
LABORATORY FOR 
COMPUTER SCIE CE 

MIT/LCS/TM-442 

MA SACH SETTS 
I STITUTE OF 
TECH OLOGY 

ARE WAIT-FREE 
ALGORITHMS FAST? 

Hagit Attiya 
Nancy Lynch 

ir Shavit 

'arch 1991 

545 TECH OLOGY SQUARE. CAMBRIDGE MASSACHUSETTS 102139 



Are Wait-Free Algorithms Fast? 

Ha-gi ancy Lyncht 

.. ebrua;ry 7 991 

~ A 1:m:.liminMy rersiou of this. work appeared in t.he Proc;e,:Jing ~I ihe 3.11' Annual S,mposiGm QQ Foun• 
datiotu of Computer Scietw::.e St. Lour October 990. This od, was su.pported by ONR conttad NOOOH
S&-K-016 b· SF gnuns CCR- 6114-12 iL11d CCR- 915206 1 a.hd by DARPA contracts 0001 -89-l-19 ancl 

00014-87-1{-0820. 
' Dept. of Compu er Scie:nce, Technion., Hflil' 32000 Lin.el. This work was performed while · he au hor was 

at !\UT. 
l:ta;borafory for Comptttet Science,, MIT Cambridge, MA 02139. 
5La.borat-0ry for Computer Science, .h-fiT Caw.bridge, MA 02139. Pa.d of llrul work was pe:rf'ormed wh1l tl1e 

author was at the Hebrew 11.ive:rsity and a.t he rn: 1 Almaden R~arch Center. 
K<lyword : Asy:oclironous distributed ysiern·, shared me.moiy, wait-free algorithms~ ?t!!ad/write a-~omic Iegi.s. 
te.1: , lower bounds. 



Abstract 

The time complexity of wai -fr.ee. aigotiithms in ·normal executions ,vhere .no failu es occut 
and prooes ,es. ope:rate at approximately the same speed i considered. A low,er bound of log n 
on the time complextty of any wait~free a1gorjth:rn tha, achieves approzimate a,gre~ment among 
n process.es is proved. In contras here e."<iists a. fi•on-wa:it-free algorithm that sol es Im 
problem in constan , time. This implies an Sl(log n time epa.ra:tion between the wait-free and 
n.on-wait-free oomputa.tion models. On the positive side we p.resent an O(logn) i:rue wai.t-free 
approximate a.greement algori h:ro: he complexity of hi algorithm is within a. smill. constant 
of the lower boll:ll;d. 



l Introduction 

In hared•m mo•ry di tr:ibu ed ys ems some number n of in depend nt asynchronous p11ocesses 
commurucat by reading and writing to shared memory. In uch a. computing envi.ronmen it is 
possible fo processes · o opera. ea very different speed e.g. , beca.use of implementation issue.-S 
such as communication and memory latency., ptiority~based time-sharintr of proces ors, ca.-che 
misses and page faults. It is also possible ior proce ses, to fail entirely .. l ait.free algorithms 
have been propos.e;d as a mecha.ni m for computing in the fa-e.e of vada.ble speeds and failures: a 
wait-fr.ee algorithm guarantees ha: •each nonfaulty p oces:s ter · jnate reaardless ,of he sp,eed 
and fail.u.re of o her pr,ocesses ((23 2 ]).1 The de:sian of wait-free algorithms has beell ,a. very 
ac ive area. of research recent! (see e.g. (1 2 4, l 23; 2 , 29 32 42 3 5 4 ]). 

Because wait -free algorithms gua-rantoo that fas proc ses terminate wi hout waitin for 
slow proce ses a.it-free algorithm. seem to be genera.ll · thought of as Jost. Howe rer, while 
it i obvious fr-om the deftrution that wait-ft.~ algorithms are rugh]y resilient to failures we 
believe ha.t the assumption ha such algorithms at fas requjN!.s more ca.refol examination. 

"\ e study the time com,plexity ,of wait-free and non-wait~free algorithms in "normal exe
cution • where no failures occur and processes opera.teat approxnnately the same speed. We 
s,cl.ect his particular subset of the ex,ecutions for ma.king the compa.ri on. because it is only 
reason.able to comparae the beha. !ior of the algorithms in cases whe11e both a.re required to 
te-.mtina.te. Since wa.it~free algorithms terminate e en. whell some processes fail 1 while non
wait-free algorithms may fail to terminate in thls cas the comparison should ,c1nly be ma,de in. 
execu ions ·n which no process fails i.e. in failure-free execution • The time measure we nse 
is the ,one introduced in {26, 21},. and used to evaluate the time complexity of asynchronou 
aJ.gor·thms; in, e.g. 3 12 , 34. 35 44.]. To summa.rfae we a:re in erested in measuring the time 
cost imposed. by the wa.it~free property a.s measured. in terms of extra. computation time in tb,e 
mo normal ( fail ure-fr,ee) case. 

In thls paper. we add,:re.ss the gene:ra.l ques·ti,on b cons.i.dedng a. specific prob?em-tbe op~ 
prox-tmate agreement problem studied, for ex;unple in [15, 19 20 36); we study t ,·s problem 
in the contex oi a particular shared-memory primitive-singie-writer multi~reader atomic reg~ 
isters. In this problem each process starts with a .real-valued inpu· and (provided it does not 
fail ) must eventually produce a. real-valued output. The ou pu.ts must all be within a gi~en 
distance e of each 0th.er, and mus be included w1thln the range of the inputs. hi problem 
a weaker variant ofthe well•studied problem of distributed consensus. (e.g. [21, 30}), is closely 
related to the important prob em of synehtoniizing local clocks in a. distributed system. 

~ pproxi.mate ~ment. ta.II be achieved very easily if waiting is allowed by ha.ving a. 
d ignated p:r-oc:ess wriw its input to the shared memory· all other processes wait for this 
value to be written and a.do,pt I as their Olltput • In terms of the time measlilre described 
above,, i is ~y to see that the time complexi y of this algorithm is constant-independent 

1Wa.it~&ee is the shMed-memory analo ue of the non-blod.:ing property for ;ynchronous t1a:nsadfon system 
(d. (10, 41]). 

1 



of n, the range of inputs and ~- 011 t e other hand here is .a :rela ively simple wa.it-free 
algorithm for this problem, wb.ich we describe in ec ion 3. and which is based on successive 
averagjng of intermediate values. The time com:plex..ity of his algori h.m depend linearly on 
n, and logarithmically on he size of he rangeof inpu. value and on l / t. A natural ques ion 
to as· is whether the ti.me complexity of his algorithm is optimal for wa.i -free .a.p-proxima e 
agree.men· algorithms. 

Our first major :resul' js an algorl hm for the special case where n - 2 whose ime com
plexity i constan i.,e. 1t does not depend on the range of inputs or on e ( c ]on 5). Tb.e 
al ori hm n es a novel method of overcomin the uncertainty that i in.h.etent in an asyn~ 
cbronous en,.•ironmen ! without resorting to synchroruza ion points (cf. [22]) or other wai ing 
mechanisms ( cf. [12]): tbi me bod involves ensurina ha. the two proce ses base their dedsions 
on informa iou hat· approximately bu not exa.ctly, he same. 

· ex, using a powerful t-echniq_ue of· egrating wai -fr~ (but slow) and non-wait-.f.ree (bu 
fa.st · al.gori kms. tog ther with an O(log n) wa.i.t-free inpu collecti.ou f'unc ion, we generalize the 
key ideas of the 2-proce algot'thm to obtain ou second major resul : a wait-free algori hm 
for approximate as:: eemen whose time complexi y is O(Io n) (Sec ion 6). Thus the time 
complexity of this algorithm does no d pend on el he:r he size of th•e range of input values or 
on E, but it still depends on n the number of processes. 

A , this point it is natural o ask w.hethe the logarithmic dependence on n js inherent 
for w.a,j .free approximate agr,eement algorithms o:r whether , •on he o her hand there i a. 
constant-ti e wa.it~free al orithm (independen of n). Our third major result shows that ·the 
log ri dependency j inherent: any wait-iree algorithm for approxima·te agreement has time 
complexi at le.a.st logn ( ection 7 •2 This impli.,es an Q(logn) time eparation between the 
non-wait~free and wait-free computation models. 

We note ha,t the con.stant-time 2-prooess algorithm behaves rather ba.dly if one of the
processes fails. The UJOrk performed in a.n execution of an algorithm i he total number of 
atomic operations performed in that ,execution by all processes before they decide. We present a 
tcadeoff between the time complexi y ofa,nd the ork per-formed by any wa.i .:free approximate 
agreement algorithm. We show th.at for any wait-free appro:xJmate agreement algorithm. for 2 
processes 1 there exists a.n execution in wruch the work exhibits, a, non tivial dependency o e 
a.nd the Ta.age of inputs .. 

In practice . the design of distributed systems is often geared towa.rds optimizing the time 
complexity in normal executions, Le. •e.xecutions where no failures occu a.nd prooe.sses run at 
approximately ·e same pace while building in safety provisions to protect against failures (cf. 
(311). Our 11es:olts indicate· tba.t in the a.synchronous shared-memory sett'ng, there are problems 
fo.r which building in such sa!et provi ions must result m performance degradation i.n the 
normal execu: ions. This s~tua;tion contrasts with that occurring for exa.mple in synchronous 
systems tha solve· the distributed consensus problem. In that setting there are early~stopping 
algorithms ( e.g. [16, 18, 40]') ha:t tolerat,e failures yet s ill terminate 1n constant time when no 

2The lo •e1 001.1.nd is a.Uained .in a.n ex,ec11'ion, wher,e processes run synduonoumy and no process :!',a&:. 

2 



foil res occur. The e..xac cost impos,ed by fa.ul -tolerance on norma] execu ions was s udie-d, 
for example, in [9; , 40J. For sy ell.Tanous me sage-passin systems. it has been shown tha 
non~ blocking pro oco]s ake wke as much time in failure-free execu ions, as blocking protocols 
([10]). 

Recent work has addre .sed ·h, issu of adapting · he usual ynch.tonous sha:rnd~m -mory 
PR.AJ-..l model to better refl,ect implementation issue, by r,educing sJnch.rony ([12 13 22 1, 
37)) or by requirin fault-tole:rance ([25 24]). To he be t of our knowledge, he impact of 
the combination or asynchrony and fault-tolerance (as ~ .emplified by the wai ~free model) on 
the time complexity oi shared-memo,cy al.gori hm.s as not previou ]y been s udied. In [3 . ]. 
Martel, ubramonian and Park pre-sen efficient faul -·c,olerant a.synch:ronou PRA;it.,{ a1goritbms. 
Their algorithms optimize work ra. her than ime: and e pioy randomization. , nother major 
difference is that they assume ha inputs a.re stored in the shared memory so that ever~ 
process can acc:ess the inpu of every othe p.roce · . 

The rest of the pape·r is orp,nized as follows In Sec ion 2 we present formal definitions of the 
systems consid-ere.d in thls pa.per and in.troduce he time meas'Ufe, The approximate agreement 
p.roblem is defined in. Section 3, wher,e w,e also pres.e:nt a fast n.on.-wai -free: algorithm and a. 
slow wa.i -free algorithm ior reaching app ox.im.a.te a:g:reemen· . ' ec ion 4 in. rod.uces a ""bias"~ 
function on whkh the algorithms in the following 1>ections are based. Proof of the va.rious 
properties oi thls f®c ion are · o ease the presentation, deferred to Section 9. A constan time 
wait-free algori run fo approximat-e a.greemen between · wo prnces es is p esented and proven 
coned ·n ection a· key ideas from this algori hm are used in the O(]o · 11:) time wai.t-free 
appro:xima.te a,peement algorithm presented in See .ion 6. Section 7 con a.in . the log n ime 
lower bound for wait-free a,pproxima.te ag1eement a.Igonthms. ection presents the low,er 
boand for the · radeoff between the time comple.'city and · he work compiexi y of a wa.i -f~ 
algorithm fo ,apprnxima.te agreement. We oondude, i.n ection 10 with a. discussion of the 
results and directions. for future research. 

2 Mod,el of Com.putation and Time Measure 

In this section we describe the systems a.nd the time measure we will consider. Ou.t defini ions 
are tandard and a.re similar to he ones in e.g., [3 23 2 1 33, 34). 

• .syst.em consists of n p.roces es Po •.. Pti-l • Ea<:h process i a deterministic sta.te ma,ehine 
with a. possibly iniinite number of states. We assoda.te with ea.ch prooess a set of local state .. 
Among the sta.tes of each p,rocess are a subse called the initial state and. another ubset 
called the deci8ion states. Processes communica. e by reading amd writing to single-writer 
multi~reader atomic registers R1 R2 .... (also called shared variables). Each prooess Pi has two 
ar.tomk operations available to it tha. ope.ra.te on a. shared register R; 

• write(R v) writes the value v to the shared ..,ariable R. 

• read(R) reads tb:e sha.r~ variable Rand returns i s \taJue v. 

3 



A system confi ura.tion aonsist of he states of he proce es and th regis ers. Formally. 
a configurntfon C is a ector ( o ... s~-1,v1 ... ) where Si is th local.. sta.te of proc s Pi 
and Uj is he value of he shared va.tiable R;. Each shared variable ma: a. a.in values frmn 
som domain h.ich · dude a. sp dal. u defined' value, .L. An initial configuration is a 
configura ion in hi.ch every local s:ta e is u ':nJtial state a.nd. all shared variables are se o 
J.. For a con.fl ,ra. ion C;: { o ... sn-l i-1 ... ) tate(pf C) denotes hes ate of Pi in C and 
t'-6l(R1,C) denotes the value of re i ter Rj in C te. state(p, C) = i and t-al(Rj,C) = v1. 

