A Software Framework for Suppor ting General Purpose
Applications on Raw Computation Fabrics

Matthew Frank, Walter Lee, Saman Amarasinghe
MIT LCS
Cambridge, MA

{nrfrank, wal t, saman}@cs. mt. edu

ABSTRACT

This paperpresentSUDS (SoftwareUn-Do System) a dataspec-
ulation systemfor Raw processors.SUDS managesspeculation
in softnare. The key to managingspeculationin software is to

usethe compilerto minimize the numberof dataitemsthat need
to be managedat runtime. Managingspeculationn software en-

ablesRaw processor$o achieze good performanceon integer ap-

plicationswithout sacrificingchip areafor speculatiorhardware.
This additionalareacaninsteadbe devotedto additionalcompute
resourcesimproving the performanceof densematrix and media
applications.

1. INTRODUCTION

Therapidgrowth in theresourceswvailableon a chip, approaching
abillion transistorsithin thenext five yearsjs creatinganexciting
opportunityfor computearchitectgo build atruly general-purpose
microprocessor Even when transistorsare plentiful, finding the
designpoint wherea single architecturecan efficiently supporta
diversesetof applicationss a challenge.

Fromtheperspectie of parallelismresource®namicroprocessor
canbe divided into two types: basiccomputingresourcesuchas
functionalunits, registers,andmemoriesandparallelism-enabling
resourceghat help an applicationutilize the computeresources
concurrently An importantissuein designinga general-purpose
microprocessois how the transistorbudgetshouldbe divided be-
tweenthesetwo typesof resources.

This issueis complex becausdifferent applicationshave seem-
ingly different requirements. The conflict is evident from the
fact that historically differentapplicationsprefer differentarchi-
tectures.Densematrix applicationsandmediaapplicationgprefer
multiprocessorsyectorprocessord)SPs andspecial-purpospro-
cessors.Theseprocessorprovide amplecomputingresourcedut
scantyparallelism-enablingesourcesinteger applicationspn the
otherhand, prefer superscalarsyhich containmodestcomputing
resourceut copiousparallelism-enablingesources.

The Raw philosophyto building general-purposenicroprocessors

MIT Laboratoryfor ComputerScienceTechnical
MemoMIT-LCS-TM-619,July 20, 2001.

challengeghe notionthatoneneedgo build specializechardware
to managevarioustypesof parallelism[54]. It dedicatesll of the
processotransistotbudgetto computeresourcesAny specialized
supportfor parallelizatioris implementedn softwareontop of ex-
cesscomputeresourcesThroughcompileroptimization,the Raw
philosophyaimsto overcomethis softwareoverhead Architectures
thatfollow the Raw philosophyarecalledRaw architectures.

However, dueto the lack of parallelism-enablingesourcesa Rav
architectureby itself doesnot provide ary performanceéenefitfor
integerapplications.n fact,only avery small portionof hardware
resourcesa single setof computeresourcesn a large fabric, can
be usedin executingan integerapplication. This paperintroduces
a software framework that enablesthe use of the entire fabric to
increaseperformancef integerapplications.

This paperappliesthe Rav philosophyto memory dependence
speculationa parallelizationtechniquethat speculatiely executes
memorydependencesut of orderto improve performance.The
paperdescribeSUDS(SoftwareUn-Do-System)asystenfor per
forming memorydependencspeculationn loopson an Raw ar-
chitecture.Briefly, SUDSworks asfollows. At runtime,the sys-
tem executesa chunkof the programin parallel. Next, the system
checkswhetherthe parallelexecutionproduceda resultconsistent
with sequentiabemanticslf theparallelexecutionwascorrect,the
systemmaveson to the next chunkof the programandrepeatghe
process.Otherwise the executionis rolled backto the stateat the
beginning of the chunk,andthe chunkis rerunsequentially

The costof building a systemin softwareis that, whena runtime
subsystenis required,it consumesnoretime, power, enegy and
areathanthe equivalentfunctionality built from specializedchard-
ware. On the otherhand,we demonstratén this paperthatthese
costscan be containedby using compiler optimizations. In par

ticular, for speculationthe key compiler optimizationsare those
that identify opportunitiesfor renaming. Data items that can be

renamed between checkpoints don’t require runtime management.

The specificcontritutionsof this paperinclude:

1. A framework to improve performancef integerapplications
on a Raw fabric without sacrificingthe performanceof sci-
entific applications.

2. Thedesignof anefficientall-softwarespeculatiorsystem.

3. The descriptionof a setof compiletime optimizationsthat
reducethe numberof dataelementgequiringruntime man-
agement.

RaWP P

RawTijild

Network
Switch

=0 =0=0=0

Figure 1: RawuP composition. The systemis madeup of multi-
pletiles. In addition to instruction and data memories,eachtile
contains a processoipipeline with a registermapped network
interface.

4. A casestudythatdemonstratetheeffectivenesoftheSUDS
system.

The restof this paperis structuredas follows. The next section
givesaninformal descriptiorof how SUDSworksin thecontext of
an example. Section3 describeghe designof the SUDS system.
Section4 presentsa casestudy Section5 presentgelatedwork.
Section6 concludes.

2. BACKGROUND

SUDS:is designedo run on Raw microprocessors. A Rav micro-
processois a singlechip VLSI architecturemadeup of aninter
connectedetof tiles (Figurel). Eachtile containsasimpleRISC-
like pipeline,instructionanddatamemoriesandis interconnected
with othertiles over a pipelined point-to-pointmeshnetwork. The
network interfaceis integrateddirectly into the processopipeline,
sothatthe compilercanplacecommunicatiorinstructionsdirectly
into the code.The softwarecanthentransferdatabetweerthereg-
isterfiles ontwo neighboringtilesin just4 cycles[34, 48,54].

2.1 Chunk basedwork distrib ution

As shavn in Figure2, SUDSpartitionsRaw’stilesinto two groups.
Someportion of the tiles are designatedas compute nodes. The
restaredesignatedsmemory nodes.Oneof the computenodesis
designatedisthe master node,the restare designatedas workers
andsit in a dispatchloop waiting for commanddrom the master
Themastemodeis responsibldor runningall the sequentiatode.

SUDS parallelizesloops by cyclically distributing the loop itera-
tions acrossthe computenodes. We call the setof iterationsrun-
ningin parallelachunk. Thecomputenodeseachrunasingleloop
iteration, and then all the nodessynchronizethroughthe master
node.

In the currentversionof the system,the programmeliis responsi-
ble for identifying which loopsthe systemshouldattemptto paral-
lelize. This is doneby markingthe loopsin the sourcecode. The
parallelizationtechniquegrovided by SUDSwork with ary loop,
even “do-across’loops, loops with true-dependencesyops with
non-trivial exit conditionsandloopswith internalcontrolflow. The
systenmwill attempto parallelizeary loop evenif theloop contains
no availableparallelismdueto dataor controldependences.

