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Abst ract 

pper and lowe:r bounds a!'.e proved for the time complexi y of h problem 
of reachin agreement in a distr.ibuted ·ne work m he presence of process 
fail urea and inexa-et i:nfonnati:on abou fone. I is as umed that the a.nwunt 
of (real) time between any two consecutive steps of any non.fan] y proc!i!S 
is at lea.st CJ and at most. c2 i thus C :::: ci/c.1 is a measure of he timing 
u certainty. t · also assumed that the time for me.ssag,e delivery is a: :mos 
d. P:mcesse.s a:re assumed to fail by stoppin, so · hat p.rocess failure.s can be 
de ec ed by timeouts: . 

. - straightforward adaptation of an (J + 1 )-round round-based agreement 
algorithm. takes thn (/ + l) Cd if hete at-e f fault , while a. stnugh tforwa,rd 
reduction from a timing-based algorithm to a round&based algorithm yields a 
tower bound of (J+ l)d. 1 h,e first major result of this paper is an agreement 
algorithm in whlck ·he uncertainty factor Ci on1 incurred for one round! 
yield.in a a ru.nning i.me of approxi:nl.a.tely 2/d + Cd in the wor.s case. The 
second major 11es:nlt shows tha. any agreemen , algorithm mus take time at 
least (J- l)d + Cd in he worst case. 

The new agr~ement algorithm can also be applied i a , odel.. where 
processors a.re syncbronou (C = 1) and wher,e, message delay during a 
particular ex.f!eu ioo of the algori hm j bou ded above by a quantity 6 
which could be smaller t.hu the worst-case upper bound d. The :run:rung 
time in hls ease ls approxima ely 2/ - 1)6 + d. 

Keywords: distributed agrooment distributed con enn agreement. conT 
sensus timing unoer ain y faul -toleran.ce 'timeout. 



1 I ntrod uction 

is dbuted computing theory has tudied the complexity requhement of 
ma:ny problems in syndU'onou and a.synchronous model of co:m.pu. · a.tion. 
There ·s an importa.n:t middle ground ho ever between the synchronous 
and asyn.chronous , · · mes: models tha mdude inexact information a.bout 
Jming of even.ts. T.hls middle. gou.nd is reasona.ble for modeling real dis­
tributed systems, in which the a.mount of time required for processes to take 
step:s for clocks to advam::e and for me sage£ to be delivered a.re generai]y 
only approxima.tely kno,.vn. 

We are interested in determining ] e complexity of problems of the or 
a.rjs.ing in d:ist.ribu d computing theory in models with inex:ac timing in­
form.a. ion. In pa.rt:kufa.r in tru pap~ we con ider the ime compl xit or 

h.e problem of fa.ult-tolerant distributed a~men . In th:e vex ion of the 
agreement problem we consider here is as stem of n processes, p1, . •• ~Pn.• 
where each Pi is given an jnput vafo Vi- Ea.chp:roooss ha.t doe not faU .u.s 
choose a decision value such tha (i) no wo processes decide dlfferentt and 
ii if any process decides v then u was the input value oi some plocess. We 

assu , that processes fail only by stopping. his abstract problem CaJJ. be 
used 'to model a variety of problems in distributed computing: e.g. agree­
ment on the value of a. sen&or in a. real-time computi g system, or agreement 
on wh -ther to, COl.llllU or abo:r a. transaction in a da a.bag system. 

The time oomplexity of the. distributed agreem nt problem as been well 
s udied in he synchronous rounds' model. In this model the computation 
proeeeds i a sequen.ce of rounds of communicati.on. In ea.ch round a.ch 
non~faile<l process send ou message o a.11 processes, Ieceives all me sage 
sent to It at that round a.nd carries olilt some local computatjon. ( eei 
for example [PSL80 LSP82 D82 FL82 DL'M:82 LF82 DS 3 H84 M 5 
DM 6 1\- T 8 C 6 .lvV BGP 9] for results involving time complexity in. 
thls model.) .he most bask time bound results in these papen arematclt:ing 
upper a d lowe bou · ds of J + 1 on the number of synchronous rounds of 
communica,tion required for reaching agreemen in he presence of a.t mos 
/ faults. 

We consider how hese bounds are affec ed. b~ using in tea.cl of he 
rounds model one in which. there is inexact tnn.ing informatimL In parr 
ticular we assume tha.t the amount of time between any wo consecutive 
steps of any nonfaulty process is at least ci and at most c2 where c1 and. 
t'2 u kno\vrt constants; hu5 C = Cz / c:1 is a me.asttre of he Untlng unce • 
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tainty. ,v- a.Lo assume that the time for me a.ge delivery is a mot d.1 

Sine processes a.re assumed o fail only by stopping, process failures can be 
detected by ' imeouts · th.a.t j , if an expect-ed message from ome proces. 
i not received within a su.Hkientl, Jong time then ha pror-..ess is known o 
have failed. The time required to .i.mpfomen a imeou is :ro1:1gWy Cd. 

Initially we hoped o be able to adap kno, rn results a.bou , he ro nd 
model to obtain good. bounds for the version with inexact timing. In.deed, 
an f + l ,,round algorithm can be adap d in a tra.ightforward a: o 
yiel .au ai0 orit.h.m for the timing-based model tha: require hue a' most 
(J + 1 Cd if · h re are f faults. On he other ha.nd a. sim.p,le tr-an.sfo:rma ion 
to a. round algoritlun yield . .a. lower bound ol (I+ l)d. There is a- signHica.nt 
aa:p between thM two bounds., na.m.e]y, a. multiplica i e factor equal o th 
timing uncer a.int C. , .he motivation fo · our work is to obtain doser 
bounds on the time complexity of this problem in articular to und rs and 
how h.is complexity depends on C. 

The, Jirst major result oi hi paper is an a; reement aJgorilu---u i:n w.ruch 
he uncertainty factor C is only incurred for one round ieldin · a run­

ning time of approxima.tely 2fd Cd in he worst case. This algorithm 
uses iming, informa.tion in a novel way in order to a.-chieve fast time perfor­
mance. n. interestin feature of he algo "th.mis that it c:an be , .. 1, wed as an 
asynch.ronous algo:ri hm t,ha.t uses a fault de ·o (specifically a. imoou ) 
meC:harnsm. , hat i , he iming bounds c1 , c2 and. d are used. only in h.e 
fault detection m.echani m. 

The econd major result shows that a.ny agr ment algorithm mus take 
time at leas (f - l )d + Cd in , he worst case. The proof oi h.i loWet bound 
combin.es ideas u @di · he.rounds model (FL· DLM 2 D 3 LF 2, H 4 
M85. D 6 DM ·6]) in the asynchronous mod-el ([FLP 5, DD 7]) and in 
timing-based models ([ L 9). More .specifically i 11.Ses a "chai argumen 
such as ho e used p:reviou 1, to prove th.at J + I round are requ:ired in the 
syncluonou.s model a bi alenoe argument such as thos used previou y to 
prov ha fau1t~toleran a .reeme.nt is impossible in an asynchronou system, 
and a ''times retching" argument uch as those used to prove lower bounds 
for re ouree allocation problems. 

Al ougb hese hound are no oompletel ·ight th y do demons ,rate 
that , e time comple.x.ity only involves the " imeo,u bound Cd in a. single 
a.dw ive term; Cd i no· mul iplied by f (the total numb r of potential 

1 R.esu]ts of [FLP S DD ST] :imply th at if any o( the bo110.ds ci , c2 , ,J do not c::ds.t 
hen. there is no agreement algorithm toler nL lo even one fa.11ll . 
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failures . as i j jn the naive algorithm. Note that thl:s new bound represelltS 
a. ignifica.nt imp:wvemen over the naive algorithm in case C is fa.rg (greater 
ban 2}, as migb happen in he prese11ce: of im1.cc.n.rate processor docks or 

variable-time process swapping. 
Our algorithm al o yields upper bound results for a related model used 

by Herzberg and I{u t n [HK 9] to study fault detection in hos -toThost 
protocols.. In their model process steps are completely synchronous tha.t 
is C :; 1 and hei, is as abo a.n upper bomtd d on the worst-cas 
ime for a.n .message to be delivered. Even though algori hm mu t be 

desi!tned to be cor: ed in case tha. any message delay jg d, in reali y es age 
deliver• cou1d be much faster hand i.i1 many executions. The~efore, it makes 
sense to expre.66 the i:rue c.omple ··ty of au algorithm in terms .of a. new 
paxa.meter 6, the a.c ual message delay during ecution •Of the algori hm 
as well as j ter s of the worst-case bound d. Again, a. straightforwa:rd 
ad.ap , a.tion of an (/ 1 )-round. agreement algorithm gives an agr,eemen t 
a,Jgorith.m for this model whkh .nrns in. time (I+ l)d ev•ell in ex: . utions 
where . < d. In con ras , the mai aar-eemen algorithm of this pa;per 
runs in time approximately (2/ - 1)6 + d. Tha. is the n her of faults 
multiplies he actual m.essa.ge deJa.y 6 rather han he worst-case delay d. 
Our lower bound techn.iques can be modified to E9-Ve a lov.<er bound ( oi time 
(2J - n)6 + d if n :$ 2/ for this model. 

here has of course been. a con ide a.bl amount of previous work 011 ke 
agreement problem in various models· a representative selection of references 
· o hl or k appear: above. How ·er there has been very Uttle work so ·fur 
on this problem with inexact timing infonnailon. 

Some prior work •Ofi dis ributed agreemen m. a model wj h inenc: tim.ing 
information appears in [DLS ). The ma.in emphasjs in. [DL ] was on 
de ermining the maximum fau]_ tolerance pos:s:i ble for va.riou.s fault models· 
only rough upper bounds on he time complexity of the aAgori run were 
gi.ven, a.nd no lower bounds on time were proved. In contrast the main 
emp.hasi of t:he present pa.per is on tjme complexity. 

Related work on the lute.nq/ of roaching agr em.ent when processes are 
not oompletely synchronous appears 'n [CA D 6] and [SD 90]. hese pa­
per assume tha.t prooos'!i clocks are synchronized to withiJL some ii.xed ad~ 
difve error. and he cas < di not consid red. Unlike the ults i.n our 
paper. these results a.re stated in terms of clock time rntl er than absolute 
r@al · ime. Although it is possible o t:ran latce r.esults from those papers into 

~The worsi.-..case elapsed time as 11i.ta.siuod on die clock of any corte-ei proc 

3 



our model~ doing so appears to yield :resul with a. less pr-e-dse dependency 
on. the timing. uncertainty han we obtain here. 

This w,ork is part of an emerging study of he real-time behavior of dis­
tributed systems. Other work in this area include the ex: ensive lite.ra.ture 
on clock yncl1.:romzation algorithms. (See [DHS 6, HMM 5 M 5 LL 4 
\iVL ]i for example.) or recently, the .mutual exdufilon problem has been 
studied in a. timing-based. model with C > l [AL 9). Also the , i · e com­
plexity for a ynchroruzer algorithm to operate in a. timing-based network i 
studied in [A.M90] and h ime compl ·ty of 1 a.der election algori hms in 
a timing-based model a.ppears in '[CT90] .. 

he Iaest of the paper is organized as follows Section 2 contains a de-
cription of tbe formal mod~ we use for iming-ba.sed distrjbuted systems 

and a. statement of the dis ributed a;g;reeme problem. Sec ion 3 we 
describe a useful 'subroutine for timing out failed processe-s. Section 4 
contain.s a. discussion of some simple tipper bound results tha. arl e easUy 
from the kn.own. results fo.r the rounds model. In. Section 5 'We giv our main 
upper bound result . Sec ion 6 oon:tains -our lower bound result . Section 7 
con a.ins our results for the mode] wjth synchronous proces:ses and uncer ;tin 
messaaege delivery time. Finally, €.dion contain OUI conclu ions. 

