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Shared-Memory Multiprocessors 
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AbstTact- This paper presents a theoretical framework for 
automatically partitioning parallel loop's to minimize cache coher­
ency traffic on shared-memory multiprocessors. While several 
previous papers have looked at hyperplane partitioning of itera­
tion spaces to reduce communication traffic, the problem of deriv­
ing the optimal tiling parameters for minimal communication in 
loops with general affine index expressions has remained open. 
Our paper solves this open problem by presenting a method for 
deriving an optimal hyperparallelepiped tiling of iteration spaces 
for minimal commnnlcation in multiproces.wrs with caches, We 
show that the same theoretical framework can also be used to 
determine optimal tiling parameters for both data and loop parti­
tioning In distributed memory multicomputers. Our framework 
uses matrices to represent iteration and data space mappings and 
the notion of uniformly Intersecting references to capture tempo­
ral locallty In array references. We introduce the notion of data 
footprints to estimate the communication traffic between proces­
sors and use linear algebraic methods and lattice theory to com­
pute precisely the size of data footprints. We have implemented 
this framework in a compiler for Alewife, a distributed shared­
memory multiprocessor. 

Index Tenns- Automatic loop partitioning, shared-memory 
multiprocessors, compilers, tiling, minimizing communication. 

I. INTRODUCTION 

C ACHE-BASED multiprocessors are attractive because they 
seem to allow the programmer to ignore the issues of data 

partitioning and placement. Because caches dynamically copy 
data close to where it is needed, repeat references to the same 
piece of data do not require communication over the network, 
and hence reduce the need for careful data layout. However, 
the performance of cache-coherent systems is heavily predi­
cated on the degree of temporal locality in the access patterns 
of the processor. Loop partitioning for cache-coherent multi­
processors is an effort to increase the percentage of references 
that hit in the cache. 

The degree of reuse of data, or conversely, the volume of 
communication of data, depends both on the algorithm and on 
the partitioning of work among the processors. (In fact, parti­
tioning of the computation is often considered to be a facet of 
an algorithm.) For example, it is well known that a matrix 
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multiply computation distributed to the processors by square 
blocks has a much higher degree of rel,ISe than the matrix mul­
tiply distributed by rows or columns. 

Loop partitioning can be done by the programmer, by the run 
time system, or by the compiler. Relegating the partitioning task 
to the programmer defeats the central purpose of building cache­
coherent shared-memory systems. While partitioning can be 
done at run time (for example, see [1], [2]), it is hard for the run 
time system to optimize for cache locality because much of the 
infonnation required to compute communication patterns is ei­
ther unavailable at run time or expensive to obtain. Thus com­
pile-time partitioning of parallel loops is important. 

This paper focuses on the following problem in the context 
of cache-coherent multiprocessors. Given a program consisting 
of parallel do loops (of the form shown in Fig. 1 in Sec­
tion II.A), how do we derive the optimal tile shapes of the it­
eration-space partitions to minimiz.e the communication traffic 
between processors. We also indicate how our framework can 
be used for loop and data partitioning for distributed memory 
machines, both with and without caches. 

A. Contributions and Relafed Work 

This paper develops a u!lified theoretical framework that 
can be used for loop partitioning in cache-coherent multiproc­
essors, or for loop and data partitioning in multicomputers 
with local memory.I The central contribution of this paper is a 
method for deriving an optimal hyperparallelepiped tiling of 
iteration spaces to minimize communication. The tiling speci­
fies both the shape and size of iteration space tiles. Our 
framework allows the partitioning of doall loops accessing 
multiple arrays, where the index expressions in array accesses 
can be any affine function of the indices. 

Our analysis uses the notion of uniformly intersecting refer­
ences to categorize the references within a loop into classes 
that will yield cache locality. This notion helps specify pre­
cisely the set of references that have substantially overlapping 
data sets. Overlap produces temporal locality in cache ac­
cesses. A similar concept of uniformly generated references 
has been used in earlier work in the context of reuse and itera­
tion space tiling [3], [4]. 

The notion of data footprints is introduced to capture the 
combined set of data accesses made by references within each 
uniformly intersecting class. (The term footprint was originally 

I. This paper, however, focuses on loop partitioning, but indicates the 
modifications necessary for data partitioning. See [ l 5] for results on com• 
bined loop and data partitioning. 
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coined by Stone and Thiebaut [5].) Then, an algorithm to 
compute precisely the total size of the data footprint for a 
given loop partition is presentep. Precisely computing the size 
of the set of data elements accessed by a loop tile was itself an 
important and open problem. While general optimization 
methods can' be applied to minimize the size of the data foot­
print and derive the corresponding loop partitions, we demon­
strate several important special cases where the optimization 
problem is very simple. The size of data footprints can also be 
used to guide program transformations to achieve better cache 
performance in uniprocessors as well. 

Although there have been several papers on hyperplane 
partitioning of iteration spaces, the problem of deriving the 
opt_jmal hyperparallelepiped tile parameters for general affine 
index expressions has remained open. For example, Irigoin 
and Triolet [6] introduce the notion of loop partitioning with 
multiple hyperplanes which results in hyperparallelepiped 
tiles. The purpose of tiling in their case is to provide parallel­
ism across tiles, and vector processing and data locality within 
a tile. They propose a set of basic constraints that should be 
met by any partitioning and derive the conditions under which 
the hyperplane partitioning satisfies these constraints. 

Although their paper describes useful properties of hyper­
plane partitioning, it does not address the issue of automati­
cally generating the tile parameters. Careful analysis of the 
mapping from the iteration space to the data space is very im­
portant in automating the partitioning process. Our paper de­
scribes an algorithm for automatically computing the partition 
based on the notion of cumulative footprints, derived from the 
mapping from iteration space to data space. 

Abraham and Hudak [7] considered loop partitioning in 
multiprocessors with caches. However, they dealt only with 
index expressions of the form index variable plus a constant. 
They assumed that the array dimension was equal to the loop 
nesting and focused on rectangular and hexagonal tiles. Fur­
thermore, the code body was restricted to an update of A[i,JJ. 

Our framework, however, does not place these restrictions 
on the code body. It is able to handle much more general index 
expressions, and produce parallelogram partitions if desired. 
We also show that when Abraham and Hudak's methods can 
be applied to a given loop nest, our theoretical framework re­
produces their results. 

Ramanujam and Sadayappan [8] deal with data partitioning 
in multicomputers with local memory and use a matrix formu­
lation; their results do not apply to multiprocessors with 
caches. Their theory produces communication-free hyperplane 
partitions for loops with affine index expressions when such 
partitions exist. However, when communication-free partitions 
do not exist, they can deal only with index expression of the 
form variable plus a constant offset. They further require the 
array dimension to be equal to the loop nesting. 

In contrast, our framework is able to discover optimal parti­
tions in cases where communication free partitions are not 
possible, and we do not restrict the loop nesting to be equal to 
array dimension. In addition, we show that our framework 
correctly produces partitions identical to those of Rarnanujam 
and Sadayappan when communication-free partitions do exist. 

In a recent paper, Anderson and Lam [9] derive communi­
cation-free partitions for multicomputers when such partitions 
exist, and block loops into squares otherwise. Our notion of 
cumulative footprints allows us to derive optimal partitions 
even when communication-free partitions do not exist. 

Gupta and Banerjee [IO] address the problem of automatic 
data partitioning by analyzing the entire program. Although 
our paper deals with loop and data partitioning for a single 
loop only, the following differences in the machine model and 
the program model lead to problems that are not addressed by 
Gupta and Banerjee: 

1) The data distributions considered by them do not include 
general hyperparallelepipeds. In order to deal with hy­
perparallelepipeds, one requires the analysis of commu­
nication presented in our paper. 

2) Their communication model does not take into account 
caches. 

3) They deal with simple index expressions of the form 
c1 * i + c2 and not a general affine function of the loop 
indices. 

Our work complements the work of Wolf and Lam [3] and 
Schreiber and Dongarra [11]. Wolfe and Lam derive loop 
transformations (and tile the iteration space) to improve data 
locality in multiprocessors with caches. They use matrices to 
model transformations and use the notion of equivalence 
classes within the set of uniformly generated references to 
identify valid loop transformations to improve the degree of 
temporal and spatial locality within a given loop nest. Schrei­
ber and Dongarra briefly address the problem of deriving op­
timal hyperparallelepiped iteration space tiles to minimize 
communication traffic (they refer to it as J/O requirements). 
However their work differs from this papel" in the following ways: 

1) Their machine model tloes not have a processor cache. 
2) The data space corresponding to an array reference and 

the iteration space are isomorphic. 

These restrictions make the problem of computing the com­
munication traffic much simpler. Also, one of the main issues 
addressed by Schreiber and Dongarra is the atomicity re­
quirement of the tiles which is related to the dependence vec­
tors and this paper is not concerned with those requirements as 
it is assumed that the iterations can be executed in parallel. 

Ferrante, Sarkar, and Thrash [12] address the problem of 
estimating the number of cache misses for a nest of loops. This 
problem is similar to our problem of finding the size of the 
cumulative footprint, but differs in these ways: 

1) We consider a tile in the iteration space and not the entire 
iteration space; our tiles can be hyperparallelepipeds in 
general. 

2) We partition the references into uniformly intersecting 
sets, which makes the problem computationally more 
tractable, since it allows us to deal with only the tile at 
the origin. 

3) Our treatment of coupled subscripts is much simpler, 
since we look at maximal independent columns, as shown 
in Section V.B. 
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B. Overview of the Paper 

The rest of this paper is structured as follows. Section II states 
our system model and our program-level assumptions. Section 
III first presents a few examples to illustrate the basic ideas be­
hind loop partitioning; it then discusses the notion of data parti­
tioning, and when it is important Section IV develops the theo­
retical framework for partitioning and presents several additional 
examples. Section V extends the basic framework to handle 
more general expressions, and Section VI indicates modifica­
tions to the basic framework to handle data partitioning and 
more general types of systems. The framework for both loop and 
data partitioning has been implemented in the compiler system 
for the Alewife multiprocessor. The implementation of our 
compiler system and a sampling of results is presented in Section 
VII, and Section VIII concludes the paper. 

