
LABORATORY FOR
COMPUTER SCIENCE tt

MIT/LCS/TM-417.b
(Replaces TM-417)

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

A MODULAR DRINKING
PHILOSOPHERS ALGORITHM

Jennifer L. Welch
Nancy A. Lynch

October 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Modular Drinking Philosophers Algorithm

Jennifer L. Welch

*Department of Computer Science

Texas A&M University

College Station, TX 77843-3112

Nancy A. Lynch

tLaboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

SEPTEMBER 1992

Abstract

A variant of the drinking philosophers algorithm of Chandy and Misra is described and proved

correct in a modular way. The algorithm of Chandy and Misra is based on a particular dining

philosophers algorithm and relies on certain properties of its implementation. The drinking

philosophers algorithm presented in this paper is able to use an arbitrary dining philosophers

algorithm as a subroutine; nothing about the implementation needs to be known, only that it

solves the dining philosophers problem. An important advantage of this modularity is that by

substituting a more time-efficient dining philosophers algorithm than the one used by Chandy

and Misra, a drinking philosophers algorithm with 0(1) worst-case waiting time is obtained,

whereas the drinking philosophers algorithm of Chandy and Misra has 0(n) worst-case waiting

time (for n philosophers). Careful definitions are given to distinguish the drinking and dining

philosophers problems and to specify varying degrees of concurrency.

Key words: dining philosophers, distributed algorithms, drinking philosophers, modularity,

resource allocation, time complexity. input/output automata

• Part of this work was performed while the first author was at the Laboratory for Computer Science, Massachusetts

Institute of Technology, supported by the Advanced Research Projects Agency of the Department of Defense under

contract N00014-83-K-0125, the National Science Foundation under grants DCR-83-02391 and CCR-86-11442, the

Office of Army Research under contract DAAG29-84-K-0058, and the Office of Naval Research under contract N00014-

85-K-0168. The first author was also supported by a National Science Foundation Presidential Young Investigator

Awa.rd CCR-91-58478
1The work of the second author was supported in part by the National Science Foundation under Grant CCR-

89-15206, in part by the Defense Advanced Research Projects Agency (DARPA) under Contracts N00014-89-J-1988

and N00014-92-J-4033, and in part by the Office of Naval Research under Contract N00014-91-J-1046

1 Introduction

We present a modular description and proof of correctness for an algorithm to solve the drinking

philosophers problem in a message-passing distributed system. Our algorithm uses an arbitrary

solution to the dining philosophers problem as a subroutine; by using a time-efficient subroutine,

one can obtain a drinking philosophers algorithm with 0(1) worst-case waiting time. Careful

definitions are given to distinguish the drinking and dining philosophers problems and to specify

varying degrees of concurrency.

The drinking philosophers problem is a dynamic variant due to Chandy and Misra [2] of the

dining philosophers problem, a much-st udied resource allocation problem. In the original dining

philosophers problem of Dijkstra [4] , five philosophers (processes) are arranged in a ring with one

fork (resource) between each pair of neighbors, and in order to eat (do work), a philosopher must

have exclusive access to both of its adjacent forks. A more general version of the problem allows any

number of processes and puts no restrictions on which processes share resources. In the drinking

philosophers problem, for each process there is a maximum set of resources that it can request, and

each time a process wishes to do some work, it may request an arbitrary subset of its maximum

set.

Our drinking philosophers algorithm is a variant of the one of Chandy and Misra [2]. Their

algorithm is based on a particular dining philosophers algorithm and relies on certain properties

of its implementation. Our drinking philosophers algorithm is able to use an arbitrary dining

philosophers algorithm as a subroutine; nothing about the implementation needs to be known, only

that it solves the dining philosophers problem. We show that in a system of n philosophers the

maximum waiting time for a drinking philosopher to enter it s critical region is dominated by the

maximum waiting time for a dining philosopher to enter its critical region in the subroutine. Thus,

by replacing the dining philosophers algorithm of [2], which has waiting time O(n), with a dining

philosophers algorithm such as the one of Lynch [7], which has waiting time independent of n, we

obtain a more time-efficient drinking philosophers algorithm.

We provide definitions that distinguish the drinking and dining philosophers problem and that

specify varying degrees of concurrency. We use the input-output automaton model of Lynch and

Tuttle [8], which is useful for stating properties that concern the infinite behavior of a system, such

as no-lockout, and which supports modular algorithm design and verification.

Other work on the drinking philosophers problem includes the following. The algorithm in [2]

is proven correct assuming a strong fairness property on the execution of actions. Murphy and

1

Shankar [9] consider weaker fairness properties and show what modifications had to be made to

preserve correctness. The resulting algorithm is very similar to the original and has the same

performance.

Singh and Gouda [11, 12] study abstract properties of synchronization problems. Their work

shows that the same set of abstract properties are required of both drinking and dining philosophers,

explaining somewhat why a dining philosophers subroutine can solve the drinking philosophers

problem.

Ginat, Shankar and Agrawala [5] propose a drinking philosophers algorithm that solves the

problem directly without using a dining philosophers subroutine. As a result, it is more message­

efficient, but it requires unbounded counters. Its time performance is 0(n).

Awerbuch and Saks [1] define a general "dynamic job scheduling" problem, which includes

drinking philosophers as a special case. In this model, a process is created whenever a job to be

executed enters the system. The process is initially given an identifier for the job and the set of

identifiers of currently conflicting jobs; it is responsible for determining when the job can begin.

The time performance is 0(62
• log U), where o is the maximum number of conflicting jobs in the

system at one time, and U is the size of the set from which job identifiers are drawn.

Choy and Singh [3] have extended the work of [1] to improve performance and to include

discussion of fault-tolerance.

In Section 2, the dining philosophers and drinking philosophers problems are defined. In Section

3, we describe our algorithm, as an automaton. Section 4 contains the proof of correctness of our

algorithm, and in Section 5 we analyze its performance with respect to various complexity measures.

Section 6 contains our conclusions. Earlier versions of this work appeared in [13, 14].

2 Problem Statement

There are n user processes in the system being modeled, and each one needs, at various times,

some of the system resources. Only one user at a time may have access to any one resource. Each

user's states are partitioned into four regions. In its trying region, the user is vying for access

to its required resources. Once the resources are obtained, the user may enter its critical region.

When the user is through with the resources, it enters its exit region, which usually involves some

"cleaning up" activities. Otherwise, the user is in its remainder region. The user cycles through

these four regions. In the dining philosophers problem, each user (or philosopher) always requests

2

the same set of resources. In the drinking philosophers problem, each user can request a different

set of resources each time it enters its trying region.

A resource allocation algorithm decides which user gets which resources at which time; thus,

it supplies the code for the trying and ex.it regions. A distributed resource allocation algorithm

consists of one component for each user; the components communicate with each other by message

passing.

We describe algorithms for two resource allocation problems, dining philosophers and drinking

philosophers, as input-output automata ([8]); see Section 2.1 for a brief summary. We imagine an

automaton that, given input from some number of users informing the automaton of their desire

to gain or give up a set of resources, determines when particular users are allowed to enter their

critical and remainder regions, indicated by output actions.