2 D efinitions 

2 .1 F ormal Model 

In his s«t.ion we pnsen the definition for the underlying formal modeL3 

An afgonthm consists oi n processe.s Ph . . . Pn. Each process Pi is mod­
eled as a. (possibly infinite) tate machine wi h state set Q z. ·· he st ate set 
Q1 contains a. distinguisled. initial tale. ,qo; aad a. cll.stinguished fail state. 

A c.onfigumtion is a. vector C = ('11 . • . qn where qi is the Jocal ta e of 
Pi; denote states(C) ;;;;; q1. The initialconfigurationis the vector (qo,i. .••• qa,n ). 
Proce.ues communicate by sending me sages (ta.ken from so e alphabet M) 
o, each other. A s nd action qe.nd (j m) repre!>en s the sendi.n.g of message 

m to Pi · Let S denote the set of all send actions send(j m) for all m E .1\.1' 
and a1J l :::;: j ::S n. Processes can receive inputs from some se · V of ualues. 

\\e model a computation of he algorithm a eque:nce of co figuration 
altema ed with events. Each event is either a oomputation e11ent~ r present 

~Tli de.lirulioru. cou.Jd be ex.pres.:s.ed in term or ,he genen.l limed aulomatOQ mcd~i 
described in [MMT88) and [ Ll19]: lu'.1"1\J'CWr., we choose h!!fe to pr :nt th!! definitio-Qs 
dittctly, · orde to i!Lvoid the i.nt-1,'ffvning layer of defmitiom;. 
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ing a computation step of a single process1 a failure e-vent. repres~nting the 
failure of som proce s a. deliv ry event r enting the delivery of a. mes­
age o a process or an input event rep:resenti.ng he arrival of a value a: a 

process. 
computation ellen i ~ pecified by comp( i ) where i is the inde.x of 

the process t aldng he step and i a. fin.i te sub et of S. In th com pu ation 
step assoda ed wi h event comp(i S), the proce p·; based on i local 
sta; ·e p rfo.rms the end actions in 4 and possibly changes its local state. 
A /ailu vent has the form fail(· S) and ca.us the end a.ction in t-0 
be performed· other properties of faHurn events ar de ailed be ow. Each 
delivery event has · lt form del(i m) for som m EM and each inpu , ven 
has he form itlJ>ut(i v) for some tt E V. b hese events the proces Pi 
based on m (or v) an its local state, possibly cha.nges .its sta.te. 

Ea.ch process Pi follow a, deterministic protocol · hat determines its sta 
transitions and the messages j sends. In more detail, the protoc-01 consis · 
of two ransitjon functions, i for delivery and i.nput event and i for 
compu ation events. For each q E Q, a.nd a E M U V 'Pi(lJ. a) gives a state 
r/ E Q;. For each q E Q; ,i(q) gives. a. state </ a.nd a. finite se S of send 
ac ion.s. \ e assume in both cases thait q = fail lf and only if q = fo.il .a:nd 
we assnme that .is empt) if q = fail. hese conditions mean intuitiveiy 
ha.t (i) the pootoool ca.n:not ca:nse he proce " to leave the fail state (ii) · he 

protocol cannot cause a. pmcess to enter he /ciil t~ e from a Ion-fail ate 
and (iii no m@ sa.ges are sent from the fail state. 

An. ezecution i an in.fi ite sequence of alterna ing corrigu.ration and 
vent 

a;;;;;; Co , 1.C1 .. . tr; C; . ... 

sati s:Cying h following c.ondi tions: 

l. Co i he ifijtial configuration· 

2. U "i = del(i a) or input(i a) then state;(C;) i obtained by .a;pplyincr 
'f)i to tate;( Cj-I) and a; 

3. ll i ·-=- comp(i S) then ta~ei(C;) a.ncl are obtained by applying ~ 
o stat t(C;-i)· 

4. If 11"j;; fail(i ) then :ate;(C.i-1 ) # /ail1 i'ate,(CJ) = fail a.nd Si a 
subset of the · nd e •ent obtained by ap:piyin 71 to stat i(Ci-d' 

•1n all ou.r a.lgo:ritbms llus will b broodc.a.,t(m),, lb is, { l!rid(I, m ) ... , i!l:'Jid(n, m)}. 
A bmadcast includes message to lhe sender it.se!t 
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5. If :ir.; involves process i, then state.t:( Cj_i) = tatek(C;) for every k #- i; 

6. (Eac.h send is matched to a. later d liv ry and each deliveTy to a.n. ea.rlie.r 
send.) For each m E \.1: and eac process Pi let S( i m be the se of j 
uch lha. r.; conta.ms a. serui(i~m) and let D(i m) b · he set of j such 

that 1r; is a delivery even del(i m). Then there i a bijective maipping 
..,.-i,m f:rom S(i m) to D(i m) such that CTi,mU > j for all j E S(i m). 

imed vent i a pair ( .r t) where ;- is an eve:nt and t he 'time 
is a nonnegative real number. A timed equ nee is an lnil.:nite sequence of 
al ernating configurations and dmed. events 

a= Co, r.1 t1) G1 •.. (rrj,t;),Cj; ... 

where· the times are non.decreasing and unbounded. 
Fix :rea] numbers c1 C2 ru:id d where O < c1 ,$ c2 < oo and O < d < 

Le-ting a: be a timed sequence as above we ay tha a ls a timed executfo.n. 
pro id d ha the folio ing all hold: 

1. Co 1r1 01 .... ;r:1 Ci ... is a.n execution; 

2. There a.re computation or failll1'e events for all proceS'.ses with tjme O· 

3. There .tre infmitely many compuh,tion or failure even s for each pro­
cess· 

. (Bounds on step time) Suppose j < k the jth a.nd kth timed e 
a.re both either c:omputa ion or failure even of the same process Pi 
and here axe no intervening: compu a ion or failu e even.ts of Pi· TheR 
c1 $ t,1; - t1 $ ci· 

5. (Upper bound on message delivery time ' H messag~ mis sent to Pi at 
he jth timed e e:nt then here exis s k > j such that e kth timed 

event is he matching delivery (d l(i,m),tk (i.e., O'i,m(i) = k) and 
tk - t; $ d. 

• ote that for ans timed execution o and anir Pi there is at most one 
tim.e<l eve:l\t of he form (Jail(i } i). · f her~ is such an ,eventi we c.a..ll t he 
failure time of Pi• 

V e define a, timed execution prefw o be any finite prefix of a. tim d 
execution (ending w·ith a configu.ratio.n). For any tuned execu.tfon p, fix a:, 
we define t~ni!!(a:) o be he time assoda.ted with he last even.tin a (0 1f a 
con ta.ins no ti ed eveats). 
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\ ay tha;t a process Pi roceives the me ag m by time t (in a imed 
execntion et} ii, by time t Pi has a. compu ation or failur vent hat i · 
pre.ceded in ab a. delivery ,event d l(i m). or the rest of he pa er le D 
denote d + c2. ote hat. ff mis sent to .Pi at ime t then Pi rereives m by 
time t D. S im.ilarly we a h · a proces P ,i r-eceives the input by tim 
t if, by t.ime ti Pi has a. compu at.ion or fail.me even. ilia is preceded in o 
by an input even input(i , v .. 

For any timed execution a: we define delay( a) · :o be · lie maximum delay 
of any m s age delivery in a. \\ he.n a i clea.r fro . contex we will often 
use he notation .~ to denote d loy(a) and will le , 8' == o + cz. 

To limplif the expression of our time bound in terms of the parameter 
6 d c1 a.nd ,c2 we ometirm approxlm.a.te the bounds in the case tha 
c2 < . or example in his case w 'have D:::::; d and a~ 6. 

2.2 The Agreement Problem. 

We now · pecify the agreement' problem. The origjnal dethutlon of the prob­
lem in round~based systems ( .g. [LSP 2]) assumes tha.t ai.11 plt'oces~ begin 
executing simultaneously w:i k their i itial values already in their states. 
Thi degree of initial ynchroniz.atio,n ls not very realistic in a. di ttibutecl 
network. i.nce we are interested in capturing imln uncertainty w hav 
in, iud d ·input eve i , the definitions to permit as) nchronous starts of he 
protocol. Let V be a. se of value . ,.v:e ass:um th teach set Qi of local sta.te 
includes .a. subset of decision tat for each u ,e V. uch ha fail · not a. 
deci ion state the sets of decision states for different values are disjoint, and 
he :ransition function i and .· i: map each decision state for v o a. deci ion 
tate for v. proce d cide on v by changing jts s a.te to a deci ion ate 

for ( so its s , ate th er ear ter is al ways a. d dsiou · ta e for v). 
A imed execution a (or Urned execution prefu:) is f-admis.s-ihl if o­

con a.in a .mo t / failure events and1 for each Pi exad]y one j pn t e\.•en 
input(i vd. For each p;, define tarti(et) to be the smallest time t such 
'tha p, r ooj es an input by tune t. Define start(a) to be h maximum of 

tart.(ct) over ail i. 
Let B b a ma;pping from the posi ive reals to the positi e reals. . 

aJgori hm. solve the agreem. nt problem fo•r f fault. withfo time B provid,ed 
hat each oi its !-admissible timed ,execution o ati fies the followin : 

1. (Agreement) o two different proces e decide on differe value · 
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2. ( aliclity) If some proce decides on ti then an event input( i ) occurs 
].ll o:~5 

3. (Ter.mimdon and im.e Bound) Everyproress eith r has a failur e en 
or makes a. decision. b. ime tart (a) B'( delay( a)). 

We firu h this defin.i ion ec ion witb. a ta emen of a slightly weaker 
version of the agreement probl,e.m.. Th:is may be interesting because our 
low bound resuJt-s still apply for the wea.ke_r probiem sutement. Our up~ 
per bound how .veJ a.tisfies the stronger prob]em. atement given above.) 
ramely, wed fine the agreement ])1''0b,lem with synchroniz. d ,tart to be he 

sa.m as the agreement problem, except tha; the three pmperties listed above 
mu t hold only for Jradmi ible tinted executions a: in which. each proces 
receives it.s initial value a. ime O; forma.lly for ~h pmress Pi here j 

.a timed event (input(i, V:i 0) in "bich precedes every c-0 putation and 
failure event of Pi• Our dda.ul conven ion ~ , ha h ynchronized start 
condition does not hold. 

V. e wiU carry out the main tlev-eloprnent using a. Boolean version of he 
problem i .e. V = {0 1}. Later we will discuss ex ension.s to th case of an 
arbitrary value . t. 

3 A Timeout Strategy 

In the algorithms we describe below, j will be convenient to describe ac 
Pi as a parallel composJ ion' of two t-asks a · ti eout · task and a mai " 
task. 

The basic idea of be ti.meout task is very · ple. At each tep each 
process broadcasts an aii e message. II some process Pi has run for uffi­
dently many steps without receiving an alfo me sage from the pro Pi 
then Pi concludes tlia p; haJ.ted. 

In more de ail the imeout task of Pl has the following state components: 
blocked a Bool an initially trut! the purpose of bloc · dis to allow the main 
task to stop the timeou· task); a. se halted' 'f; {l .... , n} ini ially . · for each 
j E {l • . . n} a nonnegati~,.e integer count r (j) jn,itiall -1. In addition 
the local state of each p:roces con:tains a component buffi to which m a2es 
are added a each message delivery -e ent. Figu:re 1 describe e steps of 

sNote thai ·-his condi ion is · hll:,' trongc:r: thM t.he usual vali,rty coodi(on fot 
di triboted agreemen problems. 



