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ABSTRACT 

The design of airplanes, ships, automobiles, and so-called "sculptured 

parts" involves the design, delineation, and mathematical description of 

bounding surfaces. A method is described which makes possible the description 

of free-form doubly curved surfaces of a very general kind. An extension of 

these ideas to hyper-surfaces in higher dimensional spaces is also indicated. 

This surface technique has been specifically devised for use in the 

Computer-Aided Design Project at :\I.I. T., and has already been successfully 

implemented here and elsewhere. 

iii 
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SECTION I 

INTRODUCTION 

1 

The purpose of this work is to present the mathematics of a certain class 

of surfaces which are suitable for the design and description of arbitrary shapes. 

In the past. the subject of surface mathematics has been investigated, in ana

lytical geometry and in differential geometry, from the standpoint of the analysis 

of geometric properties of surfaces that already exist, but very little literature 

has been produced on the subject of the creation of such surfaces. As a typical 

example, the design of the hull of a racing yacht requires the description of a 

surface of considerable subtlety and complexity, and the process is traditionally 

carried out by purely graphical procedures which are exceedingly laborious, 

since they entail a large amount of trial and error iteration in order to assure 

that the surface is completely described, and is smooth and "fair." The design 

of automobile bodies and airplane fuselages is similarly tedious and time con

suming, although mathematical techniques have been applied to aircraft design 

for a number of years. 

A few papers have been written on the subject of fitting existing ship hull 

shapes by means of various types of polynominals, with the two-fold purpose 

of smoothing and interpolating the information contained in preliminary graphi

cally derived hull lines, and of replacing this graphical information with for

mulas and equations that will permit further analytical techniques to be applied, 

such as structural analysis and the discipline of fluid mechanics. But these 

mathematical techniques are applicable only when the surface has already been 

designed to some degree of completeness, so as to furnish enough information 

to make the mathematics work. 

The mathematical structure of the surfaces to be described in the follow

ing discussion has been devised to implement the surface design process itself, 

so as to make it, from the designer's standpoint, extremely natural and easy. 

The designer himself need not know or care about these internal mathematical 

details, any more than he needs to know the specific composition of the pencils 

with which he writes or the mechanics of the splines with which he now draws 
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curves. The mathematics is relatively simple, but it is nevertheless too com

plicated for hand calculation, and is designed for use on a computer. 

In the design of a three-dimensional object, whether it be an airplane fuse

lage, an aut.omobile body, a ship's hull, or a single sculptured part of a machine, 

the designer requires a system which will permit him t.o define a surface with a 

minimum of input information, and then t.o modify this surface, if he feels so 

inclined, either by changing the original input, or by adding more design con

straints to the system. 

As a specific example, suppose a designer wishes t.o design an airplane 

fuselage, using the SKETCHPAD system. 1• 
2

• 3 He would like to be able to draw 

the outline of the airplane as seen from the side, the outline of the airplane as 

seen from above, and some arbitrarily selected section midships. With these 

three arbitrary curves designed, he would like to have the computer automati

cally and immediately generate a "fair" surface and display this surface to him 

in sufficient detail so that he could make appropriate judgments. H the surface 

so generated does not satisfy him, he would perhaps like to modify his original 

design curves, or else he might perhaps like to add other new sections and have 

the computer automatically and instantly re-fair the surface to fit this additional 

information. 

The following sections describe a very simple, flexible and general class 

of surfaces which are able to fulfill these requirements. It will be shown that 

a single algorithmic structure and essentially only two symbol types serve to 

provide the following features: 

1. Smooth, fair surfaces can be defined by a minimum number of curves, 
and then adjacent surfaces can be designed to match position, slope, 
curvature, and indeed any desired order of derivative along the ad
joining boundaries. 

2. The design curves that define the surface can be of any kind whatso
ever, including circles, second-degree curves, polynominals, trans
cendentals, and also sketched curves with no known mathematical 
formula whatsoever. 

3. Some classic surfaces are not necessarily members of the family 
of surfaces to be described; nevertheless, these classic surfaces 
can be matched along their boundaries to any order of derivative 
desired. 
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4. The arithmetic involved in constructing these surfaces is extremely 
simple and, we have found, easy to implement on a digital computer. 
It also lends itself to special-purpose computing hardware, such as 
digital or analog differential analyser$. In addition, by virtue of the 
form of the algorithm, the parameters that define the shapes are ex
tremely easy to compute. (In some cases they may require no com
putation at all. ) 

We intend to develop a method to construct complex arbitrary surfaces by 

piecing t.egether surface "patches." Each such patch will be defined by four 

boundary curves, in principle, although it is harmless for one of the boundary 

curves to be degenerate, and to appear as a point instead of a curve segment. 

In the design of a surface, it is intended that the designer begin with a single 

surface patch, or a very small number of patches, and then subdivide these 

regions with additional design curves defining boundaries of smaller patches 

3 

only when the internal surface needs modification. This is somewhat at variance 

with the customary procedure for mathematical curve fitting and surface fitting 

of existing curves and surfaces, in which a relatively large number of surface 

points already defined by some other procedure are used to obtain mathematical 

expressions for a surface that best fits them. Instead, the system to be de

scribed is intended to be used by the designer at the outset, in the process of 

designing the surface, rather than later on as a means for making it mathe

matical. 

This is not to say that the surface-patch technique cannot be used to for

mulate pat.ch-wise mathematical expressions for existing surfaces, but rather 

to indicate that the primary purpose of this surface technique is to facilitate 

the initial design process itself. 

When the design process is completed, the surface will be completely 

mathematically defined, since this definition occurs automatically and concur

rently with design. 

Ordinarily a ship's hull or an airplane fuselage is described by certain 

important curves such as, in the case of the hull, a keel curve, a midships 

section, and a curve representing the sheer or deck line; these curves are 

sufficient to determine a surface, since they form the boundaries of a surface 

patch. However, ordinarily this primary surface will not have certain desired 

characteristics, and it will have to be modified by introducing additional 
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information, such as for instance one or two other section curves. When these 

additional curves are introduced, the surface algo'rithm permits the computer, 

to "re-fair" the original hull form to contain these curves. 

Similarly, an airplane fuselage can be designed by drawing a profile curve, 

a maximum half-breadth curve, and a mid-section of the fuselage. Again these 

curves suffice to define a primary surface, which in most cases will require 

modification by the addition of a few more curves to make more explicit the 

designer's wishes. As these additional curves are introduced, the original 

surface will be sub-divided into patches, but the algorithm will automatically 

insure continuity of surface slope and curvature (if desired) and will incorporate 

these additional curves into the surface automatically. This should make initial 

surface design virtually painless, and is intended to remove the tedious process 

of surface fairing as it is now practiced in naval architecture. Airplane fuse

lages are usually somewhat simpler shapes than, say, yacht hulls, and for a 

number of years second-degree curves have been successfully used for fuselage 

design; on the other hand, naval architects have steadily resisted the use of such 

methods in their work, since the complexity of yacht shapes makes it necessary 

to pay attention to the irksome details of the geometry involved, and second

degree curves prove to be cumbersome in such applications. 

The system that is described in this report is· intended to furnish the flexi

bility that second-degree c;urve techniques lack, and to remove almost entirely 

the need for the designer to be an analytical geometer. With this system imple'

mented on a computer, there is reason to believe that the computer can take 

over all of the geometrical and mathematical burden of the design process, and 

leave the user free to be a sculptor assisted by an exquisitely skillful mechan

ical slave. 

Ultimately, when a graphical input-output hardware for a computer is 

available in the engineering design office, these methods will permit designers 

to delineate complex shapes with great ease, by simply drawing the salient 

curves that define and describe them. Already experiments along these lines 

are in progress in a few isolated laboratories both in universities and in 

industry. Very soon the two severe handicaps that have inhibited the wider 

use of such graphical devices will be removed. These inhibiting factors have 
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been hig·h cost for the terminal hardware and small size of the ,,·orking area. 

Eapid stricles are being made on both these fronts, and ,,ithin a few years it ,,ill 

be possible not only to drm,· on a \'irtually unlimited drawing surface, but to 

dr,rn objects directly in three-dimensional space, and to \'iew these constructed 

objects as one would view an actual physical thing. 
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NOTATION 

We shall in what follows relate the x, y, and z coordinates of points on a 

surface to two independent variables u and w, so that we could write 

X = f (u, W) 

Y = g(u, w) 

z = h(u, w). 

If the functions f, g and h were specified, then for a pair of values of u and w, 

a point in space would be defined. If we held one of the independent variables 

fixed, say w, then by allowing u to vary, the point in space would trace out a 

curve. If subsequently we set w to a new fixed value and again allowed u to 

vary, we would trace out another curve, and so on. Clearly by stepping the 

values of w by small increments and allowing u to vary after each such step, 

we could produce a family of space curves that would lie on the surface and 

define it. All that is needed is some convenient and systematic way of arriving 

at the functions f, g, and h. 

It will turn out that the !2rm of all of these three functions is the same; 

only certain internal numerical values are different. In vector notation we can 

write 

[x y z] [f (u,w) g (u,w) h (u,w~ 

·· --Since-V-= fx-y ·~--is-a-suitable conventional abbreviation for the vector 

on the left, we Introduce a similar abbreviation for the right hand side: 

(UW) = [f (U,W) g (U, W) 

Here, in the abbreviated symbol on the left, we shall omit the comma between 

the two letters. Later on, when no ambiguity can arise, we shall omit the 

parentheses as well, and write simply uw to stand for the vector. It is to be 

remembered that uw does .!!2!_ stand for the ordinary product of the two quan

tities, but is merely a bi-literal symbol standing for a vector whose components 

are functions of the two variables. 
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We plan to build up surfaces by adjoining surface "patches," in an analogy 

of the piecewise fitting of complicated curves by curve segments suitably joined 

together. Accordingly, we shall at the beginning focus our attention on one such 

surface patch. To simplify arithmetic, we shall stipulate that the independent 

variables, or parameters, u and w can take on only values between O and 1. 

Then a surface patch can be considered to be a surface segment bounded by 

four space curves, (0 w), (1 w), (u 0) and (u 1). 

11 

01 ul 

lw 

uO 10 
' 00 

Here, typically, the symbol (Ow) stands for the vector describing the x, y, and 

z coordinates of points along the curve generated by allowing w to vary conti

nuously from O to 1, while u is held fixed and equal to 0. 

We shall introduce two scalar functions, F 
O 

and F 
1 

each a function of a 

single variable. These will be referred to as "blending functions" for reasons 

that will become clear. 

In order to compress the surface equation, and the proofs that we wish to 

demonstrate, we shall use a kind of indicial notation; we introduce the indices i 

and j, which can assume only the values O and 1, and we invoke the customary 

summation convention for terms with repeated indices. This convention in our 

case simply means that when an index is repeated in a term, we write out all 

the possible terms that the actual indicial values generate, and then add them. 



SECTION m 

THE SURFACE EQUATION 

With these conventions and notational peculiarities in mind, we write 

(UW) = (iw)Fi (U) + (uj)Fj(w) - (ij)Fi (u)Fj(w). 

(Typically, the first term on the right expands as follows: 

Thus the complete expansion would consist of eight terms, if carried out.) We 

shall proceed to demonstrate that this surface equation represents a surface 

that contains the four boundary curves, and is thus defined by them. 

We must make a stipulation, a weak one, on the nature of the blending 

functions F 
O 

and F 
1

: 

F
0
(0)=l 

F 
1 

(1) = 1 

F 
0

(1) = 0 

Fl (0) = 0 

A further stipulation is that F 
O 

and F 
1 

be continuous and monotonic over the 

interval. 

Now set u = a, where a can only be either O or 1. Then, substituting in 

the surface equation, 

(aw)= (iw)Fi(a) + (aj)Fj(w) - (ij)F
1
(a)F/w). 

Consider F
1 
(a) which occurs twice in the equation. By the stipulation, if i = a, 

F
1
(a)=l. 

Otherwise, if i # a, F.(a) = o. 
l 

Hence all terms in the expansion that contain i # a vanish; we can set i = a and 

what remains is 

(aw) = (aw)F (a) + (aj)F.(w) = (aj)F (a)Fj(w) 
a J a 

= (aw) 

= (aw). 

+ (aj)F .(w) - (aj)F .(w) 
J J 

9 
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This shows that for a= O or 1, and hence (aw) = (Ow) or (lw), the surface equa

tion reduces to an identity. This implies that the surface contains its boundaries. 

An entirely parallel argument would show that the equation also reduces to an 

identity for the other two boundaries (UO) and (ul). 

Provided a pair of functions F 
O 

and F 
1 

are chosen once and for all that 

satisfy the stipulations, the surface equation may be constructed immediately 

alld umquely for any aet~f boundary curves (uO) (ul) (Ow) and (lw). It is to be 

observed that no restrictions have been placed on the form of the boundary 

curves; there is perhaps the restriction that they form a closed boundary, at 

least at the corners (ij) = (00), (01), (10), and (11) otherwise there will be mul

tiple values within the surface segment; similarly they should be continuous 

functions, but apart from these rather obvioUII restrictions, they can be of any 

shape whatever, including curves that can only be represented by tables of 

values. 

