
A Software Framework for Suppor ting General Purpose
Applications on Raw Computation Fabrics

Matthew Frank, Walter Lee, Saman Amarasinghe
MIT LCS

Cambridge, MA�
mfrank,walt,saman � @lcs.mit.edu

ABSTRACT
This paperpresentsSUDS(SoftwareUn-Do System),a dataspec-
ulation systemfor Raw processors.SUDS managesspeculation
in software. The key to managingspeculationin software is to
usethe compiler to minimize the numberof dataitemsthat need
to be managedat runtime. Managingspeculationin softwareen-
ablesRaw processorsto achieve goodperformanceon integerap-
plicationswithout sacrificingchip areafor speculationhardware.
This additionalareacaninsteadbedevotedto additionalcompute
resources,improving the performanceof densematrix andmedia
applications.

1. INTRODUCTION
Therapidgrowth in theresourcesavailableon a chip,approaching
abillion transistorswithin thenext fiveyears,is creatinganexciting
opportunityfor computerarchitectsto build atruly general-purpose
microprocessor. Even when transistorsare plentiful, finding the
designpoint wherea singlearchitecturecanefficiently supporta
diversesetof applicationsis a challenge.

Fromtheperspective of parallelism,resourcesonamicroprocessor
canbedivided into two types: basiccomputingresourcessuchas
functionalunits,registers,andmemories;andparallelism-enabling
resourcesthat help an applicationutilize the computeresources
concurrently. An importantissuein designinga general-purpose
microprocessoris how the transistorbudgetshouldbedividedbe-
tweenthesetwo typesof resources.

This issueis complex becausedifferent applicationshave seem-
ingly different requirements. The conflict is evident from the
fact that historically, different applicationsprefer different archi-
tectures.Densematrix applicationsandmediaapplicationsprefer
multiprocessors,vectorprocessors,DSPs,andspecial-purposepro-
cessors.Theseprocessorsprovide amplecomputingresourcesbut
scantyparallelism-enablingresources.Integerapplications,on the
otherhand,prefersuperscalars,which containmodestcomputing
resourcesbut copiousparallelism-enablingresources.

TheRaw philosophyto building general-purposemicroprocessors

MIT Laboratoryfor ComputerScienceTechnical
MemoMIT-LCS-TM-619,July20,2001.

challengesthenotionthatoneneedsto build specializedhardware
to managevarioustypesof parallelism[54]. It dedicatesall of the
processortransistorbudgetto computeresources.Any specialized
supportfor parallelizationis implementedin softwareontopof ex-
cesscomputeresources.Throughcompileroptimization,theRaw
philosophyaimsto overcomethissoftwareoverhead.Architectures
thatfollow theRaw philosophyarecalledRaw architectures.

However, dueto thelack of parallelism-enablingresources,a Raw
architectureby itself doesnot provide any performancebenefitfor
integerapplications.In fact,only a very smallportionof hardware
resources,a singlesetof computeresourcesin a large fabric, can
beusedin executingan integerapplication.This paperintroduces
a software framework that enablesthe useof the entire fabric to
increaseperformanceof integerapplications.

This paperappliesthe Raw philosophyto memory dependence
speculation,a parallelizationtechniquethatspeculatively executes
memorydependencesout of order to improve performance.The
paperdescribesSUDS(SoftwareUn-Do-System),asystemfor per-
forming memorydependencespeculationin loopson an Raw ar-
chitecture.Briefly, SUDSworks asfollows. At runtime,the sys-
temexecutesa chunkof theprogramin parallel.Next, thesystem
checkswhethertheparallelexecutionproduceda resultconsistent
with sequentialsemantics.If theparallelexecutionwascorrect,the
systemmoveson to thenext chunkof theprogramandrepeatsthe
process.Otherwise,theexecutionis rolled backto thestateat the
beginningof thechunk,andthechunkis rerunsequentially.

The costof building a systemin softwareis that,whena runtime
subsystemis required,it consumesmoretime, power, energy and
areathanthe equivalent functionality built from specializedhard-
ware. On the otherhand,we demonstratein this paperthat these
costscan be containedby using compiler optimizations. In par-
ticular, for speculation,the key compiler optimizationsare those
that identify opportunitiesfor renaming. Data items that can be
renamed between checkpoints don’t require runtime management.

Thespecificcontributionsof this paperinclude:

1. A framework to improveperformanceof integerapplications
on a Raw fabricwithout sacrificingtheperformanceof sci-
entificapplications.

2. Thedesignof anefficientall-softwarespeculationsystem.

3. The descriptionof a setof compile time optimizationsthat
reducethenumberof dataelementsrequiringruntimeman-
agement.

IMEM
�

DMEM
�

REGS
�

ALU
�

PC

RawTile
�

Raw P

Network
�
Switch
�

Figure1: Raw� P composition.The systemis madeup of multi-
ple tiles. In addition to instruction and data memories,eachtile
contains a processorpipeline with a register-mapped network
interface.

4. A casestudythatdemonstratestheeffectivenessof theSUDS
system.

The rest of this paperis structuredas follows. The next section
givesaninformaldescriptionof how SUDSworksin thecontext of
an example. Section3 describesthe designof the SUDSsystem.
Section4 presentsa casestudy. Section5 presentsrelatedwork.
Section6 concludes.

2. BACKGROUND
SUDSis designedto run on Raw microprocessors. A Raw micro-
processoris a singlechip VLSI architecture,madeup of an inter-
connectedsetof tiles (Figure1). Eachtile containsasimpleRISC-
like pipeline,instructionanddatamemoriesandis interconnected
with othertilesover apipelined,point-to-pointmeshnetwork. The
network interfaceis integrateddirectly into theprocessorpipeline,
sothatthecompilercanplacecommunicationinstructionsdirectly
into thecode.Thesoftwarecanthentransferdatabetweenthereg-
isterfileson two neighboringtiles in just 4 cycles[34, 48,54].

2.1 Chunk basedwork distrib ution
As shown in Figure2,SUDSpartitionsRaw’stiles into two groups.
Someportion of the tiles are designatedas compute nodes. The
restaredesignatedasmemory nodes.Oneof thecomputenodesis
designatedasthe master node,the restaredesignatedasworkers
andsit in a dispatchloop waiting for commandsfrom the master.
Themasternodeis responsiblefor runningall thesequentialcode.

SUDS parallelizesloopsby cyclically distributing the loop itera-
tions acrossthe computenodes.We call the setof iterationsrun-
ning in parallelachunk. Thecomputenodeseachrunasingleloop
iteration, and then all the nodessynchronizethroughthe master
node.

In the currentversionof the system,the programmeris responsi-
ble for identifying which loopsthesystemshouldattemptto paral-
lelize. This is doneby markingthe loopsin thesourcecode.The
parallelizationtechniquesprovidedby SUDSwork with any loop,
even “do-across”loops, loopswith true-dependences,loopswith
non-trivial exit conditionsandloopswith internalcontrolflow. The
systemwill attemptto parallelizeany loopevenif theloopcontains
no availableparallelismdueto dataor controldependences.

