc;e.

Eventcoun s are identiOed by eventcount names. To the user an ev,e.ncount is simply a word In
memory and thus its name is its add ess. To oonvert this into a. system-wide address the segmen
number is replaced by the segmen -unique jd_ The ventcount can then be referenced by the
system-wide name m order to do a notification. The actual reference to the value of the
eventcount within the process awaiting or advancing the prim1tive is done using the pointer for
efficiency.

Ev~nwounts form a robust mechanism because, hough a process ma.y awan a transtuon, the
even wunter Use f always majntains its sea. e for a.ter ei,caroination. Since che counter 1s
monoton,ca.lly Increasing the aui,au operation can be ·mp1ecrumted by simply comparing the curr,ent
value of che counrer with a previous value. ff lhe previous value has not been surpassed the
process. can loop waiting for the change, or can go blocked. This block is actua.Hy implemented via
che canp/await primitive described above. Complementary to going blocked is the mechanism
for getting awakened. This is he noif kation mechanism.

The notification is performed by the VPC as a res,ulr of a cal lp/noti fy operation. This
primitive is mvoked by ·the· 'VPlladvance interface. Noce that on'ly the advance interface 1s
a va.H ab le au tsjde the PAM. Wh ne th is is not s r ictly necessary ic does preserve the semantics or
eventcounts. When the VPC gets a message to perform a. no ificalion, it scans the VPTEs whtch
a:re in the ari>aitt11g state and places. them Jn the runnable sate. For effic ency, the· VPC can
acruaUy check to make sure ·he value awaited has b.eeo reached since the value is oopied into the
VPTE. but rhjs Js not strictly necessary slnc,e the YPC can simply compare eventcount names.

Spurious notif 'es are not harmful since the cal lp/await primitive checks the values anyway
before returning. ca1 lp/aw:a1t also checks the even c-0un values after pu ting the procen in o the
a.wamng sta.te ,o preven any loss of notifies sent just before he process entered the waiting state.

Evenrcount.s assodated with interrupts and page fault processing compt,e ion must be wired and
prea 1ocaced. T,o simplify th 's a Wired .I.vent Tabli? is a.inta.ined. We· can go further and require
that a.U events, originating at level one be in this cable. Note that, unlil<e current 1PC. the use of a
wired table does not have the danger of overflowing since no messages a.re placed in the table.
eventcounts are simply incremented.

We can take advantage of the restriction on level one originated requests when implementing the

'Two-level ProCless lmplementarion

evel two, primitive for event coun s. Observe that there is a ftxed maximum for the number of
events upon which a. process may wai. The user interface need not, and should not, ha.11e such a
restriction. The level two traffic controller can implement its own aw,ajt/mJ' ffy mechanism similar
to the lower level mecha.nis:m except using virtual memory to get around the r,estriiction on the
number of events.

A leve1 one proc-ess. (i.e. a kemel process.) can simply use, the VPl eve:n count interface (advance and
notify) directly. For evel 2 processes, there is a VP2 ~nterf:ace for these primitives. Since a revel
two process may have an arbitrary large number ,of evems and may be unbwnd from il VP while
awaltir,g. it is necessary fer the level two interface to provide much of the func iona ity ,or the
interface. To aid level two a specjal event count is provided that is. advanced whenever a level one
event count is a.dvanc-"d, the outw,ard_signal counter. This i:s discuss,ed in more detail in th
description o he implemenr.acton of the level two raffle controller. Other event count s used for
comtnunicaUng with the level. wo traffic controller indude the stopped event advanced whenever a.
VP is s opped. and the clack event tha.t s advanced a. fixed intervals.

As described above eventcoums aire passive in tha:t they don't affect a process unless the: proces.s
examines its value or awaics an advance. This is not suffiden to implemem the current IPS
mechanism. What is needed s a means of faultt.ng a process so that lt can examme evemcoums
which it thinks are impoirc.anc. his consis s of setting a, p.rocess.' pending 'nterrupc flag while
unbound at evel two. When he process is to be nm, the rlig is eKamined by the PAM which will
c use a. fau1 to be s.imufa.ted. ore hat the fault it.self doe-sn tel the process wha has happened;
the process ts simply told that someth'ng of immediate interes has occured. To giv,e the effect of
current lPS. here would be an eventcounter associated wjth the terminal l/0 channel for quits. ch
real Ume clock and the virtual dock.

-82-

Two-level Process Implemencauon

The Level Two Traffic Controller·

The 1owest levels ,of Multi.cs des-cribed abovE do, not provide an of the func ionalit:y of che current
system. The implementa.bon requires a second tevel of control thac rnultjplexes. the virtua.1
processors among user processes. TMs seoond tevel is. ,oom;eptua11y much Hke the lower le\lel in that
it mu1tip1exe.s a limited number of processors to give the effect of a larger number. While 1che first
level emphasises simpHcity , the .second level emphasises function. The sttond level re·moves
renrktions on the number of processors provided and the number of events that can be observed.
It is able t!O do so because it can make use of the virtua memory mechanisms for managing its.
databases. Note that the term process is used in the oonv1mt'ona.l Multics sense, of a user's address
,pace and control point. The level c-wo prooess ls represenrat on or the 1og;ical process.or hat
executes a user's instructions.

