
MIT/I.CS/'IM- 116

APPLICATIONS OF M)[)AL r..cx:;Ic 'IO PR03RAM1IN3

Vaughan R. Pratt

December 1978

Applications of Modal Logic to Programming

Vaughan R. Pratt

Abstract

The modal logician's notion of possible world and the computer scientist's notion of

state of a machine _provide a point of commonality which can form the foundation of a logic of

action. Extending ordinary modal logic with the calculus of binary relations leads to a very

natural logic for describing the behavior of computer programs.

Key words - - ---

Dynamic l~c, logic of programs, semantics of programs, predicate cakulus, modal logic,

referential transparency.

This paper will appear · in a. special issue of Studia Logica devoted to modal logic.

This research was supported by the National Science Foundation under NSF grant nos.

. MCS76-18461 and MCS78--04338.

2

Applications of Modal Logic to Programming ·

Vaughan R. Pratt .

BACKGROUND

Before dealing with the modal logic connection a few words on the general role of

logic in programming may be in order. What makes programming a different activity from

operating a calculator is the use of variables in place of concrete values. The sequence of

keys pressed by the calculator user describes a single computation, while a program describes

a set of computations, using variables as place-holders for values. The meaning of a variable

in a computer program is as for the Tarskian semantics of formulae: the state of the computer

memory at the time the program is executed defines an interpretation of the program variables,

so that the computer always calculates with concrete values.

11'.l confr_a~ to the computer, th~ pr~grammer. _must aspire to·. a- higher order of

calculation in convincing himself that his program works as intended on all possible inputs.

The programmer's problem is that the variables are not interpreted (do not have particular

values) at the time of writing the program. The programmer need not be the only one with this

problem; if a program needs to be audited for any reason (e.g. in verifying that a payroll

program will not transgress the tax laws) then the auditor inherits the programmer's problem.

To deal with the problem one introduces additional calculation rules that work even for

· incompletely specified values, ranging from simple rules such as evaluating x-x as O and x+O

as x, up to more elaborate rules such as induction and quantifier elimination. Logic supplies

exactly the machinery needed for such symbolic calculation.

Connections between modal logic and programming can be made at two levels, 1yntactjc

and semantic. At the syntactic level the modal logician uses such referentially opaque

constructs as "necessary" and "possible," or "compulsory" and "permitted," while the computer

scientist would like to say that his program always leaves the variable x non-negative, or

3

eventually . halts, which can also be viewed as referentially opaque constructs. At the

semantic level there exist natural correspondences between what the modal logician calls a

possible world and the computer scientist calls a state of a machine, and between the modal

logician's relation of accessibility and the computer scientist's program viewed abstractly ·as

a function (or relation in the case of nondeterministic programs) on states.

This paper describes dynamic logic, a system of reasoning about action that represents

one possible application of modal logic to programming that makes the above-mentioned

connections. This is by no means the only such application, and a brief survey of other

applications appears at the end of the paper. The emphasis here on dynamic logic reflects the

author's personal involvement with that system.

The origins of dynamic logic are as follows. In the spring of 1914 I was teaching a

class on the semantics and axiomatics of programming languages. At the suggestion of one of

the students, R. Moore, I considered applying modal logic to a formal treatment of a construct

due to C. A. R. Hoare, "p{a}q," which expresses the notion that if p holds before executing

program a then q holds afterwards. Although I was sceptical at first, a weekend with Hughes

and Cresswell convinced me that a most harmonious union between modal logic and programs was

possible. The union promised to be of interest to computer scientists because of the power

·· : and mailief"l'latic;u elegance of the trea.tm~nt, It also s~emed likely to interest rriodat logicians

because it made a well-motivated and potentially very fruitful connection between modal logic

and Tarski's calculus of binary relations, a connection which in hindsight should have been

studied . in detail many years ago. The system was first described in class notes [26] and was

later published in 1976 [271 The epithet "dynamic" was not applied until [12], the term· being

chosen in ·preference_ to some word suggestive of programs in recognition of the potential of

the. system for reasoning about actions arising in non-programming contexts.

SYNTAX

A language is a set· of expressions. In dynamic logic an expression may be a formula,

a term, or a program. Just as propositional calculus contains only formulae, and first-order

logic only formulae and terms, propositional dynamic logic (POL) contains formulae and

programs, and first-order dynamic logic contains formulae, terms,· and programs.

4

We shall let the metavariables h,h', ... range over expressions, p,q,r, .•. over

formulae, x,y,z, ... and f,g,.:. over terms (the latter being exclusively for terms not of

ground type, i.e. functions and functionals), and a,b,c, .. . over programs (the latter being

for programs not of ground type). We let L = ~UTU? range over languages consisting of

formulae, terms, and programs respectively.

There is no fixed language associated with dynamic logic. Rather one chooses for

study some manageable subset of the following constructions. T he research surveyed below

deals for the most part with mercifully small such subsets.

~: T, ""P, pvq, [aJp, <a>p, ooa, x;y, .. .

T: f(x), ff, 0, x+y, ...

~ : aUb, a;b, a*, a-, p?, x:=?, x:=y, «a.b, ...

In addition one may choose to draw on variables of each kind, propositional variables

P,Q,R, .. . ranging over truth values, term variables X,Y,Z, ... and F,G, ••. ranging over

individuals and functions, and program variables A,B,C, ... ranging over relations on states.

