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ABSTRACT

We propose a new kind of data dependencies called algebraic dependencies,
which generalize all previously known kinds. We give a complete axiomatization of
algebraic dependencies in terms of simple algebraic rewriting rules. In the process
we characterize exactly the expressive power of tableaux, thus solving an open
problem of Aho, Sagiv and Ullman: we show that it is NP-complete to tell whether
a tableau is realizable by an expression; and we give an interesting dual interpreta-
tion of the chase procedure. We also show that algebraic dependencies over a
language augmented to contain union and set difference can cxpress arbitrary
domain-independent predicates of finite index over finite relations. The class of
embedded implicational dependencies recently — and independently — introduced
by Fagin is shown to coincide with our algebraic dependencies. Based on this, we
give a simple proof of Fagin's Armstrong relation theorem.
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1. INTRODUCTION

The relational model for databases [Codd 1970, Ullman 1979] has gained recognition as a
valuable formal framework for understanding the semantics, design, and even implementation, of
databases. At the heart of the research on relational datahases lies the notion of dara dependency.
Data dependencies are domain-independent (i.e.. invariant under consistent renamings of domain
elements) predicates on databases. Starting with functional [Armstrong 1974] and multivalued
[Fagin 1977] dependencies, a dozen of different kinds of data dependencies have been proposed in
the literature [Nicolas 1978, Paradaens 1979, Sagiv and Walecka 1979, and others]. New, more and
more general, kinds of data dependencies have been put forward in a rather arbitrary and heunstic
fashion. This reflected two major frustrations of the research in this area: First, no natural, stable
closure of this process was in sight. Secondly, the elegant complete axiomatizations of functional
[Armstrong 1974] and multivalued dependencies [Been et al. 1977] did not appear to carry over to
the more gencral kinds; thus the further generalizations were futile attempts at “enriching the
language” enough so as to obtain a complete axiomatization.

Two important ideas that appeared to point towards a unified theory are the rableaux of [Aho
et al. 1979], and the related concept of the chase [Maier et al. 1979] as a proof system for data
dependencies. The tableaux, however, were introduced as models of queries. They were known to
be strictly more powerful than the algebraic system that motivated them, and their exact power
remained a mystery. Also, the chase was applied in a rather narrow way to functional and join
dependencies, as a strictly combinatorial process. No connections to the underlying algebraic system
were revealed.

More recently, [Sadri and Ullman 1980] proposed a new kind of data dependencies, the rem-
plate dependencies. Template dependencies generalized most known data dependencies. They are
defined in terms of tableaux, and as a consequence the rules of the chase provide an adequate
axiomatization for them. However, template dependencies failed to model the functional dependen-
cics, in some sense the most natural and fundamental kind. This inadequacy dramatized the fact
that equality had been missing from most attempts at generalizing the notion of data dependencies.
It was this absence of equality that caused an annoying dichotomy between the treatment of func-
tional dependencics on the one hand, and that of multivalued dependencies and their relatives on
the other.

In this paper we outline some new ideas and results that appear to comprise definitive positive
answers to the main quests and open problems of the theory of data dependencies, as exposed
above. We introduce a new kind of data dependency, the algebraic dependency. This dependency
is a natural generalization of all data dependencies existing in the literature (including the functional
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dependencies) and is stated as an algebraic equation with operations projection and join. We
achieve this unified treatment of functional dependencies with other data dependencies by consider-
ing extended relations, i.c., relations with arbitrarily many copies of each column. Because of its
generality and simplicity, the algebraic dependency is a stable, natural concept. We present several
pieces of evidence to this effect. We show that algebraic dependencies are equivalent in cxpressive
power to tableaux — thus solving the open problem in [Aho et al. 1979] — and to algebraic equa-
tions with eguijoins — an operator long forgotten since [Codd 1972]. More importantly, we show
that deductions of algebraic dependencies are axiomatized by an extremely simple and natural set of
algebraic axioms. All past proven (or conjectured) axiomatizations of data dependencies are derived
as tedious special cases from ours. To further reinforce the belief that algebraic identities are a
natural way of stating data dependencies, we show that all domain-independent predicates of finite
index over data-bases can be expressed as algebraic identities, with union and difference allowed in
addition to projection and join.

Our proof of the completeness of our axiomatic system is quite involved, and proceeds in
several stages. It entails understanding the expressive power of tableaux, algebraic tautologies, and
also an algebraic interpretation of the chase. It has some interesting side-products. For example,
we exhibit two algebraic expressions which, although very different in structure, have the same
tableau. We also show that the embedded join dependencies (EJD) are deductively complete, in the
sense that any algorithm for testing whether a set of EJD's implies another EJD can be modified to
work for general algebraic dependencies — thus theoretically justifying the apparent difficulty in
obtaining such an algorithm.

It is well-known (e.g., [Nicolas, 1978]) that data dependencies can be expressed in a fragment
of first-order logic. This fragment has equality, one relation symbol -R- of anty [a(R)l, and typed
variables. Independently of the authors, Fagin [Fagin 1980] studied a further fragment of first-order
logic, which consists roughly of Horn clauses quantified in the ¥ fashion. Fagin called this frag-
ment of first-order logic embedded implicational dependencies, and showed that it generalizes all pre-
viously proposed kinds of data dependencies. Fagin showed that sets of embedded implicational
dependencies are invariant under a version of the Cartesian product. Based on this, he went on to
prove that any set of embedded implicational dependencies possesses an Armstrong relation; that is,
a universal counterexample to any non-valid implication. Fagin's proof of this result is quite com-
plex, and invokes certain results from logic. Fagin did not provide a complete axiomatization of his
class.

Surprisingly, we show that the algebraic dependencies defined in this paper coincide with the
embedded implicational dependencies of Fagin. This testifies to the naturalness of our class. Furth-
ermore, the main result of [Fagin 1980] — the existence of an Armstrong relation — follows very
easily using our algebraic approach (see Section 6).

The remaining of this paper is organized as follows: In Section 2 we introduce an axiomatic
system for expression identities, which is complete for simple expressions. In Section 3 we introduce
extended relations, and prove the equivalence between project-join expressions over extended rela-
tions, project-equijoin expressions, and tableaux. In Section 4 we introduce algebraic dependencies
and an axiom capturing the semantics of extended relations. We show that the axiomatic system of
Section 2 together with this axiom comprise a complete axiomatization of algebraic dependencies.
This relies heavily on the results of Sections 2 and 3. In Section 5 we show constructively that alge-
braic dependencies with project, join, union and set difference can express arbitrary domain-
independent predicates with finite index. Finally, in Section 6 we study the relation of algebraic to
embedded implicational dependencies.
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2. EXPRESSIONS OVER PROJECTION AND JOIN

A relation R is a table. Its columns correspond to arrribures; the set of attributes of R, a(R).
is a subset of a finite set (called the universe), U = {A.B.C...}. The rows of R are called ruples.
The attributes A .B,... have disjoint domains D(A).D(B).... ThusRC [] D(A). If XCa(R). and

Afa(R)
tER, 1y is t restricted to columns of X. The projection wy(R) = {txw€R}. The (natural) join is

Ry M R; = {TE H D(A]Z :::{R'j ERy, and rﬂlﬁ';) ER:}.
A€a(R) | alR,)

We shall deal with expressions over projection and join involving the variable R ranging over
relations on U. If ¢, and &, are expressions, then &;(R) C &5(R) denotes the identity inclusion,
implicitly quantificd over all R. This has meaning only if a(é,(R)) = a(é2(R)). &, = &; means
&, C &; and &, D &,. We are interested in devising a complete axiomatization of the deductive
theory of sentences of the form &; C &, where ¢, and &, are project-join expressions over a single
relational variable R. We shall be interested in axioms that are algebraic in nature, that is, they are
rules that either modify expressions syntactically (e.g., commutativity, associativity, etc.) or state
that a sentence implies a syntactic variant (e.g., monotonicity). In addition to the ordinary modus
ponens

A=>FB

B
B

we also employ the transitivity of set inclusion as a deductive tool.

One important desirable feature of the axioms considered is that their applicability can be
decided in polynomial time by tree isomorphism techniques. This should be a feature of any "rea-
sonable” axiomatic system. A second positive property sought is that the axioms be reasonably "syn-
tactic” and "local”, in the sense that they should be stated in terms of local pattern matching on the
expression tree, and not reflect global or semantic considerations. The axioms Al through A7 that
we are proposing below satisfy these criteria. Furthermore, they can be easily rendered to the for-
mat ooy ALA oy = o, (where oy,..., o4, are sentences and o;4¢'s syntax depends in a
straightforward way on that of oy,...0;) familiar from previous work on dependency theory
[Armstrong 1974, Beeri et al. 1977, Sagiv and Walecka 1979].

It is not hard to see that projection and join satisfy the following identities for all R|.R; and R;

(recall that by writing wx(R;, we are implicitly requiring that XCa(R,). Similarly, R|CR, assumes
that a(R;) = a(R,)).

Al. (Idempotency of Projection)
(@) mx(mp(Ry)) = mx(Ry).
(b) mar) (Ry) = Ry
A2. (Idempotency of Join)
(a) Ry M 7x(Ry) = Ry
(b) iz, (Ry M R2) C R,
A3. (Monotonicity of Projection)
Ry C Ry == wx(Ry) C wx(R3).
A4. (Monotonicity of Join)
R| QR;::-R;NR;QR:NR;.
AS. (Commutativity of Juin)
R1 HR: — RjNRl.
A6. (Associativity of Join)
(R| M R:} ™ RJ = R| M {R: M Rj)
A7, (Distributivity of Projection over Join)
Ll:t X g ﬂ[R;],
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(@) ey (R1 X R2) © 7y gy (Ry X 7y (Ry)).
(b) If a(Ry) N a(R;) C ¥ then equality holds in (a).

Axioms Al-A6 hardly necd any discussion, since they follow directly from the definitions of
the two operations.  Axiom A7, the only one that is not totally tnvial, simply states that projecting
one operand of a join may restrict the common attributes of the two opperands. and therefore
enrich the result of the join. AT7(b) says that if. nevertheless, the common attnibutes remain the
same despite the projection, then the result of the join remains unaffected. We have

Proposition 2.1. Axioms Al-A7 are sound. O

To illustrate the application of the axioms, we will give two examples. In the first one we
denve a basic property of project-join expressions which we will use later on. The second example
shows how the pseudotransitivity rule for multivalued dependencies can be derived from the axioms.

Example 2.1 For all expressions ¢, 7, (R) C &(R) (1).

We prove this property by induction on the structure of ¢. For the basis, & = R, and (1) follows
from axiom Alb. For the inductive step, assume that (1) can be derived from the axioms for all
expressions o with fewer operations than &.

Case | & = myo, for some set of attributes X(=a(d)) and some expression o.

From the inductive hypothesis, 7,y (R) C o(R) is derived from the axioms. From A3 we have
mx(Tawy (R)) C myo(R) = &(R), and from Al we get m,y(R) C o(R).