II. PROBLEM DoMAIN AND ASSUMPTIONS 

This paper focuses on the problem of partitioning loops in 
cache-coherent shared-memory multiprocessors. Partitioning 
involves deciding which loop.iterations will run collectively in 
a thread of computation. Computing loop partitions involves 
finding the set of iterations which when run in parallel mini­
mizes the volume of communication generated in the system. 
This section describes the types of programs currently handled 
by our framework and the structure of the system assumed by 
our analysis. 

A. Program Assumptions 

Fig. 1 shows the structure of the most general single loop nest 
that we consider in this paper. The statements in the loop body 
have array references of the form A[g(i1, iz, .. . , i1)], where the 

index function is g : Z 1 ➔ zd, l is the loop nesting and dis the 

dimension of the array A. We have restricted our attention to 
doall loops since we want to focus on the relation between the 
iteration space and the data space and factor out issues such as 
dependencies and synchroniz.ation that arise from the ordering of 
the iterations of a loop. We believe that the framework described 
in this paper can be applied with suitable modifications for loops 
in which the iterations are ordered. 

Doall(il=ll:ul, i2=12 : u2, ... , il=ll:ul) 
loop body 

EndDoall 

Fig. I. Stro.cture of a single loop nest. 

We assume that all array references within the loop body 
are unconditional. One of the two following approaches may 
be taken for loops with conditionals. 

• Assume that all array references are actually accessed, 
ignoring the conditions surrounding a reference. 

• Include only references within conditions that are likely · 
to be true based on profiling information. 

We address the problem of loop and data partitioning for 
index expressions that are affine functions of loop indices. In 

other words, the index function can be expressed as, 

g(T} = iG+ii (1) 

where G is a l x d matrix with integer entries and ii is an inte­
ger constant vector of length d, termed the offset vector. Note 

that i, g(i), and ii are row vectors. We often refer to an ar­

ray reference by the pair (G, ii). (An example of this function 

is presented in Section III.) Similar notation has been used in 
several papers in the past, for example, see [3], [4]. All our 
vectors and matrices have integer entries unless stated other­
wise. We assume that the loop bounds are such that the itera­
tion space is rectangular. The problem with nonrectangular 
tiles is one of load balancing (due to boundary effects in tiling) 
and this can be handled by optimizing for a machine with· a 
large number of virtual processors and mapping the virtual 
processors to real processors in a cyclic fashion. 

Loop indices are assumed to take all integer values between 
their lower and upper bounds, i.e, the strides are one. 

Previous work [7], [8], [13] in this area restricted the ar­
rays in the loop body to be of dimension exactly equal to the 
loop nesting. Abraham and Hudak [7] further restrict the 
loop body to contain only references to a single array; fur­
thermore, all references are restricted to be of the form A[i1 + 
a 1, i2 + a2, ... ,id+ ad] where ai is an integer constant. Matrix 
multiplication is a simple example that does not fit these 
restrictions. 

Given p processors, the problem of loop partitioning is to 
divide the iteration space into P tiles such that the total com­
munication traffic on the network is minimized with the addi­
tional constraint that the tiles are of equal size, except at the 
boundaries of the iteration space. The constraint of equal size 
partitions is imposed to achieve load balancing. We restrict 
our discussions to hyperparallelepiped tiles, of which rectangu­
lar tiles are a special case. 

Like [7], [8], [13], we do not include the effects of syn­
chronization in our framework. Synchroniz.ation is handled 
separately to ensure correct behavior. For example, in the doall 
loop in Fig. 1, one might introduce a barrier synchronization 
after the loop nest if so desired. We also note that in many 
cases fine-grain data-level synchronization can be used within 
a parallel do loop to enforce data dependencies and its cost 
approximately modeled as slightly more expensive communi­
cation than usual [14]. See Appendix B for some details. 

B. System Model 

Our analysis applies to systems whose structure is similar to 
that shown in Fig. 2. The system comprises a set of processors, 
each with a coherent cache. Cache misses are satisfied by 
global memory accessed over an interconnection network or a 
bus. The memory can be implemented as a single monolithic 
module (as is commonly done in bus-based multiprocessors), 
or in a distributed fashion as shown in the figure. The memory 
modules might also be implemented on the processing nodes 
themselves (data partitioning for locality makes sense only for 
this case). In all cases, our analysis assumes that the cost of a 
main memory access is much higher than a cache access, and 
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for loop partitioning, our analysis assumes that the cost of the 
main memory access is the same no matter where in main 
memory the data is located. 

Mem Mem Mem 

Interconnection Network 

C8dle Cache Cache Cache 

Fig. 2. A system with caches and uniform-access main memory (UMA). 

The goal of loop partitioning is to minimize the total 
number of main memory accesses. For simplicity, we assume 
that the caches are large enough to hold all the data required 
by a loop partition, and that there are no conflicts in the 
caches. Techniques such as subblocking described in [15] or 
other techniques as in [ 17] and in [ 16 J can be applied to re­
duce effects due to conflicts. When caches are small, the 
optimal loop partition does not change, rather, the size of 
each loop tile executed at any given time on the processor 
must be adjusted [15] so that the data fits in the cache (if we 
assume that the cache is effectively flushed between execu­
tions of each loop tile). Unless otherwise stated, we assume 
that cache lines are of unit length. The effect of larger cache 
Jines can be included easily as suggested in [7], and is dis­
cussed further in Section VI.B. 

If a program has multiple loops, then loop tiling parameters 
can be chosen independently for each loop to optimize cache 
performance by applying the techniques described in this paper. 
We assume there is no data reuse in the cache across loops. In 
programs with multiple loops and data arrays, tiling parameters 
for each loop and data array cannot be chosen independently in 
systems where the memories are local to the processors (see 
Fig. 5). This issue is discussed further in Section Vl.C. 

lli. LooP PARTITIONS AND DATA PARTITIONS 

This section presents examples to introduce and illustrate 
some of our definitions and to motivate the benefits of optimiz­
ing the shapes of loop and data tiles. More precise definitions 
are presented in the next section. 

As mentioned previously, we deal with index expressions that 
are affine functions of loop indices. In other words, the index 
function can be expressed as in (1). Consider the following ex­
ample to illustrate the above expression of index functions. 

EXAMPLE l. The reference A[i3 + 2, 5, i2 - 1, 4) in a triply 
nested loop can be expressed by 

(~,ii,4)[~ ~ ~ ~]+(2,5,-1,4) 
1 0 0 0 

In this example, the second and fourth column of G are zero 
indicating that the second and fourth subscripts of the refer­
ence are independent of the loop indexes. In such cases, we 
show in Section V.B that we can ignore those columns and 
treat the referenced array as an array of lower dimension. In 
future, without loss of generality, we assume that the G matrix 
contains no zero columns. 

Now, let us introduce the concept of a loop partition by ex­
amining the following example. Loop partitioning specifies the 
tiling parameters of the iteration space. Loop partitioning is 
sometimes termed iteration space partitioning or tiling. 

EXAMPLE 2. 
Doall (i=lOl:200, j=l:100) 

A[ i , j) = B[ i +j,i-j-l)+B[ i +j+4,i- j+3) 
BndI>oall 

Let us assume that we have 100 processors and we want to 
distribute the work among them. There are 10,000 points in the 
iteration space and so one can allocate 100 of these to each of 
the processors to distribute the load uniformly. Fig. 3 shows 
two simple ways of partitioning the iteration space-by rows 
and by square blocks-into 100 equal tiles. 

Minimizing communication volume requires that we mini­
mize the number of data elements accessed by each loop tile. 
To facilitate this optimization, we introduce the notion of a 
data footprint. Footprints comprise the data elements refer­
enced within a loop tile. In other words, the footprints are re­
gions of the data space accessed by a loop tile. In particular, 
the footprint with respect to a specific reference in a loop tile 
gives us all the data elements accessed through that reference 
from within a tile of a loop partition. 

Using Fig. 4, let us illustrate the footprints corresponding to 
a reference of the form B [ i + j , i -j -1 J for the two loop 
partitions shown in Fig. 3. The footprints in the data space 
resulting from the loop partition a are diagonal stripes and 
those resulting from partition b are square blocks rotated by 45 
degrees. Algorithms for deriving the footprints are presented in 
the next section. 

Let us compare the two loop partitions in the context of a 
system with caches and uniform-access memory (see Fig. 2) by 
computing the number of cache misses. The number of cache 
misses is equal to the number of distinct elements of B ac­
cessed by a loop tile, which is equal to the size of a loop tile's 
footprint on the array B. (Section VI.A deals with minimizing 
cache-coherence traffic). Caches automatically fetch a loop 
tile's data footprint as the loop tile executes. For each tile in 
partition a, the number of cache misses can be shown to be 
104 (see Section V.A) whereas the number of cache misses in 
each tile of partition b can be shown to be 140. Thus, because 
it allows data reuse, loop partition a is a better choice if our 
goal is to minimize the number of cache misses, a fact that is 
not obvious from the source code. 

When is data partitioning important? Data partitioning is 
the problem of partitioning the data arrays into data tiles and 
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100 ·· -7 space as the loop partition. The additional step of aligning 
corresponding loop and data tiles on the same node maximizes 
the number of local memory references. 

" 
1 

In fact, the above horizontal partitioning of the loop space 
and diagonal striping of the data space results in zero commu­
nication traffic. Ramanujam and Sadayappan [8] presented 
algorithms to derive such communication-free partitions when 
possible. On the other hand, in addition to producing the same 

2 1■ 
;:oo 10 1 

Partition a Partition b 

Fig. 3. Two simple rectangular loop partilions in lhe iteration space. 

,~o partitions when communication-traffic-free partitions exist (see 
Sections V.A and VI.C), our analysis will discover partitions 
that minimize traffic when such partitions are non-existent as 
well (see Example 8). 

Footprints for loop partition a Foolprints for lcop partition b 

Fig. 4. Data footprints in the data space resulting from loop partitions a and b. 

(a) 
(b) 

Fig. 5. System, with nonunifonn main-memory access time. 

assigning each data tile to a local memory module, such that 
the number of memory references that can be satisfied by the 
local memory is maximized. Data partitioning is relevant only 
for nonuniform memory-access (NUMA) systems (for exam­
ple, see Fig. 5). 

