
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/fM-472

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

APPROXIMATING THE
MINIMUM-COST MAXIMUM FLOW

IS
P -COMPLETE

Clifford Stein
Joel Wein

June 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Approximating the Minimum-Cost Maximum Flow is
'P-Complete

Clifford Stein *
Laboratory for Computer Science
MIT
Cambridge, MA

Joel Wein t
Department of Computer Science
Polytechnic University
Brooklyn, NY

Abstract

We show that it is impossible, in NC, to approximate the value of the minimum
cost maximum flow unless P = NC.

Keywords: Theory of computation, P-complete, minimum-cost flow, maximum flow.

1 Introduction

Once a problem is proved to be P-complete, it is generally believed that there exists no NC
or RNC algorithm to solve it exactly1

. Therefore, the next important question becomes how
well can it be approximated in NC or RNC? In this note we establish an interesting contrast
between the parallel complexity of two related P-Complete problems, the maximum-flow
problem and the minimum-cost maximum flow problem. We show that despite the fact that
one can approximate the value of a maximum flow arbitrarily closely in RNC, approximating
the value of the minimum-cost maximum flow within a factor of C, the maximum cost in
the network, is P-Complete. Our proof also shows that this is true for networks with C
polynomial in the size of the network, when the costs of the network are expressed in unary.

2 Background and Definitions

In the maximum-flow problem we are given a flow network G = (V, E), which is a directed
graph with two distinguished vertices, s and t, where s is called the source and t the sink.
With every edge (i, j) of a flow network is associated a capacity u(i, j) 2:: 0. A flow is a real
valued function f: E-+ R+ U {O} that satisfies the following two constraints:

•support provided by NSF PYI Award CCR-89-96272 with matching support from UPS and Sun and by
an AT&T Bell Laboratories Graduate Fellowship.

1This research was done while this author was a graduate student at the Laboratory for Computer Science,
MIT. It was partially supported by NSF PYI Award CCR-89-96272 with matching support from UPS and
Sun, by the Cornell Computational Optimization Project, and by DARPA Contract N00014-89-J-1988.
Additional support provided by an ARO graduate fellowship.

1 Despite the fact that 'P-Completeness is usually defined in terms of decision problems, in this paper we
will often refer to the optimization versions as well. This has no effect on our results.

1

(1) For all (i,j) EE, we require J(i,j)::; u(i,j).

(2) For each v EV, v <f_ {s, t},

L J(i,v) = L f(v,j).
(i,v)EE (v,j)EE

The value of a flow is defined as

I: J(i,t);
(i,t)EE

a maximum flow is simply a flow of maximum value.

Given a flow network G = (V, E) and a flow J, we define the residual flow network
G f = (V, E1), where E1 consists of

• All (i,j) EE such that f(i,j) < u(i,j) (forward edges),

• All (i,j) such that (j,i) EE and f(j,i) > 0 (backwards edges) .

The minimum-cost maximum flow problem is the weighted generalization of the maximum
flow problem. We assign a cost function c: E - R to the edges of G; the cost of a flow J
is defined as the sum

I: J(i,j)•c(i,j).
(i ,j)EE

The object is to find the maximum flow of minimum cost.

Our theoretical model of parallel computation will be the CRCW PRAM [3]. The
complexity classes that correspond to our notion of easy to parallelize are NC and RNC.
NC is the class of decision problems for which there exist algorithms that run in time
O(logk n) on a CRCW PRAM with nc proc~ssors, where c and k are constants and n is the
size of the input. RNC is the corresponding class of decision problems with randomized
algorithms that run in time O(lol n) on a CRCW PRAM with nc processors and produce
the correct answer with probability at least l At each step in the algorithm, each processor
is allowed to generate an O(logn)-bit random number.

The complexity class that corresponds to our notion of difficult to parallelize is the class
of P -Complete decision problems (3]. Analogous to the NP-Complete problems in their role
as the "hardest" problems in the class P, no NC algorithm for any P-Complete problem
exists unless P is equal to NC. Similarly, no RNC algorithm exists for any P-Complete
problem unless P ~ RNC.