Case 2 & = o; M o,, for some expressions o, o3, with a(d) = alo)Uale,).

From the inductive hypothesis, 7, (R) € oy(R) and -ﬁ,[ﬁ:],(ﬂj C o2(R). We have now:

Tae)(R) = . by A2, A3
Taa)(RM R) C by A7a

Taie) (Tt )(RIH Ta(e,)(R)) € by A3, A4 and i.h.
mae)(01(R) M o2(R)) = by Alb

o(R) M oa(R) = &(R) . o

Example 2.2 Let us show how we can derive the pseudotransitivity property of multivalued depen-
dencies [Beeri et al. 1977]. This property states that, if X, ¥, Z C U then

X B2 dply XweZ =T,

or, in algebraic terms,

XY HMX(U-XY)C R and

YZH Y(U-YZ) C R imply

X(Z-Y) M XYW C R where W = U-XYZ.
(As is customary, union of sets of attributes is represented by concatenation, and we denote w5(R)
by ).

The sequence of applications of the axioms establishing the implication is shown below. The
expressions are shown as trees.

M = (by A2a)
~N
X(Z-Y) XYW
M = (by A6)

L)
0



/
P Mg C (by ATa)
@) ky
"
/
J‘vz XYW = (by ATb)
xdon Ry
M
Tyz \}ww C (by ASand MVD X —Y)
xwéﬂ\xv
/ﬂ\
%‘,’\'z Xyw C by (A7a,Al)
YZ Y(u-YZ) CR (byMVDY —2Z)

Monotonicity (axioms A3 and A4) are implicitly used almost at every step. Although the proof of
this simple fact looks ad hoc, and quite formidable, we shall describe in Section 4 a systematic pro-
cedure for producing such derivations. O

Do these properties completely axiomatize project-join identities? The answer is "no”, but for
very subtle reasons. To understand why, we will have to introduce tableaux. A tableau T is a map-
ping from relations to relations — a fragment of first-order logic, see [Aho et al. 1979]. For each
A € U we define its standard domain D(A) = {A, ay, a3, ...}. A is called the distinguished symbol
of D(A); ay. as. etc. are called nondistinguished. A tableau T over U is a finite relation
T C D(A)xD(B)x...xD(Z). For example, T = {(a;.B,c)), (A,by.cy), (a3,b2,c3),
(a2.B,c1), (A.B,c1)} is a tableau over {A,B.C}. We represent a tableau as shown in Figure la. The
top row, called the summary s(T) of T, contains all distinguished symbols appearing in T, each in
the corresponding column. The set a(T) of attributes of T is the set of attributes in which T has a
distinguished symbol. Tableaux represent mappings from relations to relations. Let
R C D(A)% ... XD(Z) be a relation with a(R) = U. A valuation p is a mapping from D(A) to
D(A) for each A € U. Then the mapping f; corresponding to the tableau T is defined by

fr(R) = {p(s(T)): p(w) € Rforall w € T},

where p is extended to act on vectors in a componentwise manner. It turns out that every expres-
sion &(R) over projection and join, when considered as a mapping from relations to relations, has a
corresponding tableau T such that, for all R, Jr (R) = &(R). T, is constructed as follows:

1. Tgz={(A,B8,..,2)}
2. T, (s) = Ts, with all occurrences of each distinguished symbol in U—X replaced by a new
nondistinguished symbol
3. le‘M: - T¢| U T¢:.
For example, the tableau of Figure 1(a) can be readily seen to be T, for the expression ¢ of Figure
1(b). Unfortunately, it is shown in [Aho et al. 1979] that not all tableaux are 7 for an appropriate
$. In fact, we shall soon show that it s NP-complete to recognize those that do. Naturally, of
Ty, = Ty, then &y(R) = d2(R) is tautologically true.  Under what circumstances is fr (R) © fr (R)
tautologically true? Let h be a set of mappings from D(A) to D(A) for cach A € U, such that

h(A) = A and A(T») C T\. Then h is called a homomorphism from T; to T;. [Aho et al. 1979]
show the following Lemma:
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Figure 1

Lemma 2.1 fr (R) C fr(R) is tautologically true iff there is a homomorphism from T3 to 7. O

We now return to the question. whether axioms Al to A7 are sufficient for proving expression
identities of the form & (R) C &+(R). It follows from the above discussion that, besides the Axioms
Al-A7 the following is undoubtedly true

T:If Ty = T,, then &1(R) = $1(R).

It turns out that, surprisingly, T is independent of A1-A7. To sec this, consider the two expressions
shown in Figure 2.

"";nr. T
|
"
e
P
s The Tac  Tas
/
4 1, fﬂ\ }
Mg Tac 1T b ™
“I ac Thas ;rM e
/ )
Tec }[“{' I~
ﬂ
}'t} e Thac
flac g
Figure 2

They both have the same tableau, namely the one shown below.
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a; | by | a1
a; | by | o1
ay | by | 2
a; | b3 | C
A | b | e

However, we show below (Corollary 2.1) that they cannot be shown equivalent by Al-A7 alone.
Let & be an expression. Let Cl(4) be the equivalence class of expressions that can be shown
equivalent to ¢ via the axioms Al, AS, A6 and A7(b) alone. In other words, Cl(&) contains all
"simple syntactic variants” of &. All expressions in C/(¢) have the same tableau, T,. We construct
a digraph Dy = (N, Eg) with node set the set N of nondistinguished symbols in Ty, and with
(a;, a;) € E iff the projection that created a; is an ancestor of that which created g; in all expres-
sions in C/(&). For the two expressions shown in Figure 2. the corresponding digraphs are as shown
in Figure 3.

a
2, JH
2 a
a, a3 2 - o @3
bg bf
ba Abs bz "’1-
Cy <

Figure 3

We saw in Lemma 2.1 that &,(R) C &,(R) iff there is a homomorphism & from Ty, t0 Ty .
We define now a restricted version of tautological inclusion. We write &,(R) € &(R) iff there is a
homomorphism & from Ty to Ty such that for all nondistinguished symbols a,, a, of Ty, we have
(@, a)) € Ey, iff @, = a, or Ul(u,).h(u,)) € kg, 0r I(er,) is distinguished. & (K) " d(R) stands for
&1 € &:(R) and dx(R) € dy(R).

Lemma 2.2 Axioms Al-A7 are sound even if C is replaced by ¢ and = by =,
Proof By inspection. For example to show that myy (Ry M R3) € mxy (Ry ™M wy(R2)), map the part
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of the right-hand tableau that corresponds to R, to itself via the identity homomorphism, and like-
wise for wy (R:): only map the nondistinguished symbols introduced by m, to those introduced by
7ty in the left-hand side. This homomorphism obviously preserves edges of Dy. O

Theorem 2.1 S‘ui::'po-se that &,(R) C &a(R). but &y(R) Q bi(R). Then &(R) € &2(R) cannot be
proved from Al-AT7.

Proof Since all axioms hold for ¢ as well, and since C is transitive just as C, no proof can distin-
guish between C and €. O

Corollary 2.1 The two expressions &, and ¢; shown in Figure 2 cannot be shown equivalent by Al-
Al.

Proof Obviously &,(R) = $1(R): however, &,(R) # d2(R), since there are only identity homomor-
phisms from T, to T, and back, and still Dy # D, . O

This inability of the axioms to capture all aspects of expression equivalence has its roots at the
inability of project-join expressions to represent arbitrary tableaux. The intricate combinatorics of
this problem are dramatized by the following result.

Thearem 2.2 Given a tableau, it is NP-complete to decide whether it corresponds to a project-join
expression.

To prove the theorem we shall make use of simple tableaux. A repeated symbol of a tableau T
is a symbol that appears in more than one rows. A tableau is called simple if it has at most one
repeated nondistinguished symbol per column.” For example, the tableau of Fig. la is not simple
because it contains two repeated symbols in the first and third columns (A, aa.cy, €3). An expres-
sion is called simple if its tableau is simple. [ASSU] gives an algorithm that determines whether a
simple tableau comes from an expression and constructs such an expression if it does. The basic
ideas behind their algorithm are summarized in the following lemma.

Lemma 2.3 Let T be a simple tableau. Let G(T) be a labeled graph with one node for every row of
T and an edge (u, v) labeled w if in some column the rows « and v have the same nondistinguished
symbol and w has a distinguished symbol. The tableau T' corresponds to an expression if and only if
there is no connccted nontrivial subgraph # of G(T') with all edges of H labeled with nodes in H.

Proof (only if) Suppose that there is a connected subgraph H of G(T) with all edges labeled with
nodes in A4, and suppose that there is an expression & with Ty, = 7. Each row of T corresponds to
a leaf of &, Let x be the lowest common ancestor of all nodes in #. Let vy, v;, ... be the sons of
x, and Fy, F3, ... the subtrees of & rooted at them. From our choice of x, at least two of the F/'s
contain nodes from H. Since H is connected, there is an edge (uy, us) of H with u; and «; belong-
ing to different subtrees, say uy € Fy, u» € F>. Since u; and u; have the same nondistinguished
symbol in some column A, the projection which created this symbol must take place above x; i.e.,
some projection in the path from x to the root does not contain A. Let w be the label of (i), u3).
Since w € H, w is a descendant of x and therefore will not have in Ty a distinguished symbol in
column A.

(if) If the condition of the lemma is satisfied, then the algorithm of [ASSU] succeeds in find-
ing an expression & with Ty, = T. We will describe here briefly. for later use, how such an expres-
sion is constructed. Let Gy, Ga. .... G, be the connected components of G(T): 4 = 2. Let
Ty, T3, ..., T; be the subtableaux of T corresponding to the sets of nodes of the various components.
From T, we construct T," by changing a nondistinguished symbol into a distinguished if it appeurs
also in some other T, Since T is simple this can huppen with at most one symbel for each column
and T cannot have a distinguished symbol in such a column (from the construction of G(T)). Now,
T\, ....,T;' are simple tableaux, and G(T,") is a subgraph of G(T) for each i. Therefore, the 7;"'s

* This definition is slightly more general than the one in [Abo et al. 1979].
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satisfy the condition of the lemma and we can find expressions &, ..., &, such that T, = T,". The
expression & for T is wy(Md,), where X is the set of columns in which T has a distinguished sym-

bol. We call the expression that is constructed in this way, the canonical expression for T. O

Lemma 2.4. Let T be a tableau and suppose that T has at most one repeated nondistinguished sym-
bol in each column of a(T) and at most two repeated nondistinguished symbols in each column of
U = a(T). Then if T corresponds to an expression, there is an expression ¢ = o where
Ty = T and o is a simple expression with a(o) = U.

