

ACKNOWLEDGEMENT . -

This thesis describes research done by the author as
part of the Multicas development effort at Project MAC at the
Massachusetts Institute of Teshnology. Thanks to the. mmy
members of the Projest MAC resesrch staff,: ‘partioularly
Carle Marceau and Karolyn Martin,: for théir siaggestions,
ocriticisms, and cooperation,

The author would like to express 'm.a gratitude to his
thesis advisor, Professor Jerome H, Saltzer. His instructlon,
advice, and patience are dceply np?miated.

. Finally, and perhaps most importently, the suthor
would like to thank his parents and hias wife Barbara for

their enthusiasm and oncourasaamt, but nostly ror their
’ MQM“-

‘BE.M.D,
cuhridse, Mhmtts
' - Aagast, 1968

iv

CONTENTS

ABSTRACT
ACKNOWLEDGEMENT

Chapter 1 « INTRODUCTION
1,1 Terminology
1.2 Background
1.3 Organization

Chapter 2 - FEATURES OF ABSENTEE COMPUTATIONS
2.1 Computation Modes
2,2 Features of Absentee Computations

2.3 System Features

Chapter 3 - OVERVIEW OF THE ABSENTEE MONITOR
3.1 Major Sections of the Absentee Monitor
3.1.1 Absentee Queue Control
3.1,2 Absentee Waiting Queues
3.1.3 Absentee Running Queues
3.1.4 Absentee Initiation Module
3.1.5 Absentee Shelving Module

111

iv

N & = =

@

11

15
15
15
17
17
18
18

3.2 Relationships between the Absentee Monitor
and other Parts of the Multiple-Access
Computer System

3.2,1 System Control

3.2,2 Performance Measurement
3.2,3 Load Control

3.2.4 Load Control Table
3.2,5 Reserver

3.2.6 SAVE, RESUME, and QUIT

3.2,7 User Commands

Chapter 4 - PEATURES OF THE QUEUBING MECHANISK
4,1 Necessity for a Queueing Mechanisam
4,2 Queue Discipline '
4,3 Pirst-In-First-Out Disciplines -
4,4 Associating an Ordering with the Running AC's
4.5 Computation Streams o
4,6 Flow of a COuputatidn through Q‘Str.l_.
4,7 Multiple-Streanm Queueinglﬂechqﬁisn

Chapter 5 - LOAD CONTROL
5.1 Terminology
5.2 Load Control in a Purely Interactive System
5.3 Load Trimming Strategies

5.4 Load Control in a Single-Stream
Purely Absentes System

vi

19

19

19
20
21
21
21
22

23

23
24
25
27
28
30
32

R Ee

38
43

5.5 Losd Control im & MSLEd

Ly

5.6 Load ! saamagam

s.vmm n-mw
MIm*kﬂlm

5.8 Lot Oemtvel 1n @ Hybrid Syete ,,.fnsh ﬁmﬁ- '

MMG-%WWM

Gtmaﬁ
6.2 Terwinating an AC

-G.BMMM(MMQ}GQ&

s.ummwnmw
s.smuxetowxc
6.6 zm:um t@. um:

6.7 Mﬂ x&mq I’!# Iﬂ
6.8 Spesifying mm.:c Lot Agpeet
6.9 Other Commants for Aduintstresd

vii

53

3

gee 3zR=223

This empty page was substituted for a
blank page in the original document.

ILLUSTRATIONS

3.1 Mechanism for Control‘of' Absentee Computations
4,1 C.T.8.8. Absentee Queueing Mechanisa

4.2 Fifo Mechanism with Multiple Bunning AC's
4.3 Queueing Mechanism with Ordered Running AC's
4.4 A Computation Stream

4,5 Plow of a Computation through a Stream

4,6 Multiple Stream Queueing Mechanism

5.1 Load éontrol in a Purely Interactive System
5.2 Load Trim-by-Force

' 5.3 Load Trimeby-Attrition

5.4 Load Trimming Strategles

5.5 Load Control in a Single-Stream Purely
Absentee Systeam '

5.6 Losd Control in a Multiple-Stream
Purely Absentee System ’

5.7 Load Reapportionment in a Multiple-Stream
Purely Absentee System

5.8 Queueing Mechanism for a System with ¥ultiple
Interactive and Absentes Streams

5.9 Summary of Load Control Parameter Definitions for a
System with Multiple Interactive and Absentes Streams

5.10 Load Control in a System with Multiple
Interactive and Absentee Computation Streaus

$.11 Load Reapportionment in a System with Multiple
Interactive and Absentes Computation. Streams

ix

16
25
26
27
29
3
33
37

43
42

52

66
67
69

73

This empty page was substituted for a
blank page in the original document.

LR e Y

CHAPTER 1
Introduetion

This thesis presents the detailed deeign’epeelficetlons
for a mechanisn to handle absentee (or heekground) computations
in a multiple-eccees conputer system. The nechanisn operates
as a package of self-conteined modules with a minimum of
dependenclee upon the environment 1n uhich 1t resides., Thus,
it may be inserted 1nto any exleting uultiple-accees computer
system which has the proper environnental feetures.

The uork of thls thesis is ooncentrated in several areas..
First those feetures which are deeirable in a system for
hendling ebaentee conputetions are considered, Many of these
features exist in current working eyetens. but several new
features are proposed,

Second, the overall design for a n;. type of absentee
mechanlsm is considered. The functione or each nodule in the

mechanism are dieeussed and 1nterfacee betueen this mechanism

and other parts of the multiple-accees computer system are
defined.

Next, the detailed design is presented for the two major
portions of the new abgentee handling mechanism, This design

is interesting for several reasons:

1-

IRt o e R o s

Absentee computations are supported in a system
designed for time-sharing applications.

The amount of gbsentee'usege'on the system may.

be carefully regulated to comprise anywhere from
0% to 100% of the total absentee and 1nteraet1ve
system usage, » ’ _

The portion of system ueage assignedvte ebsentee
computations may be further subdivided and assigned
to absentee'computatlaﬁs of vaiiousk“types” This
provides for ease 1in 1mp1ementation of priority

schemes for determining which computetions ‘should

‘currently be servleed by the system.

The apportionment of system usage is mede flexibdble
by the absentee handling mechanism to prevent waste
of available computing capebility. .

Computations of a particdiar "tybef aie always
guaranteed fifst cleimuto the portion of system

usage asslgned to them,

The mechenism may temporarily suspend and then

automatically resume an ebsentee-computation thus

making such interruption transparent to the computation.

la

This abllity 1s useful in providing . the .
apporticrment flexibility menticned above,
Pinally, an attempt is made to moiry. a compact
set of commands for users and administrative personnel.