P recond.it io,n: 
not block d; 

Effect: 
bl"oadcast ( ( ali ue i)) ; 
for j := l to n do 

cou:nter(j) ·= cou Flt r(j) + 1 ; 
if ( alive j) E buff then 

remov , afore j) from buff; 
counter{j) := 0 j 

elseif counte-rj) ~ LD/c1J + l then 
add j to &.altE.d · 

o,d; 

igure 1. The timeout , ask. 

the im.eou ask of process p, that are associated wi h comp(i, S) even in 
precondition-effect style. Recall that D = d + c2. 

Assume tha ea.ch local protocol jndudes the tra.n.sitions indicated in 
· ·gure 1. Say ti at a. proces halw at time if it either fails a.t tim ·tor ets 
blocked to true at time t. We assume that ii the main task of p, sets blocked 
to tru som step th n the ma.i task of Pi sends no messa.ges a la: e:r 
steps. . ix a timed execution er w,e prov he following prop ettie for et. 

Tl. If any Pi adds j to halted a; time t. then p3 hal ·s and every message 
se:nt from P:i t.o Pi is delinTed stcic ly b fore Ume t. 

T2. There is a eonstan · T nch t a.t 'f p; a.Its a.t tj e t then ever_ Pi 
either halts or add.s j to halted by time t + T. 

o verify Tl, let Pi add j to kal1ed at time t. We fi.i bow that Pi 
halts. U n at then p j sends an alive message to Pi a.t each of its steps. : he 
maximum diffeienc.e be we n , he ime of two such consecutive send ,events 
is c2; the time between the two correspon.ding delivery events 1s ma.'.timi:wd 
by assuming that he first message tak~ time O and the seeond take time 
d. Thus, this difference is a most D. However since ime a: least c1 elapses. 
be · ween every iVO steps of Pi time at leas 1 ( L D Jed + l ) > D must elapse 
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h ween the last delivery of an alive m ssage from 'Pi before time t and time 
t (when j is added o halted . This is a. oon tr-adktfon so 1Jj halts .. 

By a similar argu . en t. we slow tha.t every messa.ge from Pi to Pi ge s 
delivered trkUy before ime t. uppose ha. p; sends a message m o ps: 
a.t some step. Then at pj previou~ tep Pi sends an alive message m/ 
to Pi· A:s before, the maximum p,ossible difi'erem:e he ween the times of the 
dellvedes of m' a.nd of mis a mos D bu · time strictly greater than D mu:s 
elapse be \!oeen the delivery of m1 and time t. I follows tha. m i delivered 
strict]y be.fore time t. 

Now le 6 = delay(ci:), the ma.ximu.m delay of any message delivery in 
,a and recall that a :;;::; 6 + c2• We verify T2, wi h a timeout bound T oI 
a.pproxima.tely Cd+ 6. uppose Pi halt at. time t., oo that the last alive 
message from Pi to p, Is sent no la.te.r than time t. ' het~fofe by time 
' = t + . pi will et pj counter to .zem for the final time. o b time 

t1 + c (lD/c1J + 1), Pi adds j to halted. Therefore, our algornhm has the 
imeou bol.lild 

= 
In case c2 < /j we .have T ~Cd+~. 

In our aJ.gorlchms that us.e he imeout task we use only he fae ha 
he timeou task has properties Tl and T2 and we express. the time bou ds 

o.f these aJgorithms in terms of the pa.rmneter T. herefore given a. way to 
detect process failmes v,.,j_th a · imeout hou:nd T smaller than he one given 
above this detection method eowd be used to im.prove he tjme bou.n.ds. 
We do a.ssu.me however, ha T ~ b... 

te.chnkal paint must be made concer.ning the para.llel composition of 
he timeout task with he main task . lrVhenever a process takes a stepi we 

imagine that a. step of the timeout task is performed. first, possibly adding 
iew processes to halted. Then a step of the main task is performed us·ng the 
(possibly) new et f1alted. Even though th.is a.ppea1' to b two ra.nsiticms 
taken. in sequence, i is easy o see that hey can be combined .int.o a single 
tran.si ion. 

4 Sim.ple Bounds 

In thls section. we hdefly d" cuss some simple algorithms for the agreement 
problem in the iming-based model and :m ation a. imple lower bound. 
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We first 've a method for ransfmming a rou:nd-based. al orithm to an 
algorithm h.a.t works: in the timing~based model. 

Let A be a round-based al.god hm involving processes Pi for l -=::; i :$ n. 
For ea.ch round r ~ l the local p:rotocoi of Pi determines the messages that 
Pi should send a,' round r ha5ed on he messages re<:eived by Pi at rounds les'S 
than r. Assume that A runs Cot e.·actly R rounds a.n.d tha: every Ilo•nfaw.t 
process sends a message to every process a.t every round 1 through R. ( he 
tra sfonnat·on can be easily modified to a.I.low som proc,esses to baJt earlier 
than the maximum round R. ) 

Vle describe an al.go "thm A.1 for the thnin.g-based model. In. this algo­
.. ithm ea.ch process i ududes a. timeou. task M desc:ri bed in · .he previous 
section. Initially each proces sends its round 1 messages. Eac P·i then 
waits for each Pi, until h either receives he r<>Wld 1 message of Pi or adds 
j ·to i 1. kaUed. Then P·i uses A to compute i ~ Tound 2 messages and 
these messa~ are sen. Subsequent round are handled similarly. 

B Properties 1 a.nd 2 of the timeout task , it should b clea.r that 
A' sb:nulates A correctly. To bound th time of A' let o: be an arbitTa;ry 
/ -admissible timed execu ion a.nd defi_n real numbers t,. for O :$ r ~ R as 
follows. ( · a.ch t" will be shown to be a.n upper bound on the ime for all 
non-halted processes to complete he sjmula.tion of round r.) First to, = 
start(a). econd define ti =to+ T if some process has a failure even at 
some time t =i to; otherwise define t1 == to + .6.. Finally, for 2 :S r ~ R 
define tj' = tJ"-t + T if some process has a :failure even at a. time t wit 
tr-2 < t :5 tr-l · otherwise define t,. = t,._1 + 6.. S.iince we assume ~ 
we have tr ~ tr-1 + b for all r ~ 1. I Is also easy to see tha. , fo:r every 
r such tha.t a. faibue occurs at some time t :5 ir-1 tr 2:: u,._1 + T \!there 
u.,._1 is the Illaximum ~me S tr-I uch that a failur,e occurs at time t. By 
Property T2 of the timeout task it follows easily by mdudion on r~ tha: 
every process either fails or completes round r no la.ter than time t:.- in. he 
,imuJ,a ion of .4 by A'. Jf there are at mos f ia.ul · ·~ _her, are .at mos J 
alues of r such tha:.t tr = i.,._ + T. Therefore A' takes time at mos 

T-min{J.R} + .6.-rnax{R-/,O}. 

Taking ;l to be an (J + 1) round agreemen aJgorithm (snch as the a.lgori hm 
of Dolev and t.rong [D 3] appropriately modined. for fail-stop faul ), this 
trainsforma.tion gives an upper bound of /T , on the time to solve he 
agreement problem with / faults . In t.he case ha. · c2 < 6 this bound is 
approxi.mateJy f Cd+ (f 1)6. 
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In th.e case of sync1uonized s a.r there is another approach tha does not 
perform the timeout task a every round but ru:n.s a. related iming task to 
ensure ha he en i e algorithm :nms long enough. , he main agree en task 
in hls case uses .a flooding" s rategy. . a. process Pi receives a message l 
(a either an .input event or a. de.livery event) and if Pi has no yet decided Pi 
broadcasts the message 1 and decides 1. It is easy to see hat in any timed 
,execution if any correct pro c.ess receives a. 1 then some correc pro ce 
recci ve.s a. 1 no la er than Lime f D. Since · hls corr-ec process broadcasts a 
l, all correct processes recei e a, 1 no later th an. time (/ + l) D. Therefore 
any p:roc.ess tha has run for time strictly more than (/ + l)D can. decide 
O. To ensure that thls much time has elaps,ad each process counts k = 
l / + l )D/eiJ + 1 of its own teps. Thi agreement algori hm take time a.t 
most c2k. This upper bound is appro.ximately (/ + l Cd. (This bound is 
better than the one for he simple sim.ula , ion ab ov when Cd < (I + 1 )6.) 

Note hat both upper boW1ds con a.in he term JCd. In uitively this 
means that thes:ce algo, ithms can ns:e J sequential long timeouts, w.here a 
long timeout takes time at least Cd In he ne. ·t seetion we give a more 
nbtle algorithm with a · ime hound ha. involves only one long ti.moou, . 

As for lower boll.Ilds - for a.n po itive integer k it ·s not difficult to 
ran la a tim.i.ng&based protoool · hat tak.es time strictly less han kd o a. 

ronn.d~based protor.ol tha works ink -1 rou.n&. Thus tlt:e lower bound of 
f + 1 rounds for agreemen with f fault · nn fa.te ea.-.ily to a lower boruid'. 
of(/+ l)d time. (This bound a.ssumes that f 5; n - 2 sinoe he origlnal 
rolll!.d.based bound assumes tru .) 

5 The Up•per Bound 

ow we present our main resul which shows how the upper bound can be 
imp.roved so tha Cd ls o multiplied by J bu only by l. 

Theorem 5 .1 There is an algorithm to sofoe me agreement problem fo,· J 
faults within time (2'f - 1).a. + max{T 3.6.}. 

ubsti uting he value of T ob ained in ection 3 the fo!Jowing corollary 
is irnmedia te. 

Corollary 5.2 There is an algorithm to solve the agreemetit problem for f 
fault tii·ithin time 2 ft:. ' max {CD + c2 26.}. 

ssuming that C2 < and Cd ~ 26 h.is uppe: boun.d is approximately 
2/li + Cd. If r, ;;; d he bound is a.ppmximarely 2/ d + Cd. 
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5 .. 1 The Algorithm 

In addition to the locals ate comp on n of the ·meout proGess a.nd halted 
a.nd blocked (as desc ibed in Section 3), we assume that the local state of 
Pi contain componen.ts v; and r plus a. ·component buff to bold incoming 
messa.g~s plus a compone.n to record decisions. The component ~ is the 
1nput value component - an input event inp,ut(i v) s.Ets vi to 11. _he com. 
ponent r ho1d s a nonnegative intege:r phase number initially O. A decide( v) 
operation. causes Pi to en: er a. decision s -ate for value v (by recording th 
decision in he appropriate state component and set b/.ocked o tru ( o top 
all nontri ial transitions including hose of , he timeout t:ask) . 

~ow we give an informal de er.iiption of he algorithm, more speci:fically 
oi the steps of process p~ hat are a.ssoc.iatEd. with comp( i, S) events. The 
al orithm is given in more detrul in Hgure 2. This d.e cription and the 
assoda.ted code omit he imeout task b-ebavior as well as the handling of 
inpu:ts and delivered messa.ges. 

he algorithm proceeds in a sequence of phases~ numbered oonsecutivel 
star ing with 0. .Each process atte.mp ts ;o reach a. decision a..t each phase· 
however at even-numbered phases processes a.re only permitted to decid - on 
0, whei:eas at odd-numbered phases th.ey can onl.y decide on l . Furthermore, 
a, process is oruy permi ted to decide a a. phaser provided it kno11 hat no 
process has decide,d at phase r - l. Thus, if any process decides at phase 
r tho algo ithm , nsures that no prooos,s can deci.de at phase r L 1 ore 
strongly, i.n thl:s case the algorithm ensmes tba.t every non~failed! undecided 
proc J am in phase t + 2 tha ao proc has decided at phese r + 1 
and then decides a;· phase r 2. inoe 1" + 2 a.nd r ha.ve the same parity, it 
follows ha all decisions agree. 