Proof. Let & be an expression with T, = T. We can assume without loss of generality that all pro-
jections that create distinct (i.e. non repcated) nondistinguished symbols take place at the leaves.
Let A be a column in which T has two repeated nondistinguished symbols ay.a; and let vy v; be the
two nodes in which the projections that create these symbols take place. At least one of the two
nodes, say v;. is not a descendant of the other. If we postpone the projection that creates a, until
the root, then T does not change. Doing the same with all columns of U — a(7T) we get an expres-
sion & = 7 5o, where o issimple witha(o) = U andT, =Ty, =T. O

Let 7 be a tableau as in Lemma 2.4. We construct a graph G(T) as follows. The nodes of
G(T) are the rows of T. G(T) has an edge (u.v) labeled w if in some column & and v have the
same nondistinguished symbol and w has a distinguished symbol. In addition, G(T) has two sets of
edges S,(4), §S:(A) for each column A in which T has two ropeated nondistinguished symbols ay.a;
(A € U—a(T)). §,(A) contains an edge (u,v) labeled w for each pair of rows u,v that have symbol
a; in column A and each row w that has a; in column A, and similarly with §:(A). Lemma 2.4
then implies that 7 comes from an expression if and only if we can delete either §,(A) or Sa(A) for
each column A in which T has two repeated nondistinguished symbols so that the remaining graph
satisfies the condition of Lemma 2.3. The proof of Theorem 2.2 is based on this combinatorial pro-
perty.

Proof of Theorem 2.2.

It is obvious that the problem is in NP: Guess an expression &, construct Ty, and verify that
Ty = T. For the NP-hardness part we shall describe a reduction from the 3-SAT problem (satisfia-
bility of a Boolean formula in conjunctive norma! form with 3 literals per clause). Let Cy.C,.....C,
be the clauscs of a Boolean formula F over the variables x;.x3,...,x,. The universe U has 12p+n
attributes; the first n, X X;,....X, comrespond to the n variables, and the rest are divided into p
groups of 12 attributes each - one group for each clause. We will construct a tableau T over U
such that T corresponds to an expression iff F is satisfiable. The attributes a(T) of T are
U — {X,,....X,}. The tableau T has the form of Lemma 2.4 with two repeated nondistinguished
symbols x; and ¥ in each column X;, i = 1,...,n. For each clause, T has 16 rows. In Figure 4 we
show the symbols of these rows for a clause C = yVy¥y; (where y; = x; or ;) in the columns that
correspond to this clause and X|.X;.X;; the entries in the rest of the columns are distinct nondis-
tinguished symbols.

The portion of the graph G(T) corresponding to the rows for the clause C is shown in Figure
5.

In the figure we have labeled edges due to columns X;, by the nondistinguished symbols rather
than the rows. From our previous discussion, T corresponds to an expression iff deletion of all
edges due to x, or X, for cach § = 1, ..., n, results in a graph satisfying the condition of Lemma 2.3.
Let us associate the deletion of all edges due to v, (v; = x; or &) with the assignment of truth value
1 to the literal v,. We claim that a truth assignment 1 satisfies F if and only if deletion of the sct
S(7) of corresponding edges results in a graph satisfying Lemma 2.3,

fondy if). Let 7 be a satisfying truth assignment for Foand suppose that G = G(T) - S(7)
contains a nontrivial connected subgraph ' all of whose edges are labeled with nokdes in /. G' con-
tains a clique for cach false literal and all these cliques are node-disjoint and disconnected from cach
other. Therefore, in order that H satisfies the previous condition, it must contain at least one cdge
from a clause construction that is not labeled by a literal. Let € = yy V y; V 5 be such a clause.
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By | »n e
B; ¥y2 ‘ ®
B s | .

Dy | »n L

D, ¥3 *

Figure 4

A O denotes a distinguished symbol: a ® denotes a repeated nondistinguished symbol; blank denotes
a distinct nondistinguished symbol.

Case | yy=ys=ywy3=lin~.

Then, C and the A and B nodes are isolated from the rest of G'. Since the edges that connect them
are labeled with E-nodes they cannot be in A. But then none of the other edges (all of them
labeled C) of the construction for € can be either in H.

Case 2 C has a false literal.

Since T is a satisfying truth assignment C has also a true literal. Then for some i = 1,2,3 we have
¥i = 1, ¥+, = 0 (addition is med 3). From the symmetry of the construction we can assume
without loss of gencrality thaf ¥y = 1, vs = 0. Then the nodes D, E|, F, are isolated from the rest
of G'. Therefore. the cdges (C. Az). (A3, B3) are not in H. Deletion of these edges isolates C, A,
By, A3 from the rest of the graph. Therefore. no edge labeled C is in H, and # cannot contain
again any edge from the construction for C that is not lubeled by a literal.

(if). Let 7 be a truth assignment and suppose that deletion of 5(1) leaves a graph satisfying the
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Figure 5

condition of Lemma 2.3. Let C be a clause of F. If T does not satisfy any literal of C, then the
construction for C is a connected graph H all of whose edges are labeled with nodes in H. (Note
that an edge (B8;, D;) has label F,_;). O

It turns out that Theorem 2.2, besides characterizing the complexity of compiling expressions
from their tableau also reveals that most probably there can be no usable axiomatization of expres-
sion equivalence.

Corollary 2.2 Given an expression ¢ it is NP-complete to test whether there exists a ¢' € Cl(d)
such that Ty = Ty,

Proaof In the construction in the proof of Theorem 2.2, two expressions & and &', both having the
same tableau T, satisfy &' € Cl(d) iff & and ¢’ come from different truth assignments for F. The
Corollary now follows from the observation that it is NP-complete to decide, given a Boolean for-
mula F and a truth assignment 7 satisfying F, whether there is another truth assignment that satis-
fiesF. O

Therefore the apparent difficulty in axiomatizing expression equivalence can be viewed as a
consequence of the difficulty involved in transforming an accepting non-deterministic computation
to another by formal manipulations. In the next two Sections we show how to overcome this diffi-
culty by replacing T by another, purcly algebraic, axiom. This difficulty does not arise in the case
of simple expressions . This is reflected in the following result:

Theorem 2.3 Any identity of the form & (R) C &s(R) for simple expressions ¢,, &; can be proved
by Al-A7.

The proof of the theorem proceeds in two steps. At first we show that a simple expression &
can be shown, using the axioms, o be equivalent to the canonical expression for i tableau Ty, and
then we prove the theoremt for dy, by cimomead simple expressions.

Lemma 2.5 Let ¢ be a simple expression and ¢* the canonical expression for Ty, Then ¢ = ¢* can
be shown using Al-AT7.
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Proof We prove the lemma by induction on the depth of ¢. The basis is trivial. For the inductive
step, let & = 7. (b, XNd,M...Md,) where a = a(d) = a(T,). Let Fy, F;,....F, be the trees for
&y,....0,.  If the last projection of ¢ creates in some column A a nondistinguished symbol that
appears in leaves of only one of the F,’s then we move this projection below the join and incor-
porate it into the corresponding &, using A7b. Thus, let us assume that each nondistinguished sym-
bol created in the Jast projection appears in leaves of at least two of the F's. Let M, be the rows of
T4 that correspond 1o the leaves of £, fori = 1,...r. Let T, be the subtableau of T, defined by the
rows of M,, and let 7," be obtained from T, by changing a nondistinguished symbol into a dis-
tinguished if it appears in a row of another M,. From our assumption above, 7}’ is the tableau of
&;. Let Ny,... Ny be the nodes in the connected components of G(T).

Claim 1 For all i, there is a j such that N, C M.
Proof of Claim ! Similar to the proof of the (only if) part of Lemma 2.3. O

Thus, each M, is the union of some N;'s. Let M, = Ny | ...|J N, (Similar arguments hold
for the rest of the M;'s.)

Claim 2 The N,'s are disconnected from each other in G(T,").

Proof of Claim 2 Let v; € Ny, v; € N2 and suppose that there is an edge (vy,v;) labeled u in G(T;').
Then v, and v, have the same nondistinguished symbol b in a column B in which u has a dis-
tinguished symbol. Since (vy,v;) € G(T,), the row u has in T, a nondistinguished symbol &' which
appears also in a row of another M,. Thus, there are at least two repeated nondistinguished symbols
in column B contradicting the simplicity of 7. O

Thus, in G(T,") each N; is a union of connected components. Let &7 be the canonical expres-
sion for T,". By inductive hypothesis, ¢; = &f can be derived from the axioms. From the con-
struction in the proof of Lemma 2.3, & = Tu(r,") {Ei:inl.v;-] where cach ; corresponds to a component
of G(T,'). Using associativity of join and Claim 2, ${ can be transformed to oy = iy (0" X’
P4...4d,") where ;" is the join of the {,'s that correspond to the components whose union is .
Let X, be the set of attributes in which some row in N, has a distinguished symbol or a common
nondistinguished symbol with another N,. a(,’) — X; is the set of attributes in which two rows in
diffcrent components of G(T,") that are contained in N, have a common nondistinguished symbol
that does not appear in any other N;. Thus, [a(d,')-X;] N ﬂ(l!.!;) = (I for all j#i, and we can
replace ;" in oy by =" using A7b. The tableau of =, ;" is obtained from the rows of N; by
changing nondistinguished symbols that appear in other N,’s into distinguished. Let 7, be the canon-
ical form for this expression. The canonical expression for Ty is " = m, (7;Mr;M...7;). By induc-
tion hypothesis, we can derive 7, = myd;" and consequently, oy = myr,)(m¥...7;). Proceeding
similarly with the rest of the M,s we can transform & into w[mwr (7i¥... M%)
M. M (7M. M)

!
LetY, = _Ul a(t;) —a(T,’): ¥, is the set of attributes in which two N,’s in M, have a common

nondistinguished symbol that does not appear in another M,. Using A7b we can move this projec-
tion to the root. Doing the same with the rest of the M;’s transforms ¢ into w,[(7,M...M7;) M. K
(tm™M...M7)] = &° (by A6). O

Proof of Theorem 2.3

Let &, &> be two simple expressions with &, C &,. Let 47. 7 be the canonical expressions
for the tableaux Ty = Ty, Ty, = T>. From Lemma 2.5 we can prove ¢; = &7 and &; = &7 using
Al-A7. Thus, it suffices to prove ¢; C &3. We will use induction on the structure of &',

From Lemma 2.1 there is a homomorphism h from T, to T,. Suppose h(b) = B for a
repeated nondistinguished symbol b of T, in column B. Let 75" be obtained from T'; by changing b
into B. T;' is simple and comes also from an expression since G(T3') is a subgraph of G(73). An
expression Y>' for T»' can be obtained from &3 as follows. Let v be the node of &, in which the
projection that creates b takes place. From the construction of a canonical expression, all



« 13 =

projections that create a nonrepeated nondistinguished symbol take place at the leaves of &3.
Therefore, no projection above v creates a nondistinguished symbol in column B. The expression
U’ is obtained from &3 by including B in all projections at nodec v and its ancestors, Since
hib) = B, B € a(d;) = a(d,) and a(l,’') = a(b7).

