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FOREWORD 

For the past three years~ t.he Computer Systems Research Division of 
the Laboratory for Computer Science has performed a series of ,engineering 
studies on the Multics operating system, The goal was to demonstrate the 
feasibility of producing a version of a ful 1 functi,on general purpose 
operating system with a "security kernel''' simple enough that i:ts correct 
ope1:ating can be certified by some form of auditing. Duri g th.is project 
several re:s.ults of an interim natuTe were pub ished as internal group 
memos, and we:re never s,ubseq~ent:ly published in any publicly available 
fotm. This memo contains seven sue reports that contain interesting 
results not otherwise reported. These seven reports deal with four areas: 

- Analysis of bugs discovered in the Multics syst.em .. 

• Survey of the initial size of the ultics kernel • 

.. Detailed design specification of two level pt'ocesa manager • 

.. P'erformance ,evalua.t!on of the multi-process page manager. 

D. D Cla:rk 
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REPAIRED SECURITY BUGS IN MIJLTICS 

by J. H. Saltzer 

-1-

A short time ago I began to compile a. list of all known ways in wbich 

a. user may break down or cir,cumvent the protection mechanisms of Multics. 

The list is quite interesting, and available for individual study~ but until 

the problems a.re repaired, i~ does not seem wise to distribute it widely. 

On the ,o,tber hand, it ould be wise to promote discussion of the topic, so 

as problems a::re fixed~ I will pub ish their descriptions. 

ExA11lining pos,t-mortems of fixed bug.s may initially stri.ke o,ne as unre­

"G",arding hl.l'.t there are some pot.ential payoffs. Since one of ,our objectives 

is t:o discover how to construct a simple a.uditable supervhoT which has a 

very low probability of such errors) the following questioas seem wo~t:hy of 

discussion about. each bug: 

1. Row did it get in to t.he system? What design decisions h,elped create 

an. environment in which the error was made? 

2. Why was it not detected immediately J at checkout: time or during 

syste.m installation? What b,etter auditing tools might have. resulted 

in earlier detection? 

3. Was a design principle violated, thereby leading to the error? 

4. ls this bug a member of a class of errors., of which there may be more 

examples in Multics? What: des,ign principle or auditing technique 

might be useful in eliminatin__g all such related errors? 

By way of definition let us use the following arbi·trary definition of 

se,curity-re lated problems: those which -permit 

1) unauthorized disclosure of information. 

2) unauthorized changing of informat'ion. 

3) denial cf accessibility to author zed users. 

A bug which may be expfoited to force a system er.ash is considered to be in 

the third categ,ory. To constrain our area of concern, only security-related 

problems which are part of operating system design or implementation are 
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of interest. For example the prac.t · ce of leaving the door t:o tb.e machine 

room unlocked. is not o,£ interest to us. (Unless the cause is a bad design 

feature of the operating :syst,em which prevents coni'IJ'enient system operation 

inside _ocked doors.) 

RecentlX Repaired Security Bugs 

Several problems were fixed in the installation of system 18. O 

which simp,lified the a ,ccess control strategy of the system: 

l. The CACL ri"ng brackets trap. Before system 18.0 every ACL and CACL 

entry contained its O'lffl separate ring bracket specification, leading 

to great eas.e in slipping, up 1 especia ly if one creates a .segment n 

a strange direct:ory without: first checking its CACL. Tb.is trap was 

fallen. i to by the linker in the foUoving way: if a user in ring 4 

called a ring 1 entry fo:r the first time, the linker tried to create 

a new combined linkage section for ring 1 n the process directory. 

If the user had previously planted a link with the name "combined link­

a.ge_l. 0111 in his proc,ess directory the combined linkage segment would 

ac tu.ally be cl'eated wherever he wished -- in some ocher directory, for 

examp e. Although the linker carefully set t.be ACL of the new .segment 

to pe.rmit :ring-one access only_. the CACL of the target dtre.ct:ory could 

give access in higher rings to other users. 

Since Ul .0 fixed this p::roblem by making the ring bracket specification 

a property of the segmentJ as specified by the creator rattler than a 

property of the individual ACL or CACI, entry. 

It should be noted that a contribution to this trap was made by the 

au omatic system :featur,e of allowing segments to be created through 

links. It would p,erha.ps make sense to allow protec ed subsystems to 

spec fy that. t:hey do .!!2.!, want t.his: feature, so that when they crea.t,e 

a segment by oame, it is created e:itactl:y -whei:e they expect. 

Security Principle: ·f the protection status of a segment depends on 

its position in the naming hierarchy~ the creator of a segment nust be 

given complete ,control o,f that position; no one else may be allowed to 

influence its position .. 
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This principle is currently at odds with two system deficiencies 

both of which lead to desire to put links in the process directory: 

a) an infl,exible process directory record quota. scheme . which 

leads to the need to pla•ce some system segments in ot.he.r 

directories. 

b) the automatic discarding of a process directoey contents 

upon accidental process termination, which le.ads to a need 

co place some system segments elsewhere so that they may be 

ex.a.mined to discover the reason for the process tenuination. 

It seems quite clear that solut·ons to these tt,10 practica problems 

must be found before the basic security principle can be followed. 

2 . AST overflow bug. Before system 18.0 was ·nstalled the.re was a re­

quirement that whenev.er a s.egment is acti:ve., all directories superior 

to the segment must also be active. If a user created a directory 

tree deeper than the AST size.!< he could overflow t.he AST wicti unre­

mova.ble entries. This would cause a system crash. 

Although this method of systematical y crashing the system has now 

been fixed by 18. 0 which does not require that superior directories 

be active, it illust:rates another un.followed security pr inc "ple: 

table overflows and other unexpecI:edl (impossible) events must be 

handled gracefully without crashing t.h.e system, since the assumption 

that the overflow (o whatever) cannot be systematically produced by 

an attacker is hard t:o verify; worse a system change elsewhere later 

may render the assumption incorrect .. 

3 Blank names bug. If a directory contained an entry for a segment with 

an al -blank name, deletion of that directory would cause a system crash.. 

System 18. 0 fixed t:b.is hug~ which again was based on as sump ion. that the 

user could not force .an impossible condition to occur, so no -recovery 

for the impossible condit · on was provided .• 



4. fs_get bug. Entry fs_get$ref nrune failed to initialize its e1:ror 

handler, so when it got an error :return from kst_man (e .. g •. KST 

has overflowed) it attempted to reset a lock it never set, crashing 

the system. This one seems to be a simple programming e.rrorJ since. 

s,etting up the error handler fixed the trouble. Some techniqu,e of 

auditing which detects this class of bug is need,ed. 

one other bug bas been recently fi,c;ed, in s.yst.em 17 .11: 

5. Argument -validation bug. The softw"are validation of arg,uments on 

cross-rin_g calls permitted pointers with indirect. modifiers to be 

used, but it did not follow the indirect chain to a,ee where it led, 

A user could supply an tndi:rect argument pointer in a call to a super­

visor entry which wri.tes into a.n argument, and thrreby redirect the 

writing back in.to a .superviso:r database. his bug was fixed by chaa,ging 

the software validation to· forbid indirect modifiers n argument pointers. 

Th.is bug has some. aspects sitnilar to those. of bug number 1 above in 

that unexpected indirection can easily be ,overlookied. 

This bug ould have be,en automatically fixed by the 6180 argument 

·validation hardwareJ, which w-ill also automatically take car,e of about 

30 other argument address validation troubles which have been uncovered 

by sys t,ematica ' ly auditing the supervisol" e tries. 



A CENSUS OF RING 0 

by Victor L. Voydock 

Introduct · on 
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A major research area of the ComputeT Systems Research Group is to 

investigate the problem of producing a. c ,ertifi.able computer opera.ting ays-

teui.. The first approach to thi.s problem could have been to attempt to audit 

the Multics ring O supervisor as it then existed. Tha.t is, to read all of 1:he 

programs wb · ch comprised the ring O supervisor and detenn.i ne "7he1:her ,or not 

th,ey d'id what they were supposed to do.. It was clear that this was :not a 

prac ical approach due to the size and compiexi ty of ring O and the lack of 

a pt"ecise (or eveu imprecise) specification of its functtons. 

An approach which immediately suggested itself was to s·mplify rtng 0 

so t:ha:t it could be audited . Before this could be done i n any organized 

way it \\fas aecessary to have a clearer · dea of what wa.s in ring O, so it was, 

decided to take a. census o..:- ring 0.. This document reports the results of 

that ceosus 

Approaches 

The census analyzes ring O from various points of view: 

1,. A notebook of ri.og 0 interfaces. 

2. A functional breakdo'l:rn of hes entries, 

3. A fu:nct.i.onal breakdown of all ring O segw.e.nts. 

4. A breakdown of all ring 0 segments by source language. 

The :notebook of interfaces describes every way that ring O can be. ent,ered 

by means of a call. It is a first (albelt crude) attempt to provide a 

:fiunct:ional specif· cation of ring O It is available for study to ,anyone 

who Ls interested , The fun ctional breakdown of hes entrtes will be des 



cri bed h1 a lat,er RFC. The rest of this document deals with approa,ches 

3 and 4. 

~ethod of Census Taking 

The informat'oo in Tables I-VI was gathered from the two di-rectories 

which contain copies: of all r og O object segments: >ldd:>hard>bc and 

>ldd>hard>o. The information describes system 20. 10a a.. 6180 syst,em in­

stalled on 8/ 5/73. The text section sizes were obtained from the object 

maps. The segment count indicates the number of separately translated p,e 

and ALM segments. The entry point count includes segdefs, as well as st:an.d­

dard entry points. Thus this count is slightly 'inaccurate since a few pro­

cedure segment.s (such a.s the FIM) have data segdefs lmbedded in th,em. (Th,ere 

ls no way to dtstinguish a data segdef frolll a. proceduI'.'e entry potut segdef. ) 

The translator names l-1ere obtained from the object segments using object_i o_ . 
• 

The functional categories (a com.rplete list app,ears in Table II) are 

somewhat arbitrary. Any attempt to put labels on ·things ts bound t .o distort 

reality somewhat . Comments oo major classification flaws atre welcome. 

Most of the categories are se . f-ex-plana.tory (Table V1 has a ti.st of 

all segments in each category, ) Physical St:ora;ge Management consiSts of 

everything whi.ch is used to manage the physical storage of segments (co,re 

control. page control~ bulk store control etc.). Error Handli.ng -~nd Tracing 

contains al error handlers not local to one major category (e.g. syserr 

verify~lock}. Major c.ategories are listed in Table I. Utility ;,{Internal) 

contains ut Htty segmeats which ar,e not loca to one major category (e.g. 

privi eged_mode_ut). Uti. lity (Shared with other rings) ,contains ·utility 

prog a.ms which are also used by rings - othe.r than zero (e. g_ clock , Signal , 
... • '!I, ,I - -

ptl operato:r.s_). Obsolete contains segments which exist: only for compatlbility 

(either with other parts of the system or with user programs), and tra.o:sf er 

vectors which ca.o be · brown away when the appropriate proc,edures are conver ed 

to vers· on. 2 p.tl. All obsolete Segl]lents can (eve:ntu.ally) be removed from 

ring O without affect·og users. 
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General Observations 

Finally some genera.I observations should be made,. 

irst, !'J g Q is ~ smaller than exp_ected - a.bout 157,000 words of 

text section (executable code and read only data). A large but not mon­

strous a:mourt: of code. For example, tbe bare bones of the p.£1 compilet: 

(pa.rseJ semantic translator and code generator) take up 118,000 words of 

te:i:tt and this figure more than doubles if ptl IO the file manager end the 

ptl runtime library are included. Why then is ring O so comp lex and hard to 

understand? Another m.easure of complex' ty is the number of distinct: func­

tional units - procedure entry points in ptl terminotogy. Ring C contains 

1201 eotry points. (The bare bones p.t compiler in contrast contains 325 

e try points.) A large number of enti:y po·nts [can ba• a symptom rather thao 

a cause of compl ,exity (when it is elther) - reductng the number of entry points 

W'i 11 not necessarily resul in a S:i.m.ple.r system. But nevertheless~ .an in­

vestigation should be made to determine why there are so many entry points . 
and to wha.t extent they cootri.bute to the complex· ty of Ung O. ThiS iavesti 

gatlon might provide in!iltght into how the system lllig:ht be mo,re s .bnply organized, 

The second observation is that ~ amount of !ssemb ly language generated 

c;ode .!]: i. og 2 £, larger ttian expected. 12. 4~ of non-obso ete riog O pro­

cedur,e text is ALM generated. If one v et.1s pll_opera.to:rs~ as an extension 

of ,every object segment and exclude.s Lt from the total, the figure. drops· to 

about l~. This is sti ' l qui.te high. If, as a very r ,ough est bmte one as~ 

sumes an average of 5 words of text section per p.tt source statement: our re­

sults indi.ca.te (see Table IV) that ring O coosists. of about 29 000 lines of 

p.e l source and a.b9ut 15,000 lines of ,ALM source .. 

Fortunate y the. amount of ALM ,can probably be reduced Significantly. 

All 64 non-obsolete ALM procedure segmaats in riog O (see Table V), have less 

than 2000 words of text s,ectio□ each an~ all but 9 have less than 4-00 words 

of text section each. A cursory study has uncovered 13 segments wblch can be 

lmmed iat e ly converted to ptl with no loss of syste111 eff let ency and additional 

study wi 11 undoubtably uncover others., Dave Reed is cut;rentty investigat.ing 

this ar,ea. 
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Finally. !ables I. TI and 'VI suggest a number of area.a i.n r;,,hich Simpli­

fication might yteld a significant: reduction in th Hre of rtng o~ 

lnlttallze lon -

salvager -

Uy dim and 
ARPA net:wo rk -

interrupt 
handltng -

linker 
search rules - · 

A Final Comment: 

One of the oldest parts of the system, can probably 
b ,e reorganized and simplified 

Its size i ndicates !:hat either it is a e:ollecticn of 
ad hoc methods or that the sys te.m det.e. bases are not 
w,e.U organized w· th respect to salvagabi Uty. 

Duplicate functions should be. merged_ An investigat · on 
should also be made i.nto why ·the t tydim is ~ la.l:'ge. 

Rich Peiertag'Js work on Simpl · fy1ng the way interrupts 
a:re handled shou. d greatly reduce the comple,i: · ty. · f not 
the Size of the IO system a · d of Phys · ca 1 Stor,g Manage­
ment. 

Ph i1 Jansen 1 .s work on removing tbe l lnker f rem ring O 
wi l remove a complicated function from ring O but will 
not greatly reduce the size of ring O (abou:t 3%). 

Through the use of binding the actual umber of free standing proce~ 

dure segments in r· ng O · s 50 (instead of 305) and the number of accessible 

entry points is 909 (instead of 1201), A more judlcious choice of b i nding 

might further reduce the number of accessible ent tres. Some accessible 

entries implement primitives used by outer rings and some functional &Z"ea.s 

span more than one segment. Nevertheless the number of accessible entires 

is a -rough measure of the connec:ti.vi ty of the ,;rar· ous fm:u::t i..ona.1 areas of 

ring o. A study of the interrelations of the 50 free standing procedure 

segments may lead to ins ·ghts ·nto the overall structure of ring 0. 



Table I: Breakdown by Major Cat,egori..es 
(System 20. 10a) 

4, of Words of 
ca.tegory total t ,e21:t section 

File System/v· r ual Memory 36, 7 57727 
Inittalization/Reconfiguation/ 

Shutdown 15. 4 24312 
IO Syst,em 15, 23602 
ARPA etwork 12. 9143 
· tillty 9~ 14269 
Obsolete 5 . 3 8400 
Process Management 5. 7809 
Interrupt/Fault Dtspatching 1.2 1966 
Other (Put in ring 0 for no 

good reason. ) . 2 353 

Tota 157581 
Total (minus obsolete) 149181 

Number Number 
of segments of entrtes 

93 476 

56 102 

33 17 

34 158 

38 122 
16 71 

26 95 

8 59 

l 

305 1201 

289 1130 



I, 
A. 
B, 
c. 

D,. 
E, 
F. 

II 

A. 
B. 
C, 

III. 
A. 
B. 
c. 
D. 
E. 

IV. 

V. 
A. 

B. 
c. 

VI. 

VII . 
A .. 

B. 
c. 
D. 

VIII. 
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Tab e !I~ More Detai ed Breakdown 
(System, 20. 10a) 

Words o.f Number Number 
Category teKt section of segmeots of entries 

File Syst ern/Vi rtual Memory 57727 7 93 476 
File System 18lll 24 125 
Salvager 1 840 5. 41 
Linker/Search Ruleel 
Working Directory 4572 11 30 

Segment Cont ol 7069 13 29 
Physical Storage Management 1 1719 21 209· 
Other (fhings which overlap 

catego-r·es) 4416 9 42 

Initiali2ation/RecoaiigUl'.'a~ 
fion;/Shctdown 2,4312 56 1 ro 

I · · t ta U2ation/Shutdowc 19501 I 46 81 
R,econf iguraticm 3207 4 7 
0 her (Th· ngs: which overlap 

categories) 1604 6 14 

IO System 23602 33 117 
IOM/3:55 4533 13 38 
l'ypewri t ,er Control 11558 7 25 
IOAM 2963 6 31 
P-rinter Control 2247 4 9 
Tape Control 2301 .3 14 

ARPA etwork 19143 31- 158 

-·· 

Utility ll42b9 37 122 
Error Rand ' ing and 
Tracing 3431 11 28 

Ut: i lity (Interna ) 1923 7 41 
Utility (Shared l.?ith other 

rings) 8915 20 53 

Obsolete 8400 17 71 

Process Manag,ement 7509 26, I 95 
Process Creatio /Stat.us/ 
Destruction 465.5 19 32 

later-Process Communication 18 -8 2 11 
Traffi c Control 1943 2 40 
Ti.mers/ i ps mask·ng 375 J 12 

I 

Interrupt /Fa.ult Dispat,ching 1966 I 8 59 
" 



Table III: :Breakdown by Bound Segment 

(System 2 0, l Oa) 

bound:_.:,~!>_w ired 
bound ace i ve . 
bo nd er ro,r _active 
bo nd_er ror _ 1 red 
bou nd_f i l e_ ys t em 
bound_girn ac ive 
bound_i nit_ 
bound_i n i 'C_:C: 

bound io init 
bo nd~iom_ac1.tve 
bo nd_i om_imp_d im_ 
bound_iom_lmp_sta b 
bow nd_ r OITL~' red 
bound_m::.,eg_pr i m 
bound net. orku 
bo nd:pa ge_c,on T ro 1 
bo nd_proce~::._cre.at ion 
bound_::ia Yager 
bound_~&~_ aclive:_ 
bound_~ ~s_ i red_ 
bound_~)'5 tenLfa. l s 
bo nd_tc_ ired 
bound_ emp l 
bo ·nd_ emp_:.:: 
bound_cty_active 

Words of 
text secti ou 

lu4U 
11::io 

L),£ 

llU 
2 ' ~b4 
L~Ob 
I.:~ i, 
.)2b4 
LL ~b 
uSt.iti 
I .Hi 

_)" lJ 

l.19iZ 
lu.t: · 
b 1 1:1 i 
~ ~ 
7 .n!. U 

1 . ;u;. 

~·i'JJ" 
.;i:,,;,ti 

J.:JJ. (I 

l ;;, 
od:l.lo 

·ti 
n,uu 

Words cf 
linkage 
,eec.t ion 

:, Cl 

4 u 
bb 
7 ll.J 
.>lo 
1t l Li 
;,44 
(l d 

'-
v l u 
ll.i.:1 

i. 7 "­
lU 
Lill 

Number 
of en:1:rles 

l .> 
1~ 
Li 

l 
lllJ 
1 
1 
7 
;I 

(J 

;i {i 

"~ 
2~ 
7 
LL 
1~ 
l7 
.) ) 
It,;, 

H, 
1 1 
l 
.J.J 
) 

21 
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Table IV: Breakdown by ta.nguage 
(Systeul 20. lOa) 

4; of Words of Text umber of Segments 
category A'LM ALM PL/I ALM PL/l. 

I nter-rupt /Fault Dispatching 70. 2 1381 585 7 l 

Ut.ility 41. ,4 5907 8362 tS 23 

Obsolete 35.5 2989 5411 9 7 

Process Management 23. 6 1842 5967 4 22 

Initialization/Configura-
t ion/Shutdown 14, 3406 20906 10 46 

ile System/Virtual Memory 7 .. 4 4273 53454 19 74 

IO System 6.9 1628 21'974 8 25 

ARPA Network .s 92 1905 . 1 33 

Other o. 0, 353 0 l 

Total 13,6 2148.S 136093 73 232 

Total (minus obsolete) 12.4 185.29 130652 64 225 

Total (minus obsolete and 
p.£1_ operators) 10. l l47U 1306'.52 63 225 
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Tab le V: L · st of ALM Procedure Segments by Categor 

Category language 

1-S I 
-SJ 

1-SI 
1-S I 

-Sf 
1-~I 
1-s1 
1-S I 
1-S I 
1-s1,Hc 
2 ID 
2-ID 
2- 1D 
2 r D 
2-1D 
2-10 
2-ID 
3-Fs,sc,..s 
3-L 
3-l 
3-L 
3-S 
3-SC 
3-SC,SSM 
3-SSM 
3- SSM 
3-SS~i 
3-SSM 
3- SM 
3-SSM 
3-SSM 
3- SM 
3-SSM 
3- -st-1 
3-SSM 
3-SSM 
4-PC 
r.-PC 

-T 
~-TC 
5-J 
5-1 
5- 1 oc 
S-IOC 
5-IOC 
5-P 
5-P 
5-TP 

a lm 
a l m 
a lm 
a 1 Ii'! 

al r., 
aim 
alrn 
a l m 
alm 
aim 
alm 
al m 
a 1m 
alm 
alm 
al rn 
alm 
alm 
a rn 
alm 
alm 
a lm 
am 
a lm 
al rn 
alm 
a m 
alm 
,a lm 
a m 
alm 
a lm 
alm 
alm 
al m 
alm 
alm 
alm 
.a lm 
alm 
alm 
alm 
a l'm 
a lm 
a lm 
a rn 
a 1 in 

a lm 

Words of t ords of Number of 
text linkage entry points Segment Name 

l lti 
1712 
:l42 
262 
272 
.30 
38 
382 

4 
288 
220 
240 
272 
28 
2 7 
320 
4 
58 
172 

2 
!:l6 
154 
46 
80 
lOLJ 
1300 
136 
14-2 
218 
220 
220 
234 
33-b 
52 
563 
80 
3~ 
6 
28 
1774 
12 
38 
22 
511 
8 
430 
587 
20 

Sb 
8 
8 
8 
8 
22 
10 
36 

4 
76 
32 
90 
18 
8 
102 
74 
8 
8 
14 
8 
8 
20 
10 
12 
60 
142 
72 
36 
52 
36 
Sb 
42 
36 
16 
12 
2~ 
16 
8 
18 
Hlll 
12 
8 
a 
24 
10 
8 
10 
g 

0 
0 
0 

1 
1 
1 
1 
L; 

3 
5 

21 
1 
3 
1.5 
9 
2 
2 
2 
1 
3 
G 
2 
5 
2b 
21 
6 
7 
5 
l !J 
2 
2 
15 
7 
19 
5 
2 
1 
3 
39 
1 
1 

"' 9 
1 
1 
1 
1 

boot~s t rap2 
bootstrapl 
s1t_manager 
pre_link_2 
pre_link_l 
build_template_pds 
s,hu t down_s.\ i tch 
tape_rea der 
prtv·leged_mode_init 
init processor 
signaller 
wi red_f irn 
faul t_error 
parity_checl< 
i i 
f im 
return_to_ring_O_ 
hash_ l ndex 
ge t_defp tr 
datmk_ut i 1_ 
lot maintainer 
salv_free_store 
kst_man 
get_ptrs_ 
page 
pag,e_f au 1 t 
device_control 
free stor,e 
bulk- store control 

- - -
pc_ t rac,e 
master_pxss_page 
pre_page 
pd_ ut i 1 
meter_ disk 
page_ error 
page_ut i 1 
level 
gate-init 
vclock 
pxss 
ioam_check 
cal detacher 
dn355_ uti1 
iom .... manager 
dstint 
p .r t_300 .... conv 
prt_ccnv 
tape_checksum_ 



Category 

u-E 
G-E 
G-E 
6-UJ 
b - U I 
b - I 
li-UI 
b-L I 
6-US 
b-US 
6-US 
b-US 
G-US 
b-US 
6- US 
7-h 
8-U 
8-(J 
8 -0 
s-u 
8-0 
8-0 
8-0 
8-U 
8-
8-0 

Ta.ble V - page 2 

T..a.nguage 

alm 
alm 
a m 
alm 
a lm 
alm 
alm 
alm 
a 1 rn 
a 1 rn 
alm 
alm 
a m 
a1m 
alm 
a lm 
a 1 r.1 

alm 
a,m 
a111 Iii 

alm 
alm 
a lm 
alm 
a 1 rn 
~11 

Words of 
tex.t 

101.J 
18 
24 
138 
22 
2L 
501 
61 
10 
1 It 
18 
206 
28 
3818 
917 
92 
113 
12 
11!3 
2571! 
30 
50 
53 
IJ 

8 
220 

-14-

Words of 
Hnkage 

56 
10 
16 
34 
8 
16 
7~ 
ll;j 

12 
8 
8 
8 
10 
!i 2 
8 
8 
8 
lb 
10 
lll 
8 
.5 ll 
8 
10 
12. 
32 

umber of 
entry points 

3 
1 
l 
3 
l 
3 
18 
1 
1 
2 
3 
6 
2 
5 
2 
1 

4 
l 
13 
1 
23 
2 
l 
2 
2 

Segment Name 

emergency_shutdo,.,m 
check_t rai ler 
syserr 
w i re_stack 
fm_checksum_ 
get_proc_i d 
privileged_mode_ut 
absadr 
clock 
um'linder _ut i 1_ 
a 111 _r i ngs_ut i 
condition_ 
wi red....:ut i . i ty_ 
pll_operators_ 
fo ml 1 ne -
imp_status_ drlver 
old-fr-een 
fas _hc_i pc_ tv 
old_a11oc:_ 
p ll l_ope rato rs 
move 
sss_act · ve_tv_ 
o]d_area_ 
t ty_read_t v 
tty_ ,r i te_tv 
accept_a m_obj 

Note: see Table VI fol-" an expla.nation of category abbreviat i ons. 
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Table VI: List of Ring O Segments by Category 
(System 20. Oa) 

The follow·ng category abbreviations are used; 

l. 1 ni ia U2a t ion /Reconflgurat ion/Shutdown 
RC - Reconii.guration 
St - Shutdown 

2. 1H - Interrupt/Fault o· spatc:hing 

3. Fi le System/Virtual Memory 
FS - File System 
L - L · nker /Search Rules /Working Di rectory 
S - Salvager 
SC - Segment Control 

SSM - Physi..ca Storage Management 

4. P ocess Management 
PC - Process Creation/Status/Destruction 

IPC - Int er-Process Communlca ion 
T - Timers/ips masking 
TC - Traffic Control 

5, IO System 
I - IMM 

IOC - I0M/355 
P - Printer Control 
TP - Tape Control 
TT - Typewriter Control 

6, Utt lity 
E E1:ror Handling and T acing 
ur - Utility (Internal) 
US - Utility (Shared with other r ings) 

7. - ARPA Network 

8. 0 - Obsolete 

Mult"ple tags indicate segments which fall ·n multiple catego~ies. 
e.g. a tag of FS S i.nd·cates a segment used both by the F1.le System and 
the Salvager. 