~83-

Twci- evel Process lmplernentaEion

The Implementation of old IPC and IPS

Ba· ic to the design of any change o Multics is the requirement that the new mechanism provide
an external imerf'a.te tha.c is oompatable co ny preexisting Jnterfa ,e. The· Interprocess
Communica ions Mechanism of Multics is basic to many programs and mus be supported.

IPC is relatively simple tO implement and oft"ers a subset of the. fadliti,es of the eventcount
mechanism. Most significantly IPC lacks the ao::e.u contro,ls afforded by using normal memory
words a rneam of communicatio s and coord na.tton. To implement IPC a per-process segment of'
eventoounts associated with lPC channels can be maintained. Jn addi ion a per-system s~rnent
could be used to transmit mes:s:a.ges between users. An aclterna 1ve· is, to p,ro,vide ea.th process with a
segmen for receiv ing its messages so that he ac;ce.ss control can be used.

Much or the complexity of [PC oomes fi,om the req,uir,ements of wired programs and programs
requiring a very high degree of effic"ency. Since rhe wired programs wi I be convened to use
eventt:ounts, the IPC imptementation is greatly simplified. Sim1Ua.rly for programs using fast IPC
channels they can be canlierced co use eventoounts though they can sc"II operate us.ing IPC during
a transition period.

The irnplementaUon of IPS has been distu.ssed in the section on notificaUon. The mechanism has
been generaU:zed to separate Ehe occuranc:e of the signal from che message assodued with It. Thus
one is. no limited to the sjgnals. currently defined m thf AP'T entry. For example, the quit signal
can be associat,ed with the term na, u an '[/0 devi.ce without regmr'ng that it have spedal1
signifJcance a.s che process' contt·olUng terminal.

The IPC facility offers an a:bili[y not offered by evem ooun :s alone - the :sending of mesages in
addiUon to the wakeup. This. can be acoompUshed by using he message segment facUHy
accompanied by evemcounts within the messag,e segments. ·

- 84-

T o-leve1 'Prooes.s mplementa.tian

Implementation

Bo h top~down and bottom-up v.iews 1of the implementa'tion or the layered sys em are app1kable.
The top-down views entails examining the existing Multto irnple:memarion and derermining what
one must change to retain is functionality. The section on initialization examines he
implementation fr-om the bottom-up, view. The following section ,an transi,hon examines the
imp ementaticn from the view or modjfying and pre5'erving the existjng Multics system.

-85-

Two~]evel Process Implemen ation

Iiutia.lization

The bottom-up v·ew begins by recogn iting chat leve one of ithe layered Muttics, u sufficient for
supporting a sample operating sys em directly w thou the features provided by level 1w,o. In hcc
this il an en v ronment ha.t 1s much mor.e sophbticated than BOS Jn that it permits he use of
processes and programming in PL/l.

By ma.king Ehe first stage of 1mplem ntation [he programming of an envtronmem consJsting of
Jtut level 1 primit'ves. An environment can be brought up w1 hout requiring the modification of
the exis 1ng Multics.. Mo.n lmporcantly1 :s.uch ,an tmplementat on resul in a running system that
can supper a sit of debugging tools for the later software. The psychological v lue of hiving :a
completel1y running piece of softwa:re should no· be ignored. he [eve1 imp eme.maUon also
provides a .starting point for the iniriaUzatiorl of Multics itself and is thu.s a necessary first step.

The level one impleme.mation c01u1srs. of re·1ative1y few
1
p,rogra , s;

l. A program ro initia ire' the level one sysEemi within co11ec ton one. Associa ed with this js ai.

program ro gener:ue a relocation die ionary for the PAM. in a:ddation to initializing the
PAM ta.bles, the p,rogra.m also oea et processe5, for the VPC, the idles processes. and an
interrupt sid,e process.

2. The PAM.

$. he VPC.

4. An in errupr side process. In order to simp ify Jmplem.entaEion fO programs wm contmue [o
run mu,ch a.s they do now excep all prog-rams ha normally run in response to mterrup1s
will run in a single proce--™!-S in response o the correspond event:count being advanced. The
old interrupt handlers rhems.e ve.s should be able to run unchanged.

5'. A debugger.

That U an that is smctly necessary. An addUiona.~ nice y might be m, implement rhe existJng BOS
within a process so that its functions can slowly be s,p,re d to multiple processe.s wi hout the need to
continue to suppor a s.econd 63180 opera.ting sys em and w· hout the ahernative of rewriting al of
the code from scratch.