We can show &," C &7 using A7 (and A3. A4): Let u be the lowest ancestor of v in &7 such
that the subexpression corresponding to the tree rooted at « has 8 in its attributes. The expressions
¥y and &3 differ at the projections along the path from u to v. Let u; be the son of « in this path
(see Figure 6), and X, the set of attributes of the subexpression of &3 rooted at w;. From the
choice of u, no subtree joined at a node in this path has B in its attributes. Therefore, using A7b,
we can postpone in ¢3 the projection that creates b until 4; while preserving equality.

Figure 6.

Changing then the projection of u; from wy, to 7y 5 (to get ;") will shrink the expression by A7a;
thus, ¥,' C &3.

Let now T, be obtained from T, by changing all repeated nondistinguished symbols b of T
such that h(b) = B into the corresponding distinguished symbols. As above, we can find an expres-
sion Y, with T3 = T and prove that &; C &3. Let ¢; be the canonical expression for 7. From

Lemma 2.5 we can show » = &3, and therefore also &3 C &3, using the axioms.

The restriction of & to the symbols of T.is a homomorphism from T 10 T, that maps_all
repeated nondistinguished symbols into nondistinguished symbols. Let G, = G(T). G; = G(T,).
Let (u,v) be an_edge in Gy then « and v have a common nondistinguished symbol b in some
column B in a(T:). Since i(h) is a nondistinguished symbol, we have that either h(u) = A(v) or
(Alre) i(v)) is an edge of G;. Therefore, the image (under i) of a connected subgraph of G 1s con-
nected.

Let Ny.....N; be the nodes of the connected components of G,, and M,....M; those of G,.
We have, A(N,) T M,, for each i, some j. The canonical expressions for Ty, T, are &; =
w (oM. Koy), and &7 = =, (7 X...H7) where a = a(d3) = al(dy). Using associativity and
commutativity of join we can write &3 as 7 [(o Mo, ) Ko (... Moy )], where the o)s of those N's
that are mapped into the same Af, are grouped together. Let W; be the set of attributes in which
two Ny's mapped into M, have a common repreated nondistinguished symbol that does not appear in
a row mapped to a different M,. Using A7b we can move the projection that creates these nondis-
tinguished symbols below the first join. That is. &7 is transformed into 7, (7,M...5,) (r=!) where
a(7,) is the set of columns in which some N; mapped into M, has (1) a distinguished symbol or (2) 4
common repeated nondistinguished symbol with a row mapped in another M.
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Let X; be the first set of columns and Y, the second set of columns. Note that from the con-
struction of G(T~). Y, N a(Ta) = (& and therefore x n Y = @. The tablcau of 7, is formed by
taking the rows of T, in the N;'s that are mapped to M, and changing repeated nondistinguished
symbols in ¥; into distinguished. The attributes of 7; (1=i=r) are (1) those columns in which a row
of M; has a distinguished symbol, and (2) the columns in which a row of M, has a common nondis-
tinguished symbol with_a row of another A/,. Let X; be the first set of columns and ¥; the second
set. Clearly, we have X; CX,and ¥, CY,. LetZ = X; | ¥;. Let §(r) be the set of columns in
which a row r of T} has distinguished symbols, and F, the family of such sets §(r) for all rows r in
M;. From A2 and Example 2.1 we have & = m,(W%) = m, ({104 [4( ¢ ws(R)]) = (by
AS, A6) ﬂa(EF:}I-ri’). where 7, = T,M (5[3‘ ws(R)). Now, a(s;') = Z;; the tableau of 7, is that of 7,
with some additional rows, each of which has only distinguished and nonrepeated nondistinguished

symbols, and therefore is simple. The tableau of mz7; is obtained from the rows of M, by changing

repeated nondistinguished symbols in ¥, into distinguished and therefore is also simple. Now, &
gives a homomorphism from the tableau of 7;" to that of m,7; (with the new rows in 7, - mapped to

the corresponding rows in the tableau of wz7,). Thus, mz7; C 7," can be proved from the axioms.
We have &7 = w (nX...M7) C (by A2) m(m\M...M7,) C (by ATa) m,(mz 7M. Mmz7,)
C (by A3, Ad) m(r/X..0n) = &1 C éf. O
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3. EXTENDED RELATIONS

Let R be a relation with attributes a(R) = U = {4,8.....Z}. The extension R of R is a rela-
tion with a(R) = U = {A}.By,...Z,A2.B;.....23.A3,...}, and such that R = {(r;...):t € R}, R is
therefore an infinite collection of copies of R. The atinbutes A;.A».... of R are said to be associared
with (or copies of) the attribute A. We can have projection and join applied to extended relations.
We adopt the convention that projection to a finite subset of U is applied first to R. If & and &;
are expressions over U, we write ¢(R) g d5(R) to denote the identify inclusion under the assump-

tion that R is an extended relation, that is, the elements of each tuple of R corresponding to 4,4 ; are
restricted to be the same.

If it appears that by the above definitions we are introducing infinitary operations in our alge-
braic language, we really are not. We could achieve the same effect by considering expressions over
project, join and a new operation called say, duplicate, where duplicare(R) = {ra)x € R). A for-
malism similar to ours, only with a limited number of copies (namely, 2) of each attribute allowed,
was used in [Sciore 1979].

Extended relations can be used to express dependencies that were previously thought of as
non-algebraic. For example, the functional dependency A - B can be written as

'ﬂu,(ﬁ)mﬂm;(ﬁ) < ﬂm,s:(ﬁ)-

Expressions on extended relations play a very importar.: role in our development. To show
their inherent stability as a concept, we prove that they are equivalent in expressive power to two
important existing systems: project-equijoin expressions, and tableaux.

So far, a relation for us was a set of sets of mappings, one for each attribute of U. In the cus-
tomary mathematical sense, however, a relation is a subset of a Cartesian product; that is, the
columns are ordered. We shall use the term ordered relation for these. Our relations will be some-
times called arrributed for distinction.

The equijoin operator was defined by Codd on ordered relations. To compare the power of
equijoin to expressions over extended relations we will associate each column of an ordered relation
with an attribute in U. If R, is an ordered relation with each column associated with an attribute,
and R, an attributed relation with the number of columns of R, equal to |a(R,)|, we say that
R, = R, if we can order the attributes of R, so that the resulting ordered relation is equal to R;.
(Note that this implies that corresponding columns in R, and R, are associated with the same attri-
bute, since the domains are disjoint.) If Ry, R are relations, and I, = {i},....0x}, Iz = {1seeeoja} arE
sets of columns of Ry, R, respectively with columns i, j; associated with the same attribute for
k = 1,...,n, the equijoin of Ry, R on Iy, I is the relation R, !Pj R:= {(1.12) 1ty € Ry, t; € R4,

"2
and 1y = ty}. The columns of R .'>§ R, are associated with the same attributes as in Ry, R;.
3 1”2
Thus, the definition of equijoin includes the notion of repetition of columns. A project-equijoin
expression is an expression built using projection and equijoin over the single variable symbol R
ranging over all relations with |U| columns, each of which is associated with an attribute of U.

Theorem 3.1 (1) If & is a project-equijoin expression. then there is a project-join expression ¢ such
that for all relations R, ¢'(R) = &(R). (2) Converscly, for every project-join expression & there is
a project-equijoin expression & such that for all relations R, ¢'(R) = &(R).

Proof (1) The proof is by induction on the structure of &. The basis (b(R)=R) is trivial. For the
induction step. suppose first that & = mur, for some expression o and set of columns /. By the
induction hypothesis ¢(R) = o'(R) for some o'. Let X be the set of attributes of a(e’) that
comrespond to the columns in f. We take &' = mypo'. If $(R) = oy(R) '_Dj as(R), let o', a2’ be

1“3

such that oy(R) = u,'(E}. oi(R) = u:r:'(!?). By changing the names of some attributes we can
choose ay", oy’ so that a{or)’') N afo;') = X where each attribute in X corresponds to a column in
I, of oy(R) and the corresponding column in /s of oa(R). For each attribute A; in X we introduce
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an attributc A; that does not appear in o’ or o;" and change every projection in o' that includcs 4;
to include also A;. Let 7 be the resulting e:\prcs.sion For every R, 7/(R) is o,'(R) with some new
columns which Jl’L‘ copies of the columns in X. From the definition of the equijoin then,
&(R) = 7i(R) X a3'(R).

{2) Let &' be a project-join expression. Using equijoin of R with itself a sufficient number of
times we can create a relation which contains one column for every attribute A; that appears in ',
o

It will be useful for our further discussion to introduce tableaux also for prcjcct-join expres-
sions over extended relations; we call them extended tableanwx. An extended tableau T is a (usual)
tableau over a finite subset X of U. and defines a mapping f; from relations R over U to relations
over the set a(T) C U of attributes in which T has a distinguished symbol: this mapping is obtained
by taking the projection of R onto X and applying to it the mapping fr defined by T in Section 2 as
a usual tableau. From an expression &(R) we can construct an extended tableau T, over the set X
of attributes which appear in & — note that since projection of R to a finite set of attributes is
applied first, the sct X is finite. The tableau T, is constructed from & as in Section 2 by treating ¢
as a usual expression on a relation symbol over X.

_  To understand how the semantics of the extension of a relation enter into the determination of
fr we must introduce an operation on tableaux called chase [Maier et al. 1979]. If £ is a set of
functional dependencies and T a tableau, the chase of T under Z, chaseg(T) is the tableau obtained
from T applying the following transformation repeatedly whenever possible: If X - ¥ is a functional
dependency in £ and two tuples u.v of T satisfy uy = vy then for every attribute A in ¥ we make u,
and v, identical; if one of them is distinguished, so is the resulting symbol. The fina! tableau
chases(T) is unique up to renaming of nondistinguished symbols. Now let F be the set of functional
dependencies 4; - A; for every two distinct copies A;, A; of the same attribute A of U. We will
show that the semantics of extended relations are captured essentially by these functional dependen-
cies. If T is an extended tableau, the chase of T under F can be constructed in a very simple way as
follows. For every attribute A € U form a graph G,(T) with the tuples of T as nodes and an edge
between two tuples that have the same symbol in some copy of A. For each connected component
K of G,(T) and each column A; of T make the entries of the tuples in X identical; the common
symbol is distinguished if some tuple of K has a distinguished symbol in column A;. In the resulting
tableau chase(T), columns corresponding to copies of the same attribute are identical up to renam-
ing of symbols.
Lemma 3.1 f1(R) = fepuse,)(R)-
Proof [Aho et al. 1979] show that if a relation [ satisfies a set = of functional dependencies then
Jr) = foraseyri(f). The lemma then follows by noting that my(R), where X are the columns of T,
satisfies the set F of functional dependencies. O

If T is an extended relation with set of columns X, and X* is a superset of X, we can form an
(extended) tableau 7' with set of columns X' and a(T) = a(7”) by adding to T' new columns with
distinct nondistinguished variubles. Obwiously, ff(R) = fr(R) for every R. Thus, if T; and 7> are
two extended tableaux with sets of columns X|. X respectively, we can consider them as tableaux
over the same set of columns X, |_J X, by adding new columns. The following lemma says essen-
tially that the set £ of functional dependencies captures the semantics of extended relations, at least
as far as comparison of tableaux (and therefore also expressions) is concerned.
Lemma 32 Let Ty, T2 be two tableaux with the same set X of columns and a(T)) = a(T,).
fr(R) C fr.(R) for every relation R over U if and only if fipue,ir)(f) C fehase,(r o) for every rela-
tion [ over X.
Proof _ - -
(if) fr(R) frh.uf qr;(R) = fdunr,(T)(“xR) for i = 12 = Let [ =myR ;
then fT (R) * Semasep (r)U) € Forsse,rall) = fr(R).