Figure2: An exampleof how SUDSallocatesresourceson a 64
tile Raw machine.The gray tiles arememory nodes.The white
tiles are worker nodes, the gray hatched tile near the center
is the master node. Loop carried dependencesare forwarded
betweencomputenodesin the pattern shown with the arr ow.

for (i = 0; i<N; i++)
u = A[b[x]]
A[c[x]] = u
x = g(x)

Figure3: An exampleloop.

2.2 Example
Figure3 showsanexampleof asimpleloopwith non-trivial depen-
dences.Figure4 shows an initial attemptat parallelizingthe loop
on a machinewith two workers. The figure is annotatedwith the
dependencesthat limit parallelism.Thevariablex createsa true-
dependence, becausethevaluewritten to variablex by worker 0 is
usedby worker 1. The readof variableu on worker 0 causesan
anti-dependence with thewrite of variableu on worker 1. Finally,
thereadsandwritesto theA arraycreatemay-dependences between
theiterations.Thepatternof accessesto thearrayA dependsonthe
valuesin theb andc arrays,andsocannotbedetermineduntil run-
time. Without any furthersupport,any of thesethreedependences
would forcethesystemto run this loopsequentially.

Figure5 showstheloopaftertwo compileroptimizationshavebeen
performed.First, thevariableu hasbeenrenamedv on worker 1.
This eliminatesthe anti-dependence.Second,on both worker 0

 u = A[b[x]]
 A[c[x]] = u
 x = g(x)

 u = A[b[x]]
 A[c[x]] = u
 x = g(x)

true-

anti-
may-

worker 0

worker 1time

Figure 4: SUDSruns one iteration of the loop on eachworker
node. In this casethe dependencesbetweeniterations limit the
available parallelism.

worker 0 worker 1

int v,t
t = x
x = g(x)
v = A[b[t]]
A[c[t]] = v

int u,s
s = x
x = g(x)
u = A[b[s]]
A[c[s]] = u

true-
may-

time

Figure 5: After renaming the anti-dependence is eliminated
and the critical path length of the true-dependence is short-
ened.

and worker 1, temporary variables,s andt, have been introduced.
This allows worker 0 to create the new value of variablex earlier
in the iteration, reducing the length of time that worker 1 will need
to wait for the true-dependence. The final remaining dependence is
the may-dependence on the accesses to arrayA.

This remaining may-dependence is monitored at runtime. The sys-
tem executes the array accesses in parallel, even though this may
cause them to execute out of order. Each of these speculative mem-
ory accesses is sent to one of the memory nodes. The runtime sys-
tem at the memory nodes checks that the accesses are independent.
If not, execution is temporarily halted, the system state is restored
to the most recent checkpoint and several iterations are run sequen-
tially to get past the miss-speculation point. Because the system
is speculating that the code contains no memory dependences, this
technique is calledmemory dependence speculation [19].

Raw microprocessors provide a number of features that make them
attractive targets for a memory dependence speculation system like
SUDS. First, the low latency communication path between tiles is
important for transferring true-dependences that lie along the crit-
ical path. In addition, the independent control on each tile allows
each processing element to be involved in a different part of the
computation. In particular, some tiles can be dedicated as worker
nodes, running the user’s application, while other tiles are allocated
as memory nodes, executing completely different code as part of
the runtime system. Finally, the many independent memory ports
available on a Raw machine allow the bandwidth required for sup-
porting renamed private variables and temporaries in addition to
the data structures that the memory nodes require to monitor may-
dependences.

3. DESIGN
The previous section gave a basic overview of Raw processors and
memory dependence speculation. This section describes the tech-
niques used in the SUDS system. The challenge of a software based
memory dependence speculation system is to make the runtime sys-
tem efficient enough that its costs don’t completely swamp the real
work being done on behalf of the user’s application.

The approach taken in the SUDS system is to move as much work
as possible to compile time. In particular, SUDS takes the unique
approach of using the compiler to identify opportunities for renam-
ing. Since renaming no longer needs to be done at runtime, the
runtime system is efficient enough to realize the desired applica-
tion speedups. We next discuss the basic SUDS system and the
optimizations that make the runtime system more efficient.

Object Run Time Code Generation
Category Technique Technique

Private Local Stack Stack Splitting
Loop Checkpoint Communication

Carried Repair Instruction Placement
Heap Memory Dependence Memory

Speculation Abstraction

Figure 6: The SUDS system divides objects into three major
categories. The system has a runtime system component and
code generation component for each object category.

As discussed in Section 2.2, there are three types of dependences
that are managed by SUDS. SUDS categorizes objects based on the
structure of their dependences. Each object category is handled by
a different runtime subsystem and a corresponding code generation
technique. This breakdown is summarized in Figure 6.

Private variables are those that have a lifetime that is restricted to a
single loop iteration. These are the major candidates for renaming
and are handled most efficiently by SUDS. SUDS provides support
for renaming by allocating a local stack on each worker, as well
as a single global stack that can be accessed by any worker. At
code generation time, the compiler allocates private objects to the
tile registers and local stack using a technique calledstack split-
ting. This technique separates objects on the stack between the
local stack and global stack, depending on the compiler’s ability to
prove that the object has no aliases. This is similar to techniques
that have been used to improve the performance of register spills
on digital signal processors[12].

SUDS handlesloop carried dependent objects at runtime by explic-
itly checkpointing them on the master node and then forwarding
them from worker to worker through Raw’s point-to-point inter-
connect, as shown in Figure 2. The code generator is responsible
for placing the explicit communication instructions so as to mini-
mize delays on the critical path while guaranteeing that each object
is sent and received exactly once per iteration, no matter what arbi-
trary control flow might happen within the iterations.

The remaining objects, denotedheap objects, are those that the
compiler is unable to analyze further at compiler time. They are
handled at the memory nodes using a runtime memory dependence
validation protocol that is based on Basic Timestamp Ordering [6].
This technique is described in more detail in the next section. The
code generator converts all heap object load and store operations
into instructions to communicate between the workers and mem-
ory nodes.

3.1 Managing heap objects
The memory dependence speculation system is in some ways the
core of the system. It is the fallback dependence mechanism that
works in all cases, even if the compiler cannot analyze a particular
variable. Since only a portion of the dependences in a program
can be proved by the compiler to be privatizable or loop carried
dependences, a substantial fraction of the total memory traffic will
be directed through the memory dependence speculation system.
As such it is necessary to minimize the latency of this subsystem.

3.1.1 A conceptual view
The method we use to validate memory dependence correctness is
based on Basic Timestamp Ordering [6], a traditional transaction

-- ---- ---

data memory:
	

last_read:

last_written:

Figure 7: A conceptual view of Basic Timestamp Ordering. As-
sociated with every memory location is a pair of timestamps
that indicate the logical time at which the location was last read
and written.

processing concurrency control mechanism. A conceptual view of
the protocol is given in Figure 7. Each memory location has two
timestamps associated with it, one indicating the last time a location
was read (last read) and one indicating the last time a location
was written (last written). In addition, the memory is check-
pointed at the beginning of each chunk so that modifications can be
rolled back in the case of an abort.