. ,Some of these constructs should be familiar to everyone, particularly T (true} ,., v
·'=•; 0 +. and :'f(~) (ap.plicati~~- 'of t to x). Some readers will also ·recognize U ; * - (the

relational calculus constructs of union, composition, ancestral, converse), and x:=y

(assignment, a programming construct, with x constrained to be a variable}. Modal logicians

should see through the thin disguises of the dual constructs [a]p and <a>p (the role of ''a" is

to name the particular relation of accessibility intended). In fact only oo ff ? :=? and

~a. b should raise questions in the minds of the majority of the readers. The construct ooa

means that the program a may run forever; f~ is the ftJnction satisfying f~i)=x and

f~j)=f(j) for j;i!i {useful for assignments to arrays); p? is a test (useful for synthesizing

various conditiorral constructs in programs); x:=? is random assignment (useful for

defining quantification); and «a.b is the least a that makes a=b (where b is presumably some

program containing free occurrences of the program variable a).

The constructs x=y, 0, x+y, . .. are relevant to dynamic logic o,:aly inasmuch as a full

fledged system of logic for reasoning about action will need these and many more constructs._

We will not mention them further.

5

We adopt a fairly standard set of syntax conventions, for example reading <a>p=>q as

. (<.a>p)=>q and p/\q=>rvs as (p/\q)=>(rvs). Spacing will also .be used judiciously, so that p=>q => r=>s

. is to be read as (p=>q)=>(r=>s).

SEMANTICS

The framework within which we shall embed all our definitions of the meaning of the

constructs we consider is based on the one familiar to modal logicians, using possible worlds

or states as we shall_ call them. A semantic structure for dynamic logic is a quadruple

(L, W, D,µ) where L is .a language, W a universe of states, D a semantic domain, and µ:L...(W➔D)

a semantic function which for each expression ML and state wf W specifies what h denotes in

·Statt w.

When L consists solely of formulae as in the case of the propositional calculus D need

.contain only ·truth values. When L consists solely of ground terms in integer arithmetic, say,

D need contain only integers. When L consists of ground programs, D need contain only

elements (or subsets if nondeterminism is to be treated) of W. When L consists of

combinations of these, D becomes accordingly more complex .

. ·· ·cert'eraliiing a much...:used convention, we write ·µt=h for µ(h)(u) where h is arf
expression and u is a state. Thus ul=p will be a truth value as usual, while ul=x will be an

element of D, possibly an integer or a function, and ul=a may be a state or a set of states

depending on which particular iogic we have. (For readers accustomed to thinking in terms of

binary relations, the binary relation R implicitly assigned to a by µ in this scheme of

things satisfies uRv just when v f ul=a. This assumes the case when ul=a ls a subset of W.)

A formula p has a model S, or is satisfiable, when ul=p is true for some u(;;W of some - --- --
semantic structure S. Furthermore p is valid when "'P is not satisfiable. The theory of a

system with language L is the set of valid formulae of L

We are now in a position to identify some familiar and not-so-familiar logics.

Propositional calculus consists of propositional variables, "' and v (with other logical

connectives being .definable in terms of these). D must then contain true and false, and I'

must satisfy the constraints

6

ul=---p - utlp

ul=pvq - ul=p or ul=q.

(Note that "..," and "v" are in the object language, i.e. the language under study,

while "u," "I=," "=," "or," and the variables p,q, are in the metalanguage, the language we

are using unquestioningly to communicate with in this paper.)

We may remark that the propositional calculus formula p has a model if and only if it

has • a model with. one state.

The theory of propositional calculus is recursive; more accurately, it is complete (to

within log space) in nondeterministic polynomial time. (We include this and other·

computational complexity results for the sake of those familiar with the terminology, which we

shall not define here. See, e.g., [31] or [11) Furthermore a complete Hilbert-type axiom

system can be constructed froni an adequate supply of tautologies together with the rule Modus

Ponens.

We may now make the transition from propositional calculus to modal logic. From our

viewpoint the system K of modal logic extends propositional calculus by adding to L exactly

:-one pFogr:am. v a:r1atile A and the con$truct <a>p · (wh~re· · a ·can only· be A), with u1=·a bltng· a set of

states, with ul=A being otherwise unconstrained, and with µ further satisfying

ul=<a>p - Jv f ul=a such that vl=p.

From the programmer's point of view ul=a is the set of states program a may terminate

in when started in state u, while <a>p asserts of a state u that if program a is started in

u, it · may terminate in a state satisfying p. If deterministic programs were to be. treated

exclusively, ul=a could be taken to be a single state, although then one would need a

distinguished "limbo" state to represent nontermination (failure to reach a final state).

We may introduce [a]p as the abbreviation for ---<a>---p, or (with equivalent effect) as
the construct satisfying ul=[a]p = Vv f ul=a, vl=p. As such it is the dual of <a>p. [a]p

asserts of u that if program a is started in u then if and when it halts p will be true.

7

The satisfiable formula P /\<A)..,p demonstrates that a one-state model will not always

suffice in satisfying a formula of K. This in turn establishes that no formula q of

propositional calculus can express <A>P in the sense that q has the same truth value as that

of <A>P in all states of all semantic structures, since such a q would have to be satisfiable ·

in some one- state model, a contradiction.

The theory of K is recursive [18], and in fact complete in polynomial space [201 A

complete axiom system can be obtained by extending a complete axiomatization of propositional

calculus with the distributive axiom [a](p=>q) => [aJp=>[aJq and the rule of Necessitation,

from p infer [a]p.