(only if) [Aho ct al. 1979] show that if £ is a sct of functional dependencies then Setaseqr)(1)
C f,mﬂfz,(.f] for every relation / iff Jr (1) € f;,{1) for every relation / satisfying .
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Suppose now that fou,e, r,)(/) g Sehase, (7)) for some relation / over X. Then there is a rela-
tion / over X satisfying F such that f7 (/) ¢ Sr(I). Inl, columns corresponding to renamings of the
same attribute of U are copies of each other. Let R be a relation over U obtained from / by kecp-
ing one column for each attribute of U and adding columns with distinct new symbols for attributes
of U that don't have copies in X. It is easy to see then that f; (R) = fr(=xR) 5{ j}{...,R} =

fr(R). ©

Our proof of the equwalencc between tableaux and extended ev:prf:ssaons is based on a useful
lemma. Call an expression shallow if it has the form —rt(N'l'xR) where the X;'s are finite subsets of

U. That is, a shallow expression is one whose tree has (at most) one node with outdegree greater
than one. A tableau that corresponds to a shallow expression is called also shallow. Each column
of a shallow tableau has either (i) a distinguished symbol and no repeated nondistinguished symbol,
or (ii) one repeated nondistinguished symbol and no distinguished symbol. And conversely, a
tableau T that satisfies these conditions is shallow: Let X; be the set of attributes in which the i-th
row has either a distinguished or a repeated nondistinguished symbol. Then T = T,, where
b= -:r,m(i‘?*rrx'). Thus, shallow tableaux are a very special case of simple tableaux.

Lemma 3.3 Let T be an extended tableau. Then there exists a shallow extended tableau 7" such that
fr(R) = fr(R) for all R

Proof Let T| be the chase of T under F. In T columns corresponding to copies of the same attri-
bute of U are renamings of each other. Therefore, if A,, A; are two copies of the same attribute A,
then the corresponding columns in T have the same number of repeated symbols and in exactly the
same sets of rows. Let ay.as,...,a, be the repeated symbols in a column that corresponds to a copy
of attribute A, and §,.5,,...,5, the sets of rows in which they appear. (One of the a;’s might be a
distinguished symbol.) Suppose that the rows of §y,...,5; have only nondistinguished symbols in the
columns that correspond to copies of A and §;,.....5, have a distinguished symbol in at least one
such column. We introduce & new attributes of U that are copies of A. A row in §,(1=i=k) has a
repeated nondistinguished symbol in the i-th new copy of A and distinct nondistinguished symbols in
the other copies. For each attribute in a(T,) (=a(T)) we change all repeated nondistinguished sym-
bols into new distinct ones. Finally, we delete all old attributes that are not in a(7;). Let T be the
constructed extended tableau. In Figure 7 we show an example of this transformation.

A | 4. | B Ay | A, | B ,
A] dy bl As | ) ‘41 b3 Cy
ay | Ap_ B dg T3 A: B Cs
TI: ay Al bz g (4] o i Al by Ca
a3 a3 bl ay C3 | (g b; Cg
as ay b iy C3 dy by
Figure 7

Blanks indicate distinct nondistinguished symbols.

Clearly, T' is a shallow extended tableau. Let X, X’ be the sets of columns of T (or 7)) and
T’ respectively. Let 7> be obtained from T, by adding for each column A, in X' — X a renamed
copy of an attribute A; € X with all symbols nondistinguished. Clearly, chaseg (73) = T, Let T
be obtained from 7° by restoring the columns of X — X' that we deleted. Now 75 and T'" have the
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same sct of columns. Let Ty = chaseg(T'"). From the construction of the chase that we described
before Lemma 3.1, T; is identical to 7> up to renaming of symbols: just note that for every A € U,

G,(T-) and G,(T"") are both unions of the same disjoint cliques Sy.....5,. Therefore, T5(1) = Ts(/)
for every relation / over X | X', and from Lemmas 3.1 and 3.2 we have fr(R) = fr(R)
= ﬁ‘(.ﬂ] = fn{ﬁ‘ ) = f;--(R) = fr(R) for every relation R over U, D

The tableau T° constructed in the preof of Lemma 3.3 is called the canonical shallow tableau
for T and the corresponding shallow expression &’ is the canonical shallow expression for T. It is
unique up to_renaming some of the attributes that are not in a = a($') = a(T)
b’ = 11,[_5:%_,;'{5)} is characterized by the fact that no X, contains two or more copies of an attri-

bute A € U unless they are all in @ = a(’); furthermore, if two copies A;, A; € a of A belong to
some X, then they are in exactly the same X;'s.

Lemma 3.3 says that the difficulties that arose in the case of usual project-join expressions,
due to the fact that not all tableaux come from expressions. cease to exist when we go to extended
relations since every extended tableau corresponds to an expression (and one of a very simple form
actually) over extended relations.

We will now show a converse to Lemma 3.3 which characterizes the power of (usual) tableaux
in algebraic terms.

Theorem 3.2 Let T be a (usual) tableau. Then there exists a (shallow) project-join expression ¢
with a(d) = a (T) C U such that for all relations R, fr(R) = &(R). Conversely if ¢ is an expres-
sion over extended relations such that a(d) C U, then there is a (usual) tableau T such that
fr(R) = ¢{R} for all relations R.

Proof The first part follows immediately from Lemma 3.3 since every (usual) tableau 7 is also an
extended tableau with f7 = f.

For the second part, let & be an expression over extended relations with a{d) C U. From ¢
we construct an extended tableau T,. Let T, be the chase of T, under F. We have &(R) = f,- (R)

for every B. Let T be the (usual) tableau obtained from T by keeping only one copy of each attri-
butc in U/ (the one with the distinguished symbol if there is one). We claim that fr(R) = j} (R} for

every R. In proof, let R be a relation over U. (1) Letr € _fg- (R). Let X be the sct of mtumns of

T;. There is a valuation p of the symbols of T such thﬂt plw) € -n,,,,(ﬁ'} for all w € Ty, and
t = p(s(T,)). The restriction p' of p to the symbols of T satisfies p'(1) € R for each u € T and
t = p(s(Ty)) = p'(s(7)). (2) Let ¢ € f7(R) and let p be a valuation of the symbols of T such that
p(u) € R for all ¥ € T and r = p(s(T)). Extend p to a valuation p’ of all the symbols of T} by
mapping a symbol in a deleted copy of an attribute A to the image of the symbol that appears in the
same row at the copy of A that we kept. This is possible since columns in T that are copies of the
same ntlrii:rutf: un: renaming of each other. Clearly, p'(w) € wy(R) for each w € T, and

= p(s(T)) = p'(s(T))). O

Another interesting consequence of Lemma 3.3 concerns the complexity of the inference prob-
lem for data dependencies. An embedded join dependency (EID) is a statement of the form
ﬂxtﬂxl{R}N'ﬁx:LRjM“.Nm-ll{RJ] C =x(R). That is, an EID is a statement &(R) C m 4)(R)
where & is a shallow expression. From Lemma 3.3 every expression over extended relations has an
equivalent shallow expression. We say that a set of statements (or dependencies) Z logically implies
another statement o, denoted as £ = o, where £ and o are statements about a single relation R. if
every relation R satisfving = satisfies also o.  The inference problem for a class of dependencies is to
decide whether a set X of such dependencies implies another dependency o in the class, We will
show that the inference problem for dependencies of the form G(R) C w4 (R) is polynomially

L3

reducible to (and thus not significantly harder than) the inference problem for EJD's (on an ordi-
nary relation, not an extension of one).
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At first we must extend the definition of the chase to dependencies of the form &(R) C
wx(R), where & is a project-join expression. Let T be a tableau and o a dependency $(R) C
wx(R). Let T, be a tableau obtained from &(7) by adding one column for each attribute in
a(R) — X with all entries distinct new symbols (i.e. not appearing in 7). An application of the rule
for o to T is the replacement of T by T | Ty. If X is a set of dependencies and T a tableau. the
chase of T under X. chasex(T), is the result of repeated applications of the o-rules for each o € = as
far as possible. Note that chases(T). which might be an infinite relation. satisfies all dependencies
in £. The chase is a procedure that searches for a counterexample to an implication £ o. Let
o = &(R) C wyx(R) and let T be the tableau of . Then £k o iff s(T) € =y (chases(T)) [Maier
et al. 1979, Sadri and Ullman 1980]. If s(T) € =y (chases(T)) then chases(7) does not satisfy o,
and thus it provides a counterexample to the implication £ = . We express this fact as follows,

Proposition 3.1 (The Chase Partial Decision Procedure, [Maier et al. 1979])
Let £ and o be as above. Then Z [ o if and only if 5(T) € chaseg(T). O

In the next section we shall give an interesting dual interpretation of the chase.
To extend the theory of deductions to dependencies of the form &,(R) C -rr_\-(R-). we must
g

somehow capture the semantics of the copies of the attributes of extended relation. Our next
Lemma says that this can be done by a set of functional dependencies. In fact, multivalued depen-
dencies are enough (Lemma 3.6)

Lemma 3.4 Let £ = {$y(R) C mx(R), ..., b4(R) C 7 (R)} and & = &,41(R) C mx_(R). Let T’
and o' be as £ and o with C replaced by C (i.e. with the expressions regarded as applicd to an

ordinary relation). Let F berlhe set of functional dependencies A; - A; for distinct copies of the
same attribute that appear in some expression in Z | J{o}. Then £k o if and only if
UFEG.

Proof Let X be the set of attributes that appear in some o,.

(i). Z' |Y{F} E o' means that every relation / over X that satisfies the functional dependencies F
and &,(f) C myl/) for i = 1,...,n satisfies also ,4(/) C 7y, (7). Let R be any relation over U
satisfyi_ng Z. Then I = wx(R) satisfies F and ' and therefore &,+,(R) = &,+,(/) C ‘ﬂx,_l(f) =
mx,. (R)-

a=]
(only if) Suppose that £’ | ) F ¥ o’. Then there exists a relation / over X which satisfies ' and F
but not o’. Since / satisfies F, any two columns of / that correspond to attributes A;, A;, copies of
the same attribute A of U/, are renamings of each other. Let R be a relation over U formed by

keeping from / one copy of each attribute of U. Then R satisfies 2 but not ¢. O

Lemma 3.5 Let T be an extended tableau (viewed as a relation) with sct of columns X. Let T’ be
obtained from T by adding one new copy of cach attribute in U with any symbols as entrics, and let
Y be the set of columns of 7'. Let F be the set of FD's A; - A; for distinct copics A;, A; € X of the
same attribute and M be the set of MVD's A, -~ A, for A, A; € ¥ copics of the same attribute.
Then chase(T) C wy(chasey(T")).