The validation protocol works as follows. As each load re-
quest arrives, its timestamp (read time) is compared to the
last written stamp for its memory location. Ifread time�

last written then the load is in-order andlast read
is updated toread time, otherwise the system flags a miss-
speculation and aborts the current chunk.

On a store request, the timestamp (write time) is compared
first to the last read stamp for its memory location. If
write time

�
last read then the store is in-order, otherwise

the system flags a miss-speculation and aborts the current chunk.

We have implemented an optimization on store requests that is
known as the Thomas Write Rule [6]. This is basically the ob-
servation that ifwrite time � last written then the value
being stored by the current request has been logically over-written
without ever having been consumed, so the request can be ignored.
If write time

�
last written then the store is in-order and

last written is updated aswrite time.

3.1.2 Implementation
We can’t dedicate such a substantial amount of memory to the spec-
ulation system, so the system is actually implemented using a hash
table. As shown in Figure 8, each processing element that is dedi-
cated as a memory dependence node contains three data structures
in its local memory. The first is an array that is dedicated to storing
actual program values. The next is a small hash table that is used
as atimestamp cache to validate the absence of memory conflicts.
Finally, thelog contains a list of the hash entries that are in use and
the original data value from each memory location that has been
modified. At the end of each chunk of parallel iterations the log
is used to either commit the most recent changes permanently to
memory, or to roll back to the memory state from the beginning of
the chunk.

The fact that SUDS synchronizes the processing elements between
each chunk of loop iterations permits us to simplify the implemen-
tation of the validation protocol. In particular, the synchronization
point can be used to commit or roll back the logs and reset the
timestamp to 0. Because the timestamp is reset we can use the
requester’s physical node-id as the timestamp for each incoming

timestamp
cache

log

data
memory

addr: data

last_reader
last_writer

tag

hash_entry

checkpoint
data

addr

hash

node_id

compare

Figure 8: Data structures used by the memory dependence
speculation subsystem.

Operation Cost

Send from compute node 1
Network latency 4 + distance
Memory node 8
Network latency 4 + distance
Receive on compute node 2

Total 19 + 2
 distance

Figure 9: The round trip cost for a load operation is 19 cycles +
2 times the manhattan distance between the compute and mem-
ory node. The load operation also incurs additional occupancy
of up to 40 cycles on the memory node after the data value is
sent back to the compute node.

memory request.

In addition, the relatively frequent log cleaning means that at any
point in time there are only a small number of memory loca-
tions that have a non-zero timestamp. To avoid wasting enor-
mous amounts of memory space storing 0 timestamps, we cache
the active timestamps in a relatively small direct-mapped hash ta-
ble. Each hash table entry contains a pair oflast read and
last written timestamps and a cache-tag to indicate which
memory location owns the hash entry.

As each memory request arrives, its address is hashed. If there
is a hash conflict with a different address, the validation mecha-
nism conservatively flags a miss-speculation and aborts the current
chunk. If there is no hash conflict the timestamp ordering mecha-
nism is invoked as described above.

Log entries only need to be created the first time a chunk touches
a memory location, at the same time an empty hash entry is allo-
cated. Future references to the same memory location do not need
to be logged, as the original memory value has already been copied
to the log. Because we are storing the most current value in the
memory itself, commits are cheaper, and we are able to implement

- I I I

a fastpathfor loadoperations.Beforegoingthroughthevalidation
process,a load requestfetchesthe requireddataandreturnsit to
the requester. Theresultinglatency at thememorynodeis only 8
cyclesasshown in Figure9. Thevalidationprocesshappensafter
the datahasbeenreturned,andoccupiesthememorynodefor an
additional14 to 40cycles,dependingonwhethera log entryneeds
to becreated.

In thecommoncasethechunkcompleteswithout sufferingamiss-
speculation.At thesynchronizationpoint at theendof thechunk,
eachmemorynodeis responsiblefor cleaningits logsandhashta-
bles.It doesthisby walking throughtheentirelog anddeallocating
theassociatedhashentry. Thedeallocationis doneby resettingthe
timestampsin the associatedhashentry to 0. This costs5 cycles
permemorylocationthatwastouchedduringthechunk.

If amiss-speculationis discoveredduringtheexecutionof achunk,
thenthe chunkis abortedanda consistentstatemustbe restored.
Eachmemorynodeis responsiblefor rolling backits log to thecon-
sistentmemorystateat theendof thepreviouschunk. This is ac-
complishedby walking throughtheentirelog, copying thecheck-
pointedmemoryvaluebackto its original memorylocation. The
hashtablesarecleanedat thesametime. Rollbackcosts11 cycles
permemorylocationthatwastouchedduringthechunk.

3.1.3 Code generation
Sincethe computationandheapmemoryarehandledon separate
nodesin SUDS,every accessto theheapinvolvescommunication
throughRaw’s network. The codegenerationpassis responsible
for identifying every load or storeoperationthat needsto be sent
from a computenodeto a remotememorynode. Eachload op-
eration to the heapis replacedby a pair of specialinstructions.
The first is a messageconstructioninstruction. It calculatesthe
correctdestinationmemorynodefor a particularmemoryrequest,
thenconstructsthe correspondingmessageheaderandbody, and
launchesthemessage.Thesecondinstructionis aregistermove in-
struction(with byteextractand/orsignextensionif thesystemonly
wantsan8 or 16 bit result). This secondinstructionwill stall un-
til thecorrespondingdataitem is returnedfrom thememorynode.
Heapstoresareacknowledgedasynchronouslyin SUDS,so each
storeinstructionis replacedby a singlemessageconstructionin-
struction,similar to thatusedfor loadinstructions.

3.2 Handling true-dependences
Thetaskof identifying loopcarriedtrue-dependencesis carriedout
by thecompilerin our system.Currently, our compilerusesstan-
dard dataflow analysistechniquesto identify scalarloop carried
dependences.Any scalarvariablemodified within the loop nest
needsto beeitherprivatizedby renaming(seeSection3.3) or for-
wardedto the next iteration. If the compilerfinds that thereis a
true-dependenceonaparticularvariable,it insertsexplicit commu-
nicationinstructionsinto thecode. Thecompilerusesananalysis
similar to thatusedby T.N. Vijaykumarfor theMultiscalar[51] to
identify theoptimalplacementof communicationinstructions.The
compilerarrangescommunicationinstructionssuchthat after the
lastmodificationof thevariableit is sentto thenext worker in the
chunk,andbeforethe first readof thevariableit is received from
thepreviousworker in thechunk.