InitiaU~a ion oomls s ,o,f load ng the k,erne processes nec:eJ:sary ~o, support the full level one
environm n and hen the ones needed for lev,el two. There is: a di.scussion on page $9 of creating
VP's as necessary a.s part of the operation. To rn out the r.evel one environmen the ro11owJng
functionali y muse be brought up:

. Disk. Comrol

-86-

Two-l,evel Protess Implementadon

2. Segment Contro~

3. Page Comro 1

4. The Level 2 Traffic ControUer

Once the lev,el 2 traffic controller Is brought up Mulri~ 1s. e:s.sentja.Hy running. An answermg
service pmce·s:s can be created m create us,er procesies. Given thal p11ocesses can be created easi y,
the answering service do-es no need the primacy it curremly enjoys.

-87-
Two-level Process [,mplemen ation

Transition

One que5 ion hat mus be considered if the Implementarion of the· two lev,el traffic con roHer 1s to
be taken senousfy 1s ha of how toge- f:rom the curren implemenra,tion of Multics to he new one.
The dfffo:ul'ty is that a comp\e e ransition is necessa.ry. This is not ain insurmountable obstacle in
that we have had such transitions in he past as in the case ,of th new sforag,e system and earlier
n e system flag daiys. While the need to convert over ,oompletely is present, the difficulty ·s not
comparable ro tha of a majo,r change to he' file sys em. Mos of the Mul ics sys em will continue
o operate as it presen y does. he ch nges cons,s of

i. Changes requtring new softwar,e

J. A level one initialization program must be written.

2. The basic ,mechanisms of the PAM, VP! and VPC must be implemented. The VPC
would be implemented in PL/L

S. The ini a.Hzation path must be modified to build up a s,ysrem from one running a
unadorned l~ve1 one to a ful Mul ia env ir,onment

4. The levei cwo raffic controUer must be implemented While i must acquire all of the
func ionaHcy of p);.s.s, [he level two traffic controller function: is l'ess f;ri ica.1 -- the vast
ma.jorky of [he scheduling decisions are made by the PAM and the VPC. Thus the
initial implementation need no be highly optimized for demons ration of its feasibiUry.

5. A pnmit ve ven101'1 of rhe amt1n muse be mplemen ed to support bask accoummg
func ions.

U. M1odifications o exming software

A r,eplacemem must be provided for IPC using ev,ents.

2. Page control must be removed to Us own process. Much of the work has been done
already. Th1s task is s mprfied by the fac hat the page concrnl environment is alr,eady
very comtrained so as noc co be dependent upon the proe-ess in which it is a parasit,e.
This is discussed -n deta 1 on page 23.

S. The interrupt handlers mus be moved to chejr own procesSces. As w h page con ro,
they a. read1 operate in a constrained environment a,nd thus providing them with heir
own process will not depnve them of feature.s and will simplify rhern by the removal of
the need to do direct interrup handling and wur remove the need for separ<lte jncerrupt
side and user side ~omponents. As an interim implementation all inEerrupt side programs

-88-

Two,-level Process Implemenra.Eion

can be writcen unchanged wUhin a. single pro~sses wLth only 1 om_manager begm
modified.

i . px.s-s would simply be removed rrom the. system.

5. System initialization must be, modif1ed and possibly redone. Much of Ehe existing
software can be used. for example disk 1upp1.m must stlll be. inma:hzed. The
fnma Hz.at ion woutd. howeVEr, be done as pan of sertlng up the disk oomrol process.

6. Present H-Procs could be simplified by replacing them with k.emel process.ors .

i. The accounung software must be supported.

-89-

Two-leve? Process Implementation

Extensions

The ches·s has been concerned manly with presenting a. dean modeJ processor multiplexing. In
actual implemen tion some additiona is:sues can be considered. Some of rhis ar,e imp1e extensions
and others represent a differenc point cf Vjew on the part of the implemen~or.

I. Robustness

The layered implememat on prov des a. much cleaner s ruc:ture lha:n the· current Mulncs
.system. This structuring provides an envkonme n Whjch the imp1ementatlon of fea ures
ro make the higher levels more robust by providing a: 1ow revel In which the impJementa.t on
or such support facilities b sjmprfied

J. A Level l debugging process.

2. Abi1i y to recover from crouble faults - spare repair proc.ess.es.

S. Ease of timeouts and error recovery by 1/0 processe1.

i. Daemon kernel processes.

II. Taking advantage of the fmplemen atjon

This sectton lists some ways of aldng ad van age of the ex 'sting software in implementing
facili ies on Mu]lics.

l. Wait ng on messages.

One can . ssocia e an event coun er With each message segmen (or mailbox) that ge s
advanced whenever a message g,ets pla.ced in it. This is an effective and much more
pow,erf I replacement for IPC. Some of the advantages indude· the ability to have
lnterProcess (mes.sage) CommunicaUon With access contr,ot. There is also no limat ~o the
number of processes that can be a.wa· ing he message. SJnce he itransmjs.slon of the.
mes.sage u via a segmen jn the hi,erarch;• the problem 10!" se ting up and communicating IPC
channe numbers ·s eliminated. One final advantage· of the proposed imp emen ation is rha
any process with access o await a messag,e can specify immedia·te attention (u. an interrupt)
when the va.lue is changed. ·

These fa.cm ies can prov e a ;ub. for a. number of fea ure.s:. h is possible to imp emenc
nctJflca ion upon the rec,ejpt of matl Alterna lvety a s•erve,r can be wai lng messages and
then create precesses. the handle them (i.e. po ent al processes:}.