We can gain intuitive insight into the nature of such a surface if we look 

at one of the terms, say (uj)F.(w). 
J 

We have the expansion 

(uj)Fj(W) = (UO)F o<w) + (ul)F l (w). 

This represents a weighted average of the quantities (uO) and (ul). When 

w = 0, F 
O 

(0) = 1 and F 
1 

(0) • O, and the expression becomes simply (uO). As w 

increases, the weight of F 
0

(w) decreases, while that of F 
1 

(w) increases, so that 

the surface partakes of the nature of both boundary curves. As w approaches 

the value 1, the influence of (uO) on the shape of the surface gradually disappears, 

while the influence of (ul) gradually becomes dominant. Finally, at w = 1, the 

curve (ul) represents the shape of the surface. We can say that the surface is 

generated by a gradual transition from (uO) to (ul), and that these two curve 

shapes are "blended" together by virtue of the blending functions F 
O 

and F 
1

. 

This discussion is somewhat oversimplified, since we have omitted the term 

(iw)F. (u) and it too plays a part in determining the shape of the internal surface, 
J 

as does of course the term involving the corner coordinates, (ij)F. (u)F. (w). 
1 J 



THE SURFACE EQUATION 

The entire surface equation is seen to be symmetric in u and w, and by 

virtue of this and a secondary symmetry in the functions F 
O 

and F 
1 

, we can 

abbreviate proofs about the behavior of the surface along all boundaries by 

exhibiting a typical proof for any one boundary. 

3 .1 BOUNDARY SLOPE CONTINUITY 

It is our aim to design and delineate complicated surfaces by adjoining 

surface patches, in a piecewise fashion, Consider two such patches A and B, 

ul 

11 ·Ja 

01 

A lw Ow B lw 

10 00 10 
uO uo 

with a common boundary. For patch A the boundary is (1 w); for patch B it is 

(Ow), and the vectors of coordinates are equal, 

A (lw) = B (Ow). 

Then the two patches will be continuous across their common boundary. They 

will however in general be discontinuous in slope across the boundary, and we 

wish to investigate this and make some amendments that will correct this dis

continuity of slope. 

11 

We t~ke the partial derivative with respect to u: Our symbolism for this 

partial derivative is (uw) = ~ (uw) , 9.lld when we substitute , say , u = O , we can 
u vu 

write (Ow)u to mean the value of the partial derivative so obtained. Then 

(uw)u = (iw) F1 (u) + (uj)uFj(w) - (ij) F1 (u)Fj(w). 

Now substitute u = a = 0 or 1, as before. 

(aw) = (iw) F
1
1 (a) + (aj) F.(w) - (ij) F

1
1 (a)F.(w). 

u u J J 
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If we now place additional constraints on the blending functions , that their first 

derivatives 

(a == either O or 1) 

we obtain the result 

(aw)u == (aj)uFj(w), 

all other terms vanishing. 

This implies, for example, that when a = 0, 

or, the derivative anywhere along the boundary in the u direction (across the 

boundary) depends only upon the derivatives at the end-points of the boundary; 

it is entirely independent of the shapes of the four boundary curves, including 

the boundary (Ow) itself. 

Thus for the two patches A and B, if 

and 

A(ll) = B(Ol) 
u u 

i. e. , if the boundary curves are continuous in slope in the u direction at the ends 

of the contiguous boundary between patches, we are guaranteed to have 

A(lw) = B(Ow) everywhere along the boundary regardless of the 
u u 

shapes of the boundary curves of A and B. This is a remarkably powerful and 

useful property, achieved at the slight expense of extending the stipulations on 

the F .• 
1 

Similarly, the second derivative with respect to u is 

(uw) = (iw) F
1
11 (u) + (uj) Fj(w) - (ij) F!' (u)Fj(w) 

UU UU l 

and if we further stipulate that F1• (a) =Owe obtain 

(aw) = (aj) F.(w). 
uu uu ) 
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This establishes second derivative (or curvature) continuity as an auto

matic and inherent property of adjacent patches, provided their boundary curves 

have this kind of continuity at the end-points of the boundary. It is easy to see 

that we may escalate in this way to any level of derivative continuity we wish 

along contiguous boundaries • 

3.2 SLOPE CORRECTION SURFACE 

The surface equation already described is very general, in the sense that 

it can contain virtually any boundary curve we wish, and it has certain benign 

properties of derivative matching along boundaries; nevertheless it is not a 

universal formula for all surfaces, and there are many that do not belong to its 

family. We have already seen that surfaces generated by the surface equation 

have a definite intrinsic slope along boundaries, whose variation is rigidly 

prescribed by a simple formula, Obviously surfaces exist whose boundary 

slopes do not match this intrinsic slope, except at the end-points of boundaries. 

Nevertheless, we wish to be able to patch together such other surfaces with our 

special surfaces, so as to have slope continuity (or continuity of any level of 

derivative). 

To do so, we introduce a new surface equation, describing a slope-correc

tion surface, which when added to the first surface equation has the property of 

leaving the boundaries unchanged, but causing the derivatives across boundaries 

to vary in any arbitrary way we wish, as we move along the boundary. 

The equation resembles the first form very strongly. It is 

(uw) = (iw) Gi(u) + (uj) G.(w) - (ij) G.(u)G.(w), 
U W J uw 1 J 

Here, typically, (iw) is a function of w only, and describes the arbitrary 
u 

variation of the derivative with respect to u as w varies , along the curve (i w) , 

and similarly for the other boundaries, The vector (ij) represents the cross 
uw 

derivatives of the four corners. Typically, 

2 
(00) = ~ 

uw ouow u = 0 
w =O 
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The functions G
0 

and G
1 

are again blending functions or weighting func

tions, hlt they have properties different from the functions F 
O 

and F 
1

• We 

stipulate 

G' (0) = 1 
0 

or in the indicial notation used earlier, 

G
1
(a) = 0, a and i = O or 1. 

We need to ensure that the vectors describing the boundaries vanish 

identically, and that the vectors describing_ the slope variation along boundaries 

are indeed given by the equation. The proof proceeds along precisely the same 

lines we used before. First, substitute u = a. The equation becomes · 

(aw)= (iw)uG1(a) + (aj)wGj(w) - (ij)uwG
1
(a)G/w). 

= (aj)wGj(w). 

Consider (aj)w. We wish to have the correction surface leave the original 

boundary vectors unchanged, and hence the boundary vectors of the correction 

surface must vanish; ie, 

(iw) = 0 

(uj) = O 

Then the derivatives of these boundaries must also vanish; in particular, 

(iw)w = O and then (ij)w = O, when w = j. Hence (aj)w = 0. 

Thus (aw) = 0 indicates the desired behavior of the correction surface along a 

boundary. Similarly (ua) = o. 
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To examine the slope variation along a boundary , differentiate the 

equation with respect to u: 

(uw) = (iw) a
1
• (u) + (uj) Gj(w) 

u u uw 

Now substitute u = a 

(aw) = (iw) a
1
• (a)+ (aj) G.(w) - (ij) G! (a)G.(w) 

U U uw J uw 1 J 

As before, G i (a) = 1 if and only if a = i , 

so we get 

(aw) = (aw) G' (a) + (aj) G (w) - (aj) G' (a)G.(w) 
u u a uw j uw a J 

= (aw) + (aj) G.(w) - (aj) G.(w) 
u uw J uw J 

This demonstrates that the surface has the slope variation along the 

boundary as required. To make use of this slope correction surface, we must 

first determine what the intrinsic slope of the surface to be corrected is, and 

then we must subtract this slope from the desired boundary slope, to yield the 

correction slopes that enter into the equation. Thus if (Ow)u is the desired 

slope, and 

I (Ow)u is the intrinsic slope, then 

C (OW)u will be the correction slope, 

15 

The correction slopes C (iw) and C (uj) are the four functions that enter 
u w 

into the slope correction surface. _ The desired surface is obtained by adding 

the correction surface to the first surface : 

(uw) = I (uw) + C (uw) 

where we use the symbol I (uw) to represent the surface whose boundary slope 

is being modified. 
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3.3 HIGHER-ORDER CORRECTION SURFACES 

Analogous forms may be obtained for correction of higher derivatives along 

boundaries. For second derivative correction, the surface equation is 

(uw) = (iw) Hi(u) + (uj) Hj(w) - (ij) H
1
(u)H.(w). 

UU WW UUWW J 

In this equation, the blending functions Hi have the stipulations that, for a= O 

or 1 as before , 

It 

Hi (i) = 1, i = a. 

With these constraints on the Hi, it is easy to arrange matters so that this 

second-order correction surface is zero everywhere on the boundary, has zero 

slopes across boundaries, and has second derivatives across boundaries speci

fied by (iw) and (uj) whatever these functions may be. The addition of this 
UU WW 

surface vector to a given surface vector will then provide a means for boundary 

second-derivative correction without disturbing either the boundary shapes or 

boundary slopes • 

Although we have already carried out a similar proof for slope correction, 

it might be well to exhibit once again the course of the argument. 

First, to show that the boundary vectors are zero, substitute u = a: 

(a = O or 1.) 

(aw) = (iw)uuH1(a) + (aj)wwHi(w) - (ij)uuwwH1(a)Hj(w) 

= (aj)wwHi (w). 

The term (aj) refers to the second derivative in thew sense at each of the 
WW 

four corners, such as, typically, (00). As in the case of slope correction, we 

must have 

(iw) = 0 along boundaries. 
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Then (iw) = O, (ij) = O, and in particular (aj) = 0, so that the 
WW WW WW 

equation satisfies the boundary condition, 

For boundary slope vectors, differentiate with respect to u: 

' ' (uw) "' (iw) Hi (u) + (uj) Hj(w) - (ij) H. (u)H.(w) 
U UU WWU uuww 1 J 

Set u = a: 

(aw) = (aj) H.(w). 
u WW\l J 

We wish to have the slope vectors vanish along boundaries, so typically 

(iw) • 0 for all w. 
u 

But then (iw) = 0 and (iw) = O by taking derivatives. The order of 
uw uww 

differentiation is immaterial, so 

(iw) -= (iw) , and finally we can conclude that 
uww wwu 

(aj) = O; again the right and left hand sides of the equation are 
wwu 

in agreement, 

Finally, we differentiate again with respect to u: 

If " 

(uw)uu = (iw)uuHi (u) + (uj)wwuuHj(w) - (ij)wwuuHi (u)Hj(w). 

Set u = a; only terms in which a = i remain: 

" (aw) "'(aw) H "(a) + (aj) H.(w) - (aj) H (a)Hj(w) 
uu uu a wwuu J wwuu a 

= (aw)uu 

Again we have demonstrated an identity. The escalation to any level of 

boundary derivative correction vector is obVious. 

3,4 MATRIX FORM 

The surface equation 

(UW) = (iw)F.(u) + (Uj)F.(w) - (ij)Fi(u)F.(w) 
1 J J 

17 
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may be expanded directly into matrices, to yield: 

~W) " [uo .,] r::: 1 + [, ,. F 1 •l I: 1 

In this we have treated the indicial form term by term in a straight

forward way. We shall in what follows omit parentheses, since no misunder

standing can arise. Thus typically F 
0
u is written in place of F 

0
(U) as a matter 

of convenience and economy. Similarly, typically 00 is written instead of (00); 

the reader should be reminded that this is merely a compact way of exhibiting 

the x, y , z coordinates at point (00) • 

It means: 

00 = [x(OO), y(OO), z(OO)] when written out completely. 

The three vector (matrix) products are equivalent to the following three products: 

[1 F
0
u F

1
u] o uo ul 1 

0 

-00 

-10 

0 

-01 

-11 

and in this form we can perform the addition, obtaining 

(uw) = [1 F
0
u F

1
u] O 

Ow 

lw 

uO 

-00 

-10 

Ul 

-01 

-11 
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It is slightly more convenient to rewrite this in the equivalent form 

uO 

00 

10 

ul 

01 

11 

so as to avoid the awkward minus signs in the 3 x 3 matrix. 

19 

Two facts should be noted. The leading row vector in front of the matrix 

and the trailing column vector following the matrix are transposes of one 

another, but with different arguments; the matrix represents the boundary con-

ditions of a patch. The partition 

[
00 01 l is redundant, since its elements 

10 11 

must agree with uj and iw for u and w equal to 0 or 1. 

We have already suggested that we can maintain slope continuity across 

boundaries by suitable stipulations on Fi, and we have also already suggested 

that when desired we can adjust slopes across boundaries by a second additive 

vector with suitable stipulations on its G.. We shall now investigate the com-
1 

bined form of the surface equation. To do so we shall prefix a symbol to the 

vector uw to indicate whether we are talking about the first surface equation, 

or the correction surface equation, and we shall omit the prefix symbol when 

we are talking about the combined form. Thus 

uw = suw + cuw. with 

suw = the primary surface 

c;uw = the correction surface 

uw = the combination. 

Accordingly, using this notational convention, we will take derivatives, with 

respect to u, of the surface equation suw in order to determine its slope vector 

in the u direction. 
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suw =
u 

We substitute u = o, and obtain 

sOWU = [sOOu s01
0

] 

0 

sow 

slw 

suO 
u 

0 

0 

suO 

sOO 

slO 

sull 
sOl 

sll · 

SECTION m 

Now consider, for example, sOO and the desired 00 • The symbol sOO u u u 
refers to the slope vector at a oorner; we have already seen that at corners the 

correction surface cOO = O, and so 00 = sOO • This is bourne out intuitively 
u u u 

by the reflection that at (ij) corners, the two crossing boundary curves com-

pletely define the slopes there; since this is so, no correction of slope need or 

can be applied. 

