
LABORATORY FOR it·~ MASSACHUSETTS .
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT /LCS/TM-403

TIME BOUNDS FOR REAL-TIME
PROCESS CONTROL IN THE

PRESENCE OF TIMING
UNCERTAINTY

Hagit Attiya
Nancy A. Lynch

July 1989

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

Time Bounds for Real-Time Process Control
in the Presence of Timing Uncertainty*

Hagit Attiya and Nancy A. Lynch
Laboratory for Computer Science

MIT
Cambridge, MA 02139

JULY 10, 1989

Abstract

A timing-based variant of the mutual exclusion problem is considered. In this variant, only
an upper-bound, m, on the time it takes to release !:he resource is known, and no explicit
signal is sent when the resource is released; furthermore , the only mechanism to measure
real time is an inaccurate clock, whose ti;:k intervals take time between two constants,
C1 '.S Cz.
When control is centralized it is proved that

n · c2 (l(m + l)/ciJ + 1) + l
is an exact bound on the worst case response time for any such algorithm, where n is the
number of contenders for the resource and l is an upper bound on process step time. On
the other hand, when control is distributed among processes connected via communication
lines with an upper bound, d, for message delivery time, it is proved that

is an upper bound. A new technique involving shifting and shrinking executions is combined
with a careful analysis of the best allocation policy to prove a corresponding lower bound
of

n · c2(m/ci) + (n - l)d.

These combinatorial results shed some light on modeling and verification issues related to
real-time systems.

Keywords: distributed systems, I/0 automata, process control, real-time systems, resource
allocation, timed I/0 automata, time bounds.

•This work was supported by ONR contract N0014-85-K-0168, by NSF contract CCR-8611442, and by
DARPA contracts N00014-83-K-0125.

1

1 Introduction

An important area of computer applications is real- time process control, in which a computer
system interacts with a real-world system in order to guarantee certain desirable real-world
behavior. In most interesting cases, the real-world requirements involve timing properties,
and so the behavior of the computer system is required to satisfy certain timing constraints.
In order to be able to guarantee timing constraints, the computer system must satisfy some
assumptions a.bout time - for example, its various components should operate at known speeds.

It is clear that good theoretical work in the area of real-time systems is necessary. In
the pa.st few yea.rs, several researchers have proposed new frameworks for specifying require­
ments of such systems, describing implementations, and proving that the implementations
satisfy the requirements. These frameworks are based on, among others, finite state machines
([D85]), weakest precondition methods ([H81]), first-order logic ([JM86, JM87]), temporal logic
([BH81]), P etri nets ([CR83, 1S87, S77]), and process algebra ([HGR87, KSRGA88, Z1G89]).
Work is still needed in evaluating and comparing the various models for their usefulness in
reasoning a.bout important problems in this area and perhaps in developing new models if
these prove to be inadequate.

Work is also needed in developing the complexity theory of such systems; very little work
has so far been done in this area. An example of the kind of work needed is provided by the
theory of asynchronous concurrent systems. That theory contains many combinatorial results
that show what can and cannot be accomplished by asynchronous systems; for tasks that can
be accomplished, other combinatorial results determine the inherent costs. In addition to their
individual importance, these results also provide a testbed for evaluating modeling decisions
and a stimulus for the development of algorithm verification techniques. Similar results should
be possible for real-time systems. Some examples of complexity results that have already
been obtained for real-time systems a.re the many results on clock synchronization, including
[DHS86, HMM85, 178, 1184, WL88) (see [SW188) for a survey) .

In this pa.per, we embark on a study of complexity results for real-time systems. We begin
this study by considering timing-based variations of certain problems that have previously been
studied in asynchronous concurrent systems. In particular, in this pa.per, we study a variant of
the mutual exclusion vroblem. This problem is one of the fundamental problems in distributed
computing; it serves as an abstraction of a large class of hazar·d avoidance problems. We note
that this particular problem appears in the real-time computing literature (cf. [JM87]) as the
"nuclear reactor problem". There, opera.tors push different buttons to request the motion of
different control rods in the same nuclear reactor. It is undesirable to have more than one
control rod moving at the same time, presumably since in that case the nuclear reaction might
be slowed down too much.

More specifically, we consider a system consisting of some number, n, of identical moving
parts (e.g. , control rods), no two of which a.re supposed to move at the same time. An opera.tor
associated with ea.ch moving part can request permission for the associated part to move by
pushing a button that sends a REQUEST signal to the computer system. The system responds

2

with GRANT signals; each GRANT signal gives permission to the designated moving part to
move, but such motion is expected to be finished no more than a fixed time, m, later. The
system is only supposed to issue a GRANT signal when it knows that it is safe to move the
corresponding moving part, i .e., at least real time m has elapsed since the last GRANT signal.
We assume, for simplicity, that a REQUEST signal is only issued by a particular operator
if any preceding REQUEST by that operator has already been satisfied (by a corresponding
GRANT signal). Our goal is to minimize the worst-case time between a REQUEST signal
and the corresponding GRANT signal, i.e., the worst-case response time.

The computer system might consist of a single process running on a dedicated proces­
sor or might be a distributed system running on separate processors communicating over a
message system. Solving the problem efficiently requires the computer system to make ac­
curate estimates of the elapsed time since the last GRANT signal; the difficulty, however, is
that the computer system only has inaccurate information about time, as given by inaccurate
clock components within the system and by estimates of the time required for certain events.
Specifically, the only information about time that the computer system has is the following:

1. the knowledge that a moving part will stop moving within time m after a GRANT signal,

2. the knowledge that the time between successive ticks of any clock is always in the interval
[c1, c2], for known constants c1 and c2, where O < c1 :S c2 ,

3. the knowledge that the time between successive steps of any process with.in the computer
system is always in the interval [O, l], for a known constant l, 0 :=; l, and

4. (if the system is distributed) the knowledge that the time to deliver the oldest message
in each channel is no greater than a known constant d, 0 ::; d.

In the cases we have in mind, we suppose that l < < c1 < c2 < < d < < m, but we state
explicitly any assumptions that we require about relative sizes of the various constants.

One way in which our problem differs from the mutual exclusion problem usually studied
in asynchronous systems is that we do not assume that an explicit signal is conveyed to the
computer system when a moving part stops moving; the only information the system has about
the completion of the critical activity is based on its estimates of the elapsed time. It is fairly
typical for real-time systems to use time estimates in order to make deductions about real­
world behavior. The results of this paper indicate some of the costs that result from using
such estimates.

We obtain the following results. First, we consider a centralized computer system, consist­
ing of just a single process with a local clock. For that case, we show that

n · Cz (l(m + l)/ciJ + 1) + l

is an exact bound on the worst-case response time for the timing-based mutual exclusion prob­
lem. The upper bound result arises from a careful analysis of a simple FIFO queue algorithm,

3

while the matching lower bound result a.rises from explicitly constructing and "retiming" exe­
cutions to obtain a. contradiction.

We then consider the distributed case, which is substantially more complicated. For that
case, we obtain very close (but not exact) bounds: an upper bound of

and a. lower bound of

Assuming that the para.meters have the relative sizes described earlier, e.g., that d is much
larger than l, c1 and c2 , the gap between these two bounds is just slightly more than a. single
message delay time. The upper bound arises from a. simple token-passing algorithm, while
the lower bound proof employs a. new technique of shifting some of the events happening at a.
process while carefully retiming other events .

The model that we use for proving our results is the I/O automaton model [LT87], which
ha.s been extended recently to include timing [MMT88]. As noted earlier, many people are
working on the development of other models and frameworks for reasoning a.bout real-time
systems. The most popular way of evaluating such frameworks involves their application to the
specification and verification of substantial examples of practical utility. This paper, however,
suggests a. complementary approach. Since a. framework for real-time processing should allow
proof of combinatorial upper and lower bound and impossibility results, in addition to allowing
specification and verification of systems, careful proofs of combinatorial results such as those
in this paper should tea.ch us a. good deal about the appropriateness of a model for real-time
processing.

The rest of this paper is organized as follows. Section 2 presents the timed I/O automaton
model. Section 3 contains the general statement of the problem to be solved. Section 4 contains
our results for the centralized case, Section 5 contains our results for the distributed case, and
Section 6 contains some discussion and open problems.

2 Model and Definitions

2.1 I/0 Automata

An I/O automaton consists of the following components: a set of actions, classified as output,
input and internal, a set of states, including a. distinguished subset called the start states, a.
set of (state, action, state) triples called ste])s, and a. partition of the locally controlled (output
and internal) actions into equivalence classes. An action 1r is said to be enabled in a state
s' provided that there is a. step of the form (s', 1r, s). An automaton is required to be input

4

enabled, which means that every input action must be enabled in every state. The partition
groups actions together that are to be thought of as under the control of the same underlying
process.

Concurrent systems are modeled by compositions ofl/O automata, as defined in [LT87]. In
order to be composed, automata must be strongly compatible; this means that no action can be
an output of more than one component, that internal actions of one component are not shared
by any other component, and that no action is shared by infinitely many components. The
result of such a composition is another I/ O automaton. The hiding operator can be applied to
reclassify output actions as internal actions.

We refer the reader to [LT87) for a complete presentation of the model and its properties.

2.2 Timed Automata

We augment the I/ O automaton model as in [MMT88) to allow discussion oftiming properties.
Namely, a timed I/O automaton is an I/ O automaton with an additional component called
a boundmap. The boundmap associates a closed subinterval of [0, oo) with each class in the
automaton's partition; to avoid certain boundary cases we assume that the lower bound of each
interval is not oo and the upper bound is nonzero. This interval represents the range of possible
differences between successive times at which the given class gets a chance to perform an action .
We sometimes use the notation be(C) to denote the lower bound assigned by boundmap b to
class C, and bu(C) for the corresponding upper bound.

A timed sequence is a sequence of alternating states and (action,time) pairs:

Define to = 0. The times are required to be nondecreasing, i.e., for any i ~ 1 for which ti
is defined, ti ~ ti-l , and if the sequence is infinite then the times are also required to be
unbounded. For any finite timed sequence a define tend(a) to be the time of the last event in
a, if a is nonempty, or 0, if a is empty; for an infinite timed sequence a, tend(a)= oo.

A timed sequence is said to be a timed execution of a timed automaton A with boundmap
b provided that when the time components are removed, the resulting sequence is an execution
of the I/ O automaton underlying A, and it satisfies the following conditions for each class C
of the partition of A and every i:

1. Suppose bu(C) < oo. If some action in C is enabled in Si and one of the following holds:
either i = 0 or no action in C is enabled in Si-l or 7ri is in C, then there exists j > i
with tj ::; ti + bu(C) such that either 7rj is in C or no action of C is enabled in Sj.

2. If some action in C is enabled in Si and either i = 0 or no action in C is enabled in s;_1

or 7ri is in C, then there does not exist j > i with tj <ti+ be(C) and Ttj in C .

5

The first condition says t hat, starting from when an action in C occurs or first becomes
enabled, within time bu(C) either some action in C occurs or there is a point at which no such
action is enabled. The second condition says that, again starting from when an action in C
occurs or first becomes enabled, no action in C can occur before time be(C) has elapsed. The
third condition merely requires that the steps taken by the automaton are indeed legal.