In systems with nonuniform memory-access times, both 
loop and data partitioning are required, Our analysis applies to 
such systems as well. The loop tiles are assigned to the proc­
essing nodes and the data tiles to memory modules associated 
with the processing nodes so that a maximum number of the 
data references made by the loop tiles are satisfied by the local 
memory module. Note that in systems with nonuniform mem­
ory-access times, but which have caches, data partitioning may 
still be perfonned to maximize the number of caches misses 
that can be satisfied by the memory module local to the proc­
essing node. 

Referring to Fig. 4, the footprint size is minimized by 
choosing a diagonal striping of the data space as the data par­
tition, and a corresponding horizontal striping of the iteration 

EXAMPLE 3. 
Doall ( i=l:N, j=l:N) 

A[ i , j ] =B [ i, j] +B[i+l,j - 2]+B [i-1 ,j +l ] 
bdDoall . 

For the loop shown in Example 3, a parallelogram partition 
results in a lower cost of memory access compared to any rec­
tangular partition since most of the inter iteration communication 
can be internalized to within a processor for a parallelogram 
partition (see Section VIl.A). Because rectangular partitions 
often do not minimize communication, we would like to include 
parallelograms in the formulation of the general loop partitioning 
problem. In higher dimensions a parallelogram tile generalizes to 
a hyperparallelepiped; the next section defines it precisely. 

N. A FRAMEWORK FORLooP AND DATA PARTITIONING 

This section first defines precisely the notion of a loop par­
tition and the notion of a footprint of a loop partition with re­
spect to a data reference in the loop. We prove a theorem 
showing that the number of integer points within a tile is equal 
to the volume of the tile, which allows us to use volume esti­
mates in deriving the amount of communication. We then pre­
sent the concept of uniformly intersecting references and a 
method of computing the cumulative footprint for a set of uni­
formly intersecting references. We develop a formalism for 
computing the volume of communication on the interconnec­
tion network of a multiprocessor for a given loop partition, and 
show how loop tiles can be chosen to minimize this traffic. We 
briefly indicate how the cumulative footprint can be used to 
derive optimal data partitions for multicomputers with local 
memory (NUMA machines). 

A. Loop Tiles in the Iteration Space 

Loop partitioning results in a tiling of the iteration space. 
We consider only hyperparallelepiped partitions in this pa­
per; rectangular partitions are special cases of these. Fur­
thermore, we focus on loop partitioning where the tiles are 
homogeneous except at the boundaries of the iteration space. 
Under these conditions of homogeneous tiling, the partition­
ing is completely defined by specifying the tile at the origin, 
as indicated in Fig. 6. Under homogeneous tiling, the con­
cept of the tile at the origin is similar to the notion of the 
clustering basis in [6]. (See Appendix A for a more general 
representation of hyperparallelepiped loop tiles based on 
bounding hyperplanes.) 
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(L , 
11 

(l , L ) 
21 22 

L = [ ~11 ~12] 21 22 

Fig. 6. Iteration space partitioning is completely specified by the tile at the 
origin. 

DEFlNmON 1. An l dimensional square integer matrix L de­
fines a semiopen hyperparallelepiped tile at the origin of an 
l dimensional iteration space as follows. The set of iteration 
points included in the tile is 

{xii = t.ai, 4, o s a;< 1} 
where l; is the ith row of L. As depicted in Fig. 6, the rows 

of the matrix L specify the vertices of the tile at the origin. 
Often, we also refer to the partition by the L matrix since 
each of the other tiles is a translation of the tile at the origin. 

EXAMPI.E 4. A rectangular partition can be represented by a 
diagonal L matrix. Consider a three dimensional iteration 
space Ix J x K partitioned into rectangular tiles where each 
tile is of the form by Wo, j, '4,) I O S j < J}. In other words, 
constants i0 and j 0 specify the tile completely. Such a parti­
tion is represented by 

r~ ~ n 
DEFINmON 2. A general tile in the iteration space is a transla­

tion of the tile at the origin. The translation vector is given by 
I 

}:,ti4 
i=I 

where A; is an integer. A tile is completely specified by 
(Ai, ... , ~). For example (0, ... , 0) specifies the tile at the 
origin. 

The rest of this paper deals with optimizing the shape of the 
tile at the origin for minimal communication. Because the 
amount of communication is related to the number of integer 
points within a tile, we begin by proving the following theorem 
relating the volume of a tile to the number of integer points 
within it. This theorem on lattices allows us to use volumes of 
hyperparallelepipeds derived using determinants to determine 
the amount of communication. 

THEOREM I. The number of integer points ( iteration points) in 
tile L is equal to the volume of the tile, which is given by 
ldet LI. 

PROOF. We provide a sketch of the proof; a more detailed 
proof is given in [18]. 

It is easy to show that the theorem is true for an n-dimensional 
semi-open rectangle. For a given n-dimensional semi-open 
hyperparallelepiped, let its volume be V and let P be the 
number of integer points in it. For any positive integer R, it 
can be shown that one can pack R" of these hyperparallele­
pipeds into an n-dimensional rectangle of volume VR and 
number of integer points PR, such that both VR - R"V and 
PR- K'P grow slower than R". In other words, 

VR = K'V + v(R), PR= K'P + p(R) 

where v(R) and p(R) grow slower than R". Now subtracting 
the second equation from · the first one, and noting that 
VR = PR for then-dimensional rectangle, we get, 

V - P == (p(R)- v(R))!K'. 

Given that both v(R) and p(R) grow slower than K', this can 
only be true when V - P = 0 . □ 

PROPOSITION l. The number of integer points in any general 
tile is equal to the number of integer points in the tile at the 
origin. 

PROOF. Straight-forward from the definition of a general tile. □ 

In the following discussion, we ignore the effects of the 
boundaries of the iteration space in computing the number of 
integer points in a tile. As our interest is in minimizing the com­
munication for a general tile, we can ignore boundary effects. 

B. Footprints in the Data Space 

For a system with caches and uniform access memory, the 
problem of loop partitioning is to find an optimal matrix L that 
minimizes the number of cache misses. The first step is to de­
rive an expression for the number of cache misses for a given 
tile L. Because the number of cache misses is related to the 
number of .unique data elements accessed, we introduce the 
notion of a footprint that defines the data elements accessed by 
a tile. The footprints are regions of the data space accessed by 
a loop tile. 

DEFINmON 3. The footprint of a tile of a loop partition with 

respect to a reference A[g(i )] is the set of all data elements 

A[g(i)] of A.for i an element of the tile. 

The footprint gives us all the data elements accessed 
through a particular reference from within a tile of a loop par­
tition. Because we consider homogeneous loop tiles, the num­
ber of data elements accessed is the same for each loop tile. 

We will compute the number of cache misses for the system 
with caches and uniform access memory to illustrate the use of 
footprints. The body of the loop may contain references to 
several variables and we assume that aliasing has been re­
solved; two references with distinct names do not refer to the 
same location. Let A1, A2, •• • , Ax be references to array A 
within the loop body, and let f{A;) be the footprint of the loop 
tile at the origin with respect to the reference A; and let 

f(A1,A2,···•Ax)= LJ f(A;) 
i= l , ... K 
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be the cumulative footprint of the tile at the origin. The number 
of cache misses with respect to the array A is V(Ai, A2, ... , AK)I. 
Thus, computing the size of the individual footprints and the 
size of their union is an important part of the loop partitioning 
problem. 

To facilitate computing the size of the union of the foot­
prints we divide the references into multiple disjoint sets. If 
two footprints are disjoint or mostly disjoint, then the corre­
sponding references are placed in different sets, and the size of 
the union is simply the sum of the sizes of the two footprints. 

However, references whose footprints overlap substantially 
are placed in the same set. 1be notion of uniformly intersect­
ing references is introduced to specify precisely the idea of 
"substantial overlap." Overlap produces temporal locality in 
cache accesses, and computing the size of the union of their 
footprints is more complicated. 

The notion of uniformly intersecting references is derived 
from definitions of intersecting references and uniformly gen­
erated references. 

DEFINITION 4. Two references A[g1(i)] and A[g2 (i)] are said 

to be intersecting if there are two integer vectors 4, ~ such 

that g1(4) = ii½)- For example, A[i + cl, j + c2] and 

AU + c3, i + c4] are intersecting, whereas A[2z1 and 

A[2i + l] are 1u.mintersecting. 

DEFINmON 5. Two references A[g1(i)] and A[g2(i)] are said 
to be uniformly generated if 

g1(T) = iG+ai and giT) = iG+ai 

where G is a linear transformation and a1 and £½ are inte­
ger constants. 

The intersection of footprints of two references that are not 
uniformly generated is often very small. For nonuniformly 
generated references, although the footprints corresponding to 
some of the iteration-space tiles might overlap partially, the 
footprints of others will have no overlap. Since we are inter­
ested in the worst-case communication volume between any 
pair of footprints, we will assume that the total communication 
generated by two nonuniformly intersecting references is es­
sentially the sum of the individual footprints. 

However, the condition that two references are uniformly 
generated is not sufficient for two references to be intersecting. 
As a simple example, A[2i] and A[2i + 1] are uniformly gen­
erated, but the footprints of the two references do not intersect. 
For the purpose of locality optimization through loop partition­
ing, our definition of reuse of array references will combine 
the concept of uniformly generated arrays and the notion of 
intersecting array references. This notion is similar to the 
equivalence classes within uniformly generated references 
defined in [3]. 

DEFINIDON 6. Two array references are unifonnly intersecting 
if they are both intersecting and uniformly generated. 

EXAMPLE 5. The following sets of references are uniformly 
intersecting. 
l)A[i,J1, A[i + 1,j- 3], A[i,j + 4]. 

2) A{2j, 2, i], A[2j - 5, 2, i], A[2j + 3, 2, iJ. 
The following pairs are not uniformly intersecting. 