Tabt,e VI ~ page 2 

category 

1-~c 
1-RC 
1-R.C 
1·- C 
1-SI 
1 .. SI 
1-sr 
1-SI 
1-SI 
1-SI 
1•SI 
1- SI 
1- SI 
1-SI 
1-SI 
1-S I 
1-SI 
1-SI 
L-S I 
1-s l 
1-S I 
1-s1 
1-s1 
1-SI 
1-SI 
-SI 

1-SI 
1-SI 
1-SI 
1-SI 
1 - SI 
1-Sl 
1-s1 
1 51 
1-s I 
1-SI 
1-SI 
1-SI 
1-SI 
1-s1 
1-s1 
1-SI 
1 ... SI 
1- SI 
1-S I 
1 SI 
1-S I 
1 SI 
1-51 
1-SI 
1-Sl, RC 
1-SI,RC 
L•SI,RC 
1,,.,.51, R.C 

Language 

11 
v2o • 1 
kl 2p t 1 

2P 11 
ah 
aim 
aim 
al 
a 11m 
-3 Im 
a 11 
a1 111 
a I Tl 

t, 11 
oH 
~11 
DI 
cH 
olil 
PU 
ell 
Dll 

11 
pit 
oU 
pit 
011 
II 2p I 1 
v2p 1 
1120 1 
v2o 1 
v 2o l 
v2o 1 
v2o 1 
v 20 :'I. 
vlo 1 
v2p 1 
1120 1 
v2o 1 
v2p 1 
V 2P 1 
1.1 2.o 1 
\120 1 
vzo 
I.I 2P 1 
v2o l 
v20,1 
v2p 11 
v2p 11 
w 2p 11 
a im 
011 
pll 
\1'2o I 1 

T,ext Si ze 
(words) 

~bb 
~o z 
~31 
il,j 
llb 

712 
2 2 
'-Ei2 
272 
30 
3; jj 
B2 
to-4 

19::3 
Ld-:l 
192 
354, 
397 
-+&9 
.. 7 iJ 
33 
o, ' 
13 
7 't't 
363 
312' 
1:18 
1957 
137 

520 
1f":)l 

16 
17 l 
1137 
223, 
252 
27 
3 □□ 
325 
30.,;, 
3 62 
+3b 
~ 

527 
":>58 
ll 
75 
7-:,7 

9 
~56 
2~Hl 
.. so 

L2J 

-16-

Li nkage Size 
(words) 

32 
6t 
34 
Jti 
Su 
a 
B 
d 
8 
2Z 

3b 
l ct 
..,8 
38 
4+ •1+ 

62 
36 
11~ 
42 
26 
2b 
3b 
&8 
20 :i 
22 
3 L,, 

72 
32 
34 
38 
2b 
7& 
6b 
36 
2& 
18 

I+ 
22 
38 
36 
10 ~ 
14 
2t.t 
28 
12 
3u 
i+ U 
2Ll 
Lt 
lb 
62 
22 
26 

Number 
of entries 

... 
1 
l 
> 

J 
) 

1. 

1 
-+ 
.s 
1 
l 

1 
l 
1 
1 
1 
l 
2 

1 
l 
l 
l 

l 

1 

1 
2 
~ 

2 
11 
1 
1 

1 

l 
-+ 
:5 
3 

Segment Name 

-:dsu2?0_r-!co f =1 

i:C::Jn f ·~ 
ii d d_rn e :nor v 
j~I t~- j_r~cords 
oootstrao2 
:i otst ciol 
s I _in .3""1 a ~er-
:> e_ll k_2 
ore_ I 1, -<_1 • 
Ou Id_ emplarl_pa~ 
:;, nut d::,. _s pj l. T C 

tao~_ ... ~a1~r 
or-b1il gH1_mc ~- 'lit 

n t 3 I . ze: _ , s 
s.vs.~rr nit 
".ll:. I oe fi?_S-t ~S 

s iJ JJ<1n 
lc..aa_s.,.ste 
tc_ln t 
se;pne"lt_loaael"' 
:: lock:_i iT 
bultd_te~plat~_,s~~; 
_n!tla l lzer 
up ate_sst _o • 1 
in tl:, 1 lze_ aul ts 
f :ierion rid 
t c:_shu t :::10~• 
sc:s._l""llt 
,nLt_narjcore_~5T&s 
T Y- "lit 
i · t _iys_va r 
1nlfl3 lze_ J. li" 
1nit_:>-anc,es 
i it_:::ilLPctI;;>is 
! n 1 t .. o or _l.l l 

n35:;,_1n ' t 
o_ln t 

,.. i r 2 d_S,h..Jt down 
a~e_s j , ..i 

r rac~ _l n iT 
tao e: la 
r ao.:_lri, l f 

! n 1 T _st r _- e J 
o _JaT-at_l !t 

ma e_o~ancnes 
o ul ,-c_store_!n 

T -~:; f 
SC3~_lriit 
ori~,ter _1n1 t 

su13 • _lnlt 
lnlt ::irocessor 
it;:>::>_:::: :HJ 

f1nj 
:irJ:;_!"'1 l t 



Table Vt - page 3 

Category Language 

1- I, RC 
1- I, RC 
2- ID 
2-I 0 
2• ID 
2-I D 
2 .IO 
l-r □ 
2•Iil 
2-I D 
3- S 
3 .. S 
3 FS 
.3-FS 
3•FS 
3-FS 
3-FS 
J• FS 
l•FS 
3-FS 
3.. S 
3-FS 
3-FS 
.J• FS 
3-FS 
3•FS 
3•FS 
3- S 
l•FS 
3•FS 
J•FS 
3•FS 
3 ... FS 
l•FS 
3•FS, 
3•FS, C 
3 FS SC 
3-FS,SC 
3-f S, SC 
3-F S, SC, 5 
3 FS,SC,:i 
3 L 
3-L 
J ... L 

-L 
3• l 
3•L 
3•L 
3 .. L 
3-L 
3-L 
3 L 
3 S 
3 S 
j-

3-S 
3-S 
3-S 
3-S 

v2p 11 
V 2c, 11 
at I 

Im 
atm 
a I ., 
aim 

a • 
a I - 1 

v2o 11 
oli 
pll 
ol 
D '1 
p 11 
ol 
Pll 
pll 
D 11 
p 11 
oU 
pH 
p 11 
v2o 1 
v2p 1 

2o 
v2o 1 
v2o 1 
v2o 1 
v2p 1 
V2D 1 
v2 1 
V2p 

V2P 1 
pl 

011 
01 
pl! 
pl1 
a I 
pl1 
a I 1 

aim 
a I 
p 11 
v2o 
v2o 
V2p I l 
'V2Dl1 
v2o 11 
v2ol 
v2p I . 
aim 
pl1 
pll 
oil 
pll 
ptl 
o I 

Text She 
(words) 

1S3 
53 
22 · 
l'f 
272 
Zd 
297 
320 .. 
585 
1050 
1bl 
176 . 
'2.li 
2~5, 
275 
2d2 
337 
S5 
355 
:> 9 
oSO 
'362 

056 
lo 

1232 
1 81+ 
H:102 
212 
2!.+,37 

37 
91 

559 
566 
1087 
197 

0 
337 
46S 
SB 
:;i72 
172 
u2 
:"lt> 
13-+ 
J. (I 36 
125 
~3 
313 
i:132 
7H 
398 
15, 

87 
1C67 
1207 
l .:I 8 
194 
1979 

-17-

Linkage Si:te 
(words) 

22 
84 
32 
g, • 
1 
5 
102 
7 '+ 
8 
3 ' 
So 
2B 
15 ~ 
3 
3lJ 
22 
52 
40 
26 
40 
72 
78 
1 ,2 8 
So 
9-. 
76 
Bu 
70 
2 
104 
3 
3 '+ 
Ei .. 
62 
52 
30 
5& 
52 
7~ 
d 
:56 
ti+ 
8 
8 
2 
b8 
20 
28 
30 
36 
:,, 

ob 
21J 
.. a 

0 
82 
60 
32 
10 

umber 
of entries 

2 
2 

2 

::, 

1 
5 
3 
2 
1 
1 
-t 

2 
;) , 
~ 
l 
5 
3 
1~ 

l 
lJ 
2 
1.7 
i 
> 

3 
3i 

... 
2 

s 
1 

1 
l 

7 , 
,;) 

2 

1 
5 

Segment a.me 

f reec.:>r-e 
-:.ra,-.t_cp 
sl~aill~ 
,...lr-ej_f lin 
f au 11 T _c: rror 
oar 1t _ch11:c K 
l 
f 111 

ret~r,_t~_rl g_J_ 
::ia · ty_Lu.11 t 
3C I_ 
cnec _ga e_~cl_ 
SOOl j 

ri.n~O_!nit 
~cc_llsf_ 
marcn_star_ 
forc~_3ccess 

IJOta-, 
;i o a_utll 
f s_a I • ~ 
r n310,r _ 
.:iel_d!r_tree, 
llnj_ 
s a 
J e Lan v 
set 
uof 

s atus_ 
'!l ake_:s.~ 
3 ;;, -

I eve:: 1 _a_ 
ts_ 011e 
en arne 

r nca t fiJ 

~cc_n 
nove_ o · 
d c _er- r 

~u 
aSh_l ' dex 

"l3Srl 

~et _d;a, f o,tr 
~at -ut.11_ 
I ot _~na! nta! ,er 
et_d~fname 
1 l<_&'liO 

J nsna,p_s~r ice 
,st_of _jat 

et_.jefnam 
lnit!~te_searcn_rJlts 
f s_s~ rcn 
I nK -1an 
sa,11 free_stor-? 
safv_c ec~_threQd 

alw_ch c _ma 
sal~_reouif _dtrec ,ry 
s li,age_entrv 
sa I _c • ean_as t 
safvage_ lrector1 



Table VI - page 4 
Text Size 

Category Language (words) 

3 .. S 
3 - S 
3·5 
J•S 
3-S 
3 .. S 
3-S 
l S 
3 ... $ C 
3-SC 
3•SC 
l-SC 
3• SC 
3-SC 
l•SC 
3•5C 
3•SC 
1-sc 
J•SC 
J•SC 
3-SC 
3 .. sc, 
3-Sc, SS 
J•SS'1 
3 .. S S"1 
J-Ss~ 
3-S S'1 
3•SSl1 
3 - S S'1 
3•5S1 
3-SSM 
3-S S'1 
3'-SSM 
1-ss~ 
3-SS"f! 
3•SS'1 
3•SSM 
3-SSri 
3-SS;-t 
3•SSM 
3-SSM 
3 • S S'1 
3•SS'1 
5-SS-1 
«+-lPC 
't- I PC 
<lt•PC 
+•PC 
+-PC 
~-PC 
.... C 
+- PC 
.... p C. 

t+· C 
- C 

.. -P C 
+• F>C 
.., .. PC 
.,-?C 

pit 
pl1 
Pl1 
p I 

11 
pl1 
pll 
v2ol1 
ah1 
i:>U 
011 
011 
p 11 
OU 
v2p 11 
112pl 
v2o 11 
v2'o • 1 
v2o I 
V 2011!, 
v2o I 1 
v 2p 11 
a1 rn 
a rn 
.a m 
a 
a rn 
a 
a m 
a1 m 
a 
a m 
a rn 

a '111 

p 1 
p 1 
p 1 
p 1 
p 1 
C 1 
v2Pll 
v20 11 
V2P 11 
pU 
v2pll 1 
a m 
a1 Iii 

p 1 
p 1 
p 1 
p 1 
p 1 
Q 1. 
p .1 
p 1 
r:i 1 

1 
vz 111 

2 7 
- 69 
37Z 
-+2 
;j1b 
5~7 
7b1 
1 1 
-tb 
1 5 
373 
-t3 6, 

➔ 

:; 9 
_l l) 1.t'-' 

5a: 
o,:>2 
0 7 
6d9 
7 2 □1 
732 

296 
:HI 
10 
1 □ D 
136 

't2 
2 8 
220 
22[1 
23 
,336 
52 
%3 
~o 

23 
2Y[I 
3~8 
+ZO 

37 
7i+2 
15 8 
l8 7 
2:2513 
358 
-166 
3 't 
6 
132 

61 
2: 4-
2. 1 
2b1 
283 
371 
-+ 85 
1 
ill 
12 5.0 

- 18-

Linkage Si.ze 
(words) 

+ ti 
5 ti 
s 

8 
54 
38 
4-8 
88 
10 
3,2 
30 
4,b 
34 
4, 
76 
6 
6 
52 
5b 
~~ 

C 
01) 
12' 
&O 
142 
72 
36 
52 
3b 
?'U 

.. 2 
36 
lb 
12 
21.t 

3" 
6U 
5·8 
58 
32 
76 
SJ 
52 
82 
b {j 

54 
lb 
6 
42 
1+8 
2i. 
1-8 
58 
➔ 6 
60 
31:l 
-+ 0 
26 
88 

umher 
of entries 

3 

, 
l 

2 
l 

2 ,. 
'-

2 

.l 

-+ 
lJ 

1.3 
1 
19 
j 

1 
3 
1 
l 

.. 
lo 
l 

0 

1 
j 

? 
l 
l 
3 

3 

3 

Segment N..Ime 

salv t 1ncatE 
sa Iv_, 21, ~ 

s QI v_de: I ·3 f e_d , 
:i a I v _.') ~ i n t 
salv_ "lee _r.- tr 

::1 I _ e ti , i o _ n a m13 s 
salv_ eoulh.l_a.::• 
o _ I "H! _ :. a I a 9-= r 
1<st_113 
-<st_~1t -,,_.: e 
:!ICtiviitP­
se:tfaul ts 
~stsr:n 

i:;da ~ :> 

nKll :i-nn 
3 U ~ f 

iv a e 
5i:;l_f :HJ IT 

nj t =it e 
~at_ast~ 
riiak~knono 
f s _ Jet 
::]£ _otrs_ 
;:i ci9'-: 

;;ia;ic_f .aiJ 1, t 
1ev_c~_cor, ol 
t ree_s t or-E: 
oo i K_:s;to e_coritr-o 
oc_rr-~c!::! 
11asto::~_o:.:ss_pa ~ 

pre_o:;.1~ 
:> 0- 11 
-n~ter_ 1:;:f{ 

03,l~_ rror 
::Hi, ::J8_1..1 t l 'I 

ss l , _ ev ce 
~ _ 1~k-rnP.t~r-s 

il ova_oe v l ce 
oc_ 1~a~ 
l"l.ira_=iroc 
oc_tr-ace:_ol1 
::i c_.aos 
jsu 3 ~ _cJnt r-o I 
.') C: 

fa,; t _hc_i PC 
c_ DC 

I ava I 
3a l!'_ln t 
olm 
lr,Jt_orac 
st oo_oroces s 
actlv;riite_sE'gs 

eact_ r-.:>c 
j eac .Ii. \I at~-s ':I~ 
er rn r,3 t _proc 
a esta,c 

or c._ln f o 
aiccass_11 lo I 
,n_rroc 



Table VI - page 5 
Text Si.ze 

Cat.egory Language (words) 

1t--P·C 
It-PC 
it-PC 
lot-PC 

". PC 
1t-PC 

I+-' 
lt,@ -r 
.. -r 
~re 

-t-T C 
5- I 
!>·'"' I 
::i•l 
Si• I 
S·- I 
:i- I 
5-Io: 
i IO::: 
5-IOC 
5-10: 
5-10: 
s-10: 
5-IOC 
5-IOC 
5• IO"' 
, - roe 
5-IOC 
j 10: 
5 10; 
5, - p 
7 ? 

,-P 
, p 

5-TP 
i·fP 
5-TP 
5-TT 
5-T r 
:::, TT 
5 TT 
S-JT 
5•TT 
5- TT 
0-E 
t>• E 
o·E 
6-E 

:>·E 
b•E 
o-E 
o•E. 
i:,•E 
6• E 
i.•Ul 
6 · ... UI 
6-i.H 
&-IJJ' 

V ,2.g I 1 
v2ol1 
v2p I 
v2p 111 
v2p 11 
v2o 11 
a L 111 

v 2p 11 
v2o 11 
aim 
pf, l 
a 1111 
aim 
p 1' 1 
pt1 
p 111 
V 201 t 1 
aim 
am ­
aim 
v2p I 
v2p t 
v2c 111 
v 2p Ii 
v2g I 1 
v2.p 11 
v 2p 11 
v 2;) 11 
v2Pl1 
v2p I 
aim 
aim 
v2ol1 
v2p J 1 
atm 

2o 11 
V 2P I 1 
pl1 
pll 
1PH 
p 11 
v2o 11 
v2pl1 
v20, 11 
a W 

a t rn 
atrn 
oH 
g, 11 
pU 
vlp 11 
v2ol1 
v2o 11 
v2o 11 
V 20, i 1 
a,m a. I 

al 
a J . 

13 
175 
175 
Zl 
067 
75 
ZS 
,58 
':i9 
17 7-
169 
12 
38 
1b1 
198 
•,) 8 
1d5 
~2 
::>· 1 
a. 
l.4 
'016 
173 
21a 
32 
38d 

393 
=>·'+ 
HB 
)'+, 

-.3 il 
587 
21+2 
32.B 
20 
1792 
-.89 
116 
+153 

79 
576 
1i,.s3 
2. - 3 
2 ;b 
10b 
id 

108 
l1 
Z5 
1 ll 3 iJ 
1.9 
!?3 
ob 
J 3 d 
13R 
.!' l 
2 'j 
,:o 1 

-19'-

Linkage Size Number 
(words) of entries 

2b 
26 
38 
12 
46 
2 (l 
18 
3 

20 
19::; 
30 
12 
8 
3~ 
56 
52 
lb 
8 
2 
10 
18 
So 
1 lj 
30 

3,2 
32' 

8 
72 
18 

10 
20 
8b 

3 . 

28 
2 d :i 
2{.J 
46 
3u 
3ll 
b 
5c 
1u 
lo 
2d 
b+ 
$b 

52 
16 
2l 
12 
7 
31+ 
8 
i6 
7:+ 

L 
1 
5 

i 
1 
3 
3 

J. 

1 

:3 
7 

13 
-t 

3 

l 
J 

z 

l. 

l 
1 

1 
1. 
l 
C 

11 
2 
1 
7 
t 
7 
1 
2. 
-! 
3 

J. 

l 
s 
i 

5 
J 
3 
1 
i 

Segment Name 

or-a c_ ,"'It _nand I er 
o twdi-O ~,, no 11 __ ,.. 
,.. 1 nJ_=t I arm 
~et_o3~e_t a<.e 
Ir.1't311Z..:_S 
~~, - ~~)c~ss _usa e 
11cloc~ 
s _t_alilr'll_t mtr 
1 os_ 
0 xss 
Nir"eJ_::> 11 

ioa ~= nee 
ca ,ll_ic:tac ,er 
10;1m_ t1 
.:1 $ 11_ 

oa _..it 
loa _ 
:t 335 _ ..i t1 I 
lom_Tlor''li;, J'll"' 

:I j t i n 
:;i im-+ 
dln355 
-llOC:_=otcllt 
Ji m_a .I J oc 
c:n.a , _ , 
,l ~ 

tml 
: i: C 

.} 'll _ d .. : 1 n 
~,m2 
0 t_3 J J _.C'"I V 
ort_c:"'lv 
or-in er_status 
Jl"'inter_jc 

aiot_cl"le k:sum_ 
t de 
tcJcm st:itus 
tty_ ilo~ , 
t1y_lri _r 

ty C.J1 

ttv_traE 
ttv_re·aJ 
tty_,... .. ita 
t V _ i J ''' ,C 

e ile:-- J:! '1 cy _,:; ri t d o...i n 
c n~c _1' r ii ~r 
syscr"' 
jet:iu-1 _c nee 
::: ,:di nos 
r 1 ::1-□ _p~E:K 

.: .:ioy_f JU 0 

n~_ z~r _cl1:an l u 
11er!fy_l,c 
Tr:::iC:i! 

sys,o:<r _r-:!.jl 
fllre_stac'< 

_c: h.e k;. um_ 
J~ _rJ".lC_.ld 
o r!vll~~~ -~cu~_ 
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Category 

6-UI 
6 Ul 
16- I 
s-us 
G-US 
s-us 

s 
~- JS 
:i•JS 
o,• s 
o- "JS 
0- S 
0-US 
o• S 
o-us 
5-US 
o- s 
5-us 
o- US 
o-US 
o•US 
o-U5 
7- 1 
7 N 
7-
7-N 
7-N 
7-N 
7•N 
7 
7 ~ 
7- N 
1-
1- ' 
7-
7-
7-N 
7 N 
7-
7· 
7-N 
7-N 
1-N 
7-
7 
7-
7• N 
7-~ 
7-N 
7-N 
7-N 
7-~ 
1-
1-
1-
7, .. N 

Language 

a I rn 
p 1 
v2o 1 
a t rn 
aln 
aim 
a I'll 
a i'" 
aim 
a 1 
ol 
p 1 
P I 
oil 
011 
011 
v2ol1 
v2p 11 
v 2p I 1 
v2p I 
v2o & 

v2o 11 
a I 'TI 

pl1 
PH 
pll 
cit 
oil 
oil 
cl 
011 
DU 
p 1 
p 1 
D 1 
p 1 
p 1 
p 

D 1 
p 1 
D 1 
p 1 
p 
p 1 
P l 
pH 
oil 
ol 
D 11 
oil 
011 
c:> I 
pH 
pl1 
pl1 
pll 

Text: Size 
(words) 

61 
183 
;j92 
10 
1.1+ 
1d 
!'16 
~8 
38 8 
~ 7 
l. 

) ;s 
9 

585 
336 
130 
2.11 Z 
.355 
365 
s>27 
~ 
32 
Ul.l 
1(,3 
11 S 
123 
12b8 
l o 
ltd 

182 
~3 

19 
l 
202 
211 
222 
2~29 ,-­-:;), 
Z?l 
'?.7 
277 
293 
3 9 
H7 
32 
t 6 
;31 
::>'+9 
012 
iJ,~7 
726 
7<.t-1 
773 
d&7 
-j 7 
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Linkage Size 
(words) 

lb 
32 
52 
12 
8 
8 
8 

2 
8 
28 
32 
32 
2t 
51J 
4(1 

1d 
li 
20 
16 
16 
20 
e 
3 
21+ 
Jc 
13? 
14,. 
2 
17~ 
It 
3v 
38 
-+4 
30 
Sb 
... t) 

2 4-t 
ou 
1tl 2 
3d 
3& 
-+2 
SG 
5b 
2b 
Sb 
52 
9 I:! 
13~ 
5b 
7d 
15~ 
72 
6b 
,) Ci 

Number 
of entries Segment ame 

::10Sd r-.. 
11 

' 

j 

5 
} 

;, 

♦ 

t 

, 
L 

L 
J. 

1 
3 
j 

1 
; 

♦ 

3 

+ 
l 
j 

1 
; 

~ 

7 

t hraa::i 
I oc 
-10::,(_ 
u n 1 n dc r _1..1 l I_ 
d 11 I _r i n ;;_u t 1 1 _ 
: O'lj it O r)_ 

.., i r ri! 1_ t I ! t y _ 

::i I i_:>:n r- H .)r.; 
0 11 11 i ... ~_ 

C\I_Dl'"l_ 

· e_c,.:irs_ 
:1i1_0 c_ 

rd ua olt:!i - -
,:1c:1ta_t Ill.: _ 

oblect info 
,H .. aa_2ti$ 9n­
fr~a 
:1 I I oc 
:1rea 
.il~n:!3 
trv_to_u~,oc _Ive~ 
lmo _stat · ~-d iv~r 
l mo_Ji?f _out f r 

o _ I o o i I _stat s 
o~_ fllO_ c ,11_rea 

l oni_l TI:>_ ::ic11_ nit 
rico_maln_ 

mo _ t'"I e~a 
'"ICO_ 

1 mo_,..;-< eJo 
iom_i~o_jc _writ~ 

rno _u r i I _.,. r ,.:1 

o_ ti r 
lmo_~ lt?_se vl~e 
1rno_s~ vice 
'"l.:o_r!1g_ 
l:, _ '1HJ_~Tatus 
lmo_rn s 
1co_to;:,p_ 
lrno _ Ht_,. r-eo_ouff __ 
1:no_.JI o 1_ tn:ue 
i mn_,m:3rk_nos:1 
1 mo_re3 ti 

;,~ :> k 

l mo_c I? ;;inv.> 
!mo _ o1r-It~ 

,o _ l'"lout_oroccs5Jr 
imp _ nlt 
imo_~rrcr 
1 p_o er 
"ICp_ut l I_ 
"lico_sta t1.1s_ 
l o_J out_;n· c,c~s:;;or tnt 

o_a tdCh 

~o_ elaase_~1r~1_0J far 
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Tab e V . page 7 

Text Siz;e Li..nkage Size umber Category Language (wot"ds) (words) of ent i.es Segment Name 

~-o alm J.;, b oici_trP.rr,_ o-U a lm i. u f.ast_ tic ipc_ tv o-0 a J rn l :J l CJ .L old_a 11 oc_ u-(.J a Ill J74 li.. l :) pll_uP,.ra or~ 1,1 0 a I l .HI 
mov u 0 a Jm ::,u ~ LJ !) 5 S ac i v ,p - V ---u a lm :, ,) b L old _area_ ,;,-0 al l u .L. .L tt),_ read V o•U a 1 rn u 

.I. ' ' t i. _ writf"_ V ~ u p 1 .L. .Lu. l.t, '- u u ercode -u Pl J.H,7 '+ ·v de );JC k o- p] .a. 
,) '- accep _a fo_vhj t. -.u p 1 • .. :.,!;) .. 1 is t_c. i r I) •O pl .L. i b;, i+ (J 

~La s Q V pl L h J. ~et_entr~_naf"' t, . .. \I p 1 .L .l:J .)b 7 !, ex_.srl o-u V.tplJ. 7u (I IJ u ac1 
ut her V pl j:,.) 

date _lilc'Utle_ 
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SOME MULTICS SECURITY HOLES WHICH WERE CLOSED BY 6180 HARD¾IARE 

by J. H, Sal tzer, Ph· llippe Janso,n., and Douglas Hunt 

This, note is the. s ,ec.ond of a series* which describes design and imple­

mentation. errors in Multics which affect its a.bility to protect: information a 'nd 

provide. service. The purpose of the series is to cry to diSC.llSS what incorrectly 

laid groundwork permitted each trouble to creep in. 