"
‘o
.
‘.
.
.
"

o= EC= e oo o=

P
et
i}
iisis -
PR
SRR

Figure 2: An exampleof how SUDSallocatesresouiceson a 64
tile Raw machine. The gray tiles are memory nodes.The white
tiles are worker nodes,the gray hatched tile near the center
is the master node. Loop carried dependencesre forwarded
betweencomputenodesin the pattern showvn with the arr ow.

o e
C
e

o=

for (i = 0; i<N i++)

u = Ab[x]]
A c[x]] =u
x = g(x)

Figure 3: An exampleloop.

2.2 Example

Figure3 shavs anexampleof asimpleloop with non-trivial depen-
dences.Figure4 shavs aninitial attemptat parallelizingthe loop
on a machinewith two workers. The figure is annotatedwvith the
dependencethatlimit parallelism. The variablex createsatrue-
dependence, becauséhe valuewritten to variablex by worker 0 is
usedby worker 1. The readof variableu on worker 0 causesan
anti-dependence with the write of variableu onworker 1. Finally,
thereadsandwritesto the A arraycreatemay-dependences between
theiterations.Thepatternof accesset thearrayA depend®nthe
valuesin theb andc arrays.andsocannotbedeterminedintil run-
time. Without ary furthersupport.ary of thesethreedependences
would forcethe systemto runthis loop sequentially

Figure5 shavstheloopaftertwo compileroptimizationshave been
performed.First, the variableu hasbeenrenameds onworker 1.
This eliminatesthe anti-dependence Second,on both worker 0

———— ~ o —— true-
Fu = Abx]] N - — - may-
VAC[X]] =u-efoai N e anti-

x = g(x)
worker 0 ;A[];’[X1
9(x)

time worker 1

Figure 4: SUDSruns oneiteration of the loop on eachworker
node. In this casethe dependencedetweeniterations limit the
available parallelism.

— true- Object Run Time Code Generation
- — - may- Category Technique Technique
int us Private Local Stack Stack Splitting
)S(= X(x) |tnt_ v, t Loop Checkpoint Communication
u = %\[b[ﬁ—/" X = é(x) Carried Repair Instruction Placement
Alc[s]] = u v = Alb[t]]y Heap Memory Dependence Memory
—= — Ac[t]] = v, Speculation Abstraction
time worker 0 worker 1 Figure 6: The SUDS system divides objects into three major

categories. The system has a runtime system component and
Figure 5: After renaming the anti-dependence is eliminated code generation component for each object category.
and the critical path length of the true-dependence is short-

ened.
As discussed in Section 2.2, there are three types of dependences

that are managed by SUDS. SUDS categorizes objects based on the

and worker 1, temporary variablesandt , have been introduced. strgcture of thgir dependences. Each object catggory is handled.by
This allows worker 0 to create the new value of variablearlier a different runtime subsystem and a corresponding code generation

in the iteration, reducing the length of time that worker 1 will need {€chnique. This breakdown is summarized in Figure 6.
to wait for the true-dependence. The final remaining dependence is

the may-dependence on the accesses to Array Private variables are those that have a lifetime that is restricted to a

single loop iteration. These are the major candidates for renaming
This remaining may-dependence is monitored at runtime. The sys-ad are handled most efficiently by SUDS. SUDS provides support

tem executes the array accesses in parallel, even though this maj°" renaming by allocating a local stack on each worker, as well

cause them to execute out of order. Each of these speculative mem@S & Single global stack that can be accessed by any worker. At

ory accesses is sent to one of the memory nodes. The runtime Sys_code generation time, the compiler allocates private objects to the

tem at the memory nodes checks that the accesses are independer}f!€ registers and local stack using a technique castadk split-

If not, execution is temporarily halted, the system state is restored {ing- This technique separates objects on the stack between the

to the most recent checkpoint and several iterations are run sequenloc@l stack and global stack, depending on the compiler's ability to

tially to get past the miss-speculation point. Because the Systemprove that the object has no aliases. This is similar to techniques

is speculating that the code contains no memory dependences, thidhat have been used to improve the performance of register spills
technique is calledhemory dependence speculation [19]. on digital signal processors[12].

Raw microprocessors provide a number of features that make them>Y DS handletoop carried dependent objects at runtime by explic-

attractive targets for a memory dependence speculation system likeltly checkpointing them on the master node and then forwarding
SUDS. First, the low latency communication path between tiles is tem from worker to worker through Raw’s point-to-point inter-
important for transferring true-dependences that lie along the crit- connect_, as shown n Figure 2. _Th9 co_de gen_erator IS respoqs!ble
ical path. In addition, the independent control on each tile allows for Placing the explicit communication instructions so as to mini-
each processing element to be involved in a different part of the Mize delays on the critical path while guaranteeing that each object
computation. In particular, some tiles can be dedicated as worker IS Sentand received exactly once per iteration, no matter what arbi-
nodes, running the user’s application, while other tiles are allocated {rary control flow might happen within the iterations.

as memory nodes, executing completely different code as part of
the runtime system. Finally, the many independent memory ports
available on a Raw machine allow the bandwidth required for sup-
porting renamed private variables and temporaries in addition to
the data structures that the memory nodes require to monitor may-
dependences.

The remaining objects, denotd®ap objects, are those that the
compiler is unable to analyze further at compiler time. They are
handled at the memory nodes using a runtime memory dependence
validation protocol that is based on Basic Timestamp Ordering [6].
This technique is described in more detail in the next section. The
code generator converts all heap object load and store operations
into instructions to communicate between the workers and mem-

3. DESIGN ory nodes.

The previous section gave a basic overview of Raw processors and3 1 M . h biect

memory dependence speculation. This section describes the tech*’* anaging neap o Je(_: S o

niques used in the SUDS system. The challenge of a software based "€ memory dependence speculation system is in some ways the

memory dependence speculation system is to make the runtime sys¢0re of the system. It is the fallback dependence mechanism that

tem efficient enough that its costs don’t completely swamp the real WOrks in all cases, even if the compiler cannot analyze a particular

work being done on behalf of the user’s application. variable. Since only a portion of the dependences in a program
can be proved by the compiler to be privatizable or loop carried

The approach taken in the SUDS system is to move as much Workdepgndences, a substantial fraction of the total memory.traffic will
as possible to compile time. In particular, SUDS takes the unique P& directed through the memory dependence speculation system.
approach of using the compiler to identify opportunities for renam- As such it is necessary to minimize the latency of this subsystem.
ing. Since renaming no longer needs to be done at runtime, the

runtime system is efficient enough to realize the desired applica- 3.1.1 A conceptual view

tion speedups. We next discuss the basic SUDS system and thélThe method we use to validate memory dependence correctness is
optimizations that make the runtime system more efficient. based on Basic Timestamp Ordering [6], a traditional transaction

data memory: addr node_id

data LA

N T iy hash | v]
] compare
last_written:
HEEEEEEEEEEEEEEEEEEEEEE last_reader I
last_writer
Figure 7: A conceptual view of Basic Timestamp Ordering. As- tag '
somgteq with every memory Iocqtlon is a pair of timestamps addr: [data | < — timestamp
that indicate the logical time at which the location was last read cache
and written.
processing concurrency control mechanism. A conceptual view of hash_entry .
the protocol is given in Figure 7. Each memory location has two checkpoint
timestamps associated with it, one indicating the last time a location data log
was readl(ast _r ead) and one indicating the last time a location
was written [ast _wri t t en). In addition, the memory is check-

pointed at the beginning of each chunk so that modifications can be

rolled back in the case of an abort. Figure 8: Data structures used by the memory dependence

