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Abstract 

We show that it is impossible, in NC, to approximate the value of the minimum­
cost maximum flow unless P = NC. 
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1 Introduction 

Once a problem is proved to be P-complete, it is generally believed that there exists no NC 
or RNC algorithm to solve it exactly1

. Therefore, the next important question becomes how 
well can it be approximated in NC or RNC? In this note we establish an interesting contrast 
between the parallel complexity of two related P-Complete problems, the maximum-flow 
problem and the minimum-cost maximum flow problem. We show that despite the fact that 
one can approximate the value of a maximum flow arbitrarily closely in RNC, approximating 
the value of the minimum-cost maximum flow within a factor of C, the maximum cost in 
the network, is P-Complete. Our proof also shows that this is true for networks with C 
polynomial in the size of the network, when the costs of the network are expressed in unary. 

2 Background and Definitions 

In the maximum-flow problem we are given a flow network G = (V, E), which is a directed 
graph with two distinguished vertices, s and t, where s is called the source and t the sink. 
With every edge ( i, j) of a flow network is associated a capacity u( i, j) 2:: 0. A flow is a real 
valued function f: E-+ R+ U {O} that satisfies the following two constraints: 

•support provided by NSF PYI Award CCR-89-96272 with matching support from UPS and Sun and by 
an AT&T Bell Laboratories Graduate Fellowship. 

1This research was done while this author was a graduate student at the Laboratory for Computer Science, 
MIT. It was partially supported by NSF PYI Award CCR-89-96272 with matching support from UPS and 
Sun, by the Cornell Computational Optimization Project, and by DARPA Contract N00014-89-J-1988. 
Additional support provided by an ARO graduate fellowship. 

1 Despite the fact that 'P-Completeness is usually defined in terms of decision problems, in this paper we 
will often refer to the optimization versions as well. This has no effect on our results. 
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(1) For all (i,j) EE, we require J(i,j)::; u(i,j). 

(2) For each v EV, v <f_ {s, t}, 

L J(i,v) = L f(v,j). 
(i,v)EE (v,j)EE 

The value of a flow is defined as 

I: J(i,t); 
(i,t)EE 

a maximum flow is simply a flow of maximum value. 

Given a flow network G = (V, E) and a flow J, we define the residual flow network 
G f = (V, E1 ), where E1 consists of 

• All (i,j) EE such that f(i,j) < u(i,j) (forward edges), 

• All (i,j) such that (j,i) EE and f(j,i) > 0 (backwards edges) . 

The minimum-cost maximum flow problem is the weighted generalization of the maximum­
flow problem. We assign a cost function c: E - R to the edges of G; the cost of a flow J 
is defined as the sum 

I: J(i,j)•c(i,j). 
(i ,j)EE 

The object is to find the maximum flow of minimum cost. 

Our theoretical model of parallel computation will be the CRCW PRAM [3]. The 
complexity classes that correspond to our notion of easy to parallelize are NC and RNC. 
NC is the class of decision problems for which there exist algorithms that run in time 
O(logk n) on a CRCW PRAM with nc proc~ssors, where c and k are constants and n is the 
size of the input. RNC is the corresponding class of decision problems with randomized 
algorithms that run in time O(lol n) on a CRCW PRAM with nc processors and produce 
the correct answer with probability at least l At each step in the algorithm, each processor 
is allowed to generate an O(logn)-bit random number. 

The complexity class that corresponds to our notion of difficult to parallelize is the class 
of P -Complete decision problems (3]. Analogous to the NP-Complete problems in their role 
as the "hardest" problems in the class P, no NC algorithm for any P-Complete problem 
exists unless P is equal to NC. Similarly, no RNC algorithm exists for any P-Complete 
problem unless P ~ RNC. 

There has been some previous work on NC-approximation algorithms for P-Complete 
problems. For example, Anderson and Mayr [1] considered the high degree subgraph problem: 
Given a graph G and an integer k, find the maximum induced subgraph of Gin which every 
node has degree at least k in the subgraph. They prove that this problem is P-Complete, 
and further that it is P-Complete to approximate within any factor better than ½- In 
other words, it is P -Complete to produce a subgraph that is of size greater than ½ of the 
maximum induced subgraph with the appropriate connectivity constraints. In contrast to 
this result they give an NC algorithm that can approximate the solution within a factor 
arbitrarily close to ½- A similar result was obtained by Kirousis, Serna and Spirakis [4], 
who investigated the High Edge-Connectivity Subgraph Problem, and showed it could be 
approximated in NC within any factor < ½, but producing a better approximation was 
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P -Complete. They also demonstrated the same type of behavior for the vertex-connectivity 
version of the problem. 

There have also been several results that show that a certain P-complete problem can 
not be approximated in NC within any factor unless P = NC [5, 7]. The most interesting of 
these is a recent result by Serna, who proved the P-Completeness of approximating Linear 
Programming within any factor [6]. This raises the question of whether the same is true 
for other P-Complete problems, such as maximum flow or minimum-cost flow, that can be 
described as combinatorial linear programs. 