There has been some previous work on NC-approximation algorithms for P-Complete
problems. For example, Anderson and Mayr [1] considered the high degree subgraph problem:
Given a graph G and an integer k, find the maximum induced subgraph of Gin which every
node has degree at least k in the subgraph. They prove that this problem is P-Complete,
and further that it is P-Complete to approximate within any factor better than ½- In
other words, it is P -Complete to produce a subgraph that is of size greater than ½ of the
maximum induced subgraph with the appropriate connectivity constraints. In contrast to
this result they give an NC algorithm that can approximate the solution within a factor
arbitrarily close to ½- A similar result was obtained by Kirousis, Serna and Spirakis [4],
who investigated the High Edge-Connectivity Subgraph Problem, and showed it could be
approximated in NC within any factor < ½, but producing a better approximation was

2

P -Complete. They also demonstrated the same type of behavior for the vertex-connectivity
version of the problem.

There have also been several results that show that a certain P-complete problem can
not be approximated in NC within any factor unless P = NC [5, 7]. The most interesting of
these is a recent result by Serna, who proved the P-Completeness of approximating Linear
Programming within any factor [6]. This raises the question of whether the same is true
for other P-Complete problems, such as maximum flow or minimum-cost flow, that can be
described as combinatorial linear programs.

It is unlikely that such a result is true for the maximum-flow problem, since it is known
that it can be approximated arbitrarily closely in R.NC [8]. The intuition is that since the
unary capacity version of the problem is in R.NC, a binary capacity problem instance W
can be approximated within a factor of (1 + 1

1 "al()) by using the unary capacity po ynorru n
algorithm on a scaled version of W whose capacities are only the high order O(log n) bits of
the binary capacities. It is also true that the minimum-cost maximum flow problem is in
'RNC when both the capacities and the costs are in unary. Therefore one might imagine that
it might be possible to approximate the minimum-cost maximum flow problem with binary
capacities and unary costs in 'RNC; we prove that this is not the case unless P ~ 'RNC.

3 The Theorem

Definition 3.1 AMCF is the problem of approximating the value of the minimum-cost
maximum flow in a network to within a factor of the maximum edge cost C , where the
capacities are expressed in binary and the costs are expressed in unary.

We will show that this problem is log-space complete for P by reducing a form of the
monotone circuit value problem (MCV2) to AMCF. The reduction is a simple generaliza
tion of the proof of Goldschlager, Shaw and Staples [2] that the problem of determining the
exact value of the maximum flow in a network is log-space complete for P. First we give
several necessary definitions and known results.

Definition 3.2 A monotone circuit a is a sequence (an, ... , a 0) where each a ; is either an
input, in which case its value of either O or 1 is given explicitly, or a gate. A gate a ; is
either an AND gate AND(j, k) or an OR gate OR(j, k) where j 2: k > i. The fan-out of a
gate ai is the number of gates ak , k < j, to which O'.j is an input.

Definition 3.3 MCV2 is the problem of determining the value of a monotone circuit such
that each input has fan-out at most one, each gate has fan-out at most 2, and the last gate,
a 0 , is an OR gate.

Theorem 3.4 {2] MCV2 is log-space complete for P.

We will now state and prove our main result.

Theorem 3.5 AMCF is log-space complete for P.

Proof: Let A = (a n, ... , a 0) be an instance of MCV2, and let d; be the fan-out of gate
(or input) a ; . We will demonstrate a log-space transformation of A into a flow network
GA = (V,E). The vertices of GA ares U t U {i: 0 ~ i ~ n}. The edges of GA , and their
capacities and costs, are as follows.

3

Type (1) Cost O edges:

• For each input a; include an edge (s, i) of capacity O if a; is false, or of capacity 2;
if a; is true. Also include an edge (i, s) of capacity 2;.

• For every OR gate a; = OR(j, k) include an edge (j, i) of capacity 2i , (k, i) of
capacity 2.1: , and (i, s) of capacity 2i + 2.1: - d;2;.

• For every AND gate a; = AND(j, k), include an edge (j, i) with capacity 2i, an edge
(k , i) with capacity 2\ and an edge (i, t) with capacity 2i + 2.1: - d;2; .