Defining the system K via a single variable A leads very naturally to the system K *,
which is K with an inexhaustible supply of program variables A, B,C,... K * by itself is an

uninteresting extension of K for about the same reason that propositional calculus without

logical connectives is uninteresting. The axiomatization of K serves as an axiomatization of

K * without change. However, K * leads us to the core of dynamic logic, the integration of

· program connectives into modal logic. We begin with the three regular connectives, U ; and *··

Union. A natural concept for actions is that of having a choice of which action to carry out.

The ·.action aUb: ··off~rs "t-he · choice o"r· actions · .a. ~r b. The associated · constrairi"t · on µ· is

ut=aUb = ut=a U ut=b.

The validity <aUb>p = <a>pvp, which we may call the union axiom, completely ----
captures union in dynamic logic. This axiom demonstrates that adding union to K * does not

increase expressive power since every formula of K * with U can be translated to one without U.

On the other hand a certain degree of succinctness is obtained as can be seen by conside_ring

<AUB><AUB> .. . <AUB>p, i.e. <AUB>"p, which is not expressible by a K* formula of length less

than 2n, as the reader may verify. (Hint: show that in any such formula .q and for any string·

s of A's and B's of length n there must be a path from the root of q viewed as a ·tree such

that the first n <A> and connectives encountered along that path correspond to s.

Otherwise ~here would be a model of q consisting of n+l states threaded by a path of A's and

B's corresponding to s such that one of those edges could be removed without affecting the

value of any of the subformulae of q, so that q would be true when it should not.)

8

Composition. A familiar concept to programmers is that of executing one program after

another; we may execute first a and then b. The composition of a and b, written a;b,

describes the net effect of executing first a and then b. Formally:

ut=(a;b) = (ut=a)t=b

where Ut=b, for Uc;;;W, is the union of the ut=b's for each u in U.

The validity <a;b>p = (aXb)p, the composition axiom, completely captures composition

· in dynamic logic. Like the union axiom, the composition axiom demonstrates that ; adds no new

expressive power. Unlike the union axiom, which amounts to a distributivity axiom, the

composition axiom deals with associativity, and it does not even improve succinctness.

Iteration. In order to get a program to run for a substantial time some way of executing

programs repeatedly is called for. The most elementary form of repetition is the iteration

(or the ancestral, or reflexive transitive closure) of a, which from the programmer's point

of view means execution of an action an arbitrary number of times. We write a* (a- star) for

the iteration of a. Formally

ut=I .'. ·-=·. {u} : .. · (I · is the-identity actirip, h~~ded for the next .line)

ut=a* = ut=O U a U a;a U a;a;a U ...)

where the ellipsis is meant to go only as far as the natural numbers (no nonstandard models).

Axioms for iteration are not as easy to come by as for union and composition. In fact

when we introduce assignment later we will not be able to ·get a complete axiomatization of

iteration. Without assignment however, we can achieve an axiomatization of iteration as

follows.

[a*Jp ~ p

[a*Jp ~ [aJp

[a*Jp ~ [a*J[a*Jp

p /\ [a*J(p~[aJp) ~ [a*Jp.

9

The second and third of these may be replaced by [a*]p ::> [aJ[a*]p. The fourth

may . be replaced by the .rule, from p=>[alp infer p=>[a*]p.

It is not at all apparent that these axioms generate all the valid formulae of POL

(propositional dynamic logic). The fact that they do was first announced in the Notices of

the AMS by K. Segerberg [34]. Later (Jan. 1918) Segerberg found a lacuna in his proof, which

he repaired some months after. Meanwhile R. Parikh [24] had worked out what seems to be the

first satisfactory proof. The present author [28] and D. Gabbay [11) have both given sketches

of completeness proofs.

It is also not at all apparent that every satisfiable formula has a model with

finitely many states. This was first shown by M. Fischer and R. Ladner [16), who showed by a

filtration argument analogous to the one used to show decidability of monadic predicate

calculus that as few as 2n states sufficed where n = lpl. They also showed that at most n

formulae and programs needed consideration in determining the ex-istence of a model of that

size. This leads to a nondeterministic decision method for satisfiability: guess a structure

of the appropriate size and check whether it can be extended to a model of p. The checking

can be done in time a polynomial in the size of the model, establishing that the theory of POL .

is in NTJM ~(cn) (nondeterministic Turing machine exponential time) for some c. What spoils

. ·this· .mettiod ·for::' p.racticat computation is tha~ the obvious . deterministic version of the

algorithm needs to consider up to 24n models even when only one program appears in ·

the formula. Fischer and Ladner also showed that there was some d)l such that no algorithm

could test satisfiability in less time than dn. The author has recently given an algorithm

that takes deterministic time en for some c [30], meeting the Fischer-Ladner lower bound to

within a polynomial.

At this point it might be worth interrupting the development to review the situation.

We have introduced two types of expressions, formulae and programs. We have specified a

framework within which primitive constructs might be defined, based on the notion of a

semantic structure containing a language, a universe of states, a semantic domain, and a

meaning fu_nction. Using this machinery we have defined as primitives the logical connecUves

~ v <> U ; and *· And we have introduced variables of type formula and program.

