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Introduction 

Several years ago, R. Solovay and V. Strassen [SJ developed a 

probabi I istic algorithm for determining whether or not a positive odd 

integer, n>2, is prime. The algorithm consists of choosing a random 

number, a, from a uniform distribution on the set of integers {1,2, ••• ,n-ll 

and then determining if 

(1) 
( either (a,n)~l* 
I 
\ 

l .or a<n-l >12i(~) (mod n). ** 

Letting Wn(a) denote the condition (1), it is clear that Wn(a) Mi 11 not 

hold if n is prime. Therefore, if Wn{a) holds, n must be composite and 

thus the algorithm can simply halt and say "n is composite." HoMever, if 

Wn(a) does not hold, it is not certain that n is prime. In the case Mhere 

Wn(a) does not hold, the algorithm can either repeat itself choosing a neM 

independent random number or else simply halt. If the algorithm halts in 

this case, however, it is required to say "n is prime" even though this may 

not be the correct answer. 

Letting Wn={a~~ I lsa<n and Wn(a) does not hold}, Solovay and Strassen 

[5] were able to ·show that if n is positive, odd and compos i te, 

- 1 . 
IWnl s 2<n-ll. 

* (a,n) denotes gcd(a,n) . **(~)is the Jacobi symbol 
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There fore, for a II such n, the probab i Ii ty of their a Igor i thm giving an 

incorrect answer after a single iteration is at most 1/2. Further, their 

algorithm will always give the correct answer if n is prime. Thus, 

iterating Solovay and Strassen's algorithm r times, using independent 

random numbers at each iteration, results in a test for primality with 

error probabi I ity 0 (if n is prime) and error probability at most 2-r (if n 

is positive, odd and composite). 

In this paper we will show that if n is positive, odd, composite and 

non-Carmichael, 

This result wi I I fol low as the corollaries of two new number theoretic 

theorems which wit I be stated here and proven in the next section. 

Theorem 1: 

Let n.,p'i1·p~z .••• ·p~z where z is any positive integer (z2:l), the e 1 are 

all positive integers Usisz), and the p1 are all distinct odd primes 

(p;>2). If A={a.E7l I lsa<n and (a,n) .. 1 and a<n•l)/Z=(~)<mod n)}, then 

IA I s Il~.1 <p;-U. 

Theorem 2: 

Let n"P11.p}z· ... ·p~z where z is any positive integer such that z2!:2, 

the e 1 are al I positive integers (lsisz) such that at least one ej (lsjsz) 

is odd, and the P; are al I distinct odd primes (p1>2). If 

A={aE7l I lSa<n and (a,n)=l and a<n·l)/Z=(~)<mod n)} 

and 

B•{aE7l I lsa<n and (a,n)-1 and a"·1=l(mod n)} 

then A ~ B. 
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Finally, 1-1e 1-1ould l i ke to mention that 1-1e have recently become a~are 

of a ne1-1 result by Louis Monier [61 ~hich gives a closed form for IWnl• We 

fe.el, ho1-1ever, that the proof of our results are st i ll of i nterest. 

Proofs of Theorems 

Theorem 1: 

Let n=pE[Lp,2 .••• ·p~z 1-1here z is any positive integer (z~l). the e 1 are 

al I posit i ve integers (lsisz), and the p 1 are all distinct odd primes 

(p;>2). If A={ae7l lsa<n and (a,n)-1 and a<n•l)/Z=(~)(mod n)}, then 

I A I s n~.1 <p1-1>. 

Proof of Theorem 1: 

A={ ae7l I lsa<n and (a, n) •l and a<n-l)/Z=(~)(mod n)} 

~{ ae7l 0Sa<n and (a,nl•l and a<n-l)/Z=±l (mod n}} 

~{ ae7l 0Sa<n and (a,n)=l and a"·1=1 (mod n)} 

~{ ae7l 0Sa<n and a"·1=1 (mod n) }. 

If 1-1e let f(h)=h"" 1-1 and B={ae7l I 0Sa<n and f(a)=0(mod n)}, then ~e have 

tha t 

A ~ B 

and thus 

(1. 0) IAI s IBI. 