At runtimethemasternodecheckpointsall thecompileridentified
true-dependencessothatif amiss-speculationoccursthecomputa-
tion canbe rolled backto a consistentstate. Sinceonly the mas-
ter nodecheckpoints,this costcanbeamortizedover a numberof

Heap
�

Private
�

Loop
�

Carried

Register
Promotion

Scope
�

Restriction

Critical
�

Path
Reduction

Privat−
ization
�

Figure 10: Compiler optimizations. Each of the optimizations
(critical path reduction, pri vatization, register promotion and
scoperestriction) attempts to move objects fr om one category
(heap,loop carried, or pri vate), to a more efficient category.

loop iterations.Thedrawbackof thisapproachis thatwhenamiss-
speculationdoesoccur we may needto rollback slightly further
thannecessary. So far we have not foundthis to bea problem. In
theprogramswe have looked at, the rateof miss-speculationsper
chunkis low enoughthatit doesnotconstrainparallelism.

3.3 Renaming
Renamingin SUDSis handledcompletelyby the compiler. This
simplifies the designof the memorydependencespeculationsys-
tem,becausemultiple versionsof memorylocationsdon’t needto
bemaintainedby theruntimesystem.Thevaluesthatthecompiler
decidesto privatizearekept in theregistersandlocal memoriesof
thecomputenodesfor thedurationof asingleiteration.In addition
to theprivatizationoptimizationsdescribedin Section3.4,thecode
generatorperformsstack splitting.

Stack splitting simply identifies register allocatablescalarsthat
never have their addressestaken.Thesevaluesarekepton thenor-
mal C stackalongwith all registerspills taken at procedurecalls.
For scalarsthat do have their addressestaken, the codegenerator
createsandmanagesa secondglobal stackaspartof theheap.The
valuesin theglobalstackarethenmanagedat runtimeasdescribed
in Section3.1.

Theadvantageof stacksplitting is thatregisterspills don’t needto
be handledby the speculationsystem.Sincewe areparallelizing
loops,the stackpointer is pointing at the sameaddresson all the
computenodes.If we maintainedonly a singleglobal stack,then
everytimetheprogramtookaprocedurecall,all thecomputenodes
wouldspill to thesamememorylocations,requiringthespeculation
systemto managemultiple versionsof thesamememorylocation.

3.4 Compile time optimizations
SinceSUDS hasspecialruntimesupportthat allows it to handle
privatesandtrue-dependencesmoreefficiently at runtime,thegoal
of theSUDSoptimizeris to move asmany objectsaspossibleinto
the moreefficient categories. It doesthis usingthe four compiler
optimizationsidentifiedin Figure10.

Privatization is thecentraloptimizationtechnique.It dependsona
dataflow analysisto identify objectswhoselive rangesdo not ex-
tend outsidethe body of a loop. The SUDS privatizationphase

alsoidentifiestrue-dependencesandloop-invariants. It differenti-
atesall of thesefrom heapbasedobjectsthatcannotbehandledas
efficiently at runtime.

Critical path reduction is a techniquefor improving programpar-
allelism in the faceof loop carrieddependences.An exampleof
this optimizationwasshown in Figure5. The ideais to introduce
additionalprivatevariablesthat will hold the old valueof the ob-
ject while the new value is computedandforwardedto the other,
waiting,workers.

Register promotion is similar to performing common sub-
expressionor partial redundancy eliminationon loadandstorein-
structions[13, 35, 8]. This reducesthe numberof requeststhat
needto besentfrom theworker nodesandprocessedby themem-
ory nodes.

The final optimizationis scope restriction, which allows privati-
zation of structureobjectsthat can not be fully analyzedby the
privatizationpass.Scoperestrictiontakesadvantageof scopingin-
formationprovidedby theprogrammer. It allows structureobjects
declaredinsidethebodyof theloop to bepromotedto privatesand
handledefficiently by theruntimesystem.

4. CASE STUDY
In this sectionwe demonstratethat moving speculationinto soft-
wareavoidsthetraditionalareatradeoffs facedby computerarchi-
tects.Whenspeculationis notrequiredthesystemcandevoteall of
thechip areato usefulcomputation.Whenspeculationis required,
the software systemcan be turnedon and achieve IPC numbers
similar to thoseachieved by a hardwarebasedspeculationsystem
of similararea.

SUDS is designedto run on Raw microprocessors.As reported
elsewhere [48], eachRaw chip containsa 4 by 4 array of tiles;
multiplechipscanbecomposedto createsystemsaslargeas32by
32 tiles. Raw is currently(July 2001)runningin RTL emulationat
about1 MHz on a 5 million gateIKOSVirtuaLogicemulator[4],
andit will tapeout at theendof thesummer. It is implementedin
IBM’ s .15micronSA-27EASIC processwith atargetfrequency of
250MHz.

Theresultsin this paperwererunona (nearly)cycleaccuratesim-
ulationof aRaw systemwith a few minor tweaks.In particular, the
simulatorprovidesaccessto a particularmessageheaderconstruc-
tion instructionthat is not available in the actualimplementation,
and the simulatordoesnot model network contention. The first
tweaksavesus several cyclesduring eachremotememoryopera-
tion, while thesecondis of little consequencesincetotal message
traffic in our systemis sufficiently low.

Programsrunning with the SUDS systemare parallelizedby a
SUIF basedcompilerthatoutputsSPMDstyleC code.Theresult-
ing codeis compiledfor theindividual Raw tilesusinggccversion
2.8.1with the-O3 flag. (Raw assemblycodeis similarto MIPSas-
semblycode,soourversionof thegcccodegeneratoris amodified
versionof thestandardgccMIPScodegenerator).

Moldyn
Moldyn is a moleculardynamicssimulation,originally written by
ShamikSharma[45], that is difficult to parallelizewithout spec-
ulation support. Ratherthan calculateall ��������� pairwiseforce
calculationsevery iteration,Moldyn only performsforce calcula-

ComputeForces(vector<particle> molecules,
real cutoffRadius) {

foreach m in molecules {
foreach m’ in m.neighbors() {

if (distance(m, m’) <
cutoffRadius) {

force_t force = calc_force(m, m’);
m.force += force;
m’.force -= force;

}
}

}
}

Figure11: Pseudocodefor ComputeForces, the Moldyn rou-
tine for computing intermolecular forces. The neighbor sets
arecalculatedevery 20th iteration by calling theBuildNeigh
routine (Figure12).

tionsbetweenparticlesthatarewithin somecutoff distanceof one
another(Figure11). Theresultis thatonly ������� forcecalculations
needto beperformedevery iteration.

Theoriginalversionof Moldyn recalculatedall ����� � � intermolec-
ular distancesevery 20 iterations. For this paper, we rewrote the
distancecalculationroutinesothatit wouldalsorunin ������� time.
This is accomplishedby choppingthespaceup into boxesthatare
slightly larger than the cutoff distance,and only calculatingdis-
tancesbetweenparticlesin adjacentboxes (Figure12). This im-
provedthespeedof theapplicationonastandardprocessorby sev-
eralordersof magnitude.

Under SUDS we can parallelizeeachof the outer loops (those
labeled“foreach m in molecules” in Figures11 and12).
Eachloop hasdifferentcharacteristicswhenrun in parallel.