It is unlikely that such a result is true for the maximum-flow problem, since it is known 
that it can be approximated arbitrarily closely in R.NC [8]. The intuition is that since the 
unary capacity version of the problem is in R.NC, a binary capacity problem instance W 
can be approximated within a factor of (1 + 1 

1 "al( ) ) by using the unary capacity po ynorru n 
algorithm on a scaled version of W whose capacities are only the high order O(log n) bits of 
the binary capacities. It is also true that the minimum-cost maximum flow problem is in 
'RNC when both the capacities and the costs are in unary. Therefore one might imagine that 
it might be possible to approximate the minimum-cost maximum flow problem with binary 
capacities and unary costs in 'RNC; we prove that this is not the case unless P ~ 'RNC. 

3 The Theorem 

Definition 3.1 AMCF is the problem of approximating the value of the minimum-cost 
maximum flow in a network to within a factor of the maximum edge cost C , where the 
capacities are expressed in binary and the costs are expressed in unary. 

We will show that this problem is log-space complete for P by reducing a form of the 
monotone circuit value problem (MCV2) to AMCF. The reduction is a simple generaliza­
tion of the proof of Goldschlager, Shaw and Staples [2] that the problem of determining the 
exact value of the maximum flow in a network is log-space complete for P. First we give 
several necessary definitions and known results. 

Definition 3.2 A monotone circuit a is a sequence (an, ... , a 0 ) where each a ; is either an 
input, in which case its value of either O or 1 is given explicitly, or a gate. A gate a ; is 
either an AND gate AND(j, k) or an OR gate OR(j, k) where j 2: k > i. The fan-out of a 
gate ai is the number of gates ak , k < j, to which O'.j is an input. 

Definition 3.3 MCV2 is the problem of determining the value of a monotone circuit such 
that each input has fan-out at most one, each gate has fan-out at most 2, and the last gate, 
a 0 , is an OR gate. 

Theorem 3.4 {2] MCV2 is log-space complete for P. 

We will now state and prove our main result. 

Theorem 3.5 AMCF is log-space complete for P. 

Proof: Let A = (a n, ... , a 0) be an instance of MCV2, and let d; be the fan-out of gate 
( or input) a ; . We will demonstrate a log-space transformation of A into a flow network 
GA = (V,E ). The vertices of GA ares U t U {i: 0 ~ i ~ n}. The edges of GA , and their 
capacities and costs, are as follows. 

3 



Type (1) Cost O edges: 

• For each input a; include an edge ( s, i) of capacity O if a; is false, or of capacity 2; 
if a; is true. Also include an edge ( i, s) of capacity 2;. 

• For every OR gate a; = OR(j, k) include an edge (j, i) of capacity 2i , (k, i) of 
capacity 2.1: , and ( i, s) of capacity 2i + 2.1: - d;2;. 

• For every AND gate a; = AND(j, k ), include an edge (j, i) with capacity 2i, an edge 
( k , i) with capacity 2\ and an edge ( i, t) with capacity 2i + 2.1: - d;2; . 

Type {2) An edge (0, t) with capacity 1 and cost p, where pis polynomial in n. 

Type {3) An edge (s, t) with capacity 1 and cost 1. 

Let GA' be the network composed of edges of Type (1) and (2). Goldschlager, Shaw and 
Staples showed that in the flow network GA,, the maximum flow value is odd if and only if 
the circuit A outputs true. For our result we will need the following lemma. 

Lemma 3.6 If the value of the maximum flow in GA' is odd, then in any maximum flow 
there is exactly one unit of flow on the edge (0, t). 

Proof: Goldschlager, Shaw and Staples exhibited a flow f in GA', which they called the 
simulating flow pattern, and then proved that it is a maximum flow. 

In simulating flow pattern f , for O ::; i ::; n, 

• If a ; is an input of circuit A, f ( s, i) = u( s, i). If a; is not an input to any other gate, 
f ( i , s ) = u( i, s ); otherwise it is zero. 

• For O ::; j ::; n, f ( i, j) = 2; = u( i, j) if gate a; outputs true, otherwise f ( i, j) = 0. 

• If a ; = AND(j, k) then f ( i , t ) = u( i, t) if both a; and a.1: output true. Otherwise 
f( i , t) = f(j, i) + f(k, i). The basic intuition about why this yields a maximum flow 
and why it models an AND gate is as follows. Since node i is connected directly to 
the sink t , there is always a maximum flow in which as much flow as possible goes 
though edge ( i , t). Only if the two inputs to node i are true and node i receives 2i 
and 2.1: as inputs will there be d;2i units of flow to send out of i on edges other than 
( i, t), making the output of the gate i true. 

• If a; = OR(j, k) then f ( i, s) = f(j, i) + f( k, i) - d;2; if either ai or a k out puts true. 
The intuition here is that in a maximum flow, flow will go anywhere before going back 
to s, so if any flow is input from j or kit will become the output of i before returning 
to s. If both f(j, i) and f( k , i ) are 0, then f( i , s) = 0. 

