
IEEE TRANSACTIONS ON PARALI...EL AND DISTRIBUTED SYSTEMS. VOL 6, NO. 9, SEPTEMBER 199S 943

Automatic Partitioning of Parallel Loops
and Data Arrays for Distributed

Shared-Memory Multiprocessors
Anant Agarwal, David A. Kranz, and Venkat Natarajan

AbstTact- This paper presents a theoretical framework for
automatically partitioning parallel loop's to minimize cache coher­
ency traffic on shared-memory multiprocessors. While several
previous papers have looked at hyperplane partitioning of itera­
tion spaces to reduce communication traffic, the problem of deriv­
ing the optimal tiling parameters for minimal communication in
loops with general affine index expressions has remained open.
Our paper solves this open problem by presenting a method for
deriving an optimal hyperparallelepiped tiling of iteration spaces
for minimal commnnlcation in multiproces.wrs with caches, We
show that the same theoretical framework can also be used to
determine optimal tiling parameters for both data and loop parti­
tioning In distributed memory multicomputers. Our framework
uses matrices to represent iteration and data space mappings and
the notion of uniformly Intersecting references to capture tempo­
ral locallty In array references. We introduce the notion of data
footprints to estimate the communication traffic between proces­
sors and use linear algebraic methods and lattice theory to com­
pute precisely the size of data footprints. We have implemented
this framework in a compiler for Alewife, a distributed shared­
memory multiprocessor.

Index Tenns- Automatic loop partitioning, shared-memory
multiprocessors, compilers, tiling, minimizing communication.

I. INTRODUCTION

C ACHE-BASED multiprocessors are attractive because they
seem to allow the programmer to ignore the issues of data

partitioning and placement. Because caches dynamically copy
data close to where it is needed, repeat references to the same
piece of data do not require communication over the network,
and hence reduce the need for careful data layout. However,
the performance of cache-coherent systems is heavily predi­
cated on the degree of temporal locality in the access patterns
of the processor. Loop partitioning for cache-coherent multi­
processors is an effort to increase the percentage of references
that hit in the cache.

The degree of reuse of data, or conversely, the volume of
communication of data, depends both on the algorithm and on
the partitioning of work among the processors. (In fact, parti­
tioning of the computation is often considered to be a facet of
an algorithm.) For example, it is well known that a matrix

Manuscript received Aug. 31, 1993; revised Apr. 26, 1994.
A short version of this paper appears in the Proceedings of JCPP 1993.
A. Agarwal and D.A. Kranz are with the MIT Laboratory for Computer Sci­

ence, 545 Technology Square, Cambridge, MA 02139; e-mail: agarwal@
mit.edu.

V. Natarajan is with the Motorola Cambridge Research Center, One Ken•
dall Square, Bldg. 600, Cambridge, MA 02139.

IEEECS Log Number D95034.

multiply computation distributed to the processors by square
blocks has a much higher degree of rel,ISe than the matrix mul­
tiply distributed by rows or columns.

Loop partitioning can be done by the programmer, by the run
time system, or by the compiler. Relegating the partitioning task
to the programmer defeats the central purpose of building cache­
coherent shared-memory systems. While partitioning can be
done at run time (for example, see [1], [2]), it is hard for the run
time system to optimize for cache locality because much of the
infonnation required to compute communication patterns is ei­
ther unavailable at run time or expensive to obtain. Thus com­
pile-time partitioning of parallel loops is important.

This paper focuses on the following problem in the context
of cache-coherent multiprocessors. Given a program consisting
of parallel do loops (of the form shown in Fig. 1 in Sec­
tion II.A), how do we derive the optimal tile shapes of the it­
eration-space partitions to minimiz.e the communication traffic
between processors. We also indicate how our framework can
be used for loop and data partitioning for distributed memory
machines, both with and without caches.

A. Contributions and Relafed Work

This paper develops a u!lified theoretical framework that
can be used for loop partitioning in cache-coherent multiproc­
essors, or for loop and data partitioning in multicomputers
with local memory.I The central contribution of this paper is a
method for deriving an optimal hyperparallelepiped tiling of
iteration spaces to minimize communication. The tiling speci­
fies both the shape and size of iteration space tiles. Our
framework allows the partitioning of doall loops accessing
multiple arrays, where the index expressions in array accesses
can be any affine function of the indices.

Our analysis uses the notion of uniformly intersecting refer­
ences to categorize the references within a loop into classes
that will yield cache locality. This notion helps specify pre­
cisely the set of references that have substantially overlapping
data sets. Overlap produces temporal locality in cache ac­
cesses. A similar concept of uniformly generated references
has been used in earlier work in the context of reuse and itera­
tion space tiling [3], [4].

The notion of data footprints is introduced to capture the
combined set of data accesses made by references within each
uniformly intersecting class. (The term footprint was originally

I. This paper, however, focuses on loop partitioning, but indicates the
modifications necessary for data partitioning. See [l 5] for results on com•
bined loop and data partitioning.

1045-9219/95$04.00 IQ 1995 IEEE

944 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

coined by Stone and Thiebaut [5].) Then, an algorithm to
compute precisely the total size of the data footprint for a
given loop partition is presentep. Precisely computing the size
of the set of data elements accessed by a loop tile was itself an
important and open problem. While general optimization
methods can' be applied to minimize the size of the data foot­
print and derive the corresponding loop partitions, we demon­
strate several important special cases where the optimization
problem is very simple. The size of data footprints can also be
used to guide program transformations to achieve better cache
performance in uniprocessors as well.

Although there have been several papers on hyperplane
partitioning of iteration spaces, the problem of deriving the
opt_jmal hyperparallelepiped tile parameters for general affine
index expressions has remained open. For example, Irigoin
and Triolet [6] introduce the notion of loop partitioning with
multiple hyperplanes which results in hyperparallelepiped
tiles. The purpose of tiling in their case is to provide parallel­
ism across tiles, and vector processing and data locality within
a tile. They propose a set of basic constraints that should be
met by any partitioning and derive the conditions under which
the hyperplane partitioning satisfies these constraints.

Although their paper describes useful properties of hyper­
plane partitioning, it does not address the issue of automati­
cally generating the tile parameters. Careful analysis of the
mapping from the iteration space to the data space is very im­
portant in automating the partitioning process. Our paper de­
scribes an algorithm for automatically computing the partition
based on the notion of cumulative footprints, derived from the
mapping from iteration space to data space.

Abraham and Hudak [7] considered loop partitioning in
multiprocessors with caches. However, they dealt only with
index expressions of the form index variable plus a constant.
They assumed that the array dimension was equal to the loop
nesting and focused on rectangular and hexagonal tiles. Fur­
thermore, the code body was restricted to an update of A[i,JJ.

Our framework, however, does not place these restrictions
on the code body. It is able to handle much more general index
expressions, and produce parallelogram partitions if desired.
We also show that when Abraham and Hudak's methods can
be applied to a given loop nest, our theoretical framework re­
produces their results.

Ramanujam and Sadayappan [8] deal with data partitioning
in multicomputers with local memory and use a matrix formu­
lation; their results do not apply to multiprocessors with
caches. Their theory produces communication-free hyperplane
partitions for loops with affine index expressions when such
partitions exist. However, when communication-free partitions
do not exist, they can deal only with index expression of the
form variable plus a constant offset. They further require the
array dimension to be equal to the loop nesting.

In contrast, our framework is able to discover optimal parti­
tions in cases where communication free partitions are not
possible, and we do not restrict the loop nesting to be equal to
array dimension. In addition, we show that our framework
correctly produces partitions identical to those of Rarnanujam
and Sadayappan when communication-free partitions do exist.

In a recent paper, Anderson and Lam [9] derive communi­
cation-free partitions for multicomputers when such partitions
exist, and block loops into squares otherwise. Our notion of
cumulative footprints allows us to derive optimal partitions
even when communication-free partitions do not exist.

Gupta and Banerjee [IO] address the problem of automatic
data partitioning by analyzing the entire program. Although
our paper deals with loop and data partitioning for a single
loop only, the following differences in the machine model and
the program model lead to problems that are not addressed by
Gupta and Banerjee:

1) The data distributions considered by them do not include
general hyperparallelepipeds. In order to deal with hy­
perparallelepipeds, one requires the analysis of commu­
nication presented in our paper.

2) Their communication model does not take into account
caches.

3) They deal with simple index expressions of the form
c1 * i + c2 and not a general affine function of the loop
indices.

Our work complements the work of Wolf and Lam [3] and
Schreiber and Dongarra [11]. Wolfe and Lam derive loop
transformations (and tile the iteration space) to improve data
locality in multiprocessors with caches. They use matrices to
model transformations and use the notion of equivalence
classes within the set of uniformly generated references to
identify valid loop transformations to improve the degree of
temporal and spatial locality within a given loop nest. Schrei­
ber and Dongarra briefly address the problem of deriving op­
timal hyperparallelepiped iteration space tiles to minimize
communication traffic (they refer to it as J/O requirements).
However their work differs from this papel" in the following ways:

1) Their machine model tloes not have a processor cache.
2) The data space corresponding to an array reference and

the iteration space are isomorphic.

These restrictions make the problem of computing the com­
munication traffic much simpler. Also, one of the main issues
addressed by Schreiber and Dongarra is the atomicity re­
quirement of the tiles which is related to the dependence vec­
tors and this paper is not concerned with those requirements as
it is assumed that the iterations can be executed in parallel.

Ferrante, Sarkar, and Thrash [12] address the problem of
estimating the number of cache misses for a nest of loops. This
problem is similar to our problem of finding the size of the
cumulative footprint, but differs in these ways:

1) We consider a tile in the iteration space and not the entire
iteration space; our tiles can be hyperparallelepipeds in
general.

2) We partition the references into uniformly intersecting
sets, which makes the problem computationally more
tractable, since it allows us to deal with only the tile at
the origin.

3) Our treatment of coupled subscripts is much simpler,
since we look at maximal independent columns, as shown
in Section V.B.

AGARWAL. KRANZ. AND NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS AND DATA ARRAYS 945

B. Overview of the Paper

The rest of this paper is structured as follows. Section II states
our system model and our program-level assumptions. Section
III first presents a few examples to illustrate the basic ideas be­
hind loop partitioning; it then discusses the notion of data parti­
tioning, and when it is important Section IV develops the theo­
retical framework for partitioning and presents several additional
examples. Section V extends the basic framework to handle
more general expressions, and Section VI indicates modifica­
tions to the basic framework to handle data partitioning and
more general types of systems. The framework for both loop and
data partitioning has been implemented in the compiler system
for the Alewife multiprocessor. The implementation of our
compiler system and a sampling of results is presented in Section
VII, and Section VIII concludes the paper.

II. PROBLEM DoMAIN AND ASSUMPTIONS

This paper focuses on the problem of partitioning loops in
cache-coherent shared-memory multiprocessors. Partitioning
involves deciding which loop.iterations will run collectively in
a thread of computation. Computing loop partitions involves
finding the set of iterations which when run in parallel mini­
mizes the volume of communication generated in the system.
This section describes the types of programs currently handled
by our framework and the structure of the system assumed by
our analysis.