L speculation subsystem.
The validation protocol works as follows. As each load re-

quest arrives, its timestamp €ad_ti ne) is compared to the

| ast _wri tten stamp for its memory location. Ifead_ti me | Operation Cost |
> last written then the load is in-order andast _r ead Send from compute node 1
is updated tor ead_ti ne, otherwise the system flags a miss- Network latency 4 + distance
speculation and aborts the current chunk. Memory node 8
Network latency 4 + distance
On a store request, the timestanyr {(t e_t i ne) is compared Receive on compute node 2
first to the |l ast read stamp for its memory location. If | Total | 19 + 2 x distance|

write_time >1ast_read then the store is in-order, otherwise
the system flags a miss-speculation and aborts the current chunk.

] o _ Figure 9: The round trip cost for a load operation is 19 cycles +
We have implemented an optimization on store requests that is 2 times the manhattan distance between the compute and mem-
known as the Thomas Write Rule [6]. This is basically the ob- oy node. The load operation also incurs additional occupancy

servation thatifawri tetime <|ast.written thenthevalue of yp to 40 cycles on the memory node after the data value is
being stored by the current request has been logically over-written sent pack to the compute node.

without ever having been consumed, so the request can be ignored.
Ifwite_time >1ast_witten then the storeisin-order and

last wittenisupdatedasrite_tine.
memory request.

3.1.2 Implementation In addition, the relatively frequent log cleaning means that at any
We can't dedicate such a substantial amount of memory to the spec-point in time there are only a small number of memory loca-
ulation system, so the system is actually implemented using a hashtions that have a non-zero timestamp. To avoid wasting enor-
table. As shown in Figure 8, each processing element that is dedi-mous amounts of memory space storing 0 timestamps, we cache
cated as a memory dependence node contains three data structurgle active timestamps in a relatively small direct-mapped hash ta-
in its local memory. The first is an array that is dedicated to storing ble. Each hash table entry contains a paid afst _r ead and
actual program values. The next is a small hash table that is used ast .wri tten timestamps and a cache-tag to indicate which
as atimestamp cache to validate the absence of memory conflicts. memory location owns the hash entry.

Finally, thelog contains a list of the hash entries that are in use and

the original data value from each memory location that has been As each memory request arrives, its address is hashed. If there
modified. At the end of each chunk of parallel iterations the log is a hash conflict with a different address, the validation mecha-
is used to either commit the most recent changes permanently tonism conservatively flags a miss-speculation and aborts the current
memory, or to roll back to the memory state from the beginning of chunk. If there is no hash conflict the timestamp ordering mecha-
the chunk. nism is invoked as described above.

The fact that SUDS synchronizes the processing elements between_og entries only need to be created the first time a chunk touches
each chunk of loop iterations permits us to simplify the implemen- a memory location, at the same time an empty hash entry is allo-
tation of the validation protocol. In particular, the synchronization cated. Future references to the same memory location do not need
point can be used to commit or roll back the logs and reset the to be logged, as the original memory value has already been copied
timestamp to 0. Because the timestamp is reset we can use theo the log. Because we are storing the most current value in the
requester’s physical node-id as the timestamp for each incoming memory itself, commits are cheaper, and we are able to implement

afastpathfor loadoperationsBeforegoingthroughthevalidation

processa load requestfetchesthe requireddataandreturnsit to

therequester Theresultinglateng atthe memorynodeis only 8

cyclesasshavn in Figure9. Thevalidationprocesshappensfter

the datahasbeenreturned,and occupiesthe memorynodefor an

additionall4to 40 cycles,dependingon whetheralog entryneeds
to becreated.

In the commoncasethe chunkcompleteswithout suffering a miss-
speculation.At the synchronizatiorpoint at the endof the chunk,
eachmemorynodeis responsibldor cleaningits logsandhashta-

bles. It doesthis by walking throughthe entirelog anddeallocating
theassociatethashentry Thedeallocatioris doneby resettingthe

timestampsn the associatedhashentryto 0. This costs5 cycles
permemorylocationthatwastouchedduringthe chunk.

If amiss-speculatiors discoveredduringtheexecutionof achunk,
thenthe chunkis abortedanda consistenstatemustbe restored.
Eachmemorynodeis responsiblédor rolling backits log to thecon-
sistentmemorystateat the endof the previous chunk. This is ac-
complishedby walking throughthe entirelog, copying the check-
pointedmemoryvalue backto its original memorylocation. The
hashtablesarecleanedat the sametime. Rollbackcostsl1 cycles
permemorylocationthatwastouchedduringthe chunk.

3.1.3 Codegeneration

Sincethe computationandheapmemoryare handledon separate
nodesin SUDS, every accesgo the heapinvolvescommunication
throughRaw’s network. The codegeneratiorpassis responsible
for identifying every load or storeoperationthat needsto be sent
from a computenodeto a remotememorynode. Eachload op-
erationto the heapis replacedby a pair of specialinstructions.
The first is a messageonstructioninstruction. It calculatesthe
correctdestinatiormemorynodefor a particularmemoryrequest,
then constructsthe correspondingnessagéneaderand body and
launchegshemessageThesecondnstructionis aregistermovein-
struction(with byteextractand/orsignextensionif thesystenonly
wantsan 8 or 16 bit result). This secondnstructionwill stall un-
til the correspondinglataitem is returnedfrom the memorynode.
Heapstoresare acknavledgedasynchronouslyn SUDS, so each
storeinstructionis replacedby a single message&onstructionin-
struction,similar to thatusedfor loadinstructions.

3.2 Handling true-dependences

Thetaskof identifyingloop carriedtrue-dependencés carriedout

by the compilerin our system.Currently our compilerusesstan-
dard dataflow analysistechniquego identify scalarloop carried
dependencesAny scalarvariable modified within the loop nest
needsto be eitherprivatizedby renaming(seeSection3.3) or for-

wardedto the next iteration. If the compilerfinds that thereis a
true-dependenaen a particularvariable,it insertsexplicit commu-
nicationinstructionsinto the code. The compilerusesan analysis
similar to thatusedby T.N. Vijaykumarfor the Multiscalar[51] to

identify theoptimalplacemenbf communicationinstructions.The
compilerarrangecommunicationinstructionssuchthat after the
lastmodificationof the variableit is sentto the next worker in the
chunk,andbeforethe first readof the variableit is receved from

the previousworker in the chunk.