III. Changes to the model

-90-

Two-level Process Implementation

I. One or the ban. assumptions in the model is chat Virtual Processors a level t are
nei her created or de.st.ro,yed. This assumption actuaUy compticates the system by
requiring that aH uses of kernel processes be prede ermined, In pa.rtic1..Uar he
n1tiaUn.tion of the sys ,em must be carefully planned with respect Eo the use of vp•s.

This js. similar to requiring rhat all Multics table:s. used .in managing the system such as
the AST be determined when the system is generated, as opposed to during initialization
as is presently done ..

The reas.on for the restncE on on VP's comes from two primary sources: the need fo,r
simp kity and the attempt to carefuUy structure management ,of memory. The simplicity
argument is not one of a.bsolutie slmplic y buc a. choice of what to simpl fy. One must
pay the price of c-arefuUy pr:eplanning use o · these processors. In particular when one
dynamically reconfigures lhe system o add a ne device (fog cal or physica) and one
needs to dedicate a v·nual proce~or to its managemelilt, 01,e, cannoc toferace the fa.ck of
a va labiliry cf such a proces:sor, nor can one reduce the number of virtual proc,ess.on
managed by level 2 since that w,ould change the level of muttiprogramming 9f the
system.

Whilie the requirement of a program ha. , is abl,e [0 a.ssign primary memary addressable
by the PAM might add a.ddi ional comp ex ty tt1 che system. it does not affect the
layering ,of memory memory management since tt is not dependent the managemen of
virtual memory. In fact in an ideal processor such a rnechani.!lm would be simply
stru,c ured such ha it can be shared by both the page frame allocation mechanism and
the primary memory all0cari0n imerface. The 68/80 p,rocesior is a n tie' more compHca ed
tn cha the PAM ts unable ,to easily address more than the first 25SK or memory. But
this requirement i5 already present for IJO buffer mainagemenit. To :summarize. this
mechanism must exist anyway (or performing l/0 and fits within the structure of the
memory ma.nagement hlera:rehy so lhat U does nor really add complexity to the system.

Thus Ehe ability co dynamically crea.re virtua1 proc-euors would simplify 1rhe
irnplemenca.tlon withou arfec ing the ta.yered mode of the system.

91-

Two-le\1el Preuss Implemenra ion

The existing implementation

A test ·mp,lememation of he buic level one portion of 'the two level sysit1:1m ha.s been competed. H
supportJ che func ions of le\lel l w· h ·the exception of p ging and he handling of f ults ref[ei;ted
_o user processes.

'
It is a modificauon of collec:c·on orie of Multics ini ia. iz.at an. Interrupt and fault processing h.ave
been replaced by the PAM and the VPC. The VPL nt,erface-S f,or "run'". '"await", "a.dva.nce",
''"crash~system" and "clear_cache" are supported. The systelilil spawns lc.ernet processors. Onduding
che VPC and the idle processors).

The on y 1(0 devi~ supported. is the console rypewriter. The interrupt :side processing for the J/0
is performed in a prooessor dedica ed to that function. The st1opped (to indica'te a processor
entering he s.topped sta·te,) and the c:lock. events are suppor ed. The idle process,es share a
descriptor segment.

The foUow·ng chang-~ were made o the sys em:

1. The PAHi was implemented w handle a.II faults and tn er.rupt.s.

2. The VPC was implemented to:

a. Conven int,errup s {as no ed by he PAii) into notified events...

b. Manage the clock evenL

c. Advance the stopped evenc when a VP'T stop5.

d . Process run and notify messages.

9. init_col ections was modified to call i, it_basic_l l and no ro can
in ti.al iz,e_fau1ts. PVT in iaHza.tion nd tape ini taliz.a ion was also elimina ed.

4.. in it-basic_ l was impremen ed to ini iaHze the PAH a.nd the VPT. It spawns 1the
VPC and idle processors.

5. create_kerne l_process was. impleme ed co initiaUz.e· ,a VPT emry.

6. init_l _get_seg ·ent was imple ented ~o create segments for processes.• dsescrjptor
segmen and pds.

7. The prds wa.s eliminated.

Two-level Process Implementai.rion

8. privileged_master _mode_ut was modffled to use th~ pam for entering BOS a.nd ror
de.a.ring the cache and associa ive memories.

9. ini t_sst (and the sst.) was modified t,o remove masks was for 'nhibiUng and
generating interrupts.

10. pxss was eliminated. So was tc_dat,a.