Validity is ensured by forcing all non-failed -processes to decide ait phase 
0 in case they all have .input Q, and at phase 1 in case they .ill have input L 
To ensu:r termination ii a phaser occurs during which no process fails a.nd 
ncb that .no process has dedded up th.ro~l"-h phase r, then the algori hm 

en ures , hat ever nonfauity process will d~cide lllO later than phase r 1. 
(Such a phase must occur among the 'firs f + 1 phases.) 

Th mechanism U!ied by h algorithm to guarantee all of these proper ies 
js the following. If a process :fails ta decide at ,any phase r it broadcas s 
he number r before going on to th.e follm i:ng phase r + 1. On the other 

hand, jf a. prooe decides a phase r 1 j klp t broadcasting r and jns ead 
broadcasts -r + 1, before deciding and te.rminating. In order for a. process to 
dedde at phase r 2: 1 it en.sures tha it has receiv d Tue message r - i from 
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P)."eco ndit ion: 
r=D 
Vi= 1 

Eff"ect: 
broadcast( 0 i}) 
T := 1 

Precondition; 
r=O 
Vj::;;;; 0 

Effect: 
br,oadcast( ( 1 i)) 
decide(O) 

Precomdition: 
r ~ I 
there exlsts a j such that ( r.i j) € b.u.JJ 

Effect: 
broad,cast (( r i)) 
r := t + 1 

Precondition: 
r 2= 1 
for all j ¢ halted (r - l j) E buff 
here is no j such that ( r j) E huff 

Effect~ 
broadcast{ ( r + 1 ')) 
ded.de( r mod 2) 

1tlitial next-phase tran.sition 

in itia I dedsion trans it ion 

next-phase transition 

decision transition 

Fignre. 2. The main agreement algorithm fot proces-s Pi. 

all non-halted processes and no message r from a.ny process.. his ensu:_res 
that Jf a proceu decides a phase r then no proc~ s has decided a p as.e 
r - 1. 

1 



Also if so e process p decides a.t phase r the:n. every undecided process 
r:eceive he message r + 1 from p ;:!It phaser+ 1, but no message r from. p 
since p skips sending 1'). This !lnaures tha eaich undecided and non-failed 

process broadcasts r + l and goes on o phase r 2. Then every undecided 
nou-failed. process will re<::eive the message r+l frc0m all non-failed processes 
and uo message r 2 from any process. It follows thait each und cided, non.­
failed proce decides a phase :r + 2. 

The algorithm allows any pflooess b.a.vmg i.nput O to decide a.t phase 0. 
If all process.es have input 1 then no process decides at phase O. In hls 
ca.se every non- ailed pmcess broadcasts (I a.nd no process sends 1, so tha 
every process has its precondition for decision satisfied at phase 1. \ aJidity 
is th.us gu:a.ran eed. 

For termination, suppose that a phaser occurs during which no process 
fails .i.11d such ha no process deddes up to and including phaser. Then no 
process send the message r + 1 all non-failed processes send the me:s age 
,· . and so the p:reconditions for e ery proces: to d~dde at phase r + l a.re 

a. i fi.ed.. 
The tra.n si t ions corrnsponding to oomp ( i S) events of p1• .a1 hov.'Il. in 

m,ore detai] in FiO'ure 2 . 1 he code contam.s preconditions for the va.rious 
cases· note tha.t in every state of Pi, at :mo t one of the four cas has its 
precondition satisfied. ince oomp( i S) events are :required. to be enabled in 
all sta.tes we use the convention tha.t any state in which no11e of · h io 
p re~ondition.s is satisfied bas a dummy' transition en.a.bled, which ca.uses 
no cha.n,ges to the state and no me:ss~ges to be sent. 

A formal proof of correctness appears in. ubooction. 5 .2. 
We imlicate why he time required for hls algoritlun to terminate only 

involves a single occurrence of the ,imeout bound T :=::: Cd+8 no mul iplied 
by J. ote that be only transltio that occurs because of a. timeon is lie 
(non-initial) ded:sion transition . Suppose this transition ls ever begun by a. 
p:roces Pi ~t a phase r a.nd no (r j m age ever arrives at Pi• hen h.e 
timeou can a.ke time but then all non-failed processes will decide Vf!TY 

quickly and terminate he computation. (In fa.ct all such processes must 
d cid by he a.me phas :r since otherwise he would send (t- j) m a.ges 
to Pi -) On the other ha;nd suppose ha.t1 at all phases r prior o om.e 
particular phase h. whenev,er a. process Pi begins the dee.is.ion transition 
some ( r j) message do a:rri ve at Pi• 1 hen all ( r j) m s ag rn u a.rri ve 
at p; after the transition (or he transition would not be enabled) . Then w 
claim tbat eac such p,ha.se t takes only time depending on fl, but no · on 
T. Thi is because each (r j) message orjginate.s (either directly or ,rja a. 
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chain of rebroadcasts) when some process first begins phase r. Th length 
of a shortest such chain can be a; mo.st / + 1 (beca.u a. non-failed process 
succeeds in communka.tino- its message to everyone). Therefore the time 
:for phase r JS bounded by f + l {J t.he length of th chain multiplied by the 
ime to deliver each mes age in tlte chain. 

A careful analysis a.ppea.rs in Subsec ion 5.3. 

5.2 Correctness P roof 

,:\then we say that a process begins a.. transition we mean tha the precondi­
tion for he transition is satisfied and either the associated comp( i - ) st p 
or an ~sodated Jail(i ) step is performed. 1 hus, this d.oes not necess.a.rily 
mean ha be. tr ansi ion described ht th code i completed i.e . tha,t the 
assodated co mp( i S) step is performed. No e hat fo each r 2: 0 Pi be-
0· ns at most one .of he next-phase or decision transitions; we call this the 
rth ph<J of Pi Note al o hat if Pi decid at phas r then Pi completes 
the decwon transit ion a. phase r so it end he essage ('r + 1 i) o all 
processes. 

i\ n r-messag is any message of the form ( r i) io:r some i . t follows from 
he code tha a.n t~mess,age ]S sent either at a decision ra.nsl ion a phase 

T - 1, or a a next-phase transition at phase r. 
We fus prove progress i.e., that nonfu.ulty processes do not get stuck. 

.in a phase: hey either decide or advance to the nex phase. 

L em ma 5.3 Let r ~ 0, and let p·1 be nonfaulty process. Then Pi either 
decide at a phas,e strictly .less than T or begins a transition at phase r. 

Proof; Suppose not . Let r be the firs phase at whldt a nonfa.ulty process 
gets tuck, and let Pi be a nonfaulty Jlrocess that does no · increase jts phase 
to ,. + 1. . ince i i no po sibl for any process o get stuck at phase O. it 
mus be tha 'I' ~ L Process Pi eve.n tu.ally imes ou -. every process Pi that 
fa.Us or decides by Prop rty T2 of ·he imeou.t task. 

o consider any process Pi that does not fail or decide. y choice of 
r PJ even ually .reaclie phase r. Since Pi does no decide at phase r - 1, 
i· mu t have se_t .i:ts phase to r using a. next-phase transition . his i:mples 
that p1 sends an ( r - 1}-m sage to Pi . Hence Pi eventually receives an 
(r - !)-message from Pj and uses it to satisfy its waiting condition for Pi• 

bus, Pi eventually satisfies its waiting conditions for all Pi and i able 
to begin a t ansiti.on at phase r. a contradiction to the choice of r and Pi· 

■ 
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We next give some preliminary ]em:ru.as. Some of these. lemmas will also 
be used later in th timing a.na1ysis. 

Lemma 5 .4 If p1 begins a deci ion transition at phase r > D then Pi sends 
no r -m sages. 

Pr-00·£: If r = O, then by he initial decision transition Pi sends no 0-
messages . . Assume r 2: . If Pi sends r at phase r - 1, 'Pi be0 ins a decision 

:u,1si tjon a.t pha:se r - l and do s not ecu te phase r. Since Pi begin a 
decision r.a.nsj ion a.t phase 1" 1t does not begin a. next~plu1.se transition a.t 
phase r and thus does not se.nd an r -message at phase r. ■ 

Lemma 5 . 5 I/ Pi decides at phase r ~ (I th.en no proces begin a decision 
transition at phase t + 1. 

Ptoo,f: su.me by way of contra.diction, that some prooeas P:i begins a. 
dedsJon transition a phase r + l. Then prior to his d is.ion · r:ansHlon 
either an r•message from Pi is delivered o Pj or Pi a<lds i to its se· of 
halted processes . By Lemma. 5.4, ~ does not send any r-message J o the 
onl pouibili y is that p; Mids i to halted. By the decision ra.nsition nle. 
Pi succeeds in broa.d.cast:in,g r + 1. Bnt by Property 1 1 of the timeo as · 
all messages sent by Pi o Pi are delivered. to p; before h adds i to halted . 
Thus. an (r 1 -message must he dei.ivered to Pi before i begins · he decision 
tra.n itlon. B'lilt his eon a.diets the precondition for the de,cis,ion transition . 

■ 

'Ne nex give a definition that ,;,;ill he c.e.n t:rai to both the oouec. tness 
proof and he tim'ng analysi . phasia r i quiet if here •ex.ists a process p. 
sach that no process Pi sends a:n r-message to Pt· 

Lemma 5.6 Suppose r ~ l. If no process bE:9ins a decision transition at 
pha e r - 1 lh n pha e r i qui t. 

Proof: his is true because an earliest sending of an r-message must occur 
at a. decision transition at phase r - 1. ■ 

Lemma 5.7 If phose r i quietJ then all proce ses either fail or duid by 
the end of phase r. 
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Proo.f: Sllppose no · let Pi be a. proces ha _ does not fail or d ·deb_ the 
end of phage r. By Lemma 5.3 p; must ex.i phase r so it mu t perform 
a ext-phase transj ion at phase r. ince p; does not fail broadcasts r. 
This con rad.let he assump ion that phase r J quiet. ■ 

Lemma S.8 . s .ume that omepr,oce decide atpha.se r. Thenpha e r+2 
is quiet and all processe either fail or decide no later than phase r + 2. 

Pro,of: By Lemma 5.5 no process begins a ded ion tra.ns.ition a phase 
r . By Lennna 5.6 thi implie · hat phase r+ 2 is. quiet. So by Lemma. 5. 7 i 
all ,ei her fail or decide no ]a er than phase r • 2. ■ 

ow we can prove the agree.men proper y. 

Lemma 5.9 o two proo e.s decide o·n diffi rent ualue . 

Pr,oof: Le r be the minima! phase at which any proces-s decides and let 
Pi be a process that decides at phase r. By Lemma 5. no process begins 
a decision transition in phase r + 1. By Lent.ma 5. all process - ei her 
fail or dec"de no fa er than phase r + 2. inc,e r is minimaJ, i follows 
· hat all nonfault t process decid at phase r or at phase r + 2.. ce 
r mod 2 = (r + 2) od 2 they decide on th · same value. ■ 

\ •e next pto e he validi y property. 

Lemma 5.10 I/pi de.cide v then there e:xi.sts onu:p1 that t.o.rts with v; == 
v. 