Let S be a finite non-empty set of resources. Define an n-user resource requirement to be a

collection of n sets S;, 1 ::; i ::; n, such that each S; is a non-empty subset of S, and no resource

is in more than two S; 's. The last restriction makes the algorithm much simpler to describe and

reason about, but is not substantive: if a resource is shared by k users, then it can be represented

by k(k - 1)/2 virtual resources, one shared between each pair of the original k users; to gain the

"real" resource, a user must gain the k - 1 virtual resources shared with it.

In the context of the dining philosophers problem, resources will be referred to as forks; in

the context of the drinking philosophers problem, resources will be referred to as bottles. (This

terminology comes from [2].)

2.1 Model

In this subsection, we briefly describe the input-output automaton model ([8]), as simplified for our

purposes.

Each system component is modeled by an automaton. The automaton is a state machine whose

state transitions are labeled with actions. If there is a transition from a state labeled with an

action, then that action is enabled in that state. Actions are partitioned into input actions, output

actions, and internal actions. The input and output actions model communication with the outside

world. Since the component has no control over when inputs occur, each input action is enabled in

every state. Internal actions are private to the component, i.e., not visible to its environment.

An execution of an automaton is an alternating sequence of states and actions, beginning with

an initial state, in which each action is enabled in the previous state and each state change correctly

3

reflects the transition relation for the intervening action. An execution is fair if every output or

internal action that is continuously enabled eventually occurs. Informally, an execution is fair if

the automaton eventually gets to perform a pending output or internal action (and is not, say,

swamped with inputs). We will require liveness properties only of fair executions.

The system as a whole is also modeled by an automaton, the automaton resulting from the

composition of the components. In order for the composition to be defined, each action must be

shared by at most two automata, and then the action must be an input of one and an output

of the other. The state set of the composition is the Cartesian product of the state sets of the

component automata. There is a transition from state s' of the composition to state s labeled with

action 7r if and only if (1) 7r is enabled in each component of s' that corresponds to an automaton

with that action, and (2) each component in s correctly reflects the corresponding transition for 7r

(or is unchanged if the corresponding automaton lacks 7r). Each action of the composition retains

its previous classification as input, output , or internal, except that an action that is input to one

component and output to another becomes internal.

2.2 Dining Philosophers

Fix an n-user fork requirement :F = {F;: 1 $ i $ n} . The following definitions are all made relative

to this fork requirement.

An automaton is a dining philosophers algorithm if it satisfies the following five conditions.

1. Its input actions are {T;, E; : 1 $ i $ n} . T; means that user i wants to enter its trying

region, E; means that user i wants to enter its exit region.

2. Its output actions are { Ci, Ri : 1 $ i $ n }. Ci means that user i may enter its critical region,

Ri means that user i may enter its remainder region.

These input and output actions are called the dining actions.

We are only interested in executions in which the environment (which generates the inputs) and

the automaton (which generates the outputs) cooperate so that the dining actions for each i cycle

through Ti , C;, Ei, Ri. Formally, an execution e of an automaton is dining-well-formed if for all

i, the subsequence of e restricted to dining actions conforms to the pattern TiCiE;RiTiCiE;R;

An automaton preserves dining-well-formedness if for all executions e' and e of the automaton,

where e is the result of extending e' by one output action, if e' is dining-well-formed, then e is

4

dining-well-formed. When we use a dining philosophers algorithm as a subroutine, we will make

sure that its environment-the caller-preserves dining-well-formedness.

3. (Dining-well-formedness) The automaton preserves dining-well-formedness.

4. (Exclusion) In any dining-well-formed execution, for all i and j with i =p j and F; n F; =p 0,

if an occurrence of C; precedes an occurrence of C; then E; occurs between the C; and C;.

This is the property that guarantees exclusive access to the resources.

5. (No-lockout) In any fair dining-well-formed execution, if for all i, every occurrence of C;

is followed by an occurrence of E;, then for all i, every occurrence of T; is followed by an

occurrence of R;. This property means that no diner is stuck in either its trying or exit region,

assuming no diner is stuck in its critical region.

2.3 Drinking Philosophers

Fix an n-user bottle requirement B = {B; : 1 ~ i ~ n}. The following definitions are made

relative to this bottle requirement; most are analogous to those in Section 2.2. A new condition is

introduced to distinguish the drinking philosophers problem from the dining philosophers problem,

as will be discussed.

An automaton is a drinking philosophers algorithm if it satisfies the following six conditions.

1. Its input actions are {T;(B), E;(B) : 1 ~ i ~ n, B ~ B;, B =p 0}. T;(B) means that user i

wants to enter its trying region with set of resources B, etc. B must be a nonempty subset

of B;, the maximum set of resources that user i can ever request.

2. Its output actions are {C;(B),R;(B): 1 ~ i ~ n,B ~ B;,B =p 0}. C;(B) means that user i

may enter its critical region with set of resources B , etc.

These input and output actions are called the drinking actions.

We are only interested in executions in which the environment and the automaton cooperate so

that for all i, the drinking actions for i cycle through groups, where each group is of the form T;(B),

C;(B), E;(B), R;(B) for a fixed value of B , and different groups may involve different values of B.

Formally, an execution e of an automaton is drinking-well-formed if for all i, the subsequence of ere­

stricted to dining actions conforms to the pattern T;(B)C;(B)E;(B)R;(B)T;(B')C;(B')E;(B')R;(B')

An automaton preserves drinking-well-formedness if for all executions e' and e where e is the result

of extending e' by one output action, if e' is drinking-well-formed, then e is drinking-well-formed.

5

3. (Drinking-well-formedness) The automaton preserves drinking-well-formedness.

4. (Exclusion) In any drinking-well-formed execution, for all i, j, B, and B' with i -::/: j and

B n B' i= 0, if an occurrence of C;(B) precedes an occurrence of C;(B') then E;(B) occurs

between the C;(B) and C;(B'). This is the property that guarantees exclusive access to the

resources.

5. (No-lockout) In any fair drinking-well-formed execution, if for all i and B, every occurrence of

C;(B) is followed by an occurrence of E;(B), then for all i and B, every occurrence of T;(B)

is followed by an occurrence of R;(B). This property means that no drinker is stuck in either

its trying or exit region, assuming no drinker is stuck in its critical region.

(Another condition that might be of interest for both the dining and drinking philosophers

problem is that no user is ever stuck in its exit region, no matter what happens in the execution.

Our algorithm satisfies this condition as well.)

According to the definitions presented so far, any dining philosophers algorithm is also a drink­

ing philosophers algorithm: if the set of resources for each drinker i is identified with the total set

of resources that could ever be requested by i, then a dining philosophers algorithm will satisfy all

the conditions for drinking philosophers. Yet this is not very satisfying, since if drinkers i's and j's

current resource requirements are disjoint, they should be able to enter their critical regions simul­

taneously, even if their potential resource requirements intersect. We should be able to get "more

concurrency" from a drinking philosophers algorithm than from a dining philosophers algorithm.