The commands are designed to previde smooth intersction
with the facilities and capabilities of the proposed

absentee handling mechanism. In particular, cemmands

are provided to perform certain obvious funotions such

as oreating and terminating abesentes computations, and
certain functions unique to this application such as
converting an 1m1=-1va computation to absentee and vice

_ versa, and specifying the apportionmant .of system usage

between interactive and abssntes computations,

1.1 Terminology

A tipe-ghering cosputar system rapldly shares its
Tesources m-m users to give each user the ii’inaion ’
that his computation is constantly running, --An intepsotive
user controls the operation of his computstion by iasuing
copmands (usually in the form of statements typed at a remote
teletype terminal) to the system, observing the system's
response to each command, and issuing further commands based
on previous responses. An gbgsentee user does not have to be

-1b

present at a terminal to boﬁt:ol his computation;
he sulmits a file of commanis which specify the operation
of his job, The system engusues (1.e., mainteins sn ordered
118t of) each of these desoriptor files as they sxrive,

| The concept of s goNPULSr UELIALY i thet of -
providing sccessible computing capsbility to & large number
of users {referred to as the w) on a twenty-
fourshour-per-day, seven-day-per-week basis, ‘It Y normal
to expect, however, that mslfunctions may requive that the
system undergo an ocosssional shubtdoes eo that the malfunction
Nay be repaired, To resums normal opeveticn, the systea
unawsoec & ghartup procedure,

hoh user of the mmmstmwm:onm

private f£iles (ususlly space on secondary storage media
reserved for this user). A pot-utm user of filed
information must identify himself to the system b fyping
a secyet m thus preventing unsuthorized peysons
from using the system, This identification.procedure is-
referred to as Jomeing in. ~Whem u user is fimished using
the .system hs Jgag out to inform the system that he no
longer needs its resources,

Unless otherwise specified, files are used to supply
input to and recelive ocutput from absentees somputations
since such computations are generally not attached to
terminals, However, the user may desire to recelive 1nput'
to his absentee computation from a private magnetic tape
in which case his computation may run only if a tape drive
is avallable, The tape drive in this example is referred
to as a dedlopted regource since it must be specifically
assligned to this user for the duration of hls computation, -
To assure that a required dedicated resource is awvalilable
when it is needed, the user places a regserwation (via the
system) to use the resource during a specific time period.

Non-time=sharing computers generally hanile jobs in

a batch progegaing forpat: the jobs are submitted in the form

of card decks or magnetic 'tapes at a central computer
installation and are processed sequentially, either one

at a time, or in the case of recent multi-processing systems,

several at a time,
The gystem lopd on a time~sharing computer system
which services both interactive snd abeentes oomputations

refers to the current demands for service to all computations

on the system, When the load decreases more computations
may be lnitigted to push the load back up to peak efficiency

e St S e R L

operating levels, At any instant during .

the operation of the system, requests for service are _

enqueued on & priority basis (scheduled), and the 'requeat.-

~ .at the head of the queues is th§ first to ba serviced.
Priorities are generally assigned to computations

to indicate some sort of preferential ordering for service.

‘Admission priorities ave used by the system to determine

which of seweral computations attempting to log in should

actually be allowed to log in to the system. Scheduling

Priorities are used by the system to dstermine which-

of several logged in computations should be given service

by & processor when that processor becomes available.

Admigssion priorities are generally fixed whereas scheduling _

priorities are dynamically computad at execution time.

The concept of providing absentee usage facllities
in a time-sharing environment is not new, but the general
design principles have not ‘yet been disoussed, Two of

the earliést successful attempts in this area are:

1 -

The Compatible Time~Sharing System (1,15)
implemonted on the IBM 7094 by M.I.T. in 1962,
Absentee capabllities were included 1n the
original design of C.T.S.3. The ability for

an interactive user to initiate an absentee
computation | was added in 1965«1966,

Time Sharing s.vstén/360 (#,5) Aimplemented by
IBM on its 360/67, Absentee capablilities
were included in thé original design for which

~ a prototype imp].enentation became available

in 1967. Some notable features of the TSS/360
implementation include the ability for .

a user to interrupt his running interactive
computation and éonvert it to absentee, and
the abllity for a user to inltiate a wide range
of bulk input/output operations via commands

.which may be issued by intersctive or absentee

computations, These bulk input/output requests are
handled as standard absentee computations and>

are enqueued until the input/output devices

needed to service the requests become avallable,

The absentee handling mechanism dasigned in this thesis
is being implemented as an integral part of the “Multics"”
system (Multiplexed Information and. Computing Service) under
development at Project MAC at the Messdchusetts Institute
of Technology. Multics 1s being dewigned snd implemented

as a gensaral purpose time-sharing opsrating system for the
computer utility. The reader interestsd in exploring Multics
further should eonsult a group of papers {5,6,7,8,9,10)
which were presented at the Fall Joint Computer Conference
in 1965, Project MAC Technical Report-30 (4} contains a
discussion of the organization of the computer utility

and a desoription of the basic design of the Multics system,

Chapter 2 discusses those féatures which are desirable
An a system whioh supports absentee computations, and the controls
that users and system administrative persomnel should have
over abssntee computations,
Chapter 3 presents a block-diagrem overview of the
absentee handling mechanism, and discusses the functions

performed by each of the modules in the mechanism,

chapter 4 develops the concépt of a computation streanm
and then i1llustrates how’several such streams may be combined
to form a versatile multiple~-stream queueing mechanism for
absentee computations,

Chapter 5 considers the problems of regulating the
system load in a system which supports both interactive
and absentee computations, A mechanism for performing the
 load control funmction is proposed which utilizes the
flexibility of absentee computations to assure that the
load remains close to its most efficient operating level,
The mechanism allows the computing capability of the system
to be allocated in any proportion between interactive
and absentee computations, and provides the ability to
quickly and smoothly adjust the system tdbt new load
reapportionment,

Chapter 6 presents a set of comnands,fdr users and
~administrative personnel to create, control, and terminate

absentee computations,

CHAPTER 2

Features of Absentee Co-putjticns

This chapter dsfines-absentee, interactive, and batch
computations, and discusses the similarities detween absentee
and batch computations, the festures of abseiites ocvmputations, and
. the facilities of the absentes handling mechanism.

A uger may run his computation in oiiher of twa modes,
namely mnn or ghesntee.

An W is controllod by a user
who enters commends ct & remote terminal, receives rcm-
from the gystem at that terminal, ana enters additional ‘command s
based on previous rosponns. The 1ntcmt1n mode afforda the
user precise control over his eonpntutian nnd anm the user to
make major changes of stratesy' at run time, mitﬁtor‘iétiw '
mode ig particularly useful for program debugging amd for '
implementing programs which “talk® with noneprogrammer users
(administrators, scientists, flight reservation personmmel, ete.)

An gbsentes cogputation (AC) does not require imteraction

with the user, The user sulmits an absentse computation as
a file of commends (gbsentes source file) basically idantical
to the comsands the user would snter if yuming the seme
computation interactively. The sbsentee mode frees the user
from having to be present to control his computation and

is partiounlarly useful for ruming chescked-out programs and.
“production” runs. : o .

A bateh gomputetion is basically identical to an absentee
computation except for the manner in thich the file of commends
is submitted to the systeds, - An-dbsentes sourge rtls is -
generally sutmitted via a Temote terminal, whereas a batch
computation command file is generally sutmitted in the form
of & card deck at the central oomputer installatien,

_An sbsentee compatation may b initisted for & user by one of
the user's interactive computations, ancthsr of the user’s
absentes computations, or a.batoh-vosputation: shbkitted bty the:-user,

A user*s absentes ebhputatiohs Bay de:tePainated: by wny of
that user's intersctive or absentes computations. . -

A user may specify (for his own pretection) amy running time
1limit for each of his AC's, If the time limit is ciceed-d, the
system automatically saves the AC so that partial results are not lost.
If the user does not specify a time 1limit for an AC, then a default
value is assumed by the system, again for the user's protection,

S e A A, TP
S e

A computation (IC or AC) of a particular user may obtain
status information about any of that user's computatioms (both
IC's and AC's). Detailed lnflettdttbmt -oath of & user's
AC's 1s always available to that ussr, regardless of whether
his AC's are waiting to de rum or are ourrsntly running.,