Proof: · ssume by wa.y ofcontra.dktion that all process-es start with v' ~ v. 
If v' = 0 then. ,all nonfaulty proc~ es d -dde on O a. phase O. H v1 

:= 1 hen 
no process begins a decisfon transition a base O , o Lemma 5.6 implies 
tha p ase 1 is quiet an.d so by Lemma 5. all nonfaulty processes decide 
on l at phase 1. Either case ields a con radiction. ■ 

Vie next argue ermination. 

Lemma 541 Any f ~admi ible timed execution contain.s a qui t phase, 
numbered no larg r ihan J + 2. 
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Proof; H ome process decides a ph.aise r :S J then Lemma. 5. implies 
hat phase r + 2 is quiet. So suppose that no process decides a any phase 

r with r :$ /. Siinc.e. here ate at mo:;t / failures he:re must be some phase 
T D _5 t :s f a which no process fails· 1 h be some such phase. Sine 
h $ f no proc decide at phase h,. In fact, no p:rocess Pi begins a decision 
transmon a phase hr because other,i;•Ise Pz would cornp]ete this raosition 
without failing. Therefore by Lemma 5.6 phase h + 1 =::; / + l is quiet. ■ 

Lemma 5.12 ln any J.adm" ibte timed eucutio:n of the algorithm all p-ro­
cesse~ either fall or decide rn> later ihan pha.se f + 2. 

Pro of: By Lemma. 5. 11. a.ny f .admissible timed ex cu t1on con ta.ins a. quiet 
phase n.umbered no larger · han J + 2. . hen I emma. 5.7 implies hat iill 
processes either fail o:i: decide by phase / + 2. ■ 

Remark 1 Our algorithm does ·not require an a priori upper bound on the 
number of faults. All nonfa.nJ y processes decide no later than phase / + 2. 
where J is the numbe:i: of faults that actually oocur in th. execution. In 
con equence the algorithm is an early stoppi~ algorithm ( cf. [DR 2]). 
li an upper bound f is known a priori the algori fan can be modified so 
ha.t, if Pi has no ye decided when it makes· a. n.ext-pha.se , ransition. from 

phase/ +l to phase l 2 hen Pi ca immedfately decide on (f +2) mod 2. 
ince P'i decides no later than the end of phase J + 2, there is no need t-0 

actually x.ecute phase / + 2. 

5.3 Tim"ng Anal is 

ome nota ion to describe the number of failures fa useful. · o:r each r ~ 1, 
denot,e by fT ,he number of processes whose failure step ls a transition 
during which an t~message hould be broadcast (so thls is either a dedsion 
tra.nsj ion a.t phaser -1 or a exJ;.phue tra1sition a. phaser). ·ote that a. 
process has a.t most one failure step and thus in ill f-admissj ble execu. tion , 
Lr>I fr :'.ff, 

he key ide behind he upper bound is that if a phase t is no qnie 
then he time of the phase ca.n be bounded above by a. quantity , hich 
depends on fr but not on C. Moreover the time for any phase (in particular, 
the fir t quiet phase) is a mo t T s:::: Cd+ 6. By Lemma 5. 7 all nonfa.ul y 
processes decide no later than the end of the first qu.i:et phase. Since a quiet 
phase must occm before t.oo mam.y phases have elapsed the bound follows. 
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n more detail 1il an arbitrary !-admissible timed e •ecution er. ·we 
in roduce some nota. ion· all definitions are wi h respect to a. For T 2:'.. 0 
define tr o be the .minimum. time t uch tha all pro e ses either fail decide 
or p rform. a phase r tr.an ition .no la er than time t. ote that (,. :::;: !,-+1 

for all r and 1o =:; where = tart(o ). Let t,e~ be the minim ti.me t 
such tha all proce ei her fail or decide no later than time t. Le h be 
the smallest r uch hat phase r is, quiet. It follows from Lem.ma 5.11 tha. 
h exis and It :::;: J + 2. 

It j s convenient o handle th ca.se;g h = 0 and J = 0 sepa.r ate] , U 
h = 0 then Lemma 5.7 implies that the algorithm takes tim z --o. If f:;;; 0 
then since her a.r - o failures i i eas, to see that all processes decide no 
lat er than the end of phase ·2 and that ph e 1 and 2 alee time a: -m.os 6. 
each. The time bound da.imed in Theorem 5.1 is a. leas 26. when / = O. 
H n eforth we assume that h ~ 1 and / ~ 1. 

\\e begin wi ha simple lemma tating ha e er phase take a mo t 
time T. 

Lemma 5,13 For t1ny phaser~ l, t,. S t,..- 1 + . 
Proof:: Consider any proce s Pi tha. doe not fail or decide by ime r-1 + 

. ,f a.ny process Pi decide · at phase r - 1 then itbin time l:J., aft r Pis 
deci ion transition (and s.o b time t,._ + a < t,._1 + T) Pi receives an 
r-me sage and perform a. ph er nex -phase ransi ion. 

Now assu e that no process decides at phase r - 1. For any process 
Pi tha. fails or decid a.t or before i s phase ,. - 1 tran.si ion Pi pu j 
in o its halt d et and akes a subseque.n computa Jon or failu.r-e p by 
ime t -1 T . Also , ever. process that does not fail or decide at or before 

its ph~e r - 1 tran ition completes a phaser -1 next~phase transl ion in 
which it end a.n (r - 1)-messa:ge· thi me sage .is received b Pi b time 
t -1 + :::;:: tr-1 + T. Since no process decides at phase r - Pi receives 
no t~me ages. It follows that Pi performs phase r decision transi ion by 
im lr-1 + T . 

~ pp]ying the preceding argument to all Pi w- conclude that t,. :S tr-I 
~ ■ 

The nex lemma is he ke to the upper bound. I say that the time 
required b a non~qwet phase is shor (in par icular iudependen of C) . 
. he rea.50n is tha:t , he Ieng h of u h a. phase is bounded by the ti.m to 

deliver a chain o! mes ages of length one mor than the numb r of .lailur 
at tba phase. he de ail follow. 

20 



Le mma 5.14 For any r with $ T $ fl - l, t·r :S tr-l - 6.(/r + 1). 

Proof: Let Pi be an a:rbitrarv process . Assume ihat Pi does not fail decide 
or perfor · a phase r transition before time t"_1 + .6.(J~ + 1). Sine pha.se 
r is no quiet som proc.e.ss sends an r-message to Pi . By inspection of the 
algori run. ,here must be a sequence io ••• ik of distinc proces i • dices with 
ik = i, such hat Pio . end an r-messa.ge to Pi1 while performing a. deci ion 
transi ion a.t pha.-;e r-1 and for l $ j 5: k-1 p;

1 
sends an rsmess.age o Pi,+t 

while performing a. nex --phase transition a.t phase t. Choosing ke sequenc 
of proc indices. so that k is minimized, i foJlows ha for O $ j $ k - 2, 
PiJ faU durrng the bioadcast of the r-messa e .. For if Pi, doe not fail, then 
it sends an r-message to Pi• o ·o . .. i; i would give a. pa h of ien . Ji less 
tha.n k from Pio ·o Pi• 

B • deii.nition off.,.. we have k- 1 :S /r. ~nee Pio sends the r -me sage no 
lat& than time t,._1 · and Pit ... p;,. enter phase r no a. er ha..n time tr- I, 
1, folio s thait Pi receives th~ r-message and satisfies the pr co,ndition for a 
ne.~ -phase tra.n itio , o ater than time tr - I + k6. :$ tr-1 + Ur 1) . ■ 

-ow by induction we ha.v : 

Corollary 5 .15 For every T ·with 1 =::; r $ h - 1 tr$ 6. · L i:\Ui + 1) 

At thls point we can give a. simple proof oi an upper bound result hat 
is slightly weaker than the o e clai ed in Theorem 5.1. We include this 
r ult here in ord,er to gjve , he reader an in ul io.n wh the bound a.kes he 
general form i doe (w· h the timeout bound T appearing only once). 

Theorem 5.16 The1 is an <Jlgorithm to solve the agrnement problem for f 
faults within time (2J + 1) + T. 

Again ~Su.ming C2 < his bound is approxima.Lel '(2/ + 2) + Cd. 

Proof: By L m.ma. 5.7 we have td~ce :5th.. Lemma 5.13 implie ha tr :S 
_ + T for any phaser. 1 herefore , t,~~:;; th-i , T . ow 

tdec < -th-1 + T 
< · 'E?;;lU, 1) + + s 
S (J + (h - 1)).6 + T + 
< (2/ + , T+ s 

2]. 

by Corollary 5.15 

since h :S J + 2'. 
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1:"ow :ve carry out he fin r ana.lysis needed to g t the smaller bound 
given in Theorem 5.1. The smaller borrnd i clos (within O(o.i(C + /))) 
to he ac ual wors -care ru.nrung time of the algorithm; de ails are given in 
Remark 2 below. · he be ter bound is obtained b r CO· • dering he 1a e t 
time at which a. failure occttrs . H this ti.m is - o too la.rge then a better 
bound can b obtained since b.e time T taken lby the tjmeout task ca.n. hen 
be ea.sured. starting from the im.e of th lat t failure . Let tlHC be the 
maximum time uch tba.t t1u1 $ t11_ 1 and such ha ome process has a 
faiJure ev -nt a time ti~ •· Uno process has a. failure e,;ent a.t a. time $ th- t 

hen ta.k t1a:.,t = -T. e begin with an upper bound on ttlu that ma.y be 
smaller than the bound t&- I + T used in the proof of Theorem .1'6. 

P roof; By Lemm.a 5. 7 tm , $ t,. s;o it is sufficient to bound t&. Let p; be 
a. process tl at does no fail decid or perform a phase h ransition b•efor -
time tm= = max{ th- I + t1a...: + T }. Le p1 be an arbitrary pr,ocess. We 
show ha; by ime tmas ei her j is in p. s halted set or Pi receives an (h-1)~ 
message or an h-message from Pj · The.l\efo- b. time tm= Pi performs a 
phase h ransition. 

If p; fails a ime t whe:[ t ~ th- then 1 $ ttrut so Pi adds j · o i s 
halted e n.o• la.ter · all ime t1uf +T (by Proper y T2 of he jmeou ask). 
In the remaining cases assume that p1 doe not fail at a. time t $ th-:t• 

uppose tka. Pi perform a transition at pha"8e h- • Sinc-e Pj does not 
fail a.t his transition p; end.s ei her a.n (h- 1)-mes age or an h-messag o 
Pii· ince the sending is done no later than ime th-l Pi recei es · he message 
no later han i:me th-l 

he only other po- ibili y ·s that P.i decides at ome pha&e r $ h - 2, 
ince Pi does not !ail or decide by the end of phase h. - 1 it follow from 

Lemma 5. hat Pi does not decide at any phase t- :5_ h - 3. Therefore Pi 
decide at pbase h - 2 2J1d broadcast u (h-1)-messa.ge. A in ti pre Tious 
cas , this message ls received by Pi no later than time t1i. 2 + f th-1 + 6.. 

■ 

v\e .now use Lemma. 5.1- · o bound t,~,-
Lemma 5.18 t 4c~ ::; max{ (2/ + 2)~. (2/ - 1 6. T} s. 