10

. Although this· gives us most of the material we need for a zero-order logic of

programs, it contains essentially nothing mathematically novel. The propositional connectives·

date back .to 184-7 (Boole. and DeMorgan) .. The O connective is Lewis's "possibly" connective,

generalized . in the light ~f relational semantics on possible worlds to a set of such

connectives denoting diffe.rent relations. And the binary relation connectives U ; and * are

also well established in mathematics. Thus no component of what we have developed to date ts

novel. What is novel is the combination, both from the mathematical viewpoint as evidenced by

the recent rush of results on .the topic, and from the programmer's viewpoint, most programmers

being of the opinion that a considerable degree of novelty is necessary for the development of

logics that treat programs that manipulate states.

We now proceed with the development.

Tests. Conditionals in a programming language are usually introduced with "if-then-else."

However the rules of reasoning can be simplified by using a "smaller" notion of conditional,

the test, which can be used in conjunction with U and ; to synthesize if-then-else, and with ; ·

and * to form while-do. x>O? is an instance of a test, as is j=Ovp(j)=t(k)?.

A test p? is constructed from a. formula p of the logical !anguage. The idea of a test

- ls- ·.that a.·. corr1put'ation ·ma{ ~roceed ~ast a tes(just when· that" test ev~lu'iites to trtJ~ in the
. . --

current environment, otherwise the computation must block (not reach any final state).

Formally:

ut=p? = {u} if ut=p

{} otherwise.

The test axiom is <p?>q = p/\q.

Used in conjunction with the regular connectives, tests make it possible to define ••if

p then a else b" as (p?;a)U(,.,p?;b), and "while p do a" as (p?;a)*;..,p?. They also make_ it

possible to eliminate one more logical connective as a primitive construct, by permitting pl\q

to ·be the abbreviation of <p?>q.

11

Tests introduce no additional complexity to the problem of deciding satisfiability;

nor do they compromise completeness of the axiom system; the test axiom is adequate to

axiom~Uze tests. · However tests do increase the expressive power of propositional dynamic

logic; there is no formula in test- free PDL equivalent to <(p?;A)*)q, as shown in an

interesting argument by Berman· and Paterson [SJ.

Example. The following gives a simple example of the sort of . problem PDL is useful for.

Consider the two programs "while P do (A;A)" and _"while P do A". (We assume that testing P

has no side-effects, that is, does not cause a change of state.) It is the case that if the

first program can reach a final state when started in a given state, so can the second. This

is true even if A is nondeterministic. (When A is deterministic, "can reach a final state"

means "is guaranteed to halt," or "terminates.") For if not, then P must hold after every

execution of A, whence it holds after every execution of A;A.

This val.id statement about the relationship between the termination of the respective

programs can be .easily stated in PDL, as <while P do (A;A)>T => (while P do A>T, or

---<<(P?;A;A)*;,.,P?>---<P?) ... P?>---<(P?;A)*;~P?>"'<P?>"'P if we were to expand out all our

abbreviations (which we obviously wouldn't want to have to do in actual applications).

·-,FtRS·T ORI>-ER REG:t.JLAR .DYNAMIC "LOGIC

The transition to any first order logic is made when terms are introduced into the

language. A term ·denotes an arbitrary domain element, not merely a truth value as in the

case of a formula, or a set of states as in the case of an· action.

The one term-related concept that we encounter here in connection with programs ·. is

assignment. We shall see both random assignment x:=? and specific assignment x:.=y, where x is

· a term variable (one of X, Y,Z, ...) and y is a term. Both depend on the equivalence relation

Rx on· states; uRx v holds just when ul=z = vl=z for all variables z other than x~ Their

r~pedive definitions are: .

uJ=x:=? = { vluRx v}

u~x:=y = {vluRxv and vl=x = ul=y}

12

The· main role for x:=? is for defining quantifiers: Vx is just (x:=?J. Specific

assignment is a sine qua ~ of conventional programming languages.

Rl
R2

s

The following serve as axioms fo~ these forms of assignment. •

p => Vxp

Vxp(x) => p(y)

[x:=y]p(x) = p(y)

when x does not occur free in p

for any term y

These axioms overly simplify matters. Free occurrences of variables are defined in a

more complicated way in dynamic logic (for example x occurs free in [x:=x+l)x=S but not in

(x:=y+lJx=S or [x:=3;x:=x+1Jx=S). Once this notion is defined ·however, p(y) as used in the

above context can then be taken as usual to mean p(x) with all free occurrences of x replaced

by occurrences of y with the usual precautions.

· Rl says that x-;=? !"lay not change any variables other than x. R2 says that x:=? must

be able to set x to any value namable in the present state by a term y. As such Rl and R2 act

as upper and lower bounds respectively on the interpretation of x:=?.

Those familiar with complete axiomatizations of first order predicate calculus will

have. little difficulty proving its axioms as theorems of the system axiomatized as for K

together with · Rl and R2. The language should omit program variables and specific assignments,

and include the application construct along with term variables of types o0 (considering

Do~D to be the usual notion of the set of individuals in a predicate calculus model) and

Db➔{true,false}. This permits formation of atomic formulae of the form f(x1, ... ,xk), the

application of the predicate symbol f (considered here to be a term variable of type

Db➔{true,false}) to k term variables of type n0. Assignments p:=? must be forbidden. The

rule of Generalization common in Hilbert- style systems is here "generalized" to the rule of

Necessitation. It follows that our axiom system for this language is complete. This

viewpoint of predicate calculus axioms may have some appeal to those comfortable with our use
of K to axipmatize change- of-state.