Hence we should write 

sOWu = [ OOU 01j 

By analogy and symmetry we can write the remaining three statements: 

slw = (1ou uJ [••w] u 
F

1
w 

su0 = [F0u F1u) [:::] w 

sul [F0u F1u] 

[::: J . w 
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In order to obtain a desired slope vector along any of the boundaries , we add 

the correction surface, whose equation is 

cuw = - [-1 G
0
u G1u] 

[ 0 

cuo 

au J r~:wj 
w 

cOlw cow cOO 

clw: 
uw uw 

clO ell G
1
w 

uw uw 

As we have already remarked, the desired surface uw is the sum of the vectors 

suw and cuw. Hence the correction slope vector, such as, typically, cuO w, is 

This is an entry in the correction surface matrix. 

Now we introduce a new fact: the corner cross derivatives of the primary 

surface equation are all zero. To show this, differentiate the indicial expres

sion first with respect to u, then with respect to w, and finally set u = a, w = b, 

where a and b are as usual either O or 1. We have 

uw = (iw) Fi' (u)' + (uj) Fj' (w) - (ij) F1
1 (u) F .' (w). uw w u J 

Evidently this expression vanishes for (uw) = (a b). This shows that the corner 

''twists", or cross derivatives, of the original surface all vanish; it is a 

peculiarity of the first fundamental surface equation. 

Hence we can aBSert that 

cij = ij ; This says that the desired twists at corners are 
uw uw 

identical with the correction surface twists, since the fundaments surface has 

~twist. We shall use this result to replace the partition 

with 

[

00 
uw 

10 
uw 

01 j uw 

11 
uw 

[

coo 
uw 

clO 
uw 

cOl ] uw 

ell 
uw 
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We can rewrite the expression for cuo 

cuo [ 1 -F u -Flu] w l) 

and 

cul [1 -F u -F 
1

u] 
w 0 

and of course, perhaps trivially, 

0 = -F u 1 
1 j 

w 
as follows: 

I :::1 
ul 

01 

11 

0 

0 

I) 

w 

w 

w 

.., 

SECTIO'.\ III 

Each of these matric products represents an clement of the top row of the 

correction surface matrix. 

Since the row matrix 11 -F u -F u 1 is common to these three products, l o 1 _ 

it can be factored out and introduced into the matrix [-1 G
0 

u G
1 

u] to yield 

-F u -F u] 
0 1 

which is the same as the vector 

G u G u] 
0 1 

[ -1 F u F u G u G u] 
0 1 0 1 

We replace the elements of the top row of the correction surface matrix 

by the three matrices O r
1 

uO and 

' w 
0 

0 

00 
w 

10 
w 
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This causes it to become a 5 x 3 matrix, and we now have the intermediate 

result, 

[-1 G1u] 
r 

cuw = - F
0
u F

1
u Gu 0 uO ul 

-1 1 0 w w 

0 00 01 G
0
w 

w w 

0 i.O 11 G wi 
w w 1 ! 

J 
cOw 00 01 

u uw uw 

clw 10 11 
u uw uw 

By similar procedures, we can write for the elements of the first column 

of the correction surface matrix, 

cow = [ow oo 01 ] 
u u u u 

and again trivially, perhaps, 

o=[ooo] 

When we factor out the common column matrL" as before, and replace each 

entry of the column matrix 0 

0 

0 

cow 
u 

clw 
u 

by the above expressions, 
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we obtain the complete matric expression for the correction surface: 

cuw = - (-1 F
0
u F

1
u G

0
u G

1
u] 0 0 0 uO ul 

w w 
-1 

0 0 0 00 01 
w w 

0 0 0 10 11 
w w 

ow 00 01 00 01 
u u u uw uw 

lw 10 11 10 11 
u u u uw uw 

If now we border the original surface equation matrix, it can be written, 

suw = - [-1 F0u F1u G
0
u G

1
u] 0 uo ul 0 0 -1 

ow 00 01 0 0 F
0
w 

lw 10 11 0 0 F
1
w 

0 0 0 0 0 G
0
w 

0 0 0 0 0 G
1
w 

In this bordering process, the value of the matric procllct is unchanged. 

Since the pre- and post-multiplicative matrices in this equation are the 

same· as those of the correction surface equation, we can add the two 5 x 5 

matrices and pre- and post-multiply by the two vectors. We shall perform, in 

fact, 

uw "' suw + cuw, and obtain 

uw=- [-1 F0u F1u G
0
u G1u) 0 

Ow 

lw 

Ow 
u 

lw 
u 

uo ul 

00 01 

10 11 

00 01 
u u 

10 11 
u u 

uo ul -1 
w w 

00 01 
w w 

10 11 w w 

00 01 
uw uw 

10 11 
uw uw 

This is a general expression for a slope-matching, slope continuous surface patch 

with entirely arbitrary boundaries and entirely arbitrary slopes across these 
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boundaries. There are no stipulations whatever on the nature of the boundary 

slope function. The stipulation on the F and G functions have already been dis

cussed. 

Now that we have constructively arrived at a general expression for sur

faces that have a prescribed boundary vector and a prescribed boundary slope 

vector, it might be interesting to apply a proof to a conjectured higher order 

surface equation in which not only boundaries, boundary slopes, but also 

, boundary second derivatives are vector quantities under control. 

We postulate, therefore, that by analogy the surface equation is 

uw=- [-1 F
0
u F

1
u o0u G1u H0u H

1
u) 

0 uo ul uo ul uO ul 
w w WW WW 

Ow 00 01 00 01 00 01 
w w uww WW 

lw 10 11 10 11 10 llww w w WW 

X Ow 00 01 00 01 00 01 
u u u uw uw uww uww 

lw 10 11 10 11 10 11 
u u u uw uw uww uww 

Ow 00 01 00 01 00 01 
uu uu uu uuw uuw uuww uuww 

lw 10 11 10 11 10 11 
uu uu uu uuw uuw uuww uuww 

-1 

It represents a surface patch whose vectors of coordinates, slope, and curva

ture as well , are everywhere arbitrary along its boundaries. The first column 

and first row of the 7 x 7 matrix represent these boundary conditions; the re

mainder of the matrix is redundant, since the quantities this partition contains 

must all come from the column and row by differentiation. 

We can test this equation by seeing whether it contains a boundary curve. 

To this end, set u = O, so that we check whether it contains the boundary (Ow). 

We obtain, invoking the stipulations on the F, G, and H functions, 
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Ow= - [-1 1 0 0 0 0 o] 

0 00 01 00 01 00 01 -1 
w w WW WW 

Ow 00 01 00 01 00 01 F
0

w 
w w WW WW 

F w 
1 

X G
0

w 

G
1
w, 

H w 
Q I 

H
1

w j 
In the boundary matrix we have omitted irrelevant terms, because of the 

zero's in the pre-multiplying vector. We obtain, by performing the multipli

cation, 

Ow= - [ Ow 0 0 0 0 0 o] 
- J 1 
F

0
w 

F
1

w 

G
0

w 

G
1

w 

!low 

H
1
w 

-0 Ow, which is the hoped-for identity. 

We can next try to see whether the equation also conforms to the boundary 

second derivative conditions. It will be more convenient in what follows to 

introduce some abbreviated notation. 

Set 

and a similar expression for [fw]. 
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Set the 7 x 7 boundary condition matrix equal to [ a] . 

With these abbreviations, the surface equation is 

uw = - [iu] T 

We differentiate with respect to u: 

and again: 

We wish to investigate the right hand side of this equation for u = O, that is, 

for uw = Ow • The blending function vector and its derivatives become uu uu 

[;:~ 
= [o 0 0 0 0 1 ~ 
= [o 0 0 1 0 0 

:J [fO] = [-1 1 0 0 0 0 

As for the first and second partial derivatives of the [a) matrix, all 

elements of [au] and [ Buu] vanish except for those in the top row. 

Then 

[f"o) [a) 

2 [f•o) [aj 

= [ow 00 01 
uu uu uu 

= [ the null vector] 

The sum of these vectors is evidently 

Finally, 

[ow o o o o o o] 
uu 

Ow 
uu [0wuu 0 0 

= Ow uu , as expected. 

0 0 

00 uuw 
01 

uuw 
00 

uuww 

0 o) [fw]T 

01 ] uuww 
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We have shown that the extended surface equation satisfies the second 

derivative boundary conditions. In a similar way it can be shown to satisfy the 

first derivative boundary conditions, but this was skipped in favor of the proof 

for the higher derivative, since the procedure exhibits a few i~teresting points. 

By analogy we could construct matrix products to represent surfaces 

which satisfy even higher derivative conditions across boundaries. 

3,5 BOUNDARY CURVES 

It is often convenient to use particular boundary curve functions defined 

by the curve end-points and end-point tangent vectors. We can use the blending 

functions themselves to define such curves. For example, the uO boundary 

curve can be described by the equation 

uo = [F
0
u F

1
u G

0
u G

1
u] 00 

10 

00 
u 

10 
u 

where the column vector contains the end-point information. We observe that 

the row vector becomes [ 1 O O O] when u = O; it becomes [ O 1 O O] , 

when u = 1. Again, if we take derivatives of this row vector With respect to u 

we obtain [ F O 'u F 1 'u Cb •u G
1 

'u] and this becomes [ O O 1 O] for u = O, 

and it becomes [ O O O 1] for u = 1, 

With this behavior of the row vector, it is easy to see that the equation 

does indeed represent a curve satisfying the end-point conditions. 

The matrix form of the surface equation has been shown to be 

uw =- rl F0u F1u G0u G1u] 0 uO ul uo ul -1 w w 

Ow 00 01 00 01 F
0
w 

w w 

Ow 00 01 00 01 G
0
w 

u u u uw uw 

lw 10 11 10 11 G
1
w 

u u u uw uw 
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Now when. in computing uw, we perform the matrix multiplicatir 1n from 

the left. we have for thE' second cn]umn 

[-1 F u F u G u G
1

u] 
0 1 0 

r 
'uO 

Oil 

10 

00 

111 

ll 

~ -uO [F u F u C u C u] 
0 l 'o ,l J 

011 
l1 

10 
u 

-ull-u0-0, 

?\'ow if sim..ilarlr ul, uO and ul arc functions of the same kind, their 
w w 

correspcncling column products vanish just as in the case of uO. According-Iv, 

the resulting product oI the three matrices has the form 

uw 0 (I ili -1 

F w 
u 

F w 
l 

c
0

w 

G ,v ! 
l _) 

-- !'. 

where P is the product of the row vector and the first column of the mat ri.,, or 

p - [-1 Fu Fu G ll G u1 
0 l O l J 

[ow -i 
! lw ! 
I 

i Ow 
I u 

l lwu" 
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If again the elements of the column vector, Ow, lw, Ow and lw are u u 
likewise functions described as outlined, we can write typically 

Ow = I oo 01 00 01 WI 
F

0w1 w 

F
1
w 

a0wj 
G1w 

For the complete column vector we have 

Ow = 00 01 00 01 F
0
w 

w w 

lw 10 11 10 11 F
1
w 

w w 

Ow 0-0 01 00 01 G0w u u u uw uw 

lw 10 11 10 11 G
1
w 

u u u uw uw 

When we substitute this result for the column vector, we obtain the surface 

equation 

uw = [ F0u F
1
u G

0
u G

1
u] 00 01 00 01 F

0
w 

w w 

10 11 10 11 F
1
w 

w w 

00 01 00 01 G
0
w 

u u uw uw 

10 11 10 11 G
1
w 

u u uw uw 

This is a particularly convenient form for computation. The 4 x 4 

matrix contains nothing but information about the corner coordinates, corner 

slopes, and corner twists; all entries are constants, and the partitions of the 

matrix systematically group these quantities. The leading row vector and 

the trailing column vector are transposes of one another, (but with different 

arguments, of course.) 

We shall refer to the 4 x 4 matrix as the "boundary condition" matrix, 

and shall assign to it the symbol B, so that the matric equation for the surface 

could be written 
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uw 

It must be remembered that each of the entries in B is a three-vector, 

whose components are x, y, and z coordinates and slopes and twists. This 

means that B is really a tensor. 

3. 6 BLENDING FUNCTIONS 

We can relate the blending function vector to a so-called basis vector 

in the following way. Let [ u
1 

u
2 

u
3 

u
4 

J be a vector whose elements are a set 

of linearly independent functions of the variable u. Then we can postulate 

the existence of a matrix M such that 

To evaluate the M matrix, we substitute u = 0, u = 1 on both left and right 

hand sides of the equation. Then we take derivatives of both sides, and 

again substitute u = O and u = 1. There results 

F
0

0 F
1
o G

0
0 G

1
0 01 02 03 04 

F
0

1 F
1

1 G
0

1 G
1

1 11 12 13 14 
M. 