No1-1 let B;={ae7l I 0sa<p~ i and f(a) =0(111od P11)}. 
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S i n ce f { h l i s an i n t e gr a I po I y no m i a I { i • e • f ( h ) ha s on I y i n t e g er 

coefficients), the cardinality of B is simply the number of incongruent 

roots of f{hl=0{mod n), and the cardinality of B; is simply the number of 

incongurent roots of f{hl=0{mod P1 1), we have the relation 

(1.1) IBI .. n~=llB;I (Theorem 122 in [3)). 

We must no1-1 to derive an upper bound on IB;I• We first present the 

fol lowing lemma and then show how it can be used to obtain the bound 

Lemma 1: 

If x,y e B; and x=y{mod p;) then x=y. 

Proof of Lemma 1: 

{lemma 1 fol lo1-1s from Theorem 5.30, case {a) in Cl]. We 
present here, however, a slightly more direct proof.) 

x,y e B; ~ 0Sx<p; and 0Sy<p; 

~ x{mod P;l=x and y{mod P;l•y. 

Thus, x=y{mod p;) ~ x=y. 

Case {e;~2): 

Assume (1-1109) that x~y. 

Since x~y e B;, 1-1e have that 

{1.2) 

Further, 

( f{x)=0{mod P11l 0Sx<p11 

{ 

\ f {y) =0 {mod P11) 0Sy<P1 1 ■ 

x=y {mod p;) 
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(1. 3) 

Substituting for x in (1.2), 

( f(k1P;+y)=0(mod P1i) 
I 
\ 

l f {y) =0 {mod P1i) 

and more explicitly 

( {k1P;+y) n-l=l (mod P11) 
{1.4) 

, 
\ 

l y"- 1=1 {mod P1i). 

From (1.4), ho1.1ever, Ck1P;+y)"-1=y"- 1{mod P11) 

~ (k1P;+y) n-l-yn-1=0(mod P11) 

~ [L~:~(njl )yn-1-j (k1P;) j]-y"-1=0(mod P1i) 

(1.5) ~ [L~:!(njl )yn-l-j(k1P;l j]=0(mod P11). 

Defining S1 and S2 as 

S1=[L~:i(njl )yn-1-j Ck1P;l JJ 
S =[°""-l(n:1 )yn-1-j {k p ) j] 

Z ~ J=Z J l i • 

. 1-1e have that 

S1=Sz+[(n1l )yn-1-1{k1P1l l] 

~ S1=Sz+{n-lly"-2 {k1P1l. 

Further, from (1.5), the definition of S1, and the fact that Pi wi 11 

divide every term ;n S2, 1.1e can sho1.1 that 

S1=0 (mod P1i) ~ P1i1S1 ~ PtlS1 

~ Pt1Sz+{n-l)y"-2 <k1P1) 

~ P~I (n-l)y"-2 <k1P1>-

Notice, ho1.1ever, that 

P; In ~ P;(n-1 

and 
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Thus, 

(1.6) pflk1P; ~ P;lk1, 

Further, if e;~3 then ·we can apply (1.6) to show that pf will divide 

every term in S2 and thus 

P1i1S1 ~ p;IS1 

~ Pi1Sz+(n-Uy0
-
2 <k1P1l 

~ Pil (n-l)y0
-
2 (k1P;l 

~ Pilk1P; ~ P~lk1, 

We can continue this argument, however, until we have shown that 

( 1. 7) e ·1 s e·-11 P; 1 l ~ P; 1 k1, 

Therefore, from (1.3) and (1.7), we have that 

and thus 

x=y, 

This concludes the proof of Lemma 1. 

Using Lemma 1, we derive the upper bound on 1B11 as follows: 

If xEB; ~ f (x) =0 (mod P1i) and 0Sx<p~i 

~ f(x)=0(mod p;) and 0Sx<p1i 

(1.8) 

Letting x(mod p;l=x' 

~ x=kzp;+x', 0sx'<p1, and x'e'Jl.. [for some integer kz~0J. 