One way to formalize this requirement is to require the following property: if drinker i requests

the set of resources B at some point, and no other drinker wants or uses any of the resources in B

from that point onwards until i gets to use B, then i cannot be stuck in its trying region, even if

other drinkers keep other resources forever. To state this "more-concurrent" property, we need the

following definition. Given i, B, and an occurrence of T;(B) in a drinking-well-formed execution,

the occurrence of T;(B) is non-overlapping if for all j i= i and all B' that intersect B, (i) every

preceding occurrence of T;(B') is followed by an E;(B') that also precedes the T;(B), and (ii) every

following occurrence of T;(B') follows a C;(B) that also follows the T;(B).

6. (More-concurrent) In any fair drinking-well-formed execution, for all i, B, and all occurrences

of T;(B), if the occurrence of T;(B) is non-overlapping, then the T;(B) is followed by an

occurrence of C;(B).

6

Other possibilities for defining "more concurrency" are discussed in the conclusion, including

the stronger condition that i is not stuck in its trying region as long as no other drinker uses any

of the resources in B while i is trying.

3 Drinking Philosophers Algorithm

In· this section we describe an automaton Drink(B) to solve the drinking philosophers problem for

then-user bottle requirement B = {B; : 1 ~ i ~ n}, in a message-passing distributed system. It is

created by composing the following automata:

• D;, for 1 ~ i ~ n, the part of the algorithm for user i;

• Net, a reliable communication network that delivers messages between any pair of users in

FIFO order; and

• any automaton Dine(B) that is a dining philosophers algorithm for B (the subroutine).

Net is an automaton whose state contains a FIFO queue channe4; for all users i and j, holding

the messages sent from i to j but not yet received, and whose input actions are Send;(m, j) and

output actions are Receive;(m, j) for all users i and j and every message m. When Send;(m, j)

occurs, mis enqueued in channe4;- Receive;(m, i) can occur when mis at the head of channe4;

and results in m being dequeued.

The heart of our algorithm is the D; automata. First we describe the algorithm informally and

then we present the D; automata.

When D; enters its trying region needing a certain set of resources, it sends requests for those

that it needs but lacks. Recipient D; of a request satisfies the request unless D; currently also

wants the resource or is already using it. In these two cases, D; defers the request and satisfies it

once D; is finished using the resource.

In order to prevent drinkers from deadlocking, a dining philosophers algorithm is used as a

subroutine. The "resources" manipulated by the dining subroutine are priorities for the "real"

resources (there is one dining resource for each drinking resource). As soon as D; is able to do so

in its drinking trying region, it enters its dining trying region, that is, it tries to gain priority for its

maximum set of resources. If D; ever enters its dining critical region while still in its drinking trying

region, it sends demands for needed bottles that are still missing. A recipient D; of a demand must

7

satisfy it even if Di wants the resource, unless Di is using the resource. In that case, Di defers the

request and satisfies it when Di is through using the resource.

Once D; is in its dining critical region, we can show that it eventually receives all its needed

resources and never gives them up. Then it may enter its drinking critical region. Once D; enters

its drinking critical region, it may relinquish its dining critical region, since the benefits of having

the priorities are no longer needed. Doing so allows some extra concurrency: even if D; stays in

its drinking critical region forever, other drinkers needing other resources can continue to make

progress.

A couple of points about the code deserve explanation. We can show that when a request

is received, the resource is always at the recipient; thus it is not necessary for the recipient to

check that it has the resource before satisfying or deferring the request. However, it is possible

for a demand for a missing bottle to be received, so before satisfying or deferring a demand, the

recipient must check that it has the resource. For example, suppose D; sends a request for b to Di,

Di satisfies the request , but before it arrives at D;, D; sends a demand for b to Di.

Another point concerns when the actions of the dining subroutine should be performed. Some

drinkers could be locked out if D; never relinquishes the dining critical region. The reason is

that as long as D; is in its dining critical region, it has priority for the resources. Thus D; could

cycle through its drinking critical region infinitely often1 • To avoid this situation, we keep track

of whether the current dining critical region was entered on behalf of the current drinking trying

region (i.e., whether the latest C; occurred after the latest T;(B)). If it was, then D; may enter

its drinking critical region (assuming it has all needed bottles) . Otherwise D; must wait until the

current dining critical region has been relinquished before continuing.

We now present the automaton D; for each i. The state of the automaton consists of the

following variables.

• drink-region: equals T if the most recent drinking action was T;(B) (for some B), C if C;(B),

etc. Initially R.

• dine-region: equals T if the most recent dining action was T;, C if C;, etc. Initially R .

• need: equals B , where the most recent drinking action had parameter B. Initially empty.

1This problem is also considered in (9), where three other solutions are proposed.

8

• bottles: set of tokens that have been received and not yet enqueued to be sent. Initially the

token for a resource shared between D, and D; is in the bottles variable of exactly one of D,

and D;, with the choice being made arbitrarily.

• deferred: set of tokens in the set bottles for which a request or demand has been received since

the token was received. Initially empty.

• current: Boolean indicating whether current dining critical region is on behalf of current

drinking trying region. Initially false.

• msgs[j] for all j # i: FIFO queue of messages for D; enqueued but not yet sent. Initially

empty.

The actions of D, are specified next, in an approximate "chronological" order in which they

could occur. Input actions have only effects, while output actions have both preconditions and

effects.

• T,(B) for all B ~ B,

EFFECT:

drink-region+- T

need+- B

for all j # i and b E (need n B;) - bottles: enqueue request(b) in msgs[j]

• Sen~(m,j) for all j # i, m E {request(b), token(b),demand(b): b EB, n B;}

PRECONDITION:

m is at head of msgs[j]

EFFECT:

dequeue m from msgs[j]

• T,

PRECONDITION:

dine-region = R

drink-region = T

EFFECT:

dine-region +- T

9

• Receive;(request(b), j) for all j # i, b E B; n Bi

EFFECT:

• C;

if (b E need) and (drink-region E {T, C}) then

deferred +- deferred U{b}

else

enqueue token(b) in msgs[j]

bottles +- bottles - { b}

EFFECT :

dine-region +- C

if drink-region = T then

for all j # i and b E (need n Bi) - bottles: enqueue demand(b)) in msgs[j]

current +- true

• Receive;(demand(b),j) for all j # i , b EB; n Bi

EFFECT:

if (b E bottles) and ((b {/ need) or (drink-region :/; C)) then

enqueue token(b) in msgs[j]

bottles +- bottles - { b}

deferred +- deferred -{ b}

• Receive;(token(b),j) for all j # i , b EB; n Bi

EFFECT:

bottles +- bottles U { b}

• C;(B) for all B ~ B;

PRECONDITION:

drink-region = T

B = need

need ~ bottles

if dine-region= C then current = true

EFFECT:

drink-region +- C

10

current +- false

PRECONDITION:

dine-region = C

if drink-region = T then current = false

EFFECT:

dine-region +- E

• R;

EFFECT:

dine-region +- R

• E;(B) for all B ~ B;

EFFECT :

drink-region +- E

for all j =J i and b E deferred n B;: enqueue token(b) in msgs[j]

bottles +- bottles - deferred

deferred - 0

• R;(B) for all B ~ B;

PRECONDITION:

drink-region = E

B = need

EFFECT:

drink-region +- R

4 Proof of Correctness

The proof is divided into three parts, concentrating on the exclusion property, the no-lockout

property, and the more-concurrent property.