V e consjder an interleaving model of concu.rre -c" . where executions are modeled as se
quences of s eps. Each tep is performed by a. single process. proces Pi perform either a 
write(R., v) opera.tfon or a. read(R) operation (which returns a. value v)i but not ho h performs 
some local computation. a.nd changes to its next local state. Tb · next configuration is. the 
result of these modific.a.tions. V e assume tha.t ea.ch process p, follows a loca.l algorithm A, · a 
detenrun.istically determines Pi 1s next step: Ai determines a. variable R and whether p~ is to 
rea.d or wri e R as a function of Pis local ate. If Pi i o read R hen Ai determines p/s next 
sta:te as a. function of 'Pis cu.ne.nt tate and tile valne ti read irom R. If p;, .is o write R then 
Ai dete::mine p1 s next state a.nd the value v o be wri en to R as a func ion of Pis cu.rren 
s ·ate. An algorithm is a. function A mapping eaeh i o a local algorithat A for Pi• 

An euent on Pi is simpl p; s index i. A chedule is a. finite or lnfini te sequence of event . 
\\ e deno e by A the empt schedule with no even • We d~note the oon:figu.ra;tion resul ing 
from the application. or a. fi:rute schedule a to a configu.ra:tion C by C<f, An ezec-ution fr.agm nt 
starting from a. •conngura.tion C is a finite or :in:finiite ail erna. ing eguence of configu.ra.tio . s and 
e entst C0 , i1 C1 ..• , C.1t-1; i1: , . . . where C = Co and. C = C.1;-ii.1:, for all k 2: 1. ·we assume 
tha. a. fi.n.ite execution !ra-gment ends with a. configura ion. The schedule as,5ocialed with this 
execution f:ra:g:ment i i1 ... ik .. .. Converse]y the (unique) execu ion fra.gment resulting from 
applying a, chedule q o, a. wnfiguration C is denoted by (C, u). ezuution i an execution 
fragment sta.rting with an initi a] oonignr a tion. 

Given .a.a. infi:nite schedule tJ, a pro-cess is fa.ulty in u if I takes a finite number of s eps 
(i.e. has a finite number of events.) in rJ and nonfa1Jlty otherwise. An infinite schedule o 
is. J admissible if a.t most J processes a.re faulty in a. In particular a. 0-adro.iss.ible schedu1e 
is called failure~free. These definitions also appl to execution fragments by means of their 
associated schedules. 

Let 1 be a fixed input domain and 1J' be a fixe.d ded ion d:omai7l. Each initial state o.f Pi is 
associated with an input va.lue in I. For each pro~s Pi and d E 1) we define a subset D;,a, 
o! the s ates of Pi• We assume that for each Pi, he sets Di,.d arce pairwise disjoint. We also 
assume that decisions are it-revocable i.e., the algorithm transitions arae such that if Pi is in a. 
stat•e of Di,d it will rema.in in a. state of Di,d• We •call· he set D,,d the d-decis-icm states of p1• 

decision problem ( or just probl.em) II of size n is a. .relatton between 1"' and 1J'fL. An 
a1gorith.m / =solve a. decision problem Il ifin all .executions the decisions ma.de can be completed 
t o a decision vector that is in. the relation Il to the inputs of the pr.oOO'lses. Furthermor•e in 
a.ny faadmis ible exeaeution every nonfaulty p:rocess eventuall decides An algori hm tha.t 



(n - l -solves. a. problem Il is also called a wait-fre.e aJgo:rjth for Il. Intuitively. even ii all 
pro,cesses but one fail when a wai &free algori hm i execu ed th.is process ev n ually decides. 

We now d fine how to mea.su e he time au execution. ta.kes.3 We ass·gn times o e ·en sin 
a. schedule subject to the following cons rain ts: (a) b im.e assigned to the first even of any 
process ls a mos 1 an.d (b) he t ime between two events oi the same proces is at most 1. 
The time of a finite schedule cr is the largest amount of real ·· ime that can be assigned to be 
last •event in the schedule; d,eno e this by time(n ). h t ime between wo even sin a sch dule 
is the largest a.mount of real time · ha.t can elapse between these two even s under any time 
ass·gnment to thi sch.ooule. We define the time taken by an execu ion o be he ime ta. en 
by the associated schedule. (This deinition follol\ s [34, 44].) 

An equivalent dein.ition ( cf. (3]) is obtained by externally pa.rti 10nJng the computation 
into mmimal rounds; a. round is any sequence of events such that every process takes a step a.t 
leas once in he sequence. A minimal round js a round such that no proper prefix of It is a 
ro nd . Eve .y sequence of event can be uniquely partitioned into minimal rounds.4 The time 
for an execu ion is defined o be he number of segments in he unique partition into m.inima] 
:rounds. , This i . the definj ion ln roduced in [26 21]. called the round comple-zity in [12] .) 

The running time for Pi in an ei-ecutfon of an algori hm A js defined to be the time 
associated with the shor est iirute prefix of hls execution in which Pi is in a decisjon t a.te 
( if there is no such prefix). The time comple~ity of an algorithm is he suprem.um of the 
unning · imes over all failure-free executions of A. and all proce s~s Pi· 

We ,conclude this s.ec ion with some useful. notat ion. Let X be a set of real numbers. 
Define rcnge(X ) o be the interval [min~ex z m~ex x] if Xis nonempty and 0 o herwi&e. 
Define diam (X ) to be ma.xr1 ,ar'J-EX lz1 - z2I if X .i nonempty and O otherwise. Note that jf 
X is non.em~ty then di.am (X ) fa t he Iength of he interval range( X . Ir Xis nonempty , t hen 
mid(X ) = mm;o=x z1m.t1.XFEX :r , 

3 Basic Solutions to t he Approximate Agreement Problem 

We star b defining the appro:,;imo.te .agreement problem a.n.d de5crib·ng non~wai.t-free and 
wait~f:ree algor-ithms to so v,e it. In , h.e appro:ximate, ~areemen.t problem processes start with 
reaJ. alued .inputs :i:o . .. x ·-I and a constant £ > 0 (the same e for all processes)· all 
nonfault processes are required to decide on real-valued outputs Yo •.. Yn-l :uch that the 
following conditions hold: 

Agreement': for any i j IYi - 11; I ~ e and 

Validity: fo,r a.ny i; !/ii E range( {xo, ••. X:n-tJ). 

~These defi.nitions cu. a.lso be formalized in the timed automaton model ([39 6)) 
'Except , possi.b]y, for the last segroe11l . 

5 



funct·on wa 't~app.rox (z) · 
begin 

1: Vo;= x· 
2: retu n :r· 

end· 
Pro£e s Po 

fu:nc ion wait-approx(x); 
begin 

l: repeat un il o J. • / wait • j 
2: return . o; 

end; 
Process Pi i ¥ 0 

Figure 1: Fast non-wait-free n-process approximate agr,eemen • 

Th.is problem has a simple 0(1) time· non-wait-free solution de cribed in Fi ute 1. Pr-ocess 
po maintains a single-writer mul i-rea.der atomic register, V0 to whkh it writes its inpu value 
a.s. soon as its a.rts he algorithm. All processes wa.i.t un il Vo is set o a ,,a.Jue hat i.s not .L and 
decide on his alue. In he code. any assignment to a. hared variable implies a write , and a 
referenc · to the va.lue of a shared variable implies a. read.. pper case variables denote shated 
variables while all lower case variables are local In dtls algorhhm., the values r~ nmed in he 
re urn. tatemen.ts a.re· the decision values. Lat.er in the paper we will use this algorithm as 
a su.broutine jn ou · main. algorithm· · hen the values ,e urned in be return sta ernents will 
not be the final deci ion values. imilar conventions hold for later algorithms in the pap, . 
Vile have: 

Theorem 3..1 Procedure wait~approx · a non-wait-free algorithm .for the apptoximat.e agree
ment problem whose running time is 0(1). 

\ e nex pr,esent a. wait-free aJ!gorithm £or appro,xnnate agreement. In, addition to demon
stra ing tha.t a wait-free solution exis for tli problem thl algorithm will al.so be· used as a. 
"buildin block" in the construction ,of a more efficient al orithm in Section 6. 

Le us begin by o,utlining a. imple va.riant of he algonthm for , be case or two p•tocesses . 
Each of the processes .Pi i E {O 1} ba.s a register which jt can write and the o her can read. 
Here and elsewhere we let i" denote the index ,of the other process . Le., i = 1 - i .. Due to the 
asynchrony in the syst,em . it is impossible to h~ve processes agr,ee on one of the inpu values 
(see [17 21; 33)). Thus our algorithm has them gradually converge from the input values zo 
and :r1 to values hat are only e apart. proces Pi repeatedly does the following: It writes it 
value Vi (initially the input value .x~) into its register, and hen reads Pr s .regis er. If Pii reads 
J. from vt it must decide on its own value since it can never ·now when. Pr will write its input 
va.l.ue (if at a.ll be<:ause Pi could have failed before wri in ). If Pi read .a non-.L value from tr, 
it checks whether or not IV£- - ud 5: e. r it is, p; decides on it own value. If not p; ets Vi o 
b ~ and repea.ts. · 

Due to a.synchrony, proee.sses, do no:t ne,ce arily converge directly t-0 a. value. Rather, he 
follo,wing type of scena,r-io• is pos ible: Pr having formerI1• written Vr reads Pis Cl!lrtent value 
v,:, and is delayed just before writing wt,~, to its regjster· then Pi repea ed.iy reads and writes 
cutting the in erval in half till its value is very close o tir· finally Pi completes the write of 

6 



~ ·o its :register so that in fact, Pi moved too far1' oward pr sold value. his can repeat 
itself again and a aln. owever i every uch st p, of 0(1) time (in which both Pi and Pr 
perform a ead and a. wri e), the diameter of the proposed ,1a.l11es jtli - v,I is cut b a.t le.a.st a 
half and so the valu.es c.onverge in O(lo ( r;;~c)) time. The algori hm is wa.i -free ince ea.ch 
process can reach a deci ion independen ly of · he other t aking steps. 

Tke al ori hm fo · n > 2 pl'.'oces e is of the same flavor, but uses more oomplkated mech~ 
a:nisms o ynchronize among processes .. I us,es ideas similar to thos used in the randomized 
consen:sus algorithm of [4]. The oomputa:fon proceeds in (asynchronous) phases: in each phase 
ea.ch process suggests a possible decision value. In a. ma:nn.er simil3.71" to that of the two process 
scheme above, he .ra ge of suggestions shrinks by a. constan factor a.t each pha.se until after 
O(Iog( ira.m({ai-o; .. ,::.,_ i )) )) phases it becomes, small enough · o allow proce ses o decide. B,ecause 
t e:re m.ay be mo e than wo proce ses.T a problem ma a.rise in the case of an execution in 
which certain slow proce ses emporaril r stop taking steps (i.e. cease advancing in phases); 
while others (more than ,one) cont inue to a-dva.nce and . hen those slow proce ses return to 
· aking .steps a: ,a.in. The algorithm must allow he fast proc~sses to coo,rdinate a decis.ion. while 
at · he same ime guara.nt,ee_ing ha he ones that are emporarily slo will converge to · he 
same dedsion ,once they resume ac ivity. The key idea In achleving th.is task is to allow fas 
processes that have converged o appro:xilma eiy he same sugge · ed value and are ahead of all 
proc.esses wi h oontradktory .sugges ions by at ieast two phases, to decide. will be shown 
it can be guaranteed. hat the proaisses at lower phases will join hls ,decision value. 

The algorlthm appea.rs in I igu.I'e '2. The inpu s: t,o each process Pi are real numbers ~ri and 
c: •5 For a real number :t define ne:- x) , he e~neighborhood of z o be (x-£ :t +e: . The algori hm 
employs a .sing]e-write.r atomic sna:ps:hot object S a.s a basic memory p unitive. lnfo.rmaU thi 
is a. data. structure partitioned into ·n. segments S1 each of which can be updated (written) by 
one pmces and all of which <:an be scanned (read) b any process in one a.tonne opera.Uon. 
{More precise specification a.nd implementations of sna.pshot objects from ingle-writf!r· multi
rea.der atomic registers ca.u. be found in [lt 2].) For each proc Pi, i s segmen .of is an a.nay 
Si[l .. ] ha. ·n any state contains a finite sequence of reals - i s suggestions at different phases 
- indexed bJ phase number. Initially ea.ch sequence is>. he empty sequence. At ea.ch phase 
after updating (writing) a. uggestion to its array (Line 2) a. proces Pi read the array of all 
processes (Line 3) obtaining their .suggestions for all phases6 • If p; is at ,:he maximum phas<! 
and a.U the sugg,estions by other processes for it phase or the phase befo:re i a:re within e of 
its ]ates suggestlon tlien p,i decide on Its latest suggestion (Lines. 4- ). Otherwise (Line 6), 
p. advances to · he next phase taking as it new suggestion he midpoint of all the suggestio s 
at the next ph,ase if there are any, o:r oi its cunent phase if here are none. Le,t us make two 
frna] rem.arks befo: e pmceeding t•o prove the algorithms properties. In he algon hm, since, 
a process first writes to its own sequence and then :reads all sequences (including its own), it 
follows tha phase $ maz-phase. . .Also note that in Line 16i r is set to be the number of a phase 
for which there is a.t least one suggestion. Thus the mid opera.tor is applied to a nonempty 

~ .l\lthougb e is d~·ribed ~ a par1UD.eter , .it is guua,nt«d ha.t all processes b,a,ve e:ii::.actly the same value of e. 
'Though one can devise algorithms that, do not .reguhe a proc · to m&i.ntain :ugg tions for all past pha.sa, 

we hu~ caosen to do 1!10 in order ·to simplify ·t.he e,i:,po itJo:n ud p1oofs. 

1 



func ion wait-freseTappro x i)· 
begin 

I: pha e :::::: l · 

2: 
3: 

5: 

6: 
7: 

rep,eat fore'Ver 
update( i [pha e] :;; z ) ; 
s := scan( 
max-phas ~= maxos; -:::n-1 {ls;I} i /* ·. ote that phase.$ maz~phase / 
if phase = maz-pha.s ,and pho. e 2: 2 

ti: , 

and .s;(r] E n.j![z] for all j E {O ... , n - 1} and all r "?:. pha e -1 
then retu.l."n z ·· 
else r := min{ph.a + l ma.-z~phase} · 

:z: := mid( { 1[r] : [.s;I ~ r}) · /* ote that th.is set is not emp y * / 
phMe. ::;: pha. e + l · 

end repea 
end; 

Ficrure 2: low wait-free n~process a.pproxima.t-e agreement-Code for process i. 

set in Line 7. 

We now present the corr,ec ness proof' for th.is algorithm. Since the only shar,ed data st uc
ture used by the algor.ithm is the atomic snapshot object S', a.n ex cution of · he algorithm can 
be viewed .as a sequence of primi.ti e atomic opera ions tha.t a.re upda es and .scans of · . ~t 
a be any executiont and let r ~ l be a phase nu:mber. 

For any process j E {O .. . n l}, d,efine Sf(r] to be h.e vaJu.e wri.t en by Pi to S1(r] in 
o (.L if there js no such value). o e · hat th.is valu i uniquely deiine-d. Define S°[r] to be 
{St[r] # l. : j E {O ... 1 n - l}}. The following is immediate: 

Lemma 3.2 Let a: be an execution and 0.1 is a finite prefix of a. Then s.:i'[r] ~ s.:z[r]i. for 
every r ~ . 