It is interesting {aad comforting) to note that no security problem yet 

discovered has required any change in the original overall design of Multics· 

the problems have univexsally been at the level of detailed design errors or 

implementation slipups; the repairs have been conceptually simple readjustme11ts 

l!:o bring the design or implementation back to the originally intended one. 

A fairly large number of security probl ,ems were fixed automatically by 

conversion from the Honeywell 645 to the Ron.eywell 6180, which has built-in 

argument validation hardwar,e. As will be seeo, replacement of a complex soft­

ware package with a relatively simple hardware mechanism was remarkably effec­

tiveJ suggesting that it ~as a move in the right direction. 

Unva.lida ted Gates. 

In the 645 the following gates to ring zero had no validation of 

arguments at all: 

absentee test (all entries) 
hphcs_ - (all entries) 
phcs_ (all entries) 
phnxbcs_ (all entries) 
admin_ga te_ $guaranteed e lig ibi li ty _off 
admin _gate:... $guaranteed_ e lig ibi 1i ty _ on 

Argument validation cos.sists of checki:ng each .argument to a gate entry to be 

sure it refers to an address to which the caller is p•el."mit ted access. For ex-

amp le J if the ring zero program intends to write into t:he argument (e . g. . an out ­

put value) then the caller of the entry should specify an address in which he is 

penn:itted to write. Failure to perform argument validat:ion would mean tha he 

caller could specify an address somewhere inside. ring zero; if b.e did t:he cing 

zerp program could be LISed for unauthorized patching of t:he supervisor. le. is 

slightly h.arde.r but still possible to exploi~ a gate. which only r-ea.ds its arguments. 

* Previous !y is sued memo in the series: see page 1 of this memo . 
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The unvalidated gates had one thing in common; they were all con-

1:Io l led by access co,ntrol ists which limit their use to supposedly resp on-

sib le. individuals. his control was probably the c ief ra t.ional · z.ation for 

not putting in tbe extra effo t required to specify the argument validation. 

On the. 6180 all arguments are automatically validated by hardware 

checks on the ring of origin of every argum.ent. This approach el imina.tes 

both the extra (and sometimes neglected) effort needed to specify validation 

a.nd also a y possibility of errors in that specification .. 

Incorr,ect_!I_ va l.ida t .ed arguments 

In the following en.tries s ome argument was v a lidated with more. 

leniency than appropriate,, permitting the user . typically t:o cause the sL1per­

vi sor to write in to an area i.n which l:ne user has no, access. 

hcs_$g,et se.g_connt 
hes $get ent y nam~ 
hcs:$get=dbrs -
hes $assign channel 
hcs_ $check_device 
hes $get search rule 
hcs:$get=couut_linkage 
h.cs _ $ipc _ init 
hes $list dir 
hes - $makeJ tr 
hes $list dir acl 
hcs-$set _d.td -
hcs-$status 
imp= dim _.ga·te _$imp_ read_:order 
imp_dim_gate_$imp_,;n-ite_order 
net-p_$ncp_pr ·'V_status 
netp _ $acp _priv __ prder 
net $ncp status 
net- $nc.p-order - -
hcs_$acl_ Ust 

last argument u.nv al ida ted . 
argument validated for wrong type. 
argument validated for wrong usage. 
1st a rgument valida ted for wrong usage .. 
2nd argument va.lida ted for wrong usage. 
argument validated for wrong usage . 
2nd argument validated for w1roog usage. 
argument valudated for wrong usage. 
2nd argument validated for wrong usage. 
1st at:gument validated for wrong usage. 
31:d argument validated for wrong usage. 
3rd argument validated foT wrong usage. 
entire argument s pec is wrong. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage . 
3rd argument validated f or wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wr,ong usage. 
5 h argumen.t validated for wrong usage . 

This list represents the accumulation of errors over several ye.ars of 

specifying argument validation for about 150 user- cal lab le gates. When an 

argument is validated for nwrong usa.ge:11 it typically means that the gate 

specification says that the gate only r eads the argument, ~hen the gate 

actually vrites into it. Thus the va idato checks only to make su_re t.hat 

the user can read data at the specified address. If he user provides a 

pointer say to some location. in t:he 11 sys __ info" segment in whicb be has 

read-o,nly permission the gate.,. which can write into 11 sys_info11 by virtue of 

its r ·ng- zero location would then overwrite some · em there. 



Again~ the value of t:he automatic hardware. argument validation feature o .f 

the 6180 is clear: the opportun.ity for an incorrect software-declared speci­

fication is completely eliminated. 

Unv a 1 ida table argmnents 

In the foll0"1'ing entries, some e11try could~ be checked by t.be 

automat.ic validator, since the correct method of validation depends on the 

value of some other argume · t. 

hcs_$acl_list 

hes_$ x_ a.cl_ list 

hcs_$ex_acl_d,elete 

hcs_$initia!:e_seg_counl: 

bes_ $list:_dir_acl 

hcs_$replace __ sall 
hes_ $Teplace_dall 

3rd argumen~ t1sed a:s hot:h in.put a:nd 
output. 
3rd argwnent used as both input and 
output. 
3rd argument meaning depends on 
4th argument. 
6th a.:rgument meaning depends on another 
argum.ent. 
4 .. 5th arguments meaning depend on tbe 
value of 3rd argument. 
3rd argument unvalidatable. 
3rd argument umTalidatable. 

The problem in each cas,e here was deeper than in the previous one: the 

particula:r cho · ce of arguments lead to impossib ity of validation~ and 

therefore to no validation: at all. For exavipleJ :suppose that the third 

argument is a.n input a:i:gument for some values of the first argumentJ but: is an 

output value for others . Then a protection specif"cation which says that 

the third argument~ be writable would cause some correcc programs which 

intentionally provided a read-only third argument to be declared illegal. 

If~ when these entries were fi.rst introduced, their documentation bad speci­

fied that the argument in que:s tion mus Ii: be writable whether or no c it is 

actually written into by tbe. supervisor then t:he trouble could have been 

a.voided (at tbe cost of an additional obscurity in the user interface). 

Unfort:unately an after-the-fact change to requ ·re writeability might cause 

some correct. user programs r::o stop working, so compatibil i ~y preve.n ts 

correction. 

Again the automatic argument va idation hardware a the 6180 provides 

a solution. Since every refereoce to an argument is separately checked, orily 

if the .argument is actually used as an output argument will it be checked for 

writeabi l i ty. 
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EPL argument validation t:rap 

The argument validator did not completely check out some of the more 

complex .specifiers of arguments prov· ded. by EPL ( the first Mu 1t ics PL/I 

compiler) pl"ograms. hus_. a user could construct an argument descriptor 

which indicated that an EFL specifier was in use, and. the- eby induce the 

argument validator to allow the call to go unchecked. This problem wa.s 

basically one of historical compatibility: the EPL specifier format and 

organiz.ation was designed befor,e the 'mplications of argument validation 

had been considered. When it became clear that certain argument ypes were 

hopelessly comp ex to validate a.n attempt was m.ad,e. to prohibit (by edict) 

the use of those types of arguments in sup,etvisor entries. After the later 

PL/I c ,ompiler e imina.ted the need for a restriction, sOD1e gates were insta led 

which utilized the forbidden argument typ,e.s. The argument validate unfor-

tunately, provided a de.fault of uacceptablen for EPL arguments of u.nva 'datable 

type, so it turned out that one could call tbe nm, entries with programs: 

written in EPL which was still an available comp' le .. The alterna ives of 

cha:ng · og tbe default to Hun,accep tab ten would have effective y denied acce.ss 

to the new gates for those users not yet ready to rely upon a new unseasoned 

PL/I compiler. Thus, through a series of design slipupsJ errors in judge-

ment: and bad practices this protection bypass g ,ot int,o the system. 

The 6180 argumea t va.lidat.ion hardware again automatic ally per forms 

the appropriate access checking at ergwnent usage time independent: of the 

format of he structure passed as an a gument. 

m terminate !!,._ug 

The design of th~ In er Process Communicatiotl. (!PC) event channel 

table (ECT) had t e. following flaw: when the user-ring IPC created an ECT 

it then cal led a ring~ zero entry o inform the ring- zero part of PC of t e 

loca t · on of the ECT. The pointer in questio,n was stored by the ring-zero part 

of IPC in a ing-zero data base, for future use in passing IPC messages back 

to the user. The user cou d now terminate the segment containing the EC'l\ 

and initiate some other segment (to which he bad only read access in the user 

ring) with the same segment: nu..mber as the former ECT. Then~ the ring zero 

pa.rt of t.he IPC, using its stored pointer would write the us,er '' s messages in 

a place the user had no business writing into, 
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With the 6180 ha:rdware., the pointer passed by the user to tne ri.ng­

zero -part of the lPC facility and stored there contains the ring number of 

t.he user's ring. Thus all reference -made by ring-2:ero IPC using that. 

pointer will be validated as though they came from the user ring. If a seg­

ment for which the user did not have write access is substii.tut,ed, t.he attempt: 

of the :ring-zero procedure to write in it: ·will fail. 

Exploitation of ~-ring ma.s,ter-mode procedures 

The 645 processor had a 11master-moden prop,erty which bypassed all 

protection checks; certain procedures such as the fault int,erceptor and 

signalle.r had to operate in master-mode, yet in the ring of the user causing 

the fault or receiving the signal. To prevent exploitation~ the hard.ware 

permitted calls t:o a master-mode procedure only l:o an entry point: at location 

zero in the segment; the procedure was expected to very carefully examine r.he 

circUlll8eaD.Ces of its entry to insure that it was not being exploited. 

Upon review of the standa.~ entry sequence code. actually being used 

it was discovered that the design did not prevent exploitation at all. Three 

dist~nct problems were found each of which could be exploited i.n several 

ways. FirstJ the entry sequence was designed on the assumption that index 

register one had been set to indicate which of several actual entry points 

to 1:he segment was desired. The entry sequence correctly assumed that the 

caller might place an out-of-bounds value in index r ,egister one so it 

checked to make sure that the value was within reasonable limit:s. Unfortu­

nately. if the value was out of boundsJ it called out to the system trouble­

handling procedure which proceeded to ncrash 11 the sys tern. Thus 1 any user 

could caus,e a crash by transferring to location zero of Uie signaller., wit.h an 

appropriate value in index 'register one. The second problem is that the call 

to the system troubLe handler was done by an indirect transfer out through 

he linkage section of the master-mode procedure~~ but this call occurred 

before verification t:hat the 1 ·nkage pointer had been set to the currec 

value. Thus the user could plant a special value in the linkage pointer 

transfer to location zero of the signaller, and cause the master-mode proce­

dure to transfer an~here he wished -- including into the. middle of another 

maste·r-11ilode procedure. Again, by preparing registers tin advanceJ and choos · ng 
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carefully the code sequence to trans fer · to, one could deve op an ,exp lo· -

tation. Fina. ly the third p oblem is that safe-storing of the proce.ssor 

t'egisters was done assuming that the regist,er va ue in the stack base regis­

ter did not need to be cheeked since it was locked. Unfortunately, a 1971 

modif ,·cation to the system resulted in. the stack base register being unlocked 

so tbe user could by loading tbe stack. base register and transferr · ng t .o a 

legal ,entry point of the signaller, cause. it to safe st9r,e th@ proceeaor 

register almost anyw-here. 

Although the concept of securing a master mode procedure stills ems 

viable, the implementation is apparently very fussy. By checking the Multics 

System Programmers I Manual it can be established that: the f rst two problems 

have existed at least since 1967, and probably earl i,er. It was precisely be­

cause of uneasiness about the securing of master-mode seg:ments that the 6_80 

was designed without a master-modeJ and with ,co•nsisteot and builtia hardware 

call and fault facilit'es. 

Execute in traction user e_ecial protection checks 

On the 645 processorJ the checki:ng of permission 'l,l'aS special cased 

when an "execute" instruction was encou te:red since the time of decoding 

of the instruction to be executed is de ayed to a ti.me when mos instructions 

are in the midst of execution. 

Apparently as a result oi a field change.! one of t:he special cased 

cbecks was accident.ally disabled if the execu e instruction was located 

1n an odd location and ii: addresse.d an offset of zero in another segment. 

tn this situation write permission was not cnecked . so o,ne could write 

1-nto a read-only segment. 

Here we have an e~ample of th.e danger of special cases - they tend 

to cover rae occur1;ences which means that routine operation does oot 

exercise them. It also points out the :recertification problem: even if a 

design is originally sound, every at.er modifkation should be accompanied 

with a recertification. 



-28-

SOME RECENTLY REPAIRED SECURITY HOLES OF MULTICS 

by J. H. Saltze:r and D Hunt 

This note is the third of a series* which describes d,e .sign and imple­

me.n.tation errors in Multics which affect its ability to protect information and 

pr,ovide service. The purpo.se o,f the series is t:o try to discuss vha t incorrectly 

laid groU111dwork permitted each .. trouble to creep i.n, 

It is interesting (and comforting) to note that no security problem ye 

discovered has required any change. in the original overall des ;i.gn of Mu1 tics · 

the problems h.ave unive.rsany been at the lev,el of detailed design e.rrors or 

imp lem.entation slipups.; the repairs. have been conceptually simple readj us tmen rs 

to b:r ing the design or implementation back to tbe orig insi lly intended one. 

Reused address 

Following a sys,tem crash, the salvager may discover that a. single disk 

or dru:m page is being used by two o,:t more page. tables, a. situation which should 

n.ever occur intentionally, but may appear if a crash occurs while upda t; ng a 

page tab e value. In the original design~ the page in question was ~arded to 

the first page table encountered by the salvager., ,and later users of that page 

were assigned new page.s containing zeroes. Since there is no way tote l which 

of the multiple users was the legitimate one he pre.sent, safer design gives 

all users of a reused page dis tine t pages of zeroes. This improved design 

helps reduce the chance. of one u.se.r seeing another user I s data because of a sys.­

tem crash. Ideally_. one would make the storage space which holds a page la.rger 

~han the page itself., and stor,e a copy of the segment unique identifier wi.th each 

page when it is assigned to a segment. Then since pages are id,en tifiab 1,e los 11:; 

or multiply-used pages could be returned to their proper owners with less chance 

of accidental i nterchange. 

This problem "llustrates an · ssue wb.ic.h is as yet not very systematically 

approached in large sys ems: the initial design almost always assmnes erfectly 

functioning hardware and software, and as experience is gained about wh ' ch 

failures are most common patches are. added to protect. The design of the 

* Previous y i ssu,ed: memos are reprinted on page 1 and 22 of this memo. 
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second CTSS file ~yst:em included forward~ backward pointers with every 

record of a file; the system always checked the back p,oio.ters to see that 

they contained the expected Ralues. As a result" parts of u.ser files were 

almo,st never interchanged .. _ a distinct: imp·rovement: over the first CTSS file 

system whicb used forward pointers alon,e, and i which it was a colllllon occur-

rence to fh:1d someone else's data in your fi e Unfortunately this parti-

cular CTSS lesson did nol: get transferl'.'ed to Multics, probably because of the 

e:x:tra overhead that m:ight have been involved in dr1m1 manage.men t. 

Opera tor logffi window 

Whe bootloading Multics, tbe operator dialed a telephone number to 

log in the ''initialize:r11 cons ,ole, whi,ch co · trols all .system operation. A 

h.ostile user, with careful timing.,, could dial the number and take ove.r the sys,­

tem aa it come·s up. The design was adopt,ed so that syst.em initialization could 

be perfonued from any available terminal; it was originally intended that the 

operator supply a pasSl.Tord, but for some reason that intent was never implement.ed. 

The design was ~ecently -changed to permit use of a terminal which is permanently 

wired to ·the system; security is higher but when that: · eTillinal breaks., system 

operation may be awlnira:rd. The a~kwardness can be e imiu.ated by havin.g •~erst 

available. hardw•ired tennin.ab. 

F'SDCT update: problem 
The Hfile system device configuration table., (FSDCT) contains a bit 

for every storage block in e'8:ery secondary storage device. A 'one" means 

the block is ·unused, a u .zeeo11 means it is used. If several devices become 

completely used a page of the FSDCT may become filled l.Ti th zeroes. Sinc,e 

it is an. important table it is frequently backed up by copying it out to 

secondary storage. The procedure invoked for this copying is- the standard 

page re1I10val procedu_re.~ ~hich has been des ·gned to discard pages o,f zeroes 

rather than writing them out. Th.e routines which read the FSDCT from 

secondary storag,e at syst.em initia.JLization time (before the standard paging 

progra.D works) was a non-standard one which did not know that pages of ze:roes 

we:re given spe.cial treatment; a. system crash resulted whenever the system 

was :initialized. In principle., at least a user with a very large. storage 

allotment could. exp oit ttillis, bug 'by Ct"eating, tnany aepents ju&,t be.fore a 

yetem shutdown. Tbe. sya.tem, would shut d,Clffl with · n FSDCT containing blank 
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·pagesj and all future at:.temp,t:e to boot load tbe system wou.ld fail. The bug 

was fixed by revising the PSDCT reading procedure to correctly re,cognize the 

blank pages during initialization. 

This i:s a category of bug which does not pe.rmit the exploiter to 

read information, but merely to deny use of the system to other legitimate 

users. The particular pr,oblem illus t.rates the effect of first using a 

special trick for efficiency foll.o"Jjled by later use of an old procedure 

for a new purpose without evie-wing its opera,tjon for special tricks. 

Lo_g_1n table overflGlY' 

the ist of logins during a single bootload of Multics was stored i n 

a single segment with no overflow procedure. A singe user, by logging in 

several thousand times,. could overflow the segment, making further log~ns 

by authori ed user6 im_po,aaible. 

Thh ia another ,ex.ample of a ''denial-of-u.se" bug but a e. which 

could be ra.pidly rec(mlered from by reinitializing the system. It origin 

lies in the period bet.ween 1968 and 1970 when a. combina ti,on of pressure t ,o 

get going and also a short av,erage 1'system. up" time mad,e programmed provi­

sions for table overflow look like a non-essential luxury It has been 

long since fixed. by adding an overflow procedu.re, but its origin is inst::ru,c­

tive since there may be yet unsuspected protection bugs with the same origin. 

P~ge ontrol ~agic number 

An old hardware bug trap places magic numbers in core where a page 

is to be read in, then after reading the page checks . the numbers. If stil l 

t_here it assumes th,e page didn t come in~ and reports a page read error to 

the user. If a user places c ,ontrived names containing the magic bit patterns 

strategically in a directory to which he has o ly append access, he ca.n 

effectivel y delete othet' entries in the directory . 

The trap has been left in the system, but it has been placed. under 

strict operations control by requiring a special 11 debug11 card in the configu.r~ 

ation deck loaded by the system operator before lootload; operation with 

th,e debug card in plac•e is d,one. only with special authorhati,on, and leaves 

n audit trail. 
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Retriever .!£.!-swing bqg 

The retrieverJ used t:o ob ai[il old copies of files f-rom backup tapes 

used to wor k as follows: 

l. Create. a new empl::y segment in the user 1 s di:rectoryJ with a.n 
access-control-list permitting access to anyone. 

2 . Copy 1::he data from the tape into the. new se~t. 

3. Read the appropriate access-control-H:st fr.om the tape. 

4. Re.place the initial access-control-list with the one r ,ead 
from the tape. 

If an errol'.' of any kind occurred aiter completion of step 2 the ret:ri,ever 

would exit: leaving the data reloaded but unprotected;. the user received no 

warning of the co11dition. As a result, an explorer of the directory hierarchy 

wauld typically discover sev,eral files to which he had access but should not 

have. 

The problem lil'as repaired by making the initial .accese-cont:rol-lbt 

grant acceee to tb:e retrimrer process only; any erro,r.s after that point 

reslll t . in a fail-safe: ina,ccess · b ility of the segment. Since the user who 

-r,equested the retrieval Yill usually try to immediately use his retrieved 

segment, its inaccessibility will tend t:o be discovered quickly~ and a 

locksmith can be calLed upon to adjust the situation. 

This problem is a good ,e,i:ample of design which did not take. 

i nto account all the implications of an error encountered in an otherwise 

acceptable sequence. 

Process directory record overflow 

lf the user generates too much stoi:;age (more than 500 pages) in 

h , s process dir-ectory~ an error is signalled to him. In the original design, 

the signaller used the wrong: stack, crashing the system. This bug could be 

exp oited to deny service to others at the user• s whim. It. was repaired by 

having the signaller use. the correct stack. lt h a good example. of !:.he 

effect of complexity (.t.he need for several possible stacks) compounded with 

t.he diffi ·culty of testb:1,g un.uaed and limit conditions~ Basica ly~ the 

handlexs for rare and unusual conditions tend to be poorly tested simply be­

cause normal use~ li'h · ch uncover a mo,s t bugs in today• s .systems~ does not 

exerci.ae them. 
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Locked stack.!!.!.!; problem 

In the design of the 645~. a pr,ovision ~as made for the supervisor t:o 

ock the value o,f any base register. This feature was includ,e,d primarily 

because ;twas planned to handle faults and interrupts using a stack and i t 

was uot certain at the time whether or not use of a stack was possible unles.s 

the stack base registeJ: (containing the stack segment nU?llbe:r) as locked against 

user tampering. For several years, Mult1~s operated wil!:h a locked stack base 

register whose value wa changed by a master-mode procedure as part of the 

ring-8\i'itching operation. 

The fault and interrupt interceptors were coded assuming a locked 

stack base at three points, although after the ring design was c,omplete, 

it became clear that the user could, · n principle, be safely allowed to 

modify t.he stack base register. 

With the evolution of the design of the PL/I compiler it became appar­

,ent that the extra flex bi:Uty of allowing the s.tack base register to be· user 

changeable. was quite handy, so the stack base t'e,ister was unlocked. Unfortu-. 
nately ! no, one followed through with the three one-line changes to the fau1 t: 

and interrupt inte.rceptors required to eliminate their dependence on a locked 

stack base r ,egister. As a result one could load the stack base register with 

the segment numbers of one of the ring-zero stacks, and theu wait for the 

nex.t fault or interrupt, which would go to an interceptor which incorrectly 

assumed that because the stack base register had t.he expected value, the 

stack pointer reglster mus also be loaded correctly. The resu twas 

possible overwri ting of a :ring zero data storage are.a at the direction of 

the user. 

The problem was fixed by addin.g the three one-line checks mentioned. 

The underlying trouble here seems to be a failure to f ,ollcw through all the 

implications of a change in a fundamental ground rule; cl,early such changes 

a:re dangerous and must be approached with .all possible caution. (see also 

REC 46 ~ dhcussion of user-rin_g master-mode procedures.) 

JL! r!n.a s ~•c_k Jo_g 
Th• 1ty1tem hes an intei-nal pt:ocedure., named •append_branch"' which 

cr~Hteo n ne ses,men. and a utility named 11makeseg• wh i..ch either creates 

a nl!~ 11epent (by calling n•ppe,nd. __ branch 11 } or returns e pointer to n ,old 
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one f it already e.xiets. Since "a.ppend_branch 1 requi e many argument:.& t:o 

describe the newly created eegment, and "make eg" supplies uaeful defaults 

for most of the. arguments, there is a tendency among system programmers to 

call *'makeseg 11 rather than 11 append ... branch11 , e\f,en when use of an. old segment 

would be inco:i:rect. In the case of the procedure which creates stacks for 

newly en~ered rings, the user could create~a segment with the stack name of 

a previous y uDused inner ring but with ring brackets allowing him to 

read ,and writ: the stack conte.nts. Then, upon calling a procedure in the 

i.llller ringJ stac creation would be aut: - 1tically triggered. The itAck 

c:reat:i.ng progra.10 ca led 11 makeseg r and thus would receive a pcin.te to the 

- eviously planted stack rather than an indication of an error. The nner 

in,g procedure would then proceedJ oblivious to t:be fact that its stack 

was then accessible to programs in outer rings .. 

The problem was fixed. in moving to the 6180 since the sack 

creation. strategy had to be modified anyway; procednre app,end_branC:h is now 

used We ha.ve here an example of how a p•articular combination of too many 

conveniences. in one utility program can lead t:o sloppy considera ion of 

:!::he implications of using it. 
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Patterns of Securlty Violations: Multiple References to 
Arguments 

by Harry C. Forsdlck and David P. Reed 

l. I ntr·oduct ion 

A arge class of Potential holes ln the security of an 
ope rat i .ng system 1 s character I zed by the us,e of an all"'gumen t mo,r e 
than once. On the surface, tnrs situation appears to be 
harmless: multiple references may be rnefflclent, but they seem 
to be fun ctr on.a 11 y equ I val ent to a s l ng 1 e reference. But, are 
they? If the value of an argument could change between one 
reference and the next, the possibility of an error ln the loglc 
of the program ustng the argument exlsts. The assumotlon ade by 
the author of the program that an argument could only be altered 
by the program or agents of the program is vlolated. How could 
an argument change 1n th s rnvalld way? A simple conceptual 
scheme oin a mu t I pl e pr,oces s sys tern 1 s for one process to execute 
the call, supplying the arguments and a second process whlch has 
access to the values of the arguments, to perform, at the 
appropriate time, the alteration on the arguments. Whether or 
not a multiple argument reference leads to a breach of security 
depends on how the lnformat[~n gained from each reference Is 
used. If he resu ts of a test ,on one reference to an argument 
determtne how the lnfor ation of a second reference rs used, then 
a exploltable hole in the system probably exists. More specific 
conclusions on the correctness of multfple references to an 
argument de pend on the s,emant r cs of the part I cu 1 a r program under 
analys(s Rlchard B(sbey of the lnformatlon Sclences mnstltute 
of USC brought this subject to our attention. He descrlbed the 
multiple referenclng of arguments as a general pattern for a 
class of securlty ho es and clted several Instances of thls 
pattern in Multics. 