Proof It suffices to show how an application of an FD-rule in T can be simulated by MVD-rules in
T'. Suppose that the FD-rule A, - A; is applied to two rows wv of 7. Letuy = vy = q;, p = ay,
va, = a;'. Suppose that all occurrences of ;" are replaced by g (a; could be a distinguished sym-
bol). Let w be another row of T with wy = a,'. The row w will be replaced by another row w’

which has g, in the A; column and agrees with w in the rest of the columns. We must show how to
generate from T using the MVD-rules a row whose projection on X agrees with w'. Let Ag be the
copy of attribute A in ¥Y—X. Applying the MVD-rule for A, == A, to tuples w and v of T* we get a
row wy that agrees with v in A, and with w in ¥=A,. Applying the MVD-rule for A; == A; to
tuples u and v we get a tuple vy that agrees with v in ¥—A, and has ¢; in column A, Now, w,
agrees with v, in column A;. Applying the MVD-rule for A; == A; to wy and v; we get a tuple w,
that agrees with wy in ¥—A; and with v; in column A,. Thus, w; agrees with w in Y=A A, and has
a; in column A;. Therefore, its projection to X is w’, O
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As a corollary of Lemmas 3.4 and 3.5 we have
Lemma 3.6 Let T = {(R) C x,(R).....44(R) C my (R)} and @ = dps(R) C mx_ (R). Let ¥
€ A '3 r3 !
and ¢’ be as £ and o with C replaced by C (i.c. with the expressions regarded as applied to an
ordinary relation). Let ¥ contain the attributes appearing in some &, and in addition one new copy
of each attribute in U. Let M be the set of multivalued dependencies (on ¥) A; —— A; with A,
A; € Y distinct copies of the same attribute of /. ThenZF o if and only if 2’ | M F o’.

Proof From Lemma 3.4, £ = o iff £’ | J F I o where F are the functional dependencies 4; - 4,
with A;, A; € X, the set of attributes that appear in the &,'s.

(1) Suppose that Z' [ J M F o'. Let [ be a relation on X satisfying 2’ | | F. Let I' be
obtained from [ by adding one column for each autribute in ¥—X which is a renamed copy of a
column in X that corresponds to the same attribute of U, (Since I satisfies F, all such columns are
renamings of each other). Clearly, !' satisfies ' | F' where F' is the functional form of the
MVD's in M. Thercfore, I satisfics also £’ | J M and ¢'. Thus, [ satisfies also o’. Consequently,
UFEdcadE Fo.

(2) Suppose that £’ | ) F I a'. Let T be the tableau of &,. with set of columns X, and T’
with set of columns Y. The tableaux T and T' satisfy the assumptions of Lemma 3.5. Since
Z' |JF F o, chase,, UF[T} contains a row w whose projection to X,+; is the summary s(T).
Since a(d;) C X for each i, if the rule for o;" = & [Rj c m[[R} can be applied to a set of rows of
T to produce a new row u, then the rule can be applied also to the same set of rows of 7' to pro-
duce a new row u' that agrees with v on X. Combining this observation with Lemma 3.5 we con-
clude that using the rules for £' and the MVDs in M we can generate from 7' a row w' which
agrees with » on X. Thus, s(I")=s(T) € myx {chamru u(T")), and consequently
UM Eo. D

Combining now Lemma 3.6 with Lemma 3.3 we have
Theorem 3.3 Let = = {,(R) C WxL(EL-»-ﬂﬁnfE} C 7wy (R)} and o= &,.1(R) C 7x,.,(R). Then we
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can find a set I' of embedded join dependencies and another EJD v (over some set of attributes ¥)
suchthat £ o ifandonly if I F .

Proof From Lemma 3.3 we can construct for each &, an equivalent shallow expression &;'. Let ¥
contain the attributes that appear in all ¢/'s and in addition one more copy of each attribute of U.
The sct I consists of the set M of MVD's A, —— A, with A, A; € ¥ copies of the same attribute of
U, and the set of EJD's &,'(/) C Trx.{!], for i = l.....n where [ ranges over relations on ¥. The

EIDyis &,.0'(/) C my (7). O

Note that the transformation of the proof of Theorem 3.2 is polynomial. Thus, the inference
problem for dependencies of the form &(R) C #y(R) is within a polynomial factor of the inference

problem for EJD’s. At present, however, |l is not known whether this inference problem is even
deciduble.

Let us return now to the axiomatization of identitics. We showed in the previous discussion
that the functional dependencies in F (which capture the semantics of extended relations by Lemma
3.2) can be_replaced by the corresponding MVD's. at least as far as inference of identities
$(R) C mx(R) is concerned. Let us therefore introduce the following axiom.

L3

AS8: for all X C_a(R), and A, A; copies of the same attribute of U,
175,4‘{3 }M“Hr‘r{ﬂ )= TAA ft'{-R}‘
Note that this axiom is the embedded multivalued dependency A; — A;|X.

Let us see how some obvious (and useful) facts about expressions on extended relations can be
derived from A8 combined with the axioms of Scection 2. If & is an expression we denote by p(d)
the set of attributes that appear in &; a(d) Cp(d). Let &, denote the expression obtained from &
by replacing all occurrences of A in ¢ by X.
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Lemma 3.7 (1) f A, € a(d), A; { p(d), then A4 M = ""’A.M,A, can be proved from Al1-AS8.

(2) IfA; € p(d), A; € p(d), then & = wx(tb,.,#'ﬂ‘), where X = a(d), can be proved from Al-AS.
(3) If A; € p(¢), A, € p($), then myd = wx(basm ), where X = a(d) — A;, can be proved from
Al-AS.

Proof We prove (1) and (2) by simultaneous induction on the structure of .

(1) The basis (& = my, (R)) is Axiom A8. For the induction step suppose that & = wya.
Since A; € a(d), A; € p(d), we have A, € X, and therefore A; € a(o); also A; € p(o). Thus, from
the induction hypothesis for part (1), AAMo = Oasap, Since a(o) N{A, A} = {A} =
Xn{a,A), from ATb we have: AAMmyo = *ﬂ‘fr(A,-A,waa} = -nAix(AJ-AJ-Ma)

“A‘X(UA/A‘AJ) = da/AA)

Suppose now that ¢ =oMr. We have A, €a(o)|Ja(s), A fp(x)p(r). I
A; €a(o) Na(r), then AAM(oMT)=  AAMAAM(OMT) = (AA;Mo)X(AAMT) =
LI A'M-r,l.,,\ A (from the induction hypothesis for (1) ) = &, A

If A; € a(o) — a(7), then from the induction hypothesis for part (2), 7= wx(T4 r4})

= Tasmap since A; £ X = a(T). Thus, A;A;M(oMT) = (A4A,Mo)MT = dd;&ﬁ}NTﬁjﬂﬁ) = ¢'M’M,‘

(2) The basis (b=mwy(R)) follows from Al. For the induction step, the case & = myo follows
also from Al. Suppose therefore that & = oM. If A, € a(d), then from the induction hypothesis
for (2) and Alb we have o = Ca/AA, and 7 = Ta/AA,: Thus, wxd = b = oMt = “AHA#,NTAJAA,
o "!3'.4“.«;41‘.«\J = “X(‘bA/A[A)}'

If A; € a(o) N a(x) (the case that A; € a(o)—a(7) is similar), we have from the induction
hypothesis for (1): bajas, = “A.MA,NTA/M, = AA;MoMr = AA;Mb. Thus, wx(du‘,,_',i’) =
mx(AA;Mb) = my(A,Md) (by ATb since 4; £ a(d)X) = mxd, (by A2 since A; € a(d)) = b, since
X = a(d).

(3) From (2) and Al we have wyd = wx(d),‘lm“;). Let ¢ = ¢A.M,' Now A; € p(b),
A; € p(¥). Thus, again from (2), mx(¥) = Tx(bama ). But duua = bapma. Thus,
wxd = ﬂx(‘ﬂ’a,m‘}t o

Lemma 3.8 Let ¢ be a project-join expression, and let ¢’ be the canonical shallow expression for T.
Then &(R) = &'(R) can be proved by Al-AS8.
L3

Proof We proceed in the tree for ¢ from the leaves to the root changing names of attributes so that
the tablcau of the resulting expression is shallow. Let v be a node of the tree of ¢ and suppose that
we have already modified the subtrees that are rooted in descendants of v so that for each such sub-
tree representing expression o, the tableau T, is shallow, and p(o)—a(eo) does not contain any attri-
butes appearing outside o. Let J be the expression for the subtree rooted at v.

Case 1 U = wyo, where o is the (modificd) shallow expression of the subtree rooted at the
son of v.
For each attribute A; in a(o) — X that appears in another node that is not a descendant of v we
introduce a new attribute A; that appears nowhere clse in the tree.  Using part (3) of Lemma 3.7 we
transform ¢ into &' = -nx(a,,‘l,,“)‘ Note that T is shallow, and p{{')—a(d') does not contain any
attributes appeuaring in the rest of the tree.

Case 2 & = oMt where o and 7 are the (modified) shallow expressions corresponding to the
subtrees rooted at the sons of v.
Since p(o)—a(o) (resp. p(v)—a(7)) does not contain any attributes appearing outside o (resp. 7).
we have p(o) Np(r) = alo) Na(r), and therefore, T, is shallow. Also p(b)—a(l) =
[p(e)—a(o)] | [p(r)—a(z)] docs not contain any attributes appearing outside .

Proceeding bottom-up in this way we transform ¢ to &; with a shallow tableaux. If we move
now all projections in ¢, that crcate repeated nondistinguished symbols to the root, move all
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projections that create nonrepeated nondistinguished symbols to the leaves - possible using A7b since
Ty, is shallow - and use associativity of join to collect all joins in one node we will get a shallow
expression &, for T, .

Let ¢, = ﬂa(wal(E)) where a = a(d;) = a(d). Each columnof T = Ty, has either a dis-

tinguished symbol or one repeated nondistinguished symbol. If two columns A;, A;, copies of A
have a repeated symbol in exactly the same rows (i.e. A; is a renaming of A;) then A, appears in
exactly the same X,’s as A;. 1f A; € a then we can delete A; using part (2) of Lemma 3.7;i.e. dais
o (Tasa (,.‘) for some 7. If two columns A;, A; with A; € a have both a repeated symbol in some row
w, then we can "merge” A; and A, as follows. Let §,, §; be the set of rows that have a repeated
symbol respectively in 4,, A;. We have A, € X, for k € §), A; € X, for k € 53, A, A; £ X, for
k € §,,5;. Since w € 5y N §; we have my (R) = wy (R)MA,A; (by A2 and Example 2.1). Thus,

( 5 L3 s
b=, kﬁlﬂx,(R)]N[kE‘_‘szﬂx,(R)J m.-a;w[“gjjfx,(ml

'7
F

e ll 5 r . 3
£ Lﬁs' (A‘AJNW (R)]] (£e5- 5‘[A,A_,N-rx (R)]] [u!?mgml(m]“Leijﬁxﬁ"*w)]

—_—

by 49) 'rrn[[mp“‘_szm,x.{f)]”[miq_slmr.(i}] [ dtms ) [‘gszm.(i)]].