Tb ,ough.ou.t th.e proofs in this pape.r I a subs:ctip i for a procedure denotes invocation by 
process .Pi. similarly a subscript i for a local variable name deno es the copy of h·s variable 
at process Pi· A process Pi is said to be .·n p.ho.se r ii phase, = T, Denote by scanr he scan 
performed. by p, at phase r and by upda,teH.:z:) the update by Pi at phase -r. ote that for 
r ~ 2 he can. performed before writing a. s·uggestion for phaser is denoted scan"-1 • 

For a firute or infinite ,execution a and r ~ l deno,te 

mids(a t);;;; {mid(S0 '[,-j). cl :s a prefix of a and SCl"[r] is nonempty} 



tha.t is, he set of .midpoin. s of all he sets of sugge ion for pha.s, r at ea.rlie points of a. 
The next lemma i the :key for pl'oving tha the algorithm is wait-free. It will be u ed la er 
in CoroUar 3.7 to show ha he range of suggiastion decreases by a. cons an factor with 
each phase. Intuitively it stat,es that any suggestion for phase r must be in he range of the 
midpoints of all the sets of sugges· io:us for phaser - 1 a. ea.rile points in he execution. 

Lemma. 3.3 For ony finite .:ecution a and pha er~ 2, ronge( 0 [rl) C range(mic:i's(a r-1)). 

Proof: By induc fon on he len th of the execution. The basi hold vacuou:s]y. 

For he inductive step, the interesting case is when a ends w.i h update;(:r) for some i, 
where x = S["(rJ. Then scat11r-1 appears. in et. Let o! be the hor es prefix of a that includes 
scanf-1 . Note tha. a' js a proper prefix of et. 

Let r' be the largest phase number ead in s-cani - l' ince process Pi read it own seq,uence 
r' ~ r - l. If -r1 = r - 1 then the code implies that .: is the m.idpom oi S 0 '[r - 1] 1 which 
s:u:ffices. If r' ~ r then by he code x = mid( et

1
[r] . By the inductton hypothesis on o.', 

ra.nge(S0 '[r]) s;; range(mids(cl r- 1)). Thu·_ 

!I;= mid(Scr'[r] ,E ronge(S01 [r1) s;;; range(mid (a',r -1)) ~ range(mid (a r - 1)) 

a.s needed. ■ 

ince rang,e(mid (a,r-1))~ rt:mge(Sa[r- ]) we have: 

Corollary 3.4 For any finite ezecution a a.nd pha e r ~ 2, range( a[ ]1) ~ ronge(Si:r[t - I]). 

For the rest of th.e proof, we fix some in.finite execution of he algorithm. The following 
lemmas a.re stated with Tespect o . The following i a corollary of Lemma 3.3. 

CoroUary 3,.5 For any phaser 2 2, range( ,.O[r]) ~ rang (mids({J, r - 1)). 

The next lemma states that the diameter of all the po,ssjble midpoint of the suggestions 
in phase r is at most ha.If the diameter .of all the suggestions for phase r. 

Lemma. S.6 For any phaser~ 1, diam(mids(,0 r-)) :$ !diam SD[r]). 

Pr-oof: If mids(fJ r) is ,empty · hen diam(mids(/J r)) = 0 and the da.i.m follows immediately 
so a.ssum tha: mith(f3, r) is nonempty. le cl a.nd cl' be t.wo, prefixes of P. such that S°''[r] 
a.nd S01'[r] a.re nonempty.. It suffices to show that [rnid(S'""[r])-mid(S0

' rJ)I :$ ½diam(SP[r!). 
v\: 'thou loss of generaJ!ity . suppose o/' is a prefix of ct'. By Lemma 3.2 S 0 "[rJ ~ s~1[r] ~ 
. tl[r]. :uppose first that mid(S«

1
[r]) s; oud(SO"'[r]). Thus mi.d(SC{'[r) $ mid(S0 "[rJ) :S 

ma.x( sc:r1'(rJ $ ma.x(Sa'[r )). Bence 

Jmid(Sa'
1

[r]) -mid( 
01[rJ)I ~ ½diam(S"'[r]) S i .diam(Stl[r]) 

as aeeded. A · ymmetric argument a.ppli.es .il mid(S0 ·"[r]) > mid(Sa'[r]). • 



The following lemma. guara;ntee hat ugge.s i.oru; will become closer wii h ea.ch phase; 
will be n ed ogether with Lemma 3.9 to ensure wai -freedom. 

Lemma 3.7 Po,r any pha er?= 2 dfom(' P[r]) $ Jdiarn( Pfr - l]) 

Proof: By Corollary 3.5. range(S,a[r]) ~ r:ange(rnids ( r - l)). ' hu 

.diam(S 11(r]) :S diam(mids( r - l ) 
:S ½ diam( !3[r - 11) by Lemma 3.6. 

Lemnia 3 .8 If some p,rocess returns z in pha er and '!J E SP[r), then y E ni:-(.:t . 

■ 

Proof: ssume· Pi retur.ns x in plLase r and as ume. by way oi con ra.<lic fon that t here exis t 
proC'es.ses witl suggestion for ph.ase t tha.t ue not in ~(x). Let Pj be one of hese processes 

ith he property tbat scar-i:i-1! js the earliest amon o- sc.an"-1 of these processes· le a be he 

shortest prefix of /3 tha.t 'ndudes scarir1
. Le 1J = f (rf by assumption" y t "',t [z]. 

B · thewa.y P'J was cho en there is no updatc;,(u') ,~/ h y' rt, n(' (x) in o· thus, range(S0 [r ) ~ 
n&.[x]. Let r' be the ma.xi.mum phase numb r read in scan1-1 . I must h,e tha.t r S r - 1, since 
otherwi e Pi woul.d have et i s suggestion for phase r to be in n~(x). Since process Pi .r~a.ds 
its own sequence. r' = r - 1. 

The fa.ct bat r' :; r -1 also implies that sea n i- 1 precedes up dater( x). Let o:" be the short es 

prefix of /3 ha: includes scan; . Smee updater(x) precedes s:cailf it follows that scanr1 precedes 
scanf i.,e.. a is a. prefix of cl. 

jnce process Pi returns. in phaser it folfows from b.e code tha.t mnge(S01 r --1]) s;; n-~[xJ . 
ince T- l is, the maximum phase number read. in sc.ani-l i follows that y = mid(Sll'(r -1]) E 

mnge(S 0 (r - 1)). · owever by Lemma. 3.2 ' o-[ r - 1] s;; 01ft - 1] and hus y E ne(.:c) a 
contra.die ion. ■ 

Lemma. .3 .9 For any phase r ~ 1 if diam(SP[r )) ;s; e then, e~ery non.faulty p·r.ocess returns 
no later than phase r 1. 

Pr.oof: From the code of the algorithm it follows that every n.onfaulty process either returns 
or rea.cbes phaser -1. If diam(SP[r]) :::; tit follow from Corollary 3.4 that diam(Sfl[r+ ]) $ &. 

The proof proeeeds by induction on he order in which processes perform sc.an +1• For the 
base case, let p; be the firs process o perform scan"H .. Clearly Pi baas pha..se1 = r + 1 = 
max-phase and by assumption r 1 ~ 2. AJso, diam(SP[T]) a.nd diam(S O[r + 1)) are less tha.n 
or eq_u.a.1 t,o E and thus Pi will pass he t es in Line 5 and will return ia phase r + 1. The 
induction step 1 similar a.nd w.es the fact hat so far no proc_e-ss has advanced beyond phase 
r + 1 o bow tha.t a.ny pl"ocess hat ri:aches phase r + 1 passes the test in Line 5 and returns 
in phase r + 1. ■ 

10 



Thus we have proved: 

Theorem 3.10 Proced-ure wait-free-approx i a wait-free algorithm for th approximate agre -
ment problem who e running tim _ on input {xo. . . . x -l) is at mo t 

Proof; The validity condition clearly hold, since p oces:ses decide only on their suggestions 
and these are always withln the range of t,h.e inputs Corollary 3.4). 

To show agreement assume · ha r i the minim.um phase in which some process returns and 
let Pi b a process.es ha;t :returns :i: in phase r. By Lemma. 3. ; the suggestions o[ aJl prooesse 
for phase 1" are in n~(x). By Corollary 3.4 the a.me is ru - for ph.ase r + 1. B I.e:mma 3.9, all 
nonfa.ulty pr,ocesses r~tur:n no later · han. phu r + 1! and thu all nonfauhy prooe--sses re um 
either in phase r or in phase r + 1. ince processes return only their sugge tion , all re urned 
values ar,e in n!!(;z;), as needed. 

Since the diameter of suggestion decrease by a. fac or of two with each phase (by Lemma. 3.7) 
i will eventuaJJy b,e smaller than £ and, by Lemma. 3.9, ,each process will eventually decide. 
This guarantees wai.t-freedom. 

To show the time bound notice that by Lemma. 3. 7. after O(log( .ti,u71,({Jl'.D~ ... ,~n-d) )) phases 
pro(esses will ha.ve very dos-e suggestionsj 'by Lemma 3,9', all processes will retu.rn. The time 
it akes a process to execu e each phase 1s bounded f om a.hove by he number of operation - it 
executes. Using the .impiementati011 of atomic sn.apshots from [l] his u; bou_nded by 0( n2). ■ 

Since the inpu range is not bounded and c may be arbitrarily small the running time 
of the .aJgorith.m as a iu.nction of n is actually unbounded. ote tha.t the time complexity 
in the execution where processes operate ynch.ronously sta_r-ting with mputs (~o ... Xn- ) is 
n( n log( dioim({ r-o ~- .. ,:i:.,_1})) ).1 

4 The B ias Function 

The algori hms in Sections 5 and 16 return a. dedsion value by performing a cakuJation based 
on a i.nput va.l:u.e and a oorr-esponding coUI1ter for each proce s. We name the calcula ed 
function b,ias as, the retutned decisio.n value is biased o ards (i.e. i closer o) the input value 
associat,ed with the process ha.ving the larges correspoRding counter. Before presenting the 
algorithms, we present the fWlctio:n and e:x:plaln its p•roperties. The proois of these properUes: 

The dis.Qepency between tm11 bolUld and the bound in the theorem is due to he fact that t-ighte1 bo!Uld 
ha ,..e not ~ pro~n. fo[ the lime to ex:ecu.te operations i.n the imple.ment11-tion of atomic 5napshot objects. of 
[l), 

11 



function bia,s (v0 ,v1 c<',c1.!) ; 
begin 

l: if 1.1° = v1 ~ 0 ·then re rn 0 
2 •f O l 'h - I ,,O-u1 (I 1.1 . · { t I l j}) : e se 1 c < c t en re urn. v + IJli ljut I · - nun c e, v , 

3: else ir,eturn v0 + iJti+lvi 1{iv01 - min{c0e lv01} 
fi; 

end.· 

Figure 3: Tbe bias function-Code for proces Pi· 

are purely a:ri hme ic involving no, argu.men.ts about synchtoniza ion be ween processes, and 
have herefor,e been deferred to ec ion 9. 

In order to understand he natue ,of the calculation performed by he· bia,s function we 
briefly e.xplam he struc ure of the algorithms using It. he new aJgo:tl hms are conceptuall!y 
based on be following high-level t\\•o-process, algorithm. A process p1 (s:imilali'h Po), knowing 
only its ow:n input a.lue v1 will repeatedly ake incremental steps of siz.e £ starting at O ~d 
en.ding upon each.i.ng the value 1 unless it reads that the other process Po has also moved. 
In he former case it decides on tt1 and in the latter case it decision value is a fo.nction of the 
relative numbet of incremental step both processes managed to take before each noticed he 
other had moved. However sinGe in either case process p1 , decision must be guaranteed o be 
in ,-ange ( { ti0 v1 })., i cannot just be a value in he in ervaJ range( {O 111} ). Thi is the exact 
purpose of the function b:ias. It provides a. mapping from he processes' · cremental walks in 
the interv-als range( {O v0}) and range( {O v1 } respectively, to walks of p:ropor ional length. 
in the allow d range ( { v0 v1 } ). The c,ode of bias appea.rs in Figure 3. The fun,ction takes as 
inputs wore~ nnmbe.r vaJu 't.11:l and 1.11 ,, two associated coun EM'S c0 and c1 (integers denoting 
the number of incremental step . each pr,ocess Po or Pt took) a d €. 

An ex.ample of be tr:msla.tion efin,ed by bias is given in FJgure 4 for the case O < 1P < V1
. 

As ume Po raversed a distance of length c0 · e a.way from O towards 11° and p1 a. distance 
of length c1 · e a.way from O towa:rds ·ti1 . he bias function maps the respective dista...n.ees of 
length c0 , £ and. c1 • e (wit.hin the interval [ - ,vO v1]) into distances of propor ional length in he 
interv [ u0 v1]. The starting point O in [-vO u1] is replaced by the point new-0 in [ ri i v1]. The 
returned decision. value is hen he -point associated. with the larger counter (larger tra...,·ersed 
di tance). 

e now introduce several lemmas tha.t formally outline the prope ties of he bias function 
and on wblch the correctness proofs of the algorithms in the sequel will be based. Tne first is a 
rather simple sta.temen, namely hat the returned al.ne of any call to bias i in range( { v0 v1} ). 

Lemma 4.1 Let cP c1 be nonnegativ integers and tfl I v1 £ lte real number with e > 0.. Then 
b"as v0 v1 c0 c1 t) E tange({v0 v1}). 

2 



- VO 

\ 

0 vO 1n u 1n erval v' 

CO· t c ' ~ 
vl 

/ 
\ 0 I / 

\ 
\ I / 

/ 

\ I / 

\ I / 

\ \ / B1as mapp1 g 
I /' 

\ \ I /' 
/' 

\ IE • ~ / 
I 1: ] I I 

vO new-O ♦ vi 

re urneo value 

Figu.r,e 4: The bias mapping. 

· he next three lemmas ha.ve to .o with an additional property required of the bias fine ion: 
tha;t the values returned by different calls to bias always be a.ppr-oxima.tely he same; even 
if he coau.ter par-a.meter val'ues or the real para.meter values ed in h~se calls, are slightly 
,different. : he following firs lemma. states hat applying bias to counters c0 and c1 tha. a.re 
only approximately the same yet with exa.dly the same real umbers ti0 , v 1 and E. :resul in 
returned values tha..t am approxima.t@ly be same. 