Substituting no1-1 for x in (1.8) yields (kzP1+x') 0
-
1=1(mod p;) 

~ [kzp;(mod p;)+x'(mod P1)] 0
"
1=1(mod P;) 
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• [x'(mod p;)l"-1=1(moi:t p;) 

• (x') n-l=l (mod p;) 

• f(x')=0(mod P;i and 0sx'<P; and x•~z. 

If 1-1e define D;={aeZ I 0Sa<p; and f(a)=0(mod p1)}, then we have shown that 

>< E B1 ~ ><' E □;·. 

Therefore, for ·any xeB 1 1-Je can show that x'eD1 where x'=x(mod P1> as 

defined above. Further, by Lemma 1, for each distinct xeB1, there 1-1i 11 be 

a distinct x'eO; [i.e. If xeB; and ye81 and ><=y(mod P;l, then ><•yl. 

Thus, 

(1. 9) 

Notice, ho1-1ever, that ID;ISP;-1 since f(0)10(mod p 1) and there are 

onl_y Pi-1 other possible values of a in the range 0Sa<p1• Combining thie 

fact with (1.9), 1-1e have 

and thus from (1.0) and (1.1) 

IAI S IBI s: n~ .. 1IB1l :S n~.1<P;-ll. 
□ 

Corollary 1: 

Let n=pyl.pi2• • • • ·piz z~l; e;~l [1:sisz]; max(e1)~2; al I p 1 are 

distinct odd primes. The cardinality of the set W0 satisfies the fol lowing 

relation: 

Proof of Coro I lary 1: 

Since n satisfies the conditions of Theorem 1 and the set I.In is 
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exactly the same as the set A defined in Theorem 1: 

Therefore, 

Thus, 

Theorem 2: 

IWnl S n~-1(P1- l). 

IWnl I (n-U "' 1Wnl/{[n~ .. 1(p1i)]-l} 

S {n ~cl (p;- 1) }/{[TI~.1(p1i)]-l} 

s {n~,,,l (p;-1) }/{n~ .. 1 (p1Ll)} 

= TT~,,,1[(p;-ll/(p1i-1l] 

s (pj-1)/(pj-1) [for some j such that ej22l 

s 1/4. 

IWnl/(n- U s 1/4 

~ IWnl s ¾(n- ll. 

□ 

Let n=p1Lp1Z· ... ·p~z where_ z is any positive integer such that z~2. 

thee; are al I positive integers (lsisz) such that at least one ej (lsjsz) 

is odd, and the P; are al I distinct odd prim~s (p;>2). If 

A .. {ae7l I lsa<n and (a,n)-1 and a<n-l)/Z=(~)<mod n)} 

and 

B•{ae7l I lsa<n and (a,nl•l and -a"" 1=Umod n)} 

then A i 8. 

Proof of Theorem 2: 

It is c I ear that any e I ement of A is an e I ement of B and thus Ag3. 
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It therefore only remains to be shown that there exists some element of B 

which is not an element of A. The proof of this fact will be broken into 

t1-10 parts: 

1) There exists some Pj Usjsz} such that ej is odd and the highest 

power of 2 dividing <prll/2 is strictly less than the highest power of 2 

dividing n:..1. 

2) There exists some Pj Clsjsz) such that ej is odd and the highest 

po1-1er of 2 dividing (pj-1)/2 is greater than Qr. equal to the highest power 

of 2 dividing n-1. 

Case (1) :-

We first prove the existence of a ceB such that (~)--1. 

Let t be the highest power of 2 dividing (pj-1)/2. [te{2°,21, • •• JJ 

We then have that 

(2.0) 

(2. 1) 

· ti (pj-1)/2 and 2t((pj-l)/2 

~ tln-1 and 2tln-1. 

No1-1 let b be such that bt=-l(mod pjj). 

We prove the existence of such a b by induction on t as fol !or.is: 

If we let b=-1, then bt=(-l)t=-l(mod pjj). 