Type {2) An edge (0, t) with capacity 1 and cost p, where pis polynomial in n.

Type {3) An edge (s, t) with capacity 1 and cost 1.

Let GA' be the network composed of edges of Type (1) and (2). Goldschlager, Shaw and
Staples showed that in the flow network GA,, the maximum flow value is odd if and only if
the circuit A outputs true. For our result we will need the following lemma.

Lemma 3.6 If the value of the maximum flow in GA' is odd, then in any maximum flow
there is exactly one unit of flow on the edge (0, t).

Proof: Goldschlager, Shaw and Staples exhibited a flow f in GA', which they called the
simulating flow pattern, and then proved that it is a maximum flow.

In simulating flow pattern f , for O ::; i ::; n,

• If a ; is an input of circuit A, f (s, i) = u(s, i). If a; is not an input to any other gate,
f (i , s) = u(i, s); otherwise it is zero.

• For O ::; j ::; n, f (i, j) = 2; = u(i, j) if gate a; outputs true, otherwise f (i, j) = 0.

• If a ; = AND(j, k) then f (i , t) = u(i, t) if both a; and a.1: output true. Otherwise
f(i , t) = f(j, i) + f(k, i). The basic intuition about why this yields a maximum flow
and why it models an AND gate is as follows. Since node i is connected directly to
the sink t , there is always a maximum flow in which as much flow as possible goes
though edge (i , t). Only if the two inputs to node i are true and node i receives 2i
and 2.1: as inputs will there be d;2i units of flow to send out of i on edges other than
(i, t), making the output of the gate i true.

• If a; = OR(j, k) then f (i, s) = f(j, i) + f(k, i) - d;2; if either ai or a k out puts true.
The intuition here is that in a maximum flow, flow will go anywhere before going back
to s, so if any flow is input from j or kit will become the output of i before returning
to s. If both f(j, i) and f(k , i) are 0, then f(i , s) = 0.

• f(0 , t) = 1 if a o computes true; otherwise f(0, t) = 0.

The parity of the value of the simulating flow pattern f is odd if and only if the circuit
A outputs true. This is because f assigns an even amount of flow to every edge except
perhaps (0, t), which is 1 if and only if A outputs true.

The proof of [2] shows that simulating flow pattern f is maximum, odd, and has exactly
one unit of flow on edge (0, t). It follows that any other maximum flow must be odd too. We
will proceed to show that any other maximum flow must have one unit of flow on edge (0, t).
We will make use of the following fact , immediate from t he definition of the simulating flow
pattern f.

4

Fact 3.7 If edge (i,j), with j not equal tot ors, is an edge with non-zero flow in the
simulating flow pattern, then gate i is true.

Assume there exists another maximum fl.ow g that does not have a unit of flow on (0, t).
Then in the residual graph G1, there must exist an augmenting path P from node Oto node
t. The next-to-last node yon the path P must be an AND gate, since these are the only
nodes with edges to t.

Recall that a path in the residual graph is made up of two types of edges, forwards edges
and backwards edges. We will show that all the edges on the path P other than the last
edge (y, t) must be backwards edges. This can be shown by induction. The base case is
trivial, since the OR gate 0 has no outgoing edges except the one to t, hence there are no
forward residual edges of the form (0, x), where x -::J t.

For the induction step, assume the first k - 1 edges on the path are backwards edges, in
particular assume that the k - 1st edge, (j, i) is a backwards edge. Thus (i , j) has positive
flow and by Fact 3. 7, gate i must be true. If gate i is an AND gate then by the definition
of simulating flow pattern f , all its outgoing edges are true (saturated) and therefore it
has no outgoing forwards edges. Hence the only way to continue the augmenting path is
on a backwards edge. If gate i is an OR gate then by the definition of the simulating fl.ow
pattern, the only possible nonsaturated edge is (i, s), the edge back to the source s. But
this would imply that the augmenting path P contains a subpath P', which is a source-sink
path. This implies that the original flow is not maximum, which contradicts t he initial
hypothesis. Therefore the only edges leaving OR gate i are backwards edges. Thus we have
shown that all the edges in P except for the last edge are backwards edges.