L-em ma 4. 2 Let c0 
1 c1 be notin gative integers,. and v0 v1 E, m b real nt1mbers £ > 0 m ~ 0. 

(1) Suppa e c1 > c0 and Jv'l l/e - m $ ,c1 . Then lbias{v0 • v1 r.O .c\e - v11 :$ mi. 

(2) Suppose c0 ~ c1 -and lv0 1/c: - m ~ c0 . Then lbias(v0 v1, c0 c1 t)- v0
J :S: me-. 

he nex. lemma. show· that he result· of two calls to bfas with "dose (.in a sense made 
pr,edse by the lemma) value"5 for c0 c1 and he same i,0 u1 E a.re dose". 

Lemma 4.3 Let cgt cJi c? c} be nonnegative integer, ~ and ti0 v1, e m he re:ai number~, E > 0 
and m ~ O. Suppose :min{c,8 ~} = min{c? cl}= 0 and lc8 - c~I + 1-eA- ell~ m. Then 

[bia1s(v0 v1 cg, ~ e) - lbfas(v0 il c~; cLt)I S'. mt .. 

The last lemma. in ths section sta.te ·that appl,ing bias this time to rea.l numbers v0 and 
v1 that are approximately (to wjthin & 5 fa.c or) the same yet with exactly the same counters 
c0

1 c1 and t ~sults in values hat a;_re approximately the same. 

13 



Lemma 4.4 Let c0 c1 be nonnegative int ger .. 1 and v8 vJ, vi l £, b real numb rs, with 
t > 0 ~ O. Suppose ,lv8 - v?I ~ 6 and lvJ - il l $ 8. Then 

!bias( vg vt, e0
' c1 

~),- bias( vr 11~ c0
' c1 £)1 $ 6 

5 Fa .t 2-Proce s Approximate Agreement 

We now how tha. for two proc..esses, ther,e exists an approxima e agreemen algorithm whose 
time complexity is cons ant; i.e .. it doe nol depen.d on h ran e of input values or - . he 
n-proc s, algorithm pr ented in ctio:n •6, when pe<:ia.lized 'to the case n = 2 also · .ields a 
(somewha. larger) constant ime complexity. \.Ve prese this algori hm beca.us:e we believe·. 
simplicity will help the reader de, elop an intui ion for he ideas that will be later used in the 
general a.l.gori thm. 

5.1 Informal Desc.ription 

The ke ideas undedyu1g his algorithm a.r - a8 follow . A. process p; ruruting on its own 
can. assume that either it is running very fast (and not much time has elapsed) or the o her 
proce.$$, Pr, has failed. Thus Pi may ta.ke an unlimited number of s eps withou degradrng 
the time complexity for failure-free ,executions, as long as Pr does not perform any teps. Of 
course if Pi does not take any steps a all then in order to guaran ee the wa.iitafree· property, 
p,; must eventually decide (unilaterally) on its own value .. In his case in order o guara tee 
conectness it is necessary hat if and when Pr does appear it must be able o kno•w just by 
reading Pi s registers wha p,; has dedded. However, an inherent difficulty of programm:ing 
a.synchronous .systems. is that due o the uncertainty of interleaving at leas one prooess Pi 
has a.n unc.er· a.inly of one tep ' name]y it ,cannot tell 1;:vbether Pr read the value wr.itten in 
p,; s !ates writue Oli' he value writte in p/s preceding wri e. A two-pr,oce soiu: ion ha,t hal es 
he dlstance between the suggested values is thus of no u e, since the l!lllCertainty of one step" 

can cause processes do decide on. values that are more that e apart . On.r s.ofotio.n j to have 
a process change its suggestions gradually with each step .more precisely; by an amount less 
han, e so that he uncerta.int of one step' -""ill result only in t inaccUfacy in the decision 

val.ue. 

5.2 The Algorithm 

The rode for process Pi is given in Figure 5. · ac:h p1ocess p, i E {O } maintains a single
writer multi-re,ader ,atomic register w]th two fields: Vi-the "n.put va!ue a. real aumber and 
C,-the ,counter an integer. Each process starts by wri .ing i s input and ini iallzing a, counter 
in the sha;red memory (Lme l in in<:rease-counte ). It then keeps in.crementing thls oounte.r 
until either it has taken an.umber ,of steps propor ionai to the absolute value of its input or 
the other pr,ocess has taken a. step whichever happens fus (Line 2 oCnc•rease-oounter). When 

14 



fun.c ion fast~2 approx (x ,; )· 

• fl crea Sle-cou n ter( :i:: , 1; 
(v0,v1 c0 c1) ;= (Vo. 1 Co,Cd; 

3; if er = .1. then return -v* 

endj 

f1:1nctio,n increase-c:01.mter ( v max).· 
1: (Vi Ci} := (v 0) ; 
2: while. C, = J. and Ci < ma:2: do Ci := Ci + 1 od; 

end·. 

Figure 5: Fast wai:t•free 2-process .a:pproximatce agreement-Code for proce-SS Pi• 

the proce_.ss stop.s i.t collects ail the C a.n.d V values and applies he function bias to get a. 
decision value . As described in he former section he dedsio is within b input .range and 
biased owa.td.s he input value ofthe pl\Ocess wi b he Ja.ru,e counter. In pa.rt1cuJa.r if a process 
runs t•o comple ion without ob erving he other process i decides on its: own inpu value. We 
show hat the d.i.screpancy in the rea<ling of the conn e " a.man. the two proc:esses is. at mo 
l and hus, based on tbe properties of the bias !unction he decisions based on the. values o:i 
the counter will differ by at mo t t. 

5.3 Correctness Proof 

An execut·on oft he algorithm ca.n be viewed as a. sequence of primitive atomic opera.t·ons hat 
a.re reads and wr-ites of a om:ic regjsters (and ma.y include cha.nging: local data). Fix som 
execu ion o of the algorithm. All lemmas in the res of his · .edion are s a.:ted wi h respect 
to et. The ne t lemma. hows a crucial property of the values of the counters us.eel by the two 
processes. In thls lemma J_ i · teated as -1. 

Lemma 5.1 .Assume PG and p1 retum from fast-2-approx . . Let i e {O 1} and let Ci and c be 
the values oJCi read f,y Pi o·ndPr r-espectively, in Line 2 offast-2-approx. Then, c*-1 ~ er :S ei, 

Proof: ince Pi returns, i must be that Pi writes to C;. Le r.1 be the last write by Pi o Ci 
in a. Since 1increase-count~r retu.r:ns after the la.st wrjte to Ci and Pi is the only one to modify 
C;, it follows tha Ci is the value wri ten to Ci in - i- Let 4'; be the re·ad by p. of Cr in Line 2 
of fast-2~app .ox. ote that Cf is the valne returned in. <f>r. ince C1 is atomic it is elea.r ha.t 
c.- S ct. \ e now :show that Ci -1 :$ c •. 

If Ci = 0 then · inc.e ci _::;; C.i t E {l. O}i since J.. i,s mapped to -1 the claim follows. So 
assume c; > 0. Let ni be the penultima.te write by Pi to c~ writjng Ci -1. e 1./,1 be tbe latest 

15 



read of C; by Pi ha precedes 71·; not that 1i: preced s </iz . It ust be that the alue read in 
q>,; i .L Le ;;, b the wri e of Oby Pr to Cr in o·. From the cod.e j follow ha r.; precedes ¢>r 

inc.e the value read in '1>i is .L i follow from t.he atomki y of Cr, ha. (!); precedes 'll' • T hus . 
i pr•e·cedes ef>r. rom the a omicit of C1 i follows that Ci - 1 ~ er, ■ 

We ,can now prove tlla.t t he algorithm sa: is:fies he agreement p.l'Operty: 

Lemma 5.2 If fast-2~approx.o returns Yo aod fast-2~app·rOXi, retu~ Yi then h,a - !11 I ::';; e. 

Proof: The proof of this )em.ma. is , epara:ted into two cases. In one ca.se., we apply Lem.ma. 4.2. 
In the o her cas.e 1 we how that be sum .of the differences between the values of c0 and c1 u.sed 
by Po a.nd b Pt is a.t most - a.nd appeal to Lemma _ . 3. The details follow. 

Denote by 1r; the 'fir t write by Pi to Ci, writing 0, for i E {O 1}. Since both processes 
decide, both -o a.nd 1r1 must appear in 0:. Assume without loss of generality th.a iio preced 
;;1. ( The other ca.se is symmet rk. ) Assume · hat prooe:ss Po reads ( v8, vi,, cg cl,) in Liine 2 b-e:fore 
deciding a._nd that process p1 read {vi v[ cf cl} in Lin - 2 befor,e deciding. ote that since 
Pi fir writes O · o Ci and then reads C, it must be tha. cj 2: 0, fo i E {O }. 

Let th be any read oi Co by p1 , returning some value z. The co-de of ·tie algori hm implies 
tha.t 71'1 prec.edes q,. Since o, precedes 1r1 -w-o precedes cf,. By he a ,omicity of Ca hi implies 
that z· ~ 0. his implies, in particular that ci ~ 0 and hus, fast~2•approx! returns in Line . 
In a.ddi ion, his .also implies that, p1 will not increase C1 beyond O and hus by he a.tomki y 
of C1 , c} = 0 and cA E {J.. O}. e separate the :rest of he proof into wo cases: 

Case 1: Cij = .L,. In his case fas.t+2•approXo returns v8 __: z-0 in Line 3. The code of increase-
•counter implies tha: lzol/e: ~ .cg. Lemma 5.1 imp ·es ha. lxol/t- l :5: 4 .. i\.lso vi :;;; zo, Since 
ci 2'. 0 ;; c} we can apply Lemma 4.2(2) with m == 1 and ge th a.t I bi as( v?, til cf c} 1 i )-v81 $ E 

as .needed. 

Case 2: ca= 0. Th,e:n fast~2•appro:ico re :urns in Line 4 and Vij = vl, Weba.ve hat min{c8 ,cli} = 
cA =-=· 0 and. min{cY cD = c} = 0. Also, lc8- c~i , lcA- cH = l4-cfl ~ 1 b Lemma 5.1. The 
da.im follows by applying Lemma. .:t,3 with m:;;;; l. • 

We have: 

Theorem 5 .. 3 Procedure fast-2-appmx. is a wait•free algorithm for the £-process apprO':rimate 
agrnem ent problem whose tjme ,comple:,:ity ts O ( 1). 

Proof; Agr-eeme.nt ·follows from Lemma 5.2. I follows from he oode and from Lem.ma. 4.1 
that he va.l':ues retllrned a.re in he ran,ge of the original input values; nence he validi: y 
prc0perty ~s sa isfied. Each process p1 executes a.t most 0 (1 ::i:.dfe) steps before decidingj t hus, 
the algorithm is wa.it..frc-ee. Smee ea.ch process executes a. constant .number of its own) steps 
after the other process performs its fi.rst step the time comple::city of this algodthm is 0 (1). ■ 

16 



16 Fast n-Proces Approximate Agreement 

In hl · ectlo • we pre ent a. fast (O (]ogn) time) wa.it-u a:ppro ··ma e agreement algorith , 
for n proc,es.ses. The algorithm is based on an a-ltern.o.ted-int rlea tring me hod of integrating 
wai -free {re · ilieo bu low ) and on-wait-f:ree (fast bu not resilient · algori.thms to obtain new 
algorithms bat a.re both r ilen.t and fa.st. 

We begin by showjng how one can reduce in con tan ime, he problem of n-proces 
app.roxim.at e aJ reement wit h a.rbi rary inpu value , o a. special case of the problem where the 
•et of :input values is included. in the union of wo sma.11 in ervaJs. We do thi by performing 

;m alt ernated-i:n edeaving of a. u.·a.1 -free and a non.-wait-free algorithm .. \i\e · hen show ~ again 
based an altema.ted-inter1ea.ving of wait -free and non-wait-f'ree algorithms, ha n processes 
w:ith values .in two small in ervals can simuJat:e"' in O(lo n) time, two virtual. processes 
runnin the fa.st approximate a i:eement a:.lorithm of ection 5 thus solving he approximate 
ag:r•eement problem for n p:roeessecS a.nd any t\vo values. Combining t he two algorithms yields 
an O (log n) wai -free approximate agreement algorithm. 

• 
The second pa.rt of the al ori hm re.Ues on procedures for :synchroniza. ion and inpu ool• 

lection wt h O(log n, time ,complexity. These procedures ar~ presented in · ection 6.3. 

6.1 Informal Description 

The first pa.rt ofthe algor.ithm-the one tha.t a.clue es the constant-time reducti,on to two small 
intervals,. ls encapsufa ed i:n procedur.e ri-to-2 ( igu.re 6). The idea is simple: interleave the 
execution .of he slow wait•free-ap,prox prooe<lure with that of the fast wait•a,pprox. The resulting 
algorithm is wait-free since even if n.- 1 processes fail. wa,it-fre~M1pprox wm terminate. I take 
at most 0 (1) time in the failure-iree e~ecution since wait-approx terminates wt run. 0(1) time. 
However some processes {group a ) might finish the alterna ed execut ion with a value from 
wait-approx while otb:er: (group b) finish with a value irom wait-free-approx. We thu did not 
olve he a;pproxmiate a;greement problem hut we did guarantee tba:t · he Yalues a-re included 

in the union of two small intervals. The procedure eturns a.n outpu value Vi a.nd a. group 
g, E {a,b} o whir.hp~ is said to belong. It is guaranteed that output values: for proces"ses in 
the ame group g1 E {a,.b} a.re at most 8/12 apart. 

The second part of the .aJgori hm solves n-prore.;ss a.pproxima,te .agreement in O(log, n) time, 
assuming that processes a.re partitioned into two groaps with a.pproxima.tely the sa.me value in 
ea.ch group. 'he solutio.n is based on ha.ving the processes in group a (resp. b) join ly simulate 
a virtual proc-ess Po (.resp. p1) that execute the function fast-2-approx of Figure 5. 

The following straightforward simuJa.t.ion js. ex:presse<l by Lines 1·2 of the· function increase-
counter in Figure 6. The counter Co of fa,st-2-app,rox. is replaced by a. joint counter which is 
defined to be the sum of local counters C, for .a] i in group a. Ea.cch step of the shnuiated 
counter Co i ·mplemented by O(n) steps of the jo·nt counter for a. Ea.ch step of thi join 
counter i in turn, implemented by a single step, of one of the individual counters in group a. 