A. Program Assumptions

Fig. 1 shows the structure of the most general single loop nest
that we consider in this paper. The statements in the loop body
have array references of the form A[g(i1, iz, .. . , i1)], where the

index function is g : Z 1 ➔ zd, l is the loop nesting and dis the

dimension of the array A. We have restricted our attention to
doall loops since we want to focus on the relation between the
iteration space and the data space and factor out issues such as
dependencies and synchroniz.ation that arise from the ordering of
the iterations of a loop. We believe that the framework described
in this paper can be applied with suitable modifications for loops
in which the iterations are ordered.

Doall(il=ll:ul, i2=12 : u2, ... , il=ll:ul)
loop body

EndDoall

Fig. I. Stro.cture of a single loop nest.

We assume that all array references within the loop body
are unconditional. One of the two following approaches may
be taken for loops with conditionals.

• Assume that all array references are actually accessed,
ignoring the conditions surrounding a reference.

• Include only references within conditions that are likely ·
to be true based on profiling information.

We address the problem of loop and data partitioning for
index expressions that are affine functions of loop indices. In

other words, the index function can be expressed as,

g(T} = iG+ii (1)

where G is a l x d matrix with integer entries and ii is an inte­
ger constant vector of length d, termed the offset vector. Note

that i, g(i), and ii are row vectors. We often refer to an ar­

ray reference by the pair (G, ii). (An example of this function

is presented in Section III.) Similar notation has been used in
several papers in the past, for example, see [3], [4]. All our
vectors and matrices have integer entries unless stated other­
wise. We assume that the loop bounds are such that the itera­
tion space is rectangular. The problem with nonrectangular
tiles is one of load balancing (due to boundary effects in tiling)
and this can be handled by optimizing for a machine with· a
large number of virtual processors and mapping the virtual
processors to real processors in a cyclic fashion.

Loop indices are assumed to take all integer values between
their lower and upper bounds, i.e, the strides are one.

Previous work [7], [8], [13] in this area restricted the ar­
rays in the loop body to be of dimension exactly equal to the
loop nesting. Abraham and Hudak [7] further restrict the
loop body to contain only references to a single array; fur­
thermore, all references are restricted to be of the form A[i1 +
a 1, i2 + a2, ... ,id+ ad] where ai is an integer constant. Matrix
multiplication is a simple example that does not fit these
restrictions.

Given p processors, the problem of loop partitioning is to
divide the iteration space into P tiles such that the total com­
munication traffic on the network is minimized with the addi­
tional constraint that the tiles are of equal size, except at the
boundaries of the iteration space. The constraint of equal size
partitions is imposed to achieve load balancing. We restrict
our discussions to hyperparallelepiped tiles, of which rectangu­
lar tiles are a special case.

Like [7], [8], [13], we do not include the effects of syn­
chronization in our framework. Synchroniz.ation is handled
separately to ensure correct behavior. For example, in the doall
loop in Fig. 1, one might introduce a barrier synchronization
after the loop nest if so desired. We also note that in many
cases fine-grain data-level synchronization can be used within
a parallel do loop to enforce data dependencies and its cost
approximately modeled as slightly more expensive communi­
cation than usual [14]. See Appendix B for some details.

B. System Model

Our analysis applies to systems whose structure is similar to
that shown in Fig. 2. The system comprises a set of processors,
each with a coherent cache. Cache misses are satisfied by
global memory accessed over an interconnection network or a
bus. The memory can be implemented as a single monolithic
module (as is commonly done in bus-based multiprocessors),
or in a distributed fashion as shown in the figure. The memory
modules might also be implemented on the processing nodes
themselves (data partitioning for locality makes sense only for
this case). In all cases, our analysis assumes that the cost of a
main memory access is much higher than a cache access, and

946 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 6, NO. 9, SEPTEMBER 1995

for loop partitioning, our analysis assumes that the cost of the
main memory access is the same no matter where in main
memory the data is located.

Mem Mem Mem

Interconnection Network

C8dle Cache Cache Cache

Fig. 2. A system with caches and uniform-access main memory (UMA).

The goal of loop partitioning is to minimize the total
number of main memory accesses. For simplicity, we assume
that the caches are large enough to hold all the data required
by a loop partition, and that there are no conflicts in the
caches. Techniques such as subblocking described in [15] or
other techniques as in [17] and in [16 J can be applied to re­
duce effects due to conflicts. When caches are small, the
optimal loop partition does not change, rather, the size of
each loop tile executed at any given time on the processor
must be adjusted [15] so that the data fits in the cache (if we
assume that the cache is effectively flushed between execu­
tions of each loop tile). Unless otherwise stated, we assume
that cache lines are of unit length. The effect of larger cache
Jines can be included easily as suggested in [7], and is dis­
cussed further in Section VI.B.

If a program has multiple loops, then loop tiling parameters
can be chosen independently for each loop to optimize cache
performance by applying the techniques described in this paper.
We assume there is no data reuse in the cache across loops. In
programs with multiple loops and data arrays, tiling parameters
for each loop and data array cannot be chosen independently in
systems where the memories are local to the processors (see
Fig. 5). This issue is discussed further in Section Vl.C.

lli. LooP PARTITIONS AND DATA PARTITIONS

This section presents examples to introduce and illustrate
some of our definitions and to motivate the benefits of optimiz­
ing the shapes of loop and data tiles. More precise definitions
are presented in the next section.

As mentioned previously, we deal with index expressions that
are affine functions of loop indices. In other words, the index
function can be expressed as in (1). Consider the following ex­
ample to illustrate the above expression of index functions.

EXAMPLE l. The reference A[i3 + 2, 5, i2 - 1, 4) in a triply
nested loop can be expressed by

(~,ii,4)[~ ~ ~ ~]+(2,5,-1,4)
1 0 0 0

In this example, the second and fourth column of G are zero
indicating that the second and fourth subscripts of the refer­
ence are independent of the loop indexes. In such cases, we
show in Section V.B that we can ignore those columns and
treat the referenced array as an array of lower dimension. In
future, without loss of generality, we assume that the G matrix
contains no zero columns.

Now, let us introduce the concept of a loop partition by ex­
amining the following example. Loop partitioning specifies the
tiling parameters of the iteration space. Loop partitioning is
sometimes termed iteration space partitioning or tiling.

EXAMPLE 2.
Doall (i=lOl:200, j=l:100)

A[i , j) = B[i +j,i-j-l)+B[i +j+4,i- j+3)
BndI>oall

Let us assume that we have 100 processors and we want to
distribute the work among them. There are 10,000 points in the
iteration space and so one can allocate 100 of these to each of
the processors to distribute the load uniformly. Fig. 3 shows
two simple ways of partitioning the iteration space-by rows
and by square blocks-into 100 equal tiles.

Minimizing communication volume requires that we mini­
mize the number of data elements accessed by each loop tile.
To facilitate this optimization, we introduce the notion of a
data footprint. Footprints comprise the data elements refer­
enced within a loop tile. In other words, the footprints are re­
gions of the data space accessed by a loop tile. In particular,
the footprint with respect to a specific reference in a loop tile
gives us all the data elements accessed through that reference
from within a tile of a loop partition.

Using Fig. 4, let us illustrate the footprints corresponding to
a reference of the form B [i + j , i -j -1 J for the two loop
partitions shown in Fig. 3. The footprints in the data space
resulting from the loop partition a are diagonal stripes and
those resulting from partition b are square blocks rotated by 45
degrees. Algorithms for deriving the footprints are presented in
the next section.

Let us compare the two loop partitions in the context of a
system with caches and uniform-access memory (see Fig. 2) by
computing the number of cache misses. The number of cache
misses is equal to the number of distinct elements of B ac­
cessed by a loop tile, which is equal to the size of a loop tile's
footprint on the array B. (Section VI.A deals with minimizing
cache-coherence traffic). Caches automatically fetch a loop
tile's data footprint as the loop tile executes. For each tile in
partition a, the number of cache misses can be shown to be
104 (see Section V.A) whereas the number of cache misses in
each tile of partition b can be shown to be 140. Thus, because
it allows data reuse, loop partition a is a better choice if our
goal is to minimize the number of cache misses, a fact that is
not obvious from the source code.

When is data partitioning important? Data partitioning is
the problem of partitioning the data arrays into data tiles and

AGARWAL, KRANZ. AND NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS AND DATA ARRAYS 947

100 ·· -7 space as the loop partition. The additional step of aligning
corresponding loop and data tiles on the same node maximizes
the number of local memory references.

"
1

In fact, the above horizontal partitioning of the loop space
and diagonal striping of the data space results in zero commu­
nication traffic. Ramanujam and Sadayappan [8] presented
algorithms to derive such communication-free partitions when
possible. On the other hand, in addition to producing the same

2 1■
;:oo 10 1

Partition a Partition b

Fig. 3. Two simple rectangular loop partilions in lhe iteration space.

,~o partitions when communication-traffic-free partitions exist (see
Sections V.A and VI.C), our analysis will discover partitions
that minimize traffic when such partitions are non-existent as
well (see Example 8).

Footprints for loop partition a Foolprints for lcop partition b

Fig. 4. Data footprints in the data space resulting from loop partitions a and b.

(a)
(b)

Fig. 5. System, with nonunifonn main-memory access time.

assigning each data tile to a local memory module, such that
the number of memory references that can be satisfied by the
local memory is maximized. Data partitioning is relevant only
for nonuniform memory-access (NUMA) systems (for exam­
ple, see Fig. 5).

In systems with nonuniform memory-access times, both
loop and data partitioning are required, Our analysis applies to
such systems as well. The loop tiles are assigned to the proc­
essing nodes and the data tiles to memory modules associated
with the processing nodes so that a maximum number of the
data references made by the loop tiles are satisfied by the local
memory module. Note that in systems with nonuniform mem­
ory-access times, but which have caches, data partitioning may
still be perfonned to maximize the number of caches misses
that can be satisfied by the memory module local to the proc­
essing node.

Referring to Fig. 4, the footprint size is minimized by
choosing a diagonal striping of the data space as the data par­
tition, and a corresponding horizontal striping of the iteration

EXAMPLE 3.
Doall (i=l:N, j=l:N)

A[i , j] =B [i, j] +B[i+l,j - 2]+B [i-1 ,j +l]
bdDoall .

For the loop shown in Example 3, a parallelogram partition
results in a lower cost of memory access compared to any rec­
tangular partition since most of the inter iteration communication
can be internalized to within a processor for a parallelogram
partition (see Section VIl.A). Because rectangular partitions
often do not minimize communication, we would like to include
parallelograms in the formulation of the general loop partitioning
problem. In higher dimensions a parallelogram tile generalizes to
a hyperparallelepiped; the next section defines it precisely.

