
MIT/ICS/'IM- 110

AN ANALYSIS OF PREEMPTIVE MULTIPRCX::ESSOR

JOB SCHEDULING

Jeffrey M. Jaffe

September 1978

An analysis of preemptive multiprocessor job scheduling

Jeffrey M. Jaffe, MIT •

Abstract

The preemptive scheduling of a partially ordered set of tasks is

studied. A class of scheduling heuristics is introduced, and the performance of

schedules in this class is analyzed with respect to the least finishing time
\

optimality criterion. If there are m processors, then the finishing time of

any schedule in the class is at most ✓m + (1/2) times worse than optimal,

independent of the speeds of the processors. Examples are given which indicate

that there are schedules which may be as bad as ✓m-1 times worse than optimal

even for machines with one fast processor.

Keywords. scheduling, maximal usage schedules, worst case performance

bounds, preemption

1. Introduction

The problem of nonpreemptive job scheduling on a machine with m

processors of different speeds was introduced by Liu and Liu [2,3). They

showed that any demand driven or list schedule has a finishing time that is at

most l+(b 1/bm)-(b 1/(b1+ ••• +bm)) times worse than optimal where bi is the

speed of the i
th fastest processor. In a~dition, examples were presented which

showed that demand driven schedules could in fact perform as poorly as the

--- .---------------------------------
• This report was prepared with the support of a National Science Foundation

graduate fellowship, and National Science Foundation grant no. MCS77-19754.

2

bound. This is a discouraging result since a large gap between the speeds of

the fastest and slowest processors implies the relative ineffectiveness of

demand scheduling, independent of the speeds of the other processors or number

of processors.

While there have not been any heuristics studied that improve on [Z,3]

in the nonpreempti ve case, Horvath, Lam, and Sethi [1] have studied the

preemptive version of this problem. They define a "level algorithm" for the

preemptive scheduling of tasks, an algorithm which is a generalization of that

of [4,5]. It is shown in [1], that the level algorithm has worst case

performance between ✓ 1.5m and ../m/8.

In this paper the gap of [1] is reduced, by obtaining an improved upper

bound on the performance of the heuristic. This is accomplished using general

methods that indicate that the 0(../m) behavior of their algorithm results from

the use of preemption - and not from the particular quality of the algorithm.

Specifically, this paper analyzes a class of schedules that includes all

"reasonable" schedules. The class is sufficiently general that any schedule

may be easily transformed into a schedule in the class, where the new schedule

has a finishing time at least as small as that of the original schedule. The

main result is that any such "reasonable". schedule is at most ✓m + (1/2) times

worse than optimal.

Formal definitions of these concepts are provided in Section 2. The

main result is proved in Section 3 and an example is presented in Section 4

that shows that the main result is · almost best possible.

2. Definitions

A task system (i,<J&) consists of:

3

(1) The set i=(T 1, ... ,T r); the elements Ttei are called tasks.

(2) A partial ordering < on r..

(3) A time Junction µ:i-+R.

The set i represents the set of tasks or jobs that need to be executed.

The partial ordering specifies which tasks must ·be executed before other tasks.

The value µ(T) is t_he time requirement of the task T.

The execution of a task system take_s place on a machine with a set of

processors (P={Pi:15,i-5.m}. The processor Pt has an associated speed bt. For

t simplicity, assume b1~b2~ .. -~bm=1. Let Bt denote 'E,j=lbj' the total processtng

power of the fastest i processors;

The execution of a task system by processors of a machine is modelled

by the notion of a schedule. In this paper schedules with preemptions are

considered; that is the processing of a task. may be temporarily suspended, and

resumed at a later time (perhaps on a different processor). A preempttve

schedule for (i,<,µ) is a total function S that maps each task. Tei to a finite

set of interval, processor pairs. If

S(T)={([i 1 J 1],Q 1),([izJz],Qz), ... ,([inJn],Qn)} then

(1) ipJpeR for p=t, ... ,n·.

(2) ip$Jp for p=t, ... ,n and Jp-5.ip+t for p=t, ... ,n-1

(3) Qpe(P for p=t, ... ,n.

For ip-5.t$Jp T is being executed on processor Qp at time t. The time t 1

is the starting time of T, and the time ln is the finishing time of T.

A valid preemptive schedule for (i,<,µ) on a set of processors

{P={Pi:19-5.m} is a preemptive _schedule for (i,<,µ) with the properties:

(1) For all tdl, if two tasks are both being executed at time t, then

they are being executed on different processors at time t.

4

(2) Whenever T <U, the starting time of U is not smaller than the

finishing time of T.

(3) For Tei (with S(T) as above), #,l(T)=((J1-i1)/r(Q1))+ ••• +((/n-tn)/r(Qn))

where r(Q.) is the speed of Q. (i.e. if Q.=P. then r(Q.)=bj).
l · l l J l

Condition one asserts that processor capabilities may not be exceeded.