Note that the definition of a timed execution includes a liveness condition (in 1.) in addition
to safety conditions (in both 1. and 2.) . For finite timed sequences, it is sometimes interesting
to consider only the safety properties. Thus, we define a weaker notion, as follows. A finite
timed sequence is said to be a timed semi-execution provided that when the t ime components
are removed, the resulting sequence is an execution of the I/O automaton underlying A, and
it satisfies the following conditions, for every class C and i.

1. Suppose bu(C) < oo. If some action in C is enabled in Si and one of the following
holds: either i = 0 or no action in C is enabled in Si-l or 7ii is in C, then either
tend(a) :S ti+ bu(C) or there exists j > i with tj :S t i + bu(C) such that either 7ij is in C
or no action of C is enabled in Sj.

2. Condition 2. above.

Intuitively, timed semi-executions represent sequences in which the safety conditions de­
scribed by the boundmap are not violated. The following lemmas say that such a sequence can
be extended to a timed execution in which the liveness conditions described by the boundmap
are also satisfied.

Lemma 2 .1 If a is a timed semi-execution of a timed automaton A and no locally controlled
action of A is enabled in the final state of a, then a is a timed execution of A.

Proof: Straightforward.
■

Lemma 2.2 Let { ai}~1 be a sequence of timed semi-executions of a timed automaton A. such
that

1. for any i ~ 1, ai is a prefix of a;+1 , and

Then there exists an infinite timed execution a of A such that for any i ~ I, a; is a prefix of
a .

Proof: Straightforward.
■

6

Lemma 2.3 Let A be a timed automaton having finitely many classes in its partition, and let
a be a timed semi-execution of A. Then there is a timed execution a' of A that extends a,
such that only events from classes with finite upper bound occur in a' after a.

Proof: First, for each class C and each finite timed semi-execution /3, we define a time
deadline(/3, C) to represent the latest time after the end of /3 by which an action of C must
occur in order to satisfy the liveness requirements. The definition is by induction on the number
of events in /3 . In the base case /3 consists of a single start state, so, and we define, for any
class C such that some action in C is enabled in so, deadline(/3,C) = bu(C). Otherwise, let
deadline(/3,C) = oo . Let

and assume we have defined deadline for all finite timed semi-executions with j - 1 events.
Denote

Let 7rj E C; then deadline(/3,C) = ti+ bu(C) if some action in C is enabled in Sj, and
deadline(/3,C) = oo, otherwise. For any class D -:p C, deadline(/3,D) = tj + bu(D) if some
action in Dis enabled in Sj and no action in Dis enabled in Sj- li if some action in Dis enabled
in Sj and also some action in Dis enabled in Sj- l, then deadline(/3,D) = deadline(/3',D); if
no action in Dis enabled in Sj, then deadline(/3, D) = oo.1

We construct a' as the limit of a sequence { ai}~1 of timed semi-executions, where a 1 = a.
Starting from CXi, we define ai+1 as follows. Let C be a class that has an action enabled in
the final state of a;, for which the value of deadline(ai, C) is minimum among all such classes.
Then CXi+1 is obtained from CXi by appending a single enabled action from C, occurring at time
deadline(ai, C). If there is no such class, then we define ai+l = ai . Clearly, ai is a timed
semi-execution.

It remains to verify that a', the limit of the a;, is a timed execution. There are three cases.

l. a' is a finite sequence. Then a' = a; for some i such that no action in any class is enabled
in the final state of a; . Then Lemma 2.1 implies that a' is a timed execution.

2. a' is an infinite execution in which the time component is unbounded. Then Lemma 2.2
implies that a' is a timed execution.

3. a' is an infinite execution in which the time component is bounded. The facts that there
are only finitely many classes and the values of bu(C) are nonzero imply that there is
some bound E > 0 such that tend(CXi+l) 2".: tend(ai) + € for all i. This implies that this
case cannot occur.

1
These rules are similar to the rules given for maintaining the variable Ltime(C) in the time(A) definition

in the following subsection.

7

■

For any timed execution or semi-execution a we define sched(a) to be the sequence of
(action,time) pairs occurring in a, i.e., a with the states removed. We say that a sequence of
(action,time) pairs is a timed schedule of A if it is sched(a), where a is a timed execution of
A . We also define beh(a) to be the subsequence of sched(a) consisting of external (input and
output) actions and associated times, and say that a sequence of (action,time) pairs is a timed
behavior of A if it is beh(a), where a is a timed execution of A.

Definitions for composing timed automata to yield another timed automaton, analogous to
those for I/ 0 automata, are developed in (MMT88]. We model real-time systems as composi­
tions of timed automata. (Real-time systems were also modeled in this way in [188] .)

2.3 A dding T ime I nformation t o t h e States

We would like to use standard proof techniques such as invariant assertions to reason about
timed automata. In order to do this, we find it convenient to define an ordinary I/0 automaton
time(A) corresponding to a given timed automaton A . This new automaton has the timing
restrictions of A built into its state, in the form of predictions about when the next event
in each class will occur. Thus, given any timed I / 0 automaton A having boundmap b, the
ordinary I/ 0 automaton time(A) is defined as follows.

The automaton time(A) has actions of the form (r., t), where r. is an action of A and t
is a nonnegative real number. Each of its states consists of a state of A, augmented with a
time called Ctime and, for each class C of the partition, two times, Ftime(C) and Ltime(C).
Ctime (the "current time") represents the time of the last preceding event, initially O. The
Ftime(C) and Ltime(C) components represent, respectively, the first and last times at which
an action in class C is scheduled to be performed (assuming some action in C stays enabled).
(We use record notation to denote the various components of the state of time(A); for instance,
s .Astate denotes the state of A included in states of time(A) .) More precisely, each initial
state of time(A) consists of an initial states of A, plus Ctime = 0, plus values of Ftime(C)
and Ltime(C) with the following properties. If there is an action in C enabled in s, then
Ftime(C) = be(C) and Ltime(C) = bu(C). Otherwise, Ftime(C) = 0 and Ltime(C) = oo.

If (1r, t) is an action of time(A), t hen (s', (r. , t), s) is a step of time(A) exactly if the following
conditions hold.

1. (s'.Astate,1r,s .Astate) is a step of A .

2. s' .Ctime s; t = s.Ctime.

3. If r. is a locally controlled action of A. in class C, then

(a) s'.Ftime(C) s; ts; s'.Ltime(C),

8

(b) if some action in C is enabled in s.Astate, then s .Ftime(C) = t + be(C) and
s.Ltime(C) = t + bu(C), and

(c) if no action in C is enabled in s.Astate, then s.Ftime(C) = 0 and s.Ltime(C) = oo.

4. For all classes D such that " is not in class D ,

(a.) t :S s'.Ltime(D),

(b) if some action in D is enabled in s.Astate and some action in D is enabled in
s' .Astate then s.Ftime(D) = s'.Ftime(D) and s.Ltime(D) = s'.Ltime(D).

(c) if some action in D is enabled in s .Astate and no action in D is enabled in s' .Ast ate
then s .Ftime(D) = t + bt(D) and s.Ltime(D) = t + bu(D), and

(d) if no action in Dis enabled in s.Astate, then s.Ftime(D) = 0 and s .Ltime(D) = oo.

Note that property 4(a) ensures that an action does not occur if any other class has an action
that must be scheduled first. The partition classes of time(A) a.re derived one-for-one from the
classes of A (although we will not need them in this pa.per).

The finite executions of time(A), when the states a.re projected onto their Astate compo­
nents, a.re exactly the same as the finite prefixes of the timed executions of A. This implies
that safety properties of a timed automaton A can be proved by proving them for time(A),
e.g., using invariant assertions.

3 Problem Statement

For either the centralized or distributed case, we assume that there a.re n modules called moving
parts, n modules called operators, plus some modules comprising the computer system. The
actions of the complete system, exclusive of any internal actions of the computer system, a.re
REQUEST(i), GRANT(i) and FINISH(i), for O :S i :S n-1. Ea.ch operator(i) has input action
GRANT(i) and output action REQUEST(i). Ea.ch rnovingpart(i) has input action GRANT(i)
and output action FINISH(i). The computer system has input actions REQUEST(i) for all i
and output actions GRANT(i) for all i. See Figure 1.

Let movingpart(i) be a particular timed automaton with the given signature, having a
state consisting of one component, GRANTED, a Boolean variable, initially false.

GRANT(i)
Effect:

GRANTED:= true

FINISH(i)
Precondition:

GRANTED= true

9

opera tor(i) RE VEST i

GRANT(i

Figure 1: The system architecture.

Effect:
GRANTED:= false

com puter
system

There is only one class in the partition for movingpart(i), a singleton containing the one
action FINISH(i) . The boundmap associates the interval [O, m] with this class. As described in
the Introduction, the timed executions of this timed automaton have the property that, within
time m after a GRANT(i) occurs, a FINISH(i) must also occur - that is, movingpart(i) "stops
moving".

Now consider operator(i). It is described as an automaton with the maximum amount
of freedom we want to allow to the operator. Let operator(i) be the timed automaton with
the appropriate signature, having a state consisting of one component, P USHED, a Boolean
variable, initially false.

GRANT(i)
Effect:

PUSHED := false

REQUEST(i)
Precondition:

PUSHED = false

10

Effect :
PUSHED := true

Again, there is only one (singleton) class in the partition for operator(i). We do not want to
insist that the operator push the button within a particular amount of time after a GRANT.
(It may never do so, in fact.) Thus, we define the boundrnap to assign the interval (0, oo] to
this one class.

The requirement for the computer system is that when it is composed with the given
operators and moving parts, the resulting system has all its behaviors satisfying the following
conditions:

l. Request well-formedness: For any 0::; i::; n - l, REQUEST(i) and GRANT(i) actions
alternate, starting with a REQUEST(i).

2. Moving part well-formedness: For any 0::; i::; n - l, GRANT(i) and FINISH(i) actions
alternate, starting with GRANT(i).

3. Mutual exclusion: There are never two consecutive GRANT events without an interven­
ing FINISH event .

4. Eventual granting: Any REQUEST(i) event has a following GRANT(i) event.

We measure the performance of the system by the worst case response time, i.e., the longest
time between REQUEST(i) and the next subsequent GRANT(i) in any timed behavior.

4 A Centralized System

We first consider the case of a "centralized" computer system to solve this exclusion problem.
In this case, the architecture is as follows. There are two modules (timed I / O automata), the
manager and the clock. The clock has only one action, the output TICK, which is always
enabled, and has no effect on the clock's state. It can be described as the particular one-state
automaton with the following steps.

TICK
Precondition:

true
Effect:

none

11

RE UEST(i manager
TICK

GRANT(i)

clock

Figure 2: The architecture of the centralized control system.

The boundmap associates the interval [c1, c2] with the single class of the partition. This means
that successive TICK events will occur with intervening times in the given interval.

The manager has input actions TICK and REQUEST(i) for all i, and output actions
GRANT(i). It is an arbitrary automaton, subject to the restriction that it has only a single
class in its partition. (This says that it is really a sequential process - it cannot be running
several processes in parallel.) We associate t he boundmap [O, l] with the single class of locally
controlled actions. This means that successive locally-controlled steps of the manager are done
within the given intervals (if there are any enabled).

The computer system is the composition of the manager and the clock, (with the I/ O
automaton hiding operator applied to hide the TICK actions). See Figure 2.