At runtimethe mastemodecheckpointsll the compileridentified
true-dependencemthatif amiss-speculationccursthecomputa-
tion canbe rolled backto a consistenstate. Sinceonly the mas-
ter nodecheckpointsthis costcanbe amortizedover a numberof

Crltlcal
Path
eductlon

Privat—
ization

Loop
Carrled

Register
Promotion

Scope
Restriction

Figure 10: Compiler optimizations. Each of the optimizations
(critical path reduction, privatization, register promotion and
scoperestriction) attempts to move objects from one category
(heap,loop carried, or private),to a more efficient category

loopiterations.Thedravbackof this approachs thatwhenamiss-
speculationdoesoccur we may needto rollback slightly further
thannecessarySo far we have not found this to be a problem. In
the programswe have looked at, the rate of miss-speculationper
chunkis low enoughthatit doesnot constrainparallelism.

3.3 Renaming

Renamingin SUDSIs handledcompletelyby the compiler This
simplifiesthe designof the memorydependencespeculatiorsys-
tem, becausenultiple versionsof memorylocationsdon't needto
bemaintainedby theruntimesystem.Thevaluesthatthe compiler
decidedo privatizearekeptin the registersandlocal memoriesof
thecomputenodedor thedurationof asingleiteration.In addition
to theprivatizationoptimizationsdescribedn Section3.4,thecode
generatoperformsstack splitting.

Stack splitting simply identifies register allocatablescalarsthat
never have their addressetaken. Thesevaluesarekepton the nor-
mal C stackalongwith all registerspills taken at procedurecalls.
For scalarsthat do have their addressetaken, the codegenerator
createandmanages secondjlobal stackaspartof theheap.The
valuesin theglobalstackarethenmanagedtruntimeasdescribed
in Section3.1.

Theadwantageof stacksplitting is thatregisterspills don't needto
be handledby the speculatiorsystem. Sincewe are parallelizing
loops, the stackpointeris pointing at the sameaddresson all the
computenodes. If we maintainedonly a singleglobal stack,then
everytimetheprogramtookaprocedureall, all thecomputenodes
would spill to thesamememorylocations requiringthespeculation
systento managenultiple versionsof the samememorylocation.

3.4 Compile time optimizations

Since SUDS hasspecialruntime supportthat allows it to handle
privatesandtrue-dependencesoreefficiently atruntime,thegoal
of the SUDSoptimizeris to move asmary objectsaspossibleinto
the moreefficient categories. It doesthis usingthe four compiler
optimizationsdentifiedin Figure10.

Privatization is the centraloptimizationtechniquelt depend®na
dataflav analysisto identify objectswhoselive rangesdo not ex-
tend outsidethe body of a loop. The SUDS privatizationphase

alsoidentifiestrue-dependenceandloop-invariants. It differenti-
atesall of thesefrom heapbasedbobjectsthatcannotbehandledas
efficiently atruntime.

Critical path reduction is a techniquefor improving programpar
allelismin the faceof loop carrieddependencesAn exampleof
this optimizationwasshavn in Figure5. Theideais to introduce
additionalprivate variablesthat will hold the old value of the ob-
ject while the new valueis computedand forwardedto the other
waiting, workers.

Register promotion is similar to performing common sub-
expressioror partialredundang eliminationon load andstorein-
structions[13, 35, 8]. This reducesthe numberof requestshat
needto be sentfrom the worker nodesandprocessedby the mem-
ory nodes.

The final optimizationis scope restriction, which allows privati-

zation of structureobjectsthat can not be fully analyzedby the
privatizationpass.Scoperestrictiontakesadwantageof scopingin-

formationprovided by the programmer |t allows structureobjects
declarednsidethebody of theloopto be promotedo privatesand
handledefficiently by theruntimesystem.

4. CASE STUDY

In this sectionwe demonstratehat moving speculationinto soft-

wareavoidsthetraditionalareatradeofs facedby computerarchi-

tects.Whenspeculations notrequiredthe systemcandevoteall of

the chip areato usefulcomputation Whenspeculatioris required,
the software systemcan be turned on and achievze IPC numbers
similar to thoseachievzed by a hardware basedspeculatiorsystem
of similararea.

SUDS s designedto run on Rav microprocessors.As reported
elsavhere [48], eachRaw chip containsa 4 by 4 array of tiles;
multiple chipscanbe composedo createsystemsaslargeas32 by
32tiles. Raw is currently(July 2001)runningin RTL emulationat
aboutl MHz on a5 million gatelKOS VirtuaLogic emulator[4],

andit will tapeout atthe endof the summer It is implementedn

IBM’s.15micronSA-27EASIC processwith atargetfrequeng of

250MHz.

Theresultsin this paperwererun on a (nearly)cycle accuratesim-
ulationof aRaw systemwith afew minortweaks.In particular the
simulatorprovidesaccesdo a particularmessagéeaderconstruc-
tion instructionthatis not availablein the actualimplementation,
and the simulatordoesnot model network contention. The first
tweak saves us several cycles during eachremotememoryopera-
tion, while the seconds of little consequencsincetotal message
traffic in our systemis suficiently low.

Programsrunning with the SUDS systemare parallelizedby a
SUIF basedcompilerthatoutputsSPMD style C code. Theresult-
ing codeis compiledfor theindividual Raw tiles usinggccversion
2.8.1with the- @3 flag. (Rav assemblycodeis similarto MIPS as-
semblycode,soourversionof thegcccodegeneratois amodified
versionof the standardyccMIPS codegenerator).

Moldyn

Moldyn is a moleculardynamicssimulation,originally written by
ShamikSharma[45], thatis difficult to parallelizewithout spec-
ulation support. Ratherthan calculateall O(N?) pairwiseforce
calculationsevery iteration, Moldyn only performsforce calcula-

Conput eFor ces(vector<particl e> nol ecul es,
real cutoffRadius) {
foreach min nol ecul es {
foreach mi in mneighbors() {
if (distance(m m) <
cut of f Radi us) {
force_t force = calc_force(m m);
m force += force;
m.force -= force;

Figure 11: Pseudocoddor Conput eFor ces, the Moldyn rou-
tine for computing intermolecular forces. The neighbor sets
are calculatedevery 20th iteration by calling the Bui | dNei gh
routine (Figure 12).

tions betweerparticlesthatarewithin somecutof distanceof one
anothei(Figurell). Theresultis thatonly O(N) forcecalculations
needto be performedevery iteration.

Theoriginal versionof Moldyn recalculateall O(N?) intermolec-
ular distancesevery 20 iterations. For this paper we rewrote the
distancecalculationroutinesothatit would alsorunin O(IV) time.

This is accomplishedy choppingthe spaceup into boxesthatare
slightly larger thanthe cutoff distance,and only calculatingdis-

tancesbetweenparticlesin adjacentboxes (Figure12). This im-

provedthe speedf theapplicationon a standargrocessoby sev-

eralordersof magnitude.