N. A FRAMEWORK FORLooP AND DATA PARTITIONING

This section first defines precisely the notion of a loop par­
tition and the notion of a footprint of a loop partition with re­
spect to a data reference in the loop. We prove a theorem
showing that the number of integer points within a tile is equal
to the volume of the tile, which allows us to use volume esti­
mates in deriving the amount of communication. We then pre­
sent the concept of uniformly intersecting references and a
method of computing the cumulative footprint for a set of uni­
formly intersecting references. We develop a formalism for
computing the volume of communication on the interconnec­
tion network of a multiprocessor for a given loop partition, and
show how loop tiles can be chosen to minimize this traffic. We
briefly indicate how the cumulative footprint can be used to
derive optimal data partitions for multicomputers with local
memory (NUMA machines).

A. Loop Tiles in the Iteration Space

Loop partitioning results in a tiling of the iteration space.
We consider only hyperparallelepiped partitions in this pa­
per; rectangular partitions are special cases of these. Fur­
thermore, we focus on loop partitioning where the tiles are
homogeneous except at the boundaries of the iteration space.
Under these conditions of homogeneous tiling, the partition­
ing is completely defined by specifying the tile at the origin,
as indicated in Fig. 6. Under homogeneous tiling, the con­
cept of the tile at the origin is similar to the notion of the
clustering basis in [6]. (See Appendix A for a more general
representation of hyperparallelepiped loop tiles based on
bounding hyperplanes.)

948

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER J 995

(L ,
11

(l , L)
21 22

L = [~11 ~12] 21 22

Fig. 6. Iteration space partitioning is completely specified by the tile at the
origin.

DEFlNmON 1. An l dimensional square integer matrix L de­
fines a semiopen hyperparallelepiped tile at the origin of an
l dimensional iteration space as follows. The set of iteration
points included in the tile is

{xii = t.ai, 4, o s a;< 1}
where l; is the ith row of L. As depicted in Fig. 6, the rows

of the matrix L specify the vertices of the tile at the origin.
Often, we also refer to the partition by the L matrix since
each of the other tiles is a translation of the tile at the origin.

EXAMPI.E 4. A rectangular partition can be represented by a
diagonal L matrix. Consider a three dimensional iteration
space Ix J x K partitioned into rectangular tiles where each
tile is of the form by Wo, j, '4,) I O S j < J}. In other words,
constants i0 and j 0 specify the tile completely. Such a parti­
tion is represented by

r~ ~ n
DEFINmON 2. A general tile in the iteration space is a transla­

tion of the tile at the origin. The translation vector is given by
I

}:,ti4
i=I

where A; is an integer. A tile is completely specified by
(Ai, ... , ~). For example (0, ... , 0) specifies the tile at the
origin.

The rest of this paper deals with optimizing the shape of the
tile at the origin for minimal communication. Because the
amount of communication is related to the number of integer
points within a tile, we begin by proving the following theorem
relating the volume of a tile to the number of integer points
within it. This theorem on lattices allows us to use volumes of
hyperparallelepipeds derived using determinants to determine
the amount of communication.

THEOREM I. The number of integer points (iteration points) in
tile L is equal to the volume of the tile, which is given by
ldet LI.

PROOF. We provide a sketch of the proof; a more detailed
proof is given in [18].

It is easy to show that the theorem is true for an n-dimensional
semi-open rectangle. For a given n-dimensional semi-open
hyperparallelepiped, let its volume be V and let P be the
number of integer points in it. For any positive integer R, it
can be shown that one can pack R" of these hyperparallele­
pipeds into an n-dimensional rectangle of volume VR and
number of integer points PR, such that both VR - R"V and
PR- K'P grow slower than R". In other words,

VR = K'V + v(R), PR= K'P + p(R)

where v(R) and p(R) grow slower than R". Now subtracting
the second equation from · the first one, and noting that
VR = PR for then-dimensional rectangle, we get,

V - P == (p(R)- v(R))!K'.

Given that both v(R) and p(R) grow slower than K', this can
only be true when V - P = 0 . □

PROPOSITION l. The number of integer points in any general
tile is equal to the number of integer points in the tile at the
origin.

PROOF. Straight-forward from the definition of a general tile. □

In the following discussion, we ignore the effects of the
boundaries of the iteration space in computing the number of
integer points in a tile. As our interest is in minimizing the com­
munication for a general tile, we can ignore boundary effects.

B. Footprints in the Data Space

For a system with caches and uniform access memory, the
problem of loop partitioning is to find an optimal matrix L that
minimizes the number of cache misses. The first step is to de­
rive an expression for the number of cache misses for a given
tile L. Because the number of cache misses is related to the
number of .unique data elements accessed, we introduce the
notion of a footprint that defines the data elements accessed by
a tile. The footprints are regions of the data space accessed by
a loop tile.

DEFINmON 3. The footprint of a tile of a loop partition with

respect to a reference A[g(i)] is the set of all data elements

A[g(i)] of A.for i an element of the tile.

The footprint gives us all the data elements accessed
through a particular reference from within a tile of a loop par­
tition. Because we consider homogeneous loop tiles, the num­
ber of data elements accessed is the same for each loop tile.

We will compute the number of cache misses for the system
with caches and uniform access memory to illustrate the use of
footprints. The body of the loop may contain references to
several variables and we assume that aliasing has been re­
solved; two references with distinct names do not refer to the
same location. Let A1, A2, •• • , Ax be references to array A
within the loop body, and let f{A;) be the footprint of the loop
tile at the origin with respect to the reference A; and let

f(A1,A2,···•Ax)= LJ f(A;)
i= l , ... K

AGARWAL, KRANZ. AND NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS AND DATA ARRAYS 949

be the cumulative footprint of the tile at the origin. The number
of cache misses with respect to the array A is V(Ai, A2, ... , AK)I.
Thus, computing the size of the individual footprints and the
size of their union is an important part of the loop partitioning
problem.

To facilitate computing the size of the union of the foot­
prints we divide the references into multiple disjoint sets. If
two footprints are disjoint or mostly disjoint, then the corre­
sponding references are placed in different sets, and the size of
the union is simply the sum of the sizes of the two footprints.

However, references whose footprints overlap substantially
are placed in the same set. 1be notion of uniformly intersect­
ing references is introduced to specify precisely the idea of
"substantial overlap." Overlap produces temporal locality in
cache accesses, and computing the size of the union of their
footprints is more complicated.

The notion of uniformly intersecting references is derived
from definitions of intersecting references and uniformly gen­
erated references.

DEFINITION 4. Two references A[g1(i)] and A[g2 (i)] are said

to be intersecting if there are two integer vectors 4, ~ such

that g1(4) = ii½)- For example, A[i + cl, j + c2] and

AU + c3, i + c4] are intersecting, whereas A[2z1 and

A[2i + l] are 1u.mintersecting.

DEFINmON 5. Two references A[g1(i)] and A[g2(i)] are said
to be uniformly generated if

g1(T) = iG+ai and giT) = iG+ai

where G is a linear transformation and a1 and £½ are inte­
ger constants.

The intersection of footprints of two references that are not
uniformly generated is often very small. For nonuniformly
generated references, although the footprints corresponding to
some of the iteration-space tiles might overlap partially, the
footprints of others will have no overlap. Since we are inter­
ested in the worst-case communication volume between any
pair of footprints, we will assume that the total communication
generated by two nonuniformly intersecting references is es­
sentially the sum of the individual footprints.

However, the condition that two references are uniformly
generated is not sufficient for two references to be intersecting.
As a simple example, A[2i] and A[2i + 1] are uniformly gen­
erated, but the footprints of the two references do not intersect.
For the purpose of locality optimization through loop partition­
ing, our definition of reuse of array references will combine
the concept of uniformly generated arrays and the notion of
intersecting array references. This notion is similar to the
equivalence classes within uniformly generated references
defined in [3].

DEFINIDON 6. Two array references are unifonnly intersecting
if they are both intersecting and uniformly generated.

EXAMPLE 5. The following sets of references are uniformly
intersecting.
l)A[i,J1, A[i + 1,j- 3], A[i,j + 4].

2) A{2j, 2, i], A[2j - 5, 2, i], A[2j + 3, 2, iJ.
The following pairs are not uniformly intersecting.

1) A[i,Jl, A[2i,1l
2) A[i, 11, A[2i, 2)1.
3) AU, 2, i], AU, 3, i].
4) A[211, A[2i + IJ.
5) A{i + 2, 2i + 4], A[i + 5, 2i + 8].
6) A[i,J1, B[i,J1,

Footprints in the data space for a set of uniformly intersect­
ing references are translations of one another, ~ sh~wn below.
The footprint with respect to the reference ,G. a,) 1s a transla­
tion of the footprint with respect to the reference (G, ii,),
where the translation vector is a, -a,.
PROPOSITION 2. Given a loop tile at'tfie origin L and references

r = (G, a,) ands = (G, a,) belonging to a uniformly gen­
erated set defined by G, let ft.r) denote the footprint ofL with
respect to r, and let f(s) denote the footprint of L with respect
to s. Thenf(s) is simply a translation off(r), where each point
of ft.s) is a translation of a corresponding point of ft.r) by an
amount given oy the vector (a, - a,). In other words,

f(s) = f(r)+(a, - a,)

This follows directly from the definition of uniformly gen­
erated references. Recall that an element i of the loop tile is
mapped by the reference (G, a,) to data element

J, = iG+a, , and by the reference (G, a,) to data element

J, = TG+a, . 1be translation vector, (d, - d,), is clearly in­

dependent of T .
The volume of cache traffic imposed on the network is re­

lated to the size of the cumulative footprinL We describe how
to compute the size of the cumulative footprint in the follow­
ing two sections as outlined below.

• First, we discuss how the size of the footprint for a single
reference within a loop tile can be computed. In general,
the size of the footprint with respect to a given reference
is not the same as the number of points in the iteration
space tile.

• Second, we describe how the size of the cumulative foot­
print for a set of uniformly intersecting references can be
computed. The sizes of the cumulative footprints for each
of these sets are then summed to produce the size of the
cumulative footprint for the loop tile.

C. Size of a Footprint for a Single Reference

This section shows how to compute the size of the footprint
(with respect to a given reference and a given loop tile L) ef­
ficiently for certain common cases of G. The general case of G
is dealt with in Section V. We begin with a simple example to
illustrate our approach.

EXAMPLE 6
Doall (h0:99, j =0 :99)

A[i ,j]=B[i+j,j] +B [i +j+1 , j +2]

bclDo&ll

The reference matrix G is

950 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

Let us suppose that the loop tile at the origin L is given by

Fig. 7 shows this tile at the origin of the iteration space and
the footprint of the tile (at the origin) with respect to the refer­
ence B[i + j,J1 is shown in Fig. 8. The matrix

r(B[i+ i, iD =LG= [t ~]
describes the footprint As shown later, the integer points in the
semi open parallelogram specified by LG is the footprint of the
tile and so the size of the footprint is ldet(LG)I. We will use D to
denote the product LG as it appears often in our discussion.

The rest of this subsection focuses on deriving the set of con­
ditions under which the footprint siz.e is given by ldet{D)L Briefly,
we show that G being unimodular is a sufficient (but not neces­
sary) condition. The next section derives the sire of the cumula­
tive footprint for multiple uniformly intersecting references.

In general, is the footprint exactly the integer points in D =
LG? If not, how do we compute the footprint? The first ques­
tion can be expanded into the following two questions.