In the tableau of the last expression the columns A; A; have become identical up to renaming of
symbols. Thus, we can delete A; as above. Continuing this procedure we end up with a shallow
expression U such that the sets of rows in which any two columns A, A; with A; £ a have a repeated
symbol are disjoint. The expression ¢, is the canonical shallow expression & of & up to changing
the names of some A; € a (which can be done using (3) of Lemma 3.7.) O

Using Lemma 3.8 we can show:
Theorem 3.4 All valid identities &,(R) C ¢;(§) are provable from A1-AS8.

Proof From Lemma 3.8 we can transform &, and &, to their canonical shallow expressions &," and
¥5'. Thus, it suffices to prove the theorem for canonical shallow expressions. Let &, &, be two
such expressions and 7', T their tableaux. We can assume that [p(d)—a(d,)] N [p(&b») a(d,)]
= (@; if not change the names of the attributes in p(d;)—a(d,) using (3) of Lemma 3.7.

Let A be an attribute of U and Aj.A,.....A; its copies in p(d;), A;"Ax',....A," its copies in
p(d;). Suppose that Ay = A/',...A, = A, are the copies that are in a = a(d;) = a(ds). Let N,
(resp. M) be the set of rows of Ty (resp. T-) that have a distinguished or repeated nondistinguished
symbol in column A; (resp. A;'). Since &, and &; are canonical shallow expressions we huve
N,NN; =D, unless A, A; € a and N; = N, - similarly for the M/'s. LetT\', Ty’ be T; and T, pad-
ded om with new cnlumnr. of distinct nondm:nvulshed :mnbo!s to X = ,n(d:-]] U p(d2), and let
Ti = chuses(Ty'). T- = chases(T5). From Lemmas 3.2 and 2.1 there is a homomorphism & from Ta
to 7). We will identify a row n of T, (i=1,2) with the corresponding row of T, and leaf of &,. A
column A, (copy of A) of T has onc different repeated symbol for each N, and distinct nondis-
tinguished symbols in the other rows - similarly with 7,. Therefore, for each i = 1,...,1, either
h(M,) C h(N;) for some j, or k(M,) has a single row.

We carry out the following procedure for all 4 € U.

(1) At first we group together the leaves of &, that belong to the same M, ; i.e. we write &, as
a(ToMTm e 1 H...M7)) where 7; for i > m is the join of the leaves in M; and 1, the join of the rest of
the leaves. Since A, appears only in 7; we can insert the projection that deletes A, for i > m into
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the join; i.e. & = w(ToMwz TmsiX... Mmz7) by ATb, where Z, = a(7,)—A,’. Suppose that M,
is mapped into Nj; using (3) of Lemma 3.7 we change A’ into A; in mz7,. After doing this for all
M, with h(M;) C N; for some j, we move the projections to Z;’s back to the root and thereby shrink
the expression by A7a. Let &, be the resulting expression.
(2) Suppose that h(M,) is not in N, for any j. Then A(M,) = {u} for some leaf u of &; whose pro-
jection does not contain any copy of A. We include A,” in the projection at u; since A," does not
appear in any other leaf this preserves equivalence by A7b. Let ¢," be the expression that results
by doing this for all M; that are mupped by h into N,.

We have &' C &; and &," = & provable from the axioms. Every leaf u of &,' (correspond-
ing to a leaf of ¢-) is mapped by k to a leaf h(u) of &,' that contains the copy (or copies if they are
in a) of A that u contains.

Let ¢ and {;, be the expressions that are constructed from &; and &, by doing the previous
procedure for all A € U. We have 2 C ¢, & = &, and every leaf my (R) of &, is mapped to a
leaf -rrrl(_R] of ¢; with X; C ¥,. We replace my by wy, in each leaf of ¢, to get an expression W'
with ¢;" C 2 by A7a. Then we replace identical leaves with one of them to get ;"' = w0 = &'

C ¥:;C &2 (by A2). Every leaf of ¢, is now identical to a distinct leaf of &, ; i.c.

Uy = w(oM1) for some 7. From A2 we have 7 (oM7) C w.(0), and thus &y = &; C ;"' C &,
o
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4. ALGEBRAIC DEPENDENCIES

Definition An algebraic dependency is an assertion of the form

(k) C 6:(R)

where ¢, and &; are project-join expressions. O

Example 4.1 The multivalued dependencies are special cases of algebraic dependencies. In fact, so
are the far more general embedded join dependencies since the EJD on X,....X; embedded in X
can be expressed as

i [, R)X... g (R)) € ma(R).

8]

Example 4.2 We have already seen that the functional dependencies are algebraic. For example,
A - B can be expressed as

w8,8, (s ()X 5,(R)) a8 (R).

We can say, informally, that the language of algebraic dependencies possesses some form of equal-
ity. O

Example 4.3 Transitive dependencies [Paradacns 1979] are algebraic. For example, the dependency
Tr(X,Y,Z) can be expressed as

Tz (er(E)Nﬂrz[E)) ¢ mxz(R).

8]

Example 4.4 Any template dependency [Sadri and Uliman 1980] can be rendered as an algebraic

dependency. Let T be a tableau defining a template dependency. Let ¢ be the corresponding
canonical shallow expression. Then the equivalent algebraic dependency is

#(R) € mar(R).

o

Apparently, the algebraic dependencies are quite general. More importantly. we shall show
that if X J {o} is a set of algebraic dependencies, and furthermore £ |= o (that is. all relations
satisfying X must also satisfy ) then o is derivable from X by Al-8. This strongly suggests that the
notion of algebraic dependency is the natural conclusion of the search for a general axiomatizable
data dependency. /

In order to show the completeness of Al-A8 for algebraic dependencies, we first revisit the
chase (recall Proposition 3.1). The chase is essentially a combinarorial construction of a counrerex-
ample 1o an implication £ F o.

Example 4.5 Let us prove pseudotransitivity of MVD's (recall Example 2.2) by using the chase.
k=2, & = myR)Muyu-mR). &2 = mz(R)M¥7yp-m)(R), &3 = mxz-nMagyw. Wwhere
W= U-XYZ. .

T; is shown in Figure 8(a) - where we have. for simplicity, one attribute for each set of attri-
butes X.Y.Z—Y and W, respectively labeled X,¥.Z and W.

If we apply &, to T3 we obtain the relation (tableau) shown in Figure 8(b); if we apply &- to
that we get the relation. of Figure 8(¢). Since (X.Y.Z,W) € da(dy(Ty)) we conclude that
(X,YZ.W) € chase (T;) 2 &a(dy(T5)). and hence we have shown that £ |= o3, O

We introduce below another Proposition, (cf. Proposition 3.1) which shows the chase under a
different light: as an algebraic construction of a preof of the implication £ F o4,. This point of
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view is central in the proofs that follow,

We call W(R) a substitution of &,.....d, if cither 4(R) = R or if | is some &; applied (recur-
sively) to other substitutions.
Proposition 4.1 (The Dual Interpretation of the Chase)
Let £ and o, be as above. Then, £ k= oy, iff there is a substitution ¢ of &,....4; such that
bi+1(R) C U(R) is a tautology.

Proof 1f such a substitution exists, then, £ [ U(R) C R by monotonicity; thus, £ I ¢y C
Y(R) C R <= op41.

For the other direction, suppose that £ | oy.,. By proposition 3.1, chase (Tys) contains
the tuple (A,B.....Z). We shall assign a substitution &, to each wple t of chase(T; ). If 1 € Ty,
then ¢, = R. Otherwise, r was obtained by applying some &; to tuples 1,....t;. Then &, is defined,
recursively as &, applied to U ,...,0,. Now let & be the substitution associimted with (AB,.... 7).
We claim that &y, (R) € W(R) is a tautology. But this follows from a result of [Aho et al. 1979],
which states that &, (R) C G(R) iff (A.B,....Z) € U(T,.,); and this is true by the construction of
. O

Example 4.5 (continued) To show that {ours} | o3 it would suffice to observe that the follow-
ing inclusion is tautologically true.
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/N ¢

Tz " A
;Txczw) Wi o “/ A w{;rz:'
R / R
} ?"Y \“an-xr)

O

The right-hand expression is recognized as the substitution - of &, and R into &3 - which
corresponds to the tuple (4,8,....Z). O

We now embark on our proof of completeness of our axiomatic system. Recall the set F of
functional dependencies defined in the previous section: £ = {A; - A; :A € U, i,j = 1,2,...}. Asin
Lemma 3.4, a set of algebraic dependencics £ = {$(R) € (R) | i = 1,...,n} logically implies
another dependency o <= d;“.(ﬁ"} = q;,”(iz') if and only if £’ | J F [ o', where £’ and o' are
as Z and o with C replaced by C.

f

Theorem 4.1 Let o; <= &; (R) C ¥;(R), i = 1,....k+1 be algebraic dependencies. Then any impli-
cation £ = {oy,....,04} E nr*,,:can be proved by the Axioms Al-AS.

Proof Let X be the set of attributes that appear in the o;’s. From our previous discussion, £ F o
iff £' |J F & o' where o’ and £’ are dependencies of the form &(/) C ¢(/) where / ranges over
all relations on X. The chase is a decision procedure that can be applied also for dependencies of
this form. In this case, we start with the tableau Ty = T, corresponding t0 &g, (padded with
distinet nondistinguished variables to the set X of attributes). The rule for FD's is as in Section 3,
The rule for a dependency &(/) C W,(7) is as follows. Suppose that there is a valuation p from Ty
into the current tableau 7 — p can map distinguished to nondistinguished symbols, i.e. all we
require is that p(s(Ty)) € &(7). Extend p to the nondistinguished variables of Ty, by assigning to
each one of them a distinet nondistinguished variable that does not appear in T.  An application of
the rule for (/) C (/) is the addition to T of the rows of Ty with this valuation. The chase of
Ty under a set of dependencies is the result of the repeated application of these rules to T; note that
the chase might be an infinite tableau. Now, £' | J £ = o' iff there is a valuation from 7, to
Ch“”x-uf (Ts,.,) that maps distinguished symbols to distinguished symbols (a homomorphism), i.e.
if and only if s(T,, ) € Wys(chases, o (Ts, ).