Under SUDS we can parallelize eachof the outer loops (those
labeled“f oreach min nol ecul es” in Figureslland12).
Eachloop hasdifferentcharacteristicsvhenrunin parallel.

Thefirst loop in the Bui | dNei gh routinemovesthroughthe ar-
ray of moleculesquickly. For eachmoleculeit simply calculates
which box the moleculebelongsin, andthenupdatesoneelement
of the (relatively small) boxes array This loop doesnot paral-
lelize well becausaupdatesto the boxes array have a relatively
high probability of conflictingwhenrunin parallel.

Thesecondoopin theBui | dNei gh routineis themostexpensve
singleloopin theprogram(although Juckily it only needgo berun
aboutonetwentiethasoftenasthe Conput eFor ces loop). It is
actuallyembarrassinglparallel,althoughpotentialpointeraliasing
malesit difficult for atraditionalparallelizingcompilerto analyze
thisloop. SUDS,ontheotherhand,handleghepointerproblemby
speculatiely sendingthe pointerreferencedo the memorynodes
for resolution. Sincenoneof the pointerreferencesctually con-
flict, the systemnever needsto roll back, andthis loop achieres
scalablespeedups.

The Conput eFor ces routineconsumeshe majority of therun-
time in the program,sinceit is run abouttwenty times more of-
tenthanthe Bui | dNei gh routine. For large problemsizes,the
nol ecul es arraywill beverylarge,while thenumberof updates
permoleculestaysconstantsothe probability of two paralleliter-
ationsof the loop updatingthe sameelementof the nol ecul es
arrayis small. Unfortunatelywhile thisloop parallelizesvell upto
abouta dozencomputenodes speedugalls off for largernumbers

Bui | dNei gh(vector<list<int>> adjLists,

vector<particle> nol ecul es,
real cutoffRadius) {
vector<list<particl e>> boxes;

foreach min nol ecul es {
int mBox = box_of (mposition());
boxes[nBox] . push_back(m ;

formance is quite reasonable for this particular application. SUDS
achieves 82% of the IPC achieved by this superscalar.

5. RELATED WORK

The main motivation for SUDS comes from previous work in
micro-optimization. Micro-optimization has two components. The
first, interface decomposition involves breaking up a monolithic in-

terface into constituent primitives. Examples of this include Active
Messages as a primitive for building more complex message pass-
ing protocols [52], and interfaces that allow user level programs to
build their own customized shared memory cache coherence pro-
tocols [10, 33, 42]. Examples of the benefits of carefully chosen
primitive interfaces are also common in operating systems research
for purposes as diverse as communication protocols for distributed
file systems [43], virtual memory management [24], and other ker-
nel services [7, 16, 27].

foreach min nol ecul es {
int mBox = box_of (mposition());
foreach box in adjLists[nBox] {
foreach m in box {
if (distance(m m) <
(cut of f Radi us * TOLERANCE)) {
m nei ghbor s() . push_back(mn);

} The second component of micro-optimization involves using auto-
} matic compiler optimizations(g., partial redundancy elimination)

} to leverage the decomposed interface, rather than forcing the ap-
} plication programmer to do the work. This technique has been
used to improve the efficiency of floating-point operations [14],
fault isolation [53], and shared memory coherence checks [44]. On
Raw, micro-optimization across decomposed interfaces has been
used to improve the efficiency of both branching and message de-
multiplexing [34], memory access serialization [5, 15], instruction
caching [36], and data caching [37]. SUDS micro-optimizes by
breaking the monolithic memory interface into separate primitives
for accessing local and remote memory. The compiler then elimi-
nates work by finding opportunities for renaming.

Figure 12: Pseudocode foBui | dNei gh, the Moldyn routine
for recalculating the set of interacting particles. adj Li st s is
a pre-calculated list of the boxes adjacent to each box.

MIPS R4000 0.40
SUDS 0.96
“perfect” superscalar 1.16

Timestamp based algorithms have long been used for concurrency
control in transaction processing systems. The memory depen-
dence validation algorithm used in SUDS is most similar to the
“basic timestamp ordering” technique proposed by Bernstein and
of compute nodes because of the birthday paradox. This is the argu-Goodman [6]. More sophisticated multiversion timestamp order-
ment that one needs only 23 people in a room to have a probability ing techniques [41] provide some memory renaming, reducing the
of 50% that two of them will have the same birthday. Likewise, number of false dependences detected by the system at the cost of
as we increase the number of iterations that we are computing ina more complex implementation. Optimistic concurrency control
parallel, the probability that two of them update the same memory techniques [32], in contrast, attempt to reduce the cost of validation,
location increases worse than linearly. This is a fundamental lim- by performing the validations in bulk at the end of each transaction.
itation of data speculation systems, not one unique to the SUDS
system.

Figure 13: Comparison of IPC for Moldyn running on three
different architectures.

Memory dependence speculation is even more similar to virtual
time systems, such as the Time Warp mechanism [26] used ex-
Figure 13 shows the IPC of running Moldyn with an input dataset tensively for distributed event driven simulation. This technique
of 256000 particles on three different architectures. The first is is very much like multiversion timestamp ordering, but in virtual
a MIPS R4000 with a 4-way associative 64KByte combined I&D time systems, as in data speculation systems, the assignment of
L1, 256MByte L2 with 12 cycle latency and 50 cycle miss cost. timestamps to tasks is dictated by the sequential program order. In
It achieves about .4 IPC. The second is SUDS running on a 40 a transaction processing system, each transaction can be assigned a
tile Raw system. 8 tiles are dedicated as compute nodes and artimestamp whenever it enters the system.
additional 32 are dedicated as memory nodes. Each simulated Raw
tile contains a pipeline similar to an R4000, and a 64KByte L1 Knight's Liquid system [29, 30] used a method more like opti-
cache. Cache misses to DRAM cost 50 cycles. SUDS is able to mistic concurrency control [32] except that timestamps must be
achieve .96 IPC. pessimistically assigned priori, rather than optimistically when

the task commits, and writes are pessimistically buffered in private
The final architecture is a simulated superscalar architecture with amemories and then written out in serial order so that different pro-
32 Kbit gshare branch predictor, a perfect 8-way instruction fetch cessing elements may concurrently write to the same address. The
unit, a 64 Kbyte 4-way set associative combined 1&D L1, and 256 idea of using hash tables rather than full maps to perform indepen-
MByte L2 with 12 cycle latency and 50 cycle miss cost. It has dence validation was originally proposed for the Liquid system.
infinite functional units, infinite registers for renaming, a memory
stunt-box to allow loads to issue to the cache out of order, and an Knight also pointed out the similarity between cache coherence
infinite number of ports on all memories. Even though such an schemes and coherence control in transaction processing. The Lig-
architecture is not feasible, we include it to show that SUDS per- uid system used a bus based protocol similar to a snooping cache

coherenceprotocol [21]. SUDS usesa scalableprotocol that is
more similar to a directorybasedcachecoherenceprotocol[9, 2,
1] with only a singlepointerperentry sometimegeferredto asa
DirlB protocol.