With these ideas as ,otlvation, the Multics gate entrances 
to r(ng 0 were examined to determlne ff such multfple references 
to arguments were being made and f so, the implications of such 
f l aws Of the approxrmateTy 170 entrypoints to ring O through 
the hes_ gate, about 50 were found to make mult(p e references to 
their arguments. Nine of these rnstances were potentially 
serious breaches of securlty In the Multrcs system All of these 
breaches are easlly fixed by copylng arguments and then 



referencing the local copfes 

2. How to Change the Value· of an Argument 

The multlple process method of changing the value of an 
ar gumen·t is conceptua Hy s I mp e, a 1 though in pr act 'Ice, rt a· s 
necessary to coord(nate the two processes so that the argu ent 
gets changed at the proper time. Tis task rs often mposslble 
to accomplish except by c ,ance. A s1(ghtly oore coMDlex 
mechanism owever, nakes the alteration of an argu ent trivial• 
The comb Ina t I on of [ nd ( rect and Lngexed - au t,q 1 nc;rement 
addressing and the ability to cascade these modes of addressing 
al lows a programmer to set up an ,argument 1 i st so · hat ~ 
reference to an argu ent accesses a different value. On the 
H6180, rndl rect the1n a ly ( IT) address mod(,f(catlon Is one of 
the kfnds of ind(rect addressing and the Enere~ent Address -
Decrement ally - Cont nue (IDC) varratton on the AT modifier Ts 
an ex.amp e of ndexed - au to Increment address r ng ,. 

F rst, consider Indirect addressing. Typ(callY, there Is a 
field I an Jnstructlon which can soec fy that the operand 
address points to a cell (the "Indirect ~ord") which contains the 
actual address of the operand In addTtron, with cascadlng, a 
field in the indirect word can specify that the lndirectton 
process should continue at least one ,more. ·1evel. For example, 
the diagram below depicts three levels of lndlrec ron: 

f ~structlon l~t n 1 rect word ;;-2 ... n_d ....... l _n~l"'!'l'"-;;;.....ii~ 
. l * I • ' ➔ fL ___ -1[.:.*LI -....!•!::➔i-----------~➔ --- - --.... 

"'- I ndt rec t fl e 1 d __;If...------------........ ---
Indirect 

1 I 
word 

•-~ 
Oeerand 

t 
-'t,_no ndlrectlon 

For the lndexed autol crement mode, there are two addltlonal 
f elds rn lndlrect words: the fndexed-autolncrement field and 
the c,oun1t ( ta 1 y). When an ind r rec t word \rd th th .e 
1 ndexed-auto r ncr,ement address Ing mode ls a,cces sed, the count · s 
added to the address and used as the effect ve address of the 
lndlrect i..iord~ tn addlt(on, the count 'fleld is Incremented by 1 
Thus, each t lme an Ind I rect r ,ef ere nee ls made th rough an r ndl r ,ect 
word with the r ndexed-au t ,o Increment address 1 ng mode, the 
effectrve address Is one location higher. This rs very useful in 
accessing tables -- rn our particular ease, tables of values 
for a s l ngl e argument. For examp 1 e, the d r .agram below d,epl cts 
two consecutive references to an argument. The Indirect word rs 
part of the. argument l 1st set up by the cal 1 fng procedur,e. In 
the first reference, the count rs zero and thus the value 
accessed is the flrst value In the array of va ues. 
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Frrst Reference 
fl nd I rec t r r ndexed-auto I ncrenient 

! load I*] 9""'3~-..;a,., [ ) 0) J*l1 
~] > val ueO 

/ 
valuel 

accessed value · 
value2 

Second Reference 
[i.oad [ * I .. 3 ... --,..➔ t I 1 J {,.I -• 1---,- va -1 u1e01 

....,!I) val uel- j 
accessed value...,.......- ~ 

va ue2 

The count ls automatically rncre 1ented by one so that on the 
second reference, the va 11 ue ace es sed wt 11 be th ie second member on 
the ar r.ay 

lf arguments are accessed by Indirection (as th -Y are In 
Multics) lt rs quite easy for a (mallclous) programmer to set up 
an argument list so that each reference to an argu ent accesses a 
different cell. A number of machines (for exampl(t H6180, U IVAC 
1108) have the addressing features similar to e ones described 
above and thus systems running on these machines are susceptible 
to the problem of arguments changing values at unexpected but 
predictable times. 

3. Classes of Errors Caused by Multlple Argument References. 

The last Section established that multiple argument 
references can cause problems There are four types of errors 
that arise from multlple references to arguments that are 
charac:tertzed by patterns of readlng and/or setting the 
arguments. The rllustratlons below are stated rn terms of double 
references, although the discussion applies equally well to any 
number of multiple references. 

1. Double Reads: In this class of error, an argument Is read 
twice. The value read the flrst time is tested and the result of 
that test dete rm Ines how the va ue read th,e s ec:ond t I me is used. 
The following program fragment l lustrates this type of error: 

if argument= 'pds' then swltch O; 

. . 
if switch = 0 thien .••• ; 

else-~ (reference to argument) . 
■I • iii, 

The value obtained by the second reference to argunent could very 



we 1 i be I pds ' , a st ate hat r s J neons T st en t .,., I th the or T g i na 1 11. 
statement. 

2. Setting then Reading: Another commo class of error occurs 
when a p~ocedure nitlal fzes an output argument to a certain 
value and then relies on the integ;rlty of that value The scheme 
outllned fn Section 2 works equally well for reading or settfng 
arguments. Thus, ; is posslble for a user to cause a called 
procedure to use a va ue that Is outsfde of Tts control The 
fol low ng program fragment 11 lustrates this type of e ,rror: 

a_ename = 1 mal box•; . . 
• . 
call delentrySdfile(dlrname,a_ename,code); 

Between the points a_ename was set and 1 sed, ts valuie· c,ou d be 
changed to any value the user desired 

3 Settlng twrce: A slightly less obvious, yet potentially 
eQually damagfng error arises when an output argument 1s set 
twice. Damage results tn situations where the value to which the 
argument is first set ls to be hfdden from the cal fng procedure 
by storing the second value. Again, sf nee the sche e of Section 
2. \'101rks equally wel for reading and wr I ting a history of 
argument values can be deve oped. his history ls a potentla 
privileged (nformatlon leak. The follov ng program Illustrates 
th Is po Int: 

argument_code = error _tab Te$ en t ry .... no t_fou nd; 
• ,. 
•· 
argument_code = error _t,ab 1 e$ no_aicces s_to_fT 1 e; 

I* Hide exJstance or non-exlstance of fl le from user.* I 

i.. Pass Ing an Argument .: A I de1ayed11 error can a1rl se when an 
argument to one procedure Is passed dfrectly without copylng to 
another procedure Thts Is because the value of the argument 
res(des In an address space that Is not protected (the user's 
address space) In Multlcs1 the scheme descr[bed Tn Section 2 
does not cause a proble because an entry in an argu~ent list for 
an argument to the call fng procedure Points directly to the value 
of the argument. Thus, there can be no malicious address[ng 
modlffers In the ar-gument 11st The more general mult pie 
process scheme, however, s still effective En changln~ the value 
of the argument,. f ,or examp 1 e, r f procedure A Ts ca 1 ed T th 
argu ent X by a user procedure, and A in turn calls B suPplylng X 
{without copying) as an argument, then the value of X can be 
changed by the mu 1 tr p 1 e process scheme durl ng the t 1 e B, 1 s 
running Thrs proble 1s made more serious by the tendency for 
argument va11dations to be dropped (for efficiency reasons) ln 
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procedures that are 1nterna1 to the protected part of a system. 

s. Multiple References to Pointer Quallfled Arguments: Quite 
often a pointer to an argument ls passed to a procedure when t e 
actual argument Ts a complex data structure. Again, the muTtlp1e 
process scheme can cause the actual data ltem to be altered 
dur T ng the runn 1 ng of a ca 11 ed rout I ne. Copy Ing the Po 1 nter I nito 
a loca 1 varlable and performing references through this local 
copy does not solve t e problem s rnce the a,ctual yalue of the 
argument can be changed by the multipl e process scheme. 

4. t~ethods of Recogn 'i z l ng Mul · E p 1 e 'References 

In a large system rt rs very difficult to discover Instances 
of the errors ourl I ned In Sect ron 3. Two alternative methods of 
attack were taken ln out study of ~u tlcs. One technfque ls to 
perform an analysis of the text of all procedures that are 
Interfaces between the er It I call y sen·s i tr ve pa rt of the opera t l ng 
system Cring O gates 1n Multlcs) and user programs. Thts 
analysis rs -aided by the cross reference listing produced by the 
PL/I compiler. Certain patterns Tn the cross reference l[stfng 
for arguments indicate that multlple references are being made. 
The mar n advanta,ge to th Is approach Is that 1 f done correct 1 y, rt 
w1111 yield ill instances of multiple a,rgumenit refer ,ences The 
main disadvantage ls tat It is a time consuming task 

There a re two defects, ·r n the ,cross reference techn I que. 
First, all references are , lsted together; thus 'l't ls 1m1posslble 
tote 1 by looking at the 11st which kind of reference (read, 
write~ appearance tn an argument 11 st) occurred. The rnabilfty 
to dfstlngulsh In the cross refe~ence listing between argument 
·11 st app,earances and reads and wrl tes makes the anal ys Is more 
difficult. The second defect of the cross reference technique Is 
more serious9 The appearance of a reference to a name fn the 
text of a Pl/I program does not guarentee that there w111 be a 
corresponding reference to the value of the name rn the 
tnstructlons emitted by the compiler There cou d be z ,ero or 
more references depending on optlmlzatlons perfor ed by the 
comp! 1 er and t .he form of the actual reference~ As an example of 
the 1 as except Ion,. the statement 

x ~ convert(argu ent,z); 

doesn't ac al]y reference the value of the argument. The value 
of z is converted to .a va 1 ue whose ty,pe Is the same as the ~ 
of argument and stored fnto x~ Similarly, a reference to the 
length of a str(ng does not reference the string, but rather the 
descriptor of the string. Thus, searching the cross reference 
list for multiple references can cause false alar s. On the 
other ha . d, the cross referen,ce 1 i st prov I des no help r n spott Ing 
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references to arguments that are eontatned within loops. 
It is conceivably possible to mechanize thls process so that 

multfple references to arguments could · e discovered by an 
automatlc analysis. This task would flt In easr y in the 
framework of the P /I compiler since a11 of the necessary 
i nformat Ion is al ready aval 1 able wl th 1 n t e com·pt 1 er. 

The second technique for discover Ing mul tl 1pl e argument 
references Involves monl tortng the actual use of arguments p.assed 
to Interfaces .. and not Ing any a1rguments that were referenced mo,r e 
than once. The mechanism used to exploit . ultlple references to 
arguments noted ln Section 2 can also be used to detect 
multiple references to arguments at runtlme. Wh le a 1 multlply 
ref,erenced arguments cannot be detected In th Is way, many wh I ch 
can be exploited via the autolncrement mechanism wl 11 be found. 
Since these are particular y easy to exploit, detectton of them 
Is Q u I te us efu 1 . 

r n order to det ct these bugs, a set ,of spec: r a transfer 
vectors were substituted for the ring O and rlng 1 gates rn 
several users 1 processes These transfer vectors constructed a 
n1ew argument 11 st whlch made us ,e· of the autol ncrement features 
of Multics Indirect addressing to keep a count of references to 
arguments via the pointers in the argument 11st. This argument 
1 (1st, whtch ul tlmately referenced the or ginal arguP1ent 11 st via 
a serles of Indirect ons, was passed to the real rtng O or ring 
l gate Upon return, the transfer vector code observed the 
number of references to eac argument, and recorded the ~axl™J 
nur:tb,er of argument references r n any ca 1 in a net err - g data base 
~hich had one entry per argument per entry point. 

For those lnterested, the argument list constructed is 
detaHed below. Its ould be noted t ,at th s t ,ec nfque can only 
worlk. if the number of argument references can be bounded and 
small (I.e., references to arguments do not appear in loops). 
Unfo rtuna te.1 y, this was not the case fo ·r t ty_:wr i te, tty_rea.d, and 
tty_order. Cons,equ ,entl y, these entry pol nts were n.o measured 
by this method after the Initial tests. 

J ts, 
r de 

/ [address _( ta / :C Tally Word 

I 
: ~ I) 

Constructed , "') 
Argument ~ 

LI st '") 

* 
* ;s 

* 
f3 

Its 

Users Argument 
LT st 

There are severa deficiencies 1n usJng this scheme to 
detect multlple references. Ffrst of all, Et ls necessary to 
exercise all possible cot ol paths of the system procedure in 
order to flnd al of the cases of ltlple references (so so~e 
holes may pass unnoticed). Secondly~ th ' s technique produces 
many false alarms, since t e code produced by the PL/I 



compiler may produce multtple rndirectrons through the argument 
for one loglcal reference (thrs may or may not be a bug). 
Also, structure or array arguments may have subparts, all of 
which are singly referenced, but through the same argument 
pointer. Another probl1 em rs that Pl/ I sometl mes eop res argument 
pointers by Indirection uµon entry to a multlple entry point 
procedure (the case occurs 'If the same name ap,p,ea rs l n d I ffer en t 
posrtrons In several formal parameter lists). This results Tn 
only a single reference being detected by chis technique, even 
though mu It I pl e references may be made. The 1 as prob I em is 
that a r gUment s wh I ch are pa,ssed on to r nte rna 1 rout Ines w i 11 not 
be caught, s l nee PL/ I Ind I rec ts through the a.rgunent 1 rs t once 
to get the address of the argument whrch is passed on. Even if 
the argument Is referenced multiply by the lnterna ~outine 
which receives it, this wlll not be done via the Tndlrect chaln 
provided to the external routlne by the transfer vector, and 
will not be counted by this teehnlque. 

Most of the bugs which were found ln the current system bv 
the auditing method were also found by the ilf!Onltorlng method. 
This suggests that the latter technlque might be useful ln 
attempt r ng to prevent pass Ible bugs in the system from bal ng 
exploited, by c~ashing the user's process if an argument is 
referenced more than once. (Thl s cou1 d be accompl I shed by 
causing a fault on the second reference by using a fault tag 3 
indirect word as the second entry In a two element array of 
indirect wo,rds refer 1enced by the J de au to increment ode ,.) 
Certainly .. such a f i rewal 1 has I ts costs, bot r n runtime 
efficiency, and in the fact that all 1nnocent multlple argument 
references must be purged from the system, as we 1 as the 
secu rl ty holes., In order for the f 1 rewa 11 to work. ~everthel ess, 
th rs ay wel 1 be wort wh 11 e T n attempting to prevent 
retrogresslon in the security of the system for some users with 
high security requirements 

5~ The Semant Tes of Multiple References 

Once multlple references to arguments have b@en discovered, 
the re Is a fl na 1 step needed to determ I ne 1 f a J)Ot:ent I a 1 breach 
of the secur I ty of the sys t ,em ex I sts. Th 1 s requ 1 res match t ng the 
information about multiple references gained from the essentially 
syntactic check on the Program with the semantics of the program 
in rel at l on to the rest of the sys t ,em and the bas Tc assumpt 1 on 
that arguments can change at any mom,ent. This step I ·s qu 1 t e 
difflcu t. To be complete,. a stmilar effor-t wou 'd be required to 
justify that a mult1ple reference doesn't cause a security hoe 
as to just I fy that the program .u_ secure. 'But, shortcuts can be 
taken: knowledge of the meanlng; assigned to arguments helps in 
lsolatlng serious problems from harm ess mistakes. 

Of all of the steps ln the technique for discovering errors 
due to mu 1t: ! p 1 e argument references, th Is 1 s the mo,st c:U ff I cult 
step to mechan lze~ A v,ery 'large amount of knowledge about the 
operatlon of the system ust be used to determine whether or not 
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a multlple reference 1s a se ious error. The ajor benif t of 
search Ing for the pat t ,ern of mu 1 t T p 1 e references 1 s that areas 
of the program text whlch deserve close analysis are rsolated. 

6 Resu ts of Applying t rs Approach to Multics. 

An analysis of the M ltJcs rfng 0 gate entrances ~as 
performed Ffrst, multiple references ,o arguments were 
d scovered using both the cross reference 1st ng technique and 
the monitor technlque. Next, each entrypoint that had argu ents 
that were multlp y referenced was analyzed to determine the 
effect of t ,e multlp e reference A list of the entry po nts 
tested and the results of those tests are found In Appendix 
Numerous multip e argument eferences were uncovered. In ost of 
these c.as,es we were ab 1 e to c,on cl ude ,11th a h · gh 1 eve 1 of 
confrdence that no errors result from t ese references In a 
number of other cases, however, serfous breaches n secu lty were 
d scovered. 

The s(mplest and most glaring error was due to a ltlp,le 
argument reference 1 n 11 stop,_process. 11 By exp o It Ing the u 1 t P 1 e 
1ref ere nee r n the manner previous 1 y des er I bed, a.rri. process t n the 
sys em ,cou d be stopped c, cludlng the nftlalizer process)1 

•• A 
I es s se -ect T ve den 1 a 1 of service ex I st ,ed 1 n "status_" and 
nstatus_ ong11

; by setting up a1 cer ta In form of argument 11 st, 
these routines cou d be made to 1 ock a 1 ock t .hat wou d never be 
un 1 ocked., Th rs wou 1 d eventua ·11. y cause the sys tern to •Crash. I t 
is possl'ble to direct 'tty_wrfteu to send an unending stream of 
characters to a terminal. This has the effect of tylng up the 
ent I re sys tern and caus Ing · he a.ppea ance of a era sh 

Other errors were found that were either deemed less serious 
or less obvlous how to exploft. Because of a multlple reference 
to, an a,rgument r n "add I nac.1 entrf es 11 It Is ooss Ible for a us er 
to s.peclfy the rnftlal-access control list fQ.c Allll LJ..L!K on any 
d I rector I es t at he may create. Th 1 s seems Tl ke -a ser I ous error, 
but lt is dlfftc:ult to s ,ee how to exploit It., In npr1nter_dcm' 
it seems posslble, once a prl ter has been selzed, to address any 
other pr Int er In I tdcm_message11

, multiple argument references 
make 1 t poss.1 b 1 e to p,r 1 nt 1 neons I ste nt messages on th,e· oper.a tor s 
cons o 1 e. F I na 1 1 y., ass um I ng th a. t t 1 s poss [ b 1 e to get past t e 
"hphcs_u gate, It appears poss [ b I e to set up r nco,ns 1 sten t 
information rn tables hat record the state of tape drives by a 
call to "t:dcm_add_drlve". 

One addltfonai error due to a mu~t ple argu- ent reference is 
now known At frrst we had classffled the entrypornt "sfblock 11 

as be(ng Int e class of entrypoints that did not have mu tiple 
references •. A subsequent corrrnunlcatlon from Richa1 d Bisb,ey 
pol ted out a fairly subtle error Jn t is entry to the 
supervisor A portion of one oft ' e ar~uments contarns an Index 

nto a bit string stored Into the PDS (an 1mPortant rrng 0 data 
base), and Is first valtdated to be wlth n range. It ls then 
used to select a blt in the bit string to be set to one. If the 
second reference gives an out of bo _nds ndex, then any blt in 
the PDS may be set. Both of the multfple reference detectio 



techniques had farled to find th s error The monitor technique 
failed beca se the argument is r ,eferenced rvfa a generated 
pol nter, the au to Increment techn11 qu e for exp 1 o I ting such ho 1 es 
w 11 I not wor-k for th ls Instance. The cross refer e•nce l i, sting 
technique probably faJled due to human error. 

Several direct conclusions come out of our experience with 
Multics First, each of the multiple reference detectlon 
tech JQues dlscovered multiple references that the other did not 
unc,o\le 'r. In add Itron, both ml ss ed at east one 1 ns tance of a 
multlple reference. Tedium accounted for the missed occurances 
r n the cross reference 11 sting techn l que, an automated vers 1 on of 
thfs method would Presumably not suffer from th s llmltatlon. In 
the mon l tor method, mu 1' tr p I e references we 1re mi sse<i bee au s,e so e 
program p,aths \"'ere not taken., Second, even when al 1 multiple 
references have been uncovered, one ust be~ conservative in 
analyzlng programs for correctness. Further, when such programs 
are mod T f I ed, the.re Is a st ro,ng chanc,e: that ha rml es ·s mu 1 t; p e 
references may lead to serious holes; such programs w 11 need t.o 
be au d 1 t ed on each new r ns ta 11 at r on I n many cases th f s l s an 
extreme 1 y t ,ed i ous task for wh I ch people are not ""e 1' su l ted. To 
be ent I r ,e l y sure that a mu l t 1 pl e r efer-ence ts, harm ess, .i1.l paths 
that a pr,ogram may take must be traced. C 1 early there s a ne-,ed 
to develop algorithms which would perform the analysls 
me ch ,a n1 I ca 1 1 y • 

A 11 of the secur I ty holes re•pa,rt.e d above have been f 1 xed 1 n 
the current Multics system. 

7 Solutions to the Problem. 

In the past there have been a number of dlfferent reasons 
for copying arguments. Most of these are characterized by the 
need to avold a fault (dlrected faults: segment, page, no access, 
rlng violatlon; or Indirect address fault: l(nka,ge, fl, f3, 
111ega1 procedure) \hi1e a lock rs locked In May, 1967 a 
protocol similar to the one described below was detarled ln MSPM 
BD.9.02. The suggestion was made that al argu ents to a 
procedure be copied and that on · y these coples should be used Sn 
the procedure. As var lous r mprovements T n the system have 
occurred, some of the reasons for copy l ng .arguments ave been 
el ml nated and some programmers have ceased to copy arguments. 
The res u 1 ts o f th 1 s wo r k s how th a t because of the d I ff I ,cu 1 t y r n 
analyzing the effect of m ltiple references to arguments, iLl..l 
arguments should be co~led and valldated upon procedure 
Invocat ion. To be entlre1y safe, the followfng pattern of coding 
should be followed for ail ring O interfaces: 
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F: procedure( a_argl, a_ar g2, • • • , a_ar gn L, 

copy the va 1 ues o-f a1 I I np,ut and r ni:i,u t/ou t put argu en ts, 
lnto local variables~ 

val rdate local copies wtth respect to semantics 
associated with hem rn this rocedure. 

; {- use local coJ::d es \ 

set outpu~ arguments to values of correspondrng 
local variables. 

I return J 
end; 

By us Ing t hI s cons,erva t 1 ve cod f ng sty 1 e, a proc,eriure can be more 
strongly Isolated from lts callers. In effect, we are making a 
better ( by no means perfect) s 1 m 1 at 1 o of separate doma ! ns by 
f o 1 1 ow r n g s u l tab e res t r T ct ions 1 n p, r o gr a mm r n g s t y 1 e • I t s o u 1 d 
be noted that there are s1tuatio s where it Ts dlfflcult to 
adhere to his style because of efficlency considerations~ For 
example, lt would be very Tnefflclent to copy an argument that ls 
a I ar ge structure occupy Ing many words of sto rag·e~ Just as there 
are syntactlc patterns for recognlzlng bugs ln progra~s, the 
Inverses of these patterns appear to be guldes for secure 
pro g ra,nm I ng. 

The general Idea of patterns of errors se~ s to be a 
powerfu tool that can be used In an ana 1 ys Ts of a system. In a 
very short time we have d1scovered several serlous holes ln the 
security of Multics. The success oft rs error patte~n resulted 
from 1ts simpllcTty. The main obstacle ln discovering other 
patterns Is not so, much the nature of th,e error ut rather the 
suitable £lmple pattern for which to search. For exa pie, one of 
the recurring types of errors reported In RFC's 5, 46 and ~7 and 
T n the Mul t I cs Change Requests is overf ,ow Ing the c.apac i ty of a 
table Because of the f1exibl1Tty of the Pl/I language~ there 
are lilany 1ays to Implement tab es.. I ·t: would be d If f I cu It to co,-,,e 
up with a general pattern that matched all of these ways because 
of the many d.egrees of freedom 1 n t e Pl/ I 1 anguage The 
cone uslon Is obvious: What we need are ore highly structured 
languages which require a programmer to [dentrfy the objects 
being used (for example the language "CLU 11 being developed 1n the 
Comp,u tat I on Structur ,es Group of Project MAC at M 1 T}. In th i s 
way, s mp 1 e pa terns fo :r comp 1 ex e 1rro rs can be deve 1 o,ped. 



Appendix. 

Classlflcation of Entry Points rn hes 

Of the 170-odd entrypolnts rn the hardcore gate hes_, some 50 
have multiply referenced arguments which were found by the 
aud T tr ng and onli ne mon r tor Ing techniques. We may c 1 ass T fy these 
further into five classes: 

l. Those which are probably not security holes. To the best of 
our knowledge, with the way the system Is currently 
structured, these multiple references do not cause any 
p,roblems. Of course, we would feel even safer lf al 1 
arguments were 00p I ed and t e cop I es ref er ,enced. 

2. Multiple references which cause the procedure to be fragile, 
but wh I ch probab Jy do, not ca1use securl ty v Io 1 at 1,ons. By 
fraglle, we are trytng to dramatize the fact that the ulti0le 
references to arguments cause the procedure t ,o be very 
dependent on the current order In hlch tasks are carried o t. 
A teratEons In the procedure are very llke1y to upset this 
del rcate balance. 

3. Multiple references that have not been explored to the depth 
necessary to assign them to one of the other classes 

~. Multiple refe~ences which look as If they produce holes in the 
system, but we can't. think o,f a way to expl ,oi t the hole. 

5. Multiple references which cause holes which we know how to use 
to p,enetrate the system. 

The follow(ng 1 i,st of entr~polnts te11s 11htch a.rgumrents,, If any, 
,are mu 1 t t p 1 y ref erenc.ed The not at Eon 'entrypo r nt ( l, 3 J Means 
that the first and th]rd arguments of entrypo[nt are referenced 
more than once. If any arguments are referenced l"lore than once, 
rema rk.s are ade about w . ch ,of t e above f ve ,c 1. .asses, the 
references belong to. 
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Summary of Results 

A su ,mary of the resul s obtained in our study rs prese ted in 
the fo lowing tab1 ,e 

Humber of entry points exa -1ned in hes. 170 
Number of entry pofnts \odth mu ttple refere ces 51 
Classlflcat[on of multiple references: 

Type 1 Probably O.K. 23 
Type 2 - Fraflle, but Probab y O.K. 8 
Type 3 -- lilon t know., lack of Information 3 
Type 4 - Hole without obvlous explo(tation 8 
Type 5 -- Hole with known exploitatton 9 

Untested entry points 3 

Entry,poi nt -- Anes referenced more than once .,._ Type, Remarks 

ac,cept a 1 m_obj ,( 1, 2) 
ac:l_add 
ac 1 _add 1 C 3, 5) 

ac ·l_del ete 
acl _ 1 i st 
acl replace 
add-acl ... entr I es 
add_d(r_acl_entries 
add_d 1 r .... 1 nacl_en rl es ,( 5) 

add_inacl_ent- es (5)1 

app,end_b ran,ch 
appEmd_bra nch x 
append_ 1 i nk 
appendl 
ass i gn_channe 1 
ass[gn_linkage (1) 

block 
chname 
ch name_f 11 e 
chname-seg 
c:pu_tlme_and_paging_ 
del_drr_tree 
de1entry_ft l e 
de 1 e·ntry-seg 

1 

l 

Pr,obab 1 y O .. K. 