An interacstive user may interrupt his IC at any point and
convert it te an AC, ' This festurs is desirable in tha case
that a user wishes to start his program intersctively to make
sure that it is working properly, and than schwart: tha prograa
to absentee so0 that it may continue to complation without the
user's attention, ‘ /

An interactive user may interrupt any one of his AC's at
any point and convert it to his curremt IC, 'This fsature is
useful in the aase that the user wants to monitor the progress
made by his absentee computation, or poi-hnp- make some run-time
changes in either the program or its data. In some cases, the
user may oconvert a computation from: abssntes to: uwumuve to
got & higher priority for the computation so: that ths computation
may be completed soomer,

The system sdministrative personnel. may terminate any AC:
(or IC) whish appears tb dbe a *troudblemsker”, ~

The system administrative personnsl may spetiry an
apportionment of system resources Betwesit AC%s emd IC's

10

in order to emphasize a particular mode during certain periods
of system operation. In effect, this apportiomsent pimtam
the systes into two distinct sub-systeams, ohe for running AC's
and one Tor rumming IC's. The AC-IC apportiomsent may renge
anywhers from 0%-100% to 100%-0%,

A user may have many ruming AC's (and many IC's) at one
time, but the number can be sdministratively limited, In the case
that a single user has several IC's at various terminals, sach -6f
the IC's has sgual ‘eontrol over any of the user's AC's,

Input to an AC is normally taken from the appropriate
absentee source rile, Output from sn AC normally goes to a
user-specified gbpentee outmut fils. The user may alternatively
specify dedivaten resourses {(in place ef fites) for AC.tmput/output.

4 ukey requiritg dédicated resources for use by any of his
AC's shohld Plase sn sdvance ressrvation for the resources.

£+3 System Features

The system sngqushés user requests to initiate new AC's
80 that these AC's may be initiated in the future at a time
which the system feels is opportine, ‘

The system may temporarily -uupom service to a number of
AC's 80 that an :lncrnndlﬂlo‘-d of IC's may be moure effectively
serviced, Similarly, the system may "bump" a number of IC's
80 that an inoreased load of AC's may be serviced. Bumping an IC

11

involves saving the IC 1A its ocurrent state and. mtmtieﬂly
logging out the user. To continue a tumped IC the user must
log- in sgain. and specify that the tumped IC be resumed. After
a user has been bumped, he will often find that he cemnot log in
a.gabin immediately. This occurs hecanse the most troqmt _
reason for bumping a user is to decrease ths system load and
_maintain the l3ad at its lower level. _ ¥

The systam may automatioally resume service to suspsnded
‘AC's ihon the IC load decreases. (Note the asymmetry here. A
suspernded AC 1s always sutomatically resumed by the system
while a bumped IC can only be resumed by the interactive user
himself, This property is oritisal to the proceas of dynsmic
loed balanoing disoussed in Chapter 5.l

Jobs may be sutmitted to the system in a beteh-proocessing
format a8 a deck of cards. Such jobs, efter undargoing a
procedure to walidate the identity of their originators, are
handled by the absentee mechanism in the same manner as AC’s
requested by IC's or other AC's, e ,

The system makes shutdown transparsant ita AC's. by suspending
any AC's rumning at shutdown and automatloally resuming the
suspended AC's at startup time. Any AC's which are sitting in
the: queues waiting to be run at shutdown, remain snqueusd during
shutdown and may be initiated by thc -gystem after startup.

12

' The apportiomment of résouruag*~ m\-w's and IC's is

normally done for various long periods of .system operation

called ghifts. Howsever, the demands made by AC's and IC‘s

upon the system over the short term may vary significantly . -
and freguently. The systeam caters to short texm variations

in demand by making modifications to the Tescuroce apportiomment
over short periods called intesrstion periods. The Load
Control meshanism (ses Chapter 5). compares the current demands
upon the system with the current: shift's rescuree apporticment,
and makes necessary adjustmente in the AC-and IC loads to insure
that good quality service is provided %o all ruming computations
resarcneoé of any ‘short-tern surges in demand, -For example, if
the AC-IC spporticnment is 25%.75% und the AC desands decrease

to only 20%, then Load COatroi ‘allows énough new IC's to be
initigted to bring the IC usage up to 80%, When the ghort«term
variations are of gmterrmttude;“io‘d Control may elect

not to matsh a desrease in ons mode of usage-with an equal
inorease ir the othwr, Instead, it may matoh a 20X deorease with
only a 10% inorease, This ptcv:.dgn--rdmptn&&fteet which helps
to prevent the current usage of system resourcss from wvarying too
significantly from the desired shift resource apportiomept.

See chapter 5 for a more precise discussion of the load
balancing operations perfornod by Load Control,

13

The system keeps track of all AC%s requiring dedicated
resources to be initiated. Whensver a reservation msde for

a partiocular AC becomes due, the system antametioslly initiates
that AC, |

In a systen in which many computations are simultensously
competing for ssrvice, 1t is desirable to mmm of
priority mschanism to allow a uaer to express the relative
importance of his computation., The user is providad with a
choloe of priority stresps in which he may request -his AC be run,
High priority streams provide service at higher oost, while
low priority stresms may provide slower service Wt at reduced cost,
If the user does not specify in whioch priority stresm he wsntis '
‘his computation to run, the system autamatiocally insexrts the .
computation into the giapndaxd atresm. Since-ahsentee
computations do not necessarily have -to.be initiated immediately,
a series of waiting queues is fm-wtdd.ﬂ ons for .epch. priority
stream. Vhen Load €ontrol decides that more absentee -camputations
may run in a particular stream, 1t lnforms the.mechanism which
- hendles the absentee qusues to initiate an appropriate number
of ‘absentee computations from the-waiting queue for that strean,

14

CHAPTER 3 ,
Overview of the Absentee Monitor

The M Sdonsists of a sroup of rqlatod modules
and a series of qw- which together are reapohsible for the
enqueueing, initiation, eelnt’l;ol. and termination of absentee
computations. This ohnpﬁor discusses the u.ﬁr cgctions of the
Absentee Nonitor and the interrelationship between the Absentee
Monitor and other p..!ftt& of the multiple-access computer syjten.
Figure 3.1 illustrates the structure of the overall mechanisa
for handling absentee computations, Chapters 4, 5, 6, and 7
d.lﬂ;fb. the parts of the nophani- in greater detail.,

3.1 Mador Sections of the Absentes Mopitor

" The Absentee Monitor consists of throo modules and two
sets of queues, one queue in each set being assigned to service
each priority stresm. Chapter U4 dissusses the queueing mechanism.
in detail. |

3:1,1 Abpentpe Queue Control
As new requests to initiate absentee computations are
entered by users into the system, the names of the corresponding

15

91

S AR T P P T S T S A N ST o U U A LA]

Absentee

Absentee Initiation
Walting Module
Queues
Absentee'
Queue Load s—| System
Control Control Control
Absentee 3
Running Absentee , &
Queues Shelving] J
Module Performanc A
easurement £
Reserver L‘
Figure 3.1

Mechanism for Control of
'Absentee,Computations

absentee source files and absentee output files (and other
additional useful mdmuon') are plsced into queues where
they remsin until suoh time as the system deoides to initiste
additional absentee computations, . Abggntes Qusus Control
system module respongible for making tmh&t omad.« 1n the
queues, retrieving entries when they are nseded by other parts
of the absentee mechanism, and deleting sntries which are no..
longer needed,