The ParaTransystemfor parallelizingmostly functionalcode[49]

wasanotherearlyproposathatreliedonspeculationParaTranwas
implementedn softwareon a sharedmemorymultiprocessorThe
protocolswerebasednthoseusedin Time Warp[26], with check-
pointing performedat every speculatre operation.A similar sys-
tem, appliedto animperatve, C like, languaggbut lacking point-

ers)wasdevelopedby Wenand Yelick [55]. While their compiler
couldidentify someopportunitiesor privatizingtemporaryscalars,
theirmemorydependencspeculatiorsystemwasstill forcedto do

renamingand forward true-dependencest runtime, andwasthus
lessefficientthanSUDS.

SUDS is most directly influencedby the Multiscalar architec-
ture[18, 46]. The Multiscalararchitecturevasthefirst to include
a low-lateny mechanismfor explicitly forwarding dependences
from onetaskto thenext. Thisallowsthecompilerto bothavoid the
expenseof completelyserializingdo-acrossoopsandalsopermits
register allocation acrosstask boundaries. The Multiscalar vali-
datesmemorydependencepeculationsisinga mechanisntalled
anaddressesolutionbuffer (ARB) [18, 19] thatis similarto ahard-
ware implementationof multiversiontimestampordering. From
the perspectie of a cachecoherencenechanisithe ARB is most
similar to a full-map directorybasedprotocol.

The SUDS compileralgorithmsfor identifying the optimal place-
mentpointsfor sendingandreceving true-dependencesesimilar
to thoseusedin the Multiscalar[51]. The primary differenceis

thatthe Multiscalaralgorithmspermit somedatavaluesto be for-

wardedmorethanonce,leaving to the hardwarethe responsibility
for squashingedundansends. The SUDS compileralgorithmis

guaranteedo insert sendand receve instructionsat the optimal
pointin the controlflow graphsuchthateachvalueis sentandre-

ceivedexactly once.

More recentefforts have focusedon modifying sharedmemory
cachecoherenceschemeso supportmemorydependencespecu-
lation [17, 22,47, 31, 28, 23]. SUDSimplementsits protocolsin
software ratherthanrelying on hardware mechanisms.n the fu-
ture SUDS might permitlong-termcachingof read-mostlywalues
by allowing the softwaresystento “permanently’markanaddress
in thetimestampcache.

Another recenttrend hasbeento examinethe predictionmecha-
nism usedby dependencapeculationsystems. Someearly sys-
tems[29, 49, 23] transmitall dependencethroughthe speculatie
memorysystem.SUDS, like the Multiscalar allows the compiler
to staticallyidentify true-dependencesyhich are thenforwarded
usinga separatefast,communicatiorpath. SUDS andothersys-
temsin this classessentiallystatically predictthatall memoryref-

erenceghatthe compilercannot analyzearein factindependent.

Severalrecentsystemg38, 50, 11] have proposedardvarepredic-
tion mechanismdpr finding, andexplicitly forwarding,additional
dependencethatthe compilercannotanalyze.

Memory dependencepeculationhas also beenexaminedin the
contet of fine-graininstructionlevel parallelprocessingn VLIW
processorsThepoint of thesesystemss to allow trace-scheduling
compilersmore flexibility to statically reordermemory instruc-

tions. Nicolau[39] proposednsertingexplicit addressomparisons
followed by branchego off-tracefixup code.Huanget al [25] ex-
tendedhisideato usepredicatednstructiongo helpparallelizethe
comparisortode. Theproblemwith thisapproachis thatit requires
m x n.comparisonsf therearem loadsbeingspeculatiely moved
above n stores.This problemcanbe alleviatedusinga smallhard-
wareset-associate table,calleda memoryconflict buffer (MCB),
that holdsrecently speculatedoad addresseand provides single
cycle checksoneachsubsequergtoreinstruction[20]. An MCB is
includedin the Hewlett Packard/Intel A-64 EPIC architecturd3].

The LRPD test[40] is a software speculationsystemthat takes
a more coarsegrainedapproachthan SUDS. In contrastto most
of the systemsdescribedn this section,the LRPD test specula-
tively block parallelizesaloop asif it werecompletelydataparallel
andthenteststo ensurethatthe memoryaccessesf the different
processingelementsdo not overlap. It is ableto identify privati-
zablearraysand reductionsat runtime. A directory basedcache
coherencerotocolextendedo performthe LRPD testis described
in [56]. SUDStakesa finer grainapproactthatcancyclically par
allelize loopswith true-dependencemnd canparallelizemostof a
loop thathasonly afew dynamicdependences.

6. CONCLUSION

This paperpresentsSUDS, a softwarespeculatiorsystemfor Rav
microprocessorthatcaneffectively executeintegerprogramswith
complex control-flav andsophisticategointeraliasing.SUDScan
efficiently executeprogramswhere compile-timeparallelismex-
tractionis difficult or evenimpossible,on an architecturewith no
hardware supportfor parallelismextraction. This ability of SUDS
makes Raw architectureviable asa generalpurposearchitecture,
capableof supportinga very large classof applications. Further
more, since SUDS doesnot requireary additionalhardware, ap-
plicationsthat are compilerparallelizabledo not have to sacrifice
their performancen orderto accommodat¢heintegerprograms.

SUDS usescompileranalysisto reducethe amountof work that
needdo beperformedatruntime.Unlike coarse-grainegaralleliz-
ing compilersthateithercompletelysucceedr completelyfail, ap-
plication performancainder SUDS degradesgracefullywhenthe
compileranalysisis only partially applicable.

SUDSrelieson asophisticategnemorysystento supportmemory

dependencepeculation Sincethe systemis implementedentirely

in software,it canbe extendedor customizedo suitindividual ap-

plications. For example,the memorynodescould be augmented
with read-modify-writerequestgor a setof simpleoperationsuch

asadd,subtractandxor.

Usingthe Moldyn applicationasan example,we shav that SUDS
is capableof speculatiely parallelizingapplicationswith depen-
dencesot analyzableat compile-time. Currentlywe do not have
all thecompileranalysesmplementedthusminor handmodifica-
tionsto programsarerequired.We arein theprocesof implement-
ing the register promotionand scoperestrictioncompiler passes.
We hopeto shav resultson moreapplicationswithin the next few
months,in time for thefinal presentation.

As afine-grained software-basedpeculatiorsystem,SUDS pro-
vides us with an opportunityto realizeother conceptspreviously
deemedmpractical. For example,SUDScould be the basisof re-
verseexecutionin dehugging. Error detectioncanbeincorporated
with the SUDScheckpointandroll backmechanismThis feature

could improve the reliability of applicationsin the face of hard-
wareerrors.We alsoplanto investigateotherspeculatre program

optimizationghatuseSUDSto undospeculatiorfailures.

Acknowledgements

This work was supportedin part by DARPA under contract

#DABT63-96-C-0036.