P obably O.K. Arg 3 val(dated 
after 2nd reference, arg S rs 
an array whose e ements are 
referenced once each. 

4 -- Hole~ without obvious 
exploitation Can operate on 
a ny r I ng I n • t 1 a 11 a c: 1 , s I nee 
argument [s validated before 
copying 

4 - See add_d r r _I nacl_entr I es ,. 

1 Probably 0.K. This program 
could run n the user ring. 



delete_acl_entrles 
de 1 et e_,channel 
de ·1 et e_d Ir _ac 11_entr I es 
de] et,e_d Ir .... r nae 1_ent r I es C 5) 
delete_inacl_entrles (5] 
ex ,ac l de 1 ete 
ex:ac -11 st -
el(._.ac:l_replace 
fblock 1(1, 2) 
fs get_brackets (3) 

fs_g ,et_ca l l_name 
f s_get_d T r _name 
f s,_getJnO de 
fs_get_path_name 
f .s_get_ref _naime 
fs_ get_seg_ptr 
f s_mo ve_·f i 1 e 
fsJTIOve_s.eg 
fs_search_get_\'fd Tr ( l) 

fs_search_set_1dlr 
get_al a rm_tl mer 
get_author 
get_bc_au thor 
get~: oount_l I nkage 
get_defname_ 
ge Ld Ir _r f ng_brackets ( :3 ), 

get_ent ry_name 
get_lnftlal_rlng 
get_i ps..JilaS k 
get_ 1 i nk_ta r get 

get_ 1 i nkage ( 2) 
get_ 1 p ( 1,, 2) 
get_max_ llengt h 

( 4 ), 

get_rnaJL 1 ength_s.eg 
get_page_t race 
get_process_usage Cl) 
get_rel_segme!nt 
get_r 1 ng_bra,cket s C 3 )1 

get_safety_sw 
get~safety_sw_seg 
get_s ea rch_ru 1 es 
get_seg_coun t 
get_segment 
get_usage_val es 
ge _ _ us er _ _ ef f mode ( 5) 
high_ l O\PJ_seg_cou:nt 
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i. -- See add_dir inacl_entrles. 
~ See add....:d Ir _I nae ....,1ent r E es~ 

2 
l 

Fragl le·,, 
Probab l1y 
elements 
ea,ch. 

but probably OK. 
O.K. Array w ose 
are referenced once 

1 -- Probably O.K. Referenced twice 
ln copy of pointer using old 
ve~slon 2 parnter copy. 

1 -- Probably OK. Array elements 
referenced once eac. 

1 

1 
1 

I 

1 

-
Probably O.K Return value, 
insenslt ve. 
Pro,ba1bl y 0 K 
Probab 1 y (LK 

robably O.K. 

Probably O.K. Array elements 
referenced once each 

l -- Probably O.K. 



Initiate 
nil ti at ,e ,count 

in T tr at ,e:_search_ru 1 es 

inltlate_seg 
f nit i a t ,e_se·g_coun t 
I oam_ 1 I st ( 1) 

foami_release 
loam status 
lpc_Tnit {6) 

level_get 
I evel_set 
111 nk-force 
11 st_acl ( 3} 

list_dlr 
1ist~dlr_ac1 (3) 

Ii st_dl r-1 nacl ( 3) 

1 i s t_i nae 1 ( 3) 

ma'ke_ptr 
make_se•g 

makeunknown 

(1 ,, 2, 5) 

mas,k_ p,s 
pre_pagELlnfo 
pdnter_attach (2) 

prfnter_order 
prlnter-wrlte_speclal 
printer_detach Cl) 

pr 1 niter _write C 1, 2, 3) 

groc_i nfo 
Quota_get (2) 
quo ta_r,ea d 
quotaunove 
read_events (1, 2) 
rep 11 a ,ce_ac 1 
re-p,lac:e di r _ac. 
repl .ace d • r_ nae 1 ( 6) 

( 7) 1 - Probably o K. Twice referenced 
in copy operation. 

3 --- Don• t know,. h.aven I t 1 ooked at 
re close enough . 

1 -- Probably O.K. Tw ce 
referenced rn copy operat ion. 

2 -- fragile~ but probably O.K. 
User can cause fault, but no 
locks locked. 

2 -- Fragile, but probably O.K. 
See 11' s.t_ac 1 

2 - Fragile, but probably O.K. 
See · 1st_acl. 

2 Fraglle1 but p obably O.K. 

2 

See 1 I st ac 1 • 

Fragile, but p obab1y O.K. Can 
cause strange KST state with 
blank name. 

4 - - Hole without obvlous 
exploitation. Event channe 
saved In user area, then 
refer ,enced 

Not checked. No listing avallab1e. 
Not checked. No 1rstEng available. 
5 -- Kole. Can cause Inconsistent 

attachment states, since 
device index s validated,. 
then used. 

5 Hole. Can write on different 
printer than the one asslgned. 

l Probably O.K. 

1 - Probably O. K. 

4 -- Hole without obvJous 
exploitation. See 



replace_inacl (6) 

r es et_ I ps_rnas k 
reset_worklng_set 
res t_of _da tmk_ 
set_alarm 
set_a1 arm_timer 
s,et_au t oma t I ,c_ r ps_mas k 
s e t_back up_dump_ t I me 
set_backup_ times 
set be: 
set bc:-seg 
se·t_copysw 
s ,et_cpu_t I mer 
set_dates 
set_d Ir _r I ng_brackets C 3 ), 

set_dtd 
set_ ps._mas k 
set_lp 
set...,ma)( ... J ength 
s et_rna1x_ 1 engt h_:seg 
set_p11 l_mach I ne_mode 
set_safety_sw 
set_safety_sw_seg 
set_r l ng_brackets 1( 3) 

set_timer 
sfb 1 ock ( 1) 

star .... 
star_1Jst_ 
status 
status_ (II, S), 

status_long (4, 5) 
status_minf 
status_mlns 
s tatus_seL;act Iv I ty 
stop~process ( l) · 

tdcm_detach 
tdcm_local 1 
tdcm_message, (2) 
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add_d I r I nae l_enitr i es. 
4 - - Hole without obvious 

1 

expl ,oJt:atfon , See 
add_dlr lnacl_entrles. 

Probably O.K. Array elements 
referenced once each. 

1 -- Probab y O.K. See 
set_d Tr r l ng_JJ rackets. 

5 - Hole. Uncopled value used 
when copied value ava(lable! ! 

5 -- Hole. User's argument controls 
whether lock Is locked, and 
then whether lt Is unlocked. 
Can leave lock locked. 

5 -- Hoe~ See status_. 

5 -- Hole. Can stop any process. 
a g used after validation. 

A 11 tdcrn ent r (, es use a segment as 
argument .. I t I s not c 1 e ,a r 
whether changes to this 
se~ment can cause problems. 

4 -- Hole without obv(ous 
exploltat on. Can oosslbly 



tdcm_promote 
tdc11Lreset_s1gnal 
tdc~_set_signal 
tdcm_moun t_b 1 t_get ( l ), 
termlnate_flle 
termlnate_name 
ter,m I na t: e_no name 
term l na te:..,.s.e.g 
t ,o ta l_cpu_t l me_ 
t 1race_ma r ke r 
truncate_f T 1 e 
t run ca te_se·g 
try to unlock lock 
tcy:abort (2) 

tt y_attach ( 2., ~, S )1 

tty_detach (3,. ~) 
tt y_de tac h_new_pr·oc C 3, t4,) 
ttv_event C 2, 3, i.) 

tty_lndex (~, 5) 

tty_order ( 2, 3) 

tty_read ( 3, 5" 6) 

tty_state 
tty_wr rte (3, 4,. 5, 6, 7) 

unmask_lps 
unsnap_serv l ce {1, 2, 3) 

us, age_ va 1 u es. 
vlrtual_cpu_t1me_ 
wakeup ~ (4) 
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cause message inconsistent 
with system's ldea of tape 
name .• 

1 -- Probably O.K. 

3 -- Don't know effect of multlale 
reference~ Not sure whether 
this Is a probl ,em or not. 

2 -- Frag11e, but probably OK. 
Flnally cop[es second argument 
Inside second level ca 1 to 
I oam_~ O ·t: er ar gs O K+ 

1 Probably O.K. 
l Probably O.K. 
2 Fragile, but p~obab y OK~ 

See tty_attach. 
5 ~- Hole Code Is referenced 

twice in dn355Sget_devx. 
Cou 1 d return Information ~'ll'h t ch 
might be sensitive about 
a 1 1 ow,ed de v 1 ce I d I s _ 

3 Don't know whether this 
multiple reference Is a hole 
or n,ot. 

5 -- Hole~ Perhaps hard to 
exr,lolt. 

5 -- Hole. Arg 3 referenced In a 
loop. Can cause the system to 
ap,pea r era shed. 

1 -- Probably 0.K Th[s program 
need not be 1n ring o. 

1 -- Probably O.K. 
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A TwoMlevel Implementation. 
of Pr•ocesses for 

Multics. 

September 8 1976 21:23: 
R. :Frankston 

This is. a description of an impleroenta'tion of Multics Proceises usmg 
mu ltiple level·s of abstraction. The· imp ementaE.ion is being done m 
tonjunction with David Reed and is based on the mocte,I described in his 
Master's Thesis itl.ed Processor Multiplexing in a Lay.ered Operating 
System. 

Thi.s draft contains many im,ptementation details, some of which have: 
been modified in ac .ua11y wdting l'.he code and will be described in a. later 
memo. Some sections. are only super.fitial and are meant as a guide for 
later re·visions and ,extensions. Warnh1g; Since this document is being 
modified as d,esign changes are being mi'.de without a complece rewnre 
there milly be inc.onsistencje.s in the des.criptions. 

If you have commems, suggestions or questiions either see me persona.Hy or 
s:en,d mail to Frank.ston.CompSys.eMIT-Multics or RMFaMIT-MC. 
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Two--level Process Imp1:ementa ion 

Introduction 

The desc.ription of the implemen ation below is ooncerned with relatively narrow is.sues involved m 
actualfy coding a.tg,onthms which implement rile· mode described in David ReecPs thesis. The 
implementation includes some. a.rbit ary de.~isiom necessary for the embodiment of the alg,onthms. 
This. description assumes faimmarit)' w'th the current Multics .sy!tem. David Reed's thesis should be 
consulted for a fuHer discussion of che issues involved. To make the document at least somewha.r 
re.a.dab e for a. wider audtenGe a:s well as to reduce the problem of the proUferaUon of strange 
abbreviations there is il gloi-sary on page '1:2. 

The key difference between the current Multics ·cnplementation and the multi evel one is thait a 
distinction is made berwee:n ~ehedu1ing decisions 1(i.e. traffic control) that involve pol1ky .a:nd those 
[hat don't. For the ones that don't involve policy the decision is re, aiCi vely rr vial -- the next 
processor a.vailable to run wUl be .nm, a rel:utvely cheap oper.ation. n order to achieve this 
simplicicy the primitive leve1, level one, consists of a fb;ed number of virtual proceuors chat are 
considered ar higher levels. to be a ways assigned to a. ,processor- ln fact physical processors are a 
relauve y ,expensive and therefore s.carce resourGe requiring the bas,ement of the implementation [o, 

in fac , multiplex the. vircual processors on physica.L processors on a fin:t come. f nst-served boisis 
within a. predelffmined prior cy astignmenr. 

The advantages of he o level approach to traffic control include: 

i. The system i.s simplified since on~ can view a. Multics prooess as being 
buih upon the i-e~atlvely sirn_ple semantics or a vtrtua · pr,oc:essor as ,opposed 
to the complex semantics of the cur.rent trarflc control ai.nd interrupt. 
strucru r•e-

H. The imp,1ementa. ion of the system prirnitiv,es for process ,ooordjnarions can 
be more efficient rhan the: current ones because of the simphrled 
environment in which they run. 

m. By improving he structuring of ·he S}'stem, che system an become more 
understandable and thereby more reUa.ble. 

iv. Robustness is enhanced by isol:ating Virtual Prooessor multiplexing within 
the PAM. One ca.n assign properties such ais encacha.bUity to indh•.1dua1 
proc,esso,rs. .Since the PAM does all stor.ing and resm.ring of physical 
processor states it can be resp.onsib e, for al Ehe complexity of mamn:iining 
such sra.res. 

v. By handling the fault within the PAM outslde of the virtual processor, the 
VP itself need not be capable of handling pag,e faults thereby simplifying 
the semanEics a.nd remov ng specia1 restrictions which requi·re the wiring 
of the descriptor segment. Fur her more faults due to processor fanures 
ca.n be handled by anocher VP that does not ust the partkular feature. 
For example, rhe can be a proceis [ha.t does not rely on the cache so that 1t 

can diagnose cache failures. 
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vi. By sepa.rating processor multiplexing fr-om scheduUng the implementation 
of he poHcy portions of che scheduler re .simplified by sepa.ra ing: hem 
out a.nd are infrequent enough to remove the need for .he efficiency of 
assembly language programming. 

'The cunem imp ementation ptan consists of three p:a.rt"5: 
I. A basic level one system witho t paging. 
2. Level one with pag"ng. 
9,_ A full Multics system With the second . evel traffic cont:r,olter. 

A presen. a. basic version of level] has been debugged and nm. It js. described on page pa,ge 4!0. 
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The Processor Assignme.nt Ma.nager and primitives 

This basemenit (1eve1 z.ern) program {cor·responding to the GPP ailgodthm in the thesis) 1s referred 
~ as the Processor Ass.igRm1ml Manager (PAMY. The PAM is to be cons,ldered as part of che 
physical processor -- [he-re exists o e logical nscaruie of the PAM per processor. n ilddition to the 
funcdon of multjplexing the physical proc-e.nors, the PAM also s-erve.s to enhance the bask 63/80 
processor by rationa.Uling its operation so as to provide a. better basis for Ehe other levels of 
i1mp lementaUon. 

The PAM is entered whenever an interrupt or fault occurs. The currently ex,ecuting vntual 
processor 1s nb-ound from the physical processor by sa.vmg its st.a.Ee rn its Virtual Processor Table 
Entry (VPTE). As part of saving the stue ,or the process the metering information is updated and ai 

check. ts made to see if the proce:.ss has exceeded Lts fmit for CPU us.age. The nexc step m 
prooessing depends on ,the reason for entering the PAM. 

E1uernal interrupts are [nnsformed into, evems thaiE can be serviced by processes awaiting theu 
oc.c;urance. If an internal imerrupt (fault) can be handled by the VP itself. the fault information is 
s:a 'led in a. communicat1ons area in the VPTE. the VP is marked as beang unable to process 
further faults and its state js mooJfied to execute jt5 fault handler. If the fault cannot be handled 
by the VP. the VP is mark.ed as un.;aft and the v ·nual Processor Coordinator (described below) JS 

expected to do further processing. One fault is handled speciaUy; the mme4 execured Ill a pnvd1ged 
segmenc JS treated as a ca 11 p operation by the PAM and serves to e1nend the capab1hhes of the 
physia1 processor. ca 11 p is described in more d,eta.iJ below. When the PAM has f imshed the 
interrup1t processing, it ptaces the VP into a new state. If nothing that affects the abmty to run the 
VP has occured, it is placed in the runna-ble sta e. 

The state.s, that a VP may beman: 

ru1111ing indicates that the VP state is c.urrently bemg interpretced by a physical 
processor and hat the, verston in the VPTE i,s therefore invalid. 

ru.nnable indicates that the VP may be assigned to a, phym:al process.or as soon as 
there are no lugher priority runnable VPs. A VP enters the runnable sta e when it is 
unbound from a phys.teal processor, but may 0011 inue to, execure. 

v:nsaft indicares tha.c the VP cannot be run withciu rurcher handling by the Vi,rmal 
Prooessor Coordinator. A VP enters the unsafe state if it takes a fault H cannot handle 
or does somethjng the PAM does not ex:pect. Cummtly t:ltis state is not used. in.stead 
the VP is stmplJ placed ,fr: th, stop/ml stalt for examination b-y tlie level two traffic 

con tralle r. 

! For li,Jstorical reasons this module is aJs:o referred to as Ehe Proc;essor Bindjng- Mai.nager (PBM ). 
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st92ped indicates ha.t a VP is no, longer runnable and wnt not be handled ftm:her by 
the VPC. Once a VP enters thi.s state· it is eligible for unbinding by the· revel two 
traffic controller. Furthermo:n~ hat is the only operation that may be performed on it. 

A VP enters this state when i exceeds its resource lim' ; ,or otherwise req,uires higher 
revel pr,ocessing Eo continue. The level tw,o traffic controHer explicitly places a VP in 
this s'ta.te when it w·shes ro unbind it so hat lhe LZTC my modify its state. StoP/J!,d 
VP's aire kept on a queue for actton by the L2TC. 

atuailing_ .i:s a state the VP enters when iC goes blocked waiUng for an eventcoum to be 
advanced. 

fl PC blocked is a special S!tate indicating the VPC is waiting for :s,omethjng lo do. The 
VPC may only be in this. state, ru1ni®le or running. 

Aft1er placing the VP in ts. new state the PAM can do som:e standard processing: including 
processing requests for ,cteartng the cache a.nd po~sibly deleting the CPU on which it is running. 
(Some of this standard p,roce.ss.ing, is done earHer Jn the sequence than indic:ned in this descnp ion 
in order to minimize the time between entering the PAM and performing the function.} 

Once the PAM has finish ed its processing, it t'hen searches he VPT for next TU1l'l'la.blt VP. It 
places the VP ·n the running staite to lndi,cate that no o her processor may examine the YPTE 
state. After checking r.o make sure: th·a.t the VP may indeed run on 'the available CPU, i then 
loads. the VP's state in effect binding i to the processor and running the VP 

The support of the virtual pro e.s-son i5 spilt betw,een the PAM and a. dedicated VP; he Virtual 
Processor Coordinator. This: supporc includes the ha,ndling or faults and interrup :s and mapping: 
hemi imo the appropriue functions.. It also includes the support of the extended operations 

described in the section on VPl and on the CALLP operaitor. The VPC runs in a v,rrua1 
Processor so ,that it may take adva.n age of rhe process environment to s.implify its ·mplement3-tion. 
The details of che VPC operation are given in a la[er sec io of this memo. The VPC is made 
runnable whenever an event occurs rhat requires. .its attention. The VPC is. a ways the highest 
p.rlority process so rh,u it runs as soon as it is made runnable, Eve.nrs requiring rhe VPC include 
the transiUon of a process to the unsr1[~ or JtoJ,Jed states. the oocurarrne of a.n interrupt or the 
transmission of a message to1 the VPC via cal p u descr.ibed below 

Other dedi.caled VP's perform func ions, such as interrupt handling: and page fa.ult handling. A 
key dedicated processor is the po\icy module· for schedurng us.er pr,ocesses. This. process is referred 
co as the evel two t11afftc oontrotter. Becau~~ of the limited number of virtua processors 1the leve1 
two Sc.'.heduter must mutt p1ex these processors.. The details or this operations are not reteven for 
this memo. What is important is how a user (or level ,two} process s bound to a. virtual processor 
nd ate.r unbound. This i similar o the func l·on performed by the PAM and is. done via the 

VPllbind and V1Pllunbind primi ·ves. 
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P'AM Details 

There are a number of details associated with actually accomprshing the functions required of the 
PAM. These are discussed in he relat vely unordered sections below. Dera.iled knowledge of the 
68/80 processor is assumed. This mformation 1s ooma·ned in the CMAP manual, the 6180 
processor manual and the Multics debuggers handbook.. None of them ruuy or accurately 
described. che cuuen 68/80 processor. 

General fJow througl lbe P M. 

i. The PAM is entered vi Ehe interrupt or fa.ult vector. 

ii. The control unit state a.nd processor registers a.re saved. The current value of the real 
ume clock is saved. 

iii. Any requests to clear the cache of an associative memory are honored. Th.is is described 
bel.ow under headlng of connect fa.uh proc,essing. 

iv. Virtual CPU time is computed. If there is a process awajting the realrirne· event count,, it 
is is notified. 

v. Any special processing associated. with the particular fault or interrupt ts done. 

vi. The virtual processor that was executing is placed m a new state. NormaUy n is placed 
into the runnable s~ue unless the fault handJ"ng changes the process' charaictensUcs. rr 
the resource Umi for virtual CPU c·me has been exceeded the process is p~aced in o t.he 
sto~ptd state. 

v.ii. If the CPU is lQ be deleced, it notes that it in fact has been deleted and then goes to 
sleep here. The incerrupc indicating tha.t 1t has ba!n added back continues from th ,s 
pomt after intializmg the proc.essor state. 

viii. The VPT is locked. If chere js a. pending wakeup for the VPC and the VPC is m the 
Y PC_blocked state, it is made runmzblt. 

ix. A virrnal processor that is runnabie and does no have any restriction aga.uut the current 
physical processor is. placed in the running: state. 

x. The tmer register ls set as descnbed below. 

xi. The state of the virtual processor is loaded mco the physical processor and begm~ 
execution. 
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Oszerating ~odes 

Sance the PAM is meant. to ac as an extension of the processor and form the basU for other 
mechanisms ·t operares in absolute mode, so as not to, depend on the correct funotJo,ning of the 
memory management software or hardware. This also removes 1the need to treat the de.scrip,[Or 
segmen speciaUy (s.uch as wiring the zeroth page) since he PAM is even more primitive than the 
le\l'els re·lying on the appending ha.rdware. Whell the PAM does use the appending hardware jn 
implementing the callp operation, it is able to take faults tn the same manner thal any •other 
hardware inscruc:tion mjgh and process.es hem as if they had occured in an arbitrary hardware 
instruction. Since PAM pr1ocesses interrupts by simply noting that t.he event cook place and then 
restoring the processor state it operates. inhibited. -

Interrupt ~nd Fault Handling 

The 68/80 does no have any physical processor registers that can, be used to, dist!nguash between 
phystca.l prooessors when address.ing memory tio stor,e the mac;hine state when an interrup1 is taken. 
Furthermore there ls only ,one address as.sociated with each interrupt handl r. without r,egard co the 
processor on 1111hich the interrupt is taken. Because in errupts are handleci by processes. the 
prooessor need no be ma.sked. f,or ·ncerrupts at any time it is assjgned a virtual priocessor. 
Therefore there is, no need for complex masking s ra~egies - the proces.sor can run with an 
interrupts unmasked at all irnes with the PAM using the inhibit bit ro prevent in ,e:rrupts. 

Since any interrupt can be caken on any prooessor it is: necessary to b a.bl,e to save• 1the machine 
state without regard co [he processor it is taken on until suffici.ently far into the· PAM to, enable the 
pr,ogram to de ermine which processor it is on and where the associated VP E is for deassigning 
ch,e vinual processor. The algort hm used was. inspired by Andre Bensaus:san's work and w,orked 
out i,n conjunecion. wi h B,ab Mabee (of course Dave R.ted contributed. but then his contrjbutions 
are assumed throughout}. Ther,e eidst two tables with ,enough capacity to .store SCU data. for e-ach 
process.or that may be· configured. There is a pointer with a de1ta modifier equa1 ,o the length of 
an SCU entry. The inrerrupr vector is niUaliZied co :store rhe SCU data using an AD modifier. 
Thus when the in-ienupt occurs an address is obtained ro store the curreflt data and the po·ncer is 
updated in sto:ra.ge in an atomi,c operation .so hat if any orher processor takes a. fault ic will not 
interfere. Control is tben transferred ~o a common disambiguating routine tha.t operates under a 
lock The ·10ck it:s,elr is grabbed using the sznc inst:ructjon which does not require the use of 
r,eglsters. The res of the regiscers are then sco:red, he processor Jd i.:s determined a.nd chus the ,per 
processor smrage address to which the registers are tran,sfered. The pointer to the SCU tab1e Is 
then res,et to point to1 the beginning of the other table Md the first table is scanned from its 
beginning uslng he AD modify. Each en ry is checked to see Jf s belongs to the •currentl;y runnmg 
physical processor. If it doe!>. then Ehe data is simp y copted auE into per processor storage. If ·c 
does not, · he data is chen copied in~o, the new table. agam using an AD modifier to grab and 
reserve a slot. When this prnc:essing is don.e, he lock is relea..sed (via an s ·tc l) and the next 
processor looping on the· lock can repeat the operation with SCU tab es switched. 

Fault processing is s·milu to interrupt p,rocesslng except tha.t we ,can have a separate fault vector 
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for ea.ch processor to, save the need for having to determine dynamically the identity of the 
processor on which the ha.ndl,er is running. The processing for both raults and interrupts. is th,e 
same onae we have copied the machine cond.Uons into per processor storage. 

Faults while in the PAM. 

When the PAM u processing a ca lp request or a page fault, a further raut may be :aken. In 
order to handle these a separate fault handler is used that assumes the fault. is expected and that 
the PAM is in a "good" slate. The handler does nol sa.ve any registers and assumes that control 
reg:mers (pointers o the V PT entry and the perproce$sor information) are Jntact. The detaded 
hand Ung depends on the PAM state. If a ca 11 p operation .is being performed then rhe machine 
conditions are ~t to indicate that che fault occured while proces,fng the caHp operation itself and 
the fault is pro~~ed as if it had oa:ured at the beginning of he operation. For page faults a: 
message js sent to the page fault process for the fault (which muse. be on the descripmr segmem) 
and the machine conditlom are set to continue with the appending cycle when the descriptor 
segment becomBs ava' la.ble. 

The descriptor segment. 

It should be noted that by operating in absolute mode. the PAM avoids dependence, upon the 
desCTipror segment. Current Multics takes adnntage of appending mode by usrng the fillet that 
the descriptor segment can be, used to addre.ss different memory in the PROS for each processor. 
The. elaborate scheme de.scribed above is comp\ica.ted by not having thb mechaniSm available but 
as a consequence removes the requirement that descriptor segments be different on each process.or 
and aUows processes to share de:scrlptor segments. This can be, of great importance in permm,ng 
many s.mall process wJth a single de·eriptor segment. The idle process is a. simple example of a 
process sha.rjng a single descriptor segment 

Details, of callp imp1ementaition. 

