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Abstract 

It has become apparent that the achieved performance of multiprocessors is 
heavily dependent upon the quality of the available compilers. In this paper we 
are concerned with compile-time techniques that can be used to achieve better 
performance by improving cache utilization. Specifically, we investigate the prob
lem of assigning data chunks to memory in a way that will minimize collisions in 
direct-mapped multiprocessor caches. We show that while this problem is com
putationally intractable, there are interesting special cases that can be solved 
in polynomial time. We also present several techniques that can be used when 
conflict-free assignment is not possible, or when finding a conflict-free assignment 
is computationally infeasible. These techniques include uniform decaching, which 
involves not caching specific data blocks, and data replication, which involves 
making multiple copies of read-only data. Finally, we present a memory assign
ment technique, grey coloring, that reduces latency in the presence of collisions 
by distributing cache misses among processors in a way that minimizes the total 
number of cache misses in any specific cache. 

Keywords: multiprocessors, compilers, cache coherence, direct-mapped caches, 
data partitioning, graph-coloring. 
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1 Introduction 

Multiprocessors that support the shared-memory programming model provide the abstrac
tion of a single coherent memory that is equally easily and equally efficiently accessible by 
multiple processors. Processors communicate with each other by reading and writing the com
mon memory. Typically, the shared-memory abstraction is implemented by a large amount 
of physical memory, accessed through a network. In bus-based machines, the memory is 
implemented as a single module accessed over the bus, while in most large-scale machines 
the memory is physically distributed among all the processing nodes. However, virtually all 
machines that support the shared-memory programming abstraction provide local caches at 
each processor [18, 23, 19, 13, 16, 2). Caches automatically replicate memory locations close 
to the processor and avoid expensive network traversals for most memory accesses. 

The existence of caches does not change the memory abstraction. The hardware is re
sponsible for maintaining the illusion that all reads and writes take place directly to main 
memory. This illusion is called cache transparency. Maintaining it involves detecting and 
handling attempts to read or write from a location not contained in the cache. Such at
tempts are called misses. When a miss occurs, the hardware reads a line from main memory 
into the cache. A line typically contains four or eight consecutive words of main memory. 

Caches can be either fully associative, direct-mapped, or n-way set associative. They 
differ in the way in which the hardware decides which (if any) cache entry corresponds to a 
particular location in the shared memory. In an associative cache, tag bits are associated with 
each entry. These bits indicate which part of main memory the entry corresponds to. When 
a processor attempts to access a location in main memory the hardware checks all the tag 
fields. In a fully associative cache, these fields are all checked simultaneously. The problem 
with fully associative caches is that they are extremely expensive to build; so expensive, that 
they are rarely used in practice. 

In a direct-mapped cache, each line in the main memory corresponds to a unique entry 
in the cache memory. If the direct-mapped cache has a total of S lines, this entry is specified 
by the log2(S) low order bits of the line's address in the main memory. The problem with 
a direct-mapped cache is that when a processor accesses two or more locations in the main 
memory that correspond to the same location in the cache, there is a conflict that leads to 
cache misses and performance degradation. 

An n-way set-associative cache is most conveniently thought of as n direct-mapped caches 
operating in parallel. Experience indicates that the performance of a cache of size m with 
associativity n will be roughly comparable in performance to a direct-mapped cache of size 
m x n [3). The set-associative cache, however, is likely to have a longer access time [14, 20). 
Throughout this paper we will deal explicitly only with direct-mapped caches. However, our 
results can be easily translated to deal with n-way set associative caches. 

Accessing data in a local cache is many times faster than accessing the shared memory. 
Therefore, the cycles per instruction ( CPI) achieved is governed largely by the number of 
times a processor is forced to wait while data is fetched from the common memory and by 
the ratio processor speed/memory speed. Since processor speeds are increasing faster than 
memory speeds, the cost of a cache miss is growing. 
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1.1 Data Blocks versus Cache Lines 

This paper deals with the problem of reducing cache misses by avoiding cache collisions 
between blocks of data or code accessed by the processor. In considering cache conflicts, we 
will deal with conflicts between blocks or chunks of data as opposed to conflicts between 
individual cache lines. Since most programs exhibit considerable spatial locality, compilers 
attempt to organize memory so that locations that are often accessed together ( e.g., a row 
of a matrix) lie in a contiguous chunk of memory.1 Because contiguous lines in memory do 
not conflict with each other, a large fraction of the conflicts between cache lines will fall into 
equivalence classes of conflicts between corresponding data segments. Dealing with conflicts 
between chunks instead of individual cache-line conflicts simplifies greatly the combinatorial 
complexity of finding conflict-free assignments. 