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • • (L1,L1)

• •
• •
• •
• •
• •
• •

Fig. 7. Tile Lat the origin of the iteration space.

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • •

(2L_. L 1)

• • • • •
• • • • • • • • •
• • • • • • •

• • • • • • •
• • • • • • • • • •

• • • • • • • • • • • (L 2 • 0)

Fig. 8. Footprint of L wrt B{i + j ,Jl in the data space.

• Is there a point in the footprint that lies outside the hy­
perparallelepiped D? It follows easily from linear algebra
that it is not the case.

• Is every integer point in D an element of the footprint? It
is easy to show this is not true and a simple example cor­
responds to the reference A[21l

We first study the simple case when the hyperparallelepiped
D completely defines the footprint. A precise definition of the
set S(D) of points defined by the matrix D is as follows.

DEFINIDON 7. Given a matrix D whose rows are the vectors

it 1 ~ i ~ m, S(D) is defined as the set

{xix= a,_dl +11idi + ... +amdm, 0 ~a;< 1}.
S(D) defines all the points in the semi open hyperparal­
lelepiped defined by D.

So for the case where D completely defines the footprint,
the footprint is exactly the integer points in S(D). One of the
cases where D completely defines the footprint, is when G is
unimodular as shown below.

LEMMA 1. The mapping ~ 1
- ~ as defined by G is one to

one if and only if the rows of G are independent. Further,
the mapping of the iteration space to the data space (Z- Z')
as defined by G is one to one if and only if the rows of G
are independent .

PROOF. ~G = ~G implies ~ = ~ if and only if the only solu­

tion to iG = 0 is O . The latter implies that the nullspace of
GT is of dimension 0. From a fundamental theorem of linear
algebra [19}, this means that the rows of G are linearly in­
dependent. It is to be noted that when the rows of G are not
independent there exists a nontrivial integer solution to
iG = 0, given that the entries in Gare integers. This proves

the second statement of the lemma. D

LEMMA 2. The mapping of the iteration space to the data
space as defined by G is onto if and only if the columns of
G are independent and the g.c.d. of the subdetenninants of
order equal to the number of columns is 1.

PROOF. Follows from the Hermite normal form theorem as
shown in [20}. D

LEMMA 3. If G is invertible then d E LG if and only if
JG-1 EL .

PROOF. Clearly G is invertible implies,

de LG⇒dG-1 eLGG-1 = L

Also,

G is invertible implies that the rows of G are independent
and hence the mapping defined by G is one to one from
Lemma 1. D

THEoREM 2. The footprint of the tile defined by L with respect
to the reference G is identical to the integer points in the
semi open hyperparallelepiped D = LG ifG is unimodular.

AGARWAL, KRANZ, AND NATARAJAN: AUTOMATIC PARTITIONING OF PARAll..EL LOOPS AND DATA ARRAYS 951

PROOF. It is immediate from Lemma 2 that G is onto when it is
unimodular. G is onto implies that every data point in D has
an inverse in the iteration space. Can the inverse of the data
point be outside of L? Lemma 3 shows this is not possible
since G is invertible. D

We make the following two observations about Theorem 2.

• G is unimodular is a sufficient condition; but not neces­
sary. An example corresponds to the reference A[i + Jl
Further discussions on this is contained in Section V.

• One may wonder why G being onto is not sufficient for
D to coincide with the footprint. Even when every integer
point in D has an inverse, it is possible that the inverse is
outside of L. For example, consider the mapping defined
by the G matrix

corresponding to the reference A[4i + S;l It is onto as
shown by Lemma 2. However, we will show that not all
points in LG are in the footprint. Consider,

L = [lOO O].
0 100

LG defines the interval (0, 900) and so it includes the
data point (I). But it can be shown that none of the in­
verses of the data point (1) belong to L; (-1, 1) is an in­
verse of (1). The same is true for the data points
(2),(3),(6),(7), and (11). The one to one property of G
guarantees that no point from outside of L can be
mapped to inside of D. The reason for this is that the one
to one property is true even when G is treated as a func­
tion on reals.

Let us now introduce our technique for computing the cu­
mulative footprint when G is unimodular. Algorithms for
computing the size of the individual footprints and the cumu­
lative footprint when G is not unimodular are discussed in
Section V.

D. Size of the Cumulative Footprint

The size of the cumulative footprint F for a loop tile is
computed by summing the sizes of the cumulative footprints
for each of the sets of uniformly intersecting references. This
section presents a method for computing the size of the cumu­
lative footprint for a set of uniformly intersecting references
when G is unimodular, that is, when the conditions stated in
Theorem 2 are true. More general cases of G are di.scussed in
Section V . We first describe the method when there are exactly
two uniformly intersecting references, and then develop the
method for multiple references.

Cumulative Footprint for Two References. Let us start by
illustrating the computation of the cumulative footprint for
Example 6. The two references to array B form a uniformly
intersecting set and are defined by the following G matrix.

Let us suppose that the loop partition L is given by

[½I ½2].
½1 ½2

Then D is given by

[
½I +½2 ½2].
½t +Li.2 ½2

The parallelogram defined by D in the data space is the paral­
lelogram ABCD shown in Fig. 9. ABCD and EFGH shown in
Fig. 9 are the footprints of the tile L with respect to the two

references (B[i + j, ;1 and B[i + j + I, j + 2], respective!_}') to
array B. In the figure, AB = (Li 1+li2,li2), AD ;:.

(Li_1 +Li_i, Li_i), and AE = (1, 2).

• • • • • • • • • • • • • • • • • • g V

• • • • • •
• • • • • • •

• • • • • • • • • • • • • • •
Fig. 9. Data footprint wrt B(i + j,Jl and B[i + j + l,j + 2).

The size of the cumulative footprint is the size of footprint
ABCD plus the number of data elements in EPDS plus the
number of data elements in SRGH. Given that G is unimodu­
lar, the number of data elements is equal to the area ABCD +
SRGH + EPDS = ABCD + ADST + CDUV - SDUH. Ignoring
the area SDUH, we can approximate the total area by

The first term in the above equation represents the area of
the footprint of a single reference, i.e., ldet(D)I. It is well
known that the area of a parallelogram is given by the de­
terminant of the matrix specifying the parallelogram. The
second and third terms are the determinants of the D matrix
in which one row is replaced by the offset vector ii = (l, 2).
Fig. 10 is a pictorial representation of the approximation.
The first term is the parallelogram ABCD and the second and
third terms are the shaded regions.

Ignoring SDUH is reasonable if we assume that the offset
vectors in a uniformly intersecting set of references are small
compared to the tile size. We refer to this simplification as the
overlapping subtile approximation. This approximation will
result in our estimates being higher than the actual values. Al­
though one can easily derive a more exact expression, we use
the overlapping subtile approximation to simplify the compu­
tation. Fig. 16 in Section VII further demonstrates that the
error introduced is insignificant, especially for parallelograms
that are near optimal.

952 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9. SEPTEMBER 1995

• • • • • • • • • • • • • • • • • •
• • • • • •
• • •
• • • •
• •

• • • • • • • ,.

"

• • •
• • •
• • •

• • • • • • •

Fig. 10. Difference between the cumulative footprint and the footprint

- Ne9. Neighbours along l .

- Pos. Neighbours a.long 1 :

- Neq. Neiqhhours along l :

- Poa. Neighbour• alon.~ l ~

The following expression captures the size of the cumula- . _
live footprint for the above two references in which one of the
offset vectors is (0, 0): Fig. 11. Neighboring tiles.

d

jdetDj+ 1:ldetDk➔al
k=I

where, D • .:...;; is the matrix obtained by replacing the kth row
ofD by ii.

If both the offset vectors are nonzero, because only the
relative position of the two footprints determines the area of
their non-overlapping region, we use a == a1 - iio in the above
equation. The following discussion formalizes this notion and
extends it to multiple references.

Cumulative Footprint for Multiple References. The basic
approach for estimating the cumulative footprint size involves
deriving an effective offset vector a that captures the com­
bined effects of multiple offset vectors when there are several
overlapping footprints resulting from a set of uniformly inter­
secting references. First, we need a few definitions.

DEF1NmON 8. Given a loop tile L, there are two neighboring

loop tiles along the ith row of L defined by {y I y == i + ~,

i e tile L} and {y I y == i -t i e tile L}, where ~ is the ith

row of L,for l $ i $ l. We refer to the former neighbor as the
positive neighbor and the latter as the negative neighbor. We
also refer to these neighbors as the neighbors of the parallel
sides of the tile determined by the rows ofL, excluding the ith
row. Fig. 11 illustrates the notion of neighboring tiles.

The notion of neighboring tiles can be extended to the data
space in like manner as follows.

DEFINITION 9. Given a loop tile Land a reference (G, ii,), the

neighbors of the data footprint of L along the kth row of

D = LG are {yly == i+d1 , i e D+ar} and {yly == i-d.,
i e D+a,}, where dk is the kth row ofD,for 1 $ k $ d.

DEFINITION 10. Given a tile L, L' is a subtile wrt the ith row of
L if the rows ofL' are the same as the rows ofL except for
the ith row which is a times the ith row of L, 0 $ a $ 1.

The approximation of the cumulative footprint in Fig. 10
can be expressed in terms of subtiles of the tile in the data

space. ABCD is a tile in the data space and the two shaded
regions in Fig. 10 are subtiles of neighboring tiles containing
portions of the cumulative footprint. One can view the cumu­
lative footprint as any one of the footprints together with
communication from the neighboring footprints. The approxi­
mation of the cumulative footprint expresses the communica­
tion from the neighboring tiles in terms of subtiles to make the
computation simpler.

DEFINITION 11. Let L be a loop tile at the origin, and let

g(i) = i G +ii,, 1 $ r ~ R be a set of uniformly intersecting

references. For the footprint of L with respect to reference
(G, ii,), communication along the positive direction of the

kth row of D is defined ~ the smallest sub tile of the posi­
tive neighbor along the kth row of the footprint which con­
tains the elements of the cumulative footprint within that
neighbor. Communication along the negative direction is
defmed similarly. Communication along the kth row is the
sum of these two communications. Each row of D defines a
pair of parallel sides (hyperplanes) of the data footprint
determined by the remaining rows ofD. We sometimes refer
to the communication along the kth row as the communica­
tion across the parallel sides ofD defined by the kth row.

The notion of the communication along the rows of D facili-·
tales computing the size of the cumulative footprint. Consider
the data footprints of a loop tile with respect to a set o_! u~­

formly intersecting references shown in Fig. 12. Here d1, d2

correspond to the rows of the matrix D = LG. The vectors
ii1, .•• , as, are the offset vectors corresponding to the set of

uniformly intersecting references. The cumulative footprint
can be expressed as the union of any one of the footprints and
the remaining elements of the cumulative footprint. We take
the union because a given data element needs to be fetched
only once into a cache.