P roof: V\e consider hree cases. 
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Case 1: h s J. 
ince t.,~e ::;:; th-l + T Corollary 5. · 5 gives 

ta~~ < t1i.-1 + T 
h-1 

$ · 2)h + l) +T+ 
a,::,l 

< (f + (h - 1))0 + T + 
:$. (2/- ) 

Cm;e 2: I+ 1 Sh$ I+ 2 and t11ut ::; t1-1, 
First since / - l < h - 1 we have 

1-l 

T+s. 

t,~~i 5 t1-1 5 6 · EUi + 1) + :s; (2/ - 1)6, + s. 
i=l 

Since h - l :;:; J + 1 we have 

h-1 

th-l =:; ~- l)J,+1)+s S 2/+ 1).6.+s. 
i:::it 

S ubsti tu ting liese bound: for t la.d and t1i_ 1 ht to . emma. 5. 7 gives 

t,fo: s max{ (2f + 1).6. + li + il, (2J -1).6. + s + T} 

- max{ (2J 2)6. (2/- 1) + } + . 

Claim 5.19 JT > D /or 1 ~ r ~ f - 1. 

Proof: uppose that f.r = 0 for some T s; J- 1. ince phase 'T' i:s not quiet 
some pro1;.e s sends an r-me cSag , and he earliest sending of an T~message 
must be at a. d cl ion ransi ion at phase r -1 ince fr = 0 means that 
there are no fallures during a broadcaa of an r~messagc it follows tha.t some 
process decides a.t phase r - l. By Lemma 5. , phase r + 1 is quiet. Smee 
r + 1 ~ / this contradicts the assumption that phase h 2: / + 1 is the flrst 
~d~~ ■ 

ince phase J is not quiet a. J-:me.ssage is sent by some process. Let p be 
a. process tha s.end an. J~me sag at the eartie time. Therefore p sends 
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he /- e age while performing - decision transition at phase / - 1 and 
hl occurs no later han ime iJ-l· 

ll,le first argu,e that p decides a.t phase J - . If ot hen p fails no fa er 
han · lme ti 1 whUe broa.dcas ing a.n /-message. ince Jr> 0 for r $ J-1, 
he remaining / - 1 failure occur wb.ile ome proc.e s j broadcasting an 

r -me age for e.ach r with 1 $ r $ f -1. ince th.ese .remaining failures 
occur a. phases numbered at mo , J-1 it follows that all failures occur no 
I er han ime t J-I. Thls con radic he as umption t:hat tr,uc > t J-i. 

inc.e p decides a.t phase /-1 h = f + I by Lemma. 5. , ~d p broadcas: s 
an J•me acge no later ha.n t·me t1_ 1• Ther,efore 

The final ingreclient for thls case i.s th observa ion tha 

J-1 
"E, J.-51-1. 
i: 

(1) 

(2) 

Otherwise all failures occur durjng the broadca.<it of r -messa.ges for 1 $ r $ 
I - 1· as argued above hls con :radkts th assumption that tza.,t > t,_1 , 

Fin.all . we have 

taee < th-1 +T 
$ t1-1 T by (1) 
< r:J-l.( 1) ~ (j,.. i'.:=l Ji 
;:;; ((/- 1) ,- (J 1)) +s+a.+T by (2) 
= (2J-1) +T+s. 

• 
. ince the upper boun.d of Lemma 5.1 can be written as (2f - 1)6. + 

ma,i:{T 3 } + .s , he proof of Tb.eorem 5.1 i eo plet.e .. 

Remark 2 It is possible o construct a.n execu ion of th algorithm ha.t 
takes tjme at least 2J6 + Cd as umi11,g l ~ / S n - 2 and C 2: 2. lints: 
One proces has ini ial value O and I e others ha.:ve initial value 1· Ir = 
for l ~ r =s; / - 1, fr - 0 for r ;;;;; J, and Jr = 1 for r = f + l; he message 
delivery imes are arranged so that phases 1. 2 . . . f - 1 take time 28 eac:h 
phase J takes time·. and phase J + 1 ake time T 2: Cd+ 6. 
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Remark S The agree e t a:Jgorithm bas hlgh message complexi y. This is 
due mainly to the timeout task where every process broadcast a mes: age 
at every step-th main ask ends a total of O( n2 J) messages since each 
process broadcas a mes:s.a,ge at e.ach pha.se t:ransition. A.n obvious approach 
for decreasing h: message. comple ·ty of the thne011t ask is to broa.dcas 
alive message once every k steps for some k ~ 2. Of course, the maximum 
value of the counters mus then be &dju.sted upward., and the timeout bound 
T increases accordingly. 

Fo.r the case of synchroniied start, ano her approach is to dispe.nse with 
the timeout task completely and bwld special timeout mechanisms into the 
main algorithm. Specifl.call whenever p; makes a next-phase transition 
from phase r - 1 to phase ·r ii. ini tializ.es a. coun: r cotmt er(j) for each 
Pi• Ea.ch co1ult · counter(}) i h1cr-e:mented a each step until eiither (i) p;, 
receives an r-message (ca.using i to p rfor-m a nextaphase tra.ru;jtion) or 
(ii) tkemessage (r-1 j) j found in bu~ o (Hj) ,oounter(j) reaches L2D/c1J+ 
l . In case (ill p1 adds j to halted . The modified algorithm is correc sin.ce 
whenever Pi broadcasts an (r-1)-messag,e during a next~phase transi ion at 
pha.se r - 1 it should reoeive either an ( r - l )-message or an r-:mes ag from 
every nonfa,tlt · nondecided pr-0oess "Within time 2D. he modiiied algo:rithm 
sends a total of O(n. /) messages . E a.ch message has length O(logn) bits. 
B,~ a imlng analysis imi1a.r o that of hoorem 5.16, a.n u:pper bound of 
(2/ + l)d + 2C D + c2 ~ 2J + 1)6 + 2Cd ca.n be shown. 

5.4 Extension t o, Multiple Valu es 

In thl section we discuss how to modify , he algorithm to handl an axbi-
ta.ty value set V. Thi is done by ru.nrung n. single- otttoo algorithm i 

parallel. In the single-source agreement problem, a single process p,. the 
source starts with an init.iaJ value from V. Shortly w describe an algo­
rithm for the ,:{ngle-sou.roe proble with the following properties. Let 1-
be a dis ingu.ished d fault value in V . Suppose tha tlie source has initial 
value v. Then aiil nonfaalty processes decide on either u or 1_ and all decide 
the samej moreover if he solilfoe i nonfaul y then all nonfaul y processes 
deeide on u. To solve the jJ"eneral ag1:eement problem run n single-source 
algor.i hms 1 A1 . . . An in parallel with Pi being he somce in A.; . When 
ome p1·oi:eSS Pi has reached a. decision Wi in Ai for a.ll i, it decides on w.i:: 

where k is the least integer sucb that w1.: # .L provided hat such a k ecdsts. 
If Wi = .L for all i hen pj decides on _. 

o de.sc.rjbe a. olu : on to he single-source problem. we refer to he al-
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gorith.m of Figure 2 , he binary algorithm. Le Pi be the source and let 
v1 E V b h.e in.itlal va1ue of Pi• ln.itjaJly .P'i begin he binary algori hm 
as hough it has 1ni ial vahi.e 0. and b.e other processes begin wjth alue 
1. Durin phase O p, broa.dcast th mes age (:t"i (1, i))i i .,e., i send the 
m sag (1 i) t\a"t , e hinar algorithm would end wi.th the value i pig­
gybacked. After this br~cast Pi decides Vi- Any p:roce s that re.ceives 
his mess.age during phase l r,emembe:rs v1, broadcas s (vi (1 i) and o·th 

erwise acts in the binary algorith as though the message (1 i) had been 
received. The bi ary al.godthm is then run to completion. If a. p'I"ocess 
decides 0 (resp . 1) in he bina.r algori hm it decides v1 (resp . .L) i t · e 
ingle-sourc algori hm. (The a.naJ. si below how ha · ii Pi dee.ides O in 

the binary algorihm then Pi receives Vi during phase 1.) 
To argue correctness first consider· the case hat e source Pi is non~ 

fan] y. I i eas o in thi case that all nonfaul y prooess.e ( xcept he 
source) d 'de O at _phase 2 in the binary algorithm, so all decide "Vii in the 
single-source algori hm. Ir Pi i faulty ie R be the se of proceases hat 
recei e ( v.- (1 i)) du.ring phase l. Any p:rocess not in R eith r f a.ils or per­
forms a decision transition at phase • If a_ny such process decides hen all 
noula.uH processes decide 1. If a.11 processes that a.re no in R fail befo ,e 
deddJng., th.en any proces Pi tba.t does decide is in R so Pi ,-eceives 1i, 
during ph e 1. 

6 The Lower Bound 

In this sec ion w. prove our lower bound of (f l )d + Cd on , he ime to 
reach agreemen in th@ timing~ based · o del . - e proof requires four steps 
and emplo techniq:u u ed elsewhere in proving lower bounds and im­
possibili y resul s :in the round model he co , pletely asynchronous model 
and the timi g-bas d model. he fi:rst tep is an ada.pta ion of he proof 
bowing that J + 1 ronnd are nece.s,sa;ry for Byz.m · ag:reemen in he 

rounds model [ L 2 DL ! 2, DS 3 LF82, H , M 5 D 6 D 6]. 
e ~hall ee, his adap a ·on yields he existence of two long (i.e., ta.king 

i · at I a.st (/ -1 )d) ime<l execution prefixes oo and o:1 ,ea.ch having only 
f - 1 fa.ult , distinguishab]e only to on proc and each x endible to a, 
timed exeeutio w· ha differ,e.nt dedsion value. The second step mim.ics a. 
key lemma. in the proof ha aaeement is impossible in asynchronous s s-
ems [FLP 5 DDS ]. In hi tep it i ho ·n ha. a: leas one of a-0 and 

a1 is · al n , ' in ha it has two possibl e. · ensions with no additional 
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failures each ielding a cli:fferen decision \ralne, and in each of which pro­
cesses ta.ke steps as quickly as possible. lo showillg bivaleuce we also use 
an ~1e.., ecution 1etiming technique of (AL89}. The third step extends the 
bj a.lent timed execution prefix to a. "maximal ' 'bivalent prefix having at 
mo J - 1 faults. he fourth and. las step exploits the oae 1emaining fault 
via. arm her retiming ugument. to show ha.t after his ma."cimal biva!.en 
tJilled exec.u ion pren a least one "]on. tltmeout (taking ime at leas Cd) 

necessary. 
We assume throughout thi s,edion that c1 $ d li = d, and J 2 1. 

6.1 Synchronous Timed Exe·cutions 

Our lower bound argumen s for algori hms in · he timing-based. model will 
be based. on a. subset of the timed ex.ecutions which we call synchronous. 
W@ deftne these in ·thi ubsec.tion. 

We think of a synchronous timed execution as a seque:nc:e of "blocks · 
each block i composed of a. seqRence of message delive ies followed by a. 
sequence of process steps; all the process steps in oae block occur a.t t.he s:ame 
· !me, and each block con aha exactly one (compu aition or failure) step by 
eaich process. More precisely we sa.y that a timed execu.tion i ynch.l'loncu 
p.ro,.rided. that here is a monotone increasing sequenc.e of times, to, t1, ... 
such that ta = 0 and the following condition ar, satisfied. 

l. E•xactly on.e inpu vent oceun a.t each. proc.ess and. It occilll!i at time 
o. 

2. E.a.ch computation a.nd failure even ,occurs at time t; for s.ome i. A 
ea.ell time ti the i exactly one compu. a ion or fall use ,event for eaich 
process and these events occur in order of process indices. 

3. All input even.ts precede all computation and failure events tha.t oc.cu.r 
a time O. 

4 .. All message deliv•ery events tha.t occur a.t a time t:i pr -cede all compu• 

ation and failure v nts ha, occur at the same time. 