Note that the timed automaton model forces us to model the step time of the manager
process explicitly. Other models (e.g., the one used for clock synchronization in [WL88]) might
avoid this level of detail by hypothesizing that the manager's steps are triggered only by input
events such as clock ticks or requests. We regard such a model (informally) as a limiting case
of our model, as the upper bound on manager step time approaches zero.

4.1 Upper Bound

4.1.1 The Algorithm

The following simple algorithm for the manager process solves the problem. The manager
simply puts requests on a FIFO queue. If there is a pending request, the manager issues a
GRANT signal to the node whose request is first on the queue, and sets a timer to measure
the time until the moving part stops moving. When the timer goes off, the manager repeats.

There is some subtlety in determining the minimum number of clock ticks that guarantee
that time m has elapsed since the GRANT. At first glance, one might be tempted to count
lm/ciJ + 1 ticks, but a careful examination shows that this might cause a violation of the

12

exclusion property, if a TICK happens immediately after the GRANT, and the next GRANT
happens immediately after the last TICK . Waiting for lm/c1J + 2 suffices to overcome this
difficulty, but the lower bound presented in Subsection 4.2 suggests that this might not be
optimal. In order to achieve the best possible timing performance, the algorithm only grants
immediately after a clock tick, and the timer is set to l(m + 1)/ c1J + 1 clock ticks.

In addition to the REQUEST and TICK inputs and GRANT outputs already specified,
t he manager has an internal action ELSE. This action is enabled exactly when no output
action is enabled; this has the effect of ensuring that locally controlled steps of the manager
occur at (approximately) regular intervals, as determined by the manager's boundmap.

The manager's state is divided into components:

TICKED holding a boolean value, initially true;
QUEUE holding a queue of indices i E (O .. n - 1], initially empty;
TIMER holding an integer, initially O;

The manager's algorithm is as follows:

REQUEST(i), 0::; i::; n - 1
Effect:

TICK
Effect :

add i to QUEUE

TIMER := TIMER -1
TICKED := true

GRANT(i), O ::; i ::; n - 1
Precondition :

Effect:

i is first on QUEUE
TIMER::; O
TICKED = true

remove i from front of QUEUE
TIMER:= l(m + l)/c1J + 1
TICKED := false

ELSE
Precondition:

QUEUE is empty or T IMER> 0 or TICKED= false
Effect :

TICKED := false

13

4.1.2 Correctness Proof

Let A be the composition of the four given kinds of timed automata - operators, moving parts,
manager and clock. This subsection is devoted to proving the following theorem.

Theorem 4.1 Algorithm A is a correct centralized resource allocation algorithm.

We prove correctness using automaton time(A), as defined above. In this case, the system
state is augmented with the variable Ctime, plus the variables Ftime and Ltime, for the
following partition classes:

1. REQUEST(i) for each i, which contains the single action REQUEST(i),

2. FINISH(i) for each i, which contains the single action FINISH(i),

3. TICK, which contains the single action TICK, and

4 . L OCAL, the locally controlled actions, which contains all the actions GRANT(i), 0 :S
i :S n - l and the ELSE action.

Initially,wehaveFtime(REQUEST(i)) = 0,Ltime(REQUEST(i)) = oo,Ftime(FINISH(i)) =
0 and Ltime(FINISH(i)) = oo, Ftime(TICK) = c1, Ltime(TICK) = c2, Ftime(LOCAL) = 0
and Ltime(LOCAL) = l.

The proof of mutual exclusion rests on the following invariant for time(A).

Lemma 4 .2 Lets be a reachable state of time(A). Then the following all hold:

1. If FINISH(i) is enabled in s.Astate, then

(a) s.TIMER > 0,

(b) s.Ftime(TICK) + (s. TIMER- l)c1 > s.Ltime(FINISH(i)), and

(c) FINISH(j) is not enabled in s.Astate, for any j =f i .

2. If s .TICKED then s.Ftime(TICK) 2::: s.Ltime(LOCAL) + c1 - l.

Thus, if a part is moving, the manager's TIMER is positive. Moreover, the TIMER is large
enough so that waiting that number of ticks would cause enough time to elapse so that the
part would be guaranteed to have stopped moving. Property 1(c) implies mutual exclusion,
while property 2 guarantees a lower bound on the time till the next TICK, if no LOCAL step
has occurred since the previous TICK .

The proof of correctness is done in careful detail; since it is quite straightforward, we include
it in Appendix A.1.

14

Proof: (of Theorem 4.1) Lemma 4.2 implies mutual exclusion. Moving part well-formedness
follows easily from the same lemma and the definition of the moving part . Request well­
formedness follows from the definitions of the operators and the manager. The remaining
condition, eventual granting, can be argued from the queue-like behavior of the manager and
the fact that the clock keeps ticking. (This latter property also follows from the formal proof
of the upper bound on response time in the following subsection.) ■

4.1.3 Response Time

Now we prove our upper bound on response time for the given algorithm A.

Theorem 4.3 Assume that l < c1 . The worst case response time for algorithm A is at most

The proof of this theorem requires several lemmas.

Lemma 4.4 In any reachable state there are at most n entries in QUEUE.

Proof: We have already argued that all timed executions of the system are request well­
formed, i.e., REQUEST(i) and GRANT(i) alternate for any O ::; i ::; n - 1, starting with
REQUEST(i). The preconditions for REQUEST(i) and the operation of the manager imply
that when REQUEST(i) happens, i is not in the queue. A simple induction implies that in
any reachable state of the system, i appears only once in QUEUE. ■

Lemma 4.5 In any reachable states, s . TIMER::; L(m + l)/c1J + 1.

Proof: By an easy induction. ■

Lemma 4.6 Let s be any state occurring in a timed execution, in which s . TIMER ::; k, for
k ~ 1. Then (at least) one of the following two conditions holds.

1. s . TIMER::; 0 ands . TICKED= true, or

2. the time from the given occurrence of s until a later TICK event resulting in TIMER ::; 0
is bounded above by c2 • k.

Proof: Suppose that it is not the case that s .TIMER ::; 0 and s.TICKED = true. Then a
GRANT cannot occur until a state is reached in which TIMER ::; 0 and TICKED = true,
and this condition requires at least one TICK to occur after the given occurrence of s . The
bound follows from the upper bound on clock time, the way the TICK actions manipulate the
TIMER, and the way the variable TICKED gets set. ■

15

Proof: (of Theorem 4.3) When a request arrives, it is at worst in position non the QUEUE,
by Lemma 4.4. By Lemmas 4.5 and 4.6, either TIMER :S O and TICKED = true at the time
when the request arrives, or else within time c2(l(m+ l)/c1J + 1) a TICK event (call it 7r1)
occurs which sets TIMER to 0. In the former case, there must be a TICK event occurring
prior to the request that sets TIMER :S 0, with no intervening local events; let 11'1 denote this
TICK event . In either case, within time l after 11'1 (but after the request) the first entry gets
its request granted and gets removed from the QUEUE, and TIMER is set to

Since l < c1 , within time c2 after 1r1 , another TICK event cp1 occurs, this one decreasing
TIMER to (l(m + l)/c1J) .

Immediately after cpi, either TIMER= 0, or l(m+l)/ciJ ?:: 1; in this latter case, by Lemma
4.6, within at most time c2 (l(m + l)/c1J) after cp1 , a TICK event occurs that sets TIMER::; 0.
Thus, in either case, from event 1r1 until another TICK event 112 that sets TIMER :S 0, at
most

time elapses. The next entry in the queue is enabled immediately after 11'2 • In this manner, we
can construct a sequence of TICK events, 11'1 , . . . , 1l' n, such that the time between "i and 1l'i+1 ,

for each i, 1 :S i < n, is at most

and for any 1 :S i :S n, the i'th entry on the original queue (if there is any) is enabled after 1l'i,

Hence, within time

the enabling condition is satisfied for the given request. Then within time at most l afterwards,
the request is granted. This completes the proof of the upper bound on response time. ■

Note that this proof requires the assumption that l < c1 ; in case this assumption is not
made, an analysis similar to the one in the proof above yields a slightly higher upper bound of

Also, note that the limit of the given upper bound, as l approaches 0, is n • c2(lm/ciJ + 1).
We think of this as an upper bound for this algorithm when it is run on an interrupt-driven
model.

16

It follows from the lower bound in Section 4.2 that algorithm A has optimal response time.
This seems to imply that the best policy is to issue a GRANT right after a TICK. This is
apparently because a time estimate done immediately after a clock TICK is the most accurate.

Although this proof is currently written in terms of executions, it seems that the invari­
ant assertion techniques for time-augmented automata developed above could be extended to
handle response time analysis; preliminary results in that direction appear in [LA].

4.2 Lower Bound

Now we turn to proving lower bounds. We begin with a fairly simple lower bound result that is
quite close to the upper bound proved in the preceding subsection, but does not match exactly.
The gap between this lower bound and the upper bound depends on the manager's step time
and the roundoffs. Since we consider these to be very small, for practical purposes one might
be satisfied with this simpler lower bound. However, it is interesting theoretically to note that
in this case, we can obtain a tight bound by a related but somewhat more difficult argument.

Theorem 4.7 The worst case response time of any centralized resource allocation algorithm
is at least

In order to see why this is so, define a timed execution or timed semi-execution to be slow
if the times between successive TICK events (and the time of the first TICK event) are exactly
c2 • We have:

Lemma 4 .8 Let a be a slow timed execution of a correct centralized resource allocation al­
gorithm. Then the time between any two consecutive GRANT events in a is strictly greater
than

Proof: If this were not so, then we could "retime" the whole timed execution by multiplying
the time at which each event occurs by cif c2 (without changing the ordering of events), re­
sulting in a new timed execution in which the time between the two GRANT events is at most
m . The time between clock ticks is now c1, so the resulting sequence is a timed execution.
Then moving the FINISH event corresponding to the first GRANT event to the point just
after the second GRANT event (to occur at same time) yields another timed execution, this
one violating mutual exclusion. ■

Proof: (of Theorem 4.7) We create a slow timed semi-execution in which a REQUEST(O)
event occurs, and immediately after the corresponding GRANT(O) event (and at the same
time) a sequence of

17

REQUEST(0), ... , REQUEST(n - 1)

events occur. Now extend this timed semi-execution (keeping it slow) until all these requests
are fulfilled . By Lemma 4.8 the time between any two of these GRANT events is at least

Let GRANT(j) be the last GRANT. The time from REQUEST(j) until the corresponding
GRANT(j) is at least

•
Now we present the more delicate arguments needed to prove a lower bound that matches

the upper bound given in Section 4.1. Note that the only differences between the lower bound
to be proved and the one already proved in Theorem 4.7 are the presence of the l terms
describing bounds on the manager's step time and the careful treatment of roundoff. Still, it is
interesting that the bound can be improved in these ways to match the upper bound exactly.

Theorem 4.9 Assume that l ~ c1 .2 Then the worst case response time of any centralized
resource allocation algorithm is at least

An I/O automaton is called active if in every state there is a locally-controlled action
enabled. (Recall, for example, that the manager in the algorithm of the preceding subsection
was made active by the inclusion of the ELSE action.) Before proceeding with the proof of
the theorem, it is useful to prove the following lemma, which claims that there is no loss
of generality in assuming that the manager is active. As in the previous subsection, denote
by LOCAL the class of all the actions that are locally controlled by the manager (including
GRANT(i), for all i).