13

If we now include specific assignment, the amount of logic we have introduced at this

point more than covers that catered for in [15], one of the classic papers on logics of

programs. Not only does it completely subsume every.thing offered in that paper, but it goes

well beyond it in offering constructs to talk about termination and equivalence of programs,

as well _as permitting more than one such program-oriented co~struct as subformulae of a single

formula. In contrast the language of [15] permitted only program-oriented formulae of the form

p{a}q (meaning p=>[a]q), a form which could not be a subformula of other formulae.

The question arises as to the adequacy of the axiomatization of assignment in the

presence of the regular program connecti,ves. The story on this may be found in [12,141. . Once

one has. term variables (including function · and predicate symbols), application, logic~I

connectives, <a>p, * and specific assignment, the theory is complete in Ill [12]. Hence a

finite . axiomatization is out of the question. Refining this a little further, even if the

language is restricted to formulae of the form]x]y[z:=f(z)*Jp where x, y,z are term variables,

f is a function symbol and p is a formula containing no <> constn1ct (and so containing only

quantifier- free first-order formulae), the IIl lower bound still holds . for the corresponding

theory. If the language is restricted to formulae of the form [x:=f(x)*Jp where p is any

first order formula (quantifiers permitted) then the theory is complete in n9. (This

construct is of particular interest from the p«;>int of view of [15), which in essence con1ines

ltse.lf to soch : constructs; the ability t~ prefix "[aJq" with "p=>" where p · is another

first-order formula leaves the n9 result unchanged.)

Two approaches to axiomat_izing this theory that have been considered are to give

enough axioms to -permit translation of any problem into a problem in arithmetic augmented with

uninterpreted function symbols [14], and to give the infinitary rule, from p,[aJp,[aJ[aJp, •••

'infer [a*Jp, essentially what is done in [231 Completeness proofs for both approaches have

been supplied by their proponents.

The expressive power of this language is no more than that of constructive

LC1>lC1>' as can be seen by expanding <a*>p as pv<a>pv<aXa>pv ••• and

applying axiom S to eliminate all assignments, and the axiom for tests to eliminate all tests.

Meyer and Parikh [22] ·have shown that wtien tests are restricted to being first-order formulae,

DL is strictly weaker than constructive L(&)l(&)'

14

Example. We give an example of· a proof of correctn·ess of a program. A traditional example in ·

computer science circles is the problem of computing the factorial function. The program

A:=l; (X>O?; A:=XxA; X:=X- 1)*; X=O? will initialize an accumulator A to 1, and then while X

remains positive mu'ttiply the. accumulator by X and decrement X. When X becomes O the program.

is permitted to halt.

One claim that can be made for the program is that provided X~O initially the program

wi.11 always halt. We may express this as X~O=><a>T where a is the program above. A proof ·

of this. might proceed along the following lines.

N~O/\X=N+l => <b)X=N (where b is the trio of commands within the * part of .a>
N~O/\X=N => <b*>X=O (appealing to the obvious induction principle)

X=O ;::, <X=O?>T

N~O/\X=N .=> <a>T

X~O => <a>T (one might argue this •by taking N to be X)

In addition to merely establishing termination one might wish to show that whenever

the prcigr2,01 halts it leaves the factorial of the initial value of X in A, which we can state

as X=N => [alA=N! (which is true even if X is initially negative, since then a will- never halt.

.We . might·prove this as :follows.

AxX!=N! => [X>O?J(AxX!=N! /\ X>O)

AxX!=N! /\ X>O => tA:=XxA]Ax(X-l)!=N! (using what we know about factorial)

Ax(X-l)!=N! => [X:=X-llAxX!=N!

AxX!=N! => [bJAxX!=N! (putting the above three pieces together)

AxX!=N! => [b*]AxX!=N! (another induction principle)

X=N => [A:=lJAxX!=N! (clearly)

AxX!=N! => [X=O?JA=N! (tak:ing O! to be 1)

X=N => [aJA=N! (putting the above three pieces together)

A more detailed proof than this would obscure the way a dynamic logic proof proceeds.

From a practical point of view this proof already exceeds the level of detail a modern program

verifier would demand to be persuaded of the soundness of an argument. A sensible approach in

building such a verifier is to have a general purpose algorithm for testing whether each

15

inference in a proof is sound, rather than whether the proof fits the axioms and rules of some

axiomatization of the logic. Such an approach permits the user of the verifier to supply
' '

shorter proofs - just liow short depends on how g~ the soundness checker is.

The results of the above two proofs imply the result X=N/\N~0 ::> <a>A=N!. Although the

converse is not strictly speaking true, knowing that the program is deterministic aliows us to

infer the converse. In general, if a is deterministic then <a>p ::> [alp. Dually, if a is

total (has a halting .state corresponding to every initial state), then [alp ::> <a)p.

Assignment~ which is both deterministic and total, satisfies <x:=y)p = [x:.=ylp.

MISCELLANEOUS CONSTRUCTS

Converse. The converse of a, a-, can be viewed as the program a run backwards. Formatty

The converse axioms are p=>[al<a->p and p=>[a-J<a>p. From these axioms one may prove

[a*-]p = [a-*Jp and derive the rule, from p=>[a]q inf'E!r <a-)p=>q. Parikh [24] shows th1t these

axioms alone suffice for a complete axiomatization when POL is augmented with conv~rse.