7.
(1]

(2]

(3]

(4]

(5]

(6]

(71

8]

[0

[10]

[11]

[12]

[13]

[14]

REFERENCES

A. Agarnwal, R. Simoni,J. HennessyandM. Horowitz. An
Evaluationof Directory Schemegor CacheCoherenceln 15th
International Symposium on Computer Architecture, pages280-289,
Honolulu,HI, May 1988.

J.ArchibaldandJ.-L. Baer An EconomicalSolutionto the Cache
Coherencé’roblem.In 11th International Symposium on Computer
Architecture, pages355-362 Ann Arbor, MI, Junel984.

D. I. August,D. A. ConnorsS.A. Mahlke, J.W. Sias,K. M. Crozier
B.-C.ChengP R. Eaton,Q. B. Olaniran,andW.-M. W. Hwu.
IntegratedPredicatedaind Speculatie Executionin theIMPACT
EPIC Architecture.In 25th International Symposium on Computer
Architecture (ISCA-25), pages227-237BarcelonaSpain,June
1998.

J.Babb,R. TessierM. Dahl, S.Z. Hanono,D. M. Hoki, and

A. Agarwal. Logic emulationwith virtual wires.|EEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
16(6):609-626Junel997.

R.Barua,W. Lee,S.P. AmarasingheandA. Agaral. Maps: A
CompilerManagedvemory Systemfor Rav Machinesin
Proceedings of the 26th Annual International Symposiumon
Computer Architecture, pagesA—15,Atlanta, GA, May 2—41999.

P. A. BernsteinrandN. GoodmanTimestamp-BaseAlgorithmsfor
Concurreng Controlin DistributedDatabasé&ystemsin
Proceedings of the Sixth International Conference on Very Large
Data Bases, pages285—-300Montreal,Canadact. 1980.

B. N. BershadS. Savage,P. Pardyak,E. G. Sirer, M. E. Fiuczynski,
D. Becler, C. ChambersandS. J. Eggers Extensibility Safetyand
Performancén the SPIN OperatingSystem.n Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, pages
267-284 CopperMountainResort,CO, Dec.3-6 1995.

R. Bodk, R. Gupta,andM. L. Soffa. Load-Reusé\nalysis: Design
andEvaluation.In Proceedings of the ACM SIGPLAN ' 99
Conference on Programming Language Design and Implementation,
pages$4-76,Atlanta, GA, May 1999.

L. M. CensierandP. FeautrierA New Solutionto Coherence
Problemdn MulticacheSystems| EEE Transactions on Computers,
C-27(12):1112-1118)ec.1978.

D. ChailenandA. Agarwal. Software-Extende€oherenShared
Memory: PerformancendCost.In Proceedings of the 21st Annual
International Symposium on Computer Architecture, pages314-324,
Chicagolllinois, April 18-21,1994.

G. Z. ChrysosandJ. S.Emer Memory Dependenc®@redictionusing
StoreSets.In 25th International Symposium on Computer
Architecture (ISCA-25), pagesl42-153BarcelonaSpain,June
1998.

K. D. CooperandT. J.Harwey. CompilerControlledMemory.In
Proceedings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
2-11,SanJoseCA, Oct.3-71998.

K. D. CooperandJ. Lu. RegisterPromotionin C Programsin
Proceedings of the ACM SIGPLAN ' 97 Conference on Programming
Language Design and Implementation, pages308—-319L asVegas,
NV, Junel997.

W. J. Dally. Micro-Optimizationof Floating-PointOperationsin
Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
283-289 Boston,MA, April 3-6,1989.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

J.R. Ellis. Bulldog: A Compiler for VLIW Architecture. PhDthesis,
Departmenbf ComputerScience Yale University Feh 1985.
TechnicalReportYALEU/DCS/RR-364.

D. R.Engler M. F. KaashoekandJ. O'TooleJr. Exokernel: An
OperatingSystemArchitecturefor Application-Level Resource
Managementin Proceedings of the Fifteenth ACM Symposiumon
Operating Systems Principles, page251-266 CopperMountain
Resort,CO, Dec.3-61995.

M. Franklin.Multi-VersionCachedor MultiscalarProcessordn
Proceedings of the First International Conference on High
Performance Computing (HiPC), 1995.

M. FranklinandG. S. Sohi. The Expandableplit Window Paradigm
for Exploiting Fine-GrainParallelism.In 19th International
Symposium on Computer Architecture (ISCA-19), pages58-67,Gold
CoastAustralia,May 1992.

M. FranklinandG. S. Sohi.ARB: A HardwareMechanisnfor
DynamicReorderingof Memory Referenced EEE Transactions on
Computers, 45(5):552-571May 1996.

D. M. GallagherW. Y. Chen,S. A. Mahlke, J. C. Gyllenhaal,and
W. mei W. Hwu. DynamicMemory DisambiguatiorJsingthe
Memory Conflict Buffer. In Proceedings of the 6th International
Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS), pagesl83-193 SanJose,
California,Oct. 1994.

J.R. GoodmanUsing CacheMemoryto ReduceProcesseMemory
Traffic. In 10th International Symposium on Computer Architecture,
pagesl24—131Stockholm,Sweden,Junel983.

S.Gopal,T. N. Vijaykumar J. E. Smith,andG. S. Sohi.Speculatie
VersioningCacheln Proceedings of the Fourth International
Symposium on High Performance Computer Architecture (HPCA-4),
pagesl95-205) asVegas,NV, Feb 1998.

L. HammondM. Willey, andK. Olukotun.DataSpeculatiorSupport
for a Chip Multiprocessorln Proceedings of the Eighth ACM
Conference on Architectural Support for Programming Languages
and Operating Systems, pages8-69,SanJose CA, Oct.1998.

K. HartyandD. R. Cheriton.Application-Controllé Physical
MemoryusingExternalPage-Cach&anagementin Proceedings of
the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pagesl87-197,
Boston,MA, October12-15,1992.

A. S.Huang,G. Slaventurg, andJ. P. Shen.Speculatie
DisambiguationA CompilationTechniqueor DynamicMemory
Disambiguationin Proceedings of the 21st Annual International
Symposium on Computer Architecture (ISCA), pages200-210,
Chicagolllinois, Apr. 1994.

D. R. Jeferson.Virtual Time.ACM Transactions on Programming
Languages and Systems, 7(3):404—425July 1985.

M. F. KaashoekD. R. Engler G. R. GangerH. Bricefio, R. Hunt,
D. Maziéres,T. Pinckng, R. Grimm, J. JanottiandK. Mackenzie.
ApplicationPerformancendFlexibility on ExokernelSystemsin
Proceedings of the Sxteenth ACM Symposium on Operating Systems
Principles, pages2—65,Saint-Malo,France Oct. 5-8 1997.

I. H. KaziandD. J.Lilja. Coarse-Graine@peculatie Executionin
Shared-Memorultiprocessorsln International Conference on
Supercomputing (ICS), pages93-100 Melbourne Australia,July
1998.