1) A[i,Jl, A[2i,1l 
2) A[i, 11, A[2i, 2)1. 
3) AU, 2, i], AU, 3, i]. 
4) A[211, A[2i + IJ. 
5) A{i + 2, 2i + 4], A[i + 5, 2i + 8]. 
6) A[i,J1, B[i,J1, 

Footprints in the data space for a set of uniformly intersect­
ing references are translations of one another, ~ sh~wn below. 
The footprint with respect to the reference ,G. a, ) 1s a transla­
tion of the footprint with respect to the reference (G, ii,), 
where the translation vector is a, -a,. 
PROPOSITION 2. Given a loop tile at'tfie origin L and references 

r = (G, a,) ands = (G, a,) belonging to a uniformly gen­
erated set defined by G, let ft.r) denote the footprint ofL with 
respect to r, and let f(s) denote the footprint of L with respect 
to s. Thenf(s) is simply a translation off(r), where each point 
of ft.s) is a translation of a corresponding point of ft.r) by an 
amount given oy the vector ( a, - a,). In other words, 

f(s) = f(r)+(a, - a,) 

This follows directly from the definition of uniformly gen­
erated references. Recall that an element i of the loop tile is 
mapped by the reference (G, a, ) to data element 

J, = iG+a, , and by the reference (G, a,) to data element 

J, = TG+a, . 1be translation vector, (d, - d,), is clearly in­

dependent of T . 
The volume of cache traffic imposed on the network is re­

lated to the size of the cumulative footprinL We describe how 
to compute the size of the cumulative footprint in the follow­
ing two sections as outlined below. 

• First, we discuss how the size of the footprint for a single 
reference within a loop tile can be computed. In general, 
the size of the footprint with respect to a given reference 
is not the same as the number of points in the iteration 
space tile. 

• Second, we describe how the size of the cumulative foot­
print for a set of uniformly intersecting references can be 
computed. The sizes of the cumulative footprints for each 
of these sets are then summed to produce the size of the 
cumulative footprint for the loop tile. 

C. Size of a Footprint for a Single Reference 

This section shows how to compute the size of the footprint 
(with respect to a given reference and a given loop tile L) ef­
ficiently for certain common cases of G. The general case of G 
is dealt with in Section V. We begin with a simple example to 
illustrate our approach. 

EXAMPLE 6 
Doall (h0:99, j =0 :99) 

A[ i ,j]=B[i+j,j] +B [ i +j+1 , j +2] 

bclDo&ll 

The reference matrix G is 
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Let us suppose that the loop tile at the origin L is given by 

Fig. 7 shows this tile at the origin of the iteration space and 
the footprint of the tile (at the origin) with respect to the refer­
ence B[i + j,J1 is shown in Fig. 8. The matrix 

r(B[i+ i, iD =LG= [t ~] 
describes the footprint As shown later, the integer points in the 
semi open parallelogram specified by LG is the footprint of the 
tile and so the size of the footprint is ldet(LG)I. We will use D to 
denote the product LG as it appears often in our discussion. 

The rest of this subsection focuses on deriving the set of con­
ditions under which the footprint siz.e is given by ldet{D)L Briefly, 
we show that G being unimodular is a sufficient (but not neces­
sary) condition. The next section derives the sire of the cumula­
tive footprint for multiple uniformly intersecting references. 

In general, is the footprint exactly the integer points in D = 
LG? If not, how do we compute the footprint? The first ques­
tion can be expanded into the following two questions. 

• • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • • • (L1,L1) 

• • 
• • 
• • 
• • 
• • 
• • 

Fig. 7. Tile Lat the origin of the iteration space. 

• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • 

(2L_. L 1) 

• • • • • 
• • • • • • • • • 
• • • • • • • 

• • • • • • • 
• • • • • • • • • • 

• • • • • • • • • • • (L 2 • 0) 

Fig. 8. Footprint of L wrt B{i + j ,Jl in the data space. 

• Is there a point in the footprint that lies outside the hy­
perparallelepiped D? It follows easily from linear algebra 
that it is not the case. 

• Is every integer point in D an element of the footprint? It 
is easy to show this is not true and a simple example cor­
responds to the reference A[21l 

We first study the simple case when the hyperparallelepiped 
D completely defines the footprint. A precise definition of the 
set S(D) of points defined by the matrix D is as follows. 

DEFINIDON 7. Given a matrix D whose rows are the vectors 

it 1 ~ i ~ m, S(D) is defined as the set 

{xix= a,_dl +11idi + ... +amdm, 0 ~a;< 1}. 
S(D) defines all the points in the semi open hyperparal­
lelepiped defined by D. 

So for the case where D completely defines the footprint, 
the footprint is exactly the integer points in S(D). One of the 
cases where D completely defines the footprint, is when G is 
unimodular as shown below. 

LEMMA 1. The mapping ~ 1 
- ~ as defined by G is one to 

one if and only if the rows of G are independent. Further, 
the mapping of the iteration space to the data space (Z- Z') 
as defined by G is one to one if and only if the rows of G 
are independent . 

PROOF. ~G = ~G implies ~ = ~ if and only if the only solu­

tion to iG = 0 is O . The latter implies that the nullspace of 
GT is of dimension 0. From a fundamental theorem of linear 
algebra [19}, this means that the rows of G are linearly in­
dependent. It is to be noted that when the rows of G are not 
independent there exists a nontrivial integer solution to 
iG = 0, given that the entries in Gare integers. This proves 

the second statement of the lemma. D 

LEMMA 2. The mapping of the iteration space to the data 
space as defined by G is onto if and only if the columns of 
G are independent and the g.c.d. of the subdetenninants of 
order equal to the number of columns is 1. 

PROOF. Follows from the Hermite normal form theorem as 
shown in [20}. D 

LEMMA 3. If G is invertible then d E LG if and only if 
JG-1 EL . 

PROOF. Clearly G is invertible implies, 

de LG⇒dG-1 eLGG-1 = L 

Also, 

G is invertible implies that the rows of G are independent 
and hence the mapping defined by G is one to one from 
Lemma 1. D 

THEoREM 2. The footprint of the tile defined by L with respect 
to the reference G is identical to the integer points in the 
semi open hyperparallelepiped D = LG ifG is unimodular. 
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PROOF. It is immediate from Lemma 2 that G is onto when it is 
unimodular. G is onto implies that every data point in D has 
an inverse in the iteration space. Can the inverse of the data 
point be outside of L? Lemma 3 shows this is not possible 
since G is invertible. D 

We make the following two observations about Theorem 2. 

• G is unimodular is a sufficient condition; but not neces­
sary. An example corresponds to the reference A[i + Jl 
Further discussions on this is contained in Section V. 

• One may wonder why G being onto is not sufficient for 
D to coincide with the footprint. Even when every integer 
point in D has an inverse, it is possible that the inverse is 
outside of L. For example, consider the mapping defined 
by the G matrix 

corresponding to the reference A[4i + S;l It is onto as 
shown by Lemma 2. However, we will show that not all 
points in LG are in the footprint. Consider, 

L = [lOO O ]. 
0 100 

LG defines the interval (0, 900) and so it includes the 
data point (I). But it can be shown that none of the in­
verses of the data point (1) belong to L; (-1, 1) is an in­
verse of (1 ). The same is true for the data points 
(2),(3),(6),(7), and (11). The one to one property of G 
guarantees that no point from outside of L can be 
mapped to inside of D. The reason for this is that the one 
to one property is true even when G is treated as a func­
tion on reals. 

Let us now introduce our technique for computing the cu­
mulative footprint when G is unimodular. Algorithms for 
computing the size of the individual footprints and the cumu­
lative footprint when G is not unimodular are discussed in 
Section V. 

D. Size of the Cumulative Footprint 

The size of the cumulative footprint F for a loop tile is 
computed by summing the sizes of the cumulative footprints 
for each of the sets of uniformly intersecting references. This 
section presents a method for computing the size of the cumu­
lative footprint for a set of uniformly intersecting references 
when G is unimodular, that is, when the conditions stated in 
Theorem 2 are true. More general cases of G are di.scussed in 
Section V . We first describe the method when there are exactly 
two uniformly intersecting references, and then develop the 
method for multiple references. 

Cumulative Footprint for Two References. Let us start by 
illustrating the computation of the cumulative footprint for 
Example 6. The two references to array B form a uniformly 
intersecting set and are defined by the following G matrix. 

Let us suppose that the loop partition L is given by 

[½I ½2]. 
½1 ½2 

Then D is given by 

[
½I +½2 ½2]. 
½t +Li.2 ½2 

The parallelogram defined by D in the data space is the paral­
lelogram ABCD shown in Fig. 9. ABCD and EFGH shown in 
Fig. 9 are the footprints of the tile L with respect to the two 

references (B[i + j, ;1 and B[i + j + I, j + 2], respective!_}') to 
array B. In the figure, AB = (Li 1+li2,li2 ), AD ;:. 

(Li_1 +Li_i, Li_i), and AE = (1, 2). 

• • • • • • • • • • • • • • • • • • g V 

• • • • • • 
• • • • • • • 

• • • • • • • • • • • • • • • 
Fig. 9. Data footprint wrt B(i + j,Jl and B[i + j + l,j + 2). 

The size of the cumulative footprint is the size of footprint 
ABCD plus the number of data elements in EPDS plus the 
number of data elements in SRGH. Given that G is unimodu­
lar, the number of data elements is equal to the area ABCD + 
SRGH + EPDS = ABCD + ADST + CDUV - SDUH. Ignoring 
the area SDUH, we can approximate the total area by 

The first term in the above equation represents the area of 
the footprint of a single reference, i.e., ldet(D)I. It is well 
known that the area of a parallelogram is given by the de­
terminant of the matrix specifying the parallelogram. The 
second and third terms are the determinants of the D matrix 
in which one row is replaced by the offset vector ii = (l, 2). 
Fig. 10 is a pictorial representation of the approximation. 
The first term is the parallelogram ABCD and the second and 
third terms are the shaded regions. 

Ignoring SDUH is reasonable if we assume that the offset 
vectors in a uniformly intersecting set of references are small 
compared to the tile size. We refer to this simplification as the 
overlapping subtile approximation. This approximation will 
result in our estimates being higher than the actual values. Al­
though one can easily derive a more exact expression, we use 
the overlapping subtile approximation to simplify the compu­
tation. Fig. 16 in Section VII further demonstrates that the 
error introduced is insignificant, especially for parallelograms 
that are near optimal. 
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• • • • • • • • • • • • • • • • • • 
• • • • • • 
• • • 
• • • • 
• • 

• • • • • • • ,. 

" 

• • • 
• • • 
• • • 

• • • • • • • 

Fig. 10. Difference between the cumulative footprint and the footprint 

- Ne9. Neighbours along l . 