FOO F'O 
1 

G'O 
0 

G' O 
1 

O' 
1 

O' 
2 

O' 
3 

O' 
4 

F01 Fil °ol Gil l' 
1 

1' 
2 

l' 
3 

l' 
4 

The matrix on the left is the identity matrix 

[l 

0 0 r-1 0 

0 1 

0 0 

31 
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of the stipulations on the blending functions and their derivatives. From this, 

we conclude that 
01 02 03 04 

-1 
11 12 13 14 

M = 
0' 0' 0' 0' 
1 2 3 4 

l' 
1 

l' 
2 

l' 
3 

l' 
4 

and we need only find the inverse of this matrix (if possible) to obtain M. 

(In the matrix, the notation 12 means d(u
2

) I typically.) 

du u=l 

In the next section we shall for the first time be specific about the 

basis vector [ u
1 

u
2 

u
3 

u
4 

J, but it is interesting and important to realize 

that so far in the discussion nothing has been said to diminish the generality 

of the mathematical structure. It is hoped that the reader will not lose 

sight of the fact that the surface equations in their several forms can be 

implemented in many ways. We propose to develop one such implementation 

in detail, but it is only 011e of many. 

3, 7 CUBIC BASIS VECTOR 

Let the basis vector be 

3 2 
[ u

1 
u2 u3 u4 J = [ u u u 1 J • 

The vector on the right contains four specifically chosen linearly independent 

functions of u, the powers of u, and when multiplied by a coefficient vector 

yields cubic polynomials: 

3 2 
[ u u u 1 l 

rn 
= Au

3 
+ Bu

2 
+ Cu + D, 
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By the reasoning of the last section, we have for this vector basis, 

from which we can obtain the desired inverse 

M = 

Now we can write 

We shall abbreviate the notation for the basis vector in what follows. We 

shall write 

[ u
3 

u
2 

u l] = U 

and [w
3 

w
2 

w l] .= w. 

The matrice surface equation 

now becomes, simply and compactly, 

uw = U M B Mt Wt. "(Superscript t means transpose. ) 

If U and W are cubic basis vectors, then the surface patch is the so-called 

bi-cubic surface. Such surfaces are very easy to compute, particularly 

since the basis vector is so easy to evaluate. In passing it is important to 

remark that the above compact surface equation is not limited to cubics; 

33 
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U and W are not restricted to cubic basis vectors, and M is simply the matrix 

that generates the appropriate set of blending functions. Among other pos

sibilities, U and W might be higher order polynomial basis vectors; or they 

might be any set of linearly independent functions. Provided the associated 
-1 

M matrix has an inverse, these basis vectors are acceptable. 

We can write, for w held fixed, an expression for a u - varying curve 

on the surface: 

where A is a column vector of constant coefficients. We can write a simi

lar expression for u held fixed and w varying. The matrix product MBMt 

is the same in either case. This suggests that for any surface patch this 

product should be evaluated first; thereafter, we can either obtain u-varying, 

w-constant curves or w-varying, u-constant curves in an obvious way. 

We shall investigate another basis vector that is composed of another 

set of linearly independent functions (not powers of u) in a later article. 

3, 8 DIFFERENCE EQUATIONS 

If the basis vectors are polynomial bases, we can invoke the techniques 

of finite differences to calculate points on the surface patch. 

Consider the matrix 

L = 

[f 
0 0 

~] 1 0 

1 1 

1 1 

Then 

[~] [ . l L = a+b 

a+b+c 

a+b+c+d 

If a, b, c, d are respectively third, second, first and zero-order differences 
3 of the cubic n , then the column matrix on the right of the equation represents 
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the corresponding differences for the cubic (n + 1)
3

. 

(n + k) 
3 

are given by 

The differences for 

a 
where L k means k successive 

b 

C 

d 
j 

multiplications by the L matrLx. 

When n = 0, we can easily find that 

Using this, 

al 

r 6 b' -6 

1 C 

dj 
I 

0 L 

k 
[ 0001] L 

for cubics. 

0 

In this expression, the vector [ O O O 1 ] serves to select the bottom element 

of the resulting column vector after k multiplications by L. 

By extension, we can write the more complete statement 

3 2 Lk 

l-! 

0 0 [ k k k 1] = [ o o o 1 l 0 

2 0 0 

-1 1 0 

0 0 1 

We shall call the [ 0 0 O l] vector l; and we shall call the 4 x 4 matrix K, 

so that 

3 2 
[ k k k 1] 1 Lk N. 
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Now let the usual parametric variable u be represented by u = k8 , where 

k = O, 1, 2 •••• and where 8 is an increment size. Then 

3 2 3 2 
[u u u l] = [k k k 1] 

Call this last square matrix /J. • Then 

U= lLkN/J.. 

This expression states that we may step along the u parameter, in 8 incre

ments, by succeSBive multiplications by the L matrix, and thus evaluate 

the U vector at taese steps. In order for u to go from O to 1, k must start 

at O and go to T , since k 8 = 1. 

We can also write, for the W parameter 

W = 1 Lk Nl::,. 

The surface equation in difference form can now be written out in 

full: 

uw = 1 Lj N t::,. M B Mt t::,. t Nt L tk It. 

Call the partial product N t:, M B Mt t::,. t J = s
00

, a square 4 x 4 matrix. 

Then L s
00 

= s
10 

a new square matrix, 

and 
Lj s00 = SjO' after j multiplications. 

We remember that for any column of s
00 

the multiplication by Lis a process 

of cumulative addition, as shown by 

[
a l a+b 

a+b+c 

a+b+c+d 
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We can write in general that 

t 
L sjk L = sj + 1, k + 1 

where the new square matrix is obtained from the old by cumulative addition 

37 

of column elements, followed by cumulative addition of row elements. These 

operations are furthermore commutative, which means that we obtain the same 

result if we first add row elements and then afterward add column elements: 

We have, finally, that at u = 0, w = 0 

the surface equation is 

t 
00 = 1 s

00 
1 and in general 

uw = 1 Sjk 1 t where u = j8, w = k8, and sjk has been formed 

from s
00 

by j column additions and k row additions. 

This obviously furnishes an extremely simple way to generate discrete points 

on a surface patch. The pre-multiplier l has the effect of selecting the bottom 
t 

row of Sjk and similarly the post-multiplier l has the effect of selecting the 

last column of Sjk" The bottom right hand corner element of Sjk is the value 

of the coordinate for a point on the surface, at u = j 8 , w = k 8 . 

Consider 1 SjO" This represents the row vector obtained after j cumula

tive addition operations have been performed on the columns of s
00

. The 

right hand element of this vector is the value of the coordinate at u = j8, 

w = 0. We can hold u fixed and step out successive values of the coordinate 

for w - varying, simply by cumulative addition on this row vector alone. In 

this case, the resulting right hand element is the marching coordinate value. 

An analogous remark can be made for the product s
0
k 1 T_ This is a 

column vector, and successive cumulative additions of its elements marches 

out values of the surface coordinate for w = kO fixed, and u varying. 

Although the arithmetic of the foregoing difference method is very 

attractive, it possesses certain drawbacks that must be made explicit. The 

coordinate values are precise if and only if no truncation error whatever is 

allowed in the arithmetic. Error is cumulative, and the least departure from 
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a precise number at the start will rapidly propagate, In the 6matrix there 

are numbers of 8 3 magnitude; for 100 calculated points along a curve, this 

calls for 6 decimal digits, all exact, or 18 binary bits, For display purposes, 

100 points along a curve are adequate, but for engineering purposes this 

information is too sparse. To calculate intermediate points, the t. matrices 

need to be changed and the S matrix recalculated. Furthermore, it is clear 

that we sooa reach an upper limit on the number of available bits in the 

computer word, becasue of the rapid growth of 83
• 

We can of course use the difference technique to calculate coefficients 

for a cubic and then calculate points using them. For consider 

uw = U M B MT t:l NT L Tk ?. 
In this, the partial prodaict M B MT t. T NT L Tk represents a square 

matrix whose last column consists of the coefficients for the cubic at fixed 

w = k 8 , with u varying: If ~ is this square matrix, 

=-u~1T.u [~ 

The cubic can be generated by digital methods for any u,. or it could be 

generated quite easily by analog differential analyses hardware. The inte

grators of the' analog differential analyses are loaded from the values of the 

column coefficient vector, and it is then unclamped and allowed to generate 

the curve. Meanwhile the dilital machine can perform a cumulative addition 

on the rows of f\ to yield 5it + 
1

• The last column of this new matrix then 

contains the new coefficients for the curve of w = (k + 1) 8, ready to be 

loaded iJlto the integrators. 

Rec:ient developments in hardware, particularly a hybrid digital-analog 

multiplying device, may m.llke it possible to generate surfaces for display 

directly from the indicial forms of the equation, or from the matrix form 

uw =UM B MT WW 

without the necessity for recourse to this last difference technique. It is 

however interesting to know that the method exists. 
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SECTION IV 

HYPERSURFACES - HIGHER DIMENSIONS 

We can readily extend the surface equation to describe hyper-surfaces 

immersed In hyper-space. For this purpose we shall introduce a sllght variant 

on our notation. We shall write typically 

~ = F.u. i = O or 1. 
l l 

This will be a standard replacement for the blending function notation. The 

stipulations on the F. are as before, so that if u = a, a= 0 or 1, we can write 
l 

a = 0 when a f i 

a = 1 when a = i. 
i 

For slope continuity across boundaries, typically 

~• = 0 where this symbol means the first derivative of the biending 
l 

function with the argument = a. 

For higher order continuity across boundaries, the additional stipulations 

on the blending fucntlons are the same as for ordinary surfaces with two degrees 

of freedom and have already been discussed. 

The general surface equation for hyper-space is, in indicial form, 

(uvw • • • ) = (ujk • 
vw 

• ) j k .•• 

+ (ivk. 
uw 

• ) i k • 

+ (ijw. 
UV 

. ) i j • 

+ •••• 

- (N-1) (ijk • 
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In this equation, N is the number of independent parameters in (u v w ... ); it is 

the number of degrees of freedom of a point on the hyper-surface. The indices 

i, j, k etc. can take on only the values O or 1. 

Let us proceed to prove that this surface contains a boundary, say for 

example the boundary (u O O •.• ). We hope that the following equality holds: 

0 0 
(u O O . . . ) = (u j k . . . ) j k . 

u 0 
+ (i O k ... ) i k . 

u 0 
-'- (i j O ••• ) i j • 

+ 

u O 0 
- (N-1) (i j k ... ) i j k . 

The last term in this expression is non-vanishing if and only if all indices other 

than i are zero, i.e., j ~ 0, k = 0, etc. \Ve can accordingly rewrite this term 

as 

(N-1) (i 0 0 ... ) u_ 
1 

Next consider the second term on the right: 

u 0 
(i0k ... )ik" 

It is non-vanishing if and only if k = 0, etc. 

We can accordingly rewrite it as 

A similar consideration applies to 

u 0 
(i j O • • • ) i j 

u 
(i O O ••• ) i . 

which also becomes 
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There are evidently N-1 such terms, all identical, and they are removed by the 

last term. All that ls left is the term 

0 0 
(u j k ••. ) j k • 
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but since j = 0 and k = 0, we finally have (u O O ... ) on the right. This establishes 

the identify, and the surface equation has thus been shown to contain this boundary 

curve. It is trivial to show that the surface contains all boundaries, and is defined 

by them. 

We can also show that the hyper-surface contains boundary surfaces 

of lower order. We shall content ourselves with the case for N = 3, and show 

that it contains surfaces for N = 2 which are identical with our ordinary surfaces. 

We have 

(u v w) = (u j k) ; ; 

+ (i V k) ~: 

+ UV 
( i jw) i j 

-2(i"k)uvw 
J i j k 

Set v = O. Then substituting, and retaining only non-vanishing terms, 

(which means that j must be replaced by O whenever it occurs, and;=~= 1) 

w 
(u O w) = (u O l) k 

+(iOw)~ 



or 

(u Ow) 
w 

= (u Ok) k 

+ (i Ow)~ 
l 

uw 
- (i O k) i k . 

This is the two-degree-of-freedom surface 

\V . U . U \V 
(uw) = (uk) k -,- (1w) i -(1k) i k 

SECTIO'.\' I\. 

We shall next consider the slope vector of such a hyper-surface. \Ve take 

partial derivatives with respect to one of the variables, say u, and get 

V \V 
(u v w . • . ) u = (u j k . . . ) u j k 

u 1 w 
+ (i V k ... ) i k 

U 1 V 
- (i j w ... ) i j . 

U I V \V 
- (1\'-1) (i j k ..• ) i j k 

In this, set u = 0. 

V \V 
(0 \ w ) = (0 j k . . ) ... u . u j k. 

O' \\ 
- (i V k . . . ) i k 

O' V 
,- (i j w .•. ) i k 

O' V \V 
- (,';-1) (i j k ... ) i j k 
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or 

(0 v w • • • >u = (0 j k • • • ) u ;: • 

0' 
since all other terms vanish by virtue of i = 0. 
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This result is analogous to the one obtained for boundaries of ordinary 

surfaces; it says that the slope anywhere on a boundary is a function only of the 

slopes at the "ends" of the boundary, and are otherwise independent of the 

boundary shapes, Slope continuity across boundaries is a consequence. 