While converse is not a construct used in ordinary programming, it is of use in

reasoning about P,rograms. Programmers sometimes talk about forward and backward reasoning

abo.ut a program. In forward reasoning one takes an assertion p and a program a that is

started in a state satisfying p, and asks what holds when a halts. The strongest such

assertion is called the strongest consequent of p via a. In backward reasoning one starts

with an· assertion q. and a program a arid asks when progra'"!l a _is guaranteed to terminate. (if at

all) in a state satisfying q. The weakest such condition is called the weakest antecedent of

q . via a.

The weakest antecedent of q via a can readily be seen to be expressed by [alq. What

requires a little more thought is that <a->p expresses the strongest consequent of p via a.

The equi-valid formulae p=>[alq and <a-)p=>q illustrate a certain duality between these two

concepts.

16

Loop. The construct ooa, or loopa, expresses the idea that at leaast one possible computation

of . a can run for ever ("diverge"). l!sing the semantics we have seen so far (namely ul=a is a

subset of W), defining ooa ·can ·be awkward since the semantics appears to leave no trace of

. diverging computations. Nevertheless a fair approximation to the notion may be defined thus.

,,.,ooA

ooaUb

ooa;b

ooa*

-
-

-

(A atomic)

ooa v oob

ooa v (a)oob

<a*>ooa v (a6>)T

These are not meant as axioms to be added to PDL (though in fact the second and third

could be, although the first goes against the principle that any program should be

substitutable for a variable). Rather they define ooa inductively· on the program a. The

meaning of <a(a)>T (not a PDL construct) is that it is true in state u just when then~

exists an infinite path of a's starting from u. (Cycles are permitted, so that the number of

distinct states encountered along such a path need not be infinite.) If models are

constrained so that lut=al is always finite (the "bounded nondeterminacy" of [8]), Koenig's

lemma m~kes <a<a>>T equiyalent to Vn<an>T, the definition of ooa* used in (13].

T ,hose. famiHar . with ·the filtration process of QPJ will -easily- see that ooA* cannot be·
• < • •

expressed in POL For suppose p expresses ooA*. Then arbitrarily long but finite chains of

A's supply models 0f "'P· But the filtration process applied to a sufficiently long such chain

(having more thim 2n states where n is the length of ---p) will identify two states. in the

·chain, producing a model of ooA*. Yet filtration for models of PDL formulae preserves

model- hood, a· contradiction;

Using non-trivial constructions Meyer and Wil"!klmann [21,311 have shown that the oo

construct does not add to the expres.sive power of first-order DL, a quite surprising resulL

D. · Gabbay [correspondence] has proposed the use of the Grzegorczyk axiom for

axiomatizing ooa*, namely "'P A [a*J([a*J(p=>[a*Jp)=>p) => ooa*. In (13] D. Harel and the author

proposed the strictly stronger axiom [a*J(p=><a>p) => (p=>CX>a*) (which actually was given there

in the still stronger form [a*J(p=>(<a>pvooa)) => (p=>(.X)a*)). It is not known whether this axiom

completely axiomatizes oo,

17

E. Dijkstra [8] has developed a logic whose central construct is wp(a,p). Though

h·e gives axioms for wp(a,p), he gives no semantics. However M. Wand has in effect shown that

the weakest model of Dijkstra's axioms assigns to wp(a,p} the definition [aJp/\(a>T """ooa, though

not 1,1sing the dynamic logic terminology. In [13) an axiomatization for first-order DL with 00

is given and shown to be complete when arithmetically valid formulae may be taken as axioms.

Such a system can then be used as a complete axiomatization of the wp construcL These issues

are taken up in greater detail in [14).

Array Assignment. An almost_ universally- used construct in programming languages is

f(x)::::y, the assignment of the value of term y to an elemerit of the array f. A mathematically

tractable w.ay of viewing this constru~t is to consider it to be the assignment f:=fI where

fl is the function derived from f by changing tf:ie value of f at •X to y.

Recursion. . An imperative program may well benefit from being able to call itself recursively.

Such a facility may be conveniently defined via the least fixed point construcL If d(a) is a

continuous function on relations (continuous in the sense that for all sets X of relations

such that X is totally ordered by set inclusion, Ud(X) = d(UX)), then d has a least fixed

point (least w. r. L set !nclusion), denoted aa.d(a). (Some writers use p. for « here, or_

~rite Y(~a. b).) The significance of fixed points is that the form of a recursive definition

·-of ·a program I:> i<:

b = d(b)

where d(b) is some program whose meaning depends on b. The program def~ned by this is clearly

meant to be some fixed point of d ; the significance of "least" is that the na_ive way of

running· such a recursively .defined ·program happens to yield the least fixed poinL

While one might expect that adding recursion to the language increases the difficulty.

of deciding validity, in fact the problem remains within II}. In fact it would take an

inherently intractable construct (e.g. one that worked by appealing to a Il} oracl~) to

make the validity problem any harder than it is for * with assignmenL

18

The bulk of the work done on axiomatizing recursion in dynamic logic appears in CU],

where an arithmetically complete axiomatization of recursion i~ given. No satisfactory

infinitary rule has been proposed for recursion.

OTHER APPLICATIONS OF MODAL LOGIC TO PROGRAMMING

This article has focused on drnamic logic mainly because it is the system the author

is best qualified to describe in detail. There have however been other applications of modal

logic to reasoning abqut programs, and we sketch them briefly here. Van Emde Boas has

surveyed most of this work _ in more detail [9], omitting only the contributions of Bursta11,

Ashcroft and Schwarz.