In Section 4.1, Lemma 1 states that the variables do what one would expect; it is used explicitly

and implicitly throughout. Lemma 2 states that the automaton preserves drinking-well-formedness.

11

Lemma 3 states that a group of predicates about the state variables form an invariant. Two of the

predicates in this group are the key to showing Lemma 4, the exclusion property.

In Section 4.2, Lemma 8 states that the automaton satisfies the no-lockout property for drinking

philosophers. Its proof is based on three preliminary lemmas, Lemma 5, which states that the dining

philosophers properties hold, Lemma 6, which states that the variable current behaves properly,

and Lemma 7, which states that if all bottles are eventually released, then all forks are eventually

released.

In Section 4.3, Lemma 9 states that the automaton satisfies the more-concurrent property for

drinking philosophers. Theorem 1 in Section 4.4 puts all the pieces together.

Variables of D; will be denoted by appending the subscript i to the variable name. Note that

the concatenation of the variable msgs,[j] of D; and the variable channe4i of Net forms a FIFO

queue. If a message is in this composite queue, then it is said to be in transit from i to j.

4.1 Exclusion

Lemma 1 The following are true in every state of every execution of Drink(B), for all i.

(a) drink-region; = T if the most recent drinking action is T;(B) for some B, drink-region; = C if

the most recent drinking action is C;(B) for some B, drink-region; = E if the most recent drinking

action is E;(B) for some B, drink-region; = R if the most recent drinking action is R,(B) for some

B or if there is no preceding drinking action.

(b) need; = B , for all B, if the most recent drinking action has parameter B (if none, then need;

is empty).

(c) dine-region; = T if the most recent dining action is T;, dine-region; = C if the most recent

dining action is C, , dine-region, = E if the most recent dining action is E;, dine-region; = R if the

most recent dining action is R,or if there is no preceding dining action.

(d) Each message in transit from i to j concerns a bottle shared by i and j.

Proof Each of these statements can be shown (independently) by a simple induction on the length

of executions. ■

Lemma 2 Drink(B) preserves drinking-well-formedness.

Proof By induction on the length of executions, using Lemma 1. ■

12

The next lemma states that a collection of predicates form an invariant. Predicates (a) and (f)

are used to show exclusion. The remaining predicates are used in the inductive proof of (a); some

are also used later in the paper.

Lemma 3 The following are true in every state of every drinking-well-formed execution of Drink(B),

for all i and j, i i:, j, and all b E B; n Bi .

(a) Exactly one of the following is true: b is in bottles;, b is in bottlesi, token(b) is in transit from

i to j, or token(b) is in transit from j to i.

{b) If b is in def erred; , then

1. b is in bottles;,

2. drink-regioni = T,

3. b is in needi.

{ c) If request(b) is in transit from i to j , then

1. exactly one request(b) message is in transit from i to j,

2. either token(b) precedes request(b) in transit from i to j or b is in bottlesi,

3. b is not in deferredi,

4. drink-region; = T,

5. b is in need;.

(d) If token(b) is in transit from i to j, then

1. exactly one token(b) message is in transit from i to j,

2. drink-region; = T,

3. b is in needi .

(e) If demand(b) is in transit from i to j and either token(b) precedes it or b is in bottlesi, then

1. drink-region; = T,

2. b is in need;,

3. no request(b) follows it.

{f) If b is in need; and drink-region;= C, then b is in bottles;.

Proof The proof is by induction on the length of execution e = s0a 1s 1a2 •••• It is easy to verify

that (a) through (f) are true in s0 • Assume they are true for sm-1> m > 0, and show they are true

for Sm. For ea.ch of (a.) through (f), we consider ea.ch possibility for the action am. We consider

only the non-trivia.I cases. Present tense refers to sm- l a.nd future tense refers to Sm.

13

• Proof of (a). Action E;(B): By (bl), deferred; is a subset of bottles;.

Action Receive;(token(b),j): By (dl), there is only one token in transit from j to i.

Action Receive;(request(b),j): By (c2), bis in bottles;.

• Proof of (bl). Action Receive;(request(b),j): By (c2), bis in bottles;, and by (c3), it is not in

deferred;.

• Proof of (b2). Action C;(B): Suppose there exists b E B; that is in deferred; . By (bl), bis

in bottles;. By (b3), bis in need;. By (a), bis not in bottles;, contradicting the precondition.

Action Receive;(request(b),j): By (c4), drink-region; equals T.

• Proof of (b3). Action T;(B): By (b2), deferred; is empty.

Action Receive;(request(b),j): By (c5), bis in need;.

• Proof of {cl} . Action T;(B): By (c4), since drink-region; is not equal to T, no request(b) is in

transit from i to j.

• Proof of (c2). Action T;(B): By (d2) , since drink-region; is not equal to T, no token(b) is in

transit from j to i.

Action E;(B): Suppose token(b) will be put in transit from j to i. By the code, b is in

deferred;. By (c3), no request(b) is in transit from i to j.

Action Receive;(request(b),j): By (cl), only one request(b) is in transit from i to j. Thus the

predicate will be vacuously true.

Action Receive;(demand(b), i): The only effect of this action that could invalidate (c2) is if b

will be removed from bottlesi. By the code, then bis in bottles;. But by (e3), no request(b) is

in transit from i to j .

• Proof of (c3).

Action T;(B): By Lemma 1 and (b2), nob EB; is in deferredi.

Action Receive;(request(b), i): By (cl), only one request(b) is in transit from i to j. Thus the

predicate will be vacuously true.

• Proof of (c4). Action C;(B): By the precondition, need; is a subset of bottles;. By (a) and

(c2), no request(b) is in transit from i to j.

14

• Proof of (cS). Action T;(B): By Lemma 1 and drinking-well-formedness, drink-region; equals

R. By (c4), no request(b) is in transit from i to j.

• Proof of (dl). Action Receive;(request(b),j): Suppose token(b) will be put in transit from i

to j. By (c2), bis in bottles;. By (a), no token(b) is in transit from i to j.

Action Receive;(demand(b),j): Suppose token(b) will be put in transit from i to j . By the

code, bis in bottles;. By (a), no token(b) is in transit from i to j.

• Proof of {d2). Action C;(B): Suppose token(b) is in transit from i to j. By (d3), bis in need;.

By (a), bis not in bottles;, contradicting the precondition.

Action Receive;(request(b),j): By (c4), drink-region; equals T.

Action Receive;(demand(b),j): Suppose token(b) will be put in transit from i to j. By the

code, bis in bottles;. By (el), drink-region; equals T.