Thefirst loop in theBuildNeigh routinemovesthroughthear-
ray of moleculesquickly. For eachmoleculeit simply calculates
which box themoleculebelongsin, andthenupdatesoneelement
of the (relatively small) boxes array. This loop doesnot paral-
lelize well becauseupdatesto theboxes arrayhave a relatively
high probabilityof conflictingwhenrun in parallel.

Thesecondloopin theBuildNeigh routineis themostexpensive
singleloopin theprogram(although,luckily it only needsto berun
aboutonetwentiethasoftenastheComputeForces loop). It is
actuallyembarrassinglyparallel,althoughpotentialpointeraliasing
makesit difficult for a traditionalparallelizingcompilerto analyze
this loop. SUDS,ontheotherhand,handlesthepointerproblemby
speculatively sendingthe pointerreferencesto the memorynodes
for resolution. Sincenoneof the pointerreferencesactuallycon-
flict, the systemnever needsto roll back, and this loop achieves
scalablespeedups.

TheComputeForces routineconsumesthemajority of therun-
time in the program,sinceit is run abouttwenty timesmore of-
ten thantheBuildNeigh routine. For large problemsizes,the
molecules arraywill bevery large,while thenumberof updates
permoleculestaysconstant,sotheprobabilityof two paralleliter-
ationsof the loop updatingthesameelementof themolecules
arrayis small.Unfortunately, while this loopparallelizeswell upto
abouta dozencomputenodes,speedupfalls off for largernumbers

BuildNeigh(vector<list<int>> adjLists,
vector<particle> molecules,
real cutoffRadius) {

vector<list<particle>> boxes;

foreach m in molecules {
int mBox = box_of(m.position());
boxes[mBox].push_back(m);

}

foreach m in molecules {
int mBox = box_of(m.position());
foreach box in adjLists[mBox] {
foreach m’ in box {

if (distance(m, m’) <
(cutoffRadius * TOLERANCE)) {

m.neighbors().push_back(m’);
}

}
}

}
}

Figure 12: Pseudocode forBuildNeigh, the Moldyn routine
for recalculating the set of interacting particles. adjLists is
a pre-calculated list of the boxes adjacent to each box.

MIPS R4000 0.40
SUDS 0.96

“perfect” superscalar 1.16

Figure 13: Comparison of IPC for Moldyn running on three
different architectures.

of compute nodes because of the birthday paradox. This is the argu-
ment that one needs only 23 people in a room to have a probability
of 50% that two of them will have the same birthday. Likewise,
as we increase the number of iterations that we are computing in
parallel, the probability that two of them update the same memory
location increases worse than linearly. This is a fundamental lim-
itation of data speculation systems, not one unique to the SUDS
system.

Figure 13 shows the IPC of running Moldyn with an input dataset
of 256000 particles on three different architectures. The first is
a MIPS R4000 with a 4-way associative 64KByte combined I&D
L1, 256MByte L2 with 12 cycle latency and 50 cycle miss cost.
It achieves about .4 IPC. The second is SUDS running on a 40
tile Raw system. 8 tiles are dedicated as compute nodes and an
additional 32 are dedicated as memory nodes. Each simulated Raw
tile contains a pipeline similar to an R4000, and a 64KByte L1
cache. Cache misses to DRAM cost 50 cycles. SUDS is able to
achieve .96 IPC.

The final architecture is a simulated superscalar architecture with a
32 Kbit gshare branch predictor, a perfect 8-way instruction fetch
unit, a 64 Kbyte 4-way set associative combined I&D L1, and 256
MByte L2 with 12 cycle latency and 50 cycle miss cost. It has
infinite functional units, infinite registers for renaming, a memory
stunt-box to allow loads to issue to the cache out of order, and an
infinite number of ports on all memories. Even though such an
architecture is not feasible, we include it to show that SUDS per-

formance is quite reasonable for this particular application. SUDS
achieves 82% of the IPC achieved by this superscalar.

5. RELATED WORK
The main motivation for SUDS comes from previous work in
micro-optimization. Micro-optimization has two components. The
first, interface decomposition involves breaking up a monolithic in-
terface into constituent primitives. Examples of this include Active
Messages as a primitive for building more complex message pass-
ing protocols [52], and interfaces that allow user level programs to
build their own customized shared memory cache coherence pro-
tocols [10, 33, 42]. Examples of the benefits of carefully chosen
primitive interfaces are also common in operating systems research
for purposes as diverse as communication protocols for distributed
file systems [43], virtual memory management [24], and other ker-
nel services [7, 16, 27].

The second component of micro-optimization involves using auto-
matic compiler optimizations (e.g., partial redundancy elimination)
to leverage the decomposed interface, rather than forcing the ap-
plication programmer to do the work. This technique has been
used to improve the efficiency of floating-point operations [14],
fault isolation [53], and shared memory coherence checks [44]. On
Raw, micro-optimization across decomposed interfaces has been
used to improve the efficiency of both branching and message de-
multiplexing [34], memory access serialization [5, 15], instruction
caching [36], and data caching [37]. SUDS micro-optimizes by
breaking the monolithic memory interface into separate primitives
for accessing local and remote memory. The compiler then elimi-
nates work by finding opportunities for renaming.

Timestamp based algorithms have long been used for concurrency
control in transaction processing systems. The memory depen-
dence validation algorithm used in SUDS is most similar to the
“basic timestamp ordering” technique proposed by Bernstein and
Goodman [6]. More sophisticated multiversion timestamp order-
ing techniques [41] provide some memory renaming, reducing the
number of false dependences detected by the system at the cost of
a more complex implementation. Optimistic concurrency control
techniques [32], in contrast, attempt to reduce the cost of validation,
by performing the validations in bulk at the end of each transaction.

Memory dependence speculation is even more similar to virtual
time systems, such as the Time Warp mechanism [26] used ex-
tensively for distributed event driven simulation. This technique
is very much like multiversion timestamp ordering, but in virtual
time systems, as in data speculation systems, the assignment of
timestamps to tasks is dictated by the sequential program order. In
a transaction processing system, each transaction can be assigned a
timestamp whenever it enters the system.

Knight’s Liquid system [29, 30] used a method more like opti-
mistic concurrency control [32] except that timestamps must be
pessimistically assigneda priori, rather than optimistically when
the task commits, and writes are pessimistically buffered in private
memories and then written out in serial order so that different pro-
cessing elements may concurrently write to the same address. The
idea of using hash tables rather than full maps to perform indepen-
dence validation was originally proposed for the Liquid system.

Knight also pointed out the similarity between cache coherence
schemes and coherence control in transaction processing. The Liq-
uid system used a bus based protocol similar to a snooping cache

I I

coherenceprotocol [21]. SUDS usesa scalableprotocol that is
moresimilar to a directorybasedcachecoherenceprotocol[9, 2,
1] with only a singlepointerperentry, sometimesreferredto asa
Dir1B protocol.