Accordingly, we will specify cache size in terms of the maximum number of data blocks a 
cache can hold. Let l be the size of each data block measured in lines, and let us assume for 
simplicity that all data blocks are of the same size. Let k be the number of sets in each cache, 
that is, the maximum number of data blocks that can be stored in it. We emphasize that 
k , the number of cache sets, is measured in terms of the number of data blocks a cache can 
store rather than in terms of the number of cache lines. For example, suppose that the cache 
size is 64K words. If data blocks are 2K words, then our analysis will use k = 64/2 = 32. 

1.2 The Memory Assignment Problem 

When two or more data blocks in a processor's working set map to the same location in the 
processor's direct-mapped cache, processor performance degrades due to the resulting conflict 
misses. The extent of this degradation grows in severity with the number of processors for 
two reasons. 

First, the probability of a conflict increases with the number of processors. In fact it is 
easy to show (see Appendix A) that if the assignment of data blocks to memory is oblivious 
to cache conflicts, the probability that the entire machine suffers no conflicts diminishes 
exponentially with the number of processors. We further show in Appendix A that, for 
reasonable parameters, at least one conflict will almost certainly occur in large machines. 

Second, the relative performance impact of such collisions is more serious as the number 
of processors increases. For many parallel algorithms, if one processor is running slowly, the 
whole computation is disrupted- leading to long latency. This phenomenon is illustrated by 
the graph of Figure 1. This graph gives the activity profile of a matrix multiply program 
obtained on a simulator of the Alewife machine [2]. After a start-up transient (not shown 
in the graph), the number of operations going on in parallel becomes high. Subsequently, 
however , at around 1.1 Mcycles this number decreases drastically and remains at low levels for 
most of the rest of the computation. When we first observed this behavior we were mystified 
as to its cause. Subsequent investigation revealed that the cause was persistent collisions in 
the cache of one of the processors (see Figure 2). Since the other processors had to wait for 
the slow processor to complete, the whole computation was stalled. 

The frequency of collisions in multiprocessor caches is governed largely by the way pro
cessing and data is partitioned among the processors. There are two fundamentally different 

1 These chunks are sometimes called data blocks, data segments, or data tiles. 
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approaches to performing this partitioning. It can be made the responsibility of either the 
application programmer or of the compiler and run time system. In either case, there are two 
goals to strive for, an equitable distribution of work among the processors and maximization 
of locality of reference, so that cache misses and invalidations are minimized. 

Leaving this partitioning to the application programmer flies in the face of the main 
rationale for building shared-memory systems, namely, the relatively simple programming 
model that they present . As soon as programmers are forced to think about exactly how 
the computation and data are to be distributed, they lose the advantage of the shared
memory abstraction. On the other hand, leaving it to the compiler and runtime system poses 
significant technical difficulties. 

An intermediate approach is to have the programmer or compiler partition the computa
tion, and let the data "fall where it may" as the program runs. For some applications this 
works quite well. Techniques to achieve communication-efficient partitioning [22, 25, 1, 26, 21) 
typically focus on tiling the program to maximize reuse of data blocks. Block-structured al
gorithms which result in optimal tiles are also becoming commonplace. Tiled programs, 
whether written by a programmer or produced automatically by a compiler, result in clus
tered accesses into arrays and other data structures. 

For some applications, like the matrix multiplication program discussed above, ignoring 
the initial placement of data can lead to extremely poor performance. This paper discusses 
the problem of partitioning data for such applications. The specific problem we address is: 
given compile-time information about the patterns of access to main memory, how does a 
compiler find an assignment of the data in the main memory such that there are no conflicts 
in the ( direct-mapped) caches? We call this the memory assignment problem. 

For sequential machines, the memory assignment problem is not difficult. Provided the 
uniprocessor cache is large enough to hold the working set of data blocks accessed by the 
processor, allocating these data blocks contiguously in memory will avoid conflicts in the 
cache. 2 For parallel machines, the difficulty lies in finding an assignment that avoids collisions 
in each cache simultaneously. This problem is illustrated by Figures 3 and 4. Figure 3 shows 
a conflict-free assignment of the shared code segment x and the data chunks a, b, c, and 
d, under the assumption that the size of each cache is three ( k = 3), and that processor 
one accesses a and b, processor two accesses b and c, and processor three accesses c and d. 
Suppose, however, that processor three accesses c and a. In that case there is no conflict-free 
assignment possible, as depicted in Figure 4. 