Action E;(B): Consider any b EB; such that token(b) will be put in transit from j to i. By

the code, bis in deferred;. By (b2), drink-region; equals T.

• Proof of {d3). Action T;(B): By (d2), no token(b) is in transit from i to j.

Action Receive;(request(b),j): By (c5), bis in need; .

Action Receive;(demand(b),j): Suppose token(b) will be put in transit from i to j. By the

code, b is in bottles;. By (e2), b is in need;.

Action E;(B): Consider any b E B; such that token(b) will be put in transit from i to j. By

the code, bis in deferred;. By (b3), bis in need;.

• Proof of {el). Action C;(B): Suppose there exists demand(b) in transit from i to j such that

token(b) precedes it orb is in bottles;. By (e2), bis in need;. By the precondition, bis in

bottles;, contradicting (a). Thus there is no such demand(b).

• Proof of {e2) . Action T;(B) : By Lemma 1 and (el), there is no such demand(b) message.

• Proof of {e3) . Action T;(B): By Lemma 1 and (el), there is no such demand(b) message.

• Proof of {f). All by the code.

■

15

The next lemma states that the automaton satisfies the exclusion property for drinking philoso­

phers. The reason is that, for each bottle, there is exactly one token in the system for that bottle

at any time. Whenever a drinker is in its critical region, it holds the token for each bottle it needs.

Thus no two drinkers can be in their critical regions at the same time if their bottle requirements

overlap.

Lemma 4 Drink(B) satisfies the exclusion property for drinking philosophers.

Proof Consider any drinking-well-formed execution. Suppose in contradiction there exist i, j, B,

and B' such that i :j; j, B n B' :j; 0, and some occurrence of C;(B) is followed by an occurrence

of C;(B') with no intervening occurrence of E;(B). Let b be an element of B n B'. In the state

s immediately after the C;(B'), drink-region; = C, need; contains b, drink-region; = C, and need;

contains b. But Lemma 3 (f) implies that in states, bis in both bottles; and bottles;, contradicting

Lemma 3 (a). ■

4.2 No-Lockout

To show the no-lockout property, we need to rely on the subroutine. First we must check that the

environment of Dine(B)-the composition of the D; 's and Net-preserves dining-well-formedness.

From that it follows that every execution is dining-well-formed, and that the properties for dining

philosophers hold.

Lemma 5 (a) The composition of the D; 's and Net preserves dining-well-formedness.

{b) Every execution of Drink(B) is dining-well-formed.

(c) Every execution of Drink(B) satisfies the exclusion property for dining philosophers.

{ d) Every fair execution of Drink(B) satisfies the no-lockout property for dining philosophers.

Proof Part (a) is shown by induction on the length of executions. Part (b) follows from part (a)

and the fact that Dine(B) also preserves dining-well-formedness. Parts (c) and (d) follow from part

(b) and the fact that Dine(B) is a dining philosophers algorithm. ■

We next show that the variable current behaves properly. Part (a3) is used in the proofs of

Lemmas 7 and 9, and part (b) is used in the proof of Lemma 7. Parts (al) and (a2) are needed to

make the inductive proof go through.

16

The predicate stated in Lemma 6 (b) uses the notion of a "live" demand message. A demand

message for b in transit from i to j is live if either the token for b precedes the demand in transit

from i to j, or Di has the token for b, or the token for bis in transit from j to i. (A non-live

demand message can arise if i sends a request to j, j receives the request and sends the token, i

sends a demand to j, and i receives the token from j. The demand still in transit from i to j is

now non-live.)

Lemma 6 In every every drinking-well-formed execution e of Drink(B), for all i and all states s

of e, the following are true.

{a) If current; is true ins, then

1. dine-region; = C in s,

2. drink-region; = T in s,

3. the most recent occurrence in e (up to s) of Ti(B) , for any B, precedes the most recent

occurrence of Ci.

{b) If currenti is false in s, then no live demand(b) message is in transit from i to j in s.

Proof (a) By a simple induction on the length of e, using Lemma 1 (a) and (c) and Lemma 5 (b).

(b) By induction on the length of e. The non-trivial cases are the following.

Action Ci: By the code, whenever any demand message is added, it will be live and current;

will be true.

Action Ci(B): We show that setting currenti to false is allowable. Suppose there is a live

demand(b) message in transit from i to j. By definition of "live" and Lemma 3 (d3) and (e2), bis

in neet:4. By definition of "live" and Lemma 3 (a), bis not in bottles;, contradicting the precondition.

■

The next lemma states that if no drinker is ever stuck in its critical region, then no diner is ever

stuck in its critical region. The heart of the argument is that once C; occurs during Di's drinking

trying region, D; sends demands for missing needed bottles. Consider a recipient Di. If Di has

the bottle and is not using it, then Di satisfies the request, since by mutual exclusion of the dining

subroutine, Di cannot also be in its dining critical region. If Di is using the resource, then by the

assumption that no drinker is stuck in its critical region, Di eventually finishes and satisfies the

request. Thus eventually Di gets all needed bottles and enters its drinking critical region, after

which E; must occur.

17

Lemma 7 In any fair drinking-well-formed execution of Drink(B), if, for all i and B, every oc­

currence of C;(B) is followed by an occurrence of E;(B) , then, for all i, every occurrence of C; is

followed by an occurrence of E;.

Proof Consider any fair drinking-well-formed execution in which, for all i and B , every occurrence

of C;(B) is followed by an occurrence of E;(B). Suppose in contradiction there is an occurrence of

C;, for some i, that is not followed by an occurrence of E;. Thus dine-region; equals C throughout

the rest of the execution and there is no later occurrence of T;, C;, E;, or R;.

Case 1: drink-region; equals C, E , or R when the final C; occurs. If no T;(B) occurs (for any

B) after the final C;, then drink-region; is never again equal to T. If some T;(B) does occur after

the final C;, then by Lemma 6 (c), current; is never again true. In either case, E; is continuously

enabled after some point but never occurs, contradicting the fairness of the execution.

Case 2: drink-region; equals T when the final C; occurs. Thus current; is set to true at that

time. Let B be the set of needed bottles.

Suppose in contradiction that no subsequent C;(B) occurs. Then current; is true forever after

the final C;. We first argue that once any b E Bis put into bottles; after the final C;, it stays there

forever. If a request for b arrives at D;, then since bis in need;, the request is deferred. Suppose

a demand for b arrives at D;. Then this is a live demand, since bis in bottles;. By Lemma 6 (b),

current; is true, so by Lemma 6 (al), dine-region; equals C. But this contradicts Lemma 5 (c).

We now show that eventually every b E B ends up in bottles; after the final C;. When the

final C; occurs, D; sends demands for all needed and missing bottles. When some Di receives

demand(b) from D;, by Lemma 3 (a) either bis in bottlesi, bis in transit from j to i , orb is already

in bottles; . (Bottle b is not in transit from i to j because D; never sends off any needed bottles

after the final C; occurs and message delivery is FIFO.) If b is in bottlesi when the demand arrives,

then Di immediately puts bin transit to i, since by Lemma 5 (c) Di cannot also be in its dining

critical region. Thus eventually all b E B will end up in bottles; .