U. The fi m and ii were replaced by stubs since at this point the system s unab e to
handle r,erlected faults. These routines will have o be redone. The same goes for
emergency_shutdown and related programs.

12. The pds was cleaned up to remove unneeded scorage for fault data in he header.

IS. VP l nd VP ... u ti 1 were implemented to interface to the pam and co support the idle
process.

14. run_bas i c_ l l was implemented as a process to gWe periodic starus messages. The
mor 1 tic 1 an wu implemented in a stmUar manner to monitor stopped processors. It
usecS s t.atus_report which, in Eurn,, U5'e.s octa 1 for typeout:s.

15. interrupt_process_d,riv,er was implemented to manage ·che mterrupc side process.

16. ocdcm_ was modified t!o' use evenlcounts o go,vern c;omenron, on locks.

17. A pxss was implemented to provide a write-around to addevent and notify primiUves.

rul

amtm

AST_

BOS

callp

camp

!!!!A

IPT

L2TC

PBM

-93-

Twc~Jevet Process l,mp ementatJon

Glossary

S,ome suffixes are commonly associated with a.bbreviations. .. "E" i · used to, indicate an
en ry in table and ~p" ts used t.o designate a pointer.

The Add Del a modifier causes the ,effec(address to be oompu~d using an indirect
word and increments he value of the word by a specifled amount. It is. of interest
because it is atomic with respect o other instructions us·ng the modifier.

Active Metier Table..

Active M ter Tabte Manag,er.

Active Process Table. The APT in current Mu tio wou d. be replaced by hree
data.bas.es. A . eve1ls z.er,o and one there· s the VPT. The evel t'No traffic controller
maintains the APT, and fer eff1c:iency, an IPT.

Act ve Segment Tabie.

Basic Operating Sys em. This is a sti'ndatone operating system for the H68/80. ll
provides uU i y func ions when the full Mui i,a environ.m.ent is no a.vaUa.b e. Such a.s
when actua.H¥ bootloading or debuggJng Multics ..

"'Can Proceuor" an ins rue ion i·mp1emented us·ng he faulting· e4 and interpreEted
by he PAM.

Clear As.soeiative Memory PTWs.

Ctear AssocJaive Memory SDW:s.

Ina.ctl\l'e Process Table. ThJs is ma'ntained by he level two traffic cantro 1er and
corresponds to the APT. exct-pt that fo.r :reasons of loca.lH.y the ,entries hat are
referenced .infrequently are moved into the IPT.

Leve Two Traffic Controller.

The Master Mode, Entry 1 instruction simply causes a fau!t. The fault handler will
interpret this to be a ca lp operation if che faun Is taken whHe executing m a.
privi1ig,ed segment

Processor Assignmen Manager.

Processor B nding Manager; o?der term for PAM.

PDT

SDW ---
stcl

sznc

VCPU

VPl

VPC

VPT

-94-

Two-level Process Imp?em'!nlalion

Project Definition Table.

Page Table Word

Segment Descriptor Word

Store Instruction Counter plus one. This instruction js med to set a. flag to be tested
with sznc. It is of interns~ because it does not affect registers is atomic with respect to
szQc and stores a nonzero value.

Set Zero Negative and Clear. This instruction is used to test a flag set by s tel. le does
not affect regiscers and rests the flag after test Since it is atomic with re5pe,t to stc l 1t
is good for low level synchronization primi i'les.

Virtuai Centra Processing U~ge. A measure of the time assigned and executing.

Vircua 1 Processor.

The procedure chat interfaces to the ca 11 p instr:uction.

Virtual Processor Coordina.tor.

Virtual Processor Table.

Wired I.vent Table

Wired Meter table

FURTHER RESULTS W TH MULTI-PROCESS PAGE CONTROL

by R. F. Mabee

This lii.em.o updates performance measurements t"eported by Andy Huber

in his rec:en t thesis 11 A Multi-process Design of a Pag 'ng Sys em11
, now

available as 1AC-TR 171. The PL/I code is brought up to date with

NSS t and improved by removing many external subroutine calls from the

c itical page fault paths .. 'Ihis gives a performance improve ent of

a.bout 30%. Many detailed me.asurem.e:nts have been made; tbe :results a.re

used to determine where time is spen in both this and the standard

page control.

This should he the final report on this project, as no further

development is expected .

-96-

I. Revier;,~

ln one chapter of hi.s thesis 7 t•A Multi-process Design of a Paging

System11 Andy Huber reports measureme.nt::i made on two versions of

Multics~ one using his multi- proce.s:s page cont:rol (MPPC) and the other

using the standard page c:ontrol. The fonner has two B.-procs (fasc

system processes) that run the resource freeing functions of page

cont;c-al~ and perform some operations £01: segment c:.ont:rol (typically

trun eating a page tab le) • Most of the code was r ewr 1 t cen in PL /I~

except .for the bulk stare DIM a piece of tlle faul 1: handler, and the

system interrupt handler~ which are essentially unchanged, The

results show comparatively poor performance by t::he MPPC in two

respects:

l) The n:umbe.r of page faults (during a

benchmark run) is much higher.

sta:nd..ard iz:ed

2) The CP□ time spent by the PC processes is e.bcessive:~

d oub 1 ing the ime per page fa.ult~

The increase in page faults can be attributed t:o the reduced size

of the paging peel. The wi.red stacks, the RWS buffer~ the increased

size of the P'L/I code~ and the. free core list reduce the pa.ging pool

by !O to 20 pages . This could be cut in half by care.fol tuning of the

algori Chm a.nd becomes unimportant in systems wi 1t.h larger memory.