The cal lp is supposed to 1oolc Uke a normal machine in.muc ion that may take fau1ts. It is firn 
validated to make sure rha.t the jns ruction was executed 1n a pr ·vmged segment (maybe just the VP 
program's segment?). If not, it is treaced as a standard (mme4) fault and reflected back. to the 
virtual processor. If he uutruction is acceptable, the p•am sta.te is sec to indicate hat he cal lp is 
being processed and a copy of the ma.chine condiuons is saved. The opera.ti.on number In che. A­
register is then examined. r Lt is invaHd the irruai processor is made urna._ft and the VPC is 
notified (this should never occur). 

The specific processing is done according to the request. TypkaUy it wou d involve copying the 
data. pointed to by poiriter register o into VPTI or copy ng Che data from the VPTE. The 
detailed operation of each ca 11 p is described in the section on the cal 1 p operator. 

When the processing is done, the PAM c011cinues by placing the virtual processor Jnto the runnable 
state and reset ing the ca.lip-in-progress flag. The PAM then continue5 as for any other fault. 
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If a fault occurs while the ca 11 p is being pmces:sed, the h. I oonditio11s are reset co those at the 
beginning of the ca 11 p instruction wuh the exception of he data address being referenced which 
is taken from the new SCU data associated with the raul . When (and if) the ca 1 p is restarted 
after che fault, ic ill begjn from the beginning of the inst uction. This al ows rhe fault handhng 
program m use the ,ca l :P operation itself and n,ot have restricti.ons on using the communicanons, 
area in the VPTE. 

Page f3ult processing. 

The SCU data. is examined to deEerrnine he ype of fault A message ~s sent to he page fau It 
process consi,st ng of the ASTE ernry pointer, a unique, segment 1d (in case the AST entry ts 
deactiv,ued), the de--Scriptor segment AST emry pointer, he page number and a ,eveintcoun er 
a.ssoet.Hed with the fauit The process is then left awaiting this event, ready to continue address 
evaloa ion. 

Prooe.s.sing the connect f auJt 

The pr,ocessing of the connect fa.uh .is very simpl'e - ic i.s. igno!f'\erl. Its purpose ,· s to force a 
processor tio enter the PAM. :r achieves irs effects nee whene,ier the PAM is entered at p-erforrns 
standard housekeeping functlons. In particular ai connec · fa.ul ls ssued after a mes.sage JS left 
when dearing th , cache or when adding/del.eting .a prooessor. 

Clearing the Cache 

The table of pending clears has one en ry per processor. When the PAM wants. to clear the cache 
in other processors, ic places in ea.ch table en ry the appropriate ·nstrunion. l does this via a stacq 
instruc ion to make sure that it is replacing a nop. If it does find an instru.c ion other than a nop. 
it as.sumes ·that another processor has lef a instruction anid loops attempting ~o ex:ecu~e t·he 
instrucuo- in i s ntry and leaving an i11struc ion, for the othe·r pro,essor. _[ makes sure the other 
processor enrers the PAM by issuing a connect to the other prooessor. 

Process addi ion and deletion. . 

When a processor ts a.did ed, af er some initia lizat. on, it enters the ood.e to scan the· V PT and f md 
work co do. When a processor •s being deleted .. it checks for he reques immediately p:riori to 
s.cannmg the VP for more· work o do and djsable-s itself. 1n either case an eventcount as 
incremented and the VPC is notified of the change. 
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Makin~the VPC ru.nnable and prooessing the VPT 

Whene,ver there is an event that. requires the VPC's a.uention, a wakeup-wailing flag associated 
with the VPC ls set using the stcl Instruction. The lasE part o,f the PAM locks he VPT. The 
wakeup wa ing switch is cleared with an sznc instruction. If I was set, then the VPC is .p~aced in 
che rtunzabte stare from the V PCJlocked srate, us"ng the sznc instruction. 

The VPT is lhen scanned for the firn (and therefore highest priority) process that is in the 
rznnable state. One wm alw ys be fou d since ther,e Js alwaya a lowest priorjty idle process 
a;vailable. When the entry Is found. it is placed in the running state. A check is made to see 1f the 
process has re.striaion against he airre11t processor and if so, ma.kes it a.gain rnmiablt and 
conUnues the scai.n. Otherwi~ the YPT is untock.ed and the virtual processor is run. 

Running tb 1e VP 

This is the finaJ part of proceuing thal is done arter a VP has been found m the VPTE and has 
been placed into the running .na[e. The appropriate pointers a.re set in the per priocessor mbles for 
storing fa.ult dara and referenc ng the VPTE, the clock time is saved for ,oomputing virtual CPU 
time and the registers are loaded. f the VP 1:s: being run on a different processor chan it had last 
time. the cache for the curren processor is cleared. Final proce.ssing is done with separate code per 
processor so that the appropr'aite SCU data may be tiestored. The VP is chen off and running-

p roceu Sig na Is {IP S) 

The process signalling rnechan,i.sm corresponds to Ehe current IPS mechanism. It i5 implemented by 
setting a flag in the VPTE oo indiolle that a.n interrupt is pending. When the Virtuatl processor is 
hJ be run a check is made to see if the nag is. se.c and faul :s are permitted. If so a faul 15 

simulated. If raulrn are not .perm-ueci, the acUon is defer1ed 1i.1ntU the nag is reset lo indicate that 
it is safe for the virtual proce'.ssor t:o take faults again , 1 he details of using this sign a 1 ue 
discussed in the section on notification. 

The interrupt pending: flag is set by the LZTC. If a running process is m be imerrup[ed, it h first 
stopped, the flag is set and then i s rebound [o a VP. The choice of this method 1s motiva~ed by 
a desire to rnimmize pr mitives a nilai.ble for accessing the VPTE. A tradeoff can be made 
between number of such primitives and the frequency wjt which the l'2TC must unband a VP m 
order Eo access parts of its description. 
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Special macb ·n~ state infor111u .ion 

This section. explains ho,w hiscory regiS-ers, fault registers, ala.rm regls~er are managed. 1n addition 
there i.s sor ware s.tue information such as the VP state which is discussed e'ls.ewhere. This wm nor 
be addressed a, the moment since U is more a matter of retaining current Mu tics details without 
reqoiring a major changes for the PAM. Note, however, bat since the PAM is aware of the V Ps 
it is fea.sib .e, possib y, to c;;ontrol history reg.ister handling on a. per-VP basis, ,(and therefore on a. 
per prooess basis. 

Virtual CPU lime measurement and Umits 

Associated with each prooessor running a VP ls the dock lime a which :the currendy running 
virtual processor started running (the, PAM was las exited). When the PAM is entered the starting 
time ·.s subtracted from the dock time a which. the vb'tua. , processor stopped (the PAM was 
en~ered) to de[ermine ho,w long the VP has been executing. This. value is dded to the value 
accumulating the in he VPTE. A check is hen made against he VCPU Umit fo,r the VP. If t-he 
Umit has been exceeded, the process is sropped for dea.ssign.ment by the level two ra.ffic controUer. 

As a. refinement to this scheme is an estimate ,of the overhead tnv,olved in nvoking the PAM 
before the clock is read on entry and afler the is read ,on exit This can be subtracted from the 
VCPU in an attempt to isolate the charge for a processor from hu or running the PAM. 

T)ne.r reg,ster s,etting and usage, by PAM 

The timer registe- is used ro make sure that t e PAM gets invoked periodica ly so as to en1force 
q

1
ua um 'length restrictions 01e. Vilitua] ,time quota) and to r:na.ke sure the VPC gets invoked so, 
hat t can advance the real time eventeount. For simpUcicy the PAM is run at leas every 50(?), 

mm secionds. The a1temaUve wou, d be ro cakulate the minimum of the Virtual time Umit for the 
pf\ocess belng bound nd the time che VPC is to be run. This would be mon'! complicated and the 
additional resolution is no necessary. 

Other processes 

Proper ,operation of he· PAM depends on two kinds of VP's. The fir.st is the Vir u:a:I Process1;1r 
Coordinator t'hat ·s described n grea,c deraU below. It i.s always the highest priority virtual 
processor and is made runnable whenev,er there is something requiring its attention and theref'ore 
run immedia ely. Second are the lowest. priority pr-oc~sors - the idle procesrors. There is one idle 
processor for each phys cal processor. S.ince the jdle VP is low.es priority it is run only if there is 
not.hing: else for the· physical processor ro do. The idle processors a.re quite cheap since they can 
sha.re a descriptor segment or nm in absolut!e mode without a descriptor segment Other than that 
no special consideration need be gIYen ~ rhe .idle process. 
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The callp operator 

As noted above the cai 11,p instruction is used to 1exrend the operation of the virtual processor. Jt ss 
implemented within the PAM. Ir ta.k,es an operation number in the A-register a.nd .a. data 
pointer. if any, in pointer reg ster zero. Llke any other norma ·nscruction it may take fau1u. 
When the fault occurs the machEne cond tions, are se to restart the· execution of the instruction 
from th.e beginning so tha. th;ere is no need o save partia\ state informa.Uon associated with 
copying information into the· VPTE buffers. 

The oper,arions a.re: 

I: AWAIT rakes a 11st of evemcount names and values (as described be1ow under VPllaw,ait 
a._nd plaoes the process, in the awawng state unti one or the named events is notified. 
It is pos.sible for one of the awaited events to be advanced white the process is being 
placed in the awaiting stare. h: is therefore necessary to make .sure that the none of the 
eventcounts has passed fhe a.waited va.lue after the process is in the awaiting sta.te. 
Since the process is no longer oonstdered running 1t is necessary that no faults occur. 
In order to prevent faults the absa. is used to gee the address in primary memory of' lthe 
counter value for each eventcount A fault can occur during [his opera.tion in which 
case the normal page fault prooe~ing is done and che await is restarted from the 
beginning. Th s pointer can then be used OOi reference rhe value while the process is 
awatu:ng. We are ass.ured c'hat no fau1c wHI Ot"--cur since primary memory addresses are 
being used for the reference and the virtua. memory support is not invoked. We are 
as.sured that the address is vaUd since any o her proc.essor that is updadng the page 
tables. cannot assume all references to the pag-e frame are; completed until it receives an 
acknowledgement form the other processors. The process.or performing the await wm 
not g1ve this ack.nowledg~ment until it finishes processing the await reques.t. 

The real time clock is. a special eventcount in that the minimum value of au such 
events, must be srored so that the timer can be :s.et to notify the even at the specified 
real t•me. 

2: WAKE VPC is used when a. change lS made to a VPT entry hat requires VPC a.nention. For 
example, when a message is queued for the VPC. 

9: STOP' 1s used to forcefuUy stop a spectfted proceScs. If a pm~s.s ts in an atomic operation, bm 
i!: to be stopped. a flag is set to indjcate hat it js to e stopped when the atomic 
operatjon count reaches zero. 

4: BEGIN ATOMIC OPERAIIO is used when a.. proce.s.s is executing a critical section of code. It 
increments a.n atom c: operation counter in the VPTE. 
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5: END ATOMIC O,?ERA ION decrement the a.tomic operation count,er. lf the' count :reaches. zero 
and as .op ·s pending, the process is plaoed jn the stopped state. 

6: GET FAULT DATA copies faulit data out of 1che prooess' state nto pageable storage. Nore that 
page faults. are permit ed dudng this operation since they are handled by another 
prooeu. Segment raulcs are no permuted because hey are handled by .he faulling 
process and will require he use of the fau t data u,ea. Nole ha the atornk opera ion 
counter was. incrieme.nred at the (me of che fau t and che process was marked as not 
being safe to take faults.. The sa.fe_to_takeJaultJlag is. reset by this operation. The 
atomk operation coun must be decremented by restor ng the p,roce.ss.or state ,or 
explicit!~ endjng Ehe atomic operatic . 

7: RESTORE PR!OCESS.OR STATE restores rhe ima:chine oonditions as spedfied and decrements the 
atomic operation counter. r his n erfacei is no used the end atomic operation 
interface mu:s.t be used co decrement the counter. 

8: ADD CPU sends an AOO CPU message to the VPC. 

9: DELETE CPU sends a DELETE CPU message to the YPC. 

10, CLEAR. CACHE used when an object: loses encachability. Its parameters consist .of a 
uboperation number and the page id for suboperation cache clearing by page. The 

sub 1;1pera ions a re: 

1. Cle-.u- PTW cache vi:a a ca.mp. 

2. C ear SDW cache and PTW cache via ca111s and C•arnp. 

S. Clear PTW cache and memory cache by page~ camp 4. + page id. 

4. Clear memory cache, SDW cac.he and PTW cache wath c,aims 4 and camp. 

These are used by 0,3} page control, (2) segment control and (i) access con.trot They 
apply co aH processors. The actua:i method b·y which the· processors execute the 
tns ructions is ex,plained ln the secuon on PAM detaUs.. 

ll; VPC BLOCK is used by 1chfi!• VPC so "5 ~o cause checldng of the VPC s wakeup wait ng 
switch. It takes as a. parameter the next real -ime before which the VPC is to be run. 
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The VP1 interface 

'fhe VPI program provides a. PL[I compatable interface to the ca11p 1nstructjon, the VPC and the 
VPT. It hrnirs the operations the can be performed; no other 'nterface exists.. The use of the 
common segnunt name of VP l is primarily for convenience; the entrjes are essentiany indepen,denr. 

A bask service pro\lided by rhe VPI routine is the management of assignment of level rwo 
process.es (those managed by che level two traffic cont·roller) co vjrtual processors. There are a 
number of .semantic models Ehat can be assocl.ated with this operation. The primary one ls thac of 
binding and unbJnding. An alternative yj,ew is that one loads and unloads a processor state to a.nd 
from a vir ua.1 process.or much as ,one loads and unloads a process che current Multics 
implemencation. A better understand. of what is actually happening can be achieved by rea Hzing 
that the bind operation is really taking a. process,1;1r state desi;r ption maH11tained by the level 1wo 
TC which has no e:,:lmmc.e other than as an entry in a data.base and is creating a level •one 
processor wHh an Jnitial scace for execution. The unload operation demoys rhis proces.5or and 
returns a descnpticn of u:s final state. K~y co the understanding is that the PAM does not enforce 
any oonhnmty between the process descrjption returned by an u.nbind operarjen and hat provided 
to a bind operach:m. While che description is being maintained by rhe level two rraffic comroUer, 
the L2TC b permmed to perform arbiuary upera.Uons on its description including h.brkatting new 
de.s.criphon:s and discard ng old ones. 

VP l communitarei; with the VPC Vii. a communications ,queue. The queue is managed without the 
use of exp1icit locks. The stacq instruction ,s us-ed to perform interlocking. 

The information ma.inta.ined in 1he VPTE coosim. of two parts - that which ls communicated via 
the VP l jnterface and that which JS imemal ~o VP support. For convenience the pornan that is 
passed through the Jnterface is kept in the same forma.t by the level two traffic controller as in the 
VPTE, but this Ls not nece.s:s.ary. 
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The Process_Description por ion of the desc;ription is used to store information that mairuarns 
the identity of a Muhics. process as een by the user. 

declare: 1 Process_Oescription based a.l igned, '* 16 words aligned! *' 
2 process_1d bit(36), 
2 l ock_id bit(J6}. 
2 excluded_processors ,aligne,cl, 

3 excluded_proces.sor(O ~3) bit( l) unal gned, 
3 padd ng bit(32) unal gned, 

2 BAR bit(36), '* for 6080 e 11,lation *' 
2 IDS BR bi t ( 7 2 )1 , '* 'Des,cr ip tQ r S,eg:me n t Base IR: e s•I 
2 ring_ala m_word bit(36), 
Z PD_ lags aligned, 

3 safe_to_ta,ke fau ts blt( ) unaligned, '* Fa.ult dat can be copied? *' 
3 pen di ng_process_ 1 n terrupt bit (l) una 1 gned. 

2 es,ource_meteri g. /* Metering and 1 imits *' 
3 vi rtua 1 _t ime_u.sed fixed bi n.ary( 71) J 

3 virtua _tirru:!_Hmit fixed bi ary(71 ), 
3 1memory _usage_meter_reference i Ike meter _reference~ 

Z proces.sor_state, 
3 achine conditiQns like mci 
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Th.e VP'_Description contains information that is only avaHable to the VP supporic and is no 
passed through rhe VP interface. 

declare l VP_Description based aligned, 
2 next_VPTE l 'ke VPT_pt,r a , 1 g ed, 
,? VP_id bit(36), I* ldent fication of this VP *' 
2 VP _state fi.xed bi,n, I• ruinnable when bound *' 
2 VP _prfority fixed bililary, 
2 last_processor fl.xed b1n(2). '* F,or cache rnaintainance·" *' 
,2 atomic operation_com1t fixed btn( 35). I• Iflitia11y z.ero *' 
Z pad16(10) bit(36) alignedj 
2 f au 1 t_con.d1 t ioins 1 i e proces,sor _state, '* Communication with ha.ndler *' 

l• For :s 'mpl city I am. put ti ,g the awaited ev,ents 
in the VPTE. Event ally they wi 11 be man~ged 

separately by the VPC. *' 
2 e:veJltcounts. 

3 n mber_even ts f · xed bi n,ary. 
3 event_names(4) like global_eventna e al"igned, '* 4 = ax_nu111ber_of_ll_events 

2 VPD_flags a1igned, 
3 pending_stop b1t(l) unaligned~ 
3 padding bit(35) una 1gned, 

2 pad8b(6} bit(36) a igned; 

•I 

declare I VPT_ptr based aligned, 
2 abs_ptr bit(18) unaligned, 
2 rel_ptr bit(18) una igned: 

'* P,o1nter entry for VPT */ '* For use in absolute mode •I '* For 11se in appending mode *' 
The VPTE 1tseff contains, both pa.res: 

declare 1 VPTE based, 
2 VP_info like VP_Description, 
2 Process_ i1nfo like Process_Oescription · 
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Th 1e awa1ting_events ... table ls used in he interface betw,een Vllawait and callp/awa1t. 

declare awaiting_events_tab1e based, 
2 number_events fixed bioary, 
2 ev,ents(mi:IX.Jli·11mber _of_1 l _eve11ts) 1, 

J, lgc:a _name pointer. '* Only va id n owner.,s address 
space •I 

3 globail_name 11ke· g1oba.l_eveotname. 
3 value fixed binary(35); '* Va ue process is await.ing *' 

declare l global_eventname based aligned. 

VP1Sb1nd 

Z seg ent_u ' q e~id b1t{3,6) una1iy1ned, 
2 word_offset bit(l8) unaligned, 
2 pad bit(l8) unaligned; 

dee 1 are VP lib ind entry ,(bi t(36), 1 1 ike Process_Descr 'ption ~ fixed 
binary( 35 J); 

cal 1 VP lib ind (VP _id. p ocess_desciiption,, code); 

The sernamlcs ,of the bind operafon has been discussed above. The caller of VP19bind 
shoutd set che approprm.te f a.g in the ASTE to k~p he descripcor segment of the specified 
process active. I nitialh:es the values in VP _info as pare of the transformation hom the 
representation maintained by the L2TC and hat ill the YPTE. The pfioc.ess_state ·s stoptml, 
the las processor is "~1" (i.e. none), and he atomic opera on count is zeroed. It hen uses the 
callp/lo,ad operation to toad it in[o a free YPTE. The opera·t"on will faU if there are no 
VPTE slo s avai able. 1.t would be expected, however, that che se~ond level TC wm not ,caH 
the primitive un e.u it know!. hat there is one available. 

VPJlunbi d 

dee are VPllunbind entry ( b,1t(35). 1 i e Protess-Oescription, fixed 
b ' ,nary( 35)). 

ca 1 VPllunb ind (VP_ id, process,_descri pt ion. code); 

The seman ·cs of unbinding has been discussed above. h issues a. cal lp/ nload operation 
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to reque.st the contents of an stopped VPTE be re:cumed. Wh.en this operation has been 
done the VPT£ ws available, for a subsequent bind opera ion. It is e pected tha VPil!:unbind 
woutd be used repeatedly m unbind all stopped VLrtua1 processon so that the associated 
process descriptions would be a.vaUa.ble to the level rwo traffic controller. Nme thac an 
eventcount is inc:remerued any lime a. process is stopped so that by awaiting that event count 
the L2TC can immedia[ely perfW"m the unbind operation. 

VPllstop 

declare UPISstop ~ntry (bit(36), fixed binary(35)); 

cal 1 VPlSstop (VP'_ 1d. code); 

The srop enn-y ms uted to force a. process associated ich a VP to stop, executing. The deta tis 
a discussed in the description of the cailp/stop operation. The VPISstop operati0,n is med 
whenever the Jevet two traffic controller needs. till ma.nipulate the process' diestription. For 
example, to destroy a proc:eS-s, che L2TC would note rhat H wants a particular process 
destroyed. If i a:kea.dy has full control over the des,ripUon, i.e. the process u not bound to a 
VP, l can perform the operation immediately. Otherwise it would issue a VPllstop for he 
pr,ocess. As soon ai.s rhe process is sr-opped, rhe ·stop process" eventcounc would be 
incr,emented. VPllnext_stopped would locate the VP, and VPlluobind would copy out the, 
pr,oce.ss descnpuon. For eac'h process description returned by the VPllunbind operation the 
L2TC would check the notes associated wJth the jt and perform any nece-5Sary operauons;. m 
this, case the proceS!i would gee des royed. 

VPllnext stopped 

declare Vflllnext_stop:ped entry (b t(36L fixed binary(35)); 

cell VPllnext stopped (VP_id,code); 

This entry fs used by the L2TC to get the id of the 11ex avaUa,b?e stopped VP. It is 
invoked in response to an advance on he stopped evem:count 

VPllrun 

dee are IJPllrun ,entry (b1t(36), fixe binary(3.5,)); 

call VPI ~un (VP i , code): 
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This places a makes a stopped VP runnable. It is n,o:rmaHy u~ after the VP Jbind 
operation. 

VPlSawait 

declare VPllawait entry (l (*), 2. p1ointer. 2 f ·xed binary(35L fixed 
binary, fixed binary); 

ca 11 VP lSawa t ( events.. number _events. advanced),: 

The p:uamerers consists of a. table of event names (pointers) and valu,es to be a waited. The 
number parameter specir:es the number (up untU the maximum value) .of ,events that are to 
be awaited. The index of the event which caused i::he return from awa 'ting is given as 
"advanced~. 

The table of event_councs is completed by fHling he evei:n name· a:s derived by the VP 
interface f['iom the segment Jd and che word address and passed co the cal lp,/awa ·· t 
operation. ,ote thar there is a maiumum fior Ehe number of entries in this table. The user 
level interface to VPlhwait must permit an arbitrary number of event nam~s to be 
specffied whUe only passing a imited number of event name£ to VPltawait. The detains of 
chis a re described in the section on notification. 

VPlladvance 

declare VP1lladvance· entry ( 1 Hk.e await 111.g-'events); 

call VPlSaiclviu-1ce (ev,ent_:table); 

As with VP'llawa • t, the n ,em_name is filled in. The await_value ·s, an this case abo filled 
iri after incrementing the associated ooun er with the new value. The ta.bWe 1s hen passed m 
ca 11 p/not ity 

'VPlSadd cpu 

declare VPil<1,dd cpu en ry (fixed bi,nary,. fixed binary(3S)): 

cal VP Sadd _cpu ( cpu_- umber. code). 

This emry interfaces to ca llp/add_cp111. 
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VPllde ete cpu 

declare VPlldelete_cpu ,entry (fixed biftary. fixed bhary(35) ); 

ca 1 VP llde 1 ete_cpu ( cpu...nu111ber. code); 

Thi.sentry interfaces to callp/delete_cpu:. 

VPllcrash system 

declare V?'llcraslil_syste:m entry (): 

ca 1 VPllcrash_systam (); 

Deletes a.11 physical processors f'rom Ehe system, and forces cme of the processors to ex:e,ute a 
sp,eciJ 1 deb ugg.ing p:r,ogra m. 

VP lclear 

dee 1 are VPllcl e,;1r eililtry ( fixed binary. ,bi t{lB}. fixed bi nary( 35 H; 

cal 1 VPllclear (suboperation, page_id, code); 

in~erfaa:s to ca 11 p/cl ear _cache to clear cache the specified associative memory. 

VPlSbegin atomic operat on 

declare VPllbe~un atomic operation entry(); - -
call VPllbegin_atoroic_operation: 

Interface to cal lp/begin~atorn'ic_operation. 

VPlSend atomic operation 
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declare VPlSend_atomic_operation entry(): 

C!t 11 VPllend_ato ic_opera t 1 on · 

Interface to ca p/end_atomic_J>p,eration. 

~Pllget~ fa 

declare VPllget_fault_dat.a entry ,( like faulit conditions): 

cal I VPllget-faiult_data (fault_cond~tions); 

Interface to cal lp/get_fault_data. 

VPllrestore proc~ssor state 

decla,re VPllrestore_processor _state entry (1 like processo _state): 

ca 11 VP I Ires tore_processor - state ( p oe,essor _state) i 

nrerface to cal p/1restore;.,J>rocessor _state. 
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VPC Operation 

As nored above, the V PC is run when,ever an event oc.cun tha needs it auen son. For example, a 
proce:Ss leaving the runnable (o,r running) stale an interrupt event occunng er a mes.sage bemg 
sent from a process:. In later implementa ion so.me of the'-Se oc.curances might bypass. the coordinator. 
but for no,w lt is assumed that all complicated low le"el operations involv.e the ooordina.tior. 

The basic operation of the VPC consists of three loop~: 

l. Scanning for processes, by state, i,e. unsar e and exceeded Hmits. 
2. Scanning for advanced imerrupt cells. This means that there is a.n implicic. rather than an 

ex.plic.it advance done on the c--ells by the PAM. 
3. Processing of exp icit messages to the coordinator. 

Note that each oop is. entered only if an associated flag has been set ro, indicate that chere may be 
work. of che specified type to be performed. When he· processing is d·one the VPC unbinds a set 
of physical processors so, tha.c they may adjust ro the new nate of the world. It is oniy necessary to 
unbind chos.e· processors that are runn ing the "n~ lowest priority ,processes where ",t i.s 1the number 
of process.es that have been made runnable by the VPC . 

.In more detail, he proc;esslng- oonsis s of: 

I. This loop scans the V irtuaJ Processor Table (VPT) examining Che· .state of ,each process that is 
found. Each sropped VP is, removed from the chain of runnab1e processors and a.n 
eventcount is a.dvanc,ed to notify the l,evel two traffic: ccmtro11er. Note that kernel processes 
should never ll e stopped. If an unsa[t process is found. a. debugging process s.h ou ld be 
notified or the system crashed. 111? 