17 



un.ila.rly he processes in group b simulate counter C1 of fast•2-approx. In Line 2 of in,cr,ea5e
counter in. order to decjde o he values of the join counters of a and b. a process reads he 
values of all local counters. If the counter simulated by p1 s group is no large enough and the 
counter imufated by the· other roup is J.. then Pi advances he· counter imula d by its group 
(by incrementing its local coun er C;) and repea. s. Otherwise, p, exits increase.counter. 

One ca.n ee ha in a.n e.xecu ion where processes opera ,e synchronou· ly ea.ch it ration of 
the while loop in Line 2 of increase- count,er has O(n) time omplex.i y since reading all memory 
locations o calculate he simula.ted count-er takes O(n) steps. Howevet~ one can improve he 
ime complexi y based. on the following ob erva ion . If p; ever detec s that all proce es ha\:"e 

se their counters (jn Line l of increase-counter ) hen it knows that one of he follo\ving hold : 
either some process from the o her group has set its .local counter (a.nd hence hat oup s 
sim ulatced coun :er) to a. value other than .L or he o her group is empty. In ·the form r case 
the loop predicate in t·ne 2 mus be true, while in the latter case he fioaJ value for he 
other groups counter will be· . In either case p~ can stop executing increas.e-coun1ter and be 
guaran.teed o correctly sim11la. e the behavior of the 2-process algorithm. In order to de ect 
in le . ban O{n) time hat a.ll processes have set their coun ers we use an. O(log n non~wait
free synch proced re described i.n . ection 6.3 whose termina ion ensures this condition. To 
achieve the bet er time the ailgori hm al ernaites sync.h wi h the (wa.it-free) loop in Line 2 of 
i,n crease.c:ou ilite,r .. 

The dclicat.e synchronization provided by sy11c.h and its effect on the res of the algorithm 
guarantee , ha.t aiter some process exits increase.counter individual count.er values ir1crease at 
most by 3. hu , after exitin inc.rea,se cou111ter a. process can perform an O(log n,) wai: -foee 
fast-collec:t 1 described i ection 6.3, in order to collect all the values needed to decide on he 
returned vaJue in Lines 3·4. The above property nsme hat h simulated count er value 
u.sea b different processes do not djff,-r much. 

6,.2 The Algorithm 

The code for the algorithm is presen ed in Figure 6. Altema.ted prooed.u.res aire enclosed 
withln begin~allternate and end-aUernate brackets . , his constrac mea:ns tha he a.Jgo
ri hm alternates strictly between executing fagle steps of , he two alternated pilocedures and 
termlnates the first time one of he procedures e.rmina.tes. When. a.a alterna. fon is used in 
a.n. assignment statenumt the value assigned is, he value re ·urned by the pro,cedu.re tha er~ 
mma.te first . The algorithm uses the bias. procedure ,of Figure 3. In addition to the shu-ed 
data structures used by waiit-free-approx aJld wait-approx process P'i, i E {O . . . n - l} has 
a single-writer multi-reader atomic register wltk the following fields: Vi-the value returned 
in Pi 's fir t phase.· G.-denotling the group to which p, belongs· Ci---Pi s contribution o its 
group's counter; 1}--p, 's boolean synch termination ia:g .. 

'We r~mM tha!t this ~ ju t a. eodiog 0onv1,mience, ui.ed to simplify the conlrol stnc:ture oi he aligoritlim. 
U is imp elnented locally t one p·tocess and. doses not cause :pa.wm.ng of new proc,e,sses. 

18 



In he code w abuse not a 10n and denote by v~, where g is a. group s name , he group 
a.l.ue calculated as follows: if g = Yi then j i , i and if g :r 9i hen it js an arbitrary V; such 

that Pi i in group g if there is any and 1 oth rw.ise. The value v!J is calculated jn a imilar 
manner from he correspondi g local copies. Recall our convention that lowe case le t er 
stand for local ·ariables and upper case letter for shared variables. } \Vhen g is a. g:roup name, 
g denot he other group' name, .g. if g = a heD g = b. The otatjon CtJ for g E {a, b} 
stand.5 for he sum of hose 0 1 uch that Gi = g and Ci f- if there i any such C,i and -L , 
other ise.. he value c9 i ca!l.culated in a simJ]ar manner from he corresponding local copies. 

6.3 Fast Information Col ec ion and Synchr,oniza ion 

vVe now present the prooedute for information collection and synchronization and prove their 
p•.rope . ies. e start with a. wait.free algorithm for input collecUon-returning the current 
values in the entries of a.n a.rray R. The ime complexity of the algorithm is O(logn) . 

his. problem is intere.sting on its own as it underlies any problem of computin_g a. function 
.g. max or sum, on a set of initial values that reside in the shared me:mory.9 Once a process 

collects all the values. computi:ng the function can be done locally in cons , a1n time. Smee 
n log n) i a lower bound on. the ime for the information collection problem (see, e,.g, [11]) 
this implies that for problems whose output depends on all the initial values in memory and 
only on hem, the:r,e exists an optima.Uy fast wait-free solution. 

Our aluoti hm presen ed in Figure 7, i a wait-~ va.rla. ·on of the pointer-jt.Jrnping tech-
·que used in PRAM a.lgprithms (e .. g., [4'9]) . For equences R R! and a. nonnega. ive integer n 

we define con.,atenate (R R') as ret.urnin.g he conc:ate.nat ion of R' to R a.nd trunc.aite(R 11) as 
returning the :first n element of R .if IRI > n a.nd R other •ise. The initial value .L is treated 
like any other ,ralue and may be returned b~ the algorithm for en ·rjes that have not ye been 
set. 

Fix some execution o: of fast~ •approx algorithm. \ . e dearly ha.ve: 

Theoreru 6. Assume fast-collect; is inVQked by Pi in a ,and let o.' be the shortest pre/fr of 
a: that incltJdes an invoootfon of fast.collect. Then fast•collect1 return a r..·edor c.onfoining for 
each Pi a volue thtd appears in R; a ome point ai or aft r cl. J\1.fore0ti-er. fast~c:.olledi r, turns 
witMn at most 2n step"8 by Pri 

The nex: lemma. is the c,ru.,c ,of the time analysjs for hl algorithm. 

Lett be the time of the last event in h sho:rte-St iini e prefi."< •Of .a, that includes a in oca.tion 
of fast•colled by every Pi i E {0~ ... , n - l} if such a. prefix exists . otherwise. 

11Not~ tb.ai '11ese pl'Oblems .ar-e very diffenm from th.e dui.rio11 prob-lil:m.! conmdered u.nt.il now in this pa,pe:i: 
where input a.re local to the p .ocesses and do not 1eside in the shared memory. 

19 



function fas:t-n-approx (z, e); 
begin 

0. (v g} := ni-to-2 (z e) · 
increase-c.011.rn le r( v g 'i -) · 

- ~ "'"' 1: 

2: {v,fj q := fast-collect (V G.C)· 
if c5 = l. hen return vU 3: 

4: e se retu n biais(v~ i:0 c4 ,cb_e:/6n); 
end; 

function n-to-2 (z e)· 
begin 

{u,g) := begin-.alternate 
l: (wait-free-approx :i:: /12)) a) 

and. 
2: (wa,it-approx (z) b}i 

end,-a.l, ernate· 
3: return {tt g) 

end; 

function increase-oo nter (v,g rru:iz)· 
begin 

l; (¼ Gi Ci) := {v ,g O}· 
begin-al e.rnate 

2: wh'le CD= .L and CD< ma do Ci:= C1 l od· 
and 

3: synch ( C)· 
end-alterna lei 

4 · T, ;=: true; 
end· 

Figure 6: Fast wait-free n-ptooes~ approximate agreement-Code for process P:i-

20 



func ·on fast~collect (R); 
begin 

1: .l :- l; 
2: while l < n do 
3: Ri := concatenate (R* Ru l)mod,i.); 

4: l ::;;;;; IR,I; 
od· 

5; return tr1.mcate(Ri, n); 
end· 

fjgure 7: Fast wait-free information collection- Code for process Pi· 

Lemma 6.2 A Stlme t < . For every i E {ll .... 1 n-1} and every integ r r O ~ r $ ijog nl , 
IRd 2: min{2,..,. n} a.t time t + 2r. 

Proof: Th proof is by induction on r. The base case r - 0 is trh,iaL 

·or · he induction st•ep, assume that r 2::. 1. If at · ime t + 2(r - l) IRil ~ n he da.im 
follows. o suppose IRil < n a time t + 2(r - 1) .. Then process Pi reads Rc;+1.)mod1i af er 
time t 2 r-1) where Ea is the length of R, at ime t'+ 2(r -1 ). By the induct! ,e hypothesis, 
IR-il 2: 2"-l and. IR(i+l;)modn.i 2: 2r-l a.t time t - 2(r - 1). I follows tha IRd 2: 2r at 1me 
t + 2r. ■ 

In particular at time + 2nognl, we have IR;I ~ n for ever i. bus f.ast-coHect.: returns 
by ime t 2 flog n 1- \Ve ha.ve: 

Theorem 6 .3, Leto' be a: finite prefir: of Ct. A ume that in cl fast-co lect. is irrnok.e.d b!,I Pi, 
for ev ry i E {0.1 •• • n - 1}. Theo. for .e.-very i E {O,. .. n - 1}, fast.collecti rett.1m-S within at 
rno t O (log n) time ,after a'. 

The s nchronization procedure .synch j a variant of fast.collect. Since it is used within 
a.n alternate construct it is possible tha.t synch is aborted wi hout comp,leting and. returning 
«normally. To cope with this possibility, we associate with the shared array R o which synch 
is applied a spe-cia.l termination a.r.ray T whose e tries ca.n ake on values {J.., true}. T; ls set 
to true if pj termina.tes i.e. abor s or :returns from sy . ch,· The synd.uonization prooednr•e 
guarantees h·a if it returns then either all the entri of the a.n-ay are non•J. values, or for 
some j i =: tn.ie. It is n.o·t wait.fr,ee. The e-ode appears ia Fjgure 

gain we fix ome execution a of fast•n•app ox. We have: 

21 



procedut"e synch(R)· 
begin 

l; repeat until Ri ':fa .L; / wa.i / 
2: l := 1; 
3: while l < n and Ti+lmodn::.:: do 
4: .repeat until R,+ mod n 'F · /* wait / 
5; Ri := ,com;attnat,e (Ri,R,(i f)modn ) : 

6: l :~ IRil" 
od;, 

end·· 

lgute · Fast non-wai -free synchronization-Code for proces Pi• 

Theorem. 16.4 Let cl be a finite prefix of a. A sume that in. a.1 all R entnes are et to 1values 
;I: .L, and that synch, is inooked by Pi• Then synchi return within a,t most 3n eps by Pi after 
the end of cl. 

Theorem 6.6 Let er.' be a fioite prejfa of a. Assume that i11 a', synch,- rett.1rn , for .some Pi· 
Then at the end of a' either all R entri afl'e ~ .L or T; =:; tru for some j. 

Le cl be a. finite prefix of a. ote that, in fast-n-a,pprox if Pi term.ma e synchi · i.e. a.bor s 
or r,eturns hen within one time uni , Ti = true. his is crucial in he proof of the next 
theorem. 

Theorem 6.6 Ld &!' be a finite prefiz of a. As ume that in ,cl aU R ent·ries a,r:e et to uolues 
# and synch i is irwoked by Pi, for every i E { 0 . .• , n - l}. Then every process terminates 
sy nc::h within ai mos:t O0og n) time ~fter th end of cl. 

Proof: Le t he the -ime of the last event of 0,1. We prove tha.t for every process p1 and 
for ev,ery intege.r r . 0 $ r $ 2flog 'i'l 1 by time t + 3r either Pt terminate sy,nch, or !Rd ?=, 
min{2l l 2J, n}. The claim follows by aking r = 2flog nl and .noticing that if IRd ~ n hen Pi 
returns from synchi witrun 0( ) time. 

T ,e proof is by ind.ucti.on on r. be: base cases r '= 0 1 are trivial. 

For the 'induction s ep assume hat l $ r ~ 2P,og, nl. ff Pi terminates by fme t + 3r, 
then the daim is immediate. o ass1.une Pt does not erminate by time· t 3r. In par~ 
ticular, it does not terminate by time t + 3(r - 1). Hence by the induction hypothesis 
IRd ~ min{2Ur-I)/2j n} = 2l(:t-l)/lJ. Then proces Pi reads T(i+I;) mo,d 8 afte.r time t 3(r -1) 
where Ji is ·· he length of Ri a.t tune t + .3(r - 1). 

22 



If P(i+f, ) mod n terminates b time t + 3(r - l ) - , hen. by assumption , T (,+!i) mod~ = tl"Ue 
by time t + 3(r - 1) a..nd thus .Pi terminates by t ime 3r. I folio,. s from the indu,ction 
hypothe is for r - 2 tha [R(i+l,)modn l ~ :zl{r-2)/2J. Then the leng h of Ri at time t 3r is 
larger ha.n o.r equal o 2L(,-- I}/2J 2L(r-2)/lj ~ 21+l(,.-2)/ 2J = 2l .. / 2J. ■ 

6.4 CorreC'tness Proof 

We remind he reader that an execution of he alaorj hm is ie ed as a sequence of primiti"·e 
atomic opera tons t h.at a e reads and writes of a om.ic reg;i · ers. We now fix some execution a 
of fa1s • n•a p prox. 

l'\.s in the proof of he 2-proc:ess algorithm (Section 5) 1 the crucial point in he proof oi he 
algorithm is howing that, in Lines 3-4 or fast-n-approx, processes use ,cfose' values for ca. and 
cb. We show hat the value of an arbitrary counter when. some process invoke fast:-corlect are 
at most 3 less than the maximal alue th1 count,e:r ever attains. Thls is formaliz-ed and proved 
in he next lemma.: 

Lemma 6. 7 A .5ume ~hat Pi invokes fast - collect, in a. Fix some proce pj ; let k b the 
vafoe of C3 returned by fast.colledi, Let 1.1· be ~he mazimum value written to Ci in a. Then 
k'-3.:Sk<k' . 