Thus C;(B) is continuously enabled, once it has acquired all needed bottles. Therefore, it must

eventually occur.

Once C;(B) occurs after the final C;, current; is set to false. Since current; is only set to true

when C; occurs and there is no later occurrence of C; , it stays false forever. Thus E; is continuously

enabled, but never occurs, contradicting the fairness of the execution. ■

18

The next lemma shows the no-lockout property for drinking philosophers. The argument is

as follows. Once T;(B) occurs, then T; occurs subsequently. Lemma 7 and the dining no-lockout

property imply that C;, E; and R; occur subsequently. But the E; only occurs once C;(B) occurs.

By the hypothesis of the drinking no-lockout property, E;(B) occurs after the C;(B). Finally, the

enabling conditions for R;(B) ensure that R;(B) occurs subsequently.

Lemma 8 In any fair drinking-well-formed execution of Drink(B), if, for all i and B, every oc­

currence of C;(B) is followed by an occurrence of E;(B), then, for all i and B, every occurrence of

T;(B) is followed by an occurrence of R;(B) .

Proof Consider any fair drinking-well-formed execution in which, for all i and B, every occurrence

of C;(B) is followed by an occurrence of E;(B) . Suppose in contradiction there is an occurrence of

T;(B) that is not followed by an occurrence of R;(B).

Case 1: The final T;(B) is followed by an occurrence of C;(B). Then by hypothesis it is followed

by an occurrence of E;(B). Thus drink-region; = E for the rest of the execution. But then R;(B)

is continuously enabled without ever occurring, contradicting the fairness of the execution.

Case 2: The final T;(B) is not followed by an occurrence of C;(B).

If there is an occurrence of C; following the T;(B), then current; is set to true. By Lemma 7,

the C; is followed by an occurrence of E;. Thus eventually current; is set to false, in order for E;

to be enabled. But current; is only set to false when C;(B) occurs.

If there is no occurrence of C; following the T;(B) , then eventually after T;(B), dine-region; is

always equal to R, by Lemma 7 and Lemma 5 (d) (the dining no-lockout property). But then T; is

enabled forever without occurring, contradicting the fairness of the execution. ■

4.3 More-Concurrent

The next lemma shows the more-concurrent property for drinking philosophers. Unlike in the proof

of Lemma 8 (no-lockout), here we cannot use Lemma 7. Instead, we use Lemmas 3 and 6 together

with the non-overlapping property to deduce that eventually the drinker will have all its needed

bottles. The interaction between the enabling conditions for the dining and drinking output actions

of D; ensures that C;(B) occurs subsequently.

Lemma 9 Consider any fair drinking-well-formed execution of Drink(B) and any occurrence of

T;(B), for any i and B. If the occurrence of T;(B) is non-overlapping, then the T;(B) is followed

by an occurrence of C;(B).

19

Proof Suppose for contradiction that there is an execution satisfying the hypothesis of the lemma,

but the T;(B) is not followed by an occurrence of C;(B). Thus drink-region; = T for the rest of the

execution.

When the final T;(B) occurs, D; sends requests for the needed bottles that it is missing. By the

non-overlapping property, no other drinker either wants or uses any bottle in B for the rest of the

execution. Thus each recipient of a request from D; satisfies the request immediately. Furthermore,

the non-overlapping property and Lemma 3, parts (c4), (c5), (el) and (e2), imply that D; never

again receives a request for a needed bottle or a demand for a needed bottle that it holds. Therefore,

once D; obtains a needed bottle, that bottle remains at D;. Eventually B = need; ~ l>ottlesi, and

this remains true for the rest of the execution.

If an occurrence of Ci follows the final Ti(B), then after this C;, current; is always true, since

only the occurrence of C;(B) can make it false. Suppose no occurrence of C; follows the final

T;(B). If dine-region; -::J C when the T;(B) occurs, then dine-region; never equals C after the final

T;(B). If dine-region; = C when the T;(B) occurs, then by Lemma 6 (c), current; = false, by

fairness E; occurs subsequently, and dine-region; never equals C after the E;. Thus whether or not

an occurrence of C; follows the final T;(B), C;(B) is continuously enabled after some point in the

execution. Since C;(B) never occurs, this contradicts the fairness of the execution. ■

4.4 Main Theorem

Theorem 1 Drink(B) is a drinking philosophers algorithm.

Proof It is easy to see that Drink(B) has the correct input and output actions. By Lemma 2 it

preserves drinking-well-formedness. The exclusion condition follows from Lemma 4. The no-lockout

condition follows from Lemma 8. The more-concurrency condition follows from Lemma 9. ■

5 Complexity Analysis

In this section, we analyze the worst-case waiting time of our algorithm, assuming no drinker is

ever stuck in its critical region, as well as evaluating it using the criteria listed by [2) . The analysis

of the worst-case waiting time shows that the limiting factor is the dining philosophers subroutine.

By replacing the 0(n) time subroutine of [2) with an 0(1) time subroutine (for instance, that of

[7]), we obtain an 0 (1) time drinking philosophers algorithm.

20

We would like to bound how long a user must wait after requesting to enter its critical region

until it does so. Our measure of time complexity is analogous to that of Peterson and Fischer ([10])

for asynchronous shared memory systems, in which an upper bound on process step time, but no

lower bound, is assumed. (Thus, all interleavings of system events are still possible.) Our time

measure provides distinct upper bounds on process step time and on message delivery time.

Given an execution e of Drink(_B), a timing function fore is a nondecreasing function t. mapping

positive integers to nonnegative real numbers such that for each real number t, only a finite number

of integers i satisfy t.(i) < t. Intuitively, t. (i) is the real time at which the i-th action occurs; we

rule out an infinite number of actions occurring before a finite real time. We require that t. satisfy

the following conditions whenever e is fair, for some constants s and d. (The constant s is the

maximum process step time and d is the maximum message delivery time.)

• For all i , once an output action of D; becomes enabled (namely C;(B), R;(B), T;, E;, or

Send;), that action occurs within s time.

• Once a message is sent, it is received within d time.

For the rest of this section, we only consider fair drinking-well-formed executions in which for

all i and B, every occurrence of C;(B) is followed by an occurrence of E;(B) , and with timing

functions satisfying the conditions given above.

Let tryDrink be the maximum time, over all i and all B, between any T;(B) action and the

subsequent C;(B) action, in any execution. (It is the longest time that a drinker is in its trying

region.) Let critnrink be the maximum time, over all i and all B, between any C;(B) action and the

subsequent E;(B) action, in any execution. (It is the longest time that a drinker is in its critical

region.) Let tryDine be the maximum time over all i between any T; action and the subsequent C;

action, in any execution. (It is the longest time a diner is in its trying region.) Let critDine be the

maximum time over all i between any C; action and the subsequent E; action, in any execution.

(It is the longest time a diner is in its critical region.) Let exitDine be the maximum time over all

i between any E; action and the subsequent R; action, in any execution. (It is the longest time a

diner is in its exit region.)