2. Next the interrupt and fault counters are scanned for any Chae have been incremented by 
comparing agl:l ins.t an earlier set star d in the VPC and che appropria e waiting process.es are 
notified. (F,or the interim implementation with a single. "in~errupt side• processor there is a.111 

additional event counter to ind tea e rha any .interrupt has occured). As a special ease of 
mterrupt handling, the syst.em clock can be intero-gated and compared with che value for the 
nex timer even of interest. 

S.. Scan for messages, frnm other prioces~es. 

. RUN. P1a~s the specined VP into the runnable state and chains it .into the queue of 
runnable VP's. 

i t NOTIFY notifies processors tha:t are AWAITing chat counter. 
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iU. DELETE CPU. L.eave a no e for · he s,pecified p,roceuor to deconfigure itself and then 
unbind from any v·nua.1 p.rocessor it may be runn ng it v ai. a connect. 

iv. DD CP,U. leave a messag,e e l'ing a CPU to come to ff,e and s,end a oonnect co u, 
forcing 11, co inHializ;e itself. 

A final note on ock.ing. NormaHy the VPC looks, at the VPT withou setting a lock because n u 
1the onl,y process that may change che VPT. When lt doe.$ cha.ng-•e the VPC it loop, locks to, prevent 
conflicts with che PAM thatt may be s.earching th.e chain. The VPC i'tse1f is ruri whenever iu, 
wakeup-waiting switch is set by the PAM ind.icating that there may be work. for it EO do. Thi flag 
js :reset whenever the VPC is. placed in ,che rn11nable. Any ev,ents. of int resr that occur after thi5. 
time wi I set the VPC wakeup-waiting sw· ch in case i h m•t done all of i'ES processing in ats 
previous incarnation. Thus for example, ff no paging communication buffer is available when the 
VPC looks and one becomes available while the VPC is running, no race cond·uon arises because 
the YPCJt.m flag w'll be .set anyway so tha.r the VPC wiH be run again lo make use· of the buffer 
immed ·ately after it unbinds ro waiL 

A1so some efficiency c-0nsiderations. As pointed out above i, is :pass ble to bypass some of the· 
mechanism described abo,ve shou cl the running of he VPC be cons,idered too expensive. The 
VPC need not be ,expensive. lls operations are simple and n av,oids the major expensjve o:pe·ration 
in PL/I. the ruH subroutine call. The only ca] it needs make js to an ALM procedure tha.t is U.'ied 
for basic utmty operati.ons. This caH only nvolves minimal housekeeping making it mor,e efficient 
han a f ul, Pl/I call. 
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Modificat10,ns to page oon.trol 

Unlike {he current Multjcs, page fault is nor handled by the process taking the fau t. This 
approach greatly simplifies he const:ruc ion ,of a process because it removes the need to handle 
·awkward· :situation such a.s a page fault occuring when the fault handler ts copying fault data. out 
of the VPTE. It also makes t possible to take a page fault on any page of the user"s descriptor 
segment removing the necessilY for wiring any pages of a. process since he othe·r requirement ror 
wired pages - external interru,p handlirig, is also removed by having interrupts handled by 
ded ·cared processes. 

The pa.ge fault prnces.sing itself 1.s simplified since lhe use of a process dedicated to this functions 
greatly reduces the locking problems as:sociat.ed with page fau\t handlmg. The modificauons t.o 
pag,e fault handling are minima.I since page fa.ult alr1tady .runs in an environment that has httle to 
do· with its host process and is thus easUy decoupled. Some oonsideraiUon has been given to usjng 
th modified version of page con rol designed by Andy Huber and refined by Bob Mabee. 

The PAM gene.rates a message to the p.aige fault' process by extracting the releven d,ua from the 
SCU data. Faults on page zero of the descrip or segment are permi teci. The messages is placed m 
a ring buffer. The format on an entry is: 

de·c are l page_requ,est based, 

2 pointer fixed b1nary. '* In AMT or WMT *' 
2 segment. 

3 astep pointer, '* ASTE Entry 'If.I 
3 uid bit(36) aligned, '* To make sure still same .*' 

2 event,c,01.mt_index fixed binary: I• To notify process •I 

The meter poimer is dbcussed in more detaU beiow in the discussion of the Ac ve Metering Table. 
When he fiequest as queue ·che AMTE wire count is incremented. Miter he meter is increm nted to 
charge fo,r the processing, the wire count ls decremented to relea~e the meter. The evem counl h 
derived from the segment unique~id and the page number wi hin the segment. This value is 
hashed into a wired table of pa.ge events. le is the index of chis entry that 1s placed jn rhe page 
request. The use of a preallocaCJed table remo,ves the problem of aUocatmg wired storage. We can 
use a small table without hmuing he number of outstanding page fallUs by not requiring har che 
assignments o,f eventcounts to pa.glng operations be un.ique. There is no requirement that the ,event 
be unique it is on ,y a matter of eff1ciency. At worst a proce-s.sor may get a spurious nor'fy, a temp 
to execute. and fau1t again. 

The modifica ions to page c:oncrol cionsi.sl of; 

Removal of the code cha ha:ndtes he fault directTy as this is. now done by the PAM. 

Removal of the explicit interactions with pxss. 
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Removal of" the c-ode involved in locking the page table since this process has exclusive 
accw to its databases. 

Changing the references co metering data in che APT entr es: to use the AMT. 
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The Active Metering Table 

Note: The discussto•n of the active metet111g table is included for 
completeness. The aetua.1 de'taUs of the mechanism are net yet fuUy 
worked our and the 1mptementation of a layered sysrem ne,ed not be 
dependen[ upon the current AMT design. 

ln a "'rear system ir is necessary to accoum for re-.source usage and to limit such usage a.gainsc 
predetermined Uroits. In the curr-enr Mu'ltics .system, many or the re.source measurements a.re 
associated wHh processes. Since the proce~es are known to che k1west levefa of the system. not even 
dea.oHva.ted, the Active Process Table (APT) has b!!corne a repository for such information, or at 
least the resource measurement informa.Uon. 

1n the multnevel system, only virtual processors eXi.'it al rhe lower levels. S nc.e the processes 
assigned to this virtual processors do not exhibit the continuity of the present Multics process.es it 
i.s nece~ary to develop a .separate meGhanis.m for measuring resource usage. Furthermore, if we 
look beyond just supporcf.ng the current mea.surements, a restructuring or rhe ml!tenng would 
permit the offer·ng: of improved mechanisms such as resouroe Umits a.nd shared meters cl\t Ehe base 
level: mechanisms which have been proposed in the pasc buc which have no been 1mplememed. 

There are two primary c.omponents co resource measurement - th.e long rerm and the short term. 
The long term measurements ln current Multics are stored in the PDT (Project Definition Table) 
a·nd cor1sist t:l'f dollar usage and more det.lUed re.source usage measurements. Short term 
measurements are maintained in the APT. PeriodicaHy the: Aniwering S-ervice copu~s 
measurements from .short term to long term storage. 

In the proposed Multics a. similar mechanism ts used except tha.t the choice of short term meters is 
more expHc:it aml nae directly rel ced to processei. Ac present we a.re rna.mly concerned with me,ters 
that must be a:vailab]e to ri.ng zerr/l - those chat correspond to the APT inrorma.cion. In addit ion, 
to simplify che design of page control, che meter (and limit) for storage 5ystem usage is a1so or 
intere.st. For the duracion of ks existence1 each such meter rel1des in the Active Meter Tabie. It is 
only necessary ror a meter to exisI: as such while the n~sou.roe it is measuring may incur charges. 
For example. the meter of a process• processor usage can only be im:remen ed. whne the processor is 
bound ~o a VP. Thus the level UiJo raffic comroller can create the meter at the r,me that it the 
process gets assigned co a VP and destro~ ir (after re,a.ding out the value) when the process .Ls. 

dea.ssignedlli. In conrras.t a. pro,e-,ss ca.n ncur memory usage cha.rges af er cbe process ha.s been 

• Need bet er term 

• In race, che VCPU meter is a. special c:ase a.nd is kept i.n the VPT£ in the current PAM dengn~ 
but could reasonably be incorporated into che AMT mechanism as soon as he operatlori of the 
AMT u beuer descnbed, i.e. when l finish writing this section 
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deassigned from its VP. A hird example or a meter is the ston.ge quota meter. Since this meter 
mun be accessible from page control when assigning a.ddittona~ pages to a segmen , it seems logical 
to associait, the nforma.tion wiEh he jred AST entry. Because the meter s actually shared by 
MuSt pl,e segments, ic is acrually kept separately m ithe AMT. Nme that as a beneflt of this 
aproach the, quota , imi is jndependent of the dtre,c,tory hierarchy and that storage system us.age, tan 
be assiociated directly with accounts insread ,of Jtn to, superior quota. 

Nor.e that the meters de.scribed thus far share, a special property - they must be a.xessible w thout 
taking a page fault; Le. they must be wired. This i:s a.ccomp ished by main ining a Wired Meter 
Table (WMT). 

An entry in che Actlve Meter ng Table ra es che fiorm: 

dee ,are 1 AHTE based. 
2 id b1t(72), 
2 value fixed b1nary(7l), 
2 limit 

3 limit_set bit(l). 
3 va ue ffxed binary(7l)t 

2 eventcount fixed binary(71), 
2 wire_count fixed b nary· 

When a. meter is to be incremented (via a tmlladd) be meter id is used to hash into the WMT 
and then the AMT to find the en ry. I nGIH! is found., one is created in the AMT. To, make the 
search more efficjent a meter_reference js used which contains a meterJndex in a.ddi ,,on o 
address, the tab e entry. When the entry ts found vja he jndex, it is checked a ma.ke sure he 
meter Jd ·n the entry matches that in he reference., lf it does not, rhe hash search musl be u.Sied 
and the sndex b upda'ted to make .rhe next re.ference more efficient. 

dee lare l meter _referenc,e based,, 
2 index fixed binary. 
2 home ·xed binary(l). 
2 id bit(72); 

/* Index in AHT or WHT *' 
/* AMT or Wf1T */ 

A merer may reside in ,either th AMT or the WMT, bu not both in order o make Umit checking 
work When the· w·re count changes to ,or from zero the enrry is mo11ed. This move is not 
necessary ·r he meter is being created .in one or the other. or is bejng read and c1eared. 

The AMT is managered by the active_meter _tab e_ image (a111tm). The following entnes. 
are a. va ilab le. 
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declare amtmlset_l imit entry ( l 1 ike amte l 1 ik,e meter _reference, 
fixed b1nary(35lli 

ca 11 amtllllset_ liroi t (amte, meter _refer Hee code); 

As noted a.bove, meEer emrjes a.re created when a.n attempt ls ma.de to use them. For entr.ies such 
a.s page quotas, it js necessa.ry ~o initia.liz.e the entrjes with a. limit value. It ,s necessa.ry for 
programs sttting and using limits to cooperate such that programs do noc check limits unless the 
limits have been set. For exa.mpte, as part of activating a segment. a quota limit is set in the AMT. 
Thi~ entry is cleared when an segments sharing that imit are deactivaced. 

declare amtmll:rea.d entry (l ike amte~ l 11ke meter reference. fiixed 
bin<iry(35))t 

call amtmlread (a te 1 meter_reference_ code): 

Returns va 1ue,s for 'the .specifie:d meter entry. If the entry does nor e1d.st. zerm are returried fot the 
values. 

declare amtmlread_clear entry (1 1i lc.e amte. l 7 He meter _reference, 
fi:<ed .binary(35)) ~ 

ca 1 amtmlread_clear (amte. meter _referem;e. code); 

Same a.s the read entry. except clears tlte va.1ue. This is he en ry used to read a meter ou, so i can 
be updated in a: higher level table. The AMT entry may be deleted if n js not wired and does nor 
have a Um1.t set. 

dee: 1 are amtm'lread_c 1 ear_ limit entry (. like amte, l 11 ke 
meter _reference, fixed 
binary(35)); 

con amtmlread_clear _1 imit (amte, meter _reference. code) i 

This enrry is similar to the previous but also clears the limit settjng so hat the emry may be 
deleted from the AMT ff noE wired. 

dee l are amtmladd entry (fixed bi nary(] I) t l 1i ke meter _reference. fixed 
b 1 nary( .35)) ; 

c,a 11 amtmladd ( va 1 ue t meter _refereRce. code); 

Adds. the specified >1a.tue to the given metli!r. A code iS returned jf the value exceeds the meters 
li.m it. If the meter does not e:d t, it is cr,eared. 
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declare amt111ladd_conditi ,onany entry (f xed 1nary(71). l like 
meter _r'eference, f xed 
binairy(3S));, 

,c; 11 amtm1add_conditiona.11y (va ue, eter _reference. code): 

This is l" ke the add entry except the merer value ls left unchanged if the lim,1 is eKceeded. 

declare amtm&w1re e,ntry (1 like meter _r,efer,ence, fixed b1nary(35,)); 

cal amtmlw:1 re ,( mete,r _reference code); 

The wire oounr for the specified me:cer ·s incremetued. If the meter is ,already in the AMT ·i is 
moved to the WMT., fit .sdoes: no e,(st at all, it ·s cr,eated in rh.e WMT. 

declare a.mtmSunwire entry (l 1 ike meter_ efenmce, fixed b ·nary(3S) )1
• 

can amtmSunw1re (meter _refere,111ce, code); 

The wire count for the specified m.e er is dee:remented. Ir ithe count rmche'S z.ero,. it is moved from 
tn.e WMT o the AMT. 

declare amteSunwire_reiiid_clear ent,ry ,( 1 tke amte, 1 1 ike 
meter _refe.rencer fixed 
bi nary(35)); 

c 11 amtelunw1re_read_clear {v,alue, eiter _reference, code); 

Combines unwire and rea:d_slear. 
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N o:tlficaUon and Even.ts 

The ba le mechanism for coordinating processes in the proposed system is the event. More 
precisely, event counts are used to store state information about events.The eve:ntcounts are 
discussed in deta_U in a CSR/RFC by Dave Reed and Raj Kanodia. When an event occurs the 
value of the eventcount associated with he event is adva.nud. A process in erested in the 
occur-ance of che event can await this advanc;e. 

Eventcoun s are identiOed by eventcount names. To the user an ev,e.ncount is simply a word In 
memory and thus its name is its add ess. To oonvert this into a. system-wide address the segmen 
number is replaced by the segmen -unique jd_ The ventcount can then be referenced by the 
system-wide name m order to do a notification. The actual reference to the value of the 
eventcount within the process awaiting or advancing the prim1tive is done using the pointer for 
efficiency. 

Ev~nwounts form a robust mechanism because, hough a process ma.y awan a transtuon, the 
even wunter Use f always majntains its sea. e for a.ter ei,caroination. Since che counter 1s 
monoton,ca.lly Increasing the aui,au operation can be ·mp1ecrumted by simply comparing the curr,ent 
value of che counrer with a previous value. ff lhe previous value has not been surpassed the 
process. can loop waiting for the change, or can go blocked. This block is actua.Hy implemented via 
che canp/await primitive described above. Complementary to going blocked is the mechanism 
for getting awakened. This is he noif kation mechanism. 

The notification is performed by the VPC as a res,ulr of a cal lp/noti fy operation. This 
primitive is mvoked by ·the· 'VPlladvance interface. Noce that on'ly the advance interface 1s 
a va.H ab le au tsjde the PAM. Wh ne th is is not s r ictly necessary ic does preserve the semantics or 
eventcounts. When the VPC gets a message to perform a. no ificalion, it scans the VPTEs whtch 
a:re in the ari>aitt11g state and places. them Jn the runnable sate. For effic ency, the· VPC can 
acruaUy check to make sure ·he value awaited has b.eeo reached since the value is oopied into the 
VPTE. but rhjs Js not strictly necessary slnc,e the YPC can simply compare eventcount names. 

Spurious notif 'es are not harmful since the cal lp/await primitive checks the values anyway 
before returning. ca1 lp/aw:a1t also checks the even c-0un values after pu ting the procen in o the 
a.wamng sta.te ,o preven any loss of notifies sent just before he process entered the waiting state. 

Evenrcount.s assodated with interrupts and page fault processing compt,e ion must be wired and 
prea 1ocaced. T,o simplify th 's a Wired .I.vent Tabli? is a.inta.ined. We· can go further and require 
that a.U events, originating at level one be in this cable. Note that, unlil<e current 1PC. the use of a 
wired table does not have the danger of overflowing since no messages a.re placed in the table. 
eventcounts are simply incremented. 

We can take advantage of the restriction on level one originated requests when implementing the 
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evel two, primitive for event coun s. Observe that there is a ftxed maximum for the number of 
events upon which a. process may wai. The user interface need not, and should not, ha.11e such a 
restriction. The level two traffic controller can implement its own aw,ajt/mJ' ffy mechanism similar 
to the lower level mecha.nis:m except using virtual memory to get around the r,estriiction on the 
number of events. 

A leve1 one proc-ess. (i.e. a kemel process.) can simply use, the VPl eve:n count interface (advance and 
notify) directly. For evel 2 processes, there is a VP2 ~nterf:ace for these primitives. Since a revel 
two process may have an arbitrary large number ,of evems and may be unbwnd from il VP while 
awaltir,g. it is necessary fer the level two interface to provide much of the func iona ity ,or the 
interface. To aid level two a specjal event count is provided that is. advanced whenever a level one 
event count is a.dvanc-"d, the outw,ard_signal counter. This i:s discuss,ed in more detail in th 
description o he implemenr.acton of the level two raffle controller. Other event count s used for 
comtnunicaUng with the level. wo traffic controller indude the stopped event advanced whenever a. 
VP is s opped. and the clack event tha.t s advanced a. fixed intervals. 

As described above eventcoums aire passive in tha:t they don't affect a process unless the: proces.s 
examines its value or awaics an advance. This is not suffiden to implemem the current IPS 
mechanism. What is needed s a means of faultt.ng a process so that lt can examme evemcoums 
which it thinks are impoirc.anc. his consis s of setting a, p.rocess.' pending 'nterrupc flag while 
unbound at evel two. When he process is to be nm, the rlig is eKamined by the PAM which will 
c use a. fau1 to be s.imufa.ted. ore hat the fault it.self doe-sn tel the process wha has happened; 
the process ts simply told that someth'ng of immediate interes has occured. To giv,e the effect of 
current lPS. here would be an eventcounter associated wjth the terminal l/0 channel for quits. ch 
real Ume clock and the virtual dock. 



-82-

Two-level Process Implemencauon 

The Level Two Traffic Controller· 

The 1owest levels ,of Multi.cs des-cribed abovE do, not provide an of the func ionalit:y of che current 
system. The implementa.bon requires a second tevel of control thac rnultjplexes. the virtua.1 
processors among user processes. TMs seoond tevel is. ,oom;eptua11y much Hke the lower le\lel in that 
it mu1tip1exe.s a limited number of processors to give the effect of a larger number. While 1che first 
level emphasises simpHcity , the .second level emphasises function. The sttond level re·moves 
renrktions on the number of processors provided and the number of events that can be observed. 
It is able t!O do so because it can make use of the virtua memory mechanisms for managing its. 
databases. Note that the term process is used in the oonv1mt'ona.l Multics sense, of a user's address 
,pace and control point. The level c-wo prooess ls represenrat on or the 1og;ical process.or hat 
executes a user's instructions. 
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The Implementation of old IPC and IPS 

Ba· ic to the design of any change o Multics is the requirement that the new mechanism provide 
an external imerf'a.te tha.c is oompatable co ny preexisting Jnterfa ,e. The· Interprocess 
Communica ions Mechanism of Multics is basic to many programs and mus be supported. 

IPC is relatively simple tO implement and oft"ers a subset of the. fadliti,es of the eventcount 
mechanism. Most significantly IPC lacks the ao::e.u contro,ls afforded by using normal memory 
words a rneam of communicatio s and coord na.tton. To implement IPC a per-process segment of' 
eventoounts associated with lPC channels can be maintained. Jn addi ion a per-system s~rnent 
could be used to transmit mes:s:a.ges between users. An aclterna 1ve· is, to p,ro,vide ea.th process with a 
segmen for receiv ing its messages so that he ac;ce.ss control can be used. 

Much or the complexity of [PC oomes fi,om the req,uir,ements of wired programs and programs 
requiring a very high degree of effic"ency. Since rhe wired programs wi I be convened to use 
eventt:ounts, the IPC imptementation is greatly simplified. Sim1Ua.rly for programs using fast IPC 
channels they can be canlierced co use eventoounts though they can sc"II operate us.ing IPC during 
a transition period. 

The irnplementaUon of IPS has been distu.ssed in the section on notificaUon. The mechanism has 
been generaU:zed to separate Ehe occuranc:e of the signal from che message assodued with It. Thus 
one is. no limited to the sjgnals. currently defined m thf AP'T entry. For example, the quit signal 
can be associat,ed with the term na, u an '[/0 devi.ce without regmr'ng that it have spedal1 
signifJcance a.s che process' contt·olUng terminal. 

The IPC facility offers an a:bili[y not offered by evem ooun :s alone - the :sending of mesages in 
addiUon to the wakeup. This. can be acoompUshed by using he message segment facUHy 
accompanied by evemcounts within the messag,e segments. · 
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Implementation 

Bo h top~down and bottom-up v.iews 1of the implementa'tion or the layered sys em are app1kable. 
The top-down views entails examining the existing Multto irnple:memarion and derermining what 
one must change to retain is functionality. The section on initialization examines he 
implementation fr-om the bottom-up, view. The following section ,an transi,hon examines the 
imp ementaticn from the view or modjfying and pre5'erving the existjng Multics system. 
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Iiutia.lization 

The bottom-up v·ew begins by recogn iting chat leve one of ithe layered Muttics, u sufficient for 
supporting a sample operating sys em directly w thou the features provided by level 1w,o. In hcc 
this il an en v ronment ha.t 1s much mor.e sophbticated than BOS Jn that it permits he use of 
processes and programming in PL/l. 

By ma.king Ehe first stage of 1mplem ntation [he programming of an envtronmem consJsting of 
Jtut level 1 primit'ves. An environment can be brought up w1 hout requiring the modification of 
the exis 1ng Multics.. Mo.n lmporcantly1 :s.uch ,an tmplementat on resul in a running system that 
can supper a sit of debugging tools for the later software. The psychological v lue of hiving :a 
completel1y running piece of softwa:re should no· be ignored. he [eve1 imp eme.maUon also 
provides a .starting point for the iniriaUzatiorl of Multics itself and is thu.s a necessary first step. 

The level one impleme.mation c01u1srs. of re·1ative1y few 
1
p,rogra , s; 

l. A program ro initia ire' the level one sysEemi within co11ec ton one. Associa ed with this js ai. 

program ro gener:ue a relocation die ionary for the PAM. in a:ddation to initializing the 
PAM ta.bles, the p,rogra.m also oea et processe5, for the VPC, the idles processes. and an 
interrupt sid,e process. 

2. The PAM. 

$. he VPC. 

4. An in errupr side process. In order to simp ify Jmplem.entaEion fO programs wm contmue [o 
run mu,ch a.s they do now excep all prog-rams ha normally run in response to mterrup1s 
will run in a single proce--™!-S in response o the correspond event:count being advanced. The 
old interrupt handlers rhems.e ve.s should be able to run unchanged. 

5'. A debugger. 

That U an that is smctly necessary. An addUiona.~ nice y might be m, implement rhe existJng BOS 
within a process so that its functions can slowly be s,p,re d to multiple processe.s wi hout the need to 
continue to suppor a s.econd 63180 opera.ting sys em and w· hout the ahernative of rewriting al of 
the code from scratch. 

InitiaU~a ion oomls s ,o,f load ng the k,erne processes nec:eJ:sary ~o, support the full level one 
environm n and hen the ones needed for lev,el two. There is: a di.scussion on page $9 of creating 
VP's as necessary a.s part of the operation. To rn out the r.evel one environmen the ro11owJng 
functionali y muse be brought up: 

. Disk. Comrol 
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2. Segment Contro~ 

3. Page Comro 1 

4. The Level 2 Traffic ControUer 

Once the lev,el 2 traffic controller Is brought up Mulri~ 1s. e:s.sentja.Hy running. An answermg 
service pmce·s:s can be created m create us,er procesies. Given thal p11ocesses can be created easi y, 
the answering service do-es no need the primacy it curremly enjoys. 
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Transition 

One que5 ion hat mus be considered if the Implementarion of the· two lev,el traffic con roHer 1s to 
be taken senousfy 1s ha of how toge- f:rom the curren implemenra,tion of Multics to he new one. 
The dfffo:ul'ty is that a comp\e e ransition is necessa.ry. This is not ain insurmountable obstacle in 
that we have had such transitions in he past as in the case ,of th new sforag,e system and earlier 
n e system flag daiys. While the need to convert over ,oompletely is present, the difficulty ·s not 
comparable ro tha of a majo,r change to he' file sys em. Mos of the Mul ics sys em will continue 
o operate as it presen y does. he ch nges cons,s of 

i. Changes requtring new softwar,e 

J. A level one initialization program must be written. 

2. The basic ,mechanisms of the PAM, VP! and VPC must be implemented. The VPC 
would be implemented in PL/L 

S. The ini a.Hzation path must be modified to build up a s,ysrem from one running a 
unadorned l~ve1 one to a ful Mul ia env ir,onment 

4. The levei cwo raffic controUer must be implemented While i must acquire all of the 
func ionaHcy of p);.s.s, [he level two traffic controller function: is l'ess f;ri ica.1 -- the vast 
ma.jorky of [he scheduling decisions are made by the PAM and the VPC. Thus the 
initial implementation need no be highly optimized for demons ration of its feasibiUry. 

5. A pnmit ve ven101'1 of rhe amt1n muse be mplemen ed to support bask accoummg 
func ions. 

U. M1odifications o exming software 

A r,eplacemem must be provided for IPC using ev,ents. 

2. Page control must be removed to Us own process. Much of the work has been done 
already. Th1s task is s mprfied by the fac hat the page concrnl environment is alr,eady 
very comtrained so as noc co be dependent upon the proe-ess in which it is a parasit,e. 
This is discussed -n deta 1 on page 23. 

S. The interrupt handlers mus be moved to chejr own procesSces. As w h page con ro, 
they a. read1 operate in a constrained environment a,nd thus providing them with heir 
own process will not depnve them of feature.s and will simplify rhern by the removal of 
the need to do direct interrup handling and wur remove the need for separ<lte jncerrupt 
side and user side ~omponents. As an interim implementation all inEerrupt side programs 
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can be writcen unchanged wUhin a. single pro~sses wLth only 1 om_manager begm 
modified. 

i . px.s-s would simply be removed rrom the. system. 