The first published connection between modal logic and reasoning about programs

appears to ha-ve been made in 1974 by R. Burstall [6], who in the closing section of a paper on

a method ·of proving programs correct introduced the constructs "Sometimes p" and "Always p" in

conjunction with the predicate "At(L)" where L labelled a point in a program. With these

constructs one could say "V n~0[Always(At(Start) implies N=n) implies Always(At(Loop) implies

P=2N-nn. ... One would have access not only to axioms dealing with At. but also to such

familiar axioms as Always(p implies q) and Sometimes p implies Sometimes q. Burstall pointed

out · the connection between possible worlds and machine states-, and suggested that the system

S5 was the modal system closest to his program-oriented system.

-F. · Kroeger [19] has developed a logic of programs based on modal logic in which the

atomic commands are treated as propositional' variables whose truth in a given world represents

the execution of that command when the processor executing the program is in that world.

Again possible worlds correspond to processor states.

E. Ashcroft [1] has developed a programming language in which programming constructs

are represented with assertions. The purpose is to permit reasoning about programs by

manipulating the programs directly· rather than indirectly via a separate logic-oriented

language. The meaning of the language is specified with the help of first-order modal logic.

The semantics uses a Kripke structure with a total ordering on states, so that the extension

of each variable can be taken to be the sequence of values the variable takes on as time · -

passes.

19

P. van Emde Boas and T. Janssen [16,17] have applied Montague semantics and · Montague's

"up" and "down" operators (for mapping between extensional and intensional forms of an

expression) to define the meaning of "pointer" variables, a notion that arises in some modern

progra_mming languages. Constructing a convincing semantics for thts notion appears to present

obstacles of a magnitude not generally enc~untered in defining programming constructs, and no

alternatives to Montague semantics are known for defining this notion in this generality.

All of the above deals with programs whose initial and · final states are deemed the

only significant states as far as reasoning about them goes. What the program does in order·

to get from a given initial state to its final state is considered immaterial. Such logics do

not cover the case of programs whose intermediate states are relevant. A program for

monitoring a · patient's heartbeat, or scheduling other programs for_ execution, or answering a

series of questions, may not be intended to h~lt, yet its behavior at its intermediate states

is very important.

A. Pnueli [25] has. applied temporal logic, in. particular the constructs Gp

(henceforth p) and its dual Fp (eventually p), to the problem of reasoning about such

ongoing processes. Although [25] proposes_ no semantics, Pnueli has indicated (in a talk given

in June 1978) that his formulae should take as values sequences of states.

J. Schwarz [33) has applied Burstall's modal notions of Sometimes and Always to a

method of reasoning about systems of processes operating concurrently. Schwarz's semantics

differs from other semantics in that it · abandons the notion of a single system state, and

instead is based on the idea of an event, which though not new in computer science is

certainly novel in modal logic.

The author has introduced new modalities with non-Kripke semantics [28,291 to treat

such · issues while retaining the syntax (but not the semantics) of the binary relation

calculus. · The semantics is that a program denotes a set of sequences of states (rather than a .

· set of pairs of states as per the usual Kripke semantics) while a formula denotes a set of

states as usual. This work may be of interest to modal logicians interested in problems

clearly within the scope of modal logic yet not amenable to treatment using binary relation

semantics.

20

All of the above work makes explicit the connection with modal logic. There is in

addition ·much · more work on logics of programs that could fruitfully make this connection. Two

such logics worthy of · mention here are Salwicki's algorithmic logic [3,32] and Constable's

logic [1]. Perhaps it should be argued that these logics are already within the dom~in of

modal logic; however the size of the· survey has been. kept manageably small by inclusion only

of those authors making the modal logic connection explicit.

. Bibliography

[l] Ashcroft, E.A. and W. W. Wadge. Lucid, a Nonprocedural Language with Iteration. Comm.

ACM, 20, 7, 519-526. July 1977.

[2] · .de Bakker, J. W., and W. P. de Roever. A calculus for recursive program schemes. In

Automata, Languages and Programming (ed. Nivat), 167-196. North Holland, 1972 • .

[3] Banachowski, L., A. Kreczmar, G. Mirkowska, H. Rasiowa, A. Salwicki. An Introduction

to Algorithmic Logic; Metamathematical Investigations in the Theory of Programs. • In Math.

Found. of Comp. Sc. (eds. Mazurkiewicz and Pawlak), Barrach ·Center Publications, Warsaw. 1971 .

. . C4J , ·. '. · ~asu; ·S. -K. ·an~. R. ·:T. Yeh. · .Strong Verific::aU9n of .Programs. IEEE Trans. ·Software

·Engineering, SE-1, 3, 339-345. Sept. 1975.

[SJ · · Berman, F. and M. Paterson. Test-Free Propositional Dynamic Logic is Strictly Weaker

than PDL. T.'R. 7'7-10-02, Dept. of Computer Science, Univ. of Washington, Seattle. Nov.

1977.

[6] Burstall, R. M. Program Proving as Hand Simulation with a Little Induction. IFIP

Congress, Stockholm, August 3-10, 1974.

[7] Constable, R. L. On the Theory of Programming Logics. Proc. 9th -Ann. ACM Symp. on

Theory of Computing, 269-285, Boulder, Col., May 1977.

21

[8] Dijkstra, E.W. A Discipline of Programming. Prentice-Hall. 1976 -----

[9] . van Emde Boas, P. The Connection Between Modal Logic and Algorithmic Logics. Proc.