Proof: The inequali y k ~ k' follow immedia.tel from the atomicity of he shared :re ister. 
o prove the other inequality iet .P'i1 be the n.rs process to ex:ecute he ,1,.Tit•e op@ration in 

Line 4 of ·nuea,se--count,er. Such a process exists because Pi performs this w:ri e opera ion 
before invoking fast.c.o'nect1. Let cl be a shortes · p:refix of a hat includes p,1 s write to T,,. 
L<rL k'' b,e the value of CJ at he end of cl. Sinc-e any in oca.tion of fast-collect follo,v. s hls last 
write opera:tion in Line 4 Theorem. 6.1 and the atomicity of C; jmplies tha k'' ~ .k. Thus 
it suffice t-0 show that k1 - 3 :S: k". There a.re two cases accordln.g to the way Pi exit. the 
a.lterna e cons ruct in Lines 2·3 oi increa:s:e-oounter: 

Cas,e 1; p., exits the w ', ile loop. It must he hat one of the halting conditions of the whi e 
loop is false for Pi1. If Pi• and Pi a,re in the same group, i.e. 9i' == !Ji hen Pi will perform 
at mos one iteration of the while loop before Pi also •ees · he cor es-ponding condition · o be 
false.. If Pi' and Pi are not in the same group, i.e. g1, ¢; f/j hen p; will p.erform at most one 
itera:tion of th~ while loop before Pi sees th. first con.di ion to be false (by observing Ci- # J.. ). 
The claim follows. 

Case 2: Ps• return& from sync.hi. It follows that for all processes, T; = .L when Pi tenninate.s 
synchi. It follows from Theorem 6.5 that for all I 1E {O ...• n ~ l} he value of C1 a.t the 
end of cl .is -I. .. By Theorem 6.4 p, will exit synch; (C) aft,er performing at most 3n of its 
own steps after o/. It follows from th,e definition oi alternate that Pi will perform a.t most .3n 
teps in the while loop in Li.ne 2 of in cre.ase~co unter before synch, ( C) terminates. However 

ea.ch iteration of the while loop a.kes a;t least n steps, (since n registers ha.ve to be read). 

23 



Thus Pi will perform at most hree acdditional itera ion of 
t rrn..iuates. he da.im follows. 

while loop1 before synchj ( C) 

• 
This implie ha.t for ea.ch local counter, the value read by two differen processes differ 

at mos by 3. He.nee, the values us,ed by differ-en processe for he join coun ers c0 a.nd c0 

differ a.t ruos by 3n. Formally, we have: 

Lemma 6.8 uppose i~i E {O .... n - ·1 and g E {a. b}. A ume the value return d by 
fast-coUecti and fast-,colled ; calculate io cf and cj , respectively. Th n !·cf - 91 =S 3n . . 

\~e can. now prove that the algorithm ati fies the agreement proper ·y: 

Lemma 6.9 Q fast- approx.. r-et-ums y,; and fast- approx; return Y) , then IY; - Y; I $ t:. 

Proof: The general outline of he proof parallels hat of Lemma 5.2· however 1 som,e of the 
details ar,e different .. Fir t, he dJscrepanc between processes' view of the join c.oun en; migh 
be 3n; to compensate for hat we use bias with /6n. In addi ion we mu t allow for the 
poa:sibility oi using d.iff:eren va:lu.es from the sam · group (by applying em.ma .4). he deta.il 
follow. 

W present the proof fo:r the case where Pi and Pi are not in he same group,. withou los 
of generality assume g, :;;;: a and 9.i ;;;;; b. Th.e proof for 11.e case here p; and Pi a.re in the same 
g:roup follow from simila.r a.rgume:n sand i left to the rea.J:er. 

Assume hat he values computed by Pi based on 'fast-coUecti to be used ill Lines 3.4 of 
fast-n-.ap p rox are ( vf vt, c1', ct)· similar y I assume that the values computed by Pi based on 
fast-colledj to be used in Lines 3-4 oHast•rHtpprox a;re ( J vl ci c}). No e tha.t since P-i is in 

group a cf~ 0 and ·uf -#, J.: i.milady since Pi is in group, b, c} ~ 0 and a.nd v} ;fi . 
For an • process Pie denote "by ,r,: the· write b p.roces:s PJ: ·n Liae 1 of increase-counter (if it 

appears in n). Since Pi a.nd Pi decide 7ii and , i must appear in a-. Let Pi1 be such that ;r,, 
is tbe first rr1c in a . Assume1 wi.thou loss of generality that Pi• is in roup a. Intuitively. we 
assume tha the firs process to start he second phase oi the algorithm belongs · o p1 s group 
a. 

The code of the .aJgmith.m implies that 'Jtp precedes any calculation of ca. by Pi' for any 
Pi' in group b. ince ri, precedes 11:3, i follows that PJ' will always c.alcula e ca. ,I:. J.. Th.us 
cJ 2: 0 and he:nce fast-n-a,pprox; returns in Line 4 and vJ #:- J.. Also t:b:e a.bove implie ha: C" 
never incraases beyond 0. hu , ~ = 0 a.nd c;t E {l. O}. \ e separate the rest ,of the proof in o 
two ca.se ~ 

Case l: e~ = .L Then. fa,st·n~~ppro~ :returns vf in Ljne 3. From he code it follows ha.t 
cf~ ltifj6n/ £. By L~mma. 6. 1 cJ?:: lvfl6n/ · - 3n. bee c:i :;:: 0 = ·~ appl •ing Lemma 4.2· ( ) 
with m = 3n we get tha.t 

( I) 

24 



• .t\l o. Theorem 3.1 implie that Iv, - v; I $ e/12 .• ppl ·ing Lemma 4.4 with 6 = £/12 c.0 = cJ 1 

c1 - c~ v0 = v"' v 1 = v~ t•0 = v\l v1 - v¼ w 9'et t ha - J O J~ 0 3 1 P l - J o · 

lbias('vJ, vj, cJ c} t/6n) - bias( vr vj, ,e,. c}, ~/6n)I ~ 6e/ 2 = A / 2 . (2) 

From (1) and (2) i follows. ha. 

as needed. 

Case 2: ct ;;;;: 0 .. Thus fast~n.approx; re urns in Line . and vf .~ L '\i\ e have that min{ er, en = 
ct;;;; 0 and! min{c'J,c'1 = c} ==- O. Also, le? - c')I + le~ - ~I = lcl - cJI ::; 3n by Lemma 6 .. , 
. pplying Lemma. 4.3 with m. == 3n we get 

lbias( u.i v1 ,cf, ct r:'J6n) - bia,s( v;, vJ c;\ c,~ c:/6n )I :$ 3n • e/6n -;::. e/2 . (3) 

Also Theorems 3.1 and 3.10 imply that lvf - vJI S e/12 and lvt - v}I :5 i/12. By a.pp) ing, 
Lemm.a. 4.4 with 6 = ~/12 we ge 

Fmm (3) and (4) it follows tha. 

lbias(vf vf cf 1,c~ 1,t/6n) - blas(-vj v} Cj cj £/6n)r S £ . 

as needed .. 

We have: 

(4) 

• 

Theorem 6.1,0 Prooed.ure fast-n~.app,rox is a wo.it&free algorithm for the n&proce$~ approximate 
agreement problem whose time compl ~i.ty is O(log n). 

Proof~ Agree.men . follows from Lemma. 6.9. Va.lid.it follows immediately since the value 
r,eturned by wa·t-free-approx and w.ait-approx are in the ra.n.ge of the origin.al .inputs and the 
bias. function preserves this property (Lemma. 4.1 ). 

The al,goritlun is wait-free bec,a.us.e the fir~ alternative of eaaC,h alternation cons net and 
fast-collect a.r-e wait-free. 

Within 0(1) time aJl processes ftn.ish f'lrtoa2. hus. within 0(1) time all. processes star 
procedure increa:sc-co1mteir write to C,. and invoke synch .. By Theorem 6.6 wj hin O{log n) 'Lim 
each proces termi:na e sy ch. Thus , within O(log n ) time all processes exit incre-as~oount,er 
and in oke fast-collect, By Theorem. 6.3, all processes return from fast-colred within O(log n) 
time. Hen.ce, the total time complexity 1s O(log n). ■ 

25 



7 A logn Time Lower Bound 

In hi sect.ion we show that he log n dependency exhibited by t.he algori run of Th.eorem 6.10 is 
inherent: · he time complexity of any wa.itafree aJaori hm for n-process approximate agree:men 
is at least lo n. Together w· h Theorem 3.1 this resw hows ha. here are problems for whkh 
· a.it-free .algori runs take more ime {by an ft (logn) factor) than nou~wai.t-free aJgori hms .. 

In the est of thi ection, we as ume that each process ha.s on]y one r,egis er to which it 
can write. ince the s1ze of regi tiers is not r trict-ed and ince only one process ma.y w:d e o 
ea.C:h register. her-e is no los of aenerality in this assumption. Let .Ri_ be the register to which 
Pi writes. · ,or a. coufigura.tfon C and a. p ocess Pi let t(Pi C) be th pair consi ing of th, 
locals ate o p, and the alue of Ri in C i.e. si(p; C) - ( tat {Pi C) ·al(Ri, C)) .. 

The ynchronized .chedu{e is the schedule in which processes ta.ke s epiS in round-robin 
order starting with Po essen tally operating sy chronously. The ·equence of r r:ounds in the 
round-robin order is deno • d qr• For a.ny c.on:figura. ion C the cor:respondi g . ynchronized 
ex-ecrdion from C is uniquely determined by the algorithm. · ote that this is a. 0-ad.m.is ible 
e ecu ion. 

'Ii e now define · he set of processes · hat could have infiu.enced Pis sta.te a;t tim.e r in the 
synchronized execution from a configuration C. Let C be a config ration· by induction on 
:r ~ 0 define · he se INF(pi, r C), for every : E {O ... n. -1} usjng the following .ules: 

l. r = 0: / F(Pi 1 r, C) = {p;}, for every i E. {O, •.. n = l}. 

2. r ~ 1: if Pis rth tep in (C ur) is a. read of R; hen I F(Pi r,C) = i f F(Pi r-1,C)u 
I F(Pi r-1. C). If p/s rth tep is a write (to /4) then l F(pi r,.C) = I F(pi r - 1 C). 

The ·nex:t lemma formalizes the in uition tha.t I rp includes aD the processes hat can influence 
p•s ta.te up to ime r. 

Lemma 7.1 Let C1. and Ci be two configuration , let Pi be any process and let r ~ O. If 
st(pj 01) = st(pj C2) for aU Pi E INF(pi r, Ci), then st(pi, C1a1") = t ,, C~or ). 

Proof: The prooi is by induction on r. The base case t = 0 is trivial since ia ·s case 
oo = >. INF pi O Co) :;: {p,} and he claim follows from the .assum.p ions. 

To prove the induction step assume the claim ho1ds for r - 1. H Pis rth step is a. wri e 
then the claim follows immediate y from the induction liypoth.esis since I 1F(Pi r - 11, C1) = 
l F(pi,T C1), 

If Pi :rth step is a read from R; tnen l F(p; r - 1, C ) ~ I F(Pi, r C1). The in
duction hypothesis implies that st(Pi C 1orr-1) ~ .st(pj C2u1'- d· By the sa.me reasoning 
st(pi Ciu -1) = t(pi, O~o-,._1 ). 'Thus, t(pi C1(J,.) = t(pi C:ae1,. ), as needed. ■ 

26 



Vo, e can now prove: 

Theorem 7.2 Any wait-fr-ee algorithm for the n-proces approximate agreement pf"oblem ha . 
time complerity at lea t log n. 

Proof: Assu e that A is a. wait-free appro ·mate agreem n algori hm. We prov a. sllah ]y 

stronger daim: there exists a. 0-admis.sihl execu io a in whkh no proces · decides before 
time log ii. Suppose by wa.y of contra.die ion, that in all O~a.dm_issible executions some process 
decides before titne log n. 

Fix so , e E < l. Let a be he infinite synchronized schedule i.e . the li.ntlt of t7.,,., Consider 
he execution of A under u from he initial configuration Co where process,e s art with inputs 

(0, ... , 0}. et t be the time associated with the fus decision e ent i.n ( Co, o')- without loss of 
generality let Po be the process assoda.ted wi h his event. By assumption t < log n. By the 
validi . prope y Po must decide on O since all processes sta.r with ,0. ote hat by indu,ction 
on r (I "F(p;, r C)I :; 2" for every configuration C r ~. 0 and i e {O ... n. - l}. foce 
t < log n it mus be that lflVF(Po T Co)I s 2T < n. Thus tllere exis some process that i 
· ot in l (Po· • C0); without loss of generality assume Pn-I ¢ IF rF(Po T, Co) . 

In uitjve Y~ o complete the proof, we create an alternative exe.c ion in whkh Pn-1 sta t 
ea.rly with inpu 11 ro:ns on its own and thus .mus ev•entuall decide on 1. We then let 
the est of the ptocesset; execute as if they are in he synchronized execution from Co and use 
Lemma. 7.1 o show tha.t pr,ocess PIJ, still •decides on O. whkh is a. contradic ion. o the agreemen 
proper y ince £ < 1. 

More pr,ecisely apply , an infinite schedule oon.si ting of st•eps of Pn-l only. to the i "tial 
con.figura ion C '2 where proce.s es start with inputs { 1 ... , 1). The resul ing, xecu ion ( C 2., 
is (n - l)~adm·ssible a.nd thus, since A (n - !)-solve the app•rox.ima.te agreement problem, 
and since p -l is nonfaulty in -- there exits a fini e prefix r' of r in. which Pn-l decides. By 
validity Pn.-1 decides on 1. · ow a.pply T

1 to the initial confi uration. C 1 where all processes 
but Pn-1 s art with input O and Pn--l sta.rts wi h input 1. By induc ion on the prefixes of r1 

it follows that the t(Pn- 1 C1 r') ~ stCPn-1, Czr'). Thus Pn-i decides on 1 .in C1 r. Since Pn.-l 
ca, wri e only to R-n-1 it follows that for all processes Pi ? .Pn-l st, Pj Crr :::: st(pj Co). By 
Lemma .1 tate(po .C1r'e1T) = state(p0 CocrT). Thus Po, decides on O in C1T'qT, and Pn-1 

decides 1 which is a contradiction o ag,rooment .since e < 1. ■ 

8 A 1.radeofr Between Work and Time 

We now consl.der the performance of wait-free .a]gorithms when failures occur. A drawback 
of the fast a:lgor'·thms we· have presented in h.is pa.p~r is that if a failure d.()es occur heo 
the rema.lning p·rocesses will have to take many teps before haJ: ing. ~re show that this 
phenomenon is u.na.voida.bie. Roughly peaking we prove th.at. if an algorithm terminates 

27 



in a small number of eps in e,,;ecution . where failures do occur, hen it is slow in normal 
execu ion . b. he rest of bjs section we restrk our a. tention to he 2 proc sses ca.se. 

Recall that the work per.formed b • an a.lgorj thm is define to be he maximum over all 
execu ion ; of h.e otal number of operations. performed by all processes before deciding. The 
Iower bound presented here is slightly stronger-it bounds the number oi operation a single 
process performs before decidina when running on its own. Clearly, hls al o give-S a. lower 
bound on the work. 