- Pos. Neighbours a.long 1 : 

- Neq. Neiqhhours along l : 

- Poa. Neighbour• alon.~ l ~ 

The following expression captures the size of the cumula- . _ 
live footprint for the above two references in which one of the 
offset vectors is (0, 0): Fig. 11. Neighboring tiles. 

d 

jdetDj+ 1:ldetDk➔al 
k=I 

where, D • .:...;; is the matrix obtained by replacing the kth row 
ofD by ii. 

If both the offset vectors are nonzero, because only the 
relative position of the two footprints determines the area of 
their non-overlapping region, we use a == a1 - iio in the above 
equation. The following discussion formalizes this notion and 
extends it to multiple references. 

Cumulative Footprint for Multiple References. The basic 
approach for estimating the cumulative footprint size involves 
deriving an effective offset vector a that captures the com­
bined effects of multiple offset vectors when there are several 
overlapping footprints resulting from a set of uniformly inter­
secting references. First, we need a few definitions. 

DEF1NmON 8. Given a loop tile L, there are two neighboring 

loop tiles along the ith row of L defined by {y I y == i + ~, 

i e tile L} and {y I y == i -t i e tile L}, where ~ is the ith 

row of L,for l $ i $ l. We refer to the former neighbor as the 
positive neighbor and the latter as the negative neighbor. We 
also refer to these neighbors as the neighbors of the parallel 
sides of the tile determined by the rows ofL, excluding the ith 
row. Fig. 11 illustrates the notion of neighboring tiles. 

The notion of neighboring tiles can be extended to the data 
space in like manner as follows. 

DEFINITION 9. Given a loop tile Land a reference (G, ii,), the 

neighbors of the data footprint of L along the kth row of 

D = LG are {yly == i+d1 , i e D+ar} and {yly == i-d., 
i e D+a,}, where dk is the kth row ofD,for 1 $ k $ d. 

DEFINITION 10. Given a tile L, L' is a subtile wrt the ith row of 
L if the rows ofL' are the same as the rows ofL except for 
the ith row which is a times the ith row of L, 0 $ a $ 1. 

The approximation of the cumulative footprint in Fig. 10 
can be expressed in terms of subtiles of the tile in the data 

space. ABCD is a tile in the data space and the two shaded 
regions in Fig. 10 are subtiles of neighboring tiles containing 
portions of the cumulative footprint. One can view the cumu­
lative footprint as any one of the footprints together with 
communication from the neighboring footprints. The approxi­
mation of the cumulative footprint expresses the communica­
tion from the neighboring tiles in terms of subtiles to make the 
computation simpler. 

DEFINITION 11. Let L be a loop tile at the origin, and let 

g(i) = i G +ii,, 1 $ r ~ R be a set of uniformly intersecting 

references. For the footprint of L with respect to reference 
(G, ii,), communication along the positive direction of the 

kth row of D is defined ~ the smallest sub tile of the posi­
tive neighbor along the kth row of the footprint which con­
tains the elements of the cumulative footprint within that 
neighbor. Communication along the negative direction is 
defmed similarly. Communication along the kth row is the 
sum of these two communications. Each row of D defines a 
pair of parallel sides (hyperplanes) of the data footprint 
determined by the remaining rows ofD. We sometimes refer 
to the communication along the kth row as the communica­
tion across the parallel sides ofD defined by the kth row. 

The notion of the communication along the rows of D facili-· 
tales computing the size of the cumulative footprint. Consider 
the data footprints of a loop tile with respect to a set o_! u~­

formly intersecting references shown in Fig. 12. Here d1, d2 

correspond to the rows of the matrix D = LG. The vectors 
ii1, .•• , as, are the offset vectors corresponding to the set of 

uniformly intersecting references. The cumulative footprint 
can be expressed as the union of any one of the footprints and 
the remaining elements of the cumulative footprint. We take 
the union because a given data element needs to be fetched 
only once into a cache. 

In Fig. 12, the cumulative footprint is the union of the foot­
print of the loop tile with respect to ii4 and the shaded regions 

corresponding to the remaining elements of the cumulative 
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··············································· ·•·' 

,C7 - Pootprlnt. of a 
1 

LC7 - rootprUlt of • 2 

~ _ rootprln.t of a , ,C7 • Poot.print of • • ""1IT - Foot.print of a , 

Fig. 12. Cumulative footprint. 

footprint resulting from the other refere_nces. The area of the 
shaded region can be approximated by the sum of communi-

cation along the kth row for I S k ~ 2 as shown in Fig. 13. The 
area of the communication along d2 is equal to the area of the 

parallelogram whose sides are di and a5 - a4 . Among the off­

set vectors, vector ii5 has the maximum component along d2 

and vector a4 has the minimum (taking the sign into account) 

component along d2 . Similarly the area of the communication 

along d1 is equal to the area of the parallelogram whose sides 

are d2 and a4 - a1 plus the area of the parallelogram whose 

sides are d2 and ii5 - a4 . This is equal to the area of the paral­

lelogram whose sides are d2 and a5 - a1 . As before among the 
offset vectors, vector a5 has the maximum component along 

d1 and vector ii1 has the minimum (taking the sign into ac­

count) component along di . This observation is used in the 
proof of Theorem 3. It turns out that the effect of offset vector 
ii5 - iii along d2 and ii5 - ii4 along d1 can be captured by a 
single vector a as shown later. 

PROPOSITION 3. Let L be a loop tile at the origin, and let 

g(i) = i G +a") be a set of uniformly intersecting refer­

ences. The volume of communication along the kth row of 

D, I S k S d, is the same for each of the footprints 
(corresponding to the different offset vectors). 

Communication along the positive and negative directions will 
be different for different footprints. But the total communica­
tion along the kth row, J S k S d, is the same for each of the 
data footprints. 

We now derive an expression for the cumulative footprint 
based on our notion of communication across the sides of the 
data footprint. Our goal is to capture in a single offset vector 
a the communication in a cache-coherent system resulting 
from all the offset vectors. More specifically, we would like 
the kth component of a to reflect the communication per 
unit area across the parallel sides defined by the kth row of 
D. The effective vector a is derived from the spread of a set 

of offset vectors. 

:.:: ••••• _/ - C:oaaw:aication along d 2 

0 • c~c:atlon along d 1 

Fig. 13. Communication from neighboring tiles. 

DEFINITION 12. Given a set of d-dimensional offset vectors a,, 
1 Sr SR, spread (a1, . .. , aR) is a vector of the same dimen­
sion as the offset vectors, whose kth component is given by 

max(a,.k)-min(a,.k), Vk E 1, .... d. 
r r 

In other words, the spread of a set of vectors is a vector in which 
each component is the difference between the maximum and min­
imum of the corresponding components in each of the vectors. 

For caches, we use the max - min formulation (or the 
spread) to calculate the amount of communication traffic 
because the data space points corresponding to the footprints 
whose offset vectors have values between the max and the 
min lie within the cumulative footprint calculated using the 
spread.2 

The spread as defined above does not quite capture the 
properties that we are looking for in a single offset vector ex­
cept when D is rectangula,. If D is not rectangular, the kth 
component of spread (a) does not reflect the communication 
per unit area across the parallel sides defined by the kth row of 
D. To derive the footprint component (or subtile) along a row 
of D, we need to compute the difference between the maxi­
mum and the minimum components of the offset vectors using 
D as a basis. Therefore, we extend the notion of spread to a 
general basis as follows. Recall that D is a basis for the data 
space when G is unimodular. 

In the definition below, b, is the representation of offset 

vector a, using D as the basis. 

DEFINITION 13. Given a set of offset vectors a,, 1 S r_ :S: R, let 
- I • - -
b, = a,D- , Vr E I, ... , Rand let b be spread(b1, ... , bR)-

Then 

a= spread0 (ii1, ... , iiR) = bD. 
Looking at the special case where D is rectangular helps in 

understanding the definition. 

PROPOSITION 4 . /fD is rectangular then 

lZ = spread(ii1, ... , iiR) = spreado(ii, . .. . , aR) 

2. For data panitioning. however, the formulation must be modified a.< dis­
cussed in Section VI.C. 
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In other words, 

ak = max(a,,k}-min(a,k}, '</k El, .. . d. 
r r ' 

For example, spread1((l, 0), (2, -1)) = (2 - I, 0- I) = (1, 1). 

For D = [~ :] , the spread is given by, 

spreado((l, 0), (2, -1)) = spread((l, 0) 0-1
, (2, - 1) 0-1

) D = (1, 3) 

LEMMA 4. Given a hyperparallelepiped tile L, and a set of uni­

formly intersecting references g( i) = f G + ii,, where G is uni­

modular, the communication along the kth row ofD = LG is 
d 

. I,ldetDt➔al 
k=I 

where a= spreado(ii1, ... , iiR) and Dk➔a is the matrix 

obtained by replacing the kth row of D by a . 
PROOF. Straight-forward from the definition of spread and the 

definition of communication along the kth row. D 
THEoREM 3. Given a hyperparallelepiped tile L and a uni­

modular reference matrix G, the size of the cumulative 
footprint with respect to a set of uniformly intersecting ref­
erences specified by the reference matrix G and a set of off­
set vectors iii, ... , iiR, is approximately 

d 

ldet Dj + I,ldet D k➔al 
k=I 

where a= spreado(a1, ... , aR) and Dk➔o is the matrix 
obtained by replacing the kth row of D by a . 

PROOF. As observed earlier, the size of the cumulative foot­
print is approximately the size of any of the footprints plus 
the communication across its sides. Clearly the size of any 
one of the footprints is given by ldet DI. The rest follows 
from Lemma 4. D 

Finally, as stated earlier, the total communication generated 
by nonuniformly intersecting sets of references is essentially 
the sum of the communicating generated by the individual cu­
mulative footprints. Example 8 in Section IV.E discusses an 
instance of such a computation. 

E. Minimizing the Size of the Cumulative Footprint 

We now focus on the problem of finding the loop partition 
that minimizes the size of the cumulative footprint The overall 
algorithm is swnmarized in Table I. The minimization of C, 
the communication is done using standard optimization algo­
rithms including numerical techniques. 

Let us illustrate this procedure through the following two 
examples. 

EXAMPLE 7. 