Condition two forces the obedience of precedence constraints. Condition three

asserts that each task is processed exactly long enough to complete its time

requirement.

The finishing time of a valid schedule is the maximum finishing time of

the set of tasks. An optimal preemp~ive schedule is any valid preemptive

schedule that minimizes the finishing time. For two valid preemptive schedules

S and S ", with finishing times w and w" the performance ratto of S relative to

S" is w/w".

(Notation: The total number of steps required by all the tasks of r is

denoted by 1&(i).)

In this paper the performance of the maximal usage heuristic is discussed.

A maximal usage preemptive scliedule is a valid preemptive schedule satisfying

the following two requirements. The first requirement is that whenever t tasks

are executable, then min(m,i) tasks are being executed. (A task is executable

if all its predecessors have been finished, but the task itself has not been

finished.) The second requirement is that whenever t processors are being

used, it is always the fastest i processors that are in use. It is easy to see

how to transform any schedule S into a maximal usage schedule that has a

finishing time at least as small as that of S.

A chain C is a sequence of tasks C=(U 1, ... ,U 1) with U ,er such that for

all j, 19<l, U / U j+ 1. C starts with task U i- The length of C is equal to

5

T-/=i"CU/. The height of a task Te'r is the maximum over all chains starting

with T of the length of the chain. The height of ('r,<J,&) is the maximum over

all tasks Te'r of the height of T.

While the notion of the height of a task is a static notion which is a

property of ('r,<J&), we also associate a dynamic notion of the height of a

task. with any valid schedule for ('r,<,µ). Specifically, let S be a valid

schedule for ('r,<,14), and let t be less than the finishing time of S. Then the

height of the task Tat the time t is equal to the height of T in the unexecuted

port.ion of the task system (that is, the maximum over all chains starting with

T of the length of the chain, where the length of the chain coI1;5iders only the

unexecuted time requirements).

3. Performance of preemptive maximal usage schedules

When attempting to get a bound in terms of the number of processors in

the machine, we must balance off two factors. There are times when all of the

processors run at approximately the same speed, and it is then desirable to get

a bound in terms of the fastest processor (which is not too much worse than the

slower). On the other hand there are times when there is a large disparity

between the speeds of the processors of the machine, and then lt is desirable

to get a bound in terms of some sort of average of the speeds of the

processors. The first bound obtained is directed towards the latter goal, that

of obta~ning a bound which would still be a relatively good bound in the case

that there is a wide disparity between the speeds of the different processors

of the machine.

6

Lemma 1. Let C:i,<,µ) be a task system. Let w be the finishing time

of a maximal usage schedule S and let w0 be the finishing time of an optimal

schedule. Then wtw0 $.(Bm/B 1).

Proof. Note first that w
0

zµ(i)/Bm. This follows from the fact that the

optimal schedule can do no better thaJJ. executing Bm units of the time .

requirement of- the task system in unit time. Also note that w9'(1")/B 1. This

follows from the fact that the maximal usage heuristic forces the fastest

processor to be in use at every moment before the finishing time. Thus the

ratio between an arbitrary schedule and the optimal schedule is bounded by

The second bound addresses the· goal of being an effective bound in the

situation when the speeds of the processors are about equal (in that case the

bound of Lemma 1 reduces to about m).

Lemma 2. Let (i,<,µ) be a task system. Let w and w0 as in Lemma 1. Then

wtw0 <;,_ t+((m-1)(B 1)/Bm).

Proof. As above, there is a lower bound of µ/Bm on w0 . Let A denote the

height of (i,<,µ). Then w
0

zMB 1 since none of the la units of time requirement

of the longest chain may be executed concurrently. Thus the best that any

schedule can do is to use the fastest processor at each unit of time.

To determine the value of w, let p. denote the amount of time during
' i

which exactly i processors are being used in the schedule S (i=t, ••• ,m). By

definition w=p 1 + •. . +pm. Due to the maximal usage discipline, pl.Bl. units of

7

the ti~e requirement of the task system are executed during the Pt units of

time that exactly i processors are used. Thus p 1B1+ ••• +pmBm=p(J). Solving

for Pm in this equation and substituting for Pm in the equation 'IJJ=p 1+ ... +pm

yields

w=(p 1 + ••• +pm-1)+((µ(T)-(pt B 1+ ... +pm-t 8m-1))/Bm).

Fix an interval of time during which only t processors are being used

(i<m). Assume that there is a single task, T, that is at the greatest height

among all non finished tasks during this time interval. Then T is being

executed throughout this interval. This follows from the fact that at any

point in time the unexecuted task at the greatest height is executable, and so

the maximal usage discipline forces the ex~ution of the task if less than m

processors are being used. Using this fact, it is easy to conclude that when

t<m processors are being used, the greatest unexecuted height goes down at a

rate of at least bi units of height per unit time (since the greatest height

tasks are being executed at a rate greater than or equal to bi). Thus

b 1p 1 + ... +bm-tPm-t sh since t~e total amount that the "greatest height" can

go down during all of the times that fewer than m processors are used is at

most h.