A block in a synduonous timed execution can ·hen. be i.dentLlied with 
the portion of the exec. , ion oc.c m g at tim in · e i te val (ti l.+1] for 
a.ny particular i. . (finite) timed execution prefix is: said ob ynchronous 
provided tha;t i is a prefix of a !lyach:mnous timed e..-.::ec:ution and it eads 
w.i h a comput.a.tion or failure step of process Pn. • 

27 



ow pp e· that a is a synchronou imed execution. prefix. If · = a/3 
] a. ynch onous timed ex.ecution or a ynchronous timed ex cution p-refL'{ 
. e say th.a 1' is a failure-free ~U?nsion ( or simply JJex-le:nsfon) of a: if no 

failures occur in /3. e :sa.y that , is a .fa t ext nsion of a if he · im for 
computation a.nd failures eps in; th.at a.re grea: er than tcnd'(a) are exactly 
all he times tha axe of the form t~11,1 o:) plus a. positive multiple of c1. 

intilad · ; is a slow ext nsion of a if · he comp a ion and failure . · p 
ti:m. 0.J'e· all those of the form tend(a:) plu a positive mul iple of c2. 

6.2 Existence of Long Prefixes 

For he :first step we show the existence of th two 101 timed ,execu io 
preii..xes mentioned above. ince we do this y a.d.a.pti g a proof from he 
rounds model, i is useful for us to restrict a tention to a subdass of th 
synchronou timed. • . ,cutions that look more like e • cutions of the rounds 
model. ln particular we will consider tun d ex:e utfons in whkh mess.ag 
axe delivered in batches a, time 1at are posj ive multi pl - of d. Also 
although step tjme j irt,elevant here we say (to be sp cific) that processes 
ake teps at every multiple ,of cl' a.rting with O. Formally '1 e deft e the 

uniform timed exe<:utions to be hose synchronous im d executions in which 

1. for very inte!!:er r ;::::: 1 , any me sage hat i 
l )d ~ t < rd, is delivered at time rdn a.nd 

2. each step time ti is equa to ic1, 

Also, he uniform :timed ezec-ution pre.fix.e are defined , o be th timed exe­
cution prefi.xes hat a.re prefi.x:es of uniform timed executions and ,end with 
a. computation or failure even of Pn. 

niform timed executions are similar to e.·ecut·on• · in the rounds model. 
For example if c1 ~ d, th n there is a. direct correspondence between he 
t o. In gen-eral uniform executions however, a proce s may take several 
tep (and send a several different times) wi run ea.ch round of me. age 

excha.ng . 
he basic lower bound result for a.greemen in he r-ourid model asserts 

hat, for f $ n - 2, a.~m n in the pre ence of toppin failures require 
f + 1 round 2 · • 4 • [ 5 C . 6 OM 6]. The proof of thls r ult 
contains a ke · lemma ha slm s loo el speaking that for any agreemen 
algorithm all eX'ecu ion prefixe wi h at mo t f round in whlch at mo one 
p ocess foils in ea.ch round a.re imilar.. wo execution prefixes a.re directly 
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imilar n some nonfaul y process can.no • d1stin.guish be ween them. The 
similarity relation is the transit.iv dosu.re of the direct sinulanty relation. 

By rooefining directly similu so tha.t two ex~cu ion prefixes a.re di~ 
rect]y similar if at mo on process can distinguish between them . and 
redefining ~simila.r accordinglyi it is ew.y to modify this standard proof 
to a.pp!y to our uniform imed ·•ecnthms and to yield a ligbtl}• stronger 
conclusion.. I:n · his way we obt.un the follo-wing lemma..6 

We defiue twotjmed executionpreftxes 0:0 a.Bd a1 w:i h tenctl = tt;n.a:(ao) = 
tend (0:1 ,, to be indi-stinguish-able to process p,i provided hat (a) the equence 
of imed v nt occllfring at Pi and he sequeuc,e ofint•e veninP local. st-ates 
of Pi ru,.e iden "cal in ~o and a 1 with the excep ion that corresponding 
fail events of Pi in the two event sequentes can send different se of mes-
ag s and (b) the :messages which a.re sent o Pi strictly before time t~iid 

ogether with heir senders and sending ime are identlca! in ao and c:t:1. 

The :sequences o:o and a:1 a.re said to be di linguishable o Pi if they are not 
indi tingu:isha.ble o Pi· 

Lemma 6.1 Lei A be an n-process algorithm in the timing-based model that 
olve the .agreement probl tll for f ::£ n - l faults. Let k be a nonnegatiti'e 

integer1. k :$ J - 1. Then there are two (uniform) timed e2.'ecutfon prefixes 
ao and a1, atisfy ·ng tf1e following conditions: 

rkdl . . 1. te-n.a"(Oj) = ci" c1, for J = 0 l. 7 

. There i-5 a fan fj~ ,e~tensio,n of ai in which sorne process decide j /or 
j=OL 

3. If F;i is the s « of proces es that are faulty in ajJ j = 0 1, tlu:n IFo U 

Fil S k, and 

to inMcli ao and a1 are distinguishable. 
11 FM h0$E! who .;u fa.miliaz witb t!LE eulfor proofs; The proof ilil volves coru, ru:c ing 

a. "'~ham of iimed ex cution prdh: • Each pai o{ co ecuijve pri:efix.es either (a) hi!.ve 
id~tic:al t of (ail!!:d proo- r:s Mid illlfe~ only m lhe presence oo: abserlce of one p.uticul:u 
m - a.s~ m se:nl by a lau.lt.y pro~ p1 to a pra.-:-ess p;; moreover, p; does not send MY 
m -_agr:s (in either p1e!b:) aJ or a.Re th!! deliv iy ti:ml!: ,of m 3:od. stdc:tly prior lo t~nd, or 
{h) diff!!:r oni in tha.t OM process tha.t se.nds all its messages a.t some time e. but none 
thereafter. in both preiix:es, does a. fail.11tt transition M ti.me i, in one case and a.t t, 1 in 
d1!!' othet <:~j Ct ( c) diJf~r onl in t.hat one process tha.t sends all its messages at time 
t ~nd does a. failure t..ran it.ion at time l ~nil! i:n one prefix and does no fail m the o her 
pttfix, or (d) dilfr!! only in Uie mitia.l v.a.h1c of one piocess that foils 11. time ll and seIJ.d 
110 m~g.es_ 

7 ote tl1at the time f ~:l ca is the le -, m ltiple of ci .gte~l r: lhan ot equal to kd. 
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6.3 Exist,ence of a Long Bivalent Prefix 

Fo the second step we show that under 1e assumption that agreement 
can be reached in time trkt y les than (I - l)d + Cd both decisions are 
still possjble after a leas one of a-0 a-1 . In order o do thi we :need to 
forma.liz the notion tha.t both decisions are sti possibleii aft r a. p efix. 

et a be a synch.ronou im d -x ution prenx. 
\I _ e ay that a value E {O. l} is fa t /ailure-free-reaclu.ble ( or ju t fa t 

ff-reachabl ) from a if there is a synchronous fast faiilure-.free e...xten ion of 
a such hat some process deddes v in,. We sa th.at a is 0-valent if only 0 
1 fast if-11ea.cha.ble from a a.nd 1-valent jj only is fast ff-reachable. W sa 
that a is univalent if i is either 0-valent or l~va1ent and t at a Is bivalent 
jf both O and 1 are fast :ff-reachable from o:. 

, h nex lemma. ls the key for comple ing he proof of he lower bound. 
1 shows tbat there caD.not be two "long. e,"!;;ecntJon prefixes (i . prefixe 
tha end at a "la.~ time) that have opposite va.Jen•ce hat do not •Contain 
ma.nv fa:l!ll s, and tha are disti.ngu.ishabl - to a · 

Lemma 8.2 Let A be an algorithm in the timing-mi ed model that olv 
the agreement problem for f :$ n - ] fauJt.s within tune etrictly ,l.e · than 
t+Cd. 

Then there canno be two -yncli.ronous timed e:z:ecution prefe , o-o o.nd 
0:1, Y;tisfying the following pmperties: 

1. ti!"D;i(ao);;:::; tenJ(ai) ~ t 

2. a; · j ~v<Alent j = 0 , 

9. if Fi is th set of proees e that are faiilty in Ctj 1 j = D 1 then Wo U 
F1 I :S J - 1, and 

4. th-er is at most one proces lo which ao and a 1 are distingu · hable. 

Proof: uppo e b _ wai of con radktion ha uch prefixes a 0 a.nd a: 1 
exist. Le be the union of O F , a.nd he set ( of size a.t mo t 1) of 
proce: to which ao and 0:1 a.re di tinguisbable· note tha:t IF ~ f .. Le 
o~ be a ynch onou timed execu ion :prefix tha is identical to a 0 except 
that each Pi E F does a failure step ill which i send no me a.ge at i e 
te~d if it has no failed pn'!\iously in a:a. Le o be a. slo ff~ext nsion of a~. 

'The terminology is detived from bat of [FLPSS], ah.b.ongh the defini ion: .ue Dot 
xa.ctly equivalent. 
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Le 71 be constructed in a similar wa,y &,om t.:t:1 . subject to tbe additional 
con.di.lion that the portion or ·1 a;f er time t~n.c! i .identical to he portion of 
70 after time tmil• This is possible since a0 a.nd a:~ are .indistinguishable to 
a.11 processes o her than those in F and moreover all messages m transit to 
, hese processes at time ~ .: .. al: a.re the same in. o-~ and. 1. 

inr.e IFI ::;; J. it foUows hat ea.ch of · o and 1 is /-admissible. ince 
t~d ~ t and he algorithm decides before time t + Cd, all the nonfauity 
processes. i.e. those p:roce.sses not in F, decide m each of o and 11 stric ly 
b•efore tl e i~114 + Cd. i.nce To a.nd r1 a.re indi tingw hable to all p1oc:esses 
o her than those in F they have the same dedsion value. v. Fix j = 1- v. 
(This make,s sense because v E {O l}.) 

Le 1'j be a. retiming of '"fi that ke ps the times of all even s up o and 
including tt:ritl the same., and that causes every event that occurs at time 
te11..l' + u in j for- u > 0 to occur a time t~,u• ' u/C · 7}· Then all 
process,· not in F decide v in i strictly befo•re time t ,,i.i + d .. 

ow let ,y be a. fast ff.extension of O'-j in which any me$S.a.0 es rent by 
processes in F a.t times grea.ter han or equal to t ~4 take time ~tly d to 
be delivered. and such that J looks exactly like } o all proaesses excep 
those in F a.t times before i~,i!I' + d. Since the processes no in F can.no tell 
he di.ff. re.nee between r',/ and "/j s rktly b•efore ime tend + d all processes 

not in F mus decide u in J. 
Bu since ,'J is a fast ff~exten.sion of ai a.nd a 3 is j -vaJent the proces es 

tha are nonfaulty in ,'/ must decide j in 7J. Since the process.es not m P 
a.re nonia.ulty in 'j his is a con, radidion . ■ 

Corollary 6 .3 Let A be an algorithm in th timing-based model that sofoes 
the agr.eement problem for J ::;;; n - 1 fa'Ults within time striclly less than 
(f - l)d + Cd. Then there is an (f - 1)-adm:issible synchronous timed 
e.:recution pre/i:c er ctJch that th following condition hold: 

1. te:ti.d a:) = f fJ-;
1

11iil Ci and 

2.. a is biiralent. 