Le k -2:: l be an integer, . n algorithm is k-bounded ii from any reach:a.ble con.fi;,o:ura:tion, a. 
proce-ss that ex.ecutes k consecutive steps on its own mus decide. Fix a k-bo nded wait-fee 
algorithm for approximate agreement; all definitio and lemmas in the re-st of his s:,e,c ion 
are wj h. :respec to ..4. For each proces-s Pi a.nd a. confi uration C reachable in an execution 
of A, define pn /JC) he pre/ere-nee of Pi in C, to be he value on wW.ch Pi decides in he 
execu ion fragmen· star ing from C in_ which it :runs aJone until it decides. 

A finite schedule is a. block if it consists of a positive number oi events by Po followed b\' 
one ev,ent by p1 or rice versa. 

Lernma 8.1 Let ,fJ' b a finite chedule, and .let Co be an initial configumtion. Le C = Ca(!, 
There e.zists a finite block ch,edule q1 uch that 

Pro,of= The p1oof c.ons:idei:: , the tree of all executioa fra.gment-s of ime :J. froni C. A case 
analy is according to the y-pes oi steps taken, similar to the one in [33) is 1l ·. d to how 
tha:t it cannot be that all the pai rs ,of prefer~nces a.ssoda.ted wi.th leaves of hi tree a.re dose 
tog,e her. The details follow. 

Let r0 = Ok i.e. · he schedule consisting of k events of pg. imilarly Je 7'\ = 1 k. Le 
(C,To) ::::; C,C1 ... C1r . and, C T1) =CC{, ... Ct. ·or any l 1 ~ l ~ k denote Di= C1l, 
Le., the configuration that results from applying an event oi p1 to c,. Siinila.:dy for any l 
1 ~ l S k denote Df :: C[l. Denote Vb - pref.0• D1), i = prefl(Dt) % ; pref 0 (DD a:nd 
u~ - prefz ( DD 

ince A is k-bounde.d it nnist be that .Po decides in C,-0· by definition it must decide o 
pr:ef0(C). Similarly Pi decides on pn / 1(0 in C,-1 , We show that for all l, 1 S l < k ei he:r 
vb - v~+l or 11{ = v~+l. here a.re four cases depeadi.ng on the type of operation ta.ken in Po s 
step fro , C, to C1+i and in p1 's step !rom C1 to D,: 

L Po writes and Pi writes: commnta.th•ity implies tha A = vb+1
. 

2. Po reads a.nd Pi reads: com.mu a.tivity implies that ~& = vb+l. 

3. Po wdtes and .Pl reads: vi = tii I since · he state of Po is he same in D10 and Dz+1. 

2 



4. Po reads a.nd Pl wiites: tt( = i•{+l. since the state of p1 is ·he ame in D1l and D1+i• 

By symmetric argument we can show that for all .l 1 < l < k ei her tto = u~41 or "i ::::;;. u{+1 

In. a. similar manner e show that either 11{ = ii1 or vi == ua by case analy i dependin~ on 
the type of operat"on ta.ken in po step from C o C1 and in Pi s ep irom C to ct: 

. Po ,vrites and P1 write.s.: commuta:tivit implie ha. lJb = :v~-H 

2. po reads a:ad Pl reads: oommutati ity implies lia:t -v& = b 1 . 

3. p0 writes a.nd .Pt read : Vb, ;;:· v~ 1 since the sta: e ,of Po ls the ·same in D1 and Di. 
4. Po reads and p1 writes: v~ = v~ 1 s.ince he state of p1 is the same in D and D~. 

Thus: either there exists some/ such that lvli- vii~ nip-re/o(C) = pre/1(C )I or there exists 
some l such that I ~t - U\ j ~ -h lpref 0( C) - pn f 1 ( C) J. In · he first case h daim follows by 
takln~ u' :;;;; O l in the second case, he da.im follow by taking ' = I 10. ■ 

ote, tha. h.e validity cond.i lon implies tha.t if Pi s input in a.n initial configura.tjon C 1s Vi 

then pref;.( C) ;;;:; vi. tarting w.ith this fact and applyin Lemma .1 i era.t1vcly, we can bound 
the rate at whlch a. ·-bounded algorithm con:verges. '\i e get: 

Theo,rem 8.2 Let A rte a k-bounded wa·it~Jree algorithm for appro.i-imate agreement betwee1l. 
proce es. Then ther;e e.xi ts an execution of A wher processe tart with inputs (x.o :t1 ) in 

whi-eh the Ume complex-ity is at least 0(1og1,1: j~--~i I). 

Proof: Let C be an. initial con:figu:ra.tion in which process:es have. input {:to; x1). \ e con~ 
struct inductively a. scehdule (Tl such that 0-1 ls a s.eqroen.ce oi I blocks and for C, = CC11 

This is done by a.pplyll\g Lemma. .1. We h.a.ve th.at time(O't) = I, sinc,e t11 consists 0£ I blo,cks. 
The · alidlt concdi iou implies that pre/1(C) = Zi . . hus , lpre/0(C) prefi(C)I = lzo-x1 I- The 
dai.m follows by noticing hat i cannot be that both Po and p1 ha.ve decided in a. configuration 
D if lpre/o(D)- pref ,i(D)I > !. ■ 

Remark 8.1 The case analysis in the proof of Lemma. .1 c.a.n. be extended to ha dle multi. 
writer m ti-reader registers· thus the above tra.deoff a.pplie.s also to algori hms th.at u e multi
writer mul i~r-eader atomic registers. 

29 



91 Properties of the B ias Function 

In · hls section the intere ed reader ma find the ong postponed proof: of lemma 4. l hrough 4.4. 

We begin wi h. the ra. her strai htforward proof of Lemma 4.1. 

Lemma 4. _ L t c0 c1 be nonnegati -e integer , and v0 u1 £ be rea.l number with £ > 0. Th n 
bias v0 i,• \ .c0 

1 c 1 £) E r1rmge( { v0 • ti l } ) . 

Proof: , e y;;; bias v0;v1 . c0 ,c1 , ) . The claim ls trivial if y is cakula ed in Line 1. Suppose 
y i; c.a.lcufated in Line 2. (The cas,e 1,1,•h.ere y l cakulate,d in Line 3 is symmetric.) Then 
y = ti1 

1Ji+i1
11(lv11 - mln{c1t lv11} ). If the min is attained in th:e s.i;:cond erm. then y;: v1 

and he claim follows. o assume c1t: < v1, soy = u1 1:1°-v; (lv1! c1s::). Assume v1 ~ tr0• 

(A s mmetrk a.rgumen a.pplle:s when v1 < v0. ) Then v0 ~ -v 1 ~ 0 and clearly y $ 1,1. inee 

I TJ
0
-v

1 ( lull - c1e:) I. < u1 - ti0 it follows hat ~- > v0 ■ j1}ii j lui j I - :, - • 

The followin · is the proof of Lemma 4.2. 

Lemma 4.2 Let rfJ c1 be nonnegative integers and v0 v1 £ m be real numbers £. > 0 m ~ 0. 

(1} Suppose c1 > cfJ and lv11/£ - m::; c1• Then lbias(v0 u1 cO, .c:1 e)- v11 S mt. 

(2) Suppos c'1 ~ ,c ond lv01/e - m :$ c.O. Then lb,ias(t1°1,v1 c0 .c1 £)- v01 :$ m£ . 

P roof~ \~:e pre.sent the proof only for (2) tne prooi for ( 1) follows from symmetrk arguments. 
Let -y = b]as(u0

1 v1 c0 ct 1,e). If y is ,cakul.ated. in Line 1 of bias then y = 0 and. v0 = 0 and h 
claim follows. Renee si:nce r.P ~ c1 i follows tha- y is ca;kula.ted in Line 3 of biasi i.e. 

- · o vl - v'o ( ' ol . { o I ol .}) 
Y - v + 11.lol + ilvll 11.' - mm e €; v . 

If the min a.tea.ins its value in tb.e second erm then. y:::;; u0
1 and the claim follows .. Otherwise, 

c°£ :::; lv0j · bus 

■ 

30 



ex is the proof of Lemma 4.3 . 

Lemma 4 ,3, Let c8 cA, c~ c1 be n onnegative integer.s, and u0 
1 'Ul., e, m be real m.unbers e: > 0 

and m ~ 0. uppo min{c8 cli} ::::; min{c~.cl} = Cl and lc8 - YI ' I~~ - cf I $ m. Th n 

lbias(v0 , v1
, cg cA e) - bias( 0 v1 c~ ct i)I ~· nu: . 

Proof: Le Yo :::; bias(v0 , v1 cg· ~ i) and Yt - b,ias(v0 1;1 c~ c{ e). 

If i·0 = u1 - 0 hen both Yo and. Y1 a~ ,calcula:ted in Line of bias .e. Yo ::; Yt = 0 and 
he claim follows .. 

Mow assume y0 is cakufa;ted in Line 2 of bias while y1 is ca.le, a ed m Line 3 Qf bia.s 
(the reverse case is symmetric). Thus cg < ci while cf ~ c~. Thus by assumption cg = 
cl = 0. ince lc8 - cf I - lc6 - ell $ m it follows that lc~'I + lcAI = 4 + cA $ m. Thu -
min{c~ tv0lJc:} ' min{c~. lv1I/£} $ m. o mj {c~e li.•01} + m.in{c~f 1• lt11I} < me·. We have 

vO - vl 11 - . {· 1 I 11}) o til - vo ( 1·. ol . . { o I . ol} 
Yo= ti

1 1vo1 + 1v1r(lv- - mln Coe V and Y1 == + !vOj + lvl! I) - nun C1€ tr . • 

hu 

I¼_, o - ul I i 1 tio - i,l (I 11 . . . { l I 11 }) o vl - vO (I 01 - . { o ' 01})1 ,, :, - iu + lvol+lv I v -nun Co£ v ,-v - lvol+lvII v -nun c1ei1t' . 

0 1 0 1 

= lv1 - vo + !vvol ~ ~1:.11j'(lvol + lvl l) - Iv:,,·~ i111I (min{coe, !till} mirl.{c~£ !vol})! 

liiO-vll l • {1 11 r} ··{O lll'l}I 
- !vol ' Ji,ll mm coc:, v I + mm Cif v 

< I mln{cae lv11} + mm{c~e lv0nl - mlo{cAe lv11} + min{c~£ ltPI} :5 me 

as needed. 

Now assume tba."t both Yo and y1 a:re ca.kula.ted in Line 2 oi bias ( the case wliere Yo• and y1 
are calculated in Line 3 of bias ls s:, mm.et rk) Le. 

l 1.10-vl (1 ]I . { 1 111}) r tio-v1 (I i i . { 1 111}) 
Yo= v + [vOI + lvll ti - nun c0t aad Yt. = v + !val _ fvl I v - mm c1e v . 

If for Yo, h.e min is attained in the second ·term then ctt ~ lv1 I an,d y0 = 111· • since lcb - c}I :S m 
it follows t,ha.t cl ~ I ti11/e:- m. Be-ca.use !h is ·calculated in Li e 2 c~ < ,Cf a.nd he claim follows 
from Lemma 4.2 (1 . A similar argument applies if for Yi he min is a.tta.ine.d in the second 
term. O· assume na: for both Yo and y1 the min is atta.i.n.ed in the first · erm. Thus 

3 



as nee ,ed. 

In he proof of he next lemma. we use the following two facts: 

Claim 9.1 If .x y. ;r;', y' a~ real numb rs and for som o. jx - x'I ~ fJ and IY - y'I 5 61 then 

I 'i ?T1) - ,.- ,/- :r;' I < 3o. : + 1,1 ;i.: il l -

\• e prove this claim b first howing that 1~(r1-r~ - z'{ll' - r') I < 3t'S using calculus then - z~ %;JJJ -
handling the absolute values by case analysis. 

Claim 9.2 Ifz '!l -;r;1,y' are real numbers, and.for some 6, Ix - x'I :S 6 and IY- v'I ~ 5, then 

I l(Y~1I 1' 11'1-~\I < 2s 
.1: +h, - :• 1st- -- mlntl~r+h•i,1=•1,_",,n · 

We prove his claim by straigh forward cakula. jons and a. case analysis. Finally . e can 
•OW prove Lemma. 4 .4. 

Lemma 4.4 Ltd c0' c1 be no,nnegative integers, and v8 vJ~ vr vt £ 0 be real numbers with 
E: > 0 6 ~ O. Suppose lv8- v~I ~ c and ltJJ - H ~ 6. Then 

jbias(ti8 vJ c0 c1 c) - bias(vr, tJ}, c0 c1 e)l:; 60 . 

Proof; Let Yo :;;;;. bias(v81 v-5 c.0 c1 .s),. and Y1 = bias(vi ul, rP c1 e) . If v8 = vJ = 0 hen 
Yo= 0. Thus lvrl ::;; 8 and lul I :f 6. So from Lemma. .1 i follows that 11111 ~·.sand. the claim 
follows . The case vf = uf = 0 follow from symmetric arguments. So assum.e at least one of 
v8 vJ is nonzero ,and sim.llaily for at least ,one of »r trf. 

Assume that c0 < c1 , i .. e .. Vo and y1 ate cakula td in Line 2. (The other case where c1 :$ c0 

and Yo .and :Yi a.re calculated. m Line 3 is synunetrk.) Then 

First assume the min for Yo is attained in he. second term· then :Yo : vJ. h this case if 
the min for Y1 is also a.ttamed in be· second term, then. y1 = vl and the claim. follows. On 
the other hand, suppose the min for y1 ·s attained in he first term. Since t,he min for Yo is 

32 



at ained in he econd term ]t 2! lvJI ~ Jul i 6 . • ppl ing Lemma. 4.2 (1) wi h m = 6/£ we 
g hat IY1 - v1 I S 6. ince [t1J - vi I $ we ha e Jyo - !11 I :f 2 . 

·ow assume tha in both case he mini atta;ined in the first term. In particular c1e :S !vll 
a.nd c1e :$ jtrJI. We have 

h,o - 11 I 

by · laim 9.11 

• 
10 Di cussion and Further Research 

For approximate a r~ment,. the a:oswer to the question whether a.it-free algo:ri hms are fas 
is not binary rather it is qua.a. itative: we .have present,ed a relatively fast O(?ogn) t ime, 
wait-free algorithm for n-pro-cess approximate agreement. On. tb.e other ha.nd log n is a lo er 

01rnd on the tune ,complexit of a.ny wait-free approximate agreement algorithm, and there 
exists a.n 0(1) time non-wait-free algorithm. 

sing he emulators of [5] 1 our algori hms ca.n. be transla:ted into algori h.ms tha.t work 
in message-passin~ systems. The a1go:rithm.s have the sa.me time complexl y (in complete 
networ s and are resilient to he failure of a. majority of the processes. 