Ruh er also pc ints out that MPPC disconnects pages before Wt: i ting them,

while the standard PC lea.'les modified pages connected for an. e.x tra.

lap_ If modified pages are more 1 ikely to be refe.re.qced than

u.nmodi fied pages~ then the standard PC will have fewer page faults.

The increased pa.ging isn • t very interesting~ b ec.ause it's readily

explained and wouldn' t much matter in more reasonable configura tio11s.

-97-

For comparisons of CPO time we adjust the sizes of the paging poo.ls

so that the metering run takes about the same nwnber of page faul s

with each version of PC.

There are two special processes in MPPC; the core managei: and he

paging device (PD} man.ager. They perform functions that are mostly

done at page fault time. in the. standa d PC,, so the MPPG should spend

much less t · me in the page fa ult handler~ Ios tea.d, the t · me is

slightly higher (3%). This is the effect of using l?L/1. Huber

predicts a 4,0% improvement by replacing external calls with internal

calls, w · th the result ·ng times shown. in the las,t column of the tao e.

Page faul hand er
PC processes

S anda.:td PC
1973

MPPC
2043
2,641

Predicted
1226
1585

Tab le I ... usec per fault~ Adapted from Huber.

Three modifications should be made to these numbe:rs for more

accurate comparison . In both versio,ns of PC. the fault time meter is

updated about 500 usec too soon~ before the bulk store read (if any)

is posted. There is no question that the tie should be accounted to

the page fault band ler • it ' s just a bug. Also> the time spent by the

PC processes on operations other than page faults {primarily

truncation) should be. subtracted from the totals; by :reasonab · e

extrapolation from more recent measurements this amounts to 336 usec.

pe.r fau t Thirdly~ the cos of interrupt handling and of

inte.r-pro~ess swapping (ge.twork t ·me) sho ld be included; again, these

numbers are taken from recent runs. The corrected figures appe.ar in

the next table. Comparing the total times we find MPPC just under

twice as expensive .•

Page fault handler
Standard PC

2473
PC processes
Interrupts and getwork

2918

MPPC
2.543
2.305

684

5532

Pr ed ic ted
1726
1383

684

3824

Tab le II. usec per fault:. Approximate corrections added.

11. Recent changes

For this new series of experiments I used version 28-lO of

Multics with beth standard and MP page control subsystems .. Among

other changes sine e Hub er~ s experimea.ts was the in troduc. tion of NSS

(New Storage System.) , with many c.onse quen t effects in page c:ont:rol.

NSS resulted in a 200 usec imp oveme:nl: in page fault t.imes for the

standard PC. a.lthough no corresponding improvement was observed in

MPPC. I believe this shows the. benefit of the long t careful tuning

process applied to standard PC i MPPC must crunpete without such tuning.

Pa.ge faults in the IPC: b ,ench-mark have increased by 10% during

thi5 time> probably due mostly to online changes and only somewhat to

reduced paging pool. As before, timing measu.reme.nts are made lo.ti th

paging pools adjusted so the tlJo versions of PC handle about the same

numb er of faul t:.s during a standard me t:ering run.

1'he final version of MPPC is opti.m.izetl by @P1bedding sub routines

as ·nte-c:nal procedu.re5 of the page_fa.ult and c.ore_manager programs so

that most e){ternal calls and redundant assignments (i.e. 11sstp = addr

(sst:$) · 11
) are avoided. If all of the external calls could have been

removed• then the pr ed ic ti.ons in Table II would be realized • However,

the c:a l s co ALM !',mb routines (such as the bulk store DI M) couldn ~ t be

--removed. Mo I:eove-c ~ some of the c: alls that Huber coun ce.d r.o make. his

99-

predictions are executed only ooce in several page faults; n that:

case the cost per fault is proport.ionally lc·wer~ reducing poss ble

optimization.

Six external calls were removed from page_tault,. eaving ooly

four calls, a in'llolving ALM. Seven external cal s wer,e. removed f:rom

core_managec, leaving four o or from ALM. However~ three of the.

calls removed were executed only half the ti e (when a page must be

writtea). If each external call costs 70 usec ,. the net gain is only

800 usec, or 14% . The rarer cases aren't optimiz,ed on the grounds

that a sma 1 improvement i .n an unusual case wouldn ' t affect the

average times ver:y much. Specif"cally, only PD reads, page creations~

virtua writes and PD writes not requiring PD allocation a.re

optimized. Th is handles 84% of the ,cases.