Doall (i=l:N, j=l:N, k=l:N) 
A[i,j,k) =B[i-1,j,k+l]+B[i,j+l, k]+B[i+l,j- 2,k-3] 

BndJ>oall 

Here we have two uniformly intersecting sets of references: 
one for A and one for B. Let us look at the class corresponding 

TABLE! 
AN ALGoRITHM FOR MINIMIZING CUMUUTIVE FoorPRINT SIZE FOR A SINGLE 

SET OF UNIR>RML Y iNrERsEcrING REFERENCES 

Given: G, offset vector.; ii .... . ii 

Goal: Find L to minimize cumulative footprint size 

Procedure: WriteD = LG 
Find b,, ... , b. = ii,D-,, ... , ii,D-, 
Find b = spread(b,, ... , b•) 

Then, write a = bD 
Communication c = Jdet!JI+ l....,, ,Jde!U, __ f 
Finally, find the parameters of L that minimize C 

For multiple unifonnly llllersectrng sets, add~ communzcatlQn comp<>nent 
due to each set and then detennitie L that minimizes the sum. 

to B since it is more instructive. Because A has only one refer­
ence, whose G is unimodular, its footprint size is independent 
of the loop partition, given a fixed total size of the loop tile, 
and therefore need not figure in the optimization process. The 
G matrix corresponding to the references to B is, 

[~ ! ~] 
The a vector is (2, 3, 4). Consider a rectangular partition L = 
A given by 

[~ : ~i 
0 0 Lk 

In this example, the D matrix is the same as the L matrix. Be­
cause Dis rectangular, we can apply Proposition 4 in simplify­
ing the derivation of a . The size of the cumulative footprint 
for B can now be computed according to Theorem 3. as 

L; Li Lt + 24 Lt + 3L; Lt + 4L; Li 
This expression must be minimized keeping I det L I (or the 

product L; 4 LJ a constant The product represents the area of 
the loop tile and must be kept constant to ensure a balanced load. 
The constant is simply the total area of the iteration space di­
vided by P, the number of processors. For example, if the loop 
bounds are /, J, and K, then we must minimize L; L; Lk + 2L; 4 
+ 3L, 4 + 4.L; L1, subject to the constraint L; 4 4 = /JK IP. 

This optimization problem can be solved using standard 
methods, for example, using the method of Lagrange multipli­
ers [21]. The size of the cumulative footprint is minimized 
when L;, 4, and L1: are chosen in the proportions 2, 3, and 4, or 

L; : Li : L. :: 2 :3: 4 
This implies, 

L; = (/JK/3P)w, L; = (3l2)(/JK/3P)113
, and L1: = 2 (/JK/3P)113

• 

Abraham and Hudak's algorithm (7] gives an identical parti­
tion for this example. 

We now use an example to show how to minimize the total 
number of cache misses when there are multiple uniformly 
intersecting sets of references. The basic idea here is that the 
references from each set contribute additively to traffic. 
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EXAMPLE 8. 
Doall (i=l:N, j=l:N) 

A(i,j)=B(i-2,j)+B(i,j-l)+C(i+j-l,j)+C (i+j+l,j+3) 
Bndl>oall 

There are three uniformly intersecting classes of references, 
one for B, one for C, and one for A. Because A has only one 
reference, its footprint size is independent of the loop partition, 
given a fixed total size of the loop tile, and therefore need not 
figure in the optimization process. 

For simplicity, let us assume that the tile L is rectangular 
and is given by 

Because G for the references to array B is the identity matrix, the 
D = LG matrix corresponding to references to B is same as L, and 
the a vector is spread(- 2, 0), (0, - 1)) = (2, 1). Thus, the size of 
the corresponding cumulative footprint according to Theorem 3 is 

I; :1+1o ~H; ~-
Similarly, D for array C is 

The data footprint D is not rectangular even though the loop tile 
is. Using Definition 13, a= spread0 ((-l, 0), (1, 3)) = (4, 3), 
and the size of the cumulative footprint with respect to C is 

I~ :H~ ~l+t ~-
The problem of minimizing the sire of the footprint reduces 

to finding the elements of L that minimizes the sum of the two 
expressions above subject to the constraint the area of the loop 
tile ldet LI is a constant to ensure a balanced load. For example, 
if the loop bounds are/, J, then the constraint is ldet LI = / J/P, 
where P is the number of processors. 

The total size of the cumulative footprint simplifies to 
2L1Li + 4L1 + 31.i. The optimal values for L1 and Li can be 
shown to satisfy the equation 4L1 = 3Li using the method of 
Lagrange multipliers. 

V. GENERAL CASE OF G 

This section analyzes the size of the footprint and the cumu­
lative footprint for a general G, that is, when G is not re­
stricted to be unimodular. The computation of the size of the 
footprint is by case analysis on the G matrix. 

A. G Is Invertible, but not Unimodular 

G is invertible and not unimodular implies that not every 
integer point in the hyperparallelepiped D is an image of an 
iteration point in L. A unit cube in the iteration space is 
mapP.Cd to a hyperparallelepiped of volume equal to ldet GI. 
So the size of the data footprint is ldet D/det GI = ldet LI. 
When G is invertible the , sire of the data footprint is exactly 
the size of the loop tile since the mapping is one to one. 

Next, the expression for the size of the cumulative footprint 
is very similar to the one in Theorem 3, except that the data 
elements accessed are not dense in the data space. That is, the 
data space is sparse. 

LEMMA 5. Given an iteration space I, a reference matrix G, 
and a hyperparallelepiped D1 in the data space, if the verti­
ces of D1G-1 are in I then the number of elements in the in­
tersection of D1 and the footprint of I with respect to G is 
ldet D1/det GI. 

PROOF. Clear if one views D1G-1 as the loop tile L. D 

THEOREM 4 . Given a hyperparallelepiped tile L, and an in­
vertible reference matrix G, the size of the cumulative foot­
print with respect to a set of uniformly intersecting refer­
ences specified by the reference matrix G and a set of offset 
vectors ap ... , QR• is approximately 

jdetDj+ r:JdetDk➔al 
ldetGj 

where a= spread(a1, ••• , aR, D) and Dk➔a is the matrix 
obtained by replacing the kth row of D by a . 

PROOF. Using Lemma 5 one can construct a proof similar to 
that of Theorem 3. D 

Example 2 (repeated below for convenience) possesses a G 
that is invertible, but not unimodular. 

Doall ( i=lOl:200, j=l:100) 
A[i,j)=B[i+j,i-j-l]+B[i+j+4,i-j+3 ) 

SlldJ>oal.l 

For this example, the reference matrix G corresponding to 
array Bis 

·[I 1 ]· 
1 -1 

and the offset vectors are 

iio = (0, - I) and a 1 = (4, 3) 

Let us find the optimal rectangular partition L of the form 

[~; ~J 
The footprint matrix D is given by 

[~ . -~J 
The offset vectors using D as a basis are 

b0 = tioD-1 =(-1/(21,), 1/{2Lj)), 

Ei = a10-1 = (1/(24), 1/(ZLJ). 
The vector b = ( 4/ 4, 0) and the vector 

a= ,;o = (4, 4) 

The size of the cumulative footprint according to Theorem 4 is 
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which is 

44+44 
If we constrain L; 4 = 100 for load balance,. we get L; = 1 and 
L; = 100. This partitioning represents horizontal striping of the 
iteration space. 

B. Columns of G Are Dependent and the Rows Are 
Independent 

We can apply Theorem 4 to compute the size of a footprint 
when the columns of G are dependent, as long as the rows are 
independenL We derive a G' from G by choosing a maximal 
set of independent columns from G, such that G' is invertible. 
We can then apply Theorem 4 to compute the size of the foot­
print as shown in the following example. 

EXAMPLE 9. Consider the reference A[i, 2i, i + 11 in a doubly 
nested loop. The columns of the G matrix 

[~ ~ :] 
are not independent. We choose G' to be 

Now D' = LG' completely specifies the footprint The size of 
the footprint equals ldet D'I = ldet LL If we choose G' to be 

[~ ;J 
then the size of the footprint is ldet D'V2 for the new D' 
since ldet G'I is now 2. But both expressions evaluate to the 
same value, ldet LI, as one would expect. 

C. The Rows of G Are Dependent 

The rows of G are dependent means that the mapping from 
the iteration space to the data space is many to one. It is hard 
to derive an expression for the footprint in general when the 
rows are dependenL However, we can compute the footprint 
and the cumulative footprint for many special cases that arise 
in actual programs. In this section we shall look at the common 
case where the rows are dependent because one or more of the 
index variables do not appear in the array reference. We shall 
illustrate our technique with the matrix multiply program 
shown in Example 10 below. The notation 1$C [ i, j J means 
that the read-modify-write of C [ i , j J is atomic. 

ExAMPLE 10. 

Doall (i=O:N, j=O :N, k=O:N) 
1$C[i,j ] =l$C [ i, j ]+A[i,k]+B[k, j ) 

lbldDoall 

The references to the matrices A, B, and C belong to sepa­
rate uniformly intersecting references. So the cumulative foot­
print is the sum of the footprints of each of the references. We 

will focus on A [ i , k J and footprint computation for the other 
references are similar. The G matrix for A [ i , k J is 

We cannot apply our earlier results to compute the footprint 
since G is a many to one mapping. However, we can find an 
invertible G' such that for every loop tile L, there is a tile L' 
such that the number of elements in footprints LG and LG' are 
the same. For the current example, G' is obtained from G by 
deleting the row of zeros, resulting in a two dimensional 
identity matrix. Similarly L' is obtained from L by eliminating 
the corresponding (second) column of L. Now, it is easy to 
show that the number of elements in footprints LG and LG' 
are the same by establishing a one-to-one correspondence be­
tween the two footprints. Let us use this method to compute 
the size of the footprint corresponding to the reference 
A [ i , kl . Let us assume that L is rectangular to make the 
computations simpler. Let L be 

[
~ ~j ~ ]· 

O O 4 
NowL' is 

[~ ~ ]· 
0 Lk 

So the size of the footprint is L;4. Similarly, one can show that 
the size of the other two footprints are L;Li and 4Lt• The cumu­
lative footprint is LiLt + L;L1 + L;4 which is minimiud when 
Li, 4, and 4 are equal. 