Suppose now that ' | J F ¥= o’. Then there is a finite n such that the tableau T* that
results after the application of n rules contains the image of a valuation of T, that preserves dis-
tinguished symbols (i.e. a homomorphism). Let us construct the chase by applying the FD's as far
as possible between any two consecutive application of a rule for a dependency of £'. That is, we
have a sequence of tableaux Ty = Ty, . Ty’ Ty, T\ T, Ty, where T)' = chasex(T)) and T4, is
obtained from T;" by a single application of a rule for some o;" € E'. Let x; be the canonical shal-
low expression for 7; (and 77'). From Lemma 3.8 we have ¢y, -—; Xo provable from Al-A8. Since
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there is a homomorphism from T, into T," we have x, € W4+, and from Theorem 3.4 this iden-
£
tity can be proved from Al1-A8. Thus, it suffices to prove that x; C x,+; can be derived from =
£

using A1-A8. Our proof uses essentially the ideas of Proposition 4.1 where the substitution must
take into account that the dependencies are not full.

Suppose that T4, is obtained from 7;" by an application of the rule for dependency o;. For
each attribute 4; in a = a(d;) = a(J;) we introduce one new attribute A," that does not appear in
X ol x;. Let a’ be the set of these new attributes. Let p be a valuation from T, into 7,'. If

%= w,te‘_l].[m-:rr], let 8; be oty U o Mwz |, where Z, contains Y, and those attributes A;" for
[ b | (1) i y
which a row of T, mapped by p into ¢ has a distinguished symbol in A;.

Let E_,—, E,- be &, and ; with the attributes in a renamed into @’. From Lemma 3.7 we have
¢,'H(AE’§‘A:-4:) - [¢} ohar® and ‘I’JN(ADS,A‘A‘ ) - [4:,)‘5““,. Thus, from ¢, % ¥; we can derive

f - -
(using A1-A8) that [¢J]nha' % [tllj}dml._ But _d;J T “f[{d)j]alm'] and -:- “"'[[%]aha']‘
Thus, from Theorem 3.4 we can derive ¢, g ¢;. Let 8; = m,8;,. The valuation p is now a
homomorphism from T‘, into the chase undfer F of T;. Thus, ) < &; C ;. Therefore, from
Axiom A2, 8, = 6, Mw,ﬂ 'r; 8, Nnb,, and mq,, )(0;) C Tats,. )0 Nd.-j) Smce p was a valuation

from T., into T, , the cancmca! shallow expression for wgw," 1(8;) is x; (i.e. the chase of m,, _(6;)
under F will not identify any symbols of T;'). Thus, Xi T Tas,. )(8,). On the other hand the rules
for the FD's will copy the portion of 7, that is in the attributes a’ in the tableau T for

Tace,. (8 ij] into the attributes a. Thcre!‘ore the chaser of T (restricted to X) will be exactly
Tisy', and Xis1 = Ta(s,, )8 Mdu_,] Thus, ¥; E: Xi+1 can be derived from o; and the axioms. O




5. EXPRESSIVE POWER

In this Section we briefly examine algebraic and related dependencies from a model-theoretic
viewpoint. In order to prove an interesting result, we are forced to expand our algebraic language
to contain the operations of union and difference. The goal of this scction is twofold. First, by
exhibiting the power of the expanded language we further justify the usefulness of “equational”
dependencies such as algebraic dependencies. Second. we point the way towards a host of interest-
ing open model-theoretic questions concerning data dependencies.

Let P ¢ 20(A)%PB)* " be 3 predicate on finite relations. We say that P is domain-independent
if, whenever R€P and h is a set of permutations of D(A).D(B), etc. then A(R)€P. If P is domain-
independent, its index is the number of equivalence classes in which P is divided if one considers
R=R' whenever R’ is a "renaming” h(R) of R, as above.

Theorem 5.1 Let P be any domain-independent predicate of finite index. Then there is an expres-
sion & over project, join, union and difference such that

R € P iff dp(R) =R.

Proof Let E\, E,, ..., E,, be the equivalence classes of P. For each E; we are going to construct an
expression ¢; such that for all relations R

_ [R itReg
&(R) = & otherwise

m &
The Theorem would then follow, since |_J €;(R) would be the required expression for P.
j=1
Consider therefore an equivalence class E;. Intuitively, if R€E; then
a. R has a fixed number ; of tuples, and

b.  R's tuples conform to a fixed "pattern”.

Let us first construct an expression &, such that
= R il R has k ruples
R) =& otherwise.
Consider the expression

&'(R) = 7y, (RiMR2.MR, — | RR M( XN R)
. 1sl<j=k i#l#]

Here R; means wo..{ﬁ ), the i copy of R. Then we have
s R if R has at least k wples
&'(R) = &  otherwise

because if R has & tuples 1y, ..., f; then the join contains a tuple (1. 5, ..., &), not contained in the
union; similarly for the tuples (12, fa. ..., . 1y), etc. On the other hand, if R has fewer than &
tuples, then the join is a subset of the union. Finally. we may define

6u(B) = (R-6'(®) - (R-0u-r' ().

Letnow r = {1y, ..., :l’} be any relation in E,.

Let the domain elements of A that appear in r be a,, a3, etc. We define for each i=k; the
following subsct of U:
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k k

— — ) 4 -
&(R) = &y (RIR|(J my, | % 7y (R) Ispzqqﬂ (A,MA,—4,4,)]|.
i=1 |
Al il

The first part of €, guarantees that R has k; rows. The i* areument of the union is either empty. or
j E j g pL

the relation consisting of the " row of r, in case that there is a mapping h from the domains of R

to those of r that creates all rows of r. The second part of each argument prevents any two domain
elements to be mapped by & to the same domain element of r, and thus & has to be a renaming.
Since R has also &; rows, it follows that ¢,(R) = R if and only il R is a renaming of r, and €;(R) is
empty otherwise. This completes the construction and the proof. O

Example 5.1
Let r = {(a},b)) (ay,b2), (a2,53)}. € is as shown.

(R) = &s(R) M [map, (4181 D 4B, % 4285 4 E]U
Tags, [A.ﬂ, M A1B2 X AzB; 4 8)
114:8] {A;El M ﬁ;ﬂz M Agﬂj M 3]] s

where 8 = (4;MA;—A,A;) X (B,B;—BE+) M (B85~ B,B3)
and $3(R) = [R — my (RIMRMR;— (R\R2MR5)— (R R3MR7))] —
= [R—my, (RiMR—RR;)].0
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6. EMBEDDED IMPLICATIONAL DEPENDENCIES
An embedded implicational dependency (E1D) [Fagin 1980] is a sentence of the form

(v, J(A M A ) <0 Ry ) (B A---ABL)).

Each of the A,'s and B,'s is of the form either (a) z = w forsome | = j = rand z, w €V, or
(b) R(zy..-..z,) for some z; € V,, j=1,...,r, where R is the only r-ary relation symbol and
Vi, . . ., V, are disjoint sets of variables.

Intuitively, an EID says that if certain tuples exist in the relation R then (a) certain pairs of
domain elements must be identified and (b) some tuples must exist in R.

Theorem 6.1 For every embedded implicational dependency there is an equivalent algebraic depen-
dency, and vice-versa.

Proof

(1) Let o be an embedded implicational dependency, and let Cy, . . ., C, be the attributes of
R. Let X be a set of attributes that contains |V,| distinct copies of attribute C ; of R, one for each
vanable in V;, and let ¥ be the subset of X' which corresponds to variables that appear both in some
A; and some B;. We shall construct two project-join expressions ¢, ¥ on X with a(d) = a(b) = ¥
such that o hohh for a relation R if and only if d(R) g, W(R). The expressions ¢ and Y are shallow

of the form & = my(w, M - -+ 7z) and & = 'n’,(ﬂ“‘ -+ ww). If A; (resp. B;) is of the form
z=w for z, w € V|, then Z; (resp. W;) is C;'C;"" where CJ'.C}” are the copies of C; in X that
correspond to z and w. If A; (resp. B,) is of the form R(zy,....z,), then Z; (resp. W; ) is
C\/'Cy' - - - C," where C; is the copy of C; in X that corresponds to z; for j=1,....r.

Let ¢ be an X-tuple. Its projection 1y is in &(R) iff 1 is in mz(R). If Z = C,/C;"" then we
must have tc - = f¢ . Thus, a ¥—tuple u is in ¢(R) iff there is an assignment of values to the rest

of the variables in the A;'s so that the left-hand side of o is satisfied by « and this assignment.
Similarly with . Therefore, ¢'(R) ; lll(R) if and only if o holds in R.

(2) Let d:(R) C u(R) be an algebmlc dependency. Let Ty, T, be the tableaux of & and ¢ and

let us assume without loss of generality that the only common symbols are the distinguished ones,
For each symbol of T, we have a variable x;; and for each symbol of T, that does not appear in T,
a variable ;. The left-hand side of an EID o over the x;'s and y;'s is constructed as follows. For
every row t of T,. o has one A, of the form R(zy....z,), where the z;'s correspond to the symbols of ¢
in the first copics of U, and additional A’s of the form z=w that equate variables that correbpond to
symbols of ¢ in different copies of the same attribute. The right-hand side of o is constructed simi-
larly from . It is casy 1o sce then that tb(R) ; W(R) iff o holds of R. O

Fagin defined an operation on relations over the same set of attributes as follows. Let
Ry.Ry+ + + be such relations. The direct product of R\ ,Ry, + - - , denoted as @<R,R;, *+ * >, is
the relation

{({al.a;."-><b|.b3.“‘>. . ..(dl,dz,"";‘)i
(a;.bv.....d;) € R; for j=12,...}.

The direct product is essentially the Cartesian product, compressed to the same number of attributes
as the original relations.

It is easy to sce that & commutes with w, M. - ( extension of a relation), and thus for all
algebraic expressions & over extended relations
¢(®<R|£2."'>) = ®{¢(E‘).¢(Eg)....>

Furthermore, @ is componetwise monotonic when applied to nonempty relations. That is, if
Ry.R>, -+ Ry .Ry', " -+ are not cmpty then




s

®<R R, > C <R, .Ry,...> iff
RiCR/' Ry C Ry,

A predicate P on relations is called faithful with respect to direct product ([Fagin 1980]) if P holds
of ®<RR,,~-> il and only if it holds of each R; (whenever all R,'s are nonempty). The next
lemma follows now from the discussion above.

Lemma 6.1 [Fagin 1980] Algebraic dependencies are faithful with respect to direct product. O

Let = be a set of predicates (of some class C) on relations. An Armstrong relation of T (wrt
C) is a relation R such that, forall ¢ € C, R satisfies o iff £ |= o,

Corollary [Fagin 1980]. Any set £ of algebraic dependencies has an Armstrong relation.

Proof Let o, o;.... be all algebraic dependencies that are not implied by £. Let R, be a counterex-
ample to the implication £ =0y, and let R = ®<R,.R;,...>. Since the empty relation satisfies all
algebraic dependencies, the R,’s are nonempty. Thus, it follows from Lemma 6.1 that R is an
Armstrong relation for £, O
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