For t=25 (s>0): 

Assume there exists ab' such that (b')t/Z=-l(mod pjj) and ue 

w i I I sho1-1 that there exists a b such that b t=-1 (mod pjj) [Note - t/2 

1-1i I I be a positive integer since ts2 5 (s>0)]. 
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If 1-1e let b be such that b2=b'(mod p~j), then from the definition 

of b', 

Thus 1-1e must s imp I y sho1-1 that b' is a quadratic residue modu Io 

P}j· But, b' is a quadratic residue modulo p~j if and only if b' is a 

quadratic residue modulo Pj~ Further, b' is a quadratic residue 

modulo Pj if and only if: 

(Q'_)=(b') (Pj-l)/Z=l (mod Pj). 
PJ . 

From (2.0) and the definition of b', ho1-1ever, 

(b') (Pj-_l)/Z=(b') t(k3)=(b') Z(t/Z)(k3) 

= ( (b') t/2) Z( k3 )= (-1) Z( k3 >:1 k3=l (mod p j) • 

[for some positive integer k~ 

Thus 1-1e conclude that such ab does in fact exist. 

No1-1 let c be such that: 

(2.2) 
( c=b (mod p3j) 
I 
\ 

l c=l(mod p~i) [for lsisz and i;tj]. 

Since the moduli of the congruences (2.2) are .all relatively prime in 

pairs, 1-1e can apply the Chinese Remainder Theorem to compute such a 

Further, it can easily be sho1-1n that 

Pj4C ~nd 

P;(c [for lsisz and i;tj]. 
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Thus .none of the factors of n (other than 1) ~ill divide c and therefore we 

have 

(2.3) (c,n)xl and lSc<n. 

From (2.2), however, 

c"-1=1 (mod P1 1) [for lsisz and i;,tj] 

and from (2.1) and the definition of b, 

c"-l=b"-l=bZ(t)(k4)=(bt)Z(k4)=(-l)Z(k4)=1 k4=l (mod p~j). 

Therefore, 

(2.4) 

[for some positive integer k~ 

(. c"-1=1 (mod P1j) 
<· 
l c"-1=1 (mod p~i) [for lsisz and i;,tj). 

Since the moduli of the congruences (2.4) are all relatively prime in 

pairs, however, we have 

(2. 5) 

Thus, combining (2.5) and (2.3), 

lsc<n and (c,n)=l and c0
•
1=1(mod n) 

We must now show that (~)=- 1. From (2.2) and the definition of(~) (for any 

positive odd prime p),however, 
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Further, from (2.0), (2.2), and the definition of b, 

(~j)=c<Prl)/Z=b(prl)/Z=bt(ks)=(bt) kss(-1} ks=-1 (mod Pj). 

Therefore, 

and so 1-1e have 

[for some positive odd integer ksl 

( (~;)=l [ for l:S i :Sz a.nd i ;II! jl 

< 
l (~)=-1 

Thus 1.1e have proven the existence of a ceB such that (~) ... -1. It now 

remains to demo.nstrate an element of B "'hich is not an element of A. 

Notice, ho1.1ever, that if c<n-l)/Z1-l(mod n), then cf/A and thus ceB while 

c¢A. Other"'ise, if c<n-l)/Z=-l(mod n), then "'e can apply Lemma 2 to obtain 

the desired c'eB, c'f/;A. 

Lemma 2: 

Given a ceB such that c<n-l)/Z=- l(mod n), a c' can be constructed such 

that c'eB and c'f/;A. 

Proof of Lemma 2: 

Let c' be such that: 

c'=l(moc P1i) [for l:Si:Sz and i;ll!j]. 

Since the moduli of the congruences (2.6) are al l relatively prime in 
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pairs, we can apply the Chinese Remainder Theorem to compute such a 

c' S fl~.
1
p,1• 

Further, it can easily be shoMn that 

Pj{C' and 

P;(c' [for lsisz and i ,tj). 

Thus, none of the factors of n (other than 1) will divide c' and therefore 

we have: 

(2. 7) (c',n)-1 and lsc'<n. 

From (2.6) . and the definition of c, hoMever, Me have that 

Therefore, 

(2.8) 

( (c')"-
1=1"- 1=Umod p,1) [for lsisz and i,tj) 

{ 

l {c') n-l=c"-l=(c(n-1)/2) 2=(-1) 2=Umod P1j). 

( {c')"-
1=Umod p11) C·for lsisz and il!l!j) 

{ 
( (c') n-l=l (mod pjJ). 