VI. OTHER SYSTEM ENVIRONMENTS 

This section describes how our framework can be used to 
solve the partitioning problem in a wide range of systems in­
cluding those with coherent caches, distributed-memory, and 
non-unit cache line sizes. 

A. Coherence-Related Cache ~ 

Our analysis presented in the previous section was con­
cerned with minimizing the cumulative footprint size. This 
process of minimizing the cumulative footprint size not only 
minimizes the number of first-time cache misses, but the num­
ber of coherence-related misses as well. For example, consider 
the forall loop embedded within a sequential loop in Exam­
ple 11. Here forall means that all the reads are done prior to 
the writes. In other words the data read in iteration t corre­
sponds to the data written in iteration t - 1. 

EXAMPLE 11. 

Doseq (t=l:T) 
forall (i=l:N, j =l:N) 

A( i , j ) =A( i+l , j) 
todDoall 

:sndI>oaeq 
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For this example, we have 

G=[~ ~] 
Let us attempt to minimize the cumulative footprint for a loop 
partition of the form 

=[4 O] L O L-
1 

The cumulative footprint size is given by 

44+Li 
In a load-balanced partitioning, ldet LI = L; 4 is a constant, so 

the L; 4 tenn drops out of the optimization. 1be optimization 
process then attempts to minimize 4, which is proportional to 
the volume of cache coherence traffic, as depicted in Fig. 14. 

Z Y X Z 

□ □□ 00 ~ ~ 
Footprint of 
A{i,j] 

Cumulative 
Footprint of 
A{i,i], A[!+ 1,j] 

Fig. 14. (a) Footprint of reference A[i, ;l for a rectangular L. (b) Cumulative 
footprint for the references A[i,Jl and A[i + I, ;l. The~ region Z repre­
sents the increase in footprint size due to the reference A[, + 1, Jl- (c) The 
regions X, Y. z. collectively represent the cumulative footprint for references 
A[i, ;1 and A(i + l , ;1- Region Z represents the area in the ~ space shared 
with the positive neighbor. Region Y represents the area m the data space 
shared with the negative neighbor. 

Let us focus on regions X, Y, and Z in Fig. 14c. As ex­
plained in Fig. 13, the processor working on the loop tile to 
which these regions belong (say, processor Po) shares a por­
tion of its cumulative footprint with processors working on 
neighboring regions in the data space. Specifically, region Z is 
a subtile of the positive neighbor and region Y is a subtile 
shared with its negative neighbor. Region X, however, is 
completely private to Po-

Let us consider the situation after the first iteration of the 
outer sequential loop. Accesses of data elements within region 
X will hit in the cache, and thereby incur zero communication 
cost. Data elements in region Z, however, potentially cause 
misses because the processor working on the positive neighbor 
might have previously written into those elements, resulting in 
those elements being invalidated from Po's cache. Each of 
these misses by processor PO suffers a network round trip be­
cause of the need to inform the processor working on its posi­
tive neighbor to perform a write-back and then to send the data 
to processor P 0 . Furthermore, if the home memory location for 
the block is elsewhere, the miss requires an additional network 
round-trip. Similarly, in region Y, a write by processor Po po­
tentially incurs two network round trips as well. The two round 
trips result from the need to invalidate the data block from the 
cache of the processor working on the negative neighbor, and 

then to fetch the blocks into Po's cache. 
In any case, the coherence traffic is proportional to the area 

of the shared region 'Z, which is equal to the area of the shared 
region Y, and is given by 4. So the total communication is 
minimized by choosing the tile with Lj = I. 

B. Effect of Cache Line Size 
The effect of cache line sizes can be incorporated easily into 

our analysis. Because large cache lines fetch mul~ple d~ta 
words at the cost of a single miss, one data space d1mens1on 
will be favored by the cache. Without loss of generality, let us 
assume that the jth dimension of the data space benefits from 
larger cache lines. Then, the effect of cache lines of size B can 
be incorporated into our analysis by replacing each element dij 

in the jth column of D in Theorem 3 by 

r~ l 
to reflect the lower cost of fetching multiple words in the jth 
dimension of the data space3, and by modifying the definition 
of intersecting references to the following. 

DEFINm0N 14. Two references A[g1(i)] and A[g2 (i)~ a~e 

said to be intersecting if there are two integer vectors i1 , ½ 
for which A[g1(~)] = A[(d11 , d12, ... )] and A(g2(li)] 

= A[("21, dzi_, ... )] such that A[( . . . , diu -1>• [ ¥ l,---)l 
- A[( d . r~1 )] where B is the size oif a cache 
- · · ·• 2(1- I ) • - ll • • · • ' 

line, and the jth dimension in the data space benefits from 
larger cache lines. 

C. Data Partitioning 

In systems in which main memory is distributed with the 
processing nodes (e.g., see Fig. 5), data partitioning is the 
problem of partitioning the data arrays into data til~s and the 
nested loops into loop tiles and assigning the loop tiles to the 
processing nodes and the corresponding data tiles to memo? 
modules associated with the processing nodes so that a maxi­

mum number of the data references made by the loop tiles are 
satisfied by the local memory module. Our formulation facili­
tates data partitioning straightforwardly. There are two cases to 
consider: systems with caches and systemS without caches. 

C. l. Systems with Caches 

The data partitioning strategy in distributed shared-memory 
systems with caches (Fig. 5a) proceeds as follows. The opti~ 
loop partition L is first derived by minimizing the cumulative 
footprint size as described in the previous sections. 

Data partitioning requires the additional derivation of the 
optimal data partition D for each class of uniformly intersect­
ing references from the optimal loop partition L. We derive 
the shapes of the data tiles D for each G corresponding to a 
specific class of uniformly intersecting references. A specific 
data tile is chosen from the footprints corresponding to each 

3. We note that the estimate of cumulative footprint size will be slightly in­
accurate if the footprint is misaligned with the cache block. 
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reference in an uniformly intersecting set In systems with 
caches, the choice of a specific footprint does not matter, be­
cause each data element in the footprint results in a single 
miss. We then place each loop tile with the data tiles accessed 
by it on the same processing node. 

As an example, let us work out the optimal data partitioning 
for Example 2. The optimal loop partition for this example 
was worked out in Section V.A. The optimal L was shown to 
stripe the iteration space horizontally and was given by 

[:oo ~] 
The corresponding footprint D = LG represents a diagonal 
striping of the data space and is given by 

[
100 100] 
1 -1 

Thus, for this example, if diagonal tiles of data (as depicted 
in Fig. 15) are placed in the memory modules close to the 
processors with the corresponding iteration tiles, cache misses 
will be satisfied completely within the node. This data partition 
thus represents a communication-free data partition. 

Diagonal tiling 
of the data space 

Fig. 15. A communication-free data partition. 

Interestingly, because G for this example is not unimodular (its 
determinant is 2), not all data space points are accessed. In the 
figure, the shaded points represent the untouched data elements. 

When a program has multiple loops that access a given data 
array, the possibility of the loops imposing conflicting data 
tiling requirements arises. An algorithm for partitioning loops 
and data in this situation is developed in [ 15). 

C.2. Systems without Caches 

The compiler has two options to optimize communication 
volume in systems without caches. The compiler can choose to 
make local copies of remote data, or it can fetch remote data 
each time the data is needed. In the former case, the compiler 
can use the same partitioning algorithms described in this pa­
per for systems with caches, but it must also solve the data 
coherence problem for the copied data. This section addresses 
the latter case. 

Although the overall data partitioning strategy remains 
largely the same as described in the previous section, we must 

make one change in the footprint size computation to reflect 
the fact that a given data tile is placed in local memory and 
data elements from neighboring tiles have to be fetched from 
remote memory modules each time they are accessed. Because_ 
data partitioning for distributed-memory systems without 
caches (see Fig. 5b) assumes that data from other memory 
modules is not dynamically copied locally (as in systems with 
caches), we replace the max - min formulation by the cumula­
tive spread a• of a set of unifonnly intersecting references. 
That is 

a• = cumulativespread0 (a1, •.• , aR) == b+D, 

in which the kth element of b • is given by, 

b; = Ll[b,..t - med,(b,,1 )]1, Vk EI, . .. , d, 
r 

where b, = a,0-1
, "tr e 1, ... , R; and med,{,,b,... k) is the me­

dian of the offsets in the kth dimension. The rest of our frame­
work for minimizing the footprint size applies to data partition- · 
ing if a is replaced by a•. 

The data partitioning strategy proceeds as follows. As in loop 
partitioning for caches, for a given loop tile L, we first write an 
expression for the communication volume by deriving the size of 
that portion of the cumulative footprint not contained in local 
memory. This communication volume is given by 

d 

rldetDk➔a· I 
k=I 

We then derive the optimal L to minimize this communication 
volume. We then derive the optimal data partition D for each 
class of unifonnly intersecting references from the optimal 
loop partition L as described in the previous section on sys­
tems with caches. A specific data tile is chosen from the foot­
prints corresponding to each reference in an unifonnly inter­
secting set In systems without caches, because a single data 
element might have to be fetched multiple times, the choice of 
a specific data footprint does matter. A simple heuristic to 
maximize the number of local accesses is to choose a data tile 
whose offsets are the medians of all the offsets in each dimen­
sion. We can show that using a median tile is optimal for one­
dimensional data spaces, and close to optimal for higher di­
mensions. However, a detailed description is beyond the scope 
of this paper. We then place each loop tile with the corre­
sponding data tiles accessed by it on the same processor. 

VIl. IMPLEMENTATION AND REsULTS 

This paper presents cumulative footprint size measurements 
from an algorithm simulator and execution time measurements 
from an actual compiler implementation on a multiprocessor. 

A. Algorithm Simulator Experiments 

We have written a simulator of partitioning algorithms that 
measures the exact cumulative footprint size for any given 
hyperparallelepiped partition. The simulator also presents 
analytically computed footprint sizes using the formulation 
presented in Theorem 3. 
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Fig. 16. Actual and computed footprint sizes for several loop partitions. 

We present in Fig. 16 algorithm simulator data showing the 
communication volume for array B in Example 3 (repeated 
below for convenience) resulting from a large number of loop 
partitions (with tile size 96) representing both parallelograms 
and rectangles. The abscissa is labeled by the L matrix pa­
rameters of the various loop partitions, and the parallelogram 
shape is also depicted above each histogram bar. 