1.3 Overview of the Paper 

The remainder of this paper is structured as follows. Section 2 begins by showing that given 
perfect information about which processors will access which chunks of memory, finding a 
memory assignment that avoids collisions is NP-complete. This is done by reduction to the 
graph coloring problem. Section 3 then discusses important special cases for which there are 
polynomial-time algorithms. 

In Section 4, we discuss approaches to dealing with the general memory assignment prob
lem which attempt to minimize the expected running time for finding a conflict-free assign
ment. These are similar to algorithms currently used for register allocation. We close the sec-

2See [17) for further work in compile-time optimization of single-processor caches. 
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tion by presenting techniques that can be used when conflict-free assignment is not possible, 
or when finding a conflict-free assignment is computationally infeasible. Uniform decaching 
is a method that forces a data block to be noncachable. Placing the uncached data block 
in a memory module physically close to the processors accessing it reduces the performance 
degradation. Data replication can be used at the software level for read-only data. The basic 
idea is to put copies of the conflicting data at several memory locations, so that it can be 
mapped to different locations in the cache. Finally, rehashing is a method implemented in 
hardware, in which a block that conflicts with another block already in the cache is mapped 
to another location in the cache by means of a separate hash function. 

Section 5 proposes an approach, grey coloring, to reducing the impact of the cache misses 
caused by collisions. Misses are expensive not only because they slow down the processor 
taking the miss, but also because other processors may be idled while waiting for the straggling 
processor. If misses are concentrated in one processor, that processor becomes a bottleneck 
that can greatly increase latency. Grey coloring is a memory assignment technique that 
spreads the misses among processors by partially overlapping data chunks in caches, and 
attempts to minimize the maximum number of misses in any single processor. 

Section 6 of this extended abstract summarizes the earlier sections and describes future 
work. In the final paper, we expect to include experimental data derived from implementa
tions of the various memory assignment techniques. 

2 The Memory Assignment Problem is NP-Complete 

In this section we prove that the memory assignment problem is NP-complete by showing 
that it is as difficult as graph k-colorability. 

First, we briefly describe the graph k-colorability problem. In this problem we are given 
a graph G and k colors, and we are asked whether it is possible to color the vertics of the 
graph in such a way that no adjacent vertices have the same color. More formally, the graph 
k-colorability problem is defined as follows [11]. 

GRAPH k-COLORABILITY: Given an undirected graph G = (V, E) and an integer k, find an 
assignment f : V -t {1, .. . , k} such that f( u) -=p f( v ), for every edge ( u, v) E E, or infer that 
no such assignment f exists. 

Graph k-colorability is among the most difficult intractable problems. It has been proven that, 
unless P = NP, there exists no polynomial approximation scheme for graph k-colorability 
with a performance guarantee smaller than 2, that is, a scheme that guarantees to color any 
k-colorable graph with no more than 2k colors [11]. In recent years, several approximation 
schemes have been proposed [24, 4, 5, 6], but none of them gives a performance guarantee 
that is bound by a constant. 

In the memory assignment problem we are given a set of memory-resident data blocks 
and a set of caches. In each cache ( of size k) we must store a given subset of the data blocks. 
A given data block may be stored in multiple caches. The caches are assumed to be direct
mapped, that is, a data block is always stored in the same location in any one of the caches. 
This location is determined unambiguously by the low order bits of the data block's address 
in the main memory. The memory assignment problem asks for an assignment of the data 
blocks to the main memory such that no conflicts occur in the caches, and more formally, it 
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is defined as follows. 

MEMORY ASSIGNMENT: Let D be a set of data blocks, let P be a set of direct-mapped 
caches in a multiprocessor, and let g : P -+ 2v be an assignment of data blocks to caches 3

, 

where lg(pi )I ::; k, for every cache Pi E P. Find an assignment f : D -+ {1, .. . , k} of storage 
locations for the data blocks in D, such that f(di ) # f(d1) for all data blocks d;,di in the 
same cache, or infer that no such assignment f exists. 

Theorem 1 MEMORY ASSIGNMENT is NP-complete. 

Proof: We prove that graph k-colorability is polynomial-time reducible to memory assign
ment. Given a graph G = (V, E) and k colors, we construct an instance of the memory 
assignment problem with !VI data blocks and IEI caches. Each vertex v E V corresponds to 
a data block dv E D and each edge ( u, v) E E corresponds to a cache Puv E P. Each cache 
Puv has size k and is required to store the two data blocks du, dv. Since no two data blocks in 
a cache can be stored in the same location, an assignment of locations in the range {1, ... , k} 
to the data blocks in D yields a coloring of the vertices in V with k colors. Conversely, a 
coloring of the vertices in V with k colors yields an assignment oflocations to the data blocks 
in D. □ 

This theorem, in conjunction with the fact that graph colorability is among the most difficult 
intractable problems [11], implies that it is very unlikely to find a provably good algorithm 
for the memory assignment problem. 