The second bound on the performance of arbitrary maximal usage

schedules may now be derived from the ratio of:

w (p/Bm)+P1 (t-B 1 /Bm)+ ..• +pm-1 (t-Bm-1 /Bm)

s ---
WO max (µ/Bm,h!B 1)

8

The first lower bound on the optimal schedule in the above ratio ls

used only as a comparison to the µ/Bm term in the numerator. After that

comparison multiply numerator and denominator of the remaining fraction by

BmB t to obtain a bound on the performance ratio of:

w

w (B 1)[(p 1)(b 1)(m-1)+ ... +(Pm-1)(bm-1)(l)]

Theorem. Let (i,<,µ) be a task system. Let w be the finishing time

of a maximal usage schedule and let w0 be the finishing time of an optimal

schedule. Then wtw0s-tm + (1/2).

Proof. By Lemmas 1 and 2 wtw0sBmtB 1 and wtw0st+((m-t)B1/Bm). Let r=B,,,1B 1.

Then wtw0 sr and wtw0st+(m-l)/r . . To maximize min(r,t+((m-1)/r)), solve

r=t+((m-1)/r) and get r=(1/2)+./(1+4(m-1))/2. This value of r maximizes

min(r,t+(m-1)/r) since r and l+(m-1)/r are inversely related. Thus

wtw
0

s< 1/2)+-t (t+4(m-t))/2$-lm + (1/2). D

9

4. Achievability of the performance bound

Consider the situation where b1=../m-1 and btt for t>t.

Consider the task system of 2n_ tasks as diagrammed in Figure 1. A node

represents a task and an arrow represents a precedence dependence. The time

requirement of each of the n tasks in the long chain is 1/../m-1. The time

requirement of the other n tasks is 1. An optimal schedule proceeds as

follows. P 1 executes every task in the long chain. Thus m-1 of the tasks in

the long chain require time ((m-1)/../m-1)/../m-1 =1. Meanwhile,

P 2 , ... ,P m execute the t'asks that are not in the long chain. Each

of these processors requires unit time for one of the tasks. If n=m-1 then the

long chain requires unit time as above, but Pm will not finish its task until

two units of . time have passed since its task is not executable until almost one

unit of time elapses. For any value of n the finishing time is similarly

bounded by (n/(m-1))+1.

A "bad" maximal usage schedule first tries to use P 1 on the "non-long

chain" tasks, and P 2 on the chain tasks. Mter time 1/../m-1, Pt finishes the

first non-chain element, and P 2 finishes the first chain element. Repeating

this strategy for each pair of tasks requires time 1/../m-1 for each pair.

Thus the total time for the bad schedule is about n/../m-1 and the ratio

between the finishing times of the "bad" schedule and the optimal schedule

approaches ✓m-1 for large n. D

6. Conclusions

Now that the basis for coomparison of preemptive scheduling algorithms

has been established it would be useful to find a polynomial time algorithm

. . .

10

Figure 1.

11

whose performance is better than O(v'm) times worse than optimal in the worst

case. The level algorithm of [1] is not a candidate as there are known

examples for which it performs ../m/8 time$ worse than optimal. This problem

seems quite difficult.

An easier problem might be to find an algorithm which is provably

better than the worst schedules in this class (for example v'm/2 times worse than

optimal in the worst case). The level algorithm seems like a likely candidate

for this problem. It can be shown (by combining our techniques with those of

[1]) that the level algorithm is never worse than (1/2)+v' (1+4(m-2))/2, but this ls

not a significant improvement over the performance of any maximal usage

schedule.

References

1. Horvath, E. C., Lam, s., and Sethi, R .. . "A Level Algorithm for Preemptive

Scheduling, J ACM 24, 1, (Jan. 1977) pp 32-43.

2. Liu, J. W. S., and Liu, C. L. "Bounds on Scheduling Algorithms for

Heterogeneous Computing Systems," TR No. UIUCDCS-R-74-632 Dept. of Comp. Set.,

Univ. of Illinois, June 1974.

3. Liu, J. W. S., and Liu, C. L. "Bounds on Scheduling Algorithms for

Heterogeneous Computing Systems," IFIP74, North Holland Pub. Co., pp349-353.

4. Muntz, R. R., and Coffman, E. G. Jr., "Optimal preemptive scheduling on

two-processor systems, IEEE Trans. Comptrs., C-18, 11 (Nov. 1969) 1014-1020.

5. Muntz, R. R., and Coffman, E. G. Jr., "Preemptive scheduling of real time

tasks on multiprocessor systems, J ACM 17, 2 (April 1970) 324-338.