The hyper-surface equation just developed ls defined by ordinary curves, 

or single-degree-of freedom boundaries; we can also write a hyper-surface 

equation for N degrees of freedom, defined by boundaries with N-1 degrees of 

freedom. We shall exhibit the result for N = 3: 

(u v w) = (i v w) ~ 
1 

+ (u j w) ~ 
J 

w 
+ (u v k) k 

uw 
- (i v k) i k 

+ r . k> u v w 
lJ ijk. 

The proof that this space contains, for example, the boundary subspace 

(0 v w) follows the preceding proofs in principle and will not be carried out. 
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SECTION V 

SURFACE NORMAL VECTORS 

5. 1 GENERAL SLOPE CONTINUITY CRITERIA 

The surface normal vector furnishes a convenient mechanism for the in

vestigation of general criteria for continuity of surface slope acroas boundaries 

between surface patches. It will be seen that the continuity conditions already 

established are much stronger than are necessary, but that they are expedient. 

Put 

W = (x y zj w w 

for the tangent vectors of a surface patch at some point. Let us assume that 

another adjacent surface has a common boundary curve along u = constant, w 

varying, so that Wis common to both patches. Let the parameter for this second 

patch be v, and for its tangent vector put 

V = (xvyv zv] . 

w 

COMMON 
BOUNDARY 
CURVE 
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The two surfaces will be continuous in slope across the boundary at the point in 

question in case the three vectors U, W, and V are coplanar there. 

The surface normal vector for one surface is 

N =U xW. 

If V is perpendicular to N, 

V • N =0, 

But then in this case, the three vectors U, W and V are coplanar since they are 

all perpendicular to N. 

In detail, this gives 

N=UxW= [J J J] 
X y Z 

a vector whose components are the familiar Jacobians, and 

= [ xv yv zv] J xv yv z 
X V 

J Xu Yu z y u 

J xw Yw zw z 

0 

(This is the so-called "scalar triple product" of the vectors.) Thus the vanishing 

of the determinant of the matrix of the three tangent vectors is the general condi

tion for slope continuity between two patches, at any point on their common 

boundary. 

This equation also shows that we may have slope continuity of surfaces 

even though the curvilinear coordinates of the two surfaces are ~ slope -

continuous across the boundary. 

If the tangent vectors U and V are equal everywhere along the boundary 

curve, the determinant is sure to vanish; similarly if the tangent vectors U and 

V are scalar multiples of one another, even when the scalar multiplier is a 

variable quantity. 
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GENERAL CONSTRUCTION-TANGENT SURFACES 

y 

ul 

----------------------- X 

Suppose that a surface A already exists, defined by the parametric vector 

equation 

A= [x<¢ 8) y(rp 8) z(¢ 8 >·] 
Let a be a curve on the surface; it is always possible to write the vector equation 

for a in either of two forms: 

a(¢ ) = [ x( rp ) y( rp ) z( ¢ ) ] 

or 

a( 8 ) = [x( 8 ) y( 8 ) z( 0 ) ] 

Suppose we wish to attach a surface B to surface A, in such a way as to make 

curve a common to both surfaces, and suppose furthermore that we wish to 

maintain slope continuity across this mutual boundary. 

We shall consider curve a to be the boundary (Ow) of the B surface. We 

are at liberty to design, arbitrarily, a projection of the other three boundaries, 

(uO), (ul), and (lw), Say for example that we design these curves in the xy pro

jection. Then the curves represent the x and y components of their coordinate 

vectors. 
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We are now ready to obtain the missing z component of the tangent vector 

across (Ow). We first compute the surface normal to A along curve a. For this 

purpose we can use any one of the expressions 

(c/J 8)cp X (c/J 8)9 

or (4, 0 ) cp x a( 0 ) 0 

or a( cp ) ¢ x ( If, 8 ) 0 

Each expression yields a surface normal N; the three results are identical. 

We can evaluate this surface normal vector at any point on (Ow) since we have a 

correspondence between w and the variables ef., and 0 

We also have the equation 

(Ow) NT = 0. This is the familiar condition for surface slope 
u 

continuity. 

Let N = [ a b c) after evaluation at w. 

Then the equation becomes 

[x(Ow) y(OW) z(Ow) ] 
u u u 

=O 

We already have the x and y components of this equation, and can solve for the 

z component: 

z(Ow) = a x(Ow)u + b y(Ow)u . 
u 

-c 

This z component has a magnitude that ensures that the complete vector 

(Ow)u is coplanar with surface A at w. Hence (Ow)u is the desired tangent vector 

of surface B across (OW). 
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We next find the z tangent vector components z(OO) and z(Ol) from (Ow) , 
u u u 

and use them in the equation 

Here the 1 superscript indicates that this is an intermediate result; it is the 

intrinsic boundary tangent vector for the F-type surface, and does not yet match 

the z(Ow)u vector function obtained from the A surface. 

Accordingly, we must add to the F-type surface a G-type tangent vector 

correction surface, so as to make the combination have the desired slope along 

(Ow). 

This G-type correction surface is, as we have already shown, 

(uw)c = [ 1 G0u G1u] 0 uoc ulc 
1 w w 

Owe -ooc -Ole G0w 
u uw uw 

lw 
C -lOc -llc G

1
w 

u uw uw 

The superscript c indicates that this is a correction surface. 

Slope correction is necessary only along the boundary (Ow); we can enter 

the value for Ow c in the matrix, but the other entries must be looked at in detail. u 

We have, for the slope correction across (Ow), 

Owe = Ow - ow1 . 
u u u 

These latter two quantities have already been found for the z component, and so 

Ow c is known. 
u 

Consider lwc. This is at a free boundary, (lw), remote from (Ow), and u 
C C 

we can set it equal to o. Then 10 and 11 are both zero also. On the other 
u u 

hand uOc and ulc are connected to (Ow) at (00) and (01) and so we must specify 
w w 

them in such a way as to satisfy the conditions at these points. Elsewhere, they 

too are arbitrary. 
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We write the G function expression: 

(uw) = [ 1 G
0

u G
1
u] 0 

I 

uO 
w 

Ow -00 
u uw 

0 0 

(we omit the c super-script temporarily. ) 

Performing the first multiplication, we have 

(uw) = [ OwuG0u I uow -oouwG0u 

I 
i / 

ul 
w 

-01 
uw 

0 

1 

Consider the element uO - 00 G u in the row vector. Since uO is 
W uw O W 

arbitrary, it would be convenient to choose it so as to make the entire vector 

element vanish. We therefore write 

uO 00 uw Gou. w 

Then 00 = 0 as it should, and 
w 

since uo 
I 

WU 
=00UW Gou, 

00 = 00 as it should. 
WU uw 

Similarly, we may set 

The result of these choices of uo and ul is to reduce the G equation to 
w w 

This represents the correction surface z component which must be added to the 

51 

z component of the F surface in order to obtain slope continuity along (Ow) between 

the given A surface and the designed B surface. 
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5, 2 ADJACENT-PATCH SLOPE CONTINUITY 

It la sometimes desirable to define the boundary curves for two adjacent 

patches so that at the junction between the curves the tangent vectors have the 

same direction but are of different magnitudes. This ls particularly useful when 

the boundary curves are parametric cubics, because then the magnitudes of the 

tangent-vectors at the end points control the behavior of the curve segment. 

Ow 

uO 

00 

As a specific case, consider the boundary (OW) common to two patches; let 

the tangent vectors at (00) and (01) for the first patch be OOq:, and 01 q:, , and let 

the tangent vectors for the next patch be 00 and 01 
u u. 

If the tangent vectors have the same direction, they are scalar multiples of one 

another, 

or 

and 

00 u 

01 
u 

=- m 00 q:i 

Suppose that the patch ('P w) already exists. We need to obtain an appropriate 

expression for (uw) so as to match surface slopes across (Ow). By the results 

of the preceeding article, we can accomplish this in very general ways, but in 

our present case let us make a special requirement on the tangent vectors: let 

us assume that everywhere across (OW) the tangent vectors have the same 

direction, and differ only in magnitude. Then for any w, 

Ow = 
u 
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where A is a scalar. We know that A takes the value m at w =O, and takes the 

value n at w =-1, and we conclude that A therefore must be a scalar function 

of w. 

With this relationship between (Owu) and (Owq) the vector cross product is 

always the null vector: 

(Ow)u x (Ow>cp = [ o o o) 

Hence the scalar triple product of (Ow)u, (Ow)</>, and (Ow)w vanishes for any 

(Ow) • This ensures that the two surfaces will be continuous in slope across 
w 

(Ow) for !!!l'_ shape of (Ow) and for!& A = A (w) that has the proper behavior 

atw=O andw=l. 

We could for example take 

A(w) = m(l-w) + nw. 

This is a linear variation of A with respect tow. It has one disadvantage, 

however, in that it introduces un-wanfed cross derivatives or twists at (00) 

and (01). In order to avoid this, we might use 

A (w) = m F 
O

w + n F 
1 
w. 

Then the required slope function across (Ow) for the (uw) patch is 

Owu = (m F
0
w + n F

1
w) Ow</>. 

We can check to find the cross derivatives introduced by this relationship. 

The cross-derivative is obtained by differentiating with respect to w, and 

yields 

At (00), 

Owuw (m Fow + n Flw) Ow</> 

+ (mF0w + nF
1
w) Ow¢w· 

00 = m 00 
uw <j,w 

and at (01), 01 = n Ow..4- . 
uw 't'w 
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This shows that the A function does not introduce additional twists at the 

corners of the patch, beyond, of course, those already inherent in the (¢w) 

surface. 

If the (uw) surface already exists, defined perhaps by an F-type equation, 
1 

its intrinsic tangent vector across (Ow) is a known function of (Ow), say Ow u' 

where the 1 superscript indicates that it is an intermediate result. Then, 

as before, the correction of slope is 

Owe = Ow - ow
1

• The correction surface 
u u u 

is 
C C 

(uw) = Owu G
0

u. 

When this correction surface is added to the original surface, the combination 

will be continuous in slope with the (t/Jw) surface across (Ow). The u and ¢ 

curvilinear coordinates of the two patches will be continuous in slope across 

(Ow), but their tangent vectors will be different in magnitude. 

5. 3 APPLICATIONS 

Let dU represent a differential vector, so that 

dU = [ dx dy dz] , in which 

dx ox d ox 
= - u + 0-; dw. au 

dy =~du 
oi 

+ ow dw. 

a z a z dz = au du+ Owdw. 

If dU is tangent to au-varying, w-fixed curve, these become 

dx 

dy 

~du = x du 
du u 

y du. 
u 

dz = z du, since dw = O. 
u 

Hence dU = [x y z ] du. 
u u u 
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Similarly, if dW is a differential vector tangent to a w-varying, u-fixed 

curve, 

dW = [ x y z ) dw. w w w 

The normal differential vector at a point of the surface will be given by 

the vector cross product: 

dn = dU x dW 

Z X 
u u 

Z X 
w w 

The determinants that comprise·the elements of the vector are the 

jabobians J x' J and J so that we may write 
y z 

dn = [J J J ) du dw. 
X y Z 

The magnitude of dn is equal to the differential area of the elemental parallelo

gram described by dU and dW. This magnitude is 

ldn I =~ (or ✓ [c1n] [dn] T) 

dudw ✓J2 +J2 +J2. 
X y z 

From this, we can construct an algorithm for finding surface areas of patches; 

we simply perform numerical integration of the expression 

A = f l ( 1 
, ./ J 2 + J 2 + J 2 du dw. 

0 0 X y Z 

Again, if N is the unit normal vector to the surface at a point, then 

dn N j dnj, from which 

N 
dn 

Fl 
J J J 
~ J.. z 
s s s 

where s = ✓J 2 + J ? + Jz2. 
X y-
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J J J The quantities ~, .J_, z are the coordinate components a, b and c 
s s s 

of the surface normal. 

If the surface is to be manufactured by milling with a ball-end cutter of 

radius R, then the cutter-center vector [ x y z ] is related to the surface 
C C C 

vector [ x y z] by the simple expression 

[xc ye zc] = [ x y z] + R [ab c] • 

This describes a "parallel" surface spaced a distance R away from the 

designed surface. 

The normal vector can also be used to calculate volumes enclosed by 

surface patches and planes, as follows. 

Suppose we wish to calculate the volume contain~d between a surface 

patch and the xz plane. 

y 

dA 
y 

y 

______ __. ____ .__..._ __ __. __ XZ plane 

We can imagine the volume broken up into a number of slender prisms 

whose axes arc all parallel to the y axiS (and perpendicular to the xz plane.) 

The area of the base of 'one of these prisms is the projection of the small 

element of surface area, or 

dA = J du dw. 
y y 



The n,lLune of tl1is p1·ism is 

j dud\\. 
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SECTION VI 

CORNER TWJST VECTORS 

6.1 THE QUASI-SPHERE 

It is possible to choose a parametric cubic that very nearly approximates 

a circle for one quadrant. We shall go into detail about this shortly; intuition 

suggests that similarly we ought to be able to construct an approximation of an 

octant of a sphere by means of a bicubic surface, bounded by these approxi

mations to circles. 

For the circle approximation, let us assume that we will be content to 

make the quasi-circle pass through a point on the true circle at u = 1/2. (This 

is not the best possible approximation, but it yields quite good results and the 

arithmetic is simple.) 

y 

a 

u = 1 ______ _,. __ ...,_ X 

-a 

We have 

We shall assume a circle of unit 

radius, centered at the origin, with 

end-point values of the parameter u 

as shown. The tangent vectors are 

symmetric, but have yet undefined 

magnitudes . 