TheParaTransystemfor parallelizingmostly functionalcode[49]
wasanotherearlyproposalthatreliedonspeculation.ParaTranwas
implementedin softwareon a sharedmemorymultiprocessor. The
protocolswerebasedonthoseusedin TimeWarp[26], with check-
pointing performedat every speculative operation.A similar sys-
tem,appliedto animperative, C like, language(but lackingpoint-
ers)wasdevelopedby WenandYelick [55]. While their compiler
couldidentify someopportunitiesfor privatizingtemporaryscalars,
theirmemorydependencespeculationsystemwasstill forcedto do
renamingandforward true-dependencesat runtime,andwasthus
lessefficient thanSUDS.

SUDS is most directly influencedby the Multiscalar architec-
ture [18, 46]. TheMultiscalararchitecturewasthefirst to include
a low-latency mechanismfor explicitly forwarding dependences
from onetaskto thenext. Thisallowsthecompilerto bothavoid the
expenseof completelyserializingdo-acrossloopsandalsopermits
register allocationacrosstask boundaries. The Multiscalar vali-
datesmemorydependencespeculationsusinga mechanismcalled
anaddressresolutionbuffer (ARB) [18,19] thatissimilarto ahard-
ware implementationof multiversiontimestampordering. From
theperspective of a cachecoherencemechanismtheARB is most
similar to a full-mapdirectorybasedprotocol.

TheSUDScompileralgorithmsfor identifying theoptimalplace-
mentpointsfor sendingandreceiving true-dependencesaresimilar
to thoseusedin the Multiscalar [51]. The primary differenceis
that theMultiscalaralgorithmspermit somedatavaluesto be for-
wardedmorethanonce,leaving to thehardwaretheresponsibility
for squashingredundantsends.The SUDScompileralgorithmis
guaranteedto insert sendand receive instructionsat the optimal
point in thecontrolflow graphsuchthateachvalueis sentandre-
ceivedexactlyonce.

More recentefforts have focusedon modifying sharedmemory
cachecoherenceschemesto supportmemorydependencespecu-
lation [17, 22, 47, 31, 28, 23]. SUDSimplementsits protocolsin
softwareratherthanrelying on hardwaremechanisms.In the fu-
tureSUDSmight permit long-termcachingof read-mostlyvalues
by allowing thesoftwaresystemto “permanently”markanaddress
in thetimestampcache.

Another recenttrendhasbeento examinethe predictionmecha-
nism usedby dependencespeculationsystems. Someearly sys-
tems[29, 49,23] transmitall dependencesthroughthespeculative
memorysystem.SUDS,like theMultiscalar, allows thecompiler
to statically identify true-dependences,which are then forwarded
usinga separate,fast,communicationpath. SUDSandothersys-
temsin this classessentiallystaticallypredictthatall memoryref-
erencesthat thecompilercannot analyzearein fact independent.
Severalrecentsystems[38,50,11]haveproposedhardwarepredic-
tion mechanisms,for finding,andexplicitly forwarding,additional
dependencesthatthecompilercannotanalyze.

Memory dependencespeculationhasalso beenexaminedin the
context of fine-graininstructionlevel parallelprocessingonVLIW
processors.Thepointof thesesystemsis to allow trace-scheduling
compilersmore flexibility to statically reordermemory instruc-

tions.Nicolau[39] proposedinsertingexplicit addresscomparisons
followedby branchesto off-tracefixup code.Huanget al [25] ex-
tendedthisideato usepredicatedinstructionsto helpparallelizethe
comparisoncode.Theproblemwith thisapproachis thatit requires�
 � comparisonsif thereare � loadsbeingspeculatively moved
above � stores.This problemcanbealleviatedusinga smallhard-
wareset-associative table,calleda memoryconflict buffer (MCB),
that holdsrecentlyspeculatedload addressesandprovidessingle
cyclechecksoneachsubsequentstoreinstruction[20]. An MCB is
includedin theHewlett Packard/IntelIA-64 EPICarchitecture[3].

The LRPD test [40] is a software speculationsystemthat takes
a more coarsegrainedapproachthan SUDS. In contrastto most
of the systemsdescribedin this section,the LRPD test specula-
tively blockparallelizesaloopasif it werecompletelydataparallel
andthenteststo ensurethat the memoryaccessesof thedifferent
processingelementsdo not overlap. It is ableto identify privati-
zablearraysand reductionsat runtime. A directorybasedcache
coherenceprotocolextendedto performtheLRPDtestis described
in [56]. SUDStakesa finer grainapproachthatcancyclically par-
allelize loopswith true-dependencesandcanparallelizemostof a
loop thathasonly a few dynamicdependences.

6. CONCLUSION
This paperpresentsSUDS,a softwarespeculationsystemfor Raw
microprocessorsthatcaneffectively executeintegerprogramswith
complex control-flow andsophisticatedpointeraliasing.SUDScan
efficiently executeprogramswherecompile-timeparallelismex-
tractionis difficult or even impossible,on anarchitecturewith no
hardwaresupportfor parallelismextraction. This ability of SUDS
makesRaw architecturesviableasa generalpurposearchitecture,
capableof supportinga very large classof applications.Further-
more,sinceSUDSdoesnot requireany additionalhardware,ap-
plicationsthatarecompilerparallelizabledo not have to sacrifice
their performancein orderto accommodatetheintegerprograms.

SUDS usescompileranalysisto reducethe amountof work that
needsto beperformedatruntime.Unlikecoarse-grainedparalleliz-
ing compilersthateithercompletelysucceedor completelyfail, ap-
plication performanceunderSUDSdegradesgracefullywhenthe
compileranalysisis only partially applicable.

SUDSreliesonasophisticatedmemorysystemto supportmemory
dependencespeculation.Sincethesystemis implementedentirely
in software,it canbeextendedor customizedto suit individual ap-
plications. For example,the memorynodescould be augmented
with read-modify-writerequestsfor asetof simpleoperationssuch
asadd,subtract,andxor.

UsingtheMoldyn applicationasanexample,we show thatSUDS
is capableof speculatively parallelizingapplicationswith depen-
dencesnot analyzableat compile-time.Currentlywe do not have
all thecompileranalysesimplemented;thusminor handmodifica-
tionsto programsarerequired.Wearein theprocessof implement-
ing the registerpromotionandscoperestrictioncompilerpasses.
We hopeto show resultson moreapplicationswithin thenext few
months,in time for thefinal presentation.

As a fine-grained,software-basedspeculationsystem,SUDSpro-
videsus with an opportunityto realizeotherconceptspreviously
deemedimpractical.For example,SUDScouldbethebasisof re-
verseexecutionin debugging. Error detectioncanbeincorporated
with theSUDScheckpointandroll backmechanism.This feature

could improve the reliability of applicationsin the faceof hard-
wareerrors.We alsoplanto investigateotherspeculative program
optimizationsthatuseSUDSto undospeculationfailures.

Acknowledgements
This work was supportedin part by DARPA under contract
#DABT63-96-C-0036.