31,2 Abgentes Weiting Queues
mowmmunn«otqm, one

pér priority stresm, whioh oontain the per emuon iaromtion

for absentee oomputations waiting to be -4nitiated, rl user

request Yo inltiate a new absentss computation oauses Absentee

Queue Control to make an entry for this computation ia the

appropriate Absentee Walting Queus.. |

The. Abssmtes RWiDE Queuss are & series of GASUAS, OB
per priority stresm, which oontain the per computation information
for mhrumnnc sbsentes computation, When an m computation
is initiated, Absentee Queue Control dedstes the corresponding
entry from the appropriate Absentee Nalting Queue,and inserts
an entry in the approprhu Absentee Rumming Queue,

17

21,4 Abgentes Initistion Module
" Vhenever uore absentee computations may be inltimtdd, Load
Control (m Chapter 5 and seotion %:.2,3 bélow) inforas the -

9 of the number of AC*E %mt&m.
: ‘!‘ho Absstites: Inttistion Nolule decides wittol -AC's o initiate
and nakes ‘the appropristes oalls to initiate them. The Absentee
Initiation Noduls oalls Absentas Qusne Control to make the
apﬁrom'iato ingertions (deletions) in the Ablchtoi miaﬂmﬂ

Queues,

. -Herdafter, the short-term suspension of absentes computations
referrsd to in Chapter 2 is bermed "gMglving” ‘the sbientee
somputations. = The distinction betweds a Shslved computation
and & computetion which hes merely-Deew sived is What a shelved
computation is only séved telporsrily witil sioh time & the
system decides to continmue it, whersas a saved computation can
only be continued 1f the user logs AN ANFNrestively snd orders
such setidn: “Unghelving” 1e the phenews of yYemming & shelved
‘coEpatation and is performed automatioslly by the m ‘Honi tor,
Whenever 1t beocomes nwcessary to dsbresasd the number of
ruming AC's, Load Comtrol hlfonlm T
of how many AC's to shelve. Thé Absetivee Shelving Nodule decides

18

which AC's to shelve and makes the necesssry calls to shelve them,

Absentee Queus Control 1s called to make the appropriate
insertions (deletions) in the Abgentes Naiting (Bumning)
Queues, MNote that shelving an AC invelves plasing an entry
for it back into the upp:opriatc Absentee Walting Queue so that
the AC again becomes a oandldntp for initiation by m Ayepntee
Initiation Module, |

Bty of the WOtirle-Aocess Conputer BYs
This section discusses the environment of the absentee
noehanin; ‘Load Control 1- ducuuod here inltud of in

section 3.1 only because its rumt:.onz tro rclatod to both
IC's and AC*s, However, Load Control 1is a oritiocal portion
of the absentee mechsnism and is discussed in detail in Chapter 5.

W is the module which processes oa-nnd requests
from the cylhl ‘adainistrative por.omol In pa.rticulnr. Sy-tn
‘Control cotiveys the AC-IC apportionment information from
the System Administrator to Losd conem;' and the dedicated

resource apportionment information to ‘the Reserver.

3a2,2 Performance Measurement

Periodic determination of the current amcunts of intermctive

19

and absentee usage being supported by the system is essential
to the operation of the load-balansing wechanism. ‘Pexforysnce
Heagurement obtains these usage statistics by observing various
system parameters and conveys the information to Load Control.

da2,3 Load Control
The main functions of the Losd Control module are:

1 = to see that the apportiomment of resources between
 ‘intersctive and sbsentes ‘computations: remains close
. to that specified by the Byst- muu:trntor A
2 = to cater to lhort-tarl urhtioul m the dmnda
upon the antc-'s resources 'by dynsmioally nryins
. the current Tesource .pmtlmnt ,
3 = to see that the systeam is mithor ulﬂor- notr over-
loaded,
Load Control compares the apportiomcnt infomtion 11: receivea
from the System Mainutrator with the curront unso atuthtics
tuppnod by Pexrformance Houument, It any umr;mt discrepancies
exist between these sets of figures, th.n Load control may modify
the system 10ad by any of the follmne means:
1 - call the Abmtu Init&.ation Hodule to initiate
more AC*s
2 = oall the Absentee Sholvins Module to shelve some AC's
3 = increass tho Rnatimun mber of IC's auowed
4 - decrease tho maximum mmber of IC's allond
5 = automatically log out some IC's

20

3:2,4 Load Control Table
In this tadle, Load Control maintains a list of all logged-in

IC's and certain additional information such as the total number
of logged-in IC's and the maximum mmber of IC*s which the

system currently allows. During the losd~balancing operations,
Load Control obtains information about AC's from the Absentes
Waiting Queues and the Absentes Rwming Queuss ard about IC's
from the Load Control Tahle,

312,35 Beserver

The RBessrver is responsible for scheduling the usage of
dedicated resources (for both IC's and AC's)., If & user's |
AC requires dedicated resources, the user must place an adwvance
reservation for the resources, The system automatically
initiates the AC when the reservation becomes Que.

3:2.6 SAVE, RESUME, and QUIT |

These mechanisms are provided in the multiple-access computer
system to facilitate certain manipulations of computations useful
to both AC's and IC*'s., QUIT is oalled to stop the execution
of a computation and place the computation into a state in which
it may be easily preserved, lost, or continued, BAVE is used to
preserve the. computation is its ‘sutpent -state so that the computation
may be sontinued in the future, RESUME is used to continue
a SAVE4d computation,

21

Shelving an AC involves first QUITtimg the AC, then SAVEing
it, deleting the Absentee Burming Quesue entrxy for it, oreating
an absentes source file containing a RESUME command, and placing
an entry: for this file in the appropriate Absentee Waiting Queue,
Unshelying an AC 1= done by the Absentes Initiation Module in the
sane t'.ihi.en as initiating & new AC, However, since the absentee
source file for this AC oonsists of merely a BESUNE command to
resume a SAVEA file, tﬁe saved AC is restarted. |

12,7 User Commands

Users are provided with a detailed set of commends with which
to control the initiation, operation, and termination of absentee
computations (see Chapter %). . Thess commands osuse ocalls to
entries in the Absentee Monitor and status informetion is retwrned
to the user in sach case to indicate if the calls are

successful,

22

CHAPTER 4 -
Features of the Queueing Mechaniem

The Queyeing Nechanism oonsists of the Absentes Waiting -
Queues, Absentee Rumning Queues, and the Abssntes Queue Control .
module. This chapter desoribes the struotures of the various
queuss and the operation of Absshtee Queus Control.

During the cperation of the system, user Tequests to
initiate new AC's may-arrive faster Shan ‘the-new:AC's -
can be initiated. One reason for this is.that the maximum
number of AC's which may run ilnultmouply_ nay be limited, thus
necessitating the placement of walting requests into s waiting
line or gyeus. Actually, & qususing mechanism cen be avoidad:
if it is relt by the systea designers that 1if there ocurrently is
no room for more AC*s, tlun the user shoulfd retry his "nqnut"
at & later time. This, in effect, is the method used in the
case of new interactive users., If the new IC cannot be initiated
the user must wait until s lster time and then reattempt to log in,
The reapon fox this choloe is obvious. Suppess, for exampls, that
an interactive user tries to log in and that the system cannot
handle any more interactive users now. 3Suppose that the system

23

then proceads to enqueue this user's request in a walting

line with other requests for IC's, Clearly, thers 18 no way
to tell how long it will be befors the new request may be
deMcﬁ. Thus, the user might sit faithfully at his console
for several minutes or perhaps several hours bdefore his request
nay be serviced, PFiom the humah fastérs standpoint-whieh is
s0. 8¥itical in tha design considerstions for e multiple-access
computer system, such an ocoocurrence is not tolerabie.