We assume that critnrink and exitDine are constants.

Theorem 2 gives an upper bound on try Drink, the maximum time a drinker must wait after

requesting to enter its critical region until it is allowed to do so. Its proof uses the fact, stated in

21

Lemma 11, that there is an upper bound on the number of messages in transit between any i and

j at any time. Lemma 11 in turn is proved using Lemma 10, which bounds the number of demand

messages, and Lemma 3 (cl) and (dl), which bound the number of request and token messages.

Le mma 10 The following are true in every state of every drinking-well-formed execution, for all

i and j, i :/: j, and all b E B; n Bi .

(a) There is at most one live demand(b) message in transit from i to j .

(b) There is at most one non-live demand(b) message in transit from i to j.

Proof The proof is by induction on the length of execution e = s0a 1s 1a 2 •••• It is easy to verify

that (a) and (b) are true in s0 . Assume they are true for Sm- i, m > 0, and show they are true for

Sm • For each of (a) and (b), we consider each possibility for the action am. We present only the

non-trivial cases. Present tense refers to sm- l and future tense refers to Sm ·

Note that none of the Receive actions causes a demand message to be added or a non-live

demand message to become live.

• Proof of (a). Action C;: By Lemmas 1 and 5 (b), dine-region; is not equal to C . By Lemma

6 (al), current; equals false. By Lemma 6 (b), there is no live demand message in transit

from i to j .

• Proof of (b). Action Receive;(token(b),j): Suppose the receipt of this token will cause a

demand(b) message that is in transit from i to j to become non-live (in sm) . We must show

that there is not already a non-live demand(b) message in transit from i to j (in sm_ 1).

Suppose there is such a non-live demand message. By definition of "live", either there is a

token(b) message in transit from i to j after it, orb is in bottles;. Then Lemma 3 (a) implies

that no token(b) message is in transit from j to i. But this contradicts the precondition.

■

Let r be the maximum number of bottles shared by any two drinkers.

Lemma 11 In any state of any execution, for all i and j , i :/: j , the maximum number of messages

in transit from i to j is 4r.

22

Proof By Lemma 1 (d) the only messages in transit from i to j are those involving bottles in

B; n Bi. Choose any b E B; n Bi. By Lemma 3 (cl), there is at most one request(b) message in

transit from i to j. By Lemma 3 (dl), there is at most one token(b) message in transit from i to j.

By Lemma 10 (a), there is at most one live demand(b) message in transit from i to j. By Lemma

10 (b), there is at most non-live demand(b) message in transit from i to j. Since there are at most

r choices for b, the result follows. ■

Theorem 2 tryDrink ::; (8r + 3)s + 2d + exitDine + try Dine+ critvrink•

Proof Choose execution e and fix i. Suppose T;(B) occurs at time t, for some B. In the worst

case, dine-region; = C at time t. By time s later, E; occurs; by time exit Dine later, R; occurs; by

time s later, T; occurs, and by time try Dine later, C; occurs.

When this C; occurs, D; enqueues a demand message for all required and missing bottles. By

Lemma 11 there are fewer than 4r messages ahead of each demand in the corresponding msgsi

queue at Di. By the assumption about the timing function fore, each demand is received by time

4rs + d later. As in the proof of Lemma 7 (Case 2), either the recipient immediately enqueues

the token to D; or else the recipient is in its drinking critical region and sends the token by time

critvrink later. As with the demand message, the token is received by time 4rs + d later. By time

slater, Ci(B) occurs. ■

Since we assume that critvrink, exit Dine, r, d and s are constants, the worst-case waiting time of

this solution depends on tryvine, the worst-case waiting time of the dining philosophers subroutine.

For any dining philosophers algorithm, tryDine will depend on critDine, because users will have to

wait for resources currently in use to become available. We now give an informal argument for

an upper bound on critDine• Once C; occurs, E; will occur after D; has sent demands for needed

bottles (4rs + d), these demands have been satisfied (critvrink + 4rs + d), and Di has entered its

drinking critical region (s). The upper bound then is (8r + l)s + 2d + critvrink• Thus critmne is

also a constant, under our assumptions.

The dining philosophers subroutine used by [2] has tryvine of 0(n). By replacing it with, for

instance, the dining philosophers algorithm of [7], which has worst-case waiting time of 0(1), we

obtain a more time-efficient drinking philosophers algorithm. The algorithm of [7] has time 0(1) in

the sense that the worst-case waiting time is a function oflocal information, including the maximum

number of users for each resource, and the maximum number of resources for each user, and is not

necessarily a function of the total number of users.

23

Our drinking philosophers algorithm could be modified to replace r with a small constant, if

the request, demand, and token messages contained a set of bottles instead of a single bottle.

Five criteria for evaluating resource allocation algorithms are given by [2]: fairness, symmetry,

economy, concurrency and boundedness. We discuss each in turn.

Fairness corresponds to our definition of no-lockout. Our drinking philosophers solution has

the no-lockout property.

Symmetry as defined in [2] means that "there is no priority or any other form of externally

specified static partial ordering among philosophers or bottles". This property is true of our

solution, as long as it is true of the subroutine. However, the state of the entire system cannot be

symmetric, or else no deterministic solution would be possible, as shown by Lehmann and Rabin

[6] . Chandy and Misra's dining philosophers algorithm satisfies this definition of symmetry but

breaks system symmetry by the locations of the individual resources. Lynch's resource allocation

algorithm [7] breaks system symmetry by ordering the resources (and thus does not satisfy this

definition of symmetry).

Economy means that processes send and receive a finite number of messages between subsequent

entries to their critical regions, and a process that enters its critical region a finite number of times

does not send or receive an infinite number of messages. Our solution has this property: Recall that

when T;(B) occurs, D; sends requests for all missing resource. It defers any request that it receives

for a needed bottle while drink-region; = T, but it yields to demands. When dine-region; becomes

C, it sends demands for any missing resources. Thus at most four messages (request, the token,

demand, the token) are sent on behalf of any one bottle for any one trying attempt. Furthermore,

once a drinker stops wanting to enter its critical region, it may receive a request for each of its

bottles, but after satisfying the requests, it never sends or receives any more messages.

Concurrency means that "the solution does not deny the possibility of simultaneous drinking

from different bottles by different philosophers." This is true of our algorithm, since it satisfies the

more-concurrent condition.

Boundedness means that the number of messages in transit between any two drinkers is bounded,

and the size of each message is bounded. This is true of our solution (the bound on the number of

messages is 4r, by Lemma 11).

24

6 Conclusions

We have given careful definitions of what it means to be dining philosophers and drinking philoso­

phers algorithms. We described a modular drinking philosophers algorithm that uses as a subroutine

any dining philosophers algorithm. We proved the correctness of our algorithm, and analyzed its

time complexity. One advantage of our modular approach is that an algorithm with improved worst­

case time performance can be obtained by using a time-efficient dining philosophers subroutine.

We close by mentioning some open problems.