Proof: Let ci:0 and a:1 be obtained by ~etting k = f - 1 in Lem.ma. 6.1. 
e how ha.t a l1as one of a:o and Ct'J. has the. required properties. All 

properties exc.ep the hivat nee are im.media.te so we must how hat at 
least one of ao a.nd a:1 is bivalent. We proceed by contra.dictio . ssum 
that ne· her of Clo and Ct't is bivahmt. Then for j = Cl 1 since a decision of 
j is possible in a fast ff-ex-ten lo of Oj (by Lemma 6.1) jt mus be that 
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o; is j-valent. But then o0 and a 1 s:atisf:y, all · he condi ions de cribed : 
hes atemen of Lemma 6.2, where t = (J -1)d. Lemma 6.2 th. n yie1:d a. 

contradiction. ■ 

6.4 Existence of a Long Maximal Bivalent Prefix 

For the hird. step re construct a 'maximal. ' fi.njte bivalent exten ion. a' of 
he hivalen imed execution pre:fix obtained in th previous lemma.. R.ou bl 

speakin he nd. of ci j a branch poln , fro which both d d ions aw sti l 
fast ff'-rea.chable and uch tha.t at the next tep tim.e in any fas ff-ex enslon 
of er the ded ion must be determined. 

Lemma 6.4 Let A be an ,alg·orithm in the. timing~based model that .solves 
the agreement problem for J :$ n - 1 faults within tim trictly le than 
U- )d Cd . Th en A ha an /- 1 )-admis iblt synchronot: timed execution 
pre~ er' 1Jch lho.t 

J. ten.t1:(a:', ~ (J - l)d ,and 

• a.1 i bivalent 

and uch that the,-e are two fast ff e~tensions of ci /3;, j = 0 1 sat· ifying 
the following properties: 

1. f3; i an ext n ion of er' by exactly one block, j = 0 I, 

2. /3; ,. j-ool nt, j = 0, 1 and 

9. f3o and f31 are indistinguishable to all but at most on pf'OC . 

Proof; By Lemma 6.3 has a. (J - }-admissib e synchron.011.S imed 
execution pr fi · a sa. isfying he following properti s: 

and 

2. a. i b.ivaJen • 

Le be the s of ihti e bi val n fast ff~extensions of a:. Each such 
e:xtensioa mu t have its final jme strictly less han (/ - l)d + Cd ince A 
i assum:ed to decid withi hat ime. ince e-ach block takes time c1 here 
mus exi a maximal ei@Illent of r i.e., on - ha. has no proper exten ion 
inf· let a' be such a maxhnal eJ.em nt. 
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Le· 0 1 be he se of .all fi.ni.~ fast fi'-ex ensfons ,of a/ consi tina of ol 
followed by a. single block. In other words e ·eey E 0 consists of o.' followed 
by a equence ,of message deliveries .a.nd a single step by ,each proce . ince 
fast ff-• x ,en ions are yncluonou ten.ti(/J) = tc,id(o') + c1 for eac /3 E 0. 
By maximality of o', every timed execu ion prefix in ,S. i univaJen . Since er.' 
i bivaJent there mus be at eas one such -ex:tensfon tha is 0-valen and a 
least one that :is 1- a.Jen . ( hls us s · he fact that biva.lence js by definition 
wi h ect to fast :ff exten ion . ) Let /Ji E 0 be j.valen for j = 0, 1. 

-o-w we constnu:t a sequence {Jf1, 0 $ i :Sn, of elements of 0 such cha 
11 = r.i,, /311 

- {J' and for all i 1 < i < n !' and !' are indi tin1rnishable 0 PO n - 1 · - - - • ,- , · 
o all processes o h -r than P•· he con tructfon is induc ive. First define 
g == -b, Then for each i ; 1 S i $ n , de:lin.e f' E 0 to be the sa.m. as i~l 
·cep ha. the message de iveries to Pi in t a.re as in .B{. (Since all the 

messa~s delivered to .Pi in , a,r, s.en:t by ime lenc, (a' uch a. /3;' exis .) 
ince each f3t E ·0 i is univalen • Since 13g i 0-valen and P~ is 1.valent 

tbere mus e.xist i-l s; i ::;; n such tha.t ,8!1_1 i O-valen and /3t i 1 •Valent. 
hen defining /3o = t 1 and 1 = f3f suffices o prov the lemma. ■ 

6.5 T h e Fin.al Step 

Far the fi , al step of our proof, we no use Lemma 6.2 one again to yield 
our main Io, er bound theorem. 

Theo'f'em 6.5 Assume l ~ /::;; n-1. Ther is no algorithm in the timing­
ha ed ma-del that sclu the agreement problem for f faults within time tric'1y 
I tl,an (f - l)d + Cd. foreov r th:i lower bound hold in th case of 
synchronized tart. 

Proof; Suppose by way of con ra.d.icti.on ha such an algori h.m exist . 
1em. Lemma 6.4 yields an (f - l)•ad.missjble synchronous tim d e:xecution 

pr flX cl uch tb.a.t te,.4(«) ~ (/ - l)d and o.' i bivalent, and such h 
there are two fas ff-~·ten ion of ' ; j ;;;; O I ati f i g the followmg 
prope ies: 

1. /J; is an e. te ion of cl by ex:a.dly one lock j = 0 1 

2. /3j is j-vale11 j = 0, ]. and 

a.. fJo and a.r - di ingui ha.ble to all but a mo tone proce s. 

B t then /3o and /31 satisfy all the condJtions in Lemma. 6.2 , with t ;;;;;; (/- l )d. 
This immediately yield a. c-00.tradktion. ■ 
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R emark 4 The lower bound ob ai.ned in this proof 1s not .ahrays the bet 
possible. 1f d = kc2 + E. for some in eger k hen we can actua:Jl. obtain a 
hound of (/- 1) d+c2 - e Cd. jnc.e .in theocy e can be arbitrarily small, 
we ge es en jally ; / - l)D + Cd in the worst cas . 

7 Implications for Synchronous Processes with 
Message Delivery Uncertaint y 

In the Introduction we i.nclicated tha our results could be applied to the 
model used ht [HK 9], in whlck process step are co plet:ely synchronous: 
th.at is c1 == c:2 ~ so C == 1 and in which 6 the actual message deli very b ou:nd 
in a particular execution. can be much smaller ha.n the worst-case met:sa.ge 
delivery timed. In tb.is subsection , e say more a.bout these application . 

First . we consider th.e cost of implementing the timeout task fo the C = l 
model. The tlm.eout rategy .of Section 3 yield a. tlmeou bound T of a 
most d ' 6 + 3e1 • Howeveri since processes are synchronous . h timeou , 
bound can be improved slightly using a differe t stra.tegy. t roooss Pi broa:d­
<:a.s ts th message (clfo j, k) a it k• ] step for all k. If process Pi has no 
.:mceived he message alive, j . k) by its ( k + l d f ciJ + 1 )~ h tep then Pi adds 
Pi o its et ,of halted processes. This st ategy ives a timeout bound of 
T = d+2c1 . 

We con.slder he simple upper a:nd lower hounds for agreement. The 
imple upper bound of appro.ximaitely (J + l)Cd of ecHon 4 specializes to 

yield an upper bound of approximately (f + 1)d even for executions iR which 
6 < d. 0 th o her hand a si pl lower bound obtained bv adapting he 
(J 1) round lower bound for he rounds modeli is (f + 1)6. hls leaves a. 
gap of a multiplicative factor of dj J . 

The main algorithm of this paper helps Lo close his ga.p . ince we carried 
out the a.miJ.ysis of our main algorithm in. terms of . and T it js ea.s to 
t a.nsla.te he NS.ult to th. C = 1 model. Using the imprnved timeout bouad 
a.bove we conclud tha h.e algorithm :nm. in im 

or approximately (2/ - l)S + ma.x{d,35} if c1 < . Therefore th.e number 
of faul s nu1lt'pUe he ac al message delay ra h - than the worst-case 
drulay d. 

W no that he methods of {DLS 1 give a completely ,di:fferen a.groo­
ment algorithm in the C = 1 mode] wi h time complexi y O(n6) pm ided 
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tha -n ~ 2/ + 1. (The :methods of [ULS88) do ao work when. n ::S 2/.) 
We :now consider lower bounds in he C = 1 model. h lower bound 

echniques of th.is paper can be modified to give a lower bound of time 
(2J - n.)6 + d provjded that J + 1 :$ n ~ 2f. More speci:fica.ll in he case 
where n $ 2/ a. partitjoni:ng a.rgm:nen sim.Ua:.r to ones used in [BT 5] and 
[DL ] easily gives a lower bonnd of d, even .in certain execu tions in which 
the actua.l message d.eiay 8 is c1 so messages are being delivered es.sen: ially as 
fast as possible. By combining the partitioning a.r-gument with he argumen · 
used ,o prove the (/ + 1) rou.nd Jower bound ( see the dlscussioa preceding 
Lemma 6.1) a lower bound of (2/ - n)c'S' + d can be shown if f + 1 :s; n.:::; 2f. 
Thi bound can be compared to the upper bound of roughly (21 - 1)6 + d 
described a.hove . In t .he case n > 2J. the 11pper bound O(n6) show tha 
t e time need ot depend Oll d a all. 

8 Conclusions and Open ,Questions 

Al though there is a. ga.p betweeR our lower b ou.nd of (f - 1 )d Cd a d 
ou upper bound o:f approximately 'lfd + Cd e feel we have substanthilly 
answered lie question of how he tune requi.ren1en depends on. the timin 
uncertaint as measued by C = c2/c1• In partic'llLI.ar we have shown tha 
only a. single 'long timeout" (i.e .1 a. timeout requidng time Cd) is required 
and , his long timeout c.mno be a.voided. Similarly for the case in which 
C = 1 we have shown that the time depends on the worstacase mes.sage 
delivery tJme d only once. 

An obvious open problem. is to close the ga.p betw en the lower and upper 
bound • A other questio.n is whether these results can be xtended to other 
types of failures ucll as Byzan ine ot omission failure . Some r.esult on his 
last question have already been oh ain.ed by Ponzio [1 90]. 

more g neral direction for future research is to try to extend. the tech­
niques described in this pa:per to permit imulat.iop of arbitrary round~bas d 
faul - ole a.nt ~ri hins iR the model w1th timing uncertaincy. The hope ls 
that suck a. simulation w.ill not incur the multiplicative overhea,d o.f T of the 
simple tran formation descr.ibed in Section . 

Our algo i bm assum hat eacl1 messa!!e is delivered wi hin a: mos 
time d under all circumstances j par ·cului even if th.e mes age delivery 
ys em js overloa,ded with messages. A more reasonable assu p ion is -ha 

all messages g~,t delivered within at most timed provided that the number 
of messages in transit is bounded. The aJgorithrrIB we present in this paper 
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send only a. bounded numbe_r of me sage and so would work unde:r uch a. 
restriction. Our lower bound does not rely on this restri.ction and carrjes 
over a fortiori for the restricted case. Some preliminary quantitative result 
relating the time complexi y of a timeout task to h cacpadty of the channels 
appear in [P90). 

mentioned earlier he work ptesented in his paper is part of aJ.1 

ongoing effo:r to obtain a prceci e nn.der tanding of the role played by ime 
a.nd imin uncertainty in particular in dist ibuted systems. Th up er 
bound presented in · ru pa.per is based on an approach ha:t depar s from 
known algorjth for agreement in the ynch.ronou model. V..~e believe 
that th.ere are many other fundamentaJ. task in dist:rjbuted systems who 

:ud: might lead o he discovery of new a.pproaches for coping with timing 
uncertainties. 
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