In Fig. 12, the cumulative footprint is the union of the foot­
print of the loop tile with respect to ii4 and the shaded regions

corresponding to the remaining elements of the cumulative

AGARWAL. KRANZ, ANO NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS ANO DATA ARRAYS 953

··· ·•·'

,C7 - Pootprlnt. of a
1

LC7 - rootprUlt of • 2

~ _ rootprln.t of a , ,C7 • Poot.print of • • ""1IT - Foot.print of a ,

Fig. 12. Cumulative footprint.

footprint resulting from the other refere_nces. The area of the
shaded region can be approximated by the sum of communi-

cation along the kth row for I S k ~ 2 as shown in Fig. 13. The
area of the communication along d2 is equal to the area of the

parallelogram whose sides are di and a5 - a4 . Among the off­

set vectors, vector ii5 has the maximum component along d2

and vector a4 has the minimum (taking the sign into account)

component along d2 . Similarly the area of the communication

along d1 is equal to the area of the parallelogram whose sides

are d2 and a4 - a1 plus the area of the parallelogram whose

sides are d2 and ii5 - a4 . This is equal to the area of the paral­

lelogram whose sides are d2 and a5 - a1 . As before among the
offset vectors, vector a5 has the maximum component along

d1 and vector ii1 has the minimum (taking the sign into ac­

count) component along di . This observation is used in the
proof of Theorem 3. It turns out that the effect of offset vector
ii5 - iii along d2 and ii5 - ii4 along d1 can be captured by a
single vector a as shown later.

PROPOSITION 3. Let L be a loop tile at the origin, and let

g(i) = i G +a") be a set of uniformly intersecting refer­

ences. The volume of communication along the kth row of

D, I S k S d, is the same for each of the footprints
(corresponding to the different offset vectors).

Communication along the positive and negative directions will
be different for different footprints. But the total communica­
tion along the kth row, J S k S d, is the same for each of the
data footprints.

We now derive an expression for the cumulative footprint
based on our notion of communication across the sides of the
data footprint. Our goal is to capture in a single offset vector
a the communication in a cache-coherent system resulting
from all the offset vectors. More specifically, we would like
the kth component of a to reflect the communication per
unit area across the parallel sides defined by the kth row of
D. The effective vector a is derived from the spread of a set

of offset vectors.

:.:: ••••• _/ - C:oaaw:aication along d 2

0 • c~c:atlon along d 1

Fig. 13. Communication from neighboring tiles.

DEFINITION 12. Given a set of d-dimensional offset vectors a,,
1 Sr SR, spread (a1, . .. , aR) is a vector of the same dimen­
sion as the offset vectors, whose kth component is given by

max(a,.k)-min(a,.k), Vk E 1, d.
r r

In other words, the spread of a set of vectors is a vector in which
each component is the difference between the maximum and min­
imum of the corresponding components in each of the vectors.

For caches, we use the max - min formulation (or the
spread) to calculate the amount of communication traffic
because the data space points corresponding to the footprints
whose offset vectors have values between the max and the
min lie within the cumulative footprint calculated using the
spread.2

The spread as defined above does not quite capture the
properties that we are looking for in a single offset vector ex­
cept when D is rectangula,. If D is not rectangular, the kth
component of spread (a) does not reflect the communication
per unit area across the parallel sides defined by the kth row of
D. To derive the footprint component (or subtile) along a row
of D, we need to compute the difference between the maxi­
mum and the minimum components of the offset vectors using
D as a basis. Therefore, we extend the notion of spread to a
general basis as follows. Recall that D is a basis for the data
space when G is unimodular.

In the definition below, b, is the representation of offset

vector a, using D as the basis.

DEFINITION 13. Given a set of offset vectors a,, 1 S r_ :S: R, let
- I • - -
b, = a,D- , Vr E I, ... , Rand let b be spread(b1, ... , bR)-

Then

a= spread0 (ii1, ... , iiR) = bD.
Looking at the special case where D is rectangular helps in

understanding the definition.

PROPOSITION 4 . /fD is rectangular then

lZ = spread(ii1, ... , iiR) = spreado(ii, , aR)

2. For data panitioning. however, the formulation must be modified a.< dis­
cussed in Section VI.C.

954 IEEE TRANSACTIONS ON PARALLSL AND DISTRJBUTED SYSTEMS, VOL 6, NO. 9, SEPTEMBER 1995

In other words,

ak = max(a,,k}-min(a,k}, '</k El, .. . d.
r r '

For example, spread1((l, 0), (2, -1)) = (2 - I, 0- I) = (1, 1).

For D = [~ :] , the spread is given by,

spreado((l, 0), (2, -1)) = spread((l, 0) 0-1
, (2, - 1) 0-1

) D = (1, 3)

LEMMA 4. Given a hyperparallelepiped tile L, and a set of uni­

formly intersecting references g(i) = f G + ii,, where G is uni­

modular, the communication along the kth row ofD = LG is
d

. I,ldetDt➔al
k=I

where a= spreado(ii1, ... , iiR) and Dk➔a is the matrix

obtained by replacing the kth row of D by a .
PROOF. Straight-forward from the definition of spread and the

definition of communication along the kth row. D
THEoREM 3. Given a hyperparallelepiped tile L and a uni­

modular reference matrix G, the size of the cumulative
footprint with respect to a set of uniformly intersecting ref­
erences specified by the reference matrix G and a set of off­
set vectors iii, ... , iiR, is approximately

d

ldet Dj + I,ldet D k➔al
k=I

where a= spreado(a1, ... , aR) and Dk➔o is the matrix
obtained by replacing the kth row of D by a .

PROOF. As observed earlier, the size of the cumulative foot­
print is approximately the size of any of the footprints plus
the communication across its sides. Clearly the size of any
one of the footprints is given by ldet DI. The rest follows
from Lemma 4. D

Finally, as stated earlier, the total communication generated
by nonuniformly intersecting sets of references is essentially
the sum of the communicating generated by the individual cu­
mulative footprints. Example 8 in Section IV.E discusses an
instance of such a computation.

E. Minimizing the Size of the Cumulative Footprint

We now focus on the problem of finding the loop partition
that minimizes the size of the cumulative footprint The overall
algorithm is swnmarized in Table I. The minimization of C,
the communication is done using standard optimization algo­
rithms including numerical techniques.

Let us illustrate this procedure through the following two
examples.

EXAMPLE 7.

Doall (i=l:N, j=l:N, k=l:N)
A[i,j,k) =B[i-1,j,k+l]+B[i,j+l, k]+B[i+l,j- 2,k-3]

BndJ>oall

Here we have two uniformly intersecting sets of references:
one for A and one for B. Let us look at the class corresponding

TABLE!
AN ALGoRITHM FOR MINIMIZING CUMUUTIVE FoorPRINT SIZE FOR A SINGLE

SET OF UNIR>RML Y iNrERsEcrING REFERENCES

Given: G, offset vector.; ii ii

Goal: Find L to minimize cumulative footprint size

Procedure: WriteD = LG
Find b,, ... , b. = ii,D-,, ... , ii,D-,
Find b = spread(b,, ... , b•)

Then, write a = bD
Communication c = Jdet!JI+ l....,, ,Jde!U, __ f
Finally, find the parameters of L that minimize C

For multiple unifonnly llllersectrng sets, add~ communzcatlQn comp<>nent
due to each set and then detennitie L that minimizes the sum.

to B since it is more instructive. Because A has only one refer­
ence, whose G is unimodular, its footprint size is independent
of the loop partition, given a fixed total size of the loop tile,
and therefore need not figure in the optimization process. The
G matrix corresponding to the references to B is,

[~ ! ~]
The a vector is (2, 3, 4). Consider a rectangular partition L =
A given by

[~ : ~i
0 0 Lk

In this example, the D matrix is the same as the L matrix. Be­
cause Dis rectangular, we can apply Proposition 4 in simplify­
ing the derivation of a . The size of the cumulative footprint
for B can now be computed according to Theorem 3. as

L; Li Lt + 24 Lt + 3L; Lt + 4L; Li
This expression must be minimized keeping I det L I (or the

product L; 4 LJ a constant The product represents the area of
the loop tile and must be kept constant to ensure a balanced load.
The constant is simply the total area of the iteration space di­
vided by P, the number of processors. For example, if the loop
bounds are /, J, and K, then we must minimize L; L; Lk + 2L; 4
+ 3L, 4 + 4.L; L1, subject to the constraint L; 4 4 = /JK IP.

This optimization problem can be solved using standard
methods, for example, using the method of Lagrange multipli­
ers [21]. The size of the cumulative footprint is minimized
when L;, 4, and L1: are chosen in the proportions 2, 3, and 4, or

L; : Li : L. :: 2 :3: 4
This implies,

L; = (/JK/3P)w, L; = (3l2)(/JK/3P)113
, and L1: = 2 (/JK/3P)113

•

Abraham and Hudak's algorithm (7] gives an identical parti­
tion for this example.

We now use an example to show how to minimize the total
number of cache misses when there are multiple uniformly
intersecting sets of references. The basic idea here is that the
references from each set contribute additively to traffic.

AGARWAL, KRANZ, AND NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS AND DATA ARRAYS 955

EXAMPLE 8.
Doall (i=l:N, j=l:N)

A(i,j)=B(i-2,j)+B(i,j-l)+C(i+j-l,j)+C (i+j+l,j+3)
Bndl>oall

There are three uniformly intersecting classes of references,
one for B, one for C, and one for A. Because A has only one
reference, its footprint size is independent of the loop partition,
given a fixed total size of the loop tile, and therefore need not
figure in the optimization process.

For simplicity, let us assume that the tile L is rectangular
and is given by

Because G for the references to array B is the identity matrix, the
D = LG matrix corresponding to references to B is same as L, and
the a vector is spread(- 2, 0), (0, - 1)) = (2, 1). Thus, the size of
the corresponding cumulative footprint according to Theorem 3 is

I; :1+1o ~H; ~-
Similarly, D for array C is

The data footprint D is not rectangular even though the loop tile
is. Using Definition 13, a= spread0 ((-l, 0), (1, 3)) = (4, 3),
and the size of the cumulative footprint with respect to C is

I~ :H~ ~l+t ~-
The problem of minimizing the sire of the footprint reduces

to finding the elements of L that minimizes the sum of the two
expressions above subject to the constraint the area of the loop
tile ldet LI is a constant to ensure a balanced load. For example,
if the loop bounds are/, J, then the constraint is ldet LI = / J/P,
where P is the number of processors.

The total size of the cumulative footprint simplifies to
2L1Li + 4L1 + 31.i. The optimal values for L1 and Li can be
shown to satisfy the equation 4L1 = 3Li using the method of
Lagrange multipliers.

V. GENERAL CASE OF G

This section analyzes the size of the footprint and the cumu­
lative footprint for a general G, that is, when G is not re­
stricted to be unimodular. The computation of the size of the
footprint is by case analysis on the G matrix.

A. G Is Invertible, but not Unimodular

G is invertible and not unimodular implies that not every
integer point in the hyperparallelepiped D is an image of an
iteration point in L. A unit cube in the iteration space is
mapP.Cd to a hyperparallelepiped of volume equal to ldet GI.
So the size of the data footprint is ldet D/det GI = ldet LI.
When G is invertible the , sire of the data footprint is exactly
the size of the loop tile since the mapping is one to one.