~ However, since a user does not have to be present to run
his absentee computation, it is clear that requests for AC’s
may be engqueued for future initiation without any inconvenience
for the user. As a matter of fact, in this way the user is
assured that his AC will be initiated at the earliest porsible
time, As will beocome clear in Chapter 5, this feature of

absentee c‘c'-put.tlm is most critical to the design and opsration

of the load-balancing mechanims,

4,2 Queue Digoipline

The order ni which requasts to initiate new AC's are serviced

need not necessarily be the same as the oxder in which thsse

requests arrive, The method of choosing the next AC to be initiated
from the queues is referred to as the gyeys diggipline, Among the
more common queue disoiplines are first<in.rirste-out (fifo) which

selects entPies on a first-come~rirst-sexved btasis, lnd last-in-rirst-
ont: (11f0) whioh selects emiries o & mostsurrent-rirstserved basis,

24

The queue disoipline chosen for the Absentee Vaiting Qusues
and Absentee Running Queues utiliges both fifo and lifo disciplines
in a BXightly modified fashion,.

L t-Out | |

~ The C.T.S.8. system uses s fifo discipline in which at
most one absentee computation may run at a time. Onoe an AC
has begun to run it must be run to completion or until it 18
automatically logged out, No provision is made to allow the
running computation to be temporarily suspended and then resumed,
Absentee usage is never too significant a pomnnof tom '
system usage since there is usually a single running absentee
computation and as many as 30 running interactive oo-putationl.
Hence, the suspension of the single abaentes ouputatlou is not
really a versatile tool 1n terms of -allowing more utomtin
usage to oocour, Pigure 4,1 illustrates tho ¢, '1' 8, 8. qnauoing

mechm— for absentee conputationl.

z «f— new entriesadded at back of queue
WAITING

ABSENTEE
COMPUTATIONS

Eﬂ::] < next entry to be initiated

ABSERTEE
COMPUTATION L ———1<«— omly one AC may run at a time
Piguro 4,1 '
T.8.8. Absentee Queueing Mechanisa

25

An obwious axtension to the C,T.8,8. queueing mechanism

" 18 to allow many AC's to Tun st one time, This introduces some
interesting load considerations since it wight result in a system
with a poor interactive response if the number of running Aé's
becomes large. This problem 1s discussed in detsail in Chapter 5.
“Plgure 4.2 11lustrates a quauuns mechanise whiech allows for
nany rumning AC’s at one tile.

new entries added at .
e baock or qmo ‘

WAITING
CONPUTATYONS
ij «f——— next entry to be initiated
RUNNING
ABSENTER 4. meny rumning AC's
COMPUTATIONS E::: (preocise m?:bor of
' ’ ' AC*s limited by the
[::] system's load control
_ nechani n)
Pigure 4,2

Fifo Mechanism with Multipls Running AC's

26

Note that the structure of the mechanism of Figure 4.3 -
allows ardvitrary oriteria to be used in deciding thé ordering
of the entries in the runhink queus. The 1ifo discipline is
particularly useful for the extension made to this structurs
in the next section. . '

Now let us consider the idea of shelving an absenteée
computation, BinSe a uset is generally not present to control
his absentee scomputation, the user dose hot suffer any
inconvenience if his computation is temporarily suspended
and automatically Pésumed, As has been mentioned previously,
"this property of AC's facilitates the design of the load
balancing mechanism presented in Chapter S, In this section,
the mechanism of Pigure 4,3 is extended to allow the removal
of an entry from the running queue and .pi.oenent of this
entry back into the waliting gueue, .

Pigure 4.4 illustrates this new mechanism which 1is
referred to as a gogputation stresn. The stresm consists of a
first-in-firet-cit queue of waiting AC's and a last-in-first-out
queue whose entries point to the various running AC's. User
requests for new AC's cause entries to 'bo placed at the back
of the waiting queus, The entry at the front of the waiting
qusue is next to be initiated, The entry at the front (last-in)

28

.ABSENTEE
WAITING

- QUEUE .

. Dottom of fifo walting queue

top of fifb wailting queue
==~ ‘when the AC at the top of

ronnt ueue is
gg:lvud. ?g 8 placed at

NS
— e tbe to of the walting qume

at the top
ot the uuitins queus 1s
inltiated; 1t is pleced on

'‘fm,#aaf&&?sfmmm“

Of
O -‘——h‘f\-ﬁ::]‘.__l—- “bottos of 11fo ‘Tunning queue.

pointers to
running AC*s

Figure 4,4

A cOnputgtlon §tream

29

of the running queue is the first to be lhoivod when any AC's
are to be shelved, Also this entry, when shelved, is placed
back onto the front 61‘ the nltii!s qum and hcnoo it becomes
the first entry to be initiated again when more AC's are to be
initiated. The entry at the back of the running queue (firet-in)
is the last entry to be shelved whenever AC's are to be shelved,
This stresm mechanism gives us the ability to insreass
and deorsase ths sbssntee load a#‘dlctated by ths load

. mmimm-. while .f ‘the. same: time auuri.hc aatomatic
‘completion of all AC's regardless of whether they are ever

shelved for .an'y reason,

4,6. utat _

Pigure 4,5 11lustrates. the flow of an AC through a
computation.stream, Since an AC may be shelved and unshelved
many times as it runs, the entry for the AC may pass back and
forth through the waiting and rumning queuss until it eventually
reaches completion while ruid.ing in the running queue, ‘ll.ote
that it 1s possible for an AC to leave the stream while it is
in the waiting queue, This happens, for example, if the user
decides to terminate the AC, Chapter 6 discusses user control
of AC's in detail, |

30

ABSENTEE

WAITING

QUEUE
(FPIFO)

RUNNING
QUEUR
(LIPO)

L)

Pigure 4,5
Flow of a Computation through a Streen

(1) AC enters the stream

2Ye(3) front of the waiting

él)a AC moves toward the
]

initilted

) AC moves toward the

) rear of the waiting
queue as some
running AC's are
shelved

(3)e(4) AC 18 initiated
(or unshelved)

(4)8(3) AC 18 shelved
, .
' (b)biz) ac’ moves towards the
) rear of the running
‘queue as other AC's

‘initiated before it
are completed

(6;0(2) ‘AC moves towards the
) front of the running
gqueus as other AC's
initiated after 1t

deleted and all other

AC entries malntain their
ssme relative positions
in the ruming gueue,

It is apparent fram the discussion of section 4,5 that

a stream-type queusing mechanimm coupled w:.th a losd control
mechanism which ‘orders the shelving and uishelving of AC's

15 & useful means of controlling the smount of absentee usage
-upportod by tho system, An even: gruter dtcreo of ocontrol

over the absentee usage is made availahlés- by utiliging a
multiple atrgg;‘quouoine mechaniam, Thus, it may be advantaegeous
to- dirrmtufisbetnm‘ varjous types of absentee computations
(such as might be done in the implementation of a priority scheme)
andsucha differentiation could be made by associating AC's of
each type with a diltinot stream. Then, the load control
| mechanism could ccmrol the usage in each stream m:uviduﬂly.
‘These operations are déscribed in dota,n “In Chapter 5.

Figure 4,6 1llustrates a mutiple stresm queusing mechanism.