7. REFERENCES
[1] A. Agarwal, R. Simoni,J.Hennessy, andM. Horowitz. An

Evaluationof DirectorySchemesfor CacheCoherence.In 15th
International Symposium on Computer Architecture, pages280–289,
Honolulu,HI, May 1988.

[2] J.ArchibaldandJ.-L.Baer. An EconomicalSolutionto theCache
CoherenceProblem.In 11th International Symposium on Computer
Architecture, pages355–362,Ann Arbor, MI, June1984.

[3] D. I. August,D. A. Connors,S.A. Mahlke,J.W. Sias,K. M. Crozier,
B.-C. Cheng,P. R. Eaton,Q. B. Olaniran,andW.-M. W. Hwu.
IntegratedPredicatedandSpeculative Executionin theIMPACT
EPICArchitecture.In 25th International Symposium on Computer
Architecture (ISCA-25), pages227–237,Barcelona,Spain,June
1998.

[4] J.Babb,R. Tessier, M. Dahl,S.Z. Hanono,D. M. Hoki, and
A. Agarwal. Logic emulationwith virtual wires.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
16(6):609–626,June1997.

[5] R. Barua,W. Lee,S.P. Amarasinghe,andA. Agarwal. Maps:A
Compiler-ManagedMemorySystemfor Raw Machines.In
Proceedings of the 26th Annual International Symposium on
Computer Architecture, pages4–15,Atlanta,GA, May 2–41999.

[6] P. A. BernsteinandN. Goodman.Timestamp-BasedAlgorithmsfor
Concurrency Control in DistributedDatabaseSystems.In
Proceedings of the Sixth International Conference on Very Large
Data Bases, pages285–300,Montreal,Canada,Oct.1980.

[7] B. N. Bershad,S.Savage,P. Pardyak,E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers,andS.J.Eggers.Extensibility, Safetyand
Performancein theSPINOperatingSystem.In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, pages
267–284,CopperMountainResort,CO,Dec.3-61995.

[8] R. Bod́ik, R. Gupta,andM. L. Soffa.Load-ReuseAnalysis:Design
andEvaluation.In Proceedings of the ACM SIGPLAN ’99
Conference on Programming Language Design and Implementation,
pages64–76,Atlanta,GA, May 1999.

[9] L. M. CensierandP. Feautrier. A New Solutionto Coherence
Problemsin MulticacheSystems.IEEE Transactions on Computers,
C-27(12):1112–1118,Dec.1978.

[10] D. ChaikenandA. Agarwal. Software-ExtendedCoherentShared
Memory: PerformanceandCost.In Proceedings of the 21st Annual
International Symposium on Computer Architecture, pages314–324,
Chicago,Illinois, April 18–21,1994.

[11] G. Z. ChrysosandJ.S.Emer. MemoryDependencePredictionusing
StoreSets.In 25th International Symposium on Computer
Architecture (ISCA-25), pages142–153,Barcelona,Spain,June
1998.

[12] K. D. CooperandT. J.Harvey. Compiler-ControlledMemory.In
Proceedings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
2–11,SanJose,CA, Oct.3–71998.

[13] K. D. CooperandJ.Lu. RegisterPromotionin C Programs.In
Proceedings of the ACM SIGPLAN ’97 Conference on Programming
Language Design and Implementation, pages308–319,LasVegas,
NV, June1997.

[14] W. J.Dally. Micro-Optimizationof Floating-PointOperations.In
Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
283–289,Boston,MA, April 3–6,1989.

[15] J.R. Ellis. Bulldog: A Compiler for VLIW Architecture. PhDthesis,
Departmentof ComputerScience,YaleUniversity, Feb. 1985.
TechnicalReportYALEU/DCS/RR-364.

[16] D. R. Engler, M. F. Kaashoek,andJ.O’TooleJr. Exokernel:An
OperatingSystemArchitecturefor Application-Level Resource
Management.In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pages251–266,CopperMountain
Resort,CO,Dec.3-61995.

[17] M. Franklin.Multi-VersionCachesfor MultiscalarProcessors.In
Proceedings of the First International Conference on High
Performance Computing (HiPC), 1995.

[18] M. FranklinandG. S.Sohi.TheExpandableSplit Window Paradigm
for ExploitingFine-GrainParallelism.In 19th International
Symposium on Computer Architecture (ISCA-19), pages58–67,Gold
Coast,Australia,May 1992.

[19] M. FranklinandG. S.Sohi.ARB: A HardwareMechanismfor
DynamicReorderingof MemoryReferences.IEEE Transactions on
Computers, 45(5):552–571,May 1996.

[20] D. M. Gallagher, W. Y. Chen,S.A. Mahlke, J.C. Gyllenhaal,and
W. meiW. Hwu. DynamicMemoryDisambiguationUsingthe
MemoryConflict Buffer. In Proceedings of the 6th International
Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS), pages183–193,SanJose,
California,Oct.1994.

[21] J.R. Goodman.UsingCacheMemoryto ReduceProcessor-Memory
Traffic. In 10th International Symposium on Computer Architecture,
pages124–131,Stockholm,Sweden,June1983.

[22] S.Gopal,T. N. Vijaykumar, J.E. Smith,andG. S.Sohi.Speculative
VersioningCache.In Proceedings of the Fourth International
Symposium on High Performance Computer Architecture (HPCA-4),
pages195–205,LasVegas,NV, Feb. 1998.

[23] L. Hammond,M. Willey, andK. Olukotun.DataSpeculationSupport
for aChip Multiprocessor.In Proceedings of the Eighth ACM
Conference on Architectural Support for Programming Languages
and Operating Systems, pages58–69,SanJose,CA, Oct.1998.

[24] K. Harty andD. R. Cheriton.Application-Controlled Physical
MemoryusingExternalPage-CacheManagement.In Proceedings of
the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages187–197,
Boston,MA, October12–15,1992.

[25] A. S.Huang,G. Slavenburg, andJ.P. Shen.Speculative
Disambiguation:A CompilationTechniquefor DynamicMemory
Disambiguation.In Proceedings of the 21st Annual International
Symposium on Computer Architecture (ISCA), pages200–210,
Chicago,Illinois, Apr. 1994.

[26] D. R. Jefferson.Virtual Time.ACM Transactions on Programming
Languages and Systems, 7(3):404–425,July 1985.

[27] M. F. Kaashoek,D. R. Engler, G. R. Ganger, H. Briceño, R. Hunt,
D. Mazières,T. Pinckney, R. Grimm,J.Janotti,andK. Mackenzie.
ApplicationPerformanceandFlexibility onExokernelSystems.In
Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, pages52–65,Saint-Malo,France,Oct.5-81997.

[28] I. H. Kazi andD. J.Lilja. Coarse-GrainedSpeculative Executionin
Shared-MemoryMultiprocessors.In International Conference on
Supercomputing (ICS), pages93–100,Melbourne,Australia,July
1998.