3 Efficient Solutions to the Memory Assignment Problem 

Despite the difficulty of the general memory assignment problem, several important classes 
of computations permit efficient computation of a conflict-free assignment by relying on the 
special structure of their memory access patterns. This section describes some of these 
computations as well as the corresponding algorithms for memory assignment. Specifically, 
we give a simple linear-time algorithm that yields an optimal conflict-free assignment for 
programs with special structure such as matrix-vector multiply and matrix-matrix multiply. 
We also show that for other classes of computations, such as tree computations and grid 
computations, we can efficiently compute a conflict-free memory assignment. Finally, we 
argue that the complexity of memory assignment can be reduced for single-program multiple
data computations. 

The basic construct behind the algorithms in this section is an encoding of the dependen
cies among the data blocks in the form of a conflict graph G = (V, E). Each vertex u E V 
represents a data block du, and each edge ( u, v) E E signifies that the data blocks du and dv 
must share at least one of the caches. Note that the degree of each vertex u E V equals the 
number of data blocks with which du shares a cache. This number may not equal the number 
of data blocks that must be stored in some particular cache together with du, or the number 
of caches in which du must be stored. The conflict graph G can be computed in linear time, 
with respect to the number of conflicts among the data blocks. Our algorithms search for a 
particular structure in G that allows us to color its vertices efficiently. Because the colors and 

3 We denote by 2D t he set of all subsets of D , the powerset of D. 
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Figure 5: Multiplication of a matrix A by a matrix B for M = 3, N = 4, and IPI = 36. The 
conflict graph G is bipartite and each one of the 36 processors is responsible for an edge in G. 

the cache locations correspond one-to-one, the coloring yields automatically an assignment 
of memory locations to the data blocks. 

Our first algorithm relies on the fact that when the conflict graph G is bipartite, i.e., of 
the form G = (Vi U V2 , E), and for every ( u, v) E E we have u E Vi and v E Vi, we can 
always find a 2-coloring in O(IV11 + jV21) time: we simply assign color i to all vertices in 
¼, for i = 1, 2. We can verify efficiently whether G is bipartite by an O(IEl)-time breadth
first search. Therefore, given any computation with bipartite conflict graph G we can find a 
conflict-free memory assignment in O(IEI + IVil + IV2I) steps. 

An example of a computation with a bipartite conflict graph G is multiplication of an 
m x n matrix A by an n x m matrix B. A blocked decomposition of this computation 
on IPI processors partitions A into M x N square submatrices A;; and B into N x M 
square submatrices B;1 , where M 2 N = IPI (see Figure 5)4 • Each processor is responsible for 
computing a temporary submatrix T;;k = A;; x B;k, for i, k = 1, ... , M and j = 1, .. . , N. 
This part of the computation exhibits locality and extensive sharing of data by the processors. 
The conflict graph G has N disconnected components, each one being a bipartite graph 
with 2M vertices and M 2 edges. The temporaries T;;k are not shown in the conflict graph 
because we wish to keep the figure simple, and because computing the resulting submatrices 
C;k = I::f=1 T;;k does not involve extensive reuse of the data words within these blocks. 

Consider another interesting class of computations in which every data block competes for 
a cache location with at most 3 other data blocks. Tree computations, for example, exhibit 
this structure. The degree of the resulting conflict graph is 3 or less, thereby admitting a 

4 lt is straightforward to verify that this can be achieved for M = (mlPl/n)113 and N = (n2 1Pl/m2 ) 113 . 
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polynomial time algorithm which can color G with the minimum number of colors [11]. 
In the previous two algorithms, the resulting memory assignments use the minimum 

possible number of sets in the caches. Several computations, however, have conflict graphs of 
degree no greater than the number of cache sets k, in which case any conflict-free assignment 
that fits in the available cache space will suffice. Highly localized access patterns, such as in 
grid computations, should be expected to posess such a property for sufficiently large caches, 
since they access only a limited number of data blocks for each point in the grid. Since any 
connected, non-complete graph G with degree at least 3 but no greater thank can be colored 
with k colors in polynomial time [12, 7], we can compute efficiently a feasible assignment for 
such G. If G is complete, a fact that can be detected in O(JEI) time, then the problem is 
infeasible. 