Where the column vector on the 

right represents the end conditions 

for the curve. 
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When u = 1/2, this becomes 

1 
X = 

8 
2 -2 1 

-3 3 -2 

0 0 l 

l 0 0 

1 

8 

r-2 a j 3 - 2a 

a 

0 

1 

8 ( - 2 + a + 6 - 4a , 4a) 
l 
8 (4 + a) 

SECTION VI 

-; i 0 

l 

a 

0 

✓2 
a= 8 x - 4. But at u = 1/2, x = ~

2
- since it is a point on the circle 

7r 
(by symmetry, at 4 ). 

Hence a = 4 (✓2 - 1). This is the required magnitude of the two tangent 

vectors at u ~- 0 and u = 1. (Calculation reveals that the quasi-circle has a 

radius of about 1. 00016 at u ,. 1/3 (at.:!:. or 30°) so it is a good approximation.) 
6 

We now establish a coordinate system for the sphere, and show its 

boundary curves. 

z 

y 

u0 = degenerate curve 
boundary 

X 
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The boundary curves Ow, 1 w, and ul are all unit circles; the boundary uO 

however is a degenerate circle, and appears as a point. 

We shall first investigate the z component of the uw surface vector 

z(uw) = [F 
0

u Fu G u G1 u] 00 01 00 
1 0 w 

10 11 10 
w 

00 01 00 
u u uw 

10 11 10 
u u uw 

[F 0u F u Gu G1 u] 1 0 0 

-e 1 1 0 

1 0 0 -a 

0 0 0 Q! 
j 

0 0 0 oJ 

When we perform the first multiplication, we obtain 

z (uw) = [F 
O

u ~ F 
1 

u j 0 

1, by virtue of the clefinition of the F functions. 

Hence 

z(uw) [1 0 0 - a] F w 
0 

F w 
1 

G
0

w 

G
1

w 

F 
0

w - a G
1

w. 

01 

11 

01 

11 

w 

w 

uw 

U\V 

F w 
0 

F
1

w 

G
0

w 

G w 
l 

Gw 
0 

Gw 
1 

IF ow 
I Flw 

l",w 
G

1
w 



SECTIO~ VI 

The curvilinear coordinates for w constant thus :,ield constant z; this implies 

that z is independent of the other variable u. and thew curves are plane curn·s. 

They must of course be quasi -circles. 

We have obtained the value of the number a by investigating a unit circle. 

For a circle of radius r, the tangent vector magnitudes must be proportional to 

r, or equal to ra. We can find these radii for various values of w from either 

the quasi-circle :,(Ow) or x(lw). 

We have 

X ( 1 w) = [] 0 11 

and 

y(Ow) 

in c•ither case, 

r(Ow) [o 

l O 11 
\V \VJ 

00 01 ] 
\\" \\" 

a O] F w 
() 

f \V 

l 

G \\' 
0 

G \\" 
1 

F \\" 
0 

F w 
1 

Gw 
0 

Gw 
1 

F w 
0 

f w 
1 

G w 
1 
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For w fixed, the x and y coordinates of a quasi-circle arc given by 

X = [ F 
0

u F
1

u c
0

u G1u] 

l; J 

and 

y [ F 
0

u F u Gu G1 u] 

l_i, 
1 0 

where r is a function of w, shown above. 

I3ut 

() 0 0 0 0 rF0'''1 
r 0 a l) Fi\· , 

l 

ar 0 a a 
:.' 

() G \\' 
() 

0 0 0 0 0 Gw 
l 

and 

r 0 a 0 F \\' 
() 

() 0 () 0 0 F w 
l 

() 0 0 0 0 G w 
0 ' 

:.' 
Gl \\' j 0 -a -a 0 

We obtain these last results by simply writing rows in the -Ix -I matrix that 

correspond to elements in the vector of the left side. \\11en \\·e combine 

results, we have 
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x(uw) "'[F
0
u F 1u G0u G1u] 0 0 0 0 F

0
w 

0 1 a 0 F
1
w 

0 
2 

0 G
0
w a a 

0 0 0 0 G
1
w 

y(uw) = (F0u F 1u G
0
u G

1
u] 0 1 a 0 F

0
w 

0 0 0 0 F
1
w 

0 0 0 0 G
0
w 

0 
2 

0 G
1
w -a -a 

The equation for z(uw) has already been shown. 

The striking thing about the B matrix as it appears in these equations is 

that is has non-zero entries in the bottom right partition, 

that 

and 

uw 

[

00 

10 
uw 

01 J uw 

11 
uw 

2 
-a . 

By comparison, we see 

These are the cross-derivatives at the corners 00 and 10. All other cross 

derivatives vanish. We shall refer to these cross-derivatives as ''twists" of 

the surface; uw is the twist vector at a generalized point on the surface. 
uw 

6.2 THE EXACT SPHERE 

A bi--eubic surface cannot fit a sphere exactly, and it would be interesting 

to see whether by an appropriate choice of F and G functions other than cubics, 

an exact equation can be constructed. 
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The functions 

·) TT 
F u 

0 
cos 

2 
u 

and 

2 1T 
F u sin u 

1 2 

n!semble the cubic functions in shape: they satisfy the conditions 

as well as 

1 

F 0 
1 

F 1 ~ 0 
0 

0 

0 

We shall choose these functions. and determine appropriate G functions 

so that the equ:i.tion 

(u) ' (0) 

( l) 

(0) I 
u I 

(1) I 
u, 

represents an e,act circle, :ind not the approxim:1tion of the last section. 

\Ve alrcadv hJ.\'C the well-known parametric equations for a circle; 

x sin au 

y cos au where a 
1T 

2 

c;:; 
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y 

a 
u = 0 

u 
X 

We can compare the X equation with 

~ ? 
·) 

G1 u] x(u) - cos au sin au G
0

u 0 

1 

a 

0 

2 
sin au a G

0
u 

Then sin au 
2 

sin au + a G
0
u, whence 

_l_ :2 
G

0
u (sin au - sin au). 

a 

Again, 

[ ? 
2 7 

y cos au cos au sin au G
0

u Gu, 
1 J 

0 

0 

2 
cos au ~ cos au - a G

1
u 

whence 

:2 
G

1
u (cos au - cos au). 

a 
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\Ve can easih· \·erify that tl1L'sc G functions satisfy the same stipulations 

as the cubic G functions. 

G 
0 

0 G 1 
0 

\) 

C\O G
1 

I 0 

G
0

0 G
0

1 .. 0 

1 

G () -· 0 Gl 1 1. 
1 

If we nm1· use the same houndan· ,·a]uc matrices as 11·cre used in the 

prc\ious case of the quasi-sphere, \Jut with a 

the z component oi llll' surface \·cctor 

z(uw) F O \1· - a G 
1 

\1· • 

This is. with the nc11· F and G functions 

') •) 

TT throug;hout. we obtain for 
2 

z(uw) cos- :lll· - (cos- a11· - cos aw) 

li7 

.-\s IJeforc. this shm,·s tl1:1t the z coordinate of the surface is independent 

of u: the \1· cun·es arc plane et:n·es. and thev arc indeed circles. Their radii 

11 ] 
11· 

() 7 

F w - a G \1· 
1 0 

F \1· 
() 

F \1· 
I 

Go\'' i 

l GI WJ 

F 

F w 
1 

·) 

(sin aw - sin aw) 

or r ~ sin aw. 
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Then 

and 

x(uw) 

r(F 
1 
u + a G

0
u) = sin aw sin au, 

y(uw) 

<) 2 
= sin aw (cos- au - cos au - cos au) 

- sin aw cos au. 

The resulting parametric equations, when collected, are 

x ~ sin aw sin au 

y sin aw cos au 

z · cos aw 

and these are well-known. 

SECTION VI 

This demonstrates that the sphere is a special case of the general surface 

equation, provided the blending functions are suitably chosen. 

The F and G functions are by inspection, seen to be linear combinations of 

the linearly independent functions of u, 

[ cos
2 

au sin
2 

au cos au sin au], 

and this may be taken as an appropriate basis vector. Then 

. 2 2 
[cos au sin au cosau sinau] [ M] 
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where the !\I matrLx is, in this case, 

0 0 
a 

0 0 
a 

:\1 1 
0 0 0 

a 

0 0 
1 

0 
a 

Incidentally, its inverse is 

li 
0 0 

1 0 l 
-1 

!\I 
0 0 a 

0 -a 0 
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SECTION VIl 

RULED SURFACES 

The locus of straight lines connecting corresponding points on two curves 

(uO) and (ul) is a surface. The lines are called "rulings" of the surface. 

ul 

The equation for a generalized line of the surface is also the equation for 

the surface: 

(uw) = (ul)w - (uO)w + (uO). 

This is equivalent to 

(uw) = (ul)w + (uO) (1-w). 

From this equation we obtain the derivatives 

(uw)u (ul)uw + (uO)u (1-w) 

(uw)w (ul) - (uO) 

(uw)uw = (ul)u - (uO)u. 

7.1 DEVELOPABLE SURFACES 

A special case of such ruled surfaces is of importance and interest. If 

the ruled surface has the property of being tangent, along the rulings, to a 

moving plane which rolls around the surface, then it may be deformed by simple 

bending and flattened out into a plane. Such a process is called "development" 

of the surface. We call such surfaces "developables" or ''wrapped surfaces". 

(A sheet of paper can be wrapped around the two curves (uO) and (ul) to form 

the surface. These surfaces are also known as "convolutes".) 
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The tangent-plane condition can be established by showing that the tangent 

vector at a point on (uO), the tangent vector at a corresponding point on (ul), 

and the tangent vectors along the line joining these points, are all coplanar. We 

need to form the scalar triple product of these vectors, and show that it 

vanishes. 

The tangent vectors in question are (uO)u, (ul) , (uO) and (ul) . 
u w w 

First observe that, for a ruled surface, 

(uw) = (ul) - (uO). This tangent vector is independent of w, so 
w 

that (uO) = (ul) . Moreover, the vector is simply the line segment joining 
w w 

the two points, as might be expected. We can write, for the scalar triple 

product, 

(uO)u 

(ul)u 

(ul) - (uO) 

0 

where the notation represents the determinant of the matrix of the three (row) 

vectors. If the determinant vanishes for all values of u, the surface is 

developable. 

The preceding describes an analytical test to ensure that a ruled surface 

is developable. We shall now describe a construction that will enable us to 

define a ruled surface by means of two space curves. Suppose that the two 

space curves are defined by vector functions of two different parameters, 

u and cp 
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The scalar triple product is 

(uO) 
u 
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0 

If we consider u the independent variable, the equation enables us to find 

¢ for any value of u; this value of cp determines the point on (¢1) which corre

sponds to a point on (uO), so that the line joining these points is coplanar with 

the tangent to (cpl) and the tangent to (uO). We allow u to vary, and obtain 

related¢ values; these values of¢ enable us to evaluate the components of the 

vector (<pl). These components are the same as the components of the desired 

(ul) vector. 

Provided we remember that the (unspecified) functions of u and cp are 

different, the symbolism 

(ul) = (cpl), cp = <j, (u) 

represents the statement that the [ x y z ] vector is the same for both. 

With the correspondence established between points on the two curves, 

we can write the equation for the developable surface, 

(uw) = (ul)w + (uO) (1 - w). 

This is the ruled surface equation, but with a special relation.ship between 

curves (uO) and (ul). 

7.2 PLANE/SURFACE INTERSECTIONS 

The general surface equation can be cast in the form 

T 
uw = UBW where U and W are vector functions of u and w 

respectively, and where B is a square matrix describing the boundary curves. 

For example, we might be dealing with the first F-type surface equation, 

in which these vectors and the matrix are explicit: 
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Since uw is in reality a vector consisting of an x, a y and a z component, 

there are three B matrices which we can call B B B . 
X y Z 

We wish to find the intersection of this surface with the plane 

ax + by + cz + d = o. 
We can substitute x = UB WT, y = UB WT and z = UB WT into this equation, 

X y Z 

and write the result in the form 

U [aB + bB + cB ] WT + d = 0. 
X y Z 

It is permissible to interchange the order of multiplication from aU, bU, 

cu to Ua, Ub, Uc because ab and c are scalars. In this form, the sum 

bB + cB ] · = S, a square matrix function of u and w, and 
y z 

T 
USW = -d is an equation in the two variables u and w. If w is 

assigned a fixed value, there results an equation in u which when solved will 

yield a point on the intersection curve of the surface with the plane, (provided 

of coorse such a point exists for the chosen value of w.) 

If the surface in question is a bi-cubic, the matrix S is no longer a 

function of the variables u and w, but consists of constant elements. In this 

case the above procedure reduces to the solution of a series of cubic equations 

in u, where the coefficients of the cubics are determined by successive fixed 

values of w. 

In any case, if the spacing of the w values is close, the old value of u 

just previously determined for a particular choice of w can appropriately be 

used as a first trial solution for the new value of w. Algorithms for the 

improvement of this initial trial value of u are not difficult to construct, and 

will not be discussed in detail. 