‘Note that no reference has been made so far to a mesns of
ordering interactive computations or differentiating between
varicus types of IC*s. This has been so because our primary
concern hu been oonsiderations related to absentee. computations,
The disecussion of ‘Chapter 5 inbéludes several such oconsiderations
.of IC's,

32

CHAPTER 5
Load Control

When both interactive and absentee computntions may
run together in a multiple access computer system, it becones.
necessary to apporﬂon system resources and computing capability
between the two modes, This chapter discusses how such an
apportionment is made, sdhered to, and dynamically edjusted
by the system to maintain itself at efficlent operating levels,

1 Termin

The sum total of the demands made upon the system's
_ computing capabilities by all computations on the system is
 referred to as the gystem load. Depending upon the capabllities
of the particular computer system in question, the system
may operate efficiently over a wide range of kload situations,
Generally, on a large-scale time-sharing system many
computat:ions may run simultaneously, btut there is a 1imit

34

- R E T P RO <. b i e e = 4 T e B T I R
o DAt ” = g B e A I 4

to'the nukber of computations: which thé. systes bah. support
stthout beceming over loaded, R

As a measure of system loed we uss the numder of mmning
computations, The gtresm logd in a emhtiu strean 1s the
number of runhing computations in that stream.’ The piregs backup
in a eomputation stream 18 the mumbey of compuatations in the -
waiting queue for that tiron. : Stpoaik backap 1s a medsure of
potential stresm load, The systes’s lopd confisgtution 1s a
summary of the stresii load and streis daokup for essch of the
systen's computation stresms., : ' '

For any particular multiple access sempater systém, the
most efficient load cqnﬂshrauoa (1.e., the load configuration
which results in the most useful computation) is Aifficult to
prediot while the system is under dswelopaemt. . After the
systen betemes operational, however; #ffisient lomd configurations
readily beotae apparest; A SHISiJ06 SsOeNs:COAPUtEr syEtem 18
said to-be Prepstly-logded if 1t is operating medr its most
efficient loid configuration, gyereiofed IT there is less
useful computation being perforeed theh whem the ystea is in
its wost efficient load configuration, and wpfep<losded if the
 addition of more oouputatiohs would result 1i‘an inoreased
swount of ubeful eempitation, Thess termé may slwo be used to
describe the load in a pomputation stress. In particular, s
strean whiek mormilly services woveh somplitations-1s over-loaded

35

Aif nine :mmhumv m:'cm'tntlr reening in that. stroem,
under-loasded with five running computations, and properly-losded
with seven: m qe-puutxm.

Thonblntltemmmtﬁu
_ & properly-losded state. If:a dystem;ie cperephng in .
an mmm state, the.losd control.zreblen is to inorease
the number of 'm,ammim.. If & system 1is emttins
in an over-losded state, emlmemmmu»
a.cm the muber. of rubping computations. . If. a system.ls .
oponung in a properily-loaded stais,.the M eantyol mua-

15 to maintein thia state,

_Cossidar the 1oed contrel problmm:An- s system dedioated:
to servising only- iatsrastive. mtm The m loed, L,
18 squal to the nusber of runnimg IC's:. - The sgsien TesouTees
are availebls:td. tké various IC's, - It 16 only.nessesssy:$o.
1imit the number of IC*s to Some RAXIEuN,.Njy,.te.SEAVRt: the.
szsten from becoming over-loaded (Wy 10%s. thaxefore. sosTesponds
to a properly-loaded. state). The.System Mministyator specifies
an initisl value of Jy ab startup time.sph.mey sisar Ny at.eny
. time during system opérstion,
Figure 5.1 shows & a:apu 1ond mtm mechanisn:-Lor a

36

APPORTIONMENT s

REAPPORTIONMENT:

| 1

Ainioteat administrator sets
strator new value of M, during
‘s:ts My :t "’*:) systenm operatisn

1) e | _ ,

NEW_IC ATTEMPTS TO LOG IN: log out

i O

no
yes
‘Ic may not
CimCy+1 log in now

!

IC may .«:)
{log in now |

RUNNING IC LOGS_OUT:

‘ My = mgxlmumlnumber of
IC*'s allowed
c1=Cy-1 =)

Cy = current number of
running IC's

Figure 5.1 Load Control in a

Purely Interactive
System

37

purely 1ntamtive system, When a new IC attempts :to log in
Load Gontrol thcks- to see 1f the number of IC's, Cy,
currently ona the system 18 less than the allowed maximum,

If C; 1s less than My,the IC 1s allowed to log in snd

Cy 1s incremented by one, If C, 1s greater thanm or equal to
M, .then the IC may nhot:log ih now: a new attempt to log in

must be i.dc at a later time, When a rumning IC logs out
Cy iav'deur-mnd; by one,

The Syster Administrator may reset Ni whild the system
is in operatim’. Losd Control checks to see if ll1 is less
than C;, If not, then no ad justments in the ourrent IC
load are needed, However, if My is less than Cy the system
automatically assumes an over-loaded state and Cy«My
running IC's must be logged out to bring the IC 105&«401‘1& to a
properly-loaded state, Decreasing the mumber of running
computations is referrod to as load trimminx.

Sad Load Trimming Strategies
The most direct way to trim the IC load is to immediately

log out the necessary number of IC's, (Note that it ie therefore
degirable to assoclate some ordering with the IC's ln order to
have a criterion for choosing which IC's to log out first, See
section 5.9 for a discussion of interactive computation streams.)
Such a strategy 1s referred to as a trip-by-forge and is
1llustrated in Figure 5.2, '

38

In this example, the load iz to be trimmed to P IC's..
1r Ci is less than or equal to P then no adjustments in the
load are needed, Hmver.; ir c1 18 greater than P, then
IC's are automatically logged out one-by-one until c1 equals P,

From the system's viewpoint, the load trim-by-force is
a quick and sui'e means of decreasing the IC load, However,
the trim-by-force results in inconvenience to the IC's which
are logged out, since they cannot run to completion now, and
they may have to walt quite a while before they may log in
again to continue their wor_k. From the human factots
standpoint it might be reasonable to adopt a continuous
service policy towards IC's, This policy would then require
‘a more flexible load trimming strategy which is referred to
as loed trigp-by-gttrition and is illustrated in Pigure 5.3,

In this example, the load is to bs trimmed-by-attrition
to P IC*'s, If C, 1is already less than or equal to P, then no
dd.justmgnta in the losd are necessary, However, if C; is
greater than P, then the load is decreased to P as Cy-P IC's
voluntarily log out, This 18 a gradual process, vslnce the
load decreases at the ssme rate as voluntary IC logouts, The
'IC*s on the system at the time the load trimming bei;ms do not
undergo any inconvenience; they may run to conj)ietfon and log
out when they are done, However, once an IC logs out, 1t may
‘not log in again until C4 becomes less fhan P, The

40

LOAD TRIM-BY~ATTRITION TO P IC's:

no

wait for next IC
to voluntarily log
out

‘ a running IC

. / voluntarily
. logs out

Cy = Cy -1

Figure 5,3 Load Trim-by-Attrition

41

1 ~ Trin=by-Poroe st tims T
‘whioh sutsmatisally
copatations of T, to

&'
:1;; the lomd - doiz-

LOAD

mmtmnm starting
at timg T, end finidhing -
whensver amch

oomputgtions have
volunbtarily lmod out

Ploaacbeofbeo . - |) “ :2 m

I ,'rru-bydtmum starting
at tine T th the
r.ammﬁu that 1f enough

Figure 5.4 Load Trimming Strategies

42

trim-by-attrition strategy does have che significant drawback,

If the IC's on the system do not log out in a short time, they
can remain on the system as long as they would like to and thus
prevent the load from being trimmed. In such a ‘cuo it lighf
be reasonable to impose some time limit on the voluntary |
logouts, and if the load has not been trimmed to P IC's by
that time, then a trim-by-force could be used to complete the
load trimming, If it is required that the IC load be trimmed
to P by a. certain time, then the load trimming could be
initiated in sdvance of this time, Pigure 5.# 11lustrates

the various load trinlng strategies discussed in thio section,

Now oonsider the lbad éontrol problem in a 'syatq dedicated
to servicing only absentee computations, The system load, L,
is equal to the number of yunning AC*s., The System Administrator
specifies the maximum number of ruming AC's, ’.‘a' at startup
tiné and may alter M, at any time during :ntu opor@tioﬁ.