Finally, we can reduce the size of the initial coloring problem for some computations. In 
SPMD (Simple-Program Multiple-Data) computations [10], for example, we can remove the 
code block from the conflict graph, since this block exists in every cache and it is guaranteed 
to utilize one color, thereby reducing the original k-coloring problem into a (k - !)-coloring 
problem. 

4 Heuristics for the Memory Assignment Problem 

This section presents heuristics for the memory assignment problem. Our basic algorithm 
colors the conflict graph by recursively removing all vertices of degree less than k. Usually, this 
operation is chained, and, eventually, the entire graph is eliminated and a coloring is obtained. 
Sometimes, however, the algorithm cannot eliminate the entire graph, either because the 
original assignment problem is infeasible, or because of the order in which previous vertices 
were removed. In these cases, we apply one of two heuristics called uniform decaching and data 
replication to allow further coloring of the conflict graph. We also discuss a hardware-level 
solution for the problem, when no conflict-free assignment is possible, based on rehashing. 
Finally, and most importantly, Section 5 presents a novel memory assignment method called 
grey coloring, which attempts to spread the misses among processors by partially overlapping 
data chunks in caches so that the number of misses in any single processor is minimized. 

Our basic algorithm for k-coloring the conflict graph G = (V, E) is the same as the general 
graph-coloring scheme in [8, 9] that is used in the context of register allocation for sequential 
processors. If we wish to find a k-coloring of G having a vertex u of degree less than k, then 
G is k-colorable if and only if the graph G' with V' = V - { u} and E' = E - { ( u, v) E E} 
is k-colorable. If a k-coloring can be found for the graph G', then we can reinsert vertex u 
and assign it a color that is not used by the vertices with which it shares an edge. Our basic 
algorithm reduces the size of the conflict graph by progressively removing from it all vertices 
of degree less than k . Our approach differs from the previous ones in the way vertices are 
selected for removal, both when vertices with degree less than k exist, and when they don't. 
At each iteration, our algorithm removes a vertex u with degree less that k, which has the 
most vertices of degree k in its adjacency list. A more computationally intensive approach 
is to perform a breadth-first search of depth d, in order to identify a vertex u with the most 
vertices of degree less than k + d - l in its vicinity. 

Most of the time, if caches are much larger than the total size of the data blocks accessed 
by any individual processor, our basic algorithm will eventually eliminate the entire graph. 
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Vertices are then put back in the reverse order that they were removed. As each vertex is 
reinserted, an appropriate color is picked for it, and at the end a coloring is obtained. 

Sometimes, however, we are left with a graph in which every vertex has degree at least k, 
so no vertex can be removed. At this point we apply one of several schemes to allow the 
algorithm to continue. An important common element of these schemes is that one or more 
data blocks are chosen to be treated in a special way. Two such schemes, data replication 
and rehashing, are discussed in Appendix B. 

We focus here on a third scheme, uniform decaching, because this scheme, in conjunction 
with the novel memory asignment scheme that we describe in the next section, can provably 
decrease the latency of non-bandwidth-limited computations. In uniform decaching, one or 
more vertices are removed from the graph until a vertex of degree less than k is found. 
The corresponding data blocks, called decached blocks, are placed in the main memory at a 
location in a memory module physically close to all processors that need them, and in the 
case of a single processor accessing a block, in its local memory module. Uniform decaching 
strives to select data blocks so that the total number of misses is spread uniformly across 
the processors. This is done in a greedy fachion, by keeping track of the number of misses 
in each cache due to decaching at previous stages, and selecting to decache blocks so that 
the maximum number of misses over all processors is kept minimal. Other ways for selecting 
blocks to decache are the subject of current research. In future work we will address this 
issue by comparing various implementations. 

5 Grey Coloring 

The previous section described an algorithm that recursively removed all vertices of degree 
less than k from the graph. When a vertex with degree less than k could no longer be 
found, a vertex with degree greater than k was selected for removal, so the algorithm could 
proceed. While the vertices with degree less than k are easily reinserted in the graph during 
the coloring phase, we need to find a way of inserting the vertices that have degree greater 
than k. This section proposes a method called grey coloring that inserts these vertices by 
allowing partial overlap of the data chunks in the caches, thereby relaxing the constraints of 
the memory assignment problem. The name "grey coloring" refers to the mixed color in lines 
that overlap. 