• f(0 , t ) = 1 if a o computes true; otherwise f(0, t) = 0. 

The parity of the value of the simulating flow pattern f is odd if and only if the circuit 
A outputs true. This is because f assigns an even amount of flow to every edge except 
perhaps (0, t ), which is 1 if and only if A outputs true. 

The proof of [2] shows that simulating flow pattern f is maximum, odd, and has exactly 
one unit of flow on edge (0, t). It follows that any other maximum flow must be odd too. We 
will proceed to show that any other maximum flow must have one unit of flow on edge (0, t). 
We will make use of the following fact , immediate from t he definition of the simulating flow 
pattern f. 
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Fact 3.7 If edge (i,j), with j not equal tot ors, is an edge with non-zero flow in the 
simulating flow pattern, then gate i is true. 

Assume there exists another maximum fl.ow g that does not have a unit of flow on (0, t). 
Then in the residual graph G1, there must exist an augmenting path P from node Oto node 
t. The next-to-last node yon the path P must be an AND gate, since these are the only 
nodes with edges to t. 

Recall that a path in the residual graph is made up of two types of edges, forwards edges 
and backwards edges. We will show that all the edges on the path P other than the last 
edge (y, t) must be backwards edges. This can be shown by induction. The base case is 
trivial, since the OR gate 0 has no outgoing edges except the one to t, hence there are no 
forward residual edges of the form (0, x ), where x -::J t. 

For the induction step, assume the first k - 1 edges on the path are backwards edges, in 
particular assume that the k - 1st edge, (j, i) is a backwards edge. Thus ( i , j ) has positive 
flow and by Fact 3. 7, gate i must be true. If gate i is an AND gate then by the definition 
of simulating flow pattern f , all its outgoing edges are true (saturated) and therefore it 
has no outgoing forwards edges. Hence the only way to continue the augmenting path is 
on a backwards edge. If gate i is an OR gate then by the definition of the simulating fl.ow 
pattern, the only possible nonsaturated edge is ( i, s ), the edge back to the source s. But 
this would imply that the augmenting path P contains a subpath P', which is a source-sink 
path. This implies that the original flow is not maximum, which contradicts t he initial 
hypothesis. Therefore the only edges leaving OR gate i are backwards edges. Thus we have 
shown that all the edges in P except for the last edge are backwards edges. 

Let z be the next-to-next-to-last node on the path P. Since all but the last edge in 
P must be backwards edges, edge (y, z ), the reversal of the penultimate edge in P must 
have positive flow in the simulating fl.ow pattern f . Thus y is an AND gate that evaluated 
to true. By the definition off, edge (y, t) must be saturated. But this implies that edge 
(y, t) is not in t he residual graph, and therefore the hypothesis that path P existed must 
be wrong. Therefore there is no maximum flow g with 0 units of fl.ow on (0, t) and Lemma 
3.6 is proved. ■ 

Now we will prove our theorem. We are considering network GA, which is GA' plus an 
additional edge of unit capacity between s and t . Thus the value of the maximum flow in 
GA is exactly one more than the maximum fl.ow in GA' as the construction increases the 
capacity of every s-t cut by one. Further, we see that edge ( s, t) must carry one unit of flow 
in any maximum fl.ow. Thus, the cost of a maximum fl.ow will be one if there is no flow in 
edge (0, t) and p + 1 if there is flow in edge (0, t) . 

Therefore if we could approximate the minimum-cost maximum flow problem within a 
factor of p, the maximum cost in the network, we could determine whether the value for 
this network was 1 or p + 1, and thus determine the parity of the maximum flow in GA, 
which gives the output of circuit A. This reduction is certainly in logspace as long as p is 
polynomial in the size of the circuit n. ■ 

For the sake of completeness we sketch the proof of Goldschlager, Shaw and Staples that 
the simulating flow pattern f is a maximum fl.ow. This can be proved in the standard way, 
by showing there is no augmenting path. If there is an augmenting path from s to t then the 
first edge must be a back edge, since each forward edge ( s, i) out of s has f ( s, i) = u( s, i). 
It must end with a forward edge since there are no edges out oft. T herefore somewhere 
on the path there must be a back edge followed by a forward edge. A simple case analysis 
shows however that this is impossible in the residual graph of the flow. 
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4 Open Questions 

In sequential computation, the minimum-cost maximum flow problem is considered to be 
equivalent to a number of other problems, including the minimum-cost flow problem, the 
minimum-cost circulation problem, and the minimum-cost circulation problem with lower 
and upper bounds on the capacities. Here equivalence is generally taken to mean that there 
is a linear-time algorithm to convert an instance of any one of these problems to another. 
All the standard conversion techniques are log-space computable, so one might conjecture 
that the parallel complexity of all bthese problems is the same. Yet, we do not know how 
to show that any of the other problems are hard (or easy) to approximate in parallel. It 
would be interesting to resolve whether there actually is some difference in their parallel 
approximability. 
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