Figure 5.5 shows & load control mechanikm. for a purely
absentee system utilizing the computaticn stresm concept
discussed in Chapter 4, When a user enters a request for an

AC, Load Control checks to see if the number of running AC's, Cg..,

43

¥

adninistrator
sets Mg at)
at startup

NEW A B

'initiate the
AC

place entry .
for AC in —{)
running queno'

* . Mg = maximum number of
elete entry ranning AC*s allowed
for thisg . e S
AC from : shelve Cqr = current number of
running - Cay running AC's
queue 's .
c“ = ocurrent number of
‘walting AC's
e
o) Figure 5.5 Load Control in a Single-=Stream
. Purely Absentee System

A

15 less than the allowed maximum, If C, . 1s not lems. than M,
then the AC cannct be initiated now and must wait in the
computation stream’s walting queus. The number of AC's
‘waiting to be initiated, C,,
If C,p 18 less than M, then the AC can be imitiated immediately.

, 18 incremented by one,

C,p 18 incremented by one and an entry fbr,thls AC is placed
into the computation stream's running queue,

When a running AC logs out C,,. is decremsnted by one
and the running queue entry for tho‘Ac.ls d@leted. If this
causes Cq, to fall below My then more;ACfs may be initiated,

Load Control checks to see if any AC’s are waiting to be initiated

and if s0 initiates enough AC's to bring the AC load back
up to Mg, ‘ 7

The System Administrator may increase or decrease ”a while
the system is in operation, If M_ 1s decreased so that 1t
becomes less than Cgy then Load Control orders Cqr-Mga AC's
shelved, If M, is increased to.a vilue greatersthap Cai'then
Load Control orders M -C,. AC's unshelved, Note that if the
AC load has to‘be'decreaéed'(i;e.; “a is set to & value less
than Cqy) then it is reasonable to immediately shelve the
necessary number of AC*s, The method of load trim-by~attrition
need not be used since the shelvéd AC's do not undergo any
inconvenience in the sense that a bumped IC does. Thus the
AC load is only trimmed by a load trim«by-force.

45

Now let us extend the discusslon of Bestien 5.3 to
include the load control problem in.a multiplsestream purely.
absentee system. In particular, consider ¢ systes oomprised
of n abssntee streams., The ronm derinitions will be
useful in the discussion:

Ha(i) - u:lm mmber of AC's which may run 1n stresm
1 at one time

.C‘r(i

c v-onrrontnu-borofw'-mitimtobemnm
aw(1) stream i :

) = onrront ‘number of AC's mins in :tro— i

H-F a(1) * uximmbtrotm'cmchmmnon
the entire system at one time

R 'tcu-u) = ourrent number of AC'c rmxns on tho
entire system :

W .%c“(“ = curmtt;:nbor of AG'I walting. tc be.
_ - system

The System Mnim-tritor apportions. rneurou by
- specifying M a(1) for esch stream. . The. m of these, M,
therefore represents what the Administrator comsiders to. be |
the maximum nmamber of AC's which mey rvn at one time and still
'keep. the system operating 1n a properly-loeded. stete. In effect
the Administrator specifies that M. glofs ave.avellstle for

use by AC's, At any time a partiocular slot is elther

empty or in use, Since M running AC's repressnts a properly-
loaded system, the load control problem is to maintain the
system so that either M or fewer slots are ih use; If more
than M AC!a are rumning ‘Loud‘. Control must trim the lo-d-' to

M, If less than M AC's are ruming Load Control msust

check to see 1f any AC's are waiting and if s6 initiate

enough AC*'s to get the load back up to M. The funotions to

be performed seem clear, but the fast that more than one
stream is involved introduces some complications, PFor example,
1t 1s possitle that one streas could be properiy-loaded and -
all the obht: streams sould de ﬁbv. If there are AC's
waiting to be run in the properly-losded stream, they must
wait until rumning AC's in that stream log out before they

may be initiated, This is obviously a waste of system rescurces
-8ince the "ocomputing power” 1is an.n‘ablo.to hantle more AC's
and it 1s not being used. One solution to this problem might
be to allow the waiting AC's to run in other stresms. This

is satisfactory until such time as new AC's sxrrive and requast
to be inftiated into streams whioh might be full of AC's from
other streams, Should these new AC's also be placed into streams
in which they too do not belomg? In this section & strategy

47

is developed to prevent this sort of 'ohaos‘v while at the same
time assuring that system computing power does not go to waste
if there ars waiting AC*'s which could uses that power,

Recalling some definitions given in Section 5.1 a
‘particular stream ls properly-loaded if c.aru).n a(1)" ‘under-~
loaded if Cu(i)(xau).’and over-loaded if Cg .y PM (4ye The
load in a particular stream is sald to be bglaneséd if the
stream 1s properly-loaded, or if the stream is under-loaded
and no AC's are walting to be run in that strean.

One aclution to thée losd. control. probldm. in a multiples
stream system might be to balance the load in each ,st:gaean
indepsndently of any considerations involving the other streams,
This would result in a system in which

C”(i)éna(” for L = 1, 2, seer 1t
and hence 1t would always be true that

. n :

Ru gi car(l‘) £n
The ideal situation is B « M. However, the above gomponent-
¥ise-balgnced system may have R < M.even while there are some
walting AC's (i.e,, the situation presented in the beginning
of this section). _

‘To see how the situation in which R<M and W40 can be

48

TSR T e S v RS e T e A L il e

avolded, let us trace the. bulldup of the load on a
multiple~-stream system starting with no running or waiting
AC's. As requests to initlate new AC's arrive, Load Control
observes: that the current load in sach. stream is less than
the allowed maximum and therefore allows the AC's to be ‘
initiated, After a while, however, one of the streams will
eventually become properly-loaded. Suppose that another
AC requests to be placed into the properly-loaded stream;
Load Control checks the load in this stream and discovers
that the stream is full. Load Control cen then check the
loads in the other streams to see 1f there are any available
slots. If there is an avallable slot, Load Control allows
ihis new AC to be mitiatéd. This, of course, causes
a properly-losded etream to begoué, over-loaded, However, the
system as a whole 1s not over-loaded and therefore by initlating
this new AC into an alreédy properly-loaded stressm we are
préventing usable resources from going to waste, |
Load Control may continue to allqn new AC's to be
initiated until R becomes equal to M, Onoce this cocurs the
addition of another running AC would cause a genuine over-loaded
situation, Now Load Control must first check to. see if the
hew AC wishes to be initiated into a stream which is either
properly-loaded or over-loaded, If this is the case then the

49

new AC is placed into the waiting gueus for that streem to avold
over-loading the system, If, however, the stresm into
which this AC wishes to be placed is under-losded, then

some other stresa must bde over-loaded omusing all slots to
be in use. The only reasoh that this other stream was allowed
to use more than its maximum nusber of slots was to mt
available resources from being wasted, ' Now, however, there
15 legitimate demand for these rescurces amd they should de
siven back to the AC which is spesifically requesting them.
This poses no real problem to Load Contrel. It is merely
necessary to shelve one AC from the over-loaded stream so that
the needed slot becomes availsble in which to initiate the
new AC, This prooedure is followed as sdditional AC's Yequest
to be initiated until finally the system reaches a load '
configuration in which every stresm 13 properly-loaded and
there may or may not be'AC'i“mtim to Be yini‘l-:sdtd in any
of the streams, This .-_xmuoav 1s reforred 0:ms.the - .
Adesl losd configuration for obvious reasoms.