Specifically, we investigate the following problem: given a conflict-free assignment that 
leaves some of the data chunks uncached ( either because the original assignment problem 
was infeasible, or because our heuristic algorithm did not find a solution), find a partially 
overlapping assignment of the data chunks that reduces the impact of the cache misses caused 
by collisions. Grey coloring, our technique for solving this problem, is motivated by the fact 
that some data blocks may be left uncached in a conflict-free assignment, even though free 
cache slots exist. Grey coloring exploits this free space to spread the misses across the 
caches and minimize the maximum number of misses in any single cache. By minimizing the 
maximum number of misses in any single cache, we expect to reduce the overall latency of 
non-bandwidth-limited computations. 
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Figure 6: A memory assignment of 20 data blocks accessed by seven caches according to some 
given access pattern. Data block 20 is not cached and the cost of cache misses is proportional 
to the number of lines l in the data block. 

An Example 

Let us demonstrate grey coloring by means of an example. Figure 6 shows a memory assign
ment of 20 blocks accessed by a set of seven caches according to some given pattern. Each 
cache can hold up to six data blocks (k = 6). Data blocks 1 through 19 are cached. Data 
block 20 is left uncached, however, because both C2 and C4 do not have any free slots with 
the same index. If the block is placed in the free slot of C4, then the cost of cache misses due 
to conflicts in C2 is proportional to the time required to fetch I lines from the main memory, 
where l is the number of lines in each data block. Figure 7 illustrates the conflicts created 
by attempting to slide data block 20 in the first slot of the caches. This slot is empty in C2, 
but it is occupied by data block 1 in C4. The arrows in this figure denote the set of data 
blocks whose motions must be orchestrated, in order to fit data block 20 in the caches. We 
refer to this network of dependencies as the marionette of data block 20, with respect to the 
given memory assignment and the first slot in C2 and C4 (see Figure 8). The motivation 
behind this name is that when block 20 is inserted in the caches, the blocks in its network of 
dependencies rooted at the conflicting data block move in a manner resembling a marionette 
- blocks closer to the root block move greater distances. 

The final arrangement of the data chunks in the caches is illustrated in Figure 9. Any 
two overlapping blocks share a fraction B = l/8 of their / lines. Observe that 1/B = 8 is the 
number of layers d in the marionette, and that each node i at layer d, has been shifted by 
(d - d,) l/8 words. As a result of this shift some data blocks may wrap around the caches. 
Note that the cost of the cache misses has decreased by more than 60%: it is proportional to 
the time required to fetch only (3/8) / lines from the main memory, since there are at most 
3 overlapping regions of size l/8 lines in any one of the caches. 
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co C2 C3 

-Figure 7: Dependencies among data blocks when sliding data block 20 into the first slot of 
the caches C2 and C4. For simplicity, data blocks that have no dependencies are shaded by 
diagonal lines and their numbers are omitted. Data blocks are drawn shorter than their real 
size, in order to indicate the possibility of overlap. 
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Figure 8: The marionette of data block 20, with respect to the given memory assignment 
and the first slot in caches C2 and C4. 
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Figure 9: An assignment after grey coloring. Note that the cost of cache misses is proportional 
to (3/8) l. 

Construction of a Marionette 

The basic construct required for grey coloring is the marionette of the data block w that is 
inserted in the caches. The marionette of w, with respect to 

• a memory assignment f, and 

• the cache slot s into which we try to insert w 

is a layered graph Gm = (Vm, Em)· The vertices Vm of the graph are data blocks. An edge 
( u, v) in Em signifies that data blocks u and v are adjacent in a cache, and that they will 
overlap when w is inserted. Each layer of Gm corresponds to a set (with a common index) 
in the caches. The total number of layers in Gm is its depth. 

A marionette can be constructed recursively as described by the pseudocode in Figure 10, 
where for clarity the slot s into which we try to insert w is taken to be 0. All manipulations 
of the indices are assumed modulo k. Therefore, the starting cache slot q = 0 can be chosen 
at will, and each conflicting data block admits up to k marionettes. Let C;[q) denote the 
copy of a data block in slot q of cache C;. C;[q) is NIL if slot q in cache C; is empty. Initially, 
for each cache C; in the cache set P we introduce an edge between a copy of w and the block 
C;[0] in the first slot of C;, if C;[0] conflicts with w. Then, we recursively traverse the k slots 
in the caches, introducing an edge (x, y) between blocks x = C;[q] and y = C;[q+ 1) whenever 
the following three requirements are met: 

1. There exists an edge ( u, v) between u and v in the slots q - 1 and q of some cache C;, 

2. x, v are copies of the same data block in memory, and 

3. y is not yet in the marionette. 