There a.re many wa,ys in whlc:h our work can be extended. An interesting direction .is to 
consider the impact on our results of using othe!' sha.red memory prinritil,res. or example 
if pow,erful Read-Modify-Write regjsters a.re us,ed then a c.onstant time waJ.t-f:ree approxim<lite 
agreement aJgor.itbm ca.n be devised. "\>Vhat happens ii multi-writer multi-:reade · registers are 
used? The ex;istence of faste.r wait-free algorithms using these priml ives will lmply a. fower 
bound on the time compl,e-zity (in normal execu ioIIS} of an:y imp.lementa:tion of multi-writer 
registers from ·ingle-writer regis:t.e:rs. 

33 



Another avenue of research is to see whe her · he echniques pre e:nted in this paper, both 
for algori hms and lower bound ca.n be applied to other problems. \• e believe, for xrunple. 
ha · he 0 (1) time algorihm for 2-p:rocess ,approx.ima. e ag eement can be gene'rali.zed to any 

d dsion problem of size 2 using the characteriza ion resul of [' J. I i in erest ing to explore 
whether imilar re uJts can be proved for problems that re.quire .rep ea. ed coordination ( e.g., 
l•excluslon). 

Finally there remains the fwidamen.tal unanswered ques ion rai,s,ed by his work: an wait
free (liighly resilient computa.Jon. be performed at the price of no more han a loga.ri hmic 
s!owd~wn? Ev,en more strongl 1 are there O(log n time wait-fr,e algorithm for all prob! ms 
that have wait-free solutions" 

Following a pnel.imimuy version of 01J1r work fust steps were ma-de towards answe,ring thi 
ques ioa in the con:text of randomized computation [ 6]. Based on the altema.ted-interlea.ving 
method p,resen.ted in Section. 6.2 i is hown that any decisiori problem ba.t has a wait-free 
or expected wa.i -free10 solution algorjthm. has a.n. expected wa.it~free algor·ithm with the same 
worst case ime complexity that takes on]y O log n) expected time11 in faul -free executions. 
Howelier. the above question itseJf is still far from being answered. 

Acknowledgement ·: 

We would like fo, thank Jennifer \.Velch for careful reading of an earlier version of the· paper 
and for many helpful comments. Thanks a.re also due to C~ nthia Dwork faurke Herlihy 
Mike S a:.ks Ma.re nit and Rea.ther Woll for hel. pful cliseussions on the topk of this paper. 

10 An expeet,ed wait-free a!:goritbm is a 1andomiz.ed a.lgorithrn t!Hi:t ill only expected. -ather h.u. gull.f,uteed, 
to tennm ted 'Ulin a fi.nite IUlmber of stepi,. 

11 Tltis is opiima.l by a. straigh forwimi ext.elision of our fower hou d 'ro the case ,o:£ randomized. compu.ta.tion 
(see [46]). 

34 



References 

1] Y. A.:Iek H. Attiya. D. Dolev . Gafni, l\.L . erritt a.nd N. Sha.vit, Atomic Snapshots of 
Sha.red~ femory,"' Proc. g1h A.CM Symp. on Prindple of Distrib~ted Comp1:Htng Quebec
City ugust 1990 pp. 1-14. 

[2] J, Anderson Composite Registers. Proe. 9th C. 1 Svmp. on Principle of Distribu ed 
Computing, Quebec-City Augu t 1990 pp. 15-30 .. 

(3] E. A.rjoma.ndi M. Fischer and N. Lynch "Efficieric of Synchronous Vers • synchronous 
Distribu ed Systems Journal of the ACM , ol. 30 ro. 3 (19 3) pp. 449-456. 

[4] J. Asp.nes and Jr: • Herlihy, Fas Ran.doriz,ed consensus Using Shared Memory.' Journal 
of Algorithms Vol. 11 pp. 441- 461 September 1990. 

[5] H. Att1 •a A. Bar- oy and D. Dolev, ' Sharing l lemory Robustly 1 {,essa •e-Passin 
y tems 9th Annual ACM Symposhun on Principle of Distributed Compt1 ing (PODC) 

Quebec-Ci y August 1990, pp. 363-376. 

Expanded version: Technical ~·[emo MIT/LC /T. -423, Laboratory for Computer ci
enoe MIT, February 1990. 

[6] H. At iya. and . Lynch 'Ti.me Bounds fo.r !teal-Time Process Cant ol in he Presence of 
iming Uncertain y in proceedings of the 10th IEEE Real-Time ystems Symposium 
anta onka December 19 9 pp. 268-284. 

E:q:1anded version: echnicaJ. Memo MlT/LCS/ T 1-403 La.bora.tory for Computer Sci
ence, ifl July 19 9. 

(7] . . Auiya1 N. Lynch a.nd . Sha:vi 'Are Walt-Free Algo,rithms Fast? 31st Anntial 
Sympo Ium on the Founda.tion of Compu.ter .Science, St. Louis October 1990. 

· ] 0. Bi ,an, S . . foran and .. Za.ks "A Combina.to ·a1_ Cha.ra.c:te:rization oft e Distributed 
.asks i.vhich a.re Solvable m the P11e:sence of One Faulty Processor · Journal of Algorithms 

Vol. 11. pp. 4\20-440 eptember 1990. 

['9] B. Coan and C. Dwork, · Simnltall.eity is Harder than Agr~me.nt Proc. 5th IEEE Sym
posium on Reliability in Distributed Softwa.re and Databa e Sust.f;ms pp. 1 1-150t 19 6. 

[10] C. Dwork and D. Skeen The Inherent Cost of onblocldng Commitment,' Proc. 2nd 
ACM Symp. on Principles of Distributed Computing 19 3, pp. 1-11. 

[11] S. Coo C. Dwork and R. Reischuk '"'Upper and Lower Time Bounds for Parallel R.~\.f 
Without Simulta.neous Writes SIAM J. Computing, ol. 15 o. lr 19 6 . pp. 87-98. 

[12] R.. Cole and O. Zajicek "The APRAM: Incorporatfag Asynchrony into the PRAM mode] 
Ptoc. 18t ACM Symp. on Parallel Algorithms and ArchitechJn!S 19 9 pp. 169-178. 

35 



[13] R. Co!e and 0. Z,a.jiook,, The E:.i:pected dvan a ~ of A . .synchron · Proc. 2nd ACl11f · ymp. 
on Parallel A lgoriihm and A rchitect.ur s , 1990, pp. 5-94. 

[1 J D. Dolev · . Gafni and N. ha.\1it oward a on•. ,om.k Era: f-E...::clu ion as a Te 
Case. Proc. 20th CJ,[ Symp. on ~he Theory of Computing 19 pp. - 92 .. 

[15] D. Dolev. N. Lynch S. Pinter. E. Stark and\ ., eihl 'Reaching Approximate Agreement 
in the PFesenc--e· of Faul s, Journal of th . CM, oL 33 o. 3 19 6. pp. 499- 5,16. 

flo] D. Dole,., R.. Re"schuk a.nd B. R. trong u ventual ls a...rlie:r Than lmmediat • Proc. 
9rd IEEE Symp. on Foundation of Computer ci nee, 19 2 pp. 196-203. 

[17] D. Dolev C. Dwork and L. tockmeyer · On the Minimal ynchrony ·eeded for Di -
rib1f ed onsen u ; J'ournal of the AC 1 Vol. 34 · o. 1 (January 9 ) pp. 77- 97. 

[l ] C. Ou,·ork and Y. Moses 'Knowledge and Comm,on Knowledge in a. B zantine . , n:vfron
ment: Gtash Failures, to a.ppear in Information and Comptitation. 

[ 9] A. Fekete Asymptotically Optimal Algorithms for. pp:mximat.e Agreement, Proc. Sth 
ACM Sgmp. on Principles of Di tribute.d Compu ing 19 6 pp. ~3- 7. 

[20] A. Feke e, · A ynchronous. pproxima,te Agreement ' Pr-oc. 6th AC\f ymp. on Principle 
of Distributed Computing 9 - pp. 64- 76. 

(21] . i. Fis.cher . Lynch and M. Paterson Impossibility of Distributed Consensu ·, with O ~ 
Faulty Processor Journal of the ACM, ol. 321 o. 2 (19 S), pp. 374- 3 2. 

{22] P. Gibbons,, Towards Better ha.red femory Progiamming Model ,'' Proc. 1st AC.{ 
ymp. on. Parallel A.lgorithm and Architectures, 9 9 pp. 169-17 . 

[23] M. P. Herlihy lmp-ossibility and • nivenality Results for . ait-Free yn.ch.ronlzation 
Proc. 7th CM Symp, on Principles of Distributed Computing l9i · , pp. 276-290. 

[24}, P. Ka.:nella.kis a.nd A. Shvartsman Efficient Pa.rall,el .Algorithms can be Ma.de Robust, 
Proc. 8th A CM S-ymp. on Prindp·les of Distributed Computin,g, 19 9 pp. 211-221. 

[25] z. Kedem K. Palem and P. pirakis, 'Efficient Robust Paralle] Compu· at.ions Proc. 
t2nd A.CM Symp. on Theory of Comp~ting 19,90 pp. 13 -14 .. 

26] L. La.mp,or "The ynchronization ,of Independent Processes A.eta [nfomiatica, · oL 7, 
No, l ( 97'6) pp. 1 S--:34. 

[27] L. Lamport, Proving the Correctness of Multiprocess P , ograms " IEEE Tran actions on 
oftware Engineering Vol. SE-3 r,o. 2 (March 1977) pp. 125-14.3. 

[28) L. Lampor On Interpr-ocess Com.munka. ion. Part I: Ba.sic Formalism, D-i tributed 
Computing 1 2 9·861 1 5. 

36 



[29] L. la.mport On In. erprocess Communjcation. Pa.rt ll: Algori h:ms .,, Distributed Com
puting 1 2 19 6 pp. 6-101. 

[30) L. Lampor R. hosta:.k and IvL Pease, ''The Byzantine Generals Problem. A.C Tra -
actions on P.rogr-ammirtg Language and ystem~ J \OJ. 4,. o. 3 (July 19 2) 1 pp. 3 2-401. 

[31] B. Lampson. HJ ts for Computer S .stem D jgn. in Prtoc. 9th ACM Symposium on 
Operating $y terns Principles 19 3 pp. 33- . 

(32] • L Li J. Tromp and P. .1.B. jta;nyi 'How to hare Concurrent VI-a.it- ree a.riables, 
ICALP 19 9. Expanded version: Report C -R.8916, \ Ii Amsterdam, April 19 9. 

{33] I. Lou.i. a,od H. Abu- mara., · . femory Requirement for Aureemen .-mong 
As nch.ronous Processes Advance in Computing Re!iearch \ oL ' JAI Press, 
163-1 3. 

nrelia.ble 
c. 19 7 

[34) •. Lynch and M. Fiscbe , On De crjbmg he Behavior and ImpLementation of Distributed 
Systems, Theoretical Computer Scienc~ ol. 13 · o. 1 (J.anua.i- 19 l) pp. 17-43. 

[35] •.. Lynch and K. Goldman Lecture note for 6. 52. MI /LCS/RS *5 Laboratory for 
Computer cience . MlT, 19 9. 

[36] S. N ahaney and F. Schneider, Inexact Agreement: . ccuracy Precis.ion an GracefnJ 
Degra..da: ion,' Proc. ,tth ACM •Ymp. on Principle of Distributed Computing 1985, pp. 
23 -249. 

[r] C. a.rtel A .. Pa.rk and R. Subramonia.n., "'Optimal • yuchronou AJgorithms for Shared 
Memory Parallel Compu · ers, Technical Report C E- 9-8, Division of Compute, d nee 
University o{ Califomia Davi July 19 9. 

[3 ] C. l fartcl R. Subramanian and A. Park I ynch.ronous PRAMs are (Almost ) as Good 
as ynchronou PRAMs, Proc. 8Jst IEEE Symp .. on Foundations of Computer Science 
t990! pp. 590--599'. 

[39) . Merritt F. Modngno and •. Tuttle Time ConstraJn.ed utoma &; ma:nuscript. 
ove:m ber 19 8. 

[40] Y. 1foses and M .. Tut le Pr~amming Simultaneous Actions using Common Knowl~ 
ed,ge lgoritmica VoL 3 19 pp. 121- 169. 

[ 1 N.. ishimma. 1 Asynchronous hared Memory Parallel. Computa. io.n Proc. 2nd ACM 
ymp. on Parallel Algorithms and Architectures, pp. 6-84, 1990. 

[42] G. Peterson Coacunen . Reading While Writing ACM Transactions on Programming 
LangtJages and Systems ol. 5 o. 1 ·· January 1'983) pp. 46-55. 

[43] G. Peterson and J. B-urns ~concurrent Reading. \<Vhile Writing II : The Multig\Nriter 
a.se," Proc. 28th IEEE ymp. on Foundations of Computer Science 1987 pp. 383-3.92 .. 

37 



[44] G. Peterson and 1'.L .Fische:r "Economical · olu ion for the· Critical ec ion Problem in a 
Di tributed ystem Proc. 9th AClvl Symp. on Theo,-.y of Computing 197., pp. 91- 9 . 

[ 5] R. chaffer On he Correc nes of Atomic Multi~\ i:i er Riegisters MIT CS/T f-364 
June 19 

[46) M. aks . Shavit and H. ~oil Optimal Time Randomized Con nsus - Making Re-
sil.ien Al.go ithms Fast in Practice ' Proc. cf the 2nd AC { Sympo ium on Discrete A.Igo~ 
rithms pp. 351-3·62 January 1991. 

(47] D . . keen Crash Recover in a Distributed Da abase Sys em" . femorandnm. o. 
UCB/ERL M82/ 45, Electronics llesearcb Laboratory Berkeley fay 19 2. 

[4 ] P. i anyi and. B. Awerbuch, ''Atomic Shared Regis er Access by Asynchronous Hard
waFe." Proc. 27th IEEE ymp. on Foundations of Computer Science pp. 233-243 19 6. 

[49) . Wyllie . The Comp.laity of P.araUel Compufotion, Ph.D. thesis. Cornell ' nlver ity, 
August 1979. Technical Report TR -9.3 7, Depanmen of Computer c.i.ence. 

3 