Lemma 4.10 Suppose that A is a centralized resource allocation algorithm with response time
~ b, for a real number b. Then there is another such algorithm A', with response time ~ b, in
which the manager is active.

2
Notice that a non-strict inequality is used in this assumption, whereas a corresponding assumption for

Theorem 4.3 uses a strict inequality. This reflects the difference in the kinds of reasoning needed for lower and
upper bound results.

18

Proof: Given A, we produce A' by adding a new internal action NULL to the manager.
The steps associated with this action are exactly those triples of the form (s', NULL, s), where
s' = s and no other locally controlled action of the manager is enabled in s'. Clearly, the
manager is active in A'. We claim that A' solves the problem and has response time :S b. In
order to see this, is suffices to show that every timed behavior of A' is also a timed behavior
of A.

So let

be any timed execut ion of A'. Construct a, a new timed sequence , by removing all NULL
steps from a'. Assume

and let II be the mapping from the indices of events in a to the indices of the corresponding
events in a', and set II(0) = 0. Note that, for i ~ 1, if j = II(i), then sj = Si, tj = ti, and
1r5 = ?ri, We claim that a is a timed execution of A. Then it follows that every timed behavior
of A' is a timed behavior of A.

All we have to show is that a satisfies t he boundmap of A. T he only interesting case is the
class LOCAL, and since the lower bound for this class is 0, we have to check only the upper
bound,l.

Fix some i such that in Si some locally controlled action of the manager is enabled, and
either i = 0 or no locally controlled action of the manager is enabled in Si- l, or ?ri is a locally
controlled action of the manager. We must show that within t ime l after ti either a locally
controlled action of the manager occurs, or there is a state in which no such action is enabled.
Let j = II(i). It must be that some locally controlled action of t he manager is enabled in
sj, since some such action is enabled in all states of the manager in A'. We first show that
a locally controlled event 1r of the manager must occur in a' within at most / time after tj.
There are two cases:

Case 1: i = 0 or ?ri is a locally controlled action of the manager in A .

If i = 0, then it must be that j = 0. If Tii is a locally controlled action of the manager in A,
then it must be that n1 = Tii , In either case, as the manager in A' is active, a locally controlled
event 1r of the manager must occur in a' within t ime at most l after tj, by the fact that a' is
a t imed execution of A' and satisfies the boundmap.

Case 2: i ~ 1 and no locally controlled action of the manager is enabled in Si-l ·

Then ?ri ff_ LOCAL, and hence 1r5 ff_ LOCAL. Let k be the largest index of a locally
controlled event in a' that has an index :S j (0 if there is no such event). The fact that the
class LOCAL is always enabled in a' implies that within time l from t,_ a locally controlled

19

event of the manager must occur in ci. By the way k was selected this event must happen
after s5, so the fact that t5 ~ tk implies that a locally controlled event 1r of the manager must
occur in a' within time at most l after t5.

In both cases, if 1r -:j; NULL, then 1r, with the same time, appears in a, which suffices. If
1r = NULL, then the definition of A' implies that in the state just prior to 1r in a', no non-null
locally con trolled action of the manager A is enabled. Then no locally controlled action of the
manager is enabled in the corresponding state in a, which suffices. ■

Now we return to the task of proving Theorem 4.9. The proof will proceed by iterative
construction of a. particular slow timed execution. A major step in t he construction is forcing
a. GRANT event to happen only in certain situations, as specified and proved in the following
technical lemma..

If i is an index with O ::; i ::; n - 1, we say that i is unfulfilled in a. t imed semi-execution a if
the number of REQUESTi events in a is strictly greater than the number of GRANTi events
in a . We say that a. t imed execution or timed semi-execution a is heavily loaded starting from
time t if for all times t ::; t' < tend(a), all indices a.re unfulfilled in the prefix of a consisting of
all the events occurring up to and including time t' . We say that an action is an ELSE action
if it is a. locally controlled action of the manager other than a GRANT; ELSE events and steps
are defined simila.rily.

Lemma 4 .11 Let A be a centralized resource allocation algorithm with an active manager,
and let a be a slow timed semi-execution of A . Assume that there are unfulfilled indices in
a, and LOCAL and TICK events occ'Ur in a at time tend(a) . Then there exists a slow timed
semi-execution f3 extending a, S'Uch that for some i, 0 ::; i ::; n - I,

sched(f3) = sched(aa) (GRANT(i),t) (REQUEST(i),t) (FINISH(i),t),

where t = tend(aa), LOCAL and TICK events occur in aa at time t, and there are no
REQUEST or GRANT events in a.

Notice that if a is a heavily loaded starting from time t then f3 is also heavily loaded starting
from time t .

Proof: Assume by way of contradiction that there does not a. exist a timed semi-execution
with the desired properties. We will extend a to an infinite timed execution in which no
GRANT events occur. As there a.re unfulfilled indices in a this contradicts the eventual
granting property.

This is done by constructing, inductively starting from j = 0, successive slow timed semi­
executions, aaj, each extending the previous one, such that for every j :

1. There a.re no REQUEST or GRANT events in Oj ,

20

2. LOCAL and TICK events occur in aj at time tend(etaj)-

3. If j > 0 then tend(aaj) ~ tend(aaj-1) + c2 .

We start with a0 being the empty sequence. Clearly, 1. and 3. hold, and the assumptions of
the lemma imply that 2. holds. Now, assume we have constructed aj, and let Sj be the system
state resulting after aai. There are two cases:

Case 1: There is an execution fragment of the manager alone, a' , starting from state Sj, which
consists of a sequence of zero or more ELSE events followed by some GRANT(i) event.

Then let f3 be any timed semi-execution that extends aai such that

sched(/3) = sched(a ai a') (REQUEST(i),tend(aai)) (FINISH(i),tend(aai)),

where the events of a' are all timed to occur exactly at time tend(aai) . Then /3 has the
properties required by the lemma: it ends with GRANT(i), REQUEST(i) and FINISH(i)
events, LOCAL and TICK events occur in f3 at t ime tend(aaj) = t end(/3) , and there are no
REQUEST or GRANT events in the prefix of aia' preceding the final GRANT(i) event. This
is a contradiction to the assumed nonexistence of such a timed semi-execution.

Case 2: There is no such execution fragment .

In this case, we can extend aaj by allowing ELSE events to occur, at arbitrary allowable
times, ending with an ELSE event and a TICK event, (occurring in that order) at time
tend(aaj) + c2. This is possible since the algorithm is active. Let aai+I be an execution
extending aa i such that

where all events (if any) of 8 are ELSE events, and 7i is an ELSE event.

From the way aj+i was constructed, it follows that aaj+I is slow, and that it has the
following properties:

1. There are no REQUEST or GRANT events in aj+l ·

2. LOCAL and TICK events occur in ai+l at time tend(aaj+i)-

3. tend(Ctaj+I) ~ tend(aaj) + C2 .

This completes the construction of the timed semi-executions aaj, 0 :S j < oo.

Now Lemma 2.2 implies that there exists an infinite timed execution aa extending all
the aa i · Since there are no GRANT events in a and there are unfulfilled indices in a, this
contradicts the eventual granting property. ■

21

Now we are ready to present the main proof.

Proof: (of Theorem 4.9) Assume that we have a particular centralized resource allocation
algorithm. By Lemma 4.10, we may assume without loss of generality that the manager is
active. We explicitly construct a (slow) timed execution in which the response time for a
particular grant is at least

We first construct an initial section, /30. We begin by allowing some LOCAL events to
occur (at arbitrary allowable times), ending with both a LOCAL event and a TICK event
occurring at exactly time c2 , in that order. Notice that by the grant well-formedness property
these LOCAL events must be ELSE events. We let

REQUEST(O), REQUEST(l), .. . ,REQUEST(n - 1)

events happen immediately after these ELSE and TICK events, also at time c2. Formally,
let /3o be a timed semi-execution that extends another timed semi-execution 8 containing only
ELSE events, such that

sched(/30) = sched(8) (1r,c2) (TICK,c2) (REQUEST(O),c2) ... (REQUEST(n - l),c2)

where 1r is an ELSE event. Note that 0, ... , n-1 are unfulfilled indices in {30, and that LOCAL
and TICK events occur in /3o at time c2 = teni/3o); furthermore , note that /3o is heavily loaded
starting from time to = tend(f3o) = c2.

Starting from /3o, we construct successive proper extensions /31, .. . , /3k, .. . , such that for
each k 2". 1, f3k is a slow timed semi-execution of the form f3k-I 7k that ends at time tk = tend(/3k),
that is heavily loaded starting from time t0 , and that has the following properties:

l. f3k ends with GRANT(jk) , REQUEST(jk) and FINISH(jk) events, occurring in that
order at time tk .

2. There are no other REQUEST or GRANT events in 7k·

3. A LOCAL event (other than the GRANT(jk)) and a TICK event occur in f3k at time tk .

The construction is done inductively; the base case is the construction of /31 • Since /30 has
a LOCAL and a TICK event at time teni/3), and there are unfulfilled indices in {30, we can
apply Lemma 4.11 to get an execution /31 with the properties above.

For the inductive step, assume we have constructed a slow timed semi-execution f3k-l, for
k > l, with the above properties; we show how to construct f3k - Since f3k- l is heavily loaded
starting at time to, and LOCAL and TICK events occur in /3k- l at time tk-l, we can apply
Lemma 4.11 to f3k-I, and get a slow timed semi-execution f3k that extends f3k-l such that

22

r
r " t O t l . • . ' • t k-1 t k

i---------...ll _____ !L. ________ _.ll ____ _JI
GRANT (j 1) GRANT (Jk_1) GRANT (j k)

Figure 3: The timed execution f3k -

where tk = tenif3k_101), LOCAL and TICK events occur in f3k -t<lk at time tk, and there are
no REQUEST or GRANT events in ak . Let 'Yk be such that

Clearly, f3k has the required properties.

The timed execution f3k is depicted in Figure 3.

Claim 4.12 For any k > 1, there are at least

l(m + l)/ciJ + 1

ticks in segment 'Yk of f3k -

Proof: Suppose this is not the case, for some fixed k. Then we modify f3k to get a new timed
semi-execution f3k, in which the mutual exclusion property is violated.

First , we do some retiming without changing the order of any of the events. Segment 'Yk of
f3k is "shrunk" in {3k so that all ticks contained within segment 'Yk take time exactly c1 (rather

23

than c2 as in f3k) - Moreover, the GRANT(jk- 1), REQUEST(jk-1) and the FINISH(jk- 1)
events occurring at time tk-I are timed to occur at time tk-I + l; some ELSE steps after
FINISH(jk-I) and before the next TICK may need also to have their times increased slightly
to maintain monotonicity. By the fact that l ~ c1 , and the fact that there is a LOCAL event
preceding GRANT(Jk-i), with the same time assignment, it follows that the resulting sequence
is a timed execution.

We now obtain f3k by moving FINISH(Jk-I) from time tk-I +z to time tk, after GRANT(jk)­
We show that f3k is a timed semi-execution, by showing that moving the FINISH event to a
later time does not violate the m upper bound on the time between GRANT(jk-i) and the
corresponding FINISH(jk_1). By the assumption, there are at most l(m + l)/ ciJ ticks in
section 'Yk· As GRANT(jk-i) occurs at time tk- 1 + l, while FINISH(Jk- 1) occurs at time tk,
the total time between these two events is at most

So we have obtained a timed semi-execution in which the mutual exclusion property is violated.
By Lemma 2.3, f3k can be extended to a timed execution; this contradicts the correctness of
the algorithm, thus proving the Claim. ■

The claim implies that

for any k ~ l, becuase f3k+I is slow.