The running time of the algorithm is O(klPI), where IPI is the number of caches in the 
system. 
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CONSTRUCT-MARIONETTE( w, f, P) 

Vm - {w} 
Em -0 
for each C; E C 

do if C;[O] #NIL and C;[O] conflicts with w 

then Vm - Vm U {C;[O]} 
Em - Em U {(w,C;[O])} 

for q = 0 to klPI - 1 
do for i = 0 to IPI - 1 

do if C;[q] = Ci[q] and Cj[q] E Vm for some j E {O, ... , IPI - 1} 
then Vm - Vm U { C;[q]} 
if C;[q + 1] #NIL and C;[q + 1] rJ, Vm 
then Vm - Vm U {C;[q + 1]} 

Em - Em U {(C;[q],C;[q+ 1])} 

Figure 10: A recursive procedure for constructing the marionette of w, where f is a given 
memory assignment and P is the set of caches. 

Once the marionette Gm has been constructed, we can grey color the graph straightfor
wardly. First, we compute the depth d of Gm and we set 0 = 1/d. Then, starting from the 
root of Gm we shift each data block u at depth du in Gm by ( d - du) l 0 words. This algorithm 
terminates in O(klPI) steps. 

As mentioned previously, in a non-bandwidth-limited system, the latency of computation 
is related to the maximum number of misses in any single cache. The following lemma, whose 
proof will be included in the final version of the paper, states that the maximum number of 
conflicting lines in any cache is never more than l. Note that l conflicts would result if the 
block is placed without allowing partial overlap. 

Lemma 1 Let l be the number of lines in any data block, and let 0 be the fraction of l that 
any two overlapping blocks share after grey coloring. Moreover, let 1

9 
be the maximum number 

of conflicting cache lines in any cache after grey coloring. Then 

l = max 
g 0$i$IPl - 1 

10 

and 

□ 

In other words, the number of misses introduced in any cache is proportional to the number 
of edges in the marionette Gm that connect blocks in that cache. Since each cache is accessed 
independently, the maximum among these numbers determines by how much the computa
tion degrades due to these misses. Intuitively, the cost of the misses is spread through the 
marionette over the entire set of caches. The contribution of each cache to the final cost is 
dictated by how many of the original misses are spread on that particular cache. We should 
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note that as a result of grey coloring, the traffic in the communication network may increase 
but it is spread over all caches in the marionette. 

An important property of grey coloring is that it guarantees to decrease the maximum 
number of misses in any cache, if there exists some marionette of sufficiently large depth d. 

Corollary 1 Let Gm be the marionette of depth d of a conflicting data block w, and let lg 
be the maximum number of conflicting cache lines in any cache after grey coloring. If d > k, 
then lg < l. □ 

Intuitively, the deeper the marionette, the better we can spread the cache misses among the 
caches. In practice, by setting 0 = min{l/k, 1/d}, we expect to almost always decrease the 
maximum number of cache misses in any single cache. 

The same basic grey coloring procedure is repeated for every decached block, that was 
removed from the conflict graph according to the uniform decaching heuristic in Section 4, 
and that we want to insert into the caches. As more decached blocks are reinserted the 
free spaces in the caches become smaller, but this does not change the way marionettes are 
constructed for each block, or the way blocks move. Overlapping blocks are treated as one 
solid block. When all blocks have been inserted and there is still free space in the caches, it is 
possible to further reduce the number of cache misses in a single cache by trying to minimize 
the number of overlapping blocks in each one of them. 

6 Conclusion 

We investigated techniques for reducing cache misses in multiprocessors with direct-mapped 
caches by avoiding cache collisions. Collisions are avoided by judiciously assigning data blocks 
to main memory locations such that there are no conflicts in the caches. We proved that the 
resulting memory assignment problem is NP-complete when no overlap is allowed between 
the blocks in the caches. We showed, however, that several interesting classes of computations, 
such as matrix multiply, admit an efficient solution to this problem. We proposed heuristic 
approaches based on graph coloring for assigning memory in the general case. When a 
conflict-free memory assignment is infeasible, or when it is computationally expensive to 
derive a conflict-free memory assignment, we suggest two software-level heuristics, decaching 
and data replication, and a hardware-level heuristic based on rehashing. Finally, we proposed 
a technique called grey coloring for spreading the cache misses over the entire set of processors. 
Grey coloring minimizes the maximum number of misses in any single cache, thus decreasing 
the overall latency of computation in non-bandwidth-limited situations. 