If the plane is given by, say, the equation 

x + d = 0 

the solution procedure is unaltered. Not much simplification results. 
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RATIONAL POLYNOMIAL FUNCTIONS 

8.1 BOUNDARY CURVES AND BLENDING FUNCTIONS 

Two kinds of curves have for many years been traditionally used in air

plane lines design - cubic polynomials, and conics. Unfortunately, each of 

these curve forms for itself has certain drawbacks. In the parametric form, 

for ordinary cubics, the entire shape of a curve segment is governed by end 

tangent vectors. Sometimes these end tangent vectors lead to unwanted hooks 

and bulges in the curve segments. On the other hand, conics, although more 

benignly behaved, cannot by their very nature yield curves with points of 

inflection. Yet such curves very often exist in aircraft shapes - as for in

stance in the case of wing fillets. 

Because of these short-comings, a new curve type has been developed. 

It is based upon rational polynomial functions. It contains both conics and 

ordinary cubics as special cases, and provides a great degree of generality 

and flexibility. 

We start by establishing the form of this function. 

Let v be a vector, so that for example v = (X y z 1) or v = (x y 1) or 

v = (x l J. The first of these can be thought of as the vector (or matrix) of 

coordinates on a space curve; the second is the vector of coordinates for a 

plane curve, and the last is the vector of a single coordinate. Since this last 

vector yields the most general case, we shall begin with it, and show how one 

might evaluate a set of numbers in a matrix to define each of the parametric 

coordinates of a curve. 

The product of v and a variable scalar w is wv = (wx wJ. Here both 

wx and ware cubic functions of a parameter, v, and obviously 

X = 
wx 
w 

75 
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This is the ratio of two cubic polynomials (hence the term "rational func

tion"). We can represent the two cubic polynomials by the matric equation 

wv .. [u3 u2 u lJ A. 

Since wv -= (WX wJ , the matrix A must consist of four rows and two columns 

of constant coefficients. We now pi-oceed to show how these numbers may be 

found so as to define a coordinate of a curve. 

We shall be intereeted in the end-point coordinates of the curve at v = 0 

and v .. 1. Theae coardinatee are v0 = (Xo lJ and v1 = [x1 lJ respect

ively. A tangent vector anywhere on the curve is clearly 

v' = (X' OJ 

where the prime mark means differentiation with respect to the parameter v. 

The tangent vectors at v • 0 and v .. 1 are therefore v ' = [x ' OJ and 
0 0 

v 1' = [x1' OJ respectively. 

Now differentiate both sides of 

wv "' [u3 u2 u l J A 

(wv)' = ( 3u2 2u l OJ A. 

and obtain 

&lbstitution of u = O and u = 1 into these two expressions yields 

WO VO 0 0 0 1 

wl vl 1 1 1 1 
= A. 

(WO Vo>' 0 0 1 0 

(wl v1)' 3 2 l 0 
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The 4 x 4 matrix on the right haa an inverse, and we may write 

A = 

0 0 0 1 -l 

1 1 1 1 

0 0 1 0 

3 2 1 0 

2 -2 1 1 

-3 3 -2 -1 

0 0 1 0 

1 0 0 0 

The square matrix inverse ia constant and always the aame, and reappears in 

the algebra ao often that we shall henceforth call it the matrix M. 

The matrix equation can be factored and rewritten in the form 

A= M WO 0 0 0 VO 

0 wl 0 0 Vl 

w' 
0 

0 WO 0 v' 
0 

0 w' 
1 

0 wl v' 
1 

The right hand matrix of v's represents the desired end conditions on the 

curve. In our present case, it ia of course a 4 x 2 matrix. 

77 

The middle matrix is 4 x 4 and contains the four numbers [w0 w1 w0• w
1
'J. 

Any arbitrary set of four numbers inserted into this matrix will serve to define 

a unique pair of cubic functions of the parameter u, from which x can be found, 

by using, aa we have said, the ratio x = 

Instead of picking these four numbers arbitrarily, however, we shall 

impose further conditions on the curve until enough conditions are imposed 

to define [w0 w1 w0
1 w

1
11 uniquely. 
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We begin by introducing desired second derivative vectors at the end

points; these vectors are clearly 

VII 
0 

(Incidentally, in the case of vectors v' = (x' y' OJ, v" = [x" y" OJ if 
the determinant of the matrix [x' y'l vanishes, the curve will have a 

x" y•~ 
point of inflection at v. If the determinant is positive, the center of 
curvature will lie on the left as one proceeds along the curve; if the 
determinant is negative, the center of curvature lies on the right. If 
two curve segments have equal v' and v" at a junction, they are contin
uous both in slope and curvature at such a junction. ) 

When we take second derivatives of both sides of 

wv = [u3 u2 u 1) A, we obtain 

(wv)" = [6u 2 0 OJ A. 

At u O, this is 

wo' vo + wo vo' 

w1' vl + wl v1' 

But (w v )" = w " v + 2 w' v' + w
0 

v
0

11 and solving for w
0 

v
0

11
, 

0 0 0 0 0 0 
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Furthermore, since in general 

(wv)'' = [(wx)" w"], 

the quantity w" is the second component of the vector of (wv)" and therefore is 

associated with the last column of the matrix WO VO 

But the last components of v 
O 

and v 
1 

are both 1, and the last components of v 
O

' 

and v 
1

1 are both zero. Hence 

r
w 0 

w 
1 

lw' 
: 0 
I 
I \\' I 

L 1 

We now can write, by combining resultE: 

[-6 6 -4 -:2] 

Collecting, 

r

\\ 0 (VO - V 0) 

\\1 (v 1 - V 0) 

; \\' 0 I (V Q - V 0) + W Q V Q 

l w1' (vl - vo) + \\'1 vl 
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We now restore this last expreasion to matrix form: 

-4 VI 
0 

6 (v1 - v0) - 2 v1• 

SECTION vm 

In our present cue, the matrix on the right consists of a column of numbers 

lllld a column of zeros. Hence the column of zeros can be discarded, lllld the 

result is a 4 x 1 matrix. On the left, w O v O 
11 1111 a scalar. 

Silnilarly, we can find by analogous algebraic procedures that 

w V II = (W w w I w 'I 
11 0 1 0 1 6(v

0
-v

1
)+2v

0
• 

4 V1' 

-2v/ 

Then, writing a matrix equation, we have, so far, 

where [PI QJ represents a 4 x 2 matrix consisting of the separate 4 x 1 matrices 

for w0 v0
11 and w1 v1

11
, written side by side as columns. 

We now introduce another condition. Let it be required that the curve 
. 1 

pass through the point v = [x 1) when u = -
2

• (This value of u ts of 
C C 

course arbitrary.) 

This condition leads to 

V = ...L, [ 1 2 4 8) M 
C 8 

wo' vo + wo vo' 

w1' vl + wl v1' 
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By algebraic manipulations similar to the preceding, we can rearrange the 

equation to read 

4 V -V 1 

1 1 

81 

This is an equation in which v has two components, x and 1. The right hand 
C C 

matrix is a 4 x 2 . Call it the R matrix. Then we can adjoin these matrices, 

to obtain 

(wO vO
11 w1 v1

11 Svc] = (wO w1 wO• w
1

1 J ( PQ RJ. 

Now ( P Q R J represents a 4 x 4 matrix; P and Q are each 4 x 1 matrices, but 

Risa 4 x 2 matrix. We next transfer w
O 

v
O

11 and w
1 

v
1

11 to the right hand 

side, obtaining 

I PQ RJ- VII 
0 

0 

0 

0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

The right hand matrix is now a 4 x 4. Provided its determinant does not vanish, 

it has an inverse, and 

where Sis the 4 x 4 tnverse of the matrix. 

Now that [ w 
O 

w 
1 

w 
O
' and w 

1
' J have been evaluated, the curve is com

wv 
pletely defined, since the rational function - is completely defined. 

w 
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8. 2 PLANE CURVES 

With some loss of generality and flexibility, we can have v [ X y l], 

a plane curve. We shall next show that for an appropriate choice of 

[ w
0 

w
1 

w
0

• and w
1

1J, the curve reduces to a conic. 

We have the equation 

wv = [wx wy w) 

[ u3 u2 u l] A. 

In this case, A is a 4 x 3 matrix. Now if the top row of this matrix is 

[ O O O ] , the equation reduces to 

2 
WV== (U U l] A 

when the top row of A has been omitted. A is now a 3 x 3 matrix, and it is 

possible to show that this equation is a parametric form for the general conic, 

expressed as a quadratic rational function. 

For the top row of A, we have the vector equation 

[ 2 -2 1 l] 

Expanding: 

Collecting: 

wo' vo + wo vo' 

w1' vl + wl v1' 

= [O O OJ 

w
0 

(2v0 + v
0

1
) + w

1 
(-2v

1 
+ v

1
1

) + w
0

• (v
0

) + w
1

• (v
1

) 

In matrix form, 

[ 0 0 OJ rw w w' w'] 2v +v' 
0 1 0 1 0 0 

r o o o J 

[ o o o J 
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The matrix is a -1 x 3. 

Now we can adjoin a column to the matrix and an element to the vector, 

and write 

r o 0 0 WO l [W 
0 

w w I 

1 0 w1' l vo+vo' 1 

-2 V 1 + vl 0 

VQ 0 

V 
1 

0 

then 

I 
wl' ] r o 0 0 \\'o l I 1 

-1 
[ WO \\' \V 0 vo + vo 1 

-~ V + V 
1 1 

I 0 

VO 0 

V 
l 

0 

If the indicated inversE' exists, then a solution can be obtained in terms of w
0

. 

Furthermore, \\'o can be set equal to 1 arbitrarily. 

The matrix has an inverse in case the determinant 

V 
0 

V 
1 

f 0. 

As a test, construct a conic with end conditions 

V 
0 

0 0 1 

V 
1 

1 l 1 

V I 
0 

1 0 0 

I 

v' i 1 0 0 
1 L 
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2v
0

+v
0

1 [002]+[100] 1 0 2 

-2 v
1 

+ v
1 

[-2-2-2] +[100] -1 -2 -2 

VO 0 0 1 0 0 1 

vl 1 1 1 1 1 1 

We first test to see whether the determinant vanishes: 

-1 -2 -2 

0 0 1 

1 1 1 

will have an inverse. 

The matrix is 

then 

whence 

The conic equation is 

-1 -2 

1 1 

- 1. Hence the augmented matrix 

I_: _: _: :1 and its inverse is 

l
o 1 o 2j 

0 0 1 0 

1 1 1 0 _ 

[ o o o 1 J 

l
o 1 o 21 
0 -1 -1 -1 

0 0 1 0 j 
1 -1 -2 -2 

[ 1 -1 -2 -2 J. 

0 -1 -1 -1 

0 0 1 0 

1 -1 -2 -2 

wv = [ u3 u2 u l ] 

I 

') _') 1 1 11 o o ol lo o 11 -3 3 -2 -1 0 -1 0 0 1 1 1 

0 0 1 0 -2 0 1 0 1 0 0 

1 0 0 0 0 -2 -1 1 0 0 
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[:_:_:-:] [:: :] 
-2 0 1 0 1 0 0 

1 0 0 0 1 0 0 

= ( u3 u2 u 1 J 

[
_; _: :1 = [ u

2 

.ll l) r-:-~ _;] 
1 0 -2 0 0 1 

0 0 1 

= [ u3 u2 u 1 J 

[ wx wy w J = [ -2u2 + u 1-u 
2 

] -2u + 1] 

X U 

y = 
2 -u 

1 - 2u 

asymptote at 1 - 2X = 0, X = 

2 -x 
1 - 2x 
1 
2· 

• The curve is hyperbolic, with an 

It is always possible in all of the foregoing to set w O = 1. This is 

because all equations are homogeneous. It is never possible for w0 = O, 

since this leads to certain degenerate cases. 

We remark in passing that when 

[w0 w1 w0• w
1

1 J = [l 1 o OJ 

the equation reduces to the ordinary parametric cubic, given by 

v = [ u3 u2 u 1 J M v 0 

v' 
0 

V I 
1 

and w is constant and equal to 1. Hence the rational polynomial functions 

contain as special cases all conics, ordinary cubics, and of course therefore 

straight lines and circles. 
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Their use as boundary curves for surface patches is obvious. They 

maintain tangent vector continuity between adjacent patches; indeed, if the 

F O and F 
1 

functions are constructed as rational functions, we can establish 

the F 
1 

function 

2 • 
3u -3u+l 

This function has the end conditions 

VO 0 0 1 

VI 1 1 1 

V I 
0 "' 1 0 0 

v' 
1 1 0 0 

V II 
0 

0 0 0 

V tr 
1 

0 0 0 

Sincev0" = >..v0• = O"fl o OJ andv1" = >,.v
1

• = O [IO OJ, the 

curve has a point of inflection at u = O and u = 1. Hence its use insures 

curvature continuity across boundaries between patches, provided of course 

the boundary curves have similar curvature continuity at patch corners. 

The cure is symmetric. Furthermore, we can put 

and obtain directly the F 
O 

function, another cubic rational function, with 

similar properties to F 
1

. 