We continue the proof of Theorem 4.9 . Since for every k ~ l, f3k is heavily loaded starting
from time to and the algorithm satisfies the eventual granting property, there exists k' such
that for every i, 0 ~ i ~ n - lat least one GRANT(i) event appears in f3k, at or after time t1 .
By the same reasoning, there exists k" > k' such that for every i, 0 ~ i ~ n - l at least one
GRANT(i) event appears in f3k', after time tk'. It follows that there is some i, 0 ~ i ~ n - l
for which there are two consecutive GR.4.NT(i) events in f3k" having at least n - l intervening
GRANT(j) events for j -::J i. Suppose that the first of these GRANT(i) events occurs at time
tk1 , and the second at time tk2 ; it must be that k2 -k1 ~ n. Note that the REQUEST(i) event
corresponding to the second of these GRANT(i) events occurs at time tk

1
• By the remark

after Claim 4.12 the total amount of time from time tk
1

in /3k
2

, when REQUEST(i) occurs,
until the corresponding GRANT(i) occurs, at time tk

2
is at least

We now construct from /3k2 a timed semi-execution o in which the GRANT(jk
2

) event
occurs at time tk2 + l, retiming later events as necessary to maintain monotonicity. The timed
sequence o is a timed semi-execution since l ~ c2, and since there is a LOCAL event preceding
GRANT(jkz) at time tk2 in /3k2 • It follows that the total amount of time from time tk

1
in 8,

when REQUEST(i) occurs, until the corresponding GRANT(i) occurs at time tk
2

+ l, is at
least

24

Since o can be extended to a timed execution (By Lemma 2.3) the Theorem follows . ■

We note that Theorem 4.7 seems quite robust in that it can be extended to any reasonable
model, including those in which the manager takes steps only in response to inputs. However,
the better lower bound in Theorem 4.9 depends more heavily on the features of the timed
automaton model. Note th at the limiting case of the lower bound in Theorem 4.9 is

which is slightly better than the lower bound given by Theorem 4.7.

5 A Distributed System

Now we consider the case where the computer system is distributed. V./e assume that the events
concerning the different moving parts occur at separate manager processes Pi , 0 ~ i ~ n - l,
which communicate over unidirectional channels. More precisely, for each ordered pair (i, j),
i -=J j, we assume that there is a channel automaton channel(i,j) representing a channel from Pi
to Pi, having SEND events as inputs and RECEIVE events as outputs. The channel operates
as a FIFO queue; when the queue is nonempty, the channel is always enabled to deliver the first
item. All RECEIVE actions are in the same partition class, with associated bounds [O, d]; this
means t hat the channel will deliver the first item on the queue within timed. Also, we assume
that there is a separate clock, clock(i), for each process Pi· It is similar to t he centralized
clock described earlier, with output action TICK(i) that is an input to Pi, and with associated
bounds [c1, c2]. See Figure 4.

If the clocks are perfectly accurate, i .e., c1 = c2, then since all processes start at the same
time, there is a very simple algorithm that assigns to each process a periodic predetermined
"time slice" and whose worst case response t ime is n • m (plus some terms involving and c2

and l) . This is optimal.3 So, for our lower bound we will assume that c1 < c2 .

3 In fact , even if we deviate from the model by allowing accurate clocks with non-synchronized starts, there is
an algorithm which selects synchronization points so that its worst case response time is at most n • (m + (d/2))
(plus some terms involving and c2 and l). A corresponding lower bound can also be proved. A formal
treatment of these results requires several changes to our model, and we prefer not to present it here. The clock
synchronization algorithm of (1184] yields synchronization points that can be used by a distributed allocation
algorithm whose response time is at most n • m + (n - l)d. Since the lower bound of (1184] implies that this
clock synchronization algorithm is optimal, it does not appear that a naive use of clock synchronization produces
optimal resource allocation algorithms.

25

GRANT(i) REQUEST(i) GRANT(i)

Figure 4: The architecture of the distributed control system.

5.1 The Upper Bound

5.1.1 The Algorithm

REQUEST(j)

The following algorithm implements a round-robin granting policy: The processes issue grants
when they are in possession of a token that circulates on a ring.

Assume processes are numbered 0, ... , n - l in clockwise order, and interpret i + 1 to be i +
1 mod n . Each process Pi has input actions REQUEST(i), TICK(i) and RECEIVE-TOKEN(i),
output actions GRANT(i) and SEND-TOKEN(i), and internal action ELSE(i). The state of
process i is divided into components:

REQUESTED holding a Boolean value, initially false;
TIMER holding an integer, initially O;
TICKED holding a Boolean value, initially true;
TOKEN holding a value in {not_here , availabie,used} ,

initially used for po, not_here for the other processes.

Process Pi executes the following algorithm:
REQUEST(i)
Effect:

REQUESTED := true

TICK(i)
Effect:

TIMER := TIMER -1
TICKED : = true

26

GRANT(i)
Precondition:

Effect:

REQUESTED = true
TOKEN = available
TICKED = true

REQ UESTED := false
TOKEN := used
TIMER := L(m + l)/c1J + 1
TICKED := false

SEND-TOKEN(i) /* to process Pi+l * /
Precondition:

TOKEN= used
TIMER::; 0

Effect :
TOKEN := not_here
TICKED := false

ELSE(i)
Precondition:

neither GRANT(i) nor SEND-TOKEN(i) is enabled
Effect:

TICKED := false

RECEIVE-TOKEN(i)
Effect:

if REQUESTED then TOKEN := available else TOKEN := used

5.1.2 Correctness Proof

Now let B be the composition of all t he given timed automata: operators, moving parts,
processes, channels and clocks. This subsection is devoted to proving the following theorem.

Theorem 5.1 Algorithm B is a correct distributed resource allocation algorithm.

As in the proof of the centralized algorithm, we construct the I/O automaton time(B).
This time, the new state components are Ctime, plus, for each i, Ftime and Ltime for the
following partition classes:

27

l. REQUEST(i), which contains the single action REQUEST(i),

2. FINISH(i), which contains the single action FINISH(i),

3. TICK(i), which contains the single action TICK(i), and

4. LOCAL(i), the class of locally controlled actions of process i, which contains all the
actions GRANT(i), SEND-TOI<EN(i) and ELSE(i) .

Initially, we have Ftime(REQUEST(i)) = 0, Ltime(REQUEST(i)) = oo, Ftime(FINISH(i)) =
0 and Ltime(FINISH(i)) = oo, Ftime(TICI<(i)) = c1 , Ltime(TICK(i)) = c2, Ftime(LOCAL(i)) =
0 and Ltime(LOCAL(i)) = l.

Let #tokens(i) be the length of the queue in channel(i, i+ l). We first prove a lemma giving
an invariant for time(B); this invariant happens not to involve any of the state components
that encode time information. The proof appears in Appendix A.2.

Lemma 5.2 Let s be a reachable state of time(B). Then the total number of processes at
which TOKEN f:- not_here plus the sum of #tokens(i), over O::; i < n, is exactly 1.

We now prove another invariant, this one involving the timing information. The result is
similar to Lemma 4.2. The proof is in Appendix A.3.

Lemma 5.3 Lets be a reachable state of time(B), and let O ::; i :s; n - l. Then the following
all hold:

1. If FINISH(i) is enabled in s.Astate, then

(a) s .TIMER(i) > 0,

(b) s .Ftime(TICK(i)) + (s .TIMER(i) - l)c1 > s .Ltime(FINISH(i)), and

(c) s . TOKEN(i) = used.

2. If s .TICKED(i) = true then s.Ftime(TICK(i)) ~ s .Ltime(LOCAL(i)) + c1 - l.

The following corollary implies that mutual exclusion is maintained by the algorithm.

Corollary 5.4 In any reachable state s of B, if FINISH(i) is enabled, for some i, then
FINISH(j) is not enabled for all j f:- i .

Proof: Assume to the contrary that FINISH(j) is enabled in s, for j f:- i, Since FINISH(i)
and FINISH(j) are both enabled ins, invariant le (proved in Lemma 5.3) implies that

s.TOKEN(i) = s .TOKEN(j) = used .

28

But this implies that the number of processes for which TOKEN i= not_here is at least two,
contradicting Lemma 5.2. Therefore, this case cannot occur. ■

Proof: (of Theorem 5.1) Corollary 5.4 implies mutual exclusion. Moving part well-formedness
follows from the same corollary and the definition of the moving part. Request well-formedness
follows from the definitions of the operators and the processes. Eventual granting can be ar­
gued from the round-robin behavior of the processes; it also follows from the upper bound on
response time proved formally in the following subsection. ■

5.2 Response Time

Now we prove the upper bound on response time for the given distributed algorithm B.

Theorem 5.5 The worst case response time for algorithm B is at most

nh(l(m + l)/c1J + 1) + d + Cz + 2l].

We use the following lemmas.

Lemma 5.6 In any reachable state s, and for any i,

s.TIMER(i)::; l(m+l)/c1J + 1.

Proof: By an easy induction. ■

Lemma 5.7 Lets be any state occurring in a timed execution, in which s.TIMER(i)::; k, for
k 2: l. Then (at least) one of the following two conditions holds.

1. s .TIMER(i)::; 0 and s.TICKED(i) = true, or

2. the time from the given occurrence of s until a later TICK(i) event resulting in TIMER(i) ::;
0 is bounded above by Cz • k .

Proof: As for Lemma 4.6. ■

Say that process Pi is operative in states if s.TOKEN(i) = used. By Lemma 5.2 at any
time there is at most one operative process.

Lemma 5.8 If process Pi is operative, then the time until process Pi+I becomes operative is at
most

29

c2(l(m+l)/ciJ +l)+d+c2+2l.

Proof: By Lemmas 5.6 and 5.7, either TIMER(i) ~ 0 and TICKED(i) = true, or else within
time

a TICK(i) event occurs setting TIMER(i) < O; m either case, SEND-TOKEN(i) will be
enabled within time

Within time l after that, SEND-TOI<EN(i) will occur and RECEIVE-TOKEN(i + 1) will be
enabled (since it is the only message in the channel), and within an additional time d, it will
be executed. If there is a pending request at process Pi+i when this RECEIVE-TOKEN(i + 1)
occurs, i.e., ifREQUESTED(i+l) = true at this point, then this RECEIVE-TOKEN(i+l) will
set TOKEN(i+ 1) = available. Then within time c2 , GRANT(i+ 1) will be enabled and within
time lit will be executed, causing process Pi+l to become operative. On the other hand, if there
is no pending request, i.e., REQUESTED(i + 1) = false, then the RECEIVE-TOKEN(i + 1)
will set TOKEN(i + 1) = used and thereby cause process Pi+l to become operative. ■

Define the distance from process Pi to process Pj to be the distance between them along
the ring (in the clockwise direction); if i = j we define the distance to be n.

Proof: (of Theorem 5.5) Consider the point in the timed execution at which a request arrives,
say at process Pj• We consider cases (one of which must hold, by Lemma 5.2).

1. There is some operative process, Pi, when the request arrives (where it is possible that
i = j). Then the distance from Pi to Pj is at most n . Applying Lemma 5.8 repeatedly
(at most n times) yields the claimed bound.