Let z be the next-to-next-to-last node on the path P. Since all but the last edge in
P must be backwards edges, edge (y, z), the reversal of the penultimate edge in P must
have positive flow in the simulating fl.ow pattern f . Thus y is an AND gate that evaluated
to true. By the definition off, edge (y, t) must be saturated. But this implies that edge
(y, t) is not in t he residual graph, and therefore the hypothesis that path P existed must
be wrong. Therefore there is no maximum flow g with 0 units of fl.ow on (0, t) and Lemma
3.6 is proved. ■

Now we will prove our theorem. We are considering network GA, which is GA' plus an
additional edge of unit capacity between s and t . Thus the value of the maximum flow in
GA is exactly one more than the maximum fl.ow in GA' as the construction increases the
capacity of every s-t cut by one. Further, we see that edge (s, t) must carry one unit of flow
in any maximum fl.ow. Thus, the cost of a maximum fl.ow will be one if there is no flow in
edge (0, t) and p + 1 if there is flow in edge (0, t) .

Therefore if we could approximate the minimum-cost maximum flow problem within a
factor of p, the maximum cost in the network, we could determine whether the value for
this network was 1 or p + 1, and thus determine the parity of the maximum flow in GA,
which gives the output of circuit A. This reduction is certainly in logspace as long as p is
polynomial in the size of the circuit n. ■

For the sake of completeness we sketch the proof of Goldschlager, Shaw and Staples that
the simulating flow pattern f is a maximum fl.ow. This can be proved in the standard way,
by showing there is no augmenting path. If there is an augmenting path from s to t then the
first edge must be a back edge, since each forward edge (s, i) out of s has f (s, i) = u(s, i).
It must end with a forward edge since there are no edges out oft. T herefore somewhere
on the path there must be a back edge followed by a forward edge. A simple case analysis
shows however that this is impossible in the residual graph of the flow.

5

4 Open Questions

In sequential computation, the minimum-cost maximum flow problem is considered to be
equivalent to a number of other problems, including the minimum-cost flow problem, the
minimum-cost circulation problem, and the minimum-cost circulation problem with lower
and upper bounds on the capacities. Here equivalence is generally taken to mean that there
is a linear-time algorithm to convert an instance of any one of these problems to another.
All the standard conversion techniques are log-space computable, so one might conjecture
that the parallel complexity of all bthese problems is the same. Yet, we do not know how
to show that any of the other problems are hard (or easy) to approximate in parallel. It
would be interesting to resolve whether there actually is some difference in their parallel
approximability.

5 Acknowledgements

We would like to thank the anonymous referee who found a bug in our original proof.

References

[1] R. J. Anderson and E. Mayr. AP-complete problem and approximations to it. Technical
report, Stan ford University, 1986.

[2] L. Goldschlager, R. Shaw, and J. Staples. The maximum flow problem is log-space
complete for P. Theoretical Computer Science, 21:105- 111, 1982.

[3] R. M. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory
machines. In Handbook of Theoretical Computer Science A, pages 869-942. Elsevier,
Amsterdam, 1990.

[4] L. Kirousis, M. Serna, and P. Spirakis. The parallel complexity of the subgraph con
nectivity problem. In Proceedings of the 30th Annual Symposium on Foundations of
Computer Science, pages 294-299, 1989.

[5] L. Kirousis and P. Spirakis. Probabilistic log-space reductions and problems probabilis
tically hard for P. In Proceedings of First Scandinavian Workshop on Algorithm Theory,
1988.

[6] M. Serna. Approximating linear programming is log-space complete for P. Information
Processing Letters, 37:233-236, 1991.

[7] M. Serna and P. Spirakis. The approximability of problems complete for P. In Proceed
ings of the 2nd International Symposium on Optimal Algorithms, pages 193-205, 1989.
Published as Lecture Notes in Computer Science 401, Springer-Verlag.

[8] M. Serna and P. Spirakis. Tight RNC approximations to max flow. In Proceedings of
the 8th Annual Symposium on Theoretical Aspects of Computer Science, pages 118-127,
1991. Published as Lecture Notes in Computer Science 480, Springer-Verlag.

6