8. 3 AN EXAMPLE 

We shall work out the equation for the F 1 (u) blending function with the 

customary stipulations that 

F
1

(1) = 1, F
1

(0) = F
1

1(0) = F
1

'(1) = 0, 

and with the two additional stipulations that F 
1 

"(0) : F 
1 

"(l) Oas well. 
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This blending function will give both slope and curvature continuity across the 

common boundary between two contiguous patches. The end-conditions are, 

for v = [ F
0

(u) l J, 

VO 0 1 

V 
1 

1 1 

V I 0 0 
0 

V 
1 

I 0 () 

V 
0 

0 0 

V j 0 0 
1 _j 

The matrL'< [P Q Rl -

I> 
0 0 0 

V " 0 0 
1 

I o 0 0 0 

I 
l_o 0 0 0 

0 -6 0 4 7 

G 0 4 4 [ 

0 -~ 0 1 i 

-2 0 -1 -1 

obtained by direct substitution in the given form. 

Its im·ersc is 

l-: 

-1 0 -4 = s 

0 -4 0 

2 6 6 

:2 0 -6 0 
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Now set vc [ _)_ i] for symmetry. Then, since u = 
2 

[ WO wl w' 
0 w1' l [ 0 0 8 Ve] s 

[ o o 4 8 J 

r-: 
-1 0 

0 -4 

2 6 

2 0 -6 

= [ 8 8 -24 24]. 

Now if w 
O 

= 1, instead of 8, the equation becomes 

we have 

A M WO VO 

W V 
1 1 

WO' VO + w VI 
0 0 

w1' vl + W V 1 

1 1 

and substituting the values of [ w 
O 

w 
1 

w' 
0 

A = 

[ 2 

-2 1 1 

[; 
1 

-: 3 -2 -1 1 

0 1 0 -3 

1 0 0 0 3 

Finally, wv (wx w] 
3 2 

[ u u u 1 J 

(WX W] ( u3 I 3u2 - 3u + l] 

= 

[~ 
0 

3 

-3 

1 

1 

)j 0 

0 

0 

SECTION VIII 

1 -
2 ' 

-4 

0 

6 

0 
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Hence x wx 
=--.--.= 

w 

3 u 

3u
2 

- 3u + 1 
= F 

1 
(u) as required. The other 

F 
O 

function is 
3 

= 1 - u 
3u

2 
- 3u + 1 

3 2 
-u + 3u - Su + 1 

2 
3U -3u+l 

This is seen to be a rational cubic function also. 

8. 4 PLANE CURVE THROUGH A POINT 

The plane curve vector is v = [ x y l ] , wv = [ wx wy w J • Here 

the polynomial denominators in x = wx and y = :!!J.. are both the same. 
w w 

As before, the end conditions on the curve are contained in the 

matrix 

V I 
0 

V I 
1 

We wish to cause the curve to pass through some arbitrary point v 
C 

(commonly called a "shoulder point") and it will turn out that we shall also 

be free to choose some arbitrary slope at this point. It is important to 

distinguish between. the term "slope" and "tangent vector". The slope of a 

89 

curve implies that the direction of the tangent vector is known, but the magnitude 

of the vector is not under our control. 

We begin by assuming some value of the parameter u to correspond to 
1 

v c. For JX,trposes of illustration, let u = 2 at this point. 
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3 2 Then, from wv .. ( u u u 1 ) A, we write 

V 
C 

...!... I 1 2 4 8) M 
8 

SECTION VIII 

Observe that we have arbitrarily set w c = 1. This is harmless, since 

the equation la, u we have observed, homogeneous. 

By multiplying-the matrices, combining, and collecting terms as we 

have done before, we achieve the result 

4 V -V 1 
1 1 

Tbe matrix on the right is a 4 x 3 matrix; to make it square, so that it 

can have an inverse, we need an additional column. This column can be pro

vided by a scaler equation, and the slope relationship will furnish this equa

tion. 

We first find an expresalon for the tangent vector at v c· Differentiating, 

we obtain aa usual, 

(Wv)' [ 3u2 2u 1 OJ A 

w' 2 
= [3u 2u10) M 

w' 
0 

w' 
1 
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This last equation comes from the equation for (wv)' by an argument that 

we have used before; that since wv = [ wx wy w], (wv)' ~ [ (wx)' (wy)' w' ] . 

Hence w' corresponds to the last column of 1 W V 
I o o 

which is 

w 
1 

w' 
0 

Kow at vc' we have already set u = 

obtain, from 

wv' (wv)' - w'v 

v' 
C 

1 
4 

[ -G 6 -1 1 ] 

2 

i ~'1 vl 

(wo vo)' 

(wl v1)' 

We make this substitution, and 

\Vhen we perform the indicated multiplications, and then collect results 

and restore to matrb:: form, we have 

w' 
0 

1-G (v - v ) - v 
I O c 0 

! G (v ' ' l - V c) - \'l 

V - V 
C 0 

V - V 
C 1 
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We are now ready to introduce the slope condition. We could write 

t ,:., f, , but this would yield awkward results when the slope became very 

great and approached an infinite slope. Instead, we choose two numbers a 

and b so that u' .. by'. It is obvious that these numbers can very appropri

ately be a = sin 8 • b .. cos 8 where 8 is the slope qle. Then, for v c' 

I I 
O=by -ax 

C C 

This is a scalar equation. 

Now x' is the first component of v' , and y' is the second component 
C C C 

of v' • Hence these quantities correspond to the first and second columns of 
C 

the matrix in the equation for v' , respectively. We can write this out in 
C 

detail: 

-a -6(x0-xc) - x0
1 

6(xl -xc) - xl' 

X -X 
C 0 

X - X 
C 1 

b -6(yo -yc)-yo' 

6(yl - y c)-Yi' 

[ W W WI W 1 ] 
= 0 1 0 1 

where the brackets on the right enclose the resulting 4 x 1 matrix (or column 

vector). 

The factor 4 (of 4 v ') obviously drops out of the equation. 
C 
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We now adjoin this to the equation for v
0

• Again we can drop the 8 (from 

8 v 
0
), and obtain 

[ V
0 

0) = [wo wl w' w '] 4v
0

+v
0

1 p 
0 1 

4 v
1 

- v
1 

q 

VO r 

-vl s 

The vector on the left consists of four components: [ x
0 

y c 1 0 J; the 

matrix on the right is a 4 x 4 matrix. If it has an inverse, S, then we can 

solve for [ w
0 

w
1 

w
0

1 w
1
•) by the equation 

[w0 w1 w0
1 w/J = [v

0 
OJ s. 

These values of the w vector cause the curve to satisfy the desired 

conditions. 

8. 5 SECOND DERIVATIVE VECTORS 

We have already discussed rational functions for 

v = [ x 1 J (and of course [ y 1 ) and [ z 1 ) • ) 

In particular, we showed that curves based upon these functions can 

usually have arbitrary first and second derivative vectors at the end-points, 

and in addition can be caused to pass through some shoulder point v , also 
C 

arbitrarily chosen. 

When the vector v = ( x y 1 J , the complete generality of the resulting 

curves is somewhat curtailed. We shall investigate the conditions under which 

such a plane curve can satisfy end conditions including second derivatives. 

We have already obtained an expression for the vector 

[ w V " w V "l = [ w w w I w ' l [ p I Q ). 
00 11 0 1 0 1 

~fore, the vectors w0 v0
11 and w

1 
v

1
11 were actually scalars, since they came 

from v" = ( x" 0 J • But since v" = [ x" y" O ) , they are each 2-component 
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vectors, and their combination makes a 4-component vector. Similarly P and 

Q are now each a 4 x 2 matrix, and their combination is a 4 x 4 matrix. 

We carry w0 v0
11 and w

1 
v
1

11 across the equal sign. and obtain on the left 

the null vector: 

0 0 

0 0 

0 0 0 0 

The matrix on the right is 4 x 4. Now the condition that must hold, in 

order for there to be a solution for [ w 
O 

w 
1 

w 
O

' w 
1 

• J , is that this matrix 

must be sinlUlar; the determinant of this matrix must vanish. 

This last remark tells us that v0
11 and v1

11 ~ be chosen entirely 

arbitrarily, Howevtt, it is always possible to make the determinant of the 

matrix vanish by the adjustment of any one of the four components of v 
O

" and 

v 1
11

• Thus if one of the four components is the number a, we can expand the 

determirlant in such a way as to obtain the equation. 

k1 a + k2 = 0, from which a can be found. 

Suppose the matrix is, or has been caused to be, singular. Then, if 

[O O O OJ "'. [WO wl wo' w/J s, 

we make it non-singular by an appropriate modification. In some cases, this 

might consist in adding 1 to an element in the top row of S. As an illustration, 

we might have 

s + 

0 

0 

0 

0 

0 1 

0 0 

0 0 

0 0 
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It can be seen that this modification is still a valid equation; if the 

modified S matrix now has an inverse, we can immediately obtain it and solve 

for the w vector. 

As an illustration, consider the end conditions 

VO 0 0 1 

vl 1 1 1 

VI 
0 

1 0 0 
= 

v' 
1 

1 0 0 

V II 
0 

1 0 0 

V" 
1 

a 0 0 

We plan to adjust a in v 
1

11 until the matrix is singular, 

We require first the matrix [ P I Q J , which is given by 

6(v -v)-2v' 
1 0 1 

-2 V 1 

C 

-2 V 1 

1 

Substitution of the end conditions gives the 4 x 4 matrix: 

-4 0 

r 6 6J - r 2 oJ 

-2 0 

-2 -2 

[-6 -6J + [2 OJ 

4 0 

-2 -2 

-2 0 

-4 0 -4 -6 

4 6 4 0 

-2 0 -2 -2 

-2 -2 -2 0 

In passing, we note that if our end conditions had been v 
O 

11 = [ O O O J 

and if also v 
1

11 = [ 0 0 0 J , the resulting matrix would be singular, because 

the first and third columns of [PI Q J are identical. However, this is not 

our present case. 
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We now subtract the matrix 

VII 
0 

0 0 1 0 0 0 

0 0 VII 
1 

0 0 a 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

from r p I QJ and obtain 

-5 0 -4 -6 

4 6 (4-a) 0 

-2 0 -2 -2 

-2 -2 -2 0 

By a series of reductions accomplished by multiplying rows of the matrix 

and additions (or subtractions) of rows to remove elements, we can obtain the 

determinant 

I 
(a-1) _ 1 I = o 

1 - 1 

This implies 

a = 2. 

This is the value of a that makes the matrix singular. 

The singular matrix is 1-: : -; -:1 
-2 0 -2 -2 

-2 -2 -2 0 

We make it non-singular by adding 1 to the top left element. The matrix 

is now 

l-: 
0 -4 -6 

6 2 0 

-2 0 -2 -2 

-2 -2 -2 0 
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and corresponds to the vector [ w 
O 

O O O] on the left of the equation. 

The inverse of this matrix is 

1 
2 

2 1 -6 

-1 0 3 

-1 -1 3 

-1 0 2 

If we arbitrarily set w 
0 

row of H, or 

3 

-1 R. 

-3 

0 

[ WO O O O] R. 

2, then the required solution is just the top 

[ w O w l w O' w 1' ] = [ 2 1 -6 3 ] . 

97 

With these numbers known, the curve equation is completely defined. We 

obtain it by substition in the canonical form: 

3 2 
WV=[uuul]M 

3 2 
[uuul]M 

3 2 
r u u u 1 J 

lwo vo 

! 
wl vl 

I wo'vo+wovo 

I 
Lw'v+wv 1 1 1 1 

10 0 2 

1 1 1 

[ 0 0 -6 l + [ 2 

' 
Lr :i 3 3] + [ 1 

2 -2 1 1 

3 -2 -1 

0 0 1 0 

1 0 0 0 

0 0 

0 o J 

0 0 2 

1 1 1 

2 0 -6 

4 3 3 
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3 2 
4 

-:i-
[ u u u 1 J 1 

0 

2 0 -6 

0 0 2 

The separate equations for the x and y coordinates of the curve can be 

exhibited; 

X 

y 

4u
3 

- 5u
2 

+ 2u 

-u
3

+6u
2

-6u+2 

3 
u 

-u 
3 

+ 6u 
2 

- 6u + 2 

In the foregoing, certain matrices have occurred. These matrices are 

significant ones, and can be written as transformations of the common 

matrix 

as follows: 

V 
1 

v' 
0 

V '' 1 J 

For the conic condition matrix, 

2 0 

0 -2 

1 0 

i l o 1 

1 0 

0 1 

0 0 V ' 0 

0 0 
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For the u 
1 shoulder point condition, 

' 
V 

2 C 

vo + vo 4 0 1 0 VO 

V - V 
1 1 

0 4 0 -1 vl 

VO 1 0 0 0 v' 
0 

-vl 0 -1 0 0 v' 
1 

For the P and Q matrices associated with w 
O 

v o" and w 1 v 1", 

i 
- 7 

-4 VO I 0 0 -4 0 VO : 

' 

6 v
1 

- 6 v
0 

- 2 v
1 

I -6 6 0 -2 vl 

-2 VO I 0 0 -2 0 v' 
0 

-2 V l + 2 VO 2 -2 0 0 vl 
I 

6v
0

-6v
1

+2v
0 

6 -6 2 0 vol 

4 v
1

• 0 0 0 4 vl 

2v
0

-2v
1 

2 -2 0 0 v' 
0 

I 

-2 v
1

• L 0 0 0 -2 vl 
I 
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APPENDIX 
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