2. The value of TOKEN(i) = available for some i . If i = j, then the request will be
granted within time c2 + l. If i ::/- j, then within time c2 + l, process Pi becomes operative.
Applying Lemma 5.8 repeatedly (at most n - 1 times) yields the claimed bound.

3. There is a message in one of the channels, say channel(i -1, i). If i = j, then the request
will be granted within time d + c2 + l . If i ::/- j, then within time d + c2 + l, process
Pi becomes operative. Applying Lemma 5.8 repeatedly (at most n - 1 times) yields the
claimed bound.

■

Again, we note that the limiting case of the upper bound as l approaches 0, is

30

5.3 Lower Bound

Now we prove our lower bound on worst case response time for arbitrary distributed resource
allocation algorithms. This proof is similar to that of the simple lower bound for centralized
algorithms (Theorem 4.7) rather than the more complicated tight bound (Theorem 4.9) in that
we do not concern ourselves with process step time or with roundoffs. As a result, this proof
seems sufficiently robust to extend to other reasonable models for timing-based computation.

Note that the gap between our upper and lower bounds for the distributed case does not
only involve process step t imes and roundoffs, but also involves additive terms of d and of n • c2•

In order to prove this lower bound we must make the assumption that the moving time is
much larger than the message delivery time, more precisely, that (n - 1) • d ~ m(c2/c1).

Theorem 5.9 Assume that c1 < c2 and that (n - 1) • d ~ m • (c2/c1) . Then the worst case
response time of any distributed resource allocation algorithm is at least

The lower bound is proved under the assumption that every message is delivered within
time d. This is a stronger assumption than the one used for the upper bound; there, we
only insist that this upper bound hold for the first message on any link. Since the present
assumption is stronger, it only serves to strengthen the lower bound.

In the proof we first show that the round-robin granting policy used by the algorithm of
Section 5.1 is optimal in the following sense : for any "efficient" algorithm, in any execution
in which requests arrive continuously, the order in which requests are first granted must be
repeated in a round-robin fashion.

Once such an order has been established, we extend the execution while fixing a particular
pattern of message delays. After doing this for a sufficiently long time, we retime parts of the
execution by carefully "shifting" certain events, while appropriately retiming other events, to
get the desired time bound.

Recall the definition of a heavily loaded timed execution or timed semi-execution from
Section 4 .2. In a manner similar to the centralized case, we define a timed execution or timed
semi-execution to be slow if, for each i, the times between successive TICK(i) events (and the
time of the first TICK(i) event) are exactly c2 • The following lemma is the distributed version
of Lemma 4.8.

Lemma 5.10 Let a be a slow timed execution of a correct distributed resource allocation al­
gorithm. Then the time between any two consecutive GRANT events in a is strictly greater
than

31

The next lemma shows that if an execution is heavily loaded, the best policy (for a "ef­
ficient" algorithm) is to grant the resource in a round robin manner, because changing the
granting order will cause the response time to exceed a bound higher than the one we are
attempting to prove as a lower bound.

Lemma 5 .11 Let B be a distributed resource allocation algorithm with response time at most
(n + 1) · c2(m/c1). Let a be a slow timed execution of B that is heavily loaded starting from
time t. Then there exists some permutation, p, of {O, . . . ,n - 1} such that the subsequence of
all GRANT events that occur in a after time t is of the form

GRANT(po), . .. , GRANT(Pn-1) , GRANT(po), .. . , GRANT(Pn-1),

Proof: Suppose by way of contradiction that there is no such permutation p. Then there is
some index, i, for which two GRANT(i) events 1r1 and ,.2 occur (at times t1 and t2 respectively)
after time t, where there are at least n GRANT(j) events, j =/= i, intervening between ,.1 and
1r2.

By Lemma 5.10, the time between any two consecutive GRANT events from among this
set of n + l GRANT events is strictly greater than c2(m/ c1). Therefore, the time between 1r1
and 1r2 is strictly greater than

Since a:: is heavily loaded, a REQUEST(i) event must follow 1r1 and occur at time t1 . Since
that REQUEST(i) is fulfilled by 1r2 at time t2, the response time for that REQUEST(i) is
strictly greater than (n + 1) · c2(m/c1), which contradicts the assumed bound on the response
time of the algorithm. ■

P roof: (of Theorem 5.9) Assume by way of contradiction that there is some algorithm that
always responds within time

By assumption

which implies that

Thus, the response time for the algorithm is at most

32

We will construct a slow timed execution of the algorithm that either exceeds the claimed
bound on response time or violates the mutual exclusion property. We begin by considering
a slow t imed execution a' that is heavily loaded starting from some time t, and letting a be
the shortest prefix of this timed execution th at ends just after exactly n GRANT events have
occurred after time t. Lemma 5.11 implies that there is some permutation p, such that all
GRANT events that appear in a' after time t occur in the order Po, ... ,Pn- l, Po, . .. In fact,
Lemma 5.11 implies that GRANT events that occur after time tin any timed semi-execution
that extends a and is heavily loaded starting from time t, appear in the order Po, . .. , Pn- l ·
We sometimes abuse notation and write Pp; < PPi when i < j, that is Pp; precedes PPi in the
t he order established by p.

We now consider the "ring" of processes formed by the round-robin order defined above.
We extend the execution in such a way that messages are delivered with maximum delay when
sent from lower numbered processes to higher numbered processes (in the order established by
p), while messages going the other way are delivered immediately. Intuitively, this enables us
to "postpone" notification of the granting as long as possible.

More formally, we extend a to get a slow timed execution a/31 which is heavily loaded
starting from time t and such that the message delivery times for messages sent in /3' are as
follows:

• If i < j, then a message from Pp; to PPi takes exactly time d.

• If i > j , then a message from Pp; to pPi takes exactly time 0.

Let a/3 be a "sufficiently long" prefix of a/31
, specifically, one for which

This can be easily done since, by assumption, cif c2 < 1. Let r1 = tend(a) and r2 = tend(af3) .

Let 'Y be such that a/3-y = a/31
• We know that~/ contains a subsequence of n+ 1 consecutive

GRANT events, in order

GRANT(po), GRANT(p1), . . . , GRANT(Pn- 1), GRANT(po) .

Now divide 'Y into n + 2 segments, 'Yo, . .. , 'Yn+I , where

1. 'Yo ends with the first of these GRANT(p0) events,

2. for each i, 1 ::; i::; n - l , 'Yi starts just after GRANT(Pi-1) and ends with GRANT(pi),

33

3. ,n starts just after GRANT(Pn-1) and ends with the second GRANT(po), and

4. 'Yn+I includes the rest of,.

For each i, 0 ::; i ::; n + 1, let ti = tend(a/3,o . . . ,i). For any 1 ::; i ::; n, define the length of any
segment 'Yi, to be .ei = ti - ti - I• Intuitively, .ei is the amount of time that passes during 'Yi•

Figure 5 depicts the timed execution a(31 . Each horizontal line represents events happening
at one process, the arrows show delay times between pairs of processes (after time r0), while
dashed vertical lines mark time points that are used in the proof.

We now prove a key lemma that provides a lower bound for the length of each segment

'YI, · ·• ,'Yn- l ·

Lemma 5.12 For any i, 1 ::; i ::; n - 1,

Proof: Assume by way of contradiction that

for some particular i, 1 ::; i ::; n - 1.

From a(3, we construct a new timed execution, ab, in which the mutual exclusion property
is violated. We first construct an intermediate timed execution ab' in which we "shift" back
in time the events occurring at processes])p;, .. . , PPn-i, in the following way:

1. Each event occurring at any of the processes])p0 , ••• ,Pp;_
1

that occurs in (3, at time u,
also occurs in 6' at time u.

2. Each event occurring at any of the processes])p,, . .. , PPn-i that occurs in (3, at time u,
occurs in 6' at time u' where:

(a) If u > r2 then u' = u - d.

(b) If r1 ::; u =:; r2 then

r2 - r1 - d
u' = r1 + ---- · (u - r1).

r2 - r1

I.e. u'-r, = r 2 - r 1 - d .
' u - r1 r2-r1

That is, the events occurring at processes 2:])p; at times > r2 are moved d earlier; notice that
events occurring in a (at times ::; r1) are not moved. All the intermediate events are shifted
back proportionally.

The resulting sequences of timed events must be merged into a single sequence consistently
with the order of the times; events occurring at different processes at the same time can be
merged in arbitrary order, except that a SEND event that corresponds to a RECEIVE event
in af3, must precede it in ab'.

34

a
,----y

Ir
l

'Yy1 y
0 1

~
Ir It

2 0
It

l

GRANT(P,)
I o I

y

It
n-1

It
n

GRANT(P,)
I o

p
~1 ----+---+-~-~---L---J"-------_i...-----'­

r:;RANT (Pi)

GRANT (p V
n - 1

Figure 5: The timed execution a/31 .

35

Claim 5.13 ao' is a timed execution of the system.

Proof: The key things that need to be shown are:

• No message is received before it is sent.

• No message takes more than time d to be delivered.

• No clock tick takes time less than c1 .

For the first two conditions, notice that in /31 we have that messages take time:

• d from all processes :S Pp;_1 to all processes 2: Pp;, and

• 0 in the reverse direction.

We are only shifting events of processes 2: Pp; earlier by at most d, so message delivery time is
kept ::; d, and no message is received before it is sent.

For the third condition, note that all clock tick intervals are of length c2 in a/31 , and no
portion of this t imed execution is shrunk by more than the ratio

As the original length of the tick interval was c2, the new length of a clock tick interval is at
least

r2 - r1 - d
C2 · ----- 2: C1,

r2 - r1

by the way /3 was selected. This completes the proof of Claim 5.13. ■

Now we resume the proof of Lemma 5.12. Note the following additional properties of ao':

• Any clock tick interval at a process :S Pp;_1 takes time exactly c2.

• Any clock tick interval at a process 2: PP; that begins at a time > r2 - d takes time
exactly c2.

• Any clock tick interval at a process 2: Pp; that begins at a time :S r2 - d and ends at a
time u > r2 takes time at least u - r2 + (c2 - (u - r2))(cif c2).

• The length of the new segment corresponding to ;i is at most c2(m/c1) .

36

Now to get ab from ab', we "shrink" the portion of ab' after time r2 by the ratio (ci/ c2)
and move the FINISH(Pi-i) event (of segment ,i) after the GRANT(pi) event (at the end of
segment %), thus creating a violation of the mutual exclusion property. More precisely, if an
event happens at time u' in ab', then the corresponding event happens at time u in ab, where:

1. If u < r2, then u' = u.

2. If u 2'. r2 , then u' = r2 + (ci/c2)(u - r2)-

Claim 5.14 ab is a timed execution of the system.

Proof: The key things that need to be shown are:

• No clock tick interval is smaller than c1.

• The FINISH(Pi_i) event occurs within time m after the corresponding GRANT(Pi-I)
event.

For the first condition, if a tick interval happens at process Pi '.S Pp;_
1

or a tick interval
starts no sooner than time r2 - d in ab', then this clearly holds, since the properties of ab'
stated above implies that those intervals are of length c2 •

The only case left is that of a tick interval that occurs at a process 2'. Pp; and starts before
r2 - din ab'. Let u be the time at which the interval ends in ab'. If u '.S r 2, then the interval is
not shrunk at all, so we can assume that u > r2. Then by the properties of ab' stated above,
the length of this interval in ab' is at least u - r2 + (c2 - (u - r2))(cifc2)- But in going from
ab' to ab, only the portion of the interval after time r2 gets shrunk; therefore, the length of
the new interval is at least

as needed for the first condition.