Next, the expression for the size of the cumulative footprint
is very similar to the one in Theorem 3, except that the data
elements accessed are not dense in the data space. That is, the
data space is sparse.

LEMMA 5. Given an iteration space I, a reference matrix G,
and a hyperparallelepiped D1 in the data space, if the verti­
ces of D1G-1 are in I then the number of elements in the in­
tersection of D1 and the footprint of I with respect to G is
ldet D1/det GI.

PROOF. Clear if one views D1G-1 as the loop tile L. D

THEOREM 4 . Given a hyperparallelepiped tile L, and an in­
vertible reference matrix G, the size of the cumulative foot­
print with respect to a set of uniformly intersecting refer­
ences specified by the reference matrix G and a set of offset
vectors ap ... , QR• is approximately

jdetDj+ r:JdetDk➔al
ldetGj

where a= spread(a1, ••• , aR, D) and Dk➔a is the matrix
obtained by replacing the kth row of D by a .

PROOF. Using Lemma 5 one can construct a proof similar to
that of Theorem 3. D

Example 2 (repeated below for convenience) possesses a G
that is invertible, but not unimodular.

Doall (i=lOl:200, j=l:100)
A[i,j)=B[i+j,i-j-l]+B[i+j+4,i-j+3)

SlldJ>oal.l

For this example, the reference matrix G corresponding to
array Bis

·[I 1]·
1 -1

and the offset vectors are

iio = (0, - I) and a 1 = (4, 3)

Let us find the optimal rectangular partition L of the form

[~; ~J
The footprint matrix D is given by

[~ . -~J
The offset vectors using D as a basis are

b0 = tioD-1 =(-1/(21,), 1/{2Lj)),

Ei = a10-1 = (1/(24), 1/(ZLJ).
The vector b = (4/ 4, 0) and the vector

a= ,;o = (4, 4)

The size of the cumulative footprint according to Theorem 4 is

9S6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

which is

44+44
If we constrain L; 4 = 100 for load balance,. we get L; = 1 and
L; = 100. This partitioning represents horizontal striping of the
iteration space.

B. Columns of G Are Dependent and the Rows Are
Independent

We can apply Theorem 4 to compute the size of a footprint
when the columns of G are dependent, as long as the rows are
independenL We derive a G' from G by choosing a maximal
set of independent columns from G, such that G' is invertible.
We can then apply Theorem 4 to compute the size of the foot­
print as shown in the following example.

EXAMPLE 9. Consider the reference A[i, 2i, i + 11 in a doubly
nested loop. The columns of the G matrix

[~ ~ :]
are not independent. We choose G' to be

Now D' = LG' completely specifies the footprint The size of
the footprint equals ldet D'I = ldet LL If we choose G' to be

[~ ;J
then the size of the footprint is ldet D'V2 for the new D'
since ldet G'I is now 2. But both expressions evaluate to the
same value, ldet LI, as one would expect.

C. The Rows of G Are Dependent

The rows of G are dependent means that the mapping from
the iteration space to the data space is many to one. It is hard
to derive an expression for the footprint in general when the
rows are dependenL However, we can compute the footprint
and the cumulative footprint for many special cases that arise
in actual programs. In this section we shall look at the common
case where the rows are dependent because one or more of the
index variables do not appear in the array reference. We shall
illustrate our technique with the matrix multiply program
shown in Example 10 below. The notation 1$C [i, j J means
that the read-modify-write of C [i , j J is atomic.

ExAMPLE 10.

Doall (i=O:N, j=O :N, k=O:N)
1$C[i,j] =l$C [i, j]+A[i,k]+B[k, j)

lbldDoall

The references to the matrices A, B, and C belong to sepa­
rate uniformly intersecting references. So the cumulative foot­
print is the sum of the footprints of each of the references. We

will focus on A [i , k J and footprint computation for the other
references are similar. The G matrix for A [i , k J is

We cannot apply our earlier results to compute the footprint
since G is a many to one mapping. However, we can find an
invertible G' such that for every loop tile L, there is a tile L'
such that the number of elements in footprints LG and LG' are
the same. For the current example, G' is obtained from G by
deleting the row of zeros, resulting in a two dimensional
identity matrix. Similarly L' is obtained from L by eliminating
the corresponding (second) column of L. Now, it is easy to
show that the number of elements in footprints LG and LG'
are the same by establishing a one-to-one correspondence be­
tween the two footprints. Let us use this method to compute
the size of the footprint corresponding to the reference
A [i , kl . Let us assume that L is rectangular to make the
computations simpler. Let L be

[
~ ~j ~]·

O O 4
NowL' is

[~ ~]·
0 Lk

So the size of the footprint is L;4. Similarly, one can show that
the size of the other two footprints are L;Li and 4Lt• The cumu­
lative footprint is LiLt + L;L1 + L;4 which is minimiud when
Li, 4, and 4 are equal.

VI. OTHER SYSTEM ENVIRONMENTS

This section describes how our framework can be used to
solve the partitioning problem in a wide range of systems in­
cluding those with coherent caches, distributed-memory, and
non-unit cache line sizes.

A. Coherence-Related Cache ~

Our analysis presented in the previous section was con­
cerned with minimizing the cumulative footprint size. This
process of minimizing the cumulative footprint size not only
minimizes the number of first-time cache misses, but the num­
ber of coherence-related misses as well. For example, consider
the forall loop embedded within a sequential loop in Exam­
ple 11. Here forall means that all the reads are done prior to
the writes. In other words the data read in iteration t corre­
sponds to the data written in iteration t - 1.

EXAMPLE 11.

Doseq (t=l:T)
forall (i=l:N, j =l:N)

A(i , j) =A(i+l , j)
todDoall

:sndI>oaeq

AGARWAL, KRANZ, AND NATARAJAN: AUTOMATIC PARTITIONING OF PARAIJ..EL LOOPS AND DATA ARRAYS
957

For this example, we have

G=[~ ~]
Let us attempt to minimize the cumulative footprint for a loop
partition of the form

=[4 O] L O L-
1

The cumulative footprint size is given by

44+Li
In a load-balanced partitioning, ldet LI = L; 4 is a constant, so

the L; 4 tenn drops out of the optimization. 1be optimization
process then attempts to minimize 4, which is proportional to
the volume of cache coherence traffic, as depicted in Fig. 14.

Z Y X Z

□ □□ 00 ~ ~
Footprint of
A{i,j]

Cumulative
Footprint of
A{i,i], A[!+ 1,j]

Fig. 14. (a) Footprint of reference A[i, ;l for a rectangular L. (b) Cumulative
footprint for the references A[i,Jl and A[i + I, ;l. The~ region Z repre­
sents the increase in footprint size due to the reference A[, + 1, Jl- (c) The
regions X, Y. z. collectively represent the cumulative footprint for references
A[i, ;1 and A(i + l , ;1- Region Z represents the area in the ~ space shared
with the positive neighbor. Region Y represents the area m the data space
shared with the negative neighbor.

Let us focus on regions X, Y, and Z in Fig. 14c. As ex­
plained in Fig. 13, the processor working on the loop tile to
which these regions belong (say, processor Po) shares a por­
tion of its cumulative footprint with processors working on
neighboring regions in the data space. Specifically, region Z is
a subtile of the positive neighbor and region Y is a subtile
shared with its negative neighbor. Region X, however, is
completely private to Po-

Let us consider the situation after the first iteration of the
outer sequential loop. Accesses of data elements within region
X will hit in the cache, and thereby incur zero communication
cost. Data elements in region Z, however, potentially cause
misses because the processor working on the positive neighbor
might have previously written into those elements, resulting in
those elements being invalidated from Po's cache. Each of
these misses by processor PO suffers a network round trip be­
cause of the need to inform the processor working on its posi­
tive neighbor to perform a write-back and then to send the data
to processor P 0 . Furthermore, if the home memory location for
the block is elsewhere, the miss requires an additional network
round-trip. Similarly, in region Y, a write by processor Po po­
tentially incurs two network round trips as well. The two round
trips result from the need to invalidate the data block from the
cache of the processor working on the negative neighbor, and

then to fetch the blocks into Po's cache.
In any case, the coherence traffic is proportional to the area

of the shared region 'Z, which is equal to the area of the shared
region Y, and is given by 4. So the total communication is
minimized by choosing the tile with Lj = I.

B. Effect of Cache Line Size
The effect of cache line sizes can be incorporated easily into

our analysis. Because large cache lines fetch mul~ple d~ta
words at the cost of a single miss, one data space d1mens1on
will be favored by the cache. Without loss of generality, let us
assume that the jth dimension of the data space benefits from
larger cache lines. Then, the effect of cache lines of size B can
be incorporated into our analysis by replacing each element dij

in the jth column of D in Theorem 3 by

r~ l
to reflect the lower cost of fetching multiple words in the jth
dimension of the data space3, and by modifying the definition
of intersecting references to the following.

DEFINm0N 14. Two references A[g1(i)] and A[g2 (i)~ a~e

said to be intersecting if there are two integer vectors i1 , ½
for which A[g1(~)] = A[(d11 , d12, ...)] and A(g2(li)]

= A[("21, dzi_, ...)] such that A[(. . . , diu -1>• [¥ l,---)l
- A[(d . r~1)] where B is the size oif a cache
- · · ·• 2(1- I) • - ll • • · • '

line, and the jth dimension in the data space benefits from
larger cache lines.

C. Data Partitioning

In systems in which main memory is distributed with the
processing nodes (e.g., see Fig. 5), data partitioning is the
problem of partitioning the data arrays into data til~s and the
nested loops into loop tiles and assigning the loop tiles to the
processing nodes and the corresponding data tiles to memo?
modules associated with the processing nodes so that a maxi­

mum number of the data references made by the loop tiles are
satisfied by the local memory module. Our formulation facili­
tates data partitioning straightforwardly. There are two cases to
consider: systems with caches and systemS without caches.

C. l. Systems with Caches

The data partitioning strategy in distributed shared-memory
systems with caches (Fig. 5a) proceeds as follows. The opti~
loop partition L is first derived by minimizing the cumulative
footprint size as described in the previous sections.

Data partitioning requires the additional derivation of the
optimal data partition D for each class of uniformly intersect­
ing references from the optimal loop partition L. We derive
the shapes of the data tiles D for each G corresponding to a
specific class of uniformly intersecting references. A specific
data tile is chosen from the footprints corresponding to each

3. We note that the estimate of cumulative footprint size will be slightly in­
accurate if the footprint is misaligned with the cache block.

958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL 6, NO. 9, SEPTEMBER 199S

reference in an uniformly intersecting set In systems with
caches, the choice of a specific footprint does not matter, be­
cause each data element in the footprint results in a single
miss. We then place each loop tile with the data tiles accessed
by it on the same processing node.

As an example, let us work out the optimal data partitioning
for Example 2. The optimal loop partition for this example
was worked out in Section V.A. The optimal L was shown to
stripe the iteration space horizontally and was given by

[:oo ~]
The corresponding footprint D = LG represents a diagonal
striping of the data space and is given by

[
100 100]
1 -1

Thus, for this example, if diagonal tiles of data (as depicted
in Fig. 15) are placed in the memory modules close to the
processors with the corresponding iteration tiles, cache misses
will be satisfied completely within the node. This data partition
thus represents a communication-free data partition.