We are currently implementing and evaluating these memory assignment techniques. In 
the final paper we expect to report experimental data derived from these implementations. 
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A Probabilistic Analysis 

This section presents a simple probabilistic analysis of the memory assignment problem. As
suming that data blocks are stored in the main memory in a uniformly random manner, 
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the analysis indicates that at least one cache conflict is a virtual certainty as the number 
of processors increases. Specifically, the probability of conflict-free assignment in all caches 
with random initial placement drops exponentially with the number of processors. As, dis
cussed earlier, even one straggler suffering from cache conflicts out of the IPI processors can 
dramatically reduce overall performance. 

Real systems, however, rarely assign random memory locations to data blocks. Rather, 
they commonly assign blocks to contiguous memory locations. Contiguous assignment of 
blocks in main memory obviates conflicts between neighboring blocks, but does not preclude 
conflicts between blocks displaced by distances greater than the cache size. Because conflicts 
are related to the relative placement of blocks in the cache, which in turn are related to 
the access patterns of processors, random placement of blocks in the cache is a reasonable 
assumption. Furthermore, for our purposes, random placement of data blocks in the cache is 
tantamount to random placement in memory. 

Let us assume that a multiprocessor has IPI processors, and that each processor has its 
own cache. As stated before, let k be the number of sets in a cache, that is, the maximum 
number of data blocks that can be stored in it. We assume for simplicity that each processor 
accesses the same number of cl.ata blocks, n ~ k. 

If every data block is stored in the main memory randomly, each one of the k sets of a 
cache is equally likely to be the target of a data block. Therefore, the probability there are 
no conflicts in cache i, denoted P(nci), is simply the probability of having no more than one 
data block assigned to the same set in the cache. Thus 

P( 
·) _ IT;:t(k - j) 

nc, - kn . 

The numerator of this expression is the total number of ways of selecting n sets from the cache 
without selecting any one of them more than once. The denominator is the total number of 
ways of selecting n sets from the cache. We can rewrite P(nc;) as follows. 

n - 1 ( j) 
P(nci) = IT 1 - -

i=O k 
n - 1 

< IT e- i/k 

i=O 
< e - n(n- 1)/2k 

since 1 - x ~ e- "'. 
If the mapping of data blocks to cache sets for a given processor is independent of their 

mapping in other processors, the probability P( nc) of having no conflicts in any of the IPI 
caches is given by 

P(nc) P(nci)IPI 
< e-n(n- l)IPl/2k_ 

However, as demonstrated by the example in the introduction, we know that when multi
ple processors access the same data block, finding a conflict-free memory assignment may be 

18 



impossible. Thus, the lack of independence in mappings in real systems makes the probability 
of conflict even greater than indicated by this analysis. 

Thus we see that the probability of having no conflict in any of the multiprocessor's 
caches drops exponentially with the number of processors I Pl, To get a sense of the numbers 
involved, let us compute the probability of conflict-free assignment in a system with IPI = 100 
processors and caches of size 64K words. Let the size of each data block be 21( words, implying 
that the size of a cache in terms of the number of data blocks it can hold is k = 641( /2K = 32. 
Let the number of blocks n accessed by each processor be 8, corresponding to a cache loading 
of 25%. Thus, for k = 32 and n = 8, the probability of having no conflicts in the system is 
smaller than 10-40• 

B Data Replication and Rehashing 

In this part of the appendix, we discuss software-level and hardware-level approaches that 
allow us to color the conflict graph G of a computation when our basic heuristic cannot 
remove any more vertices from G. 

The first scheme is called data-replication and can be used at the software level for read
only data. In this scheme we split one or more vertices of degree at least k into vertices 
of smaller degree. The sum of the degrees of the replicated vertices equals the degree of 
the original vertex. This operation is tantamount to replicating in the main memory the 
data chunks corresponding to the split vertices. The total number of additional copies of 
a particular data chunk equals the total number of splits of the original vertex during the 
execution of the algorithm. 

A hardware solution for the memory assignment problem when a conflict-free assignment 
is not possible is rehashing [3]. With rehashing, a processor first accesses t he cache in the 
normal way with the low order bits of the location. On a miss, instead of directly going to 
main memory, the processor accesses the cache with a different hash function . Because each 
memory location can effectively reside in two cache ( or more) locations, the probability of 
conflicts is reduced, although it cannot be completely eliminated. 

One other hardware solution is to use a victim cache [15]. A victim cache is a small 
associat ive cache used in conjunction with the primary direct-mapped cache. Unfortunately, 
victim caches require data area proportional to the size of the conflicting chunks, which in 
general can be as large as the primary cache itself. However, if most of the conflicts can be 
resolved at compile time, the victim cache may be able to store a small number of conflicting 
chunks of data. 
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