[29] T. Knight. An Architecturefor Mostly FunctionalLanguages.In
Proceedings of the ACM Conference on Lisp and Functional
Programming, pages88–93,Aug. 1986.

[30] T. F. Knight, Jr. SystemandMethodfor ParallelProcessingwith
Mostly FunctionalLanguages,1989.U.S.Patent4,825,360,issued
Apr. 25,1989(expired).

[31] V. KrishnanandJ.Torrellas.HardwareandSoftwareSupportfor
Speculative Executionof SequentialBinariesona
Chip-Multiprocessor.In International Conference on
Supercomputing (ICS), Melbourne,Australia,July1998.

[32] H. T. KungandJ.T. Robinson.On OptimisticMethodsfor
Concurrency Control.ACM Transactions on Database Systems,
6(2):213–226,June1981.

[33] J.Kuskin,D. Ofelt, M. Heinrich,J.Heinlein,R. Simoni,
K. Gharachorloo,J.Chapin,D. Nakahira,J.Baxter, M. Horowitz,
A. Gupta,M. Rosenblum,andJ.Hennessy. TheStanfordFLASH
Multiprocessor.In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages302–313,Chicago,
Illinois, April 18–21,1994.

[34] W. Lee,R. Barua,M. Frank,D. Srikrishna,J.Babb,V. Sarkar, and
S.Amarasinghe.Space-Time Schedulingof Instruction-Level
ParallelismonaRaw Machine.In Proceedings of the Eighth ACM
Conference on Architectural Support for Programming Languages
and Operating Systems, pages46–57,SanJose,CA, Oct.1998.

[35] R. Lo, F. C. Chow, R. Kennedy, S.-M.Liu, andP. Tu. Register
Promotionby PartialRedundancy Eliminationof LoadsandStores.
In Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation, pages26–37,
Montreal,Quebec,June1998.

[36] J.E. Miller. SoftwareBasedInstructionCachingfor theRAW
Architecture.Master’s thesis,Departmentof ElectricalEngineering
andComputerScience,MassachusettsInstituteof Technology, May
1999.

[37] C. A. Moritz, M. Frank,andS.Amarasinghe.Flexcache:A
framework for flexible compilergenerateddatacaching.In
Proceedings of the 2nd Workshop on Intelligent Memory Systems,
Boston,MA, Nov. 122000.to appearSpringerLNCS.

[38] A. MoshovosandG. S.Sohi.StreamliningInter-operationMemory
Communicationvia DataDependencePrediction.In 30th Annual
International Symposium on Microarchitecture (MICRO), Research
TrianglePark,NC, Dec.1997.

[39] A. Nicolau.Run-TimeDisambiguation:Copingwith Statically
UnpredictableDependencies.IEEE Transactions on Computers,
38(5):663–678,May 1989.

[40] L. RauchwergerandD. Padua.TheLRPDTest:Speculative
Run-Time Parallelizationof Loopswith PrivatizationandReduction
Parallelization.In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation, pages
218–232,La Jolla,CA, June1995.

[41] D. P. Reed.ImplementingAtomic ActionsonDecentralizedData.
ACM Transactions on Computer Systems, 1(1):3–23,Feb. 1983.

[42] S.K. Reinhardt,J.R. Larus,andD. A. Wood.TempestandTyphoon:
User-Level SharedMemory.In Proceedings of the 21st Annual
International Symposium on Computer Architecture, pages325–336,
Chicago,Illinois, April 18–21,1994.

[43] J.H. Saltzer, D. P. Reed,andD. D. Clark.End-To-EndArgumentsin
SystemDesign.ACM Transactions on Computer Systems,
2(4):277–288,Nov. 1984.

[44] D. J.Scales,K. Gharachorloo,andC. A. Thekkath.Shasta:A Low
Overhead,Software-OnlyApproachfor SupportingFine-Grain
SharedMemory.In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages174–185,Cambridge,MA, October
1–5,1996.

[45] S.D. Sharma,R. Ponnusamy, B. Moon,Y. shinHwang,R. Das,and
J.Saltz.Run-timeandcompile-timesupportfor adaptive irregular
problems.In Proceedings of Supercomputing, pages97–106,
Washington,DC, Nov. 1994.

[46] G. S.Sohi,S.E. Breach,andT. N. Vijaykumar. Multiscalar
Processors.In 22nd International Symposium on Computer
Architecture, pages414–425,SantaMargheritaLigure, Italy, June
1995.

[47] J.G. SteffanandT. C. Mowry. ThePotentialfor UsingThread-Level
DataSpeculationto FacilitateAutomaticParallelization.In
Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture (HPCA-4), pages2–13,
LasVegas,NV, Feb. 1998.

[48] M. Taylor, J.Kim, J.Miller, F. Ghodrat,B. Greenwald,P. Johnson,
W. Lee,A. Ma, N. Shnidman,D. Wentzlaff, M. Frank,
S.Amarasinghe,andA. Agarwal. TheRaw processor:A
composeable32-bit fabricfor embeddedandgeneralpurpose
computing.In Proceedings of HotChips 13, Palo Alto, CA, Aug.
2001.

[49] P. Tinker andM. Katz.ParallelExecutionof SequentialSchemewith
ParaTran.In Proceedings of the ACM Conference on Lisp and
Functional Programming, pages40–51,July1988.

[50] G. S.TysonandT. M. Austin. Improving theAccuracy and
Performanceof MemoryCommunicationThroughRenaming.In
30th Annual International Symposium on Microarchitecture
(MICRO), ResearchTrianglePark,NC, Dec.1997.

[51] T. N. Vijaykumar. Compiling for the Multiscalar Architecture. PhD
thesis,Universityof Wisconsin-MadisonComputerSciences
Department,Jan.1998.

[52] T. vonEicken,D. E. Culler, S.C. Goldstein,andK. E. Schauser.
Active Messages:a Mechanismfor IntegratedCommunicationand
Computation.In Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages256–266,Gold Coast,
Australia,May 19–21,1992.

[53] R. Wahbe,S.Lucco,T. E. Anderson,andS.L. Graham.Efficient
software-basedfault isolation.In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, pages203–216,
Asheville, North Carolina,Dec.5-81993.

[54] E. Waingold,M. Taylor, D. Srikrishna,V. Sarkar, W. Lee,V. Lee,
J.Kim, M. Frank,P. Finch,R. Barua,J.Babb,S.Amarasinghe,and
A. Agarwal. BaringIt All to Software:Raw Machines.IEEE
Computer, 30(9):86–93,Sept.1997.

[55] C.-P. WenandK. Yelick. Compilingsequentialprogramsfor
speculative parallelism.In Proceedings of the International
Conference on Parallel and Distributed Systems, Taiwan,Dec.1993.

[56] Y. Zhang,L. Rauchwerger, andJ.Torrellas.Hardwarefor
Speculative Run-TimeParallelizationin DistributedShared-Memory
Multiprocessors.In Fourth International Symposium on
High-Performance Computer Architecture (HPCA-4), pages
162–173,LasVegas,NV, Feb. 1998.