Since the moduli of the congruences (2.8) are . all relatively prime in 

pairs, hoMever, we have 

(2.9) 

Thus, combining (2.7) and (2.9), we have that 

lsc'<n and (c',n)•l and (c')"-1=1(mod n) 

=> c'eB. 



14 

Once again applying (2.6) and the definition of c, however, we obtain 

Therefore, 

( (c') (n-1)/2=1 (n-1)/Z=l (mod P11) C for 1 s i sz and i ;t! j l 

( (c') (n- l)/Z=l (mod p1i) [for lsisz and i;tj] 
{ 
( (c')(n-l)/Z=-l(mod pjj), 

But, for any pas it i ve integer a, 

a<n- l)/Z=l (mod n) ~ a<n-l)/Z=l (mod P11) [for ill il 

:. {c')(n-l)/Ztl(mod n). 

Further, for any positive integer a, 

Thus. 

·a(n-l)/Z=-1 (mod n) ~ a<n-l)/Z=-1 (mod P1 1) [for ill il 

:. (c') (n-l)/Zt-1 (mod n). 

(c') (n-l)/Zt±l (mod n) ~ (c') (n-l )/Zt(f )<mod n) 

~ c' 'I. A. 

This concludes the proof of Lemma 2 and Case (1). 

Case (2) : 

In this case, ~e can prove directly the existence of an element of B 

~hich is not an element of A. 

Let v be the highest power of 2 dividing (n- 1)/2. 

We then have that 
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vj(n-1)/2 and 2v((n-l)/2 

~ 2vln-l ~ 2vl <prll/2 ~ vi lprll/2. 

Let d be such that dv=-1 {mod p~j). 

We prove the existence of such ad by induction on v as follows: 

For v=2°: 

If we let d=-1, then dv=(-l)v=-l(mod p,j). 

For v=25 (s>0): 

Assume there exists ad' such that (d')v/Z=-l(mod p]j) and we 

L-l i I I shoL-l that there exists a d such that dv=-l<mod P1j) [Note - v/2 

wi I I be a positive integer since v•25 (s>0)]. 

If we let d be such that d2=d'(mod p~j), then from the definit i on 

of d', 

dv=dZ( v/Z )= (dz) v/Z;; (d') v/2=-l (mod P1j) • 

Thus we must s imp I y show that d' is a quadrat ic residue modu Io 

P)j· But, d' is a quadratic residue modulo p]j if and only if d' is a 

quadratic residue modulo Pj• Fu~ther , d ' i s a quadrat i c residue 

modulo Pj if and only if: 

(g~)=<d') (Pj•l)/Z=l {mod Pj). 

From {2.11) and the definit ion of d', however, 

(d') (Pj•l)/Z=(d') v(k5)~(d') Z(v/2)(k5) 

= ( (d') v/2) Z( k5 )= (-1} 2( k5 )=l k&=l (mod p j) • 

[for some posit ive integer k~ 

Thus we conclude that such ad does in fact exist. 
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Now let e be such that: 

(2.12) 
l e=l(mod p1i) [for lsisz and i ;i,ej]. 

Since the moduli of the congruences (2.12) are al I relatively prime in 

pairs. we can apply the Chinese Remainder Theorem to compute such an 

e s n~ .. iP'fi. 

Further. it can eas i I y be shown that 

P;{e [for lsisz and i;i,ej}. 

Thus none of the factors of n (other than 1) wil I divide c and therefore we 

have 

(2.13) (e.n)•l and lse<n. 

From (2.12). however. 

and from (2.10) and the definition of d, 

en- l=dn-i=d2(v)(k7)=(dv) 2(k7)=(-1} 2(k7)=l k7=l (mod p~j). 

[for some positive integer k~ 

Therefore, 

(2.14) 

Since the moduli of the congruences (2.14} are all relatively prime in 
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pairs, ho~ever, we have 

(2.15) 

Thus, combining (2.13) and (2.15), we have that 

lse<n and (e,n)•l and en-l=l(mod n) 

~ e e: B. 