M·ath. Found. of Computer Sci., Zakopane, Springer-Verlag Leet. Notes in CS 64, 1-18, 1918.

(10] . Fischer, M.J. and R. E. Ladner. Propositional Modal Logic of Programs. Proc. 9th Ann.

ACM Symp. on Theory of Computing, 286-294, Boulder, Col., May 1977.

(11] Gabbay, D. Axiomatizations of Logics of Programs. Manuscript, under cover dated Nov.

1977.

[12] Harel, D., A.R. Meyer and Y.R. Pratt. Computability_ and Completeness in Logics of

Programs.- Proc. 9th Ann. ACM Symp. on Theory of Computing, 261-268, Boulder, Col., May 1911.

U3] J:-Iarel, D. and V. R. Pratt. Nondeterminism in Logics of Programs. Proc. 5th Ann. ACM

Symp. on Principles of Programming Languages, 203-213, Tucson, Arizona, Jan. 1978.

U4] Harel, · D. Logics of Programs: Axiomatics and Descriptive Power. Ph.D. thesis, Dept.

of EECS, MIT, MIT /LCS/TR-200, May 1978.

tlS] Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM 12, 516- 580, 1969.

[16] Janssen, T. M. V. and P. Yan Emde Boas. On the Proper Treatment of Referencing,

Dereferencing and Assignment. Proc. Int. Cong. on Automata, Languages and Programming, Turku,

Springer-Verlag Leet. Notes in CS 52, 1977.

U7] Janssen, T. M. v.· and P. Yan Emde Boas. The Expressive Power of Intensional Logic in

the Semantics of Programming Languages. Proc. Math. Found. of Computer Sci., Springer-Verlag

Leet. Notes in CS 53, 1977.

Cl8] Kripke, S. A. Semantical analysis of modal logic I: normal modal propositional

calculi. Zeitschr. f. Math. Logik und Grundlagen d. Math., 9, 61-96. 1963.

22

{19) Kroeger, F. Logical Rules of Natural Reasoning about Programs. In Automata,

Languages and Programming ~ (ed. Michaelson, S. and R. Milner), 81-98. Edinburgh University

Press, 1976.

[20) Ladner, R.

Propositional Logic.

The Computational Complexity of Provability in Systems of -Modal

SIAM J. on Computing, 6, 3, 461-480. Sept. 19'1'1.

[21) Meyer1 A.R. Equivalence of DL, DL+ and ADL for Regular Programs with Array

Assignments. Unpublished report, 'MIT. August 1971.

[22) Meyer, A. R. and R. Parikh. Definability in -Dynamic Logic. Talk given at NSF-CBMS

Research Conference on the Logic of Computer Programming, Troy, N. Y., May 1978.

[23) M irkowsk a, G. On formalized systems of algorithmic logic. Bull. A cad. Pol. Sci.,

Ser. Sci. Math. Astr. Phy.s. Vol. 22. 421-428. 1974.

[24] Parikh, R. A Completeness Result for PDL. Proc. Math. Found. of Computer Sci.,

Zakopane, Springer-Verlag Leet. Notes in CS 64, 1978.

· [251 Pnaeh, · A. The Temporal Logic of Programs . . 18th IEEE Symposium on Foundations of

Computer Science, 46-57. Oct. 1977.

[26) Pratt, V.R. Semantics of Programming Languages. Lecture notes for 6.892, AprU 1914,

M.I.T.

[27] Pratt, Y. R. Semantical Considerations on Floyd-Hoare Logic. Proc. 11th Ann. IEEE

Symp. on Foundations of Comp. Sci., 109-121. Oct. 1976.

[28] Pratt, V.R. A Practical Decision Method for PropQsitional ~ynamic Logic. Proc. 10th

Ann. ACM Symp. on Theory of Computing, 326- 337, San Diego, Calif., May 1917.

[29] Pratt, V. R_. Process Logic. Proc. 6th Ann. ACM Symp. on Principles of Programming

Languages, Jan. 1979.

23

[30) Pratt, V. R. A Near-Optimal Me~hod for Reasoning about Action. MIT LCS Technical

Report TM-113, Oct. 1978.

{311 Rustin, R. Computational Complexity. Courant Computer Science Symposium 1,

Algorithmics Press, New York, N. Y.., 1973.

[321 Salwicki, A. Formalized Algorithmic Languages. Bull. Acad. Pol. Sci., Ser. Sci.

Math. Astr. Phys. Vol. 18. No. S. 1970.

[331 Schwarz, J.S. Event Based Reasoning - A System for Proving Correct Termination of ·

Programs. In Automata, Languages and Programming 3 (ed. Michaelson, S. and R. Milner), - -
131-146 .. Edinburgh University-Press, 1976.

[341 Segerberg, K. A Completeness Theorem in the Modal Logic of Programs. Preliminary

report. · Notices of the AMS, 24, 6, A-5S2. Oct. 1977.

[35] Smultyan, R. M. First-Order Logic. Springer-Verlag, Berlin. 1968.

[36] Wand, M. A New Incompleteness Result for Hoare's System. Proc. 8th ACM Symp. on

.'Theory ·of Computing; 87-91. Hershey, t>enn. May 1?76; ·

[37] · Winklmann, K. Equivalence of DL and DL+ for regular programs. Manuscript, Lab. for

Comp. Sci., M. I. T. 1978.