The proof we have presented here could be changed technically in a couple of ways. The style

of the liveness arguments is operational and informal, yet they are somewhat close to temporal

logic statements. It probably would not be difficult to complete a formal proof in temporal logic,

although what we have should suffice for understanding. Another change would be to have an

explicit model for each user program, as an I/0 automaton that just interacts with D; and only

keeps track of its region. Then the mutual exclusion invariant could be stated in terms of no

two users being in the same region and the well-formedness hypotheses could be dropped. The

drawback would be having to define these extra system components.

Extensions to the results presented in this paper include designing a way to handle the sharing

of a resource among more than two processes in a manner that is more efficient than the one

suggested in Section 2; comparing the inherent complexity of the drinking philosophers problem

using a dining subroutine as opposed to solving the problem directly; and considering other versions

of the "more concurrent" condition for drinking philosophers. In the rest of this section, we describe

some specific versions of that condition.

The strongest possible condition would require that if a drinker requests a set B of bottles, it

should eventually enter its critical region, as long as no other drinker uses any of the bottles in

B forever. (Some bottles in B could be kept forever after this request is satisfied.) Neither the

algorithm in this paper nor those of [2, 9, 5] satisfy this condition2 • An interesting open problem

is to devise one that does or prove that none exists.

The following situation shows that our algorithm does not satisfy this condition. (Essentially

the same scenario shows that the algorithms of [2, 9] also do not; a simple chain scenario suffices

for [5] .) Suppose there are three drinkers, 1, 2 and 3; 1 and 2 share bottle a, 2 and 3 share bottle

b. First, 1 gets bottle a, enters its drinking critical region, and stays there forever. Then 2 requests

2The concurrency properties of [1] are not discussed.

25

a and b, obtains b, and enters its dining critical region. Since 2 can never obtain a, it stays in its

dining critical region forever. Finally, 3 requests b. Drinker 2 does not relinquish b upon a mere

request, and 3 can never demand b, because it can never enter its dining critical region. Thus,

even though 3's bottle request includes no bottle that is ever in use, it can never enter its drinking

critical region.

There is a condition intermediate between this strongest condition and the more-concurrent

condition of Section 2.3 that the algorithms of [2, 9, 5] solve and ours does not. This condition

states that if a drinker requests a set B of bottles, it should eventually enter its critical region, as

long as no other drinker uses or wants any of the bottles in B forever.

The following scenario shows that our algorithm does not solve this problem. Suppose there are

five drinkers, 1 through 5. Drinkers 1 and 2 share bottle a, 2 and 3 share b, 3 and 4 share c, and

3 and 5 share d. First, 1 gets a, enters its drinking critical region and stays there forever. Then 2

requests a and b, obtains b and enters its dining critical region. Since 2 can never obtain a from 1,

2 remains in its dining critical region forever. Next, 3 requests c and d. It obtains c from 4. Then

4 requests c from 3, the request is deferred, 4 demands c from 3, and the demand is satisfied. Now

3 obtains d from 5. Finally 4 finishes using c. But 3 will never get c from 4, because c is not in 4's

deferred set and 3 can never demand it. Thus, although none of the bottles required by 3 are ever

wanted forever by another drinker, 3 cannot enter its drinking critical region.

In contrast, the algorithm of [2] (and [9]) will allow 3 to enter its drinking critical region. The

forks in the dining philosophers algorithm provide a priority for the use of the corresponding bottles

by the drinkers. The priority alternates between the two processes sharing the resource. Thus, once

3 obtains cit will not relinquish it until it has gotten to use it. In general, priority is broken down

on a link-by-link basis, whereas in our (more modular) algorithm, the priority comes only with

entering the dining critical region. This is an example of optimizing to gain extra concurrency

at the expense of violating modularity. The algorithm of [5] has priority information explicitly

available in the counters.

7 Acknowledgments

We thank Alan Fekete and Prasad Sistla for helpful discussions, Subodh Kumar for careful readings,

and the anonymous referees for useful comments.

26

References

[1] B. Awerbuch and M. Saks, "A Dining Philosophers Algorithm with Polynomial Response Time,"

Proc. 31st IEEE Symposium on Foundations of Computer Science, October 1990, pp. 65-74.

[2] K. M. Chandy and J. Misra, "The Drinking Philosophers Problem," ACM Transactions on

Programming Languages and Systems, vol. 6, no. 4, October 1984, pp. 632-646.

[3] M. Choy and A. K. Singh, "Efficient Fault-Tolerant Algorithms for Resource Allocation in

Distributed Systems," Proc. 24th ACM Symposium on Theory of Computing, May 1992, pp.

593- 602.

[4] E. W. Dijkstra, "Hierarchical Ordering of Sequential Processes," Acta Informatica, vol. 1, fasc.

2, 1971, pp. 115-138.

[5] D. Ginat, A.U. Shankar, and A.K. Agrawala, "An Efficient Solution to the Drinking Philoso­

phers Problem and its Extensions," Proc. 3rd International Workshop on Distributed Algo­

rithms, LNCS 392, Springer-Verlag, September 1989, pp. 83- 93.

[6] D. Lehmann and M. Rabin, "On the Advantages of Free Choice: A Symmetric and Fully Dis­

tributed Solution to the Dining Philosophers Problem," Proc. 8th ACM Symposium on Princi­

ples of Programming Languages, January 1981, pp. 133-138.

[7] N. A. Lynch, "Upper Bounds for Static Resource Allocation in a Distributed System," Journal

of Computer and System Sciences, vol. 23, no. 2, October 1981, pp. 254-278.

[8] N. A. Lynch and M. R. Tuttle, "Hierarchical Correctness Proofs for Distributed Algorithms,"

Proc. 6th ACM Symposium on Principles of Distributed Computing, August 1987, pp. 137-

151. (Also available as Technical Report MIT /LCS/TR-387, Laboratory for Computer Science,

Massachusetts Institute of Technology, April 1987.)

[9] S.L. Murphy and A.U. Shankar, "A Note on the Drinking Philosophers Problem," ACM Trans­

actions on Programming Languages and Systems, vol. 10, no. 1, Jaunary 1988, pp. 178-188.

[10] G. L. Peterson and M. J. Fischer, "Economical Solutions for the Critical Section Problem in

a Distributed System," Proc. 9th ACM Symposium on Theory of Computing, May 1977, pp.

91-97.

27

[11] A.K. Singh, Ranking in Distributed Systems, Ph.D. dissertation, Department of Computer

Sciences, University of Texas at Austin, December 1989.

[12] A.K. Singh and M.G. Gouda, "Rankers: A Classification of Synchronization Problems,"

manuscript.

[13] J. L. Welch, Topics in Distributed Computing: The Impact of Partial Synchrony, and Modular

Decomposition of Algorithms, Ph.D. thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, June 1988.

[14] J . L. Welch and N. A. Lynch, "Synthesis of Efficient Drinking Philosophers Algorithms,"

Technical Memorandum MIT/LCS/ TM-417, Laboratory for Computer Science, Massachusetts

Institute of Technology, November 1989.

28