Diagonal tiling
of the data space

Fig. 15. A communication-free data partition.

Interestingly, because G for this example is not unimodular (its
determinant is 2), not all data space points are accessed. In the
figure, the shaded points represent the untouched data elements.

When a program has multiple loops that access a given data
array, the possibility of the loops imposing conflicting data
tiling requirements arises. An algorithm for partitioning loops
and data in this situation is developed in [15).

C.2. Systems without Caches

The compiler has two options to optimize communication
volume in systems without caches. The compiler can choose to
make local copies of remote data, or it can fetch remote data
each time the data is needed. In the former case, the compiler
can use the same partitioning algorithms described in this pa­
per for systems with caches, but it must also solve the data
coherence problem for the copied data. This section addresses
the latter case.

Although the overall data partitioning strategy remains
largely the same as described in the previous section, we must

make one change in the footprint size computation to reflect
the fact that a given data tile is placed in local memory and
data elements from neighboring tiles have to be fetched from
remote memory modules each time they are accessed. Because_
data partitioning for distributed-memory systems without
caches (see Fig. 5b) assumes that data from other memory
modules is not dynamically copied locally (as in systems with
caches), we replace the max - min formulation by the cumula­
tive spread a• of a set of unifonnly intersecting references.
That is

a• = cumulativespread0 (a1, •.• , aR) == b+D,

in which the kth element of b • is given by,

b; = Ll[b,..t - med,(b,,1)]1, Vk EI, . .. , d,
r

where b, = a,0-1
, "tr e 1, ... , R; and med,{,,b,... k) is the me­

dian of the offsets in the kth dimension. The rest of our frame­
work for minimizing the footprint size applies to data partition- ·
ing if a is replaced by a•.

The data partitioning strategy proceeds as follows. As in loop
partitioning for caches, for a given loop tile L, we first write an
expression for the communication volume by deriving the size of
that portion of the cumulative footprint not contained in local
memory. This communication volume is given by

d

rldetDk➔a· I
k=I

We then derive the optimal L to minimize this communication
volume. We then derive the optimal data partition D for each
class of unifonnly intersecting references from the optimal
loop partition L as described in the previous section on sys­
tems with caches. A specific data tile is chosen from the foot­
prints corresponding to each reference in an unifonnly inter­
secting set In systems without caches, because a single data
element might have to be fetched multiple times, the choice of
a specific data footprint does matter. A simple heuristic to
maximize the number of local accesses is to choose a data tile
whose offsets are the medians of all the offsets in each dimen­
sion. We can show that using a median tile is optimal for one­
dimensional data spaces, and close to optimal for higher di­
mensions. However, a detailed description is beyond the scope
of this paper. We then place each loop tile with the corre­
sponding data tiles accessed by it on the same processor.

VIl. IMPLEMENTATION AND REsULTS

This paper presents cumulative footprint size measurements
from an algorithm simulator and execution time measurements
from an actual compiler implementation on a multiprocessor.

A. Algorithm Simulator Experiments

We have written a simulator of partitioning algorithms that
measures the exact cumulative footprint size for any given
hyperparallelepiped partition. The simulator also presents
analytically computed footprint sizes using the formulation
presented in Theorem 3.

AGARWAL, KRANZ, AND NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS AND DATA ARRAYS 959

28()

_g
"'2Q

244

22fl

20I

190

172

16'

136

111

100

280
.§

"' 262

244

226

208

190

172

154

136

118

100

'\ ,~
Actual
Computed

Actual
• - - Computed

p d'

244

22fl

208

1110

172

~/I~ p ~~, ----,;;' -4"'.,I'/ // ///

118

Actual
Computed

Fig. 16. Actual and computed footprint sizes for several loop partitions.

We present in Fig. 16 algorithm simulator data showing the
communication volume for array B in Example 3 (repeated
below for convenience) resulting from a large number of loop
partitions (with tile size 96) representing both parallelograms
and rectangles. The abscissa is labeled by the L matrix pa­
rameters of the various loop partitions, and the parallelogram
shape is also depicted above each histogram bar.

Doall (i=l:N, j =l:N)
A[i, j] =B [i, j] +B[i+l,j-2] +B[i-1 , j+l]

Enc!Doall

The example demonstrates that the analytical method yields
accurate estimates of cumulative footprint sizes. The estimates

are higher than the measured values when the partitions are
mismatched with the offset vectors due to the overlapping
subtile approximation described in Section IV.D. We can also
see that the difference between the optimal parallelogram
partition and a poor partition is significant. The differences
become even greater if bigger offsets are used. This example
also shows that rectangular partitions do not always yield the
best partition.

B. Experiments on the Alewife Multiprocessor

We have also implemented some of the ideas from our
framework in a compiler for the Alewife machine [22] to un-

960 IEEE TRANSACTIONS ON PARAI.La AND DISTRIBUTED SYSTEMS, VOL 6. NO. 9, SEPTEMBER 1995

derstand the extent to which good loop partitioning impacts
end application performance, and the extent to which our the­
ory predicts the optimal loop partition. The Alewife machine
implements a shared global address space with distributed
physical memory and coherent caches. The nodes contain
slightly modified SPARC processors and are configured in a
two-dimensional mesh network.

For NUMA machines. such as Alewife, where references to
remote memory are more expensive than local references,
partitioning loops to increase cache hits is not enough. A
compiler must also perform data partitioning, distributing data
so that cache misses tend to be satisfied by local memory. We
have implemented loop and data partitioning in our compiler
using an iterative method as described in [15]. Because this
paper focuses on loop partitioning, for the following experi­
ments we caused the compiler to distribute data randomly. The
effect is that most cache misses are to remote memory, simu­
lating a UMA machine as depicted in Fig. 2, and the results
offer insights into the extent to which good loop partitioning
affects end application performance.

The performance gain due to loop partitioning depends on
the ratio of communication to computation and other overhead.
To get an understanding of these numbers for Alewife, we
measured the performance of one loop nest on an Alewife
simulator, and the performance of three applications on a 32-
processor Alewife machine.

B.l. Single Loop Nest Experiment

The following loop nest was run on a simulator of a 64 proces­
sor Alewife machine:

Doall (i=0:255, j =4:251)
A(i,j]=A(i-1 , j] +B(i,j+4J+B(i,j-4J

EndI>o&ll

The G matrix for the above loop nest is the 2 x 2 identity
matrix, and the offset vectors are ai = (0, 0), ai = (- 1, 0),

b1 = (0, 4), and b2 = (0, - 4). Each array was 512 elements
(words) on a side. The cache line size is four words, and the
arrays are stored in row-major order. ·

Using the aJgorithrns in this paper, and taking the four-word
cache line size into account, the compiler chose a rectangular
loop partition and detennined that the optimal partition has an
!15pect ratio of 2 ; 1. The compiler then chose the closest as­
pect ratio (1 : 1) that also achieves load balance for the given
problem size and machine size, which results in a tile size of
64 x 64 iterations. We also ran the loop nest using suboptimal
partitions with tile dimensions ranging from 8 x 512 to 512 x
8. This set of executions is labeled run A in Fig. 17. We ran a
second version of the program using a different set of offset
vectors that give an optimal aspect ratio of 8 : 1 (run B). This
results in a desired tile size between 256 x 16 and 128 x 32
with the compiler choosing 256 x 16.

Fig. 17 shows the running times for the different tile sizes,
and demonstrates that the compiler was able to pick the opti­
mal partitions for both cases. There is some noise in these fig­
ures because there can be variation in the cost of accessing the
memory that is actually shared due to cache coherence actions,

but the minima of the curves are about where the framework
predicted.

B.2. Application Experiments

The following three applications were run on a real Alewife
machine with 32 processors.

• Erfebacher. A code written by Thomas Eidson, from
ICASE. It performs 3D tridiagonal solves using Alternat­
ing Direction Implicit (ADI) integration. It has 40 loops
and 22 arrays in one, two and three dimensions.

• Conduct. A routine in SWPLE, a two dimensional hy­
drodynamics code from Lawrence Livermore National
Labs. It has 20 loops and 20 arrays in one and two di­
mensions.

• Tomcatv. A code from the SPEC suite. It has 12 loops
and seven arrays, all two dimensional.

As with the loop nest example, the programs were compiled
with two different methods of partitioning loops. The auto
method used the algorithms described in this paper to partition
each loop independently. The other methods assigned a fixed
partition shape to each loop: rows, squares or columns. The
results are shown in Tables II, ill, and IV. The cache-miss
penalty for this experiment is small because the Alewife re­
mote memory access time is rather short (about 40 cycles).
Since we expect that the importance of good loop partitioning
will increase with the cache-miss penalty, we also ran two
other experiments with a longer remote delay of I 00 and 200
cycles. Alewife allows longer delays to be synthesized by a
combination of software and hardware mechanisms.

These results show that the choice of partitioning parame­
ters affects performance significantly. In all cases, the parti­
tioner was able to discover the best partition. In two of the
applications, the compiler's partition choice resulted in a small
improvement over squares. In Tomcatv, the compiler chose the
same square partition for each loop, resulting in no improve­
ment over the fixed square partition. The performance gains
over squares for all of these programs are modest because the
offsets in most of the references in the three applications are
similar.

fl)

i
0

.•
c:, g ,..

525
Q

500

475 "

450 o - o Run A (predicted 1:1)
o •···••o Run B (predicted 16:1)

42sa....----------------------Sx512 16X256 32x128 64x64 128x32 256x16 512x8
tile size

Fig. 17. Running times in 1,000s of cycles for different aspect ratios on 64
processors.

AGARWAL. KRANZ, AND NATARAJAN: AUTOMATIC PARTITIONING OF PARALLEL LOOPS AND DATA ARRAYS 961

TABLE II
ExEcurlON TIME IN MCYCLES FOR ERLEBACHER (N = 64)

Delay auto rows sauares columns
40cycles 27.0 27.3 28.6 28.2
JOO cycles 30.4 31.4 31.2 31.3
200 cvcles 34.0 35.2 36.4 36.8

TABLE III
EXECUrlON TIME IN MCYQ.ES FOR CONDUCT (N = 768)

Delav auto rows souares columns
40cycles 67.2 71.2 71.4 71.2
100 cycles 85.4 91.2 91.8 90.8
200 cvcles 111.4 l 18.2 117.1 117.5

TABLE IV
ExEcuTION TIME IN MCYCl.ES FOR TOMCATV (N = 1,200)

Delav auto rows sauares columns
40cycles 104 127 100 113
100 cycles 125 152 122 138
200cvcles 154 188 154 174

VIll. CONCLUSIONS

The performance of cache-coherent systems is heavily
predicated on the degree of temporal locality in the access
patterns of the processor. If each block of data is accessed a
number of times by a given processor, then caches will beef­
fective in reducing network traffic. Loop partitioning for
cache-coherent multiprocessors strives to achieve precisely
this goal.