For the second condition, the time between the GRANT(Pi-i) and the GRANT(pi) in
ab, i.e., the length of the segment corresponding to ii in ab , is at most m; hence moving
FINISH(Pi-1) after GRANT(pi) does not violate them upper bound.

This completes the proof of Claim 5.14. ■

To complete the proof of Lemma 5.12, we need only observe that ab is a timed execution
of the system in which the mutual exclusion property is violated, a contradiction. ■

To complete the proof of Theorem 5.9, consider the execution a/3, and consider the
REQUEST(po) that occurs just after the first of the designated GRANT(p0) events in 1 .
From Lemma 5.10 it follows that

37

Together with Lemma 5.12 this implies that the total time from that REQUEST(po) event
until the corresponding GRANT(p0) event is strictly greater than

as claimed. ■

6 Discussion and Open Problems

In this paper, we have defined a timing-based variant of the mutual exclusion problem, and
have considered both centralized and distributed solutions to this problem. We have proved
upper bounds for both cases, based on simple algorithms; these bounds are fairly complicated
functions of clock time, manager or process step time, moving time for the moving parts, and
(in the distributed case) message delivery time.

We also have proved corresponding lower bounds for both cases. In the centralized case,
the lower bound exactly matches the upper bound, even when the manager step time and the
roundoffs are considered. In the more complicated distributed setting, the lower bound is very
close to the upper bound, but does not match it exactly.

The bounds are all proved using the timed automaton model for timing-based concurrent
systems. It is interesting to ask how dependent the results are on this choice of model. The
timed automaton model differs from some others in modeling process steps explicitly (rather
than assuming the algorithms are interrupt-driven); thus, our results involving this process step
time would not be expected to extend immediately to such interrupt-driven models (except
possibly in the limit, as this step time approaches zero). However, some of our results - most
notably, the lower bound for the distributed case - do not involve process step times and thus
appear to be quite model-independent. An alternative approach would be to use a general
model that describes interrupt-driven computation, but we do not yet know (in general) how
to define such model.

There are several open questions directly related to the work presented in this paper. First,
there is a gap remaining between the upper and lower bound results for the distributed resource
allocation problem. Even neglecting process step time, there is a difference of an additive terms
of d, the upper bound on message delivery time, and n • c2, then number of processes times the
upper bound on the clock tick time. Preliminary results suggest that under certain assumptions
about the relative sizes of the parameters, the upper bound can be reduced by approximately
d. However, we do not yet have a general result about this.

Our lower bound for the distributed resource allocation problem assumes that (n - 1) • d ::S;
m · (c2/c1). It would be interesting to see if this assumption can be removed.

38

It would also be interesting to consider the same problem in a model in which there are
nontrivial lower bounds on the time for message delivery (and perhaps for process steps).
While our upper bound proofs still work in this situation, the same is not true for our lower
bound proofs. The strategy of shrinking and shifting timed executions to produce other timed
executions becomes much more delicate when lower bounds on these various kinds of events
must also be respected.

Our results imply that the ratio c2/ c1 has a significant impact on the response time of
the system. It would also be interesting to consider the case where a process has more than
one clock, say an additional clock with bounds [c~, c;]. We would like to understand how the
results depend on the four parameters c1 ,c2 ,c~ and c;.

Other related problems can also be studied using the models and techniques of this paper.
One could define timing-based analogs of other problems besides mutual exclusion that have
been studied in the a.synchronous setting (for example, other exclusion problems such as the
dining philosophers problem, distributed consensus problems, or synchronization problems such
as the session problem of [AFL81]); it should be possible to obtain combinatorial results a.bout
them in the style of the results of this pa.per. In addition to defining variants of asynchronous
problems, one can also extract prototypical problems from practical real-time systems research
and use them as a. basis for combinatorial work.

In another direction, the algorithm proofs presented here suggests general approaches to
verification of real-time systems. As mentioned in Section 4.1.3, we believe that there may be
a unified method for treating correctness and performance analysis of timing-based algorithms,
and a.re currently exploring this possibility in [LA].

Work of the sort presented here (and the extensions proposed above) should provide an
excellent basis for evaluating the timed automaton model as a general model for reasoning
a.bout timing-based systems (and comparing it with alternative models for timing-based com­
putation).

Acknowledgements

We would like to thank Nancy Leveson for providing us with background information on real­
time systems, and for suggestions and encouragement in the early stages of this work. Thanks
a.re also due to Jennifer v\Telch for discussions about clock synchronization and for reading the
paper and providing us with very valuable comments. We would also like to thank Michael
Merritt and Mark Tuttle for discussions about modeling time and John Keen and Steve Ponzio
for comments on earlier versions of t his pa.per.

39

References

[AFL81] E. Arjomandi, M. J. Fischer and N. Lynch, "Efficiency of synchronous versus
asynchronous distributed systems," Journal of the ACM, Vol. 30, No. 3 (July
1983), pp. 449-456.

[BH81] A. Bernstein and P. Harter, Jr. "Proving real-time properties of programs with
temporal logic," Proc. 8th Symp. on Operating System Principles, Operating
Systems Review, Vol. 15, No. 5 (December 1981), pp. 1-11.

[CR83] J . E. Coolahan and N. Roussopoulus, "Timing requirements for time-driven sys­
tems using augmented Petri nets," IEEE Transactions on Software Engineering,
Vol. SE-9, No. 5 (September 1983), pp. 603-616.

[D85] B. Dasarathy, "Timing constraints of real-time systems: Constructs for expressing
them, methods for validating them," IEEE Transactions on Software Engineering,
Vol. SE-11, No. 1 (January 1985), pp. 80-86.

[DHS86] D. Dolev, J . Halpern and H. R. Strong, "On the possibility and impossibility
of achieving clock synchronization." Journal of Computer and Systems Sciences,
Vol. 32, No. 2 (1986) pp. 230-250.

[HMM85] J. Halpern, N. Megiddo and A. A. Munshi, "Optimal precision in the presence of
uncertainty." Journal of Complexity, Vol. 1 (1985), pp. 170- 196.

[H81] V. H. Hasse, "Real-time behavior of programs," IEEE Transactions on Software
Engineering, Vol. SE-7, No. 5 (September 1981), pp. 494-501.

[HGR87] C. Huizing, R. Gerth, and W . P . deRoever, "Full abstraction of a real-time deno­
tational semantics for an OCCAM-like language," in Proc. 14th ACM Symp. on
Principles of Programming Languages, 1987, pp. 223-237.

[JM86] F. Jahanian and A. Mok, "Safety analysis of timing properties in real-time sys­
tems," IEEE Transactions on Software Engineering, Vol. SE-12, No. 9 (September
1986), pp. 890-904.

[JM87] F. Jahanian and A. Mok, "A graph-theoretic approach for timing analysis and
its implementation," IEEE Transactions on Computers, Vol. C-36, No. 8 (August
1987), pp. 961- 975.

[KSRGA88] R. Koymans, R. K . Shyamasunda.r, W. P. deRoever, R . Gerth, and S. Arun­
Kumar, "Compositional semantics for real-t ime distributed computing," Infor­
mation and Computation, Vol. 79, No. 3 (December 1988), pp. 210- 256.

[L 78] L. Lamport, "Time, clocks and the ordering of events in distributed systems."
Communications of the ACM, Vol. 21, No. 7 (July 1978), pp. 558-565.

40

[LS87]

[LL84]

[L88]

[LA]

[LT87]

N. Leveson and J. Stolzy, "Safety analysis using Petri Nets," IEEE Transactions
on Software Engineering, Vol. SE-13, No. 3 (March 1987), pp. 386-397.

J. Lundelius and N. Lynch, "A new fault-tolerant algorithm for clock synchro­
nization," Information and Computation, Vol. 77, No. 1 (April 1988), pp. 1-36.

N. Lynch, "Modelling real-time systems," in Foundations of Real-Time Comput­
ing Research Initiative, ONR Kickoff Workshop, November 1988, pp. 1-16.

N. Lynch and H. Attiya, "Assertional Proofs for Timing Properties," in progress.

N. Lynch and M. Tuttle, "Hierarchical Correctness Proofs for Distributed Algo­
rithms," in Proc. 7th ACM symp. on Principles of Distributed Computing, August
1987, pp. 137-151.

Expanded version available as Technical Report MIT /LCS /TR-387, Laboratory
for Computer Science, MIT, April 1987.

[MMT88] M. Merritt, F. Modugno and M. Tuttle, "Time constrained automata,"
manuscript, November 1988.

[S77]

[SWL88]

[WL88]

[ZLG89]

J. Sifakis, "Petri nets for performance evaluation, in Measuring, Modeling and
Evaluating Computer Systems," in Proc. 3rd Symp. IFIP Working Group 7.3,
H. Beilner and E. Gelenbe (eds.), Amsterdam, The Netherlands, North-Holland,
1977, pp. 75-93.

B. Simons, J . L. Welch and N. Lynch, "An overview of clock synchronization,"
IBM Technical Report RJ 6505, October 1988.

J. L. Welch and N. Lynch, "An upper and lower bound for clock synchronization,"
Information and Control, Vol. 62, Nos. 2/3 (August/September 1984), pp. 190-
204.

A. Zwarico, I. Lee and R. Gerber, "A complete axiomatization of real-time pro­
cesses," Submitted for publication.

41

A Proofs of Lemmas

A.1 Proof of Lemma 4.2

The proof is by induction on the length of a finite execution, a, that ends in state s. The
base, length 0, is trivial since FINISH(i) is not enabled in any initial state. So suppose that
a= a'(s',(r.,t),s) and the result holds for a' ands'. We show it holds for a ands. We
consider cases.

Case 1: 1r = REQUEST(j), for some j, 0 ~ j ~ n - l , or 1r = ELSE.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 ~ i ~ n - l (where
i might or might not be equal to j). Then it is also enabled in s' .Astate. The inductive
hypothesis implies that

1. (a) s'.TIMER > 0,

(b) s'.Ftime(TICK) + (s'.TIMER- l)c1 > s'.Ltime(FINISH(i)), and

(c) FINISH(k) is not enabled in s'.Astate, for any k :p i.

Since s.TIMER = s' .TIMER, we haves.TIMER> 0. Since

s.Ftime(TICK) = s'.Ftime(TICK),

and

s.Ltime(FINISH(i)) = s'.Ltime(FINISH(i)) ,

we have that

s.Ftime(TICK) + (s.TIMER- l)c1 > s.Ltime(FINISH(i)).

Also, FINISH(k) is not enabled in s.Astate, for any k :pi.
Now suppose that s .TICKED = true. Then it must be that 1r is REQUEST(j) and

s' .TICKED = true. Then

s'.Ftime(TICK) ~ s'.Ltime(LOCAL) + c1 - l.

Since

s.Ftime(TICK) = s'.Ftime(TICK) ,

and

42

s.Ltime(LOCAL) = s'.Ltime(LOCAL),

we have that

s.Ftime(TICK) ~ s.Ltime(LOCAL) + c1 - l.