As ano hex optimization, the core...Jllanager page removal algorithm

is made more efficient, a though comple > by start ·ng writes for

sevexal pages before waiting on any . The overal resu , ts are shown in

Table III.

28-lO Original Predicted Observed
Standard MPPC by Huber by me

Fault handler 2531 2543 756 2162
Core t11anager 1985 1191 1272
PD manager 320 92 312

n terrup ts and getwork 445 684 684 684

2976 5532 3823 4430

Table III. usec per fault. Results of optimizations.

Ill. Where the time goes

It is possible to attribute the total CPD time spent on a page

fau ' t to the various functions performed. The bulk store DIM alone

accounts for about 500 usec per- read ,or write in bo,th systems, which

is surprisingly high. This apparently indicates that the 1/0 greatly

slo~ the CPU by competing for: memory cycles. Of course.• th is

behavior should be unique to the test: configuration combining MOS

111emory with bulk store. Depending on whether the CPU is locked out

en t.il!'.'ely o just s owed down~ this effect. may also be slowing down the

re.st o, PC. Another 500 usec is spent (mostly by page$done) to report

completion of the I /0~ In the .following table.~ the measured time for

the standard PC page_fault is arbitrarily divided between .freeing core

and real page_fault in the proportion measured for the MPPC system.

The unusual cases of page ere a Hon or forced write to disk are

ignored.

28-10 28-10 MPPC M.FPC
us/event us/fault us/event us/ fault

Real pa.ge_fault 482 482 1162 1162
Ge.twork awaiting core 637 54
DIM and page$done 1000 1000 1000 1000
GetWO'tk alo'aiting disk 692 69 637 64
Interrupts disk read 1921 192 2102 210
Getwork for pI"e-enpt 692 69 637 50

Fr.eeing core hame 297 297 715 715
Drt if must write 1000 557 J.000 557
Getwork by core_manager 637 124

Free
..

8 PD record 580 83 1400 200
DH! if must RWS 2000 112 2000 112
Getwork by pd_m.ana:ge·r 637 56
Internipts., RlS 1921 115 2102 126

2976 4430

Tab le IV. De tailed b rea.kd.own of page fault cost.

The to ta.I CPU time per fa.ult. for MPPC is 1454 usec 1 onger;. or

about 49%. Approximately 230 usec of the e:xc ess is spent in ge twork

when any process has to wait fer a PC process to refill some free

list~ o-r .men the PC process is done and. goes to sleep. Perhaps an

-101-

equal amount (unmeasured) is spent in calls to perform the

inter-process communication required for t.he PC processes. An

estimated 300 usec represents the· effect of less common paths that I

dido' t bothe1: to optimize.~ and the cost of putting free. frames on a

separate list> and tbe cost of the extra metering done in this

ver-sion. The rest of the excess (estimated at 700 usec) is direct y

caused by using PL /1 to express the algorithms. which appareo tly

increases the execution t.ime of c ,ompa:u.bl,e operat ons by about 80%.

(Note that Huber cbo·se PL/I for ease of implementation~ and not for

performance.)

One important factor adding t ,o the cost of PL/1 is the frequent

use of th,e pointer built-in unction (to follow the many threads used

by PC). In the ALM v ,ersion this is done by •One instructiont oading

an index register. The PL/I c.ompiler optimizes to shorten the

generated code; this is not alwa.ys best for execution speed.

Furthermore, the ALM version optimizes :reg.iste.r usage over a much

larget" scope. fostly these are problems inherent in the use of PL/I

so (unless some gross bug is found), the best performance that: might be

achieved must still be. 20% poorer (in total CPU ti e per fault) than

the standard PC. "It's worth not iog that the interrupt times fo :r MPPC

are only slightly higher 081 usec). The system int,errupt handler and

disk DIM {both unchanged) use · ost of the time· the difference is in,

page$done ~ a very short procedure con.ve1: ted t:o PL /I for MPPC . Its

execution time is around 4 00 usec, so the 80% PL/I overhead is st 11

consistent.

In the test configuration, the page. fault rate is som.ewha.t less

than 100 per second. Since the ekcess time for MP?C is 1454 usec per

102-

fau.1 t it should cost less than 14 54,00 usec per se~ond ~ or: only 14% of

the elapsed time for any nm. However~ overall system performance is

not that. much worse • In fac.t, the faulting process is de ay,ed 369

usec less by the fault (from Table Ill) ~ so it seems r:o run faster,,

and can i:-espond co intet:actions faster (if it needs only a. few new

pages).