Doall (i=l:N, j =l:N) 
A[ i, j ] =B [i, j] +B[i+l,j-2 ] +B[i-1 , j+l] 

Enc!Doall 

The example demonstrates that the analytical method yields 
accurate estimates of cumulative footprint sizes. The estimates 

are higher than the measured values when the partitions are 
mismatched with the offset vectors due to the overlapping 
subtile approximation described in Section IV.D. We can also 
see that the difference between the optimal parallelogram 
partition and a poor partition is significant. The differences 
become even greater if bigger offsets are used. This example 
also shows that rectangular partitions do not always yield the 
best partition. 

B. Experiments on the Alewife Multiprocessor 

We have also implemented some of the ideas from our 
framework in a compiler for the Alewife machine [22] to un-
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derstand the extent to which good loop partitioning impacts 
end application performance, and the extent to which our the­
ory predicts the optimal loop partition. The Alewife machine 
implements a shared global address space with distributed 
physical memory and coherent caches. The nodes contain 
slightly modified SPARC processors and are configured in a 
two-dimensional mesh network. 

For NUMA machines. such as Alewife, where references to 
remote memory are more expensive than local references, 
partitioning loops to increase cache hits is not enough. A 
compiler must also perform data partitioning, distributing data 
so that cache misses tend to be satisfied by local memory. We 
have implemented loop and data partitioning in our compiler 
using an iterative method as described in [15]. Because this 
paper focuses on loop partitioning, for the following experi­
ments we caused the compiler to distribute data randomly. The 
effect is that most cache misses are to remote memory, simu­
lating a UMA machine as depicted in Fig. 2, and the results 
offer insights into the extent to which good loop partitioning 
affects end application performance. 

The performance gain due to loop partitioning depends on 
the ratio of communication to computation and other overhead. 
To get an understanding of these numbers for Alewife, we 
measured the performance of one loop nest on an Alewife 
simulator, and the performance of three applications on a 32-
processor Alewife machine. 

B.l. Single Loop Nest Experiment 

The following loop nest was run on a simulator of a 64 proces­
sor Alewife machine: 

Doall (i=0:255, j =4:251) 
A(i,j]=A(i-1 , j ] +B(i,j+4J+B(i,j-4J 

EndI>o&ll 

The G matrix for the above loop nest is the 2 x 2 identity 
matrix, and the offset vectors are ai = (0, 0), ai = (- 1, 0), 

b1 = (0, 4), and b2 = (0, - 4). Each array was 512 elements 
(words) on a side. The cache line size is four words, and the 
arrays are stored in row-major order. · 

Using the aJgorithrns in this paper, and taking the four-word 
cache line size into account, the compiler chose a rectangular 
loop partition and detennined that the optimal partition has an 
!15pect ratio of 2 ; 1. The compiler then chose the closest as­
pect ratio (1 : 1) that also achieves load balance for the given 
problem size and machine size, which results in a tile size of 
64 x 64 iterations. We also ran the loop nest using suboptimal 
partitions with tile dimensions ranging from 8 x 512 to 512 x 
8. This set of executions is labeled run A in Fig. 17. We ran a 
second version of the program using a different set of offset 
vectors that give an optimal aspect ratio of 8 : 1 (run B). This 
results in a desired tile size between 256 x 16 and 128 x 32 
with the compiler choosing 256 x 16. 

Fig. 17 shows the running times for the different tile sizes, 
and demonstrates that the compiler was able to pick the opti­
mal partitions for both cases. There is some noise in these fig­
ures because there can be variation in the cost of accessing the 
memory that is actually shared due to cache coherence actions, 

but the minima of the curves are about where the framework 
predicted. 

B.2. Application Experiments 

The following three applications were run on a real Alewife 
machine with 32 processors. 

• Erfebacher. A code written by Thomas Eidson, from 
ICASE. It performs 3D tridiagonal solves using Alternat­
ing Direction Implicit (ADI) integration. It has 40 loops 
and 22 arrays in one, two and three dimensions. 

• Conduct. A routine in SWPLE, a two dimensional hy­
drodynamics code from Lawrence Livermore National 
Labs. It has 20 loops and 20 arrays in one and two di­
mensions. 

• Tomcatv. A code from the SPEC suite. It has 12 loops 
and seven arrays, all two dimensional. 

As with the loop nest example, the programs were compiled 
with two different methods of partitioning loops. The auto 
method used the algorithms described in this paper to partition 
each loop independently. The other methods assigned a fixed 
partition shape to each loop: rows, squares or columns. The 
results are shown in Tables II, ill, and IV. The cache-miss 
penalty for this experiment is small because the Alewife re­
mote memory access time is rather short (about 40 cycles). 
Since we expect that the importance of good loop partitioning 
will increase with the cache-miss penalty, we also ran two 
other experiments with a longer remote delay of I 00 and 200 
cycles. Alewife allows longer delays to be synthesized by a 
combination of software and hardware mechanisms. 

These results show that the choice of partitioning parame­
ters affects performance significantly. In all cases, the parti­
tioner was able to discover the best partition. In two of the 
applications, the compiler's partition choice resulted in a small 
improvement over squares. In Tomcatv, the compiler chose the 
same square partition for each loop, resulting in no improve­
ment over the fixed square partition. The performance gains 
over squares for all of these programs are modest because the 
offsets in most of the references in the three applications are 
similar. 
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Fig. 17. Running times in 1,000s of cycles for different aspect ratios on 64 
processors. 
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TABLE II 
ExEcurlON TIME IN MCYCLES FOR ERLEBACHER (N = 64) 

Delay auto rows sauares columns 
40cycles 27.0 27.3 28.6 28.2 
JOO cycles 30.4 31.4 31.2 31.3 
200 cvcles 34.0 35.2 36.4 36.8 

TABLE III 
EXECUrlON TIME IN MCYQ.ES FOR CONDUCT (N = 768) 

Delav auto rows souares columns 
40cycles 67.2 71.2 71.4 71.2 
100 cycles 85.4 91.2 91.8 90.8 
200 cvcles 111.4 l 18.2 117.1 117.5 

TABLE IV 
ExEcuTION TIME IN MCYCl.ES FOR TOMCATV (N = 1,200) 

Delav auto rows sauares columns 
40cycles 104 127 100 113 
100 cycles 125 152 122 138 
200cvcles 154 188 154 174 

VIll. CONCLUSIONS 

The performance of cache-coherent systems is heavily 
predicated on the degree of temporal locality in the access 
patterns of the processor. If each block of data is accessed a 
number of times by a given processor, then caches will beef­
fective in reducing network traffic. Loop partitioning for 
cache-coherent multiprocessors strives to achieve precisely 
this goal. 

This paper presented a theoretical framework to derive the 
parameters of iteration-space partitions of the do loops to 
minimize the communication traffic in multiprocessors with 
caches. The framework allows the partitioning of doall loops 
into optimal hyperparallelepiped tiles where the index expres­
sions in array accesses can be any affine function of the indi­
ces. The same framework also yields optimal loop and data 
partitions for multicomputers with local memory. 

Our analysis uses the notion of uniformly intersecting refer­
ences to categorize the references within a loop into classes that 
will yield cache locality. A theory of data footprints is intro­
duced to capture the combined set of data accesses made by the 
references within each uniformly intersecting class. Then, an 
algorithm to compute precisely the total size of the data footprint 
for a given loop partition is presented. Once an expression for 
the total size of the data footprint is obtained, standard optimiza­
tion techniques can be applied to minimize the size of the data 
footprint and derive the optimal loop partitions. 

Our framework discovers optimal partitions in many more 
general cases than those handled by previous algorithms. In 
addition, it correctly reproduces results from loop partitioning 
algorithms for certain special cases previously proposed by 
other researchers. 

The framework, including both loop and data partitioning for 
cache-coherent distributed shared-memory, has been imple­
mented in the compiler system for the Alewife multiprocessor. 

APPENDICES 

A. A Fonnulation of Loop TIies Using Bounding Hyperplanes 

A specific hyperparellelepiped loop tile is defined by a set 
of bounding hyperplanes. Similar formulations have also been 
used earlier [6]. 

DEFINITION 15. Given an l dimensional loop nest i , each 
tile of a hyperparallelepiped loop partition is defined by 

the hyperplanes given by the rows of the l X l matrix H 

and the column vectors .r and I as follows. The parallel 

hyperplanes are h/ = r j and 'ii/ = r j +). j ,for I s j '5, l. 

An iteration belongs to this tile if it on or inside the hyper­
parallelepiped. 

When loop tiles are assumed to be homogeneous except at 
the boundaries of the iteration space, the partitioning is com­
pletely defined by specifying the tile at the origin, namely 

(H, O, 1), as inicated in Fig. 18. For notational convenience, 

we denote the tile at the origin as L. 

I 
L = [ ~11 ~12] 

21 22 

(L • 
11 

(L , L ) 
21 22 

Fig. I 8. Iteration space partitioning is comple1ely specified by the tile at the 
origin. 

DEFINITION 16. Given the tile (H, 0, A) at the origin of_[hi 
hyperparallelepiped partition, let L = L(H) = A(H ) , 
where A is a diagonal matrix with A;; = A.;. We refer to the 
tile by the L matrix, as L completely defines the tile at the 
origin. The rows of L specify the vertices of the tile at the 
origin. 

B. Synchronization References 

Sequential do loops can often be converted to parallel do 
loops by introducing fine-grain data-level synchronization to 
enforce data dependencies or mutual exclusion. The cost of 
synchronization can be approximately modeled as slightly 
more expensive communication [14]. For example, in the 
Alewife system the inner loop of matrix multiply can be 
written using fine-grain synchronization in the form of the 
loop in Example 12. 

EXAMPLE 12. 

I>o&ll (i=l :N, j =l:N, k=l:N) 
1$C[i,j ]=l$C[i, j )+A[i,k]+B [k, jJ 

BndDoall 
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In the code segment in Example 12, the "1$" preceding the 
C matrix references denote atomic accumulates. Accumulates 
into the C array can happen in any order, just that each accu­
mulate action must be atomic. Such synchronization reads or 
writes are both treated as writes by the coherence system. 
Similar linguistic constructs are also present in Id (23] and in a 
variant of Fortran used on the HEP [24]. 
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