This paper presented a theoretical framework to derive the
parameters of iteration-space partitions of the do loops to
minimize the communication traffic in multiprocessors with
caches. The framework allows the partitioning of doall loops
into optimal hyperparallelepiped tiles where the index expres­
sions in array accesses can be any affine function of the indi­
ces. The same framework also yields optimal loop and data
partitions for multicomputers with local memory.

Our analysis uses the notion of uniformly intersecting refer­
ences to categorize the references within a loop into classes that
will yield cache locality. A theory of data footprints is intro­
duced to capture the combined set of data accesses made by the
references within each uniformly intersecting class. Then, an
algorithm to compute precisely the total size of the data footprint
for a given loop partition is presented. Once an expression for
the total size of the data footprint is obtained, standard optimiza­
tion techniques can be applied to minimize the size of the data
footprint and derive the optimal loop partitions.

Our framework discovers optimal partitions in many more
general cases than those handled by previous algorithms. In
addition, it correctly reproduces results from loop partitioning
algorithms for certain special cases previously proposed by
other researchers.

The framework, including both loop and data partitioning for
cache-coherent distributed shared-memory, has been imple­
mented in the compiler system for the Alewife multiprocessor.

APPENDICES

A. A Fonnulation of Loop TIies Using Bounding Hyperplanes

A specific hyperparellelepiped loop tile is defined by a set
of bounding hyperplanes. Similar formulations have also been
used earlier [6].

DEFINITION 15. Given an l dimensional loop nest i , each
tile of a hyperparallelepiped loop partition is defined by

the hyperplanes given by the rows of the l X l matrix H

and the column vectors .r and I as follows. The parallel

hyperplanes are h/ = r j and 'ii/ = r j +). j ,for I s j '5, l.

An iteration belongs to this tile if it on or inside the hyper­
parallelepiped.

When loop tiles are assumed to be homogeneous except at
the boundaries of the iteration space, the partitioning is com­
pletely defined by specifying the tile at the origin, namely

(H, O, 1), as inicated in Fig. 18. For notational convenience,

we denote the tile at the origin as L.

I
L = [~11 ~12]

21 22

(L •
11

(L , L)
21 22

Fig. I 8. Iteration space partitioning is comple1ely specified by the tile at the
origin.

DEFINITION 16. Given the tile (H, 0, A) at the origin of_[hi
hyperparallelepiped partition, let L = L(H) = A(H) ,
where A is a diagonal matrix with A;; = A.;. We refer to the
tile by the L matrix, as L completely defines the tile at the
origin. The rows of L specify the vertices of the tile at the
origin.

B. Synchronization References

Sequential do loops can often be converted to parallel do
loops by introducing fine-grain data-level synchronization to
enforce data dependencies or mutual exclusion. The cost of
synchronization can be approximately modeled as slightly
more expensive communication [14]. For example, in the
Alewife system the inner loop of matrix multiply can be
written using fine-grain synchronization in the form of the
loop in Example 12.

EXAMPLE 12.

I>o&ll (i=l :N, j =l:N, k=l:N)
1$C[i,j]=l$C[i, j)+A[i,k]+B [k, jJ

BndDoall

962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 6. NO. 9, SEPTEMBER 1995

In the code segment in Example 12, the "1$" preceding the
C matrix references denote atomic accumulates. Accumulates
into the C array can happen in any order, just that each accu­
mulate action must be atomic. Such synchronization reads or
writes are both treated as writes by the coherence system.
Similar linguistic constructs are also present in Id (23] and in a
variant of Fortran used on the HEP [24].

ACKNOWLEDGMENTS

This research is supported by Motorola Cambridge Research
Center and by National Science Foundation grant #MIP-
9012773. Partial support has also been provided by DARPA
contract #N00014-87-K-0825, in part by a National Science
Foundation Presidential Young Investigator Award. We are
grateful to Rajeev Barua for pointing out an error in an earlier
formulation of the footprint sire and for extending our compiler
implementation to include general affine index expressions and
data partitioning. Gino Maa helped define and implement the
compiler system and its intermediate form. Andrea Camevali
suggested the simple proof for Theorem l on lattices sketched in
this paper. We acknowledge the contributions of the Alewife
group for implementing and supporting the Alewife simulator
and runtime system used in obtaining the results.

REFERENCES

{I) C.D. Polychronopoulos and _D.J. Kuck, "Guided self-scheduling: A
practical scheduling scheme for parallel supercomputers," IEEE Trans.
Computers, vol. 36, no. 12, Dec. 1987.

[2) E. Mohr, D. Kranz, and R. Halstead, "Lazy task creation: A technique
for increasing the granularity of parallel programs," IEEE Tr=. Para/•
lei and Distributed Systems, vol. 2, no. 3, pp. 264-280, July I 991.

[3] M. Wolf and M. Lam, "A data locality optimizing algorithm." Proc.
ACM S/GPUN '91 Conf Programming Language Design and lmple·
men talion, pp. 30-44, 199 I.

(4) D. Gannon, W. Jalby, and K. Gallivan, "Strategies for cache and local
memory management by global program transfonnation," J. Para/kl
and Distributed Computing, vol. 5, pp. 587-616, 1988.

(5] H.S. Stone and D. Thiebaut, "Footprints in the cache," Proc. ACM
SlGMEIRICS 1986, pp. 4-8, May 1986.

[6] F. Irigoin and R, Triolet, "Supemode partitioning," / 5th Symp. Princi­
ples of Programming languages (POPL XV), pp. 319-329, Jan. 1988.

(7) S.G. Abraham and D.E. Hudalc, "Compile-time partitioning of iterative
parallel loops to reduce cache coherency traffic," lEEE Trans. Parallel
and Distributed Systems, vol. 2, no. 3, pp. 318-328, July 1991. ·

[8] J. Ramanujam and P. Sadayappan, "Complie-time techniques for data
distribution in distributed memory machines," IEEE Trans. Parallel
and Distributed Systems, vol. 2, no. 4, pp. 472-482, Oct. 1991.

[9] J.M. Anderson and M.S. I.am, "Global optimizations for parallelism and
locality on scalable parallel machines," Proc. SIGPLAN '93 Conf Pro•
gramming languages Design and Implementation, ACM, June 1993.

[10] M. Gupta and P. Banerjee, "Demonstration of automatic data partitioning
techniques for parallclizing compilers on multicomputers," IEEE Trans.
Parallel and Distributed Systems, vol. 3, no. 2, pp. 179-193, Mar. 1992.

[11 I R. Schreiber and J. Dongarra, "Automatic blocking of nested loops,"
Technical report, RIACS, NASA Ames Research Center and Oalc Ridge
Nat'! Laboratory, May 1990.

(12] J. Ferrante, V. Sarkar, and W. Thrash, "On estimating and enhancing
cache effectiveness," Lecture Notes in Computer Science: Languages
and Compilers for Parallel Computing, U. Banerjee, D. Gelemter, A.
Nicolau, and D. Padua. eds., pp. 328-341, Springer-Verlag, Aug. 1991.

[13) J. Ramanujam and P. Sadayappan, '"filing multidimensional iteration
spaces for nonshared memory machines," Proc. Supercomputing '91,
IEEE CS Press, 1991.

(14] G.N. Srinivasa Prasanna, A. Agarwal, and B.R. Musicus, "Hierarchical
compilation of macro dataflow graphs for multiprocessors with local
memory," IEEE Trans. Parallel and Distributed Systems, July 1994.

[15] R. Barna, D. Kranz, and A. Agarwal, "Global partitioning of parallel
loops and data arrays for caches and distributed memory in multiproas­
sors," Technical Memo MIT-LCS TM-538, Massachusetts Institute of
Technology, 1995.

[16] A. Agarwal, J.Y. Guttag, C.N. Hadji=tis. and M.C. Papaefthymiou,
"Memory assignment for multiprocessor caches through grey coloring,"
PARLE '94 Parallel Architectures and languages Europe, pp. 351-362,
Springer Verlag Lecture Notes in Compurec Science 817,July 1994.

(17] M. Lam. E.E. Rothbert, and M.E. Wolf, "The cache performance and
optimizations of blocked algorithms," Founh lnt'l Conf Architectural
Support/or Programming Languages and Operating Systems (ASPWS
JV), pp. 63-74, ACM. Apr. 1991.

[18] A. Camevali, V. Natarajan, and A. Agarwal, "A relationship between
the number of lattice points within hyperparallelepipes and their vol­
wne," Motorola Cambridge Reseazch Center, in preparation, Aug. I 993.

[19] G. Strang, Linear Algebra and Its Applications, third edition. San Di­
ego, Calif.: Harcourt Brace Jovanovich, 1988.

{20] A. Schrijver, Theory of Linear and Integer Programming, John Wiley &
Sons, 1990.

(21 J G. Arfhn, Mathematical Metluxl.r for Physics. Academic Press, I 985.
(22] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubia­

towicz, B.-H. Lim, K. Mackenzie, and D. Yeung, "The MIT Alewife
machine: Architecture and performance," Proc. 22nd Ann. Int'/ Symp.
Computer Architecture (/SCA '95), June 1995.

[23] P.S. Barth, R.S. Nilchll, and Arvind, ''M-strucrures: Extending a parallel,
nonstrict, functional language with state," Proc. Fifth ACM Conf. Func­
tional programming languages and Computer Architecture, Aug. 1991.

{24J B.J. Smith, "Architecture and applications of the HEP multiprocessor
computer system," Society Photo-Optical Instrumentation Engineers,
vol. 298, pp. 241·248, 1981.

Ananl Agarwal received a BTech degree from the
Indian Institute of Technology, Madras, India, in
1982, and a PhD from Stanford University in 1987.
He is an associate professor of electrical engineering
and computer science with the Laboratory for Com­
puter Science at MIT. where he led the Alewife
multiprocessors system project Dr. Agarwal is also
chief scientist with Vinual Machine Works, Inc., a
company he cofounded that focuses on compilation
technologies for multiFl'GA systems. While at Stan­
ford, he participated in !he MIPS and MIPS-X proj­

ects. Dr. Aga,wal's current research interests include the design of scalable
multiprocessor systems and reconfigurable computing using FPGAs.

David A. Kranz received the BA degree from
Swarthmore College in 1981, and the PhD degree
from Yale University, where he worked on high­
performance compilers for Scheme and applicative
languages, in I 988. He has been a research associate
with the MIT Laboratory for Computer Science
since 1987 and was software architect of the Alewife
project. Dr. Kranz's research interests are in pro­
gramming language design and implementation for
parallel computing.

Venkat Natarajan n:ceived a PhD in computer
science from Rutge,s University in 1981 . He was an
assistant professor in the Computer Science De­
partment at Tufts University prior 10 joining Com­
pass, Inc., in Massachusetts, where he was a co­
designer of the Fortran 90 compiler for the MasPar
MP- I. Dr. Natarajan has been a research scientist at
the Motorola Cambridge Research Center since June
1990 and is also a research affiliate of the Labora­
tOI)' for Computer Science at MIT. His research
interests include compilers. neural networks, per•

fonnance evaluation, and parallel computation.