The PC processes sometimes run. during time that would otherwise

be idle. The benchmark results show this effect clearly if the

'lrorking set e.s !:ima tor is ena.b led -- that 1reduces mu tiprogramming and

i.n~reases idle time, so the MPPC syst.em completes the benchmark in

just 8% mo e elapsed tiale . (Tuning paramet:e:rs ,: WSF - l, Max Rlig - 4;

ab out l SO pages; 23,% idle w1 th standard PC.) The MPPC will provide

faster service than the standard PC if there is enough idle time. If

the PC processes al ii.Tays tak.~ what. wou.ld otherw.l se be idle time I the

page fault costs 369 usec l.ess; if they never do~ the fault costs 1454

usec more. At a point in bet.ween, the e.1<tra cost of MPPC is zero,;

this happens if the PC processes take idle time 80% of the time. Thus

MPPG performs better than the standard PC if there is at least 80%

id.le time

The paging function is exercised so heavily in t.he tiny test

configuration that its cost is exaggerated in importance. A system

vi th much larger main memory a.nd no bulk store t which se,ems to be the

right approach for Multics t might, for example, take only ten page

faults per second per CPU. ln this environment MPPC (minus the PD

process) would cost only 4:% of the total timet versus 2. 8% far thi!

stanclard PC. The reduction in the paging pool c.aused by maintaining a

free list (in MPPC) would also be unimportant in such a. configuration.

-103~

Since choosing the right page to evict would become relatively more

importan. than doing it fast,. alternative strategies shou d be tried

and for such experiments the m:odulat" · ty,. readab i.lity,. and l?L/I-ness of

MPPC make it ideal.

IV. Conclusions

First, the. negat.i'1'e recOIDIUendations: MPPC as coded s not

suitable for ·nstallatio•n on a thrashing system like MIT-Multics. It

i.s not ready for use .anywhere because of glossed-over SS issues,

incomplete error hand.1.ing and just plain. bugs. have no intention

of updating the code to 1J1ore recent Multic.s: releases than 28-10.

There are. many positive results. The cost of the inter-process

communication and swapp·ng is not too bad (400 usec per fault?), and

· t coul.d be madE! nmch lower by making the f - ,ee 1 hts onger. (The

measurement ru s were made with a maximum of 12 free cmes on th.e list.

Becaus,e of the interaction with paging ra.te this size f ee list w-ou.ld

be ·used only with paging pools from 500-1000.) 'The d:e ay seen by a

process when it faults is slightly reduced The PL/I version of page

contro is availab e as a better bas:e for experimentation and metering

than he ALM version.

It turns out that the cost of using general-purpose processes and

inter-process C0111munication facilities, whi e small,. is intrinsic.

Th s cost would probably not be much reduced using another

imp1runentation of the process 1 such as Dave Reed's Virtual Processor,

.sinc.,e a lot of the cost is in unavoidable overhead of process

switching or of ca ls to perform !PC. Many ,of the !PC operations

either implement a cross-process call to a specific routine, o-r me.rely

-104-

indicate that; (say) the core_manager should be run sometime soon to

free up more core fr-ames. The latter fu.nctlon could be mol'.'e. ch~ap y

implemented, at the xpense of moduln Uy~ tf he scheduler called the

core_manager directly just before going idle. Of course; if the

cor~_manager isn't a real process , it loses the ability to wait on I/0

or en a lock.

By far and away~ the bigge,st performa,nce. problem is the use of

PL/I. It has already forced a non-modular design for the main

programs, by imposing a stiff penalty for good design; it also handles

the 1 ist-struc tured obj ect.s of p,age control V!;!ry poorly. In order to

ob t.ain bet l::er pet"f onnance I Yould havtt to re.~i te the prog ams to use

constt"ucts for l<ffi:ich the code is known to be. -particularly good; that

means picki.ng out the machine language sequence I want first• then

ool ing the compiler in to em.it ting it. It just isn't worth wr Hing

any p1:ogram in bigher-le,,el language i.f its performance is so

important and "Che langu.a.ge. so poorly suited .•

1.et us momentarily suspend disbelief, to consider an ALM ve1csion

of MPPC. It should execute similar funcitions at the same speed as t;he

standard PC t so the extra cost is just the 400 usec. presumed for IPC

and swapping~ or only an 8% increase in CPU time. per fault. The delay

at: fault time becomes 1049 usec less (from I able IV} so overall

per.formanc:e is improved for any load up to 72% (Le:. more than 28%

idle). In fact• if the IPC and swapping vere optim , zed as previously

suggested

load

the overall performance might be i proved a.t any rea stic

Even the ALM MPPC ~ot1ld cause some. loss in throughput if there

we re no o t.herwise:- idle time to give to the P·C processes. In the face

-105-

of s rong real-world emphasis on ,execution .sp,eed. it's s,ometimes hard

to explain l<mY the program \dth good organi.~ation and modularity.

clearly expressed in. bigber ... l ,evel language> is bett,er than its

a.ssemb ly language: predecess or We hav,e no way of measuring th@

intangible benefit of aoy s uch ,improv trment or of weighing it agaicu;t. a

know ost in CPU cycl~s or dollars . All 'We can fa.11 back on is t.he

general pbilosopby, rrcood is better than evil, because it 1 s nicer. 1
'
1