Once again applying (2.12), however, we obtain 

8 (n-l)/2=1(n-l)/2=1(mod p1i) [for lsisz and iJtj] 

and from (2.10) and the definition of d, 

e<n-l)/2=b(n-l)/2=bv(lts)=(bv) lts=(-ll ks=-1 (mod p,J). 

Therefore, 

[for some positive odd integer ka1 

( e<n-l)/2=Umod p~i) (for lsisz and iJtj] 
{ 
\ e<n-l)/2=-l<mod p,J). 

But. for any positive integer a, 

a<n-l)/2=1 (mod n) ~ a<n-l)/2=1 (mod p,i) (for ill i] 

: . e<n-l)/2~1 (mod n). 

Further. for any positive integer a, · 

a<n-l)/2=-1 (mod n) ~ a<n-l)/2=-1 (mod p,i) [for al I i] 

:. e<n-l)/21-1 (mod n). 
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e<n-l)/Z~±l (mod n) ~ e<n-l)/2~(~)(mod n) 

~ e ¢. A. 

Therefore ~e have proven the existence of an eeB such that e,t.A. 

Coro I I ary 2: 

□ 

Let n .. p} l.p}Z .••• -p~z z~2; ei .. 1 Clsiszl; a ll p1 are distinct odd 
- . 

primes. The cardinality of the set Wn satisfies the following relation: 

IWnl s {{n-1) if n i s non-Carmichael 

IWnl s l(n-U if n is Carmichael. 

Proof of Coro I lary 2: 

Let A and B be the sets as defined in Theorem 2, Since n satisfies the 

condi .tions of Theorem 2 and the set Wn is exactly the same as the set A: 

We notice. hri~ever, that Wn and Bare both groups under multiplication (mod 

n) and thus 

{2.16) 

Further, it is clear that IBlsn-1 since there are only n-1 possible values 

of a in the range lsa<n. 
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Therefore, 

NoL-1, let C={ae7l I lSa<n and (a,n)=l}. 

It is clear that any element of Bis an element of C. Further, if n is a 

non-Carmichael number, then by definition there exists some M such that: 

0<w<n and (w,n)•l and w""111(mod n). 

Thus, 

Therefore, if n is non-Carmichael, 

B i C. 

We notice, however, that C is also a group under multiplication (mod n) and 

thus if n is non-Carmichael, 

1B1 s jlCI. 

Further, it is clear that IClsn-1 sjnce there are only n-1 possible values 

of a in the range lsa<n. 

Therefore, if n is non-Carmichael, 

(2.17) 
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Thus from (2.16) and (2.17), if n is non-Carmichael, 

IWnl S .jlBI S jCj(n-1}) • ¾<n-1>. 

We therefore have, 

IWnl S ¾<n-1) if n is non-Carmichael 

IWnl s j(n-1) if n is Carmichael. 

Conclusions 

D 

From Coro I laries 1 and 2, ~e have the result that if n is positive, 

odd, composite and non-Carmichael, 

and if n is positive, odd, composite and Carmichael, 

Therefore, for al I such non-Carmichael n, the probabi Ii ty _of Solovay and 

Strassen's algorithm giving an incorrect ans~er after a single iteration is 

at most 1/4 . Further, for al I such Carmichael n, the probability of Solovay 

and Strassen's algorithm giving an incorrect ans~er after a single 

iteration is at most 1/2 {as ~as also sho~n in (5)). Thus, iterating 

Solovay and Strassen's algorithm r times, using independent random numbers 

at each iteration, actually results in a test for the primal ity of any 

positive odd integer, n>2, ~ith error probability 0 (if n is prime), error 

probabi I ity at most 4-r {if n is composite and non- Carmichael), and error 

probabi I ity at most 2-r (if n is composite and Carmichael). 

Finally , ~e ~ould like to point out that Theorems 1 and 2 can in fact 
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be used to prove much better bounds on IWnl for many different classes of 

integers. (eg. IWnl ~ (n-ll/13 if n is positive, odd and contains as a 

factor a prime to a po~er 3 or greater, IWnl S (n-ll/26 if n is positive, 

odd. not a prime po~er and contains as a factor a prime to an odd poMer 3 

or greater} 
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