5. System initialization must be, modif1ed and possibly redone. Much of Ehe existing 
software can be used. for example disk 1upp1.m must stlll be. inma:hzed. The 
fnma Hz.at ion woutd. howeVEr, be done as pan of sertlng up the disk oomrol process. 

6. Present H-Procs could be simplified by replacing them with k.emel process.ors . 

i. The accounung software must be supported. 
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Extensions 

The ches·s has been concerned manly with presenting a. dean modeJ processor multiplexing. In 
actual implemen tion some additiona is:sues can be considered. Some of rhis ar,e imp1e extensions 
and others represent a differenc point cf Vjew on the part of the implemen~or. 

I. Robustness 

The layered implememat on prov des a. much cleaner s ruc:ture lha:n the· current Mulncs 
.system. This structuring provides an envkonme n Whjch the imp1ementatlon of fea ures 
ro make the higher levels more robust by providing a: 1ow revel In which the impJementa.t on 
or such support facilities b sjmprfied 

J. A Level l debugging process. 

2. Abi1i y to recover from crouble faults - spare repair proc.ess.es. 

S. Ease of timeouts and error recovery by 1/0 processe1. 

i. Daemon kernel processes. 

II. Taking advantage of the fmplemen atjon 

This sectton lists some ways of aldng ad van age of the ex 'sting software in implementing 
facili ies on Mu]lics. 

l. Wait ng on messages. 

One can . ssocia e an event coun er With each message segmen (or mailbox) that ge s 
advanced whenever a message g,ets pla.ced in it. This is an effective and much more 
pow,erf I replacement for IPC. Some of the advantages indude· the ability to have 
lnterProcess (mes.sage) CommunicaUon With access contr,ot. There is also no limat ~o the 
number of processes that can be a.wa· ing he message. SJnce he itransmjs.slon of the. 
mes.sage u via a segmen jn the hi,erarch;• the problem 10!" se ting up and communicating IPC 
channe numbers ·s eliminated. One final advantage· of the proposed imp emen ation is rha 
any process with access o await a messag,e can specify immedia·te attention (u. an interrupt) 
when the va.lue is changed. · 

These fa.cm ies can prov e a ;ub. for a. number of fea ure.s:. h is possible to imp emenc 
nctJflca ion upon the rec,ejpt of matl Alterna lvety a s•erve,r can be wai lng messages and 
then create precesses. the handle them (i.e. po ent al processes:}. 

III. Changes to the model 
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I. One or the ban. assumptions in the model is chat Virtual Processors a level t are 
nei her created or de.st.ro,yed. This assumption actuaUy compticates the system by 
requiring that aH uses of kernel processes be prede ermined, In pa.rtic1..Uar he 
n1tiaUn.tion of the sys ,em must be carefully planned with respect Eo the use of vp•s. 

This js. similar to requiring rhat all Multics table:s. used .in managing the system such as 
the AST be determined when the system is generated, as opposed to during initialization 
as is presently done .. 

The reas.on for the restncE on on VP's comes from two primary sources: the need fo,r 
simp kity and the attempt to carefuUy structure management ,of memory. The simplicity 
argument is not one of a.bsolutie slmplic y buc a. choice of what to simpl fy. One must 
pay the price of c-arefuUy pr:eplanning use o · these processors. In particular when one 
dynamically reconfigures lhe system o add a ne device (fog cal or physica) and one 
needs to dedicate a v·nual proce~or to its managemelilt, 01,e, cannoc toferace the fa.ck of 
a va labiliry cf such a proces:sor, nor can one reduce the number of virtual proc,ess.on 
managed by level 2 since that w,ould change the level of muttiprogramming 9f the 
system. 

Whilie the requirement of a program ha. , is abl,e [0 a.ssign primary memary addressable 
by the PAM might add a.ddi ional comp ex ty tt1 che system. it does not affect the 
layering ,of memory memory management since tt is not dependent the managemen of 
virtual memory. In fact in an ideal processor such a rnechani.!lm would be simply 
stru,c ured such ha it can be shared by both the page frame allocation mechanism and 
the primary memory all0cari0n imerface. The 68/80 p,rocesior is a n tie' more compHca ed 
tn cha the PAM ts unable ,to easily address more than the first 25SK or memory. But 
this requirement i5 already present for IJO buffer mainagemenit. To :summarize. this 
mechanism must exist anyway (or performing l/0 and fits within the structure of the 
memory ma.nagement hlera:rehy so lhat U does nor really add complexity to the system. 

Thus Ehe ability co dynamically crea.re virtua1 proc-euors would simplify 1rhe 
irnplemenca.tlon withou arfec ing the ta.yered mode of the system. 



91-

Two-le\1el Preuss Implemenra ion 

The existing implementation 

A test ·mp,lememation of he buic level one portion of 'the two level sysit1:1m ha.s been competed. H 
supportJ che func ions of le\lel l w· h ·the exception of p ging and he handling of f ults ref[ei;ted 
_o user processes. 

' 
It is a modificauon of collec:c·on orie of Multics ini ia. iz.at an. Interrupt and fault processing h.ave 
been replaced by the PAM and the VPC. The VPL nt,erface-S f,or "run'". '"await", "a.dva.nce", 
''"crash~system" and "clear_cache" are supported. The systelilil spawns lc.ernet processors. Onduding 
che VPC and the idle processors). 

The on y 1(0 devi~ supported. is the console rypewriter. The interrupt :side processing for the J/0 
is performed in a prooessor dedica ed to that function. The st1opped (to indica'te a processor 
entering he s.topped sta·te,) and the c:lock. events are suppor ed. The idle process,es share a 
descriptor segment. 

The foUow·ng chang-~ were made o the sys em: 

1. The PAHi was implemented w handle a.II faults and tn er.rupt.s. 

2. The VPC was implemented to: 

a. Conven int,errup s {as no ed by he PAii) into notified events... 

b. Manage the clock evenL 

c. Advance the stopped evenc when a VP'T stop5. 

d . Process run and notify messages. 

9. init_col ections was modified to call i, it_basic_l l and no ro can 
in ti.al iz,e_fau1ts. PVT in iaHza.tion nd tape ini taliz.a ion was also elimina ed. 

4.. in it-basic_ l was impremen ed to ini iaHze the PAH a.nd the VPT. It spawns 1the 
VPC and idle processors. 

5. create_kerne l_process was. impleme ed co initiaUz.e· ,a VPT emry. 

6. init_l _get_seg ·ent was imple ented ~o create segments for processes.• dsescrjptor 
segmen and pds. 

7. The prds wa.s eliminated. 
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8. privileged_master _mode_ut was modffled to use th~ pam for entering BOS a.nd ror 
de.a.ring the cache and associa ive memories. 

9. ini t_sst (and the sst.) was modified t,o remove masks was for 'nhibiUng and 
generating interrupts. 

10. pxss was eliminated. So was tc_dat,a. 

U. The fi m and ii were replaced by stubs since at this point the system s unab e to 
handle r,erlected faults. These routines will have o be redone. The same goes for 
emergency_shutdown and related programs. 

12. The pds was cleaned up to remove unneeded scorage for fault data in he header. 

IS. VP l nd VP ... u ti 1 were implemented to interface to the pam and co support the idle 
process. 

14. run_bas i c_ l l was implemented as a process to gWe periodic starus messages. The 
mor 1 tic 1 an wu implemented in a stmUar manner to monitor stopped processors. It 
usecS s t.atus_report which, in Eurn,, U5'e.s octa 1 for typeout:s. 

15. interrupt_process_d,riv,er was implemented to manage ·che mterrupc side process. 

16. ocdcm_ was modified t!o' use evenlcounts o go,vern c;omenron, on locks. 

17. A pxss was implemented to provide a write-around to addevent and notify primiUves. 
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Glossary 

S,ome suffixes are commonly associated with a.bbreviations. .. "E" i · used to, indicate an 
en ry in table and ~p" ts used t.o designate a pointer. 

The Add Del a modifier causes the ,effec( address to be oompu~d using an indirect 
word and increments he value of the word by a specifled amount. It is. of interest 
because it is atomic with respect o other instructions us·ng the modifier. 

Active Metier Table.. 

Active M ter Tabte Manag,er. 

Active Process Table. The APT in current Mu tio wou d. be replaced by hree 
data.bas.es. A . eve1ls z.er,o and one there· s the VPT. The evel t'No traffic controller 
maintains the APT, and fer eff1c:iency, an IPT. 

Act ve Segment Tabie. 

Basic Operating Sys em. This is a sti'ndatone operating system for the H68/80. ll 
provides uU i y func ions when the full Mui i,a environ.m.ent is no a.vaUa.b e. Such a.s 
when actua.H¥ bootloading or debuggJng Multics .. 

"'Can Proceuor" an ins rue ion i·mp1emented us·ng he faulting· e4 and interpreEted 
by he PAM. 

Clear As.soeiative Memory PTWs. 

Ctear AssocJaive Memory SDW:s. 

Ina.ctl\l'e Process Table. ThJs is ma'ntained by he level two traffic cantro 1er and 
corresponds to the APT. exct-pt that fo.r :reasons of loca.lH.y the ,entries hat are 
referenced .infrequently are moved into the IPT. 

Leve Two Traffic Controller. 

The Master Mode, Entry 1 instruction simply causes a fau!t. The fault handler will 
interpret this to be a ca lp operation if che faun Is taken whHe executing m a. 
privi1ig,ed segment 

Processor Assignmen Manager. 

Processor B nding Manager; o?der term for PAM. 
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Project Definition Table. 

Page Table Word 

Segment Descriptor Word 

Store Instruction Counter plus one. This instruction js med to set a. flag to be tested 
with sznc. It is of interns~ because it does not affect registers is atomic with respect to 
szQc and stores a nonzero value. 

Set Zero Negative and Clear. This instruction is used to test a flag set by s tel. le does 
not affect regiscers and rests the flag after test Since it is atomic with re5pe,t to stc l 1t 
is good for low level synchronization primi i'les. 

Virtuai Centra Processing U~ge. A measure of the time assigned and executing. 

Vircua 1 Processor. 

The procedure chat interfaces to the ca 11 p instr:uction. 

Virtual Processor Coordina.tor. 

Virtual Processor Table. 

Wired I.vent Table 

Wired Meter table 



FURTHER RESULTS W TH MULTI-PROCESS PAGE CONTROL 

by R. F. Mabee 

This lii.em.o updates performance measurements t"eported by Andy Huber 

in his rec:en t thesis 11 A Multi-process Design of a Pag 'ng Sys em11
, now 

available as 1AC-TR 171. The PL/I code is brought up to date with 

NSS t and improved by removing many external subroutine calls from the 

c itical page fault paths .. 'Ihis gives a performance improve ent of 

a.bout 30%. Many detailed me.asurem.e:nts have been made; tbe :results a.re 

used to determine where time is spen in both this and the standard 

page control. 

This should he the final report on this project, as no further 

development is expected . 
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I. Revier;,~ 

ln one chapter of hi.s thesis 7 t•A Multi-process Design of a Paging 

System11 Andy Huber reports measureme.nt::i made on two versions of 

Multics~ one using his multi- proce.s:s page cont:rol (MPPC) and the other 

using the standard page c:ontrol. The fonner has two B.-procs ( fasc 

system processes) that run the resource freeing functions of page 

cont;c-al~ and perform some operations £01: segment c:.ont:rol ( typically 

trun eating a page tab le) • Most of the code was r ewr 1 t cen in PL /I~ 

except .for the bulk stare DIM a piece of tlle faul 1: handler, and the 

system interrupt handler~ which are essentially unchanged, The 

results show comparatively poor performance by t::he MPPC in two 

respects: 

l) The n:umbe.r of page faults (during a 

benchmark run) is much higher. 

sta:nd..ard iz:ed 

2) The CP□ time spent by the PC processes is e.bcessive:~ 

d oub 1 ing the ime per page fa.ult~ 

The increase in page faults can be attributed t:o the reduced size 

of the paging peel. The wi.red stacks, the RWS buffer~ the increased 

size of the P'L/I code~ and the. free core list reduce the pa.ging pool 

by !O to 20 pages . This could be cut in half by care.fol tuning of the 

algori Chm a.nd becomes unimportant in systems wi 1t.h larger memory. 

Ruh er also pc ints out that MPPC disconnects pages before Wt: i ting them, 

while the standard PC lea.'les modified pages connected for an. e.x tra. 

lap_ If modified pages are more 1 ikely to be refe.re.qced than 

u.nmodi fied pages~ then the standard PC will have fewer page faults. 

The increased pa.ging isn • t very interesting~ b ec.ause it's readily 

explained and wouldn' t much matter in more reasonable configura tio11s. 
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For comparisons of CPO time we adjust the sizes of the paging poo.ls 

so that the metering run takes about the same nwnber of page faul s 

with each version of PC. 

There are two special processes in MPPC; the core managei: and he 

paging device (PD} man.ager. They perform functions that are mostly 

done at page fault time. in the. standa d PC,, so the MPPG should spend 

much less t · me in the page fa ult handler~ Ios tea.d, the t · me is 

slightly higher (3%). This is the effect of using l?L/1. Huber 

predicts a 4,0% improvement by replacing external calls with internal 

calls, w · th the result ·ng times shown. in the las,t column of the tao e. 

Page faul hand er 
PC processes 

S anda.:td PC 
1973 

MPPC 
2043 
2,641 

Predicted 
1226 
1585 

Tab le I ... usec per fault~ Adapted from Huber. 

Three modifications should be made to these numbe:rs for more 

accurate comparison . In both versio,ns of PC. the fault time meter is 

updated about 500 usec too soon~ before the bulk store read (if any) 

is posted. There is no question that the tie should be accounted to 

the page fault band ler • it ' s just a bug. Also> the time spent by the 

PC processes on operations other than page faults {primarily 

truncation) should be. subtracted from the totals; by :reasonab · e 

extrapolation from more recent measurements this amounts to 336 usec. 

pe.r fau t Thirdly~ the cos of interrupt handling and of 

inte.r-pro~ess swapping (ge.twork t ·me) sho ld be included; again, these 

numbers are taken from recent runs. The corrected figures appe.ar in 

the next table. Comparing the total times we find MPPC just under 

twice as expensive .• 



Page fault handler 
Standard PC 

2473 
PC processes 
Interrupts and getwork 

2918 

MPPC 
2.543 
2.305 

684 

5532 

Pr ed ic ted 
1726 
1383 

684 

3824 

Tab le II. usec per fault:. Approximate corrections added. 

11. Recent changes 

For this new series of experiments I used version 28-lO of 

Multics with beth standard and MP page control subsystems .. Among 

other changes sine e Hub er~ s experimea.ts was the in troduc. tion of NSS 

(New Storage System.) , with many c.onse quen t effects in page c:ont:rol. 

NSS resulted in a 200 usec imp oveme:nl: in page fault t.imes for the 

standard PC. a.lthough no corresponding improvement was observed in 

MPPC. I believe this shows the. benefit of the long t careful tuning 

process applied to standard PC i MPPC must crunpete without such tuning. 

Pa.ge faults in the IPC: b ,ench-mark have increased by 10% during 

thi5 time> probably due mostly to online changes and only somewhat to 

reduced paging pool. As before, timing measu.reme.nts are made lo.ti th 

paging pools adjusted so the tlJo versions of PC handle about the same 

numb er of faul t:.s during a standard me t:ering run. 

1'he final version of MPPC is opti.m.izetl by @P1bedding sub routines 

as ·nte-c:nal procedu.re5 of the page_fa.ult and c.ore_manager programs so 

that most e){ternal calls and redundant assignments (i.e. 11sstp = addr 

( sst:$ ) · 11
) are avoided. If all of the external calls could have been 

removed• then the pr ed ic ti.ons in Table II would be realized • However, 

the c:a l s co ALM !',mb routines ( such as the bulk store DI M) couldn ~ t be 

--removed. Mo I:eove-c ~ some of the c: alls that Huber coun ce.d r.o make. his 
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predictions are executed only ooce in several page faults; n that: 

case the cost per fault is proport.ionally lc·wer~ reducing poss ble 

optimization. 

Six external calls were removed from page_tault,. eaving ooly 

four calls, a in'llolving ALM. Seven external cal s wer,e. removed f:rom 

core_managec, leaving four o or from ALM. However~ three of the. 

calls removed were executed only half the ti e (when a page must be 

writtea). If each external call costs 70 usec ,. the net gain is only 

800 usec, or 14% . The rarer cases aren't optimiz,ed on the grounds 

that a sma 1 improvement i .n an unusual case wouldn ' t affect the 

average times ver:y much. Specif"cally, only PD reads, page creations~ 

virtua writes and PD writes not requiring PD allocation a.re 

optimized. Th is handles 84% of the ,cases. 

As ano hex optimization, the core...Jllanager page removal algorithm 

is made more efficient, a though comple > by start ·ng writes for 

sevexal pages before waiting on any . The overal resu , ts are shown in 

Table III. 

28-lO Original Predicted Observed 
Standard MPPC by Huber by me 

Fault handler 2531 2543 756 2162 
Core t11anager 1985 1191 1272 
PD manager 320 92 312 

n terrup ts and getwork 445 684 684 684 

2976 5532 3823 4430 

Table III. usec per fault. Results of optimizations. 

Ill. Where the time goes 

It is possible to attribute the total CPD time spent on a page 

fau ' t to the various functions performed. The bulk store DIM alone 

accounts for about 500 usec per- read ,or write in bo,th systems, which 



is surprisingly high. This apparently indicates that the 1/0 greatly 

slo~ the CPU by competing for: memory cycles. Of course.• th is 

behavior should be unique to the test: configuration combining MOS 

111emory with bulk store. Depending on whether the CPU is locked out 

en t.il!'.'ely o just s owed down~ this effect. may also be slowing down the 

re.st o, PC. Another 500 usec is spent (mostly by page$done) to report 

completion of the I /0~ In the .following table.~ the measured time for 

the standard PC page_fault is arbitrarily divided between .freeing core 

and real page_fault in the proportion measured for the MPPC system. 

The unusual cases of page ere a Hon or forced write to disk are 

ignored. 

28-10 28-10 MPPC M.FPC 
us/event us/fault us/event us/ fault 

Real pa.ge_fault 482 482 1162 1162 
Ge.twork awaiting core 637 54 
DIM and page$done 1000 1000 1000 1000 
GetWO'tk alo'aiting disk 692 69 637 64 
Interrupts disk read 1921 192 2102 210 
Getwork for pI"e-enpt 692 69 637 50 

Fr.eeing core hame 297 297 715 715 
Drt if must write 1000 557 J.000 557 
Getwork by core_manager 637 124 

Free 
.. 

8 PD record 580 83 1400 200 
DH! if must RWS 2000 112 2000 112 
Getwork by pd_m.ana:ge·r 637 56 
Internipts., RlS 1921 115 2102 126 

2976 4430 

Tab le IV. De tailed b rea.kd.own of page fault cost. 

The to ta.I CPU time per fa.ult. for MPPC is 1454 usec 1 onger;. or 

about 49%. Approximately 230 usec of the e:xc ess is spent in ge twork 

when any process has to wait fer a PC process to refill some free 

list~ o-r .men the PC process is done and. goes to sleep. Perhaps an 
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equal amount (unmeasured) is spent in calls to perform the 

inter-process communication required for t.he PC processes. An 

estimated 300 usec represents the· effect of less common paths that I 

dido' t bothe1: to optimize.~ and the cost of putting free. frames on a 

separate list> and tbe cost of the extra metering done in this 

ver-sion. The rest of the excess (estimated at 700 usec) is direct y 

caused by using PL /1 to express the algorithms. which appareo tly 

increases the execution t.ime of c ,ompa:u.bl,e operat ons by about 80%. 

(Note that Huber cbo·se PL/I for ease of implementation~ and not for 

performance.) 

One important factor adding t ,o the cost of PL/1 is the frequent 

use of th,e pointer built-in unction (to follow the many threads used 

by PC). In the ALM v ,ersion this is done by •One instructiont oading 

an index register. The PL/I c.ompiler optimizes to shorten the 

generated code; this is not alwa.ys best for execution speed. 

Furthermore, the ALM version optimizes :reg.iste.r usage over a much 

larget" scope. fostly these are problems inherent in the use of PL/I 

so (unless some gross bug is found), the best performance that: might be 

achieved must still be. 20% poorer (in total CPU ti e per fault) than 

the standard PC. "It's worth not iog that the interrupt times fo :r MPPC 

are only slightly higher 081 usec). The system int,errupt handler and 

disk DIM {both unchanged) use · ost of the time· the difference is in, 

page$done ~ a very short procedure con.ve1: ted t:o PL /I for MPPC . Its 

execution time is around 4 00 usec, so the 80% PL/I overhead is st 11 

consistent. 

In the test configuration, the page. fault rate is som.ewha.t less 

than 100 per second. Since the ekcess time for MP?C is 1454 usec per 
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fau.1 t it should cost less than 14 54,00 usec per se~ond ~ or: only 14% of 

the elapsed time for any nm. However~ overall system performance is 

not that. much worse • In fac.t, the faulting process is de ay,ed 369 

usec less by the fault ( from Table Ill) ~ so it seems r:o run faster,, 

and can i:-espond co intet:actions faster (if it needs only a. few new 

pages). 

The PC processes sometimes run. during time that would otherwise 

be idle. The benchmark results show this effect clearly if the 

'lrorking set e.s !:ima tor is ena.b led -- that 1reduces mu tiprogramming and 

i.n~reases idle time, so the MPPC syst.em completes the benchmark in 

just 8% mo e elapsed tiale . (Tuning paramet:e:rs ,: WSF - l, Max Rlig - 4; 

ab out l SO pages; 23,% idle w1 th standard PC.) The MPPC will provide 

faster service than the standard PC if there is enough idle time. If 

the PC processes al ii.Tays tak.~ what. wou.ld otherw.l se be idle time I the 

page fault costs 369 usec l.ess; if they never do~ the fault costs 1454 

usec more. At a point in bet.ween, the e.1<tra cost of MPPC is zero,; 

this happens if the PC processes take idle time 80% of the time. Thus 

MPPG performs better than the standard PC if there is at least 80% 

id.le time 

The paging function is exercised so heavily in t.he tiny test 

configuration that its cost is exaggerated in importance. A system 

vi th much larger main memory a.nd no bulk store t which se,ems to be the 

right approach for Multics t might, for example, take only ten page 

faults per second per CPU. ln this environment MPPC (minus the PD 

process) would cost only 4:% of the total timet versus 2. 8% far thi! 

stanclard PC. The reduction in the paging pool c.aused by maintaining a 

free list (in MPPC) would also be unimportant in such a. configuration. 
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Since choosing the right page to evict would become relatively more 

importan. than doing it fast,. alternative strategies shou d be tried 

and for such experiments the m:odulat" · ty,. readab i.lity,. and l?L/I-ness of 

MPPC make it ideal. 

IV. Conclusions 

First, the. negat.i'1'e recOIDIUendations: MPPC as coded s not 

suitable for ·nstallatio•n on a thrashing system like MIT-Multics. It 

i.s not ready for use .anywhere because of glossed-over SS issues, 

incomplete error hand.1.ing and just plain. bugs. have no intention 

of updating the code to 1J1ore recent Multic.s: releases than 28-10. 

There are. many positive results. The cost of the inter-process 

communication and swapp·ng is not too bad (400 usec per fault?), and 

· t coul.d be madE! nmch lower by making the f - ,ee 1 hts onger. (The 

measurement ru s were made with a maximum of 12 free cmes on th.e list. 

Becaus,e of the interaction with paging ra.te this size f ee list w-ou.ld 

be ·used only with paging pools from 500-1000.) 'The d:e ay seen by a 

process when it faults is slightly reduced The PL/I version of page 

contro is availab e as a better bas:e for experimentation and metering 

than he ALM version. 

It turns out that the cost of using general-purpose processes and 

inter-process C0111munication facilities, whi e small,. is intrinsic. 

Th s cost would probably not be much reduced using another 

imp1runentation of the process 1 such as Dave Reed's Virtual Processor, 

.sinc.,e a lot of the cost is in unavoidable overhead of process 

switching or of ca ls to perform !PC. Many ,of the !PC operations 

either implement a cross-process call to a specific routine, o-r me.rely 
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indicate that; (say) the core_manager should be run sometime soon to 

free up more core fr-ames. The latter fu.nctlon could be mol'.'e. ch~ap y 

implemented, at the xpense of moduln Uy~ tf he scheduler called the 

core_manager directly just before going idle. Of course; if the 

cor~_manager isn't a real process , it loses the ability to wait on I/0 

or en a lock. 

By far and away~ the bigge,st performa,nce. problem is the use of 

PL/I. It has already forced a non-modular design for the main 

programs, by imposing a stiff penalty for good design; it also handles 

the 1 ist-struc tured obj ect.s of p,age control V!;!ry poorly. In order to 

ob t.ain bet l::er pet"f onnance I Yould havtt to re.~i te the prog ams to use 

constt"ucts for l<ffi:ich the code is known to be. -particularly good; that 

means picki.ng out the machine language sequence I want first• then 

ool ing the compiler in to em.it ting it. It just isn't worth wr Hing 

any p1:ogram in bigher-le,,el language i.f its performance is so 

important and "Che langu.a.ge. so poorly suited .• 

1.et us momentarily suspend disbelief, to consider an ALM ve1csion 

of MPPC. It should execute similar funcitions at the same speed as t;he 

standard PC t so the extra cost is just the 400 usec. presumed for IPC 

and swapping~ or only an 8% increase in CPU time. per fault. The delay 

at: fault time becomes 1049 usec less ( from I able IV} so overall 

per.formanc:e is improved for any load up to 72% (Le:. more than 28% 

idle). In fact• if the IPC and swapping vere optim , zed as previously 

suggested 

load 

the overall performance might be i proved a.t any rea stic 

Even the ALM MPPC ~ot1ld cause some. loss in throughput if there 

we re no o t.herwise:- idle time to give to the P·C processes. In the face 
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of s rong real-world emphasis on ,execution .sp,eed. it's s,ometimes hard 

to explain l<mY the program \dth good organi.~ation and modularity. 

clearly expressed in. bigber ... l ,evel language> is bett,er than its 

a.ssemb ly language: predecess or We hav,e no way of measuring th@ 

intangible benefit of aoy s uch ,improv trment or of weighing it agaicu;t. a 

know ost in CPU cycl~s or dollars . All 'We can fa.11 back on is t.he 

general pbilosopby, rrcood is better than evil, because it 1 s nicer. 1
'
1 