T. Knight. An Architecturefor Mostly FunctionalLanguagesin
Proceedings of the ACM Conference on Lisp and Functional
Programming, pages38—-93,Aug. 1986.

T. F. Knight, Jr. SystemandMethodfor Parallel Processingvith
Mostly FunctionalLanguages]989.U.S. Patent4,825,360jssued
Apr. 25,1989 (expired).

V. KrishnanandJ. Torrellas.Hardwareand Software Supportfor
Speculatie Executionof SequentiaBinariesona
Chip-Multiprocessorln International Conference on
Supercomputing (ICS), Melbourne Australia,July 1998.

[32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

H. T. KungandJ. T. Robinson On Optimistic Methodsfor
Concurreng Control. ACM Transactions on Database Systems,
6(2):213-226)unel981.

J.Kuskin,D. Ofelt, M. Heinrich,J. Heinlein,R. Simoni,

K. Gharachorloo]. Chapin,D. Nakahira,J. Baxter M. Horowitz,
A. Gupta,M. RosenblumandJ. HennessyThe StanfordFLASH
Multiprocessorln Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages302—313 Chicago,
lllinois, April 18-21,1994.

W. Lee,R. Barua,M. Frank,D. SrikrishnaJ. Babb,V. Sarkarand
S. AmarasingheSpace-ime Schedulingof Instruction-Leel
Parallelismona Rav Machine.Iln Proceedings of the Eighth ACM
Conference on Architectural Support for Programming Languages
and Operating Systems, pagesA6—57,SanJose CA, Oct.1998.

R. Lo, F. C.Chaw, R. KennedyS.-M. Liu, andP. Tu. Register
Promotionby Partial Redundang Elimination of LoadsandStores.
In Proceedings of the ACM SIGPLAN ' 98 Conference on
Programming Language Design and Implementation, pages26—37,
Montreal,Quebec,Junel998.

J.E. Miller. SoftwareBasednstructionCachingfor the RAW
Architecture Masters thesis,Departmenbf ElectricalEngineering
andComputerScienceMassachusettsistituteof TechnologyMay
1999.

C. A. Moritz, M. Frank,andS. AmarasingheFlexcache:A
framework for flexible compilergeneratediatacaching.In
Proceedings of the 2nd Workshop on Intelligent Memory Systems,
Boston,MA, Nov. 12 2000.to appeatSpringerLNCS.

A. MoshorosandG. S. Sohi. Streamlininginter-operationMemory
Communicatiorvia DataDependenc®rediction.In 30th Annual
International Symposium on Microarchitecture (MICRO), Research
TrianglePark, NC, Dec.1997.

A. Nicolau.Run-Time DisambiguationCopingwith Statically
UnpredictableDependenciedEEE Transactions on Computers,
38(5):663—-678May 1989.

L. RauchwegerandD. Padua.The LRPD Test: Speculatie
Run-Time Parallelizationof Loopswith PrivatizationandReduction
Parallelization.In Proceedings of the S GPLAN Conference on
Programming Language Design and Implementation, pages
218-232) a Jolla,CA, Junel995.

D. P. Reed.ImplementingAtomic Actionson Decentralizedata.
ACM Transactions on Computer Systems, 1(1):3—23,Feh 1983.

S.K. ReinhardtJ.R. Larus,andD. A. Wood.TempestandTyphoon:
UserLevel Sharedviemory.In Proceedings of the 21st Annual
International Symposium on Computer Architecture, pages325-336,
Chicagolllinois, April 18-21,1994.

J.H. SaltzerD. P. Reed,andD. D. Clark. End-To-EndArgumentsn
SystemDesign.ACM Transactions on Computer Systems,
2(4):277-288Nov. 1984.

D. J. ScalesK. GharachorlooandC. A. Thekkath.ShastaA Low
Overhead Software-OnlyApproachfor SupportingFine-Grain
SharedMemory.In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems, pagesl 74-185Cambridge MA, October
1-5,1996.

S.D. SharmaR. PonnusamyB. Moon, Y. shinHwang,R. Das,and
J. Saltz.Run-timeandcompile-timesupportfor adaptve irregular
problems.n Proceedings of Supercomputing, pages97-106,
WashingtonDC, Nov. 1994.

G. S.Sohi,S.E. BreachandT. N. Vijaykumar Multiscalar
Processordn 22nd International Symposium on Computer
Architecture, pages#14—-425 SantaMargheritalLigure, Italy, June
1995.

J.G. StefanandT. C. Mowry. The Potentialfor Using Thread-Leel
DataSpeculatiorto Facilitate AutomaticParallelization.In
Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture (HPCA-4), page2—13,
LasVegas,NV, Feh 1998.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. Taylor, J.Kim, J.Miller, F. Ghodrat,B. Greenvald, P. Johnson,
W. Lee,A. Ma, N. ShnidmanpP. Wentzlaf, M. Frank,
S.AmarasingheandA. Agaral. The Rav processorA
composeabl82-bit fabricfor embeddedndgeneralpurpose
computing.In Proceedings of HotChips 13, Palo Alto, CA, Aug.
2001.

P. Tinker andM. Katz. Parallel Executionof SequentiaSchemaevith
ParaTan.In Proceedings of the ACM Conference on Lisp and
Functional Programming, pages40-51,July 1988.

G. S.TysonandT. M. Austin. Improving the Accuray and
Performancef Memory CommunicatioirhroughRenamingIn
30th Annual International Symposium on Microarchitecture
(MICRO), ResearcfTrianglePark, NC, Dec.1997.

T. N. Vijaykumar Compiling for the Multiscalar Architecture. PhD
thesis,University of Wisconsin-MadisorComputerSciences
DepartmentJan.1998.

T. von Eicken,D. E. Culler, S. C. GoldsteinandK. E. Schauser
Active Messagesa Mechanisnfor IntegratedCommunicatiorand
ComputationIn Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages256—266Gold Coast,
Australia,May 19-21,1992.

R.Wahbe S.Lucco,T. E. AndersonandS. L. Graham Efficient
software-basedaultisolation.In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, pages203-216,
Asheville, North Carolina,Dec.5-8 1993.

E. Waingold,M. Taylor, D. Srikrishna,V. Sarkay W. Lee, V. Lee,
J.Kim, M. Frank,P. Finch,R. Barua,J. Babb,S. Amarasingheand
A. Agarwal. Baring It All to Software: Rav MachineslEEE
Computer, 30(9):86-93Sept.1997.

C.-P WenandK. Yelick. Compilingsequentiaprogramsfor
speculatie parallelism.In Proceedings of the International
Conference on Parallel and Distributed Systems, Taiwan,Dec.1993.

Y. Zhang,L. Rauchweger, andJ. Torrellas.Hardwarefor

Speculatie Run-Time Parallelizationin Distributed Shared-Memory
Multiprocessorsln Fourth International Symposiumon
High-Performance Computer Architecture (HPCA-4), pages
162-173LasVegas,NV, Feh 1998.