Case 2: 1r = FINISH(j), for some j, 0 :S j :Sn- 1.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 :Si :S n - 1. It cannot
be that i = j so j =/= i. But then both FINISH(i) and FINISH(j) are enabled in s'.Astate,
which contradicts the inductive hypothesis. Therefore, this case cannot occur.

Second, suppose thats.TICKED = true. Then the same argument as in Case 1 shows that

s.Ftime(TICK) ~ s .Ltime(LOCAL) + c1 - l.

Case 3: 1r = TICK.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 :Si :Sn - 1. Then it is
also enabled in s' .Astate, so the inductive hypothesis implies that

1. (a) s'.TIMER > 0,

(b) s'.Ftime(TICK) + (s'.TIMER - l)c1 > s'.Ltime(FINISH(i)), and

(c) FINISH(k) is not enabled in s'.Astate, for any k I= i.

We first prove that s.TIMER > 0. If not, then it must be that s'.TIMER = 1. Then the
inductive hypothesis implies that

s'.Ftime(TICK) > s'.Ltime(FINISH(i)).

But then the definition of time(A) implies that (TICK, t) is not enabled in s', since a FINISH(i)
must happen first. This is a contradiction.

For invariant lb, we see that

Thus,

s.Ftime(TICK) + (s.TIMER - l)c1

t + c1 + (s' .TIMER - 1 - l)c1
t + (s'.TIMER - l)c1,

> t + s'.Ltime(FINISH(i)) - s'.Ftime(TICK)

by inductive hypothesis,

> s'.Ltime(FINISH(i))

by the definition of time(A),

s.Ltime(FINISH(i)).

43

s.Ftime(TICK) + (s.TIMER- l)c1 > s .Ltime(FINISH(i)).

The third clause carries over easily.

Now suppose (actually, it must happen) thats.TICKED= true. Then s .Ftime(TICK) =
t + c1 and s .Ltime(LOCAL) ~ t + l, so

s.Ftime(TICK) 2: s.Ltime(LOCAL) + c1 - l.

Case 4: 1r = GRANT(j), for some j, 0 ~ j ~ n - l.

First suppose that FINISH (i) is enabled in s.Astate, for some i, 0 ~ i ~ n - 1. If i =/:- j,
then FINISH(i) is also enabled in s' .. 4.state, so by the inductive hypothesis, s' .TIMER > 0.
But this contradicts the preconditions of GRANT(j). Therefore, it must be that i = j.

Then the effects of GRANT(i) imply thats.TIMER> 0. Note that

s' .Ltime(LOCAL) 2: t

(since GRANT is a locally controlled action) and that

s'.Ftime(TICK) = s .Ftime(TICK).

Then

Thus,

s.Ftime(TICK) + (s.TIMER- l)c1

s'.Ftime(TICK) + (s.TIMER- l)c1
> s'.Ltime(LOCAL) + c1 - l + (s.TIMER- l)c1

by inductive hypothesis, since s'.TICKED = true,

> t + c1 - l + (s.TIMER- l)c1
by the inequality above,

= t + c1 - l + (l(m + l)/ciJ)c1

> t + m = s .Ltime(FINISH(i)).

s.Ftime(TICK) + (s.TIMER - l)c1 > s .Ltime(FINISH(i))

as needed.

The mutual exclusion condition has already been shown.

It is not possible for TICKED= true in s, by the effects of the GRANT.

44

■

A.2 Proof of Lemma 5.2

The proof is by induction on the length of a. finite execution, a, that ends in state s. The base,
length 0, is trivial. So suppose that a= a'(s',(1r,t),s) and the result holds for a' ands'. We
show it holds for a and s, by considering cases.

Case 1: 1r is a. REQUEST, ELSE, FINISH, TICK or GRANT action.

These steps do not change the contents of any channel or the number of processes i for
which s.TOKEN(i) -=J not_here.

Case 2: 1r = RECEIVE-TOKEN(j), for some j, O::; j ::; n - l.

Since RECEIVE-TOKEN(j) is enabled in s' .Astate we have that #tokens(j - 1) ~ l. By
the induction hypothesis, this implies that for all processes i, s'.TOKEN(i) = not..here. The
length of one channel queue is decreased by one, while one token state (of j) is changed from
noLhere to available; thus, the total number of tokens on channels plus the number of processes
holding the token (i.e., having TOKEN -=J not_here), is preserved.

Case 3: 1r = SEND-TOKEN(j), for some j, 0::; j::; n - l.

The number of processes for which s.TOKEN(j) = not_here is decreased by one relative
to s', while the number of messages on the channels is increased by one. This implies that the
sum we a.re interested in remained the same. ■

A.3 Proof of Lemma 5.3

The proof is by induction on the length of a. finite execution, a, that ends in states. The base,
length 0, is trivial. So suppose that a= a'(s',(1r,t),s) and the result holds for a' ands'. We
show it holds for a and s, by considering cases.

Case 1: 1r = REQUEST(j) or 1r = ELSE(j), for some j, 0::; j::; n - l.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 ::; i ::; n - 1 (where
i might or might not be equal to j) . Then it is also enabled in s' .Astate. The inductive
hypothesis implies that :

1. (a.) s'.TIMER(i) > 0,

(b) s'.Ftime(TICK(i)) + (s'.TIMER(i) - l)c1 > s'.Ltime(FINISH(i)), and

(c) s'.TOKEN(i) = used.

Since s .TIMER(i) = s'.TIMER(i) we have s.TIMER(i) > 0, showing la.. Since

s.Ftime(TICK(i)) = s'.Ftime(TICK(i)),

and

45

s .Ltime(FINISH(i)) = s'.Ltime(FINISH(i)),

we have that

s .Ftime(TICK(i)) + (s.TIMER(i) - l)c1 > s .Ltime(FINISH (i)) .

So we have invariant l b. Invariant le carries over as this step does not change token states.

Now suppose that s .TICKED(i) = true.

T hen s' .T ICKED(i) = true, and

s'.Ftime(TICK(i)) ~ s'.Ltime(LOCAL(i)) + c1 - l.

Since

s .Ftime(TICK(i)) = s'.Ftime(TICK(i))

and

s .Ltime(LOCAL(i)) = s'.Ltime(LOCAL(i))

we have that

s.Ftime(TICK(i)) ~ s .Ltime(LOCAL(i)) + c1 - l.

So we have invariant 2.

Case 2: 1r = FINISH(j), for some j, 0 ~ j ~ n - 1.

First suppose that FINISH(i) is enabled in s .Astate, for some i, 0 ~ i ~ n - 1. It cannot
be that i = j so j #- i. Then FINISH(i) is also enabled ins'. As FINISH(j) is also enabled in
s', we have, by invariant le, that s'.TOKEN(j) = used. Similarly, as FINISH(i) is enabled in
s', we have, by invariant le, that s'.TOKEN(i) = used. But this implies that the number of
processes for which TOKEN =/= not.here is at least two, contradicting Lemma 5.2. T herefore,
this case cannot occur, and we have invariant 1.

For invariant 2, suppose that s .TICKED(i) = true. Then the same argument as in Case 1
shows that, for all i,

s.Ftime(TICK(i)) ~ s .Ltime(LOCAL(i)) + c1 - l .

Case 3: 1r = TICK(j), for some j, 0 ~ j ~ n - 1.

First suppose that FINISH(i) is enabled in s .Astate. Then it is also enabled in s'.Astate,
so the inductive hypothesis implies that

46

l. (a) s' .TIMER(i) > 0,

(b) s'.Ftime(TICK(i)) + (s' .TIMER(i) - l)c1 > s' .Ltime(FINISH(i)), a.nd

(c) s'.TOKEN(i) = used.

We first prove that s.TIMER(i) > O. If not, then it must be that s'.TIMER(i) = 1, and
j = i . Then the inductive hypothesis implies that

s'.Ftime(TICK(i)) > s'.Ltime(FINISH(i)) .

But then the definition of time(B) implies that TICK(i) is not enabled ins' (since FINISH(i)
must happen first). This is a contradiction, so we have invariant la.

For the in variant 1 b, if i = j, then

s .TIMER(i) = s'.TIMER(i) - 1

and we see that

s.Ftime(TICK(i)) + (s .TIMER(i)- l)c1

Therefore,

= t + c1 + (s'.TIMER(i) - 1 - l)c1

= t + (s' .TIMER(i) - l)c1

> t + s'.Ltime(FINISH(i)) - s'.Ftime(TICK(i))

by inductive hypothesis,

> s'.Ltime(FINISH(i))

s .Ltime(FINISH (i)).

s.Ftime(TICK(i)) + (s.TIMER(i) - l)c1 > s .Ltime(FINISH(i)),

and we have invariant lb. If i # j then invariant lb follows as in Case l. Invariant le carries
over as this step does not change token states.

Now suppose that s.TICKED(i) = true. If i = j, then s .Ftime(TICI<(i)) = t + c1 and
s.Ltime(LOCAL(i)) ::; t + l, so

s.Ftime(TICK(i)) 2: s.Ltime(LOCAL(i)) + c1 - l ,

as needed for invariant 2. On the other hand, if i # j, then s'.TICKED(i) = true and the
induction hypothesis on invariant 2 implies that

s'.Ftime(TICI<(i)) 2: s'.Ltime(LOCAL(i)) + c1 - l.

47

Then invariant 2 for s follows as in Case l.

Case 4: 1r = GRANT(j), for some j, 0 ~ j ~ n - 1.

Then s' .TOKEN = available. First suppose that FINISH(i) is enabled in s.Astate, for
some i, O ~ i ~ n - 1. If i -=J j then FINISH(i) is also enabled in s'.Astate, so by inductive
hypothesis (invariant le), s'.TOKEN(i) = used. But this contradicts Lemma 5.2, soi= j .

Then the effects of GRANT(j) imply that s.TIMER(j) > 0, so we have invariant la. Note
that

s' .Ltime(LOCAL(j)) ~ t

and that

s'.Ftime(TICK(j)) = s .Ftime(TICK(j)) .

Then

Thus,

s.Ftime(TICK(j)) + (s .TIMER(j) - l)c1

s' .Ftime(TICK(j)) + (s.TIMER(j) - l)c1

> s'.Ltime(LOCAL(j)) + c1 - l + (s.TIMER(j) - l)c1
by inductive hypothesis,

> t + c1 - l + (s .TIMER(j) - l)c1

t + c1 - l + (l(m + l)/ciJ)c1

> t + m = s.Ltime(FINISH(j)).

s.Ftime(TICK(j)) + (s.TIMER(j) - l)c1 > s.Ltime(FINISH(j))

and we have invariant lb.

Invariant le follows from the effects of the GRANT.

Now suppose that s.TICKED(i) = true. Then the effects of GRANT(j) implies that j -=Ji.
Then invariant 2 follows as in Case 3.

Case 5: 1r = RECEIVE-TOKEN(j), for some j, 0 ~ j ~ n - 1.

From the inductive hypothesis on invariant le and Lemma 5.2 it follows that FINISH(i) is
not enabled in s', hence it is not enabled in s. So we have invariant l.

Invariant 2 follows as in Case l.

Case 6: 1r = SEND-TOKEN(j), for some j, O ~ j ~ n - 1.

If FINISH(i) is enabled ins, then it is also enabled ins', but then from invariant la it follows
that s'.TIMER(j) > 0, so SEND-TOKEN(j) is not enabled in s'. This is a contradiction, so
invariant 1 holds.

Invariant 2 follows as in Case l. ■

48