‘How consider the losd contrel functions which must be
performed when a ruming AC logs eut, 8ince we Imow that
R was always kept less than or equal to M as the loed was
building up, it must be trus that a slot is made available
(1.0,, it cmn not be the case that the systes went from

50

one over-loaded state to ‘a less over-loaded state). Load
Control must now deoide which waiting AC (if there is any)

to initiate into the newly avallable slot. First preference
for the slot goes of course to any AC's waiting in that
particular stream, Note that if the .stheme. propesed in this
section for initiating new AC's 1s used, then it is not possible
for an AC to be walting in a stream which 1s under-losded,
Therefore if no AC is waiting in the stream in uhieh an

AC just logged out, then Load Control mt nututo one of the
AC's walting in any of the properly-losded or ovor-lodd
streans, '

Thus we have arrived at a: scheme: to;' initiating nnd
shelving’ Ac'a shich assutes that avallable slats never go to
waste if there is demand for them, while at the same time
we have developed a n;chaniu which guarantees an AC first
priority in élaiming slots allocated to the streem in which
that AC wishes to run, Figure 5.6 illustrates the load
control operations discussed in this section, The respportiomment
function is treated separately in the next section because |
of its co-plexﬁ;y in a multiple-strean system,

51

4

administrator
speclfies

Ha(i)ooon.(n)

place entry
for this AC in

for stream 1

[}

running queue Ly

shelve one AC
from one of the
overeloaded
streams

place entry for
this AC in the

walting queue -
for stream i

Y

Caw(1)'c_qu(1)+

A_R!

SNLTy
this AC from
[running queue
for stream 1

S OUT OF [

52

Car(1)=Car(s

nitiate the AG

unshelve the
AC 2a®)

I. ;

place sn
for th!stz
in rumning
queue for
stream 1

ar(1)=Car(1

Pigure 5,6 Load Control in a Multiple-Strean
Purely Absentee System

‘ In s«st&cn 5.5 requests for mw AC's and losouts of .
r\mnins AC's were handlad 1n an. ordor].y ralhion to prevent
the overall system from beoonms overloulac. ' The scheme
presented never i-equiru the system te become temporarily
overloaded while in the pioce_;’é of sdjusting to its new
load configuration, When the system losd is reapportioned
bj the System Adminiatrator.‘ hoﬁver. each stream as ‘well as
the entire sy‘steu might become overloaded and thus vitl. is
necessary to provide a mechanism for quickly sdjusting the
overall system to a properly-loaded state, :Besides the: load
trimning which may be ‘hetessary,. 1t 15 also possible that '
the load balance \dthin the strem m becone severely
distorted by a reapportionment. In this section a strategy
is promtod for quickly anmd sloothly read justing the gystem
load eonrlmtion after a reapportiomment. The load control’
operauem neeonu'y for: mpporuomant are ulanmm in
Figure 5.7, , . .

To effect the reapportionment, the System Administrator
specifiés néw values of M through M a(n)* Losd Cortrol
first checks to see if the overall system has assumed an
overloaded state (R>M). - If it has then R-M AC's are

53

PORTIO] s

Administrator " Ishelve R-M AC T

resets values | .lfron the : BALANCE

of : [lowest priori THE LOAD —‘DO
M1y Fa(n) over-loades

initiate all
of the proper-
denand
Jwaliting AC's
initiate all | of the properd !-(R-..w other
waiting AC's 1 demand- mtm; ' A&c*s rhom the
AC's rrom the highest
highest priority
iority st i at. .

é |

Mcz ~»()

: THE LOAD
shelve one AC initiate one
from the : AC into the
lowest priorltq—.ﬂumu priority
over-loaded under-loaded .
stream strean
Wp - 'P -1

Figure 5.7 Load Reapportionment in a Multiple-
Stream Purely Absentee System

54

immediately shelved from some of the overwloaded streens.
Then Load Control proceeds to balanne the remainder of the
load; an ¢peration which is discussed ';lst_og 1!; this section,
The question arises here as to bow:to shbose AC's to be
shelved. Severai oriteria are useful in making this decision,
but perhaps the most signifisant is to sasme that there

is some ordering emong the various &M (1.0,, assume
each stresm corresgponds to . dlfrwﬁ mimtx in a priority
n-eoh.o). Thus the firat AC to be shelved is one of the

AC's in mo m—lo&e& strean of lmt priority, ‘Smllariy,
A utr_o,i;o_‘y to use for nlocung AC'g -to be initiated might

be to initiate an AC ﬂupg in mmor highest priority.
woég that within the stream 1tself theve u__mér,w smbiguity
as to which AC should be selested for shelving or initiation,
The entry at the front of the waiting queus 1s always the
‘next to be initiated; the entry last-in to the running queue

is next to be shelved,

Ir the mmrtiommt causes tho avorull aystu to
becona properly-loesded (BuM) then it is still possible that
some adjustments have to be made undr the balanoing mechani sm
is invoked, - |

If reapportiomment causes the ovcn-au ‘systen tobecoic
under-loaded (R<M) then the situation becames mare complex

55

depending upon how many AC's are waliting to be initiated

and whether or not these AC's are walting in under-loaded
streams. If the total mmber of waiting AC's in all streams
18 less than or equal to the under-load (M-R) then all the
walting AC's may be initiated and the reapportionment .
operations are complete, If the muber of walting AC's is
greater than the under-loed then we must consider just how
nany of these waiting AC's are really enti_ucd' to be ¥mn in -
their respective streams., More specifically, we are interested
in the mumber of AC's which are waiting to be rum in
under-loadod ntrnas. and of these we are ‘only 1nterestod in the
first- n‘u);c.,u,mtmgm's in each stream {sinece

itnitiating more- than' this. amount would cause the stream to
become over-loaded). We refer to the number of AC's satisfying
these conditions as the proper-demand, snd define

proper~demand = W, .z ‘Etinim\m(ﬂ‘u) = Car(1) ° caw(l)ZI .

all
under«loaded
atreanq :

If the proper-demand is less than the under-load Load Control
immediately initiates all of the proper-demsnd waiting AC's.
Now R is still less than M, but every ons of the AC's entitled

56

to be runming is running, Losd Control mow initiates
H-(R+v)ﬁditiomm'stohnmthelmwtol

the reappmioment is euplete. Ir Hp, is- m than
the under-losd Losd COntrel immediately initiates N«R of
the proper-demand waiting AC's, ‘but-the rwtieuent s
not yet complete since more W AC's aTe atild
walting, smi hence the losd balancing mechanism must
be imoﬁed. . V :

Prom:the preceding discussion'st is clea thab:the
load balancing mechanism 1s cslled upon whenever Loed Control
has ascertained that RuM, but there may still be some
proper-demand waiting AC's ¥hieh wust replace AC's running
in over-losded streans, The balemoing m’-?eh,o'oke to
see if there are indeed any proper-demand 'm,jm'e. Ir
not. the reapportiomment is complets; If thers are then
Losd Control ‘shelves ons AC from the lowsst pricrity over-
losded stresm and initlates one AC inte the highest-priority
underlosded stream. This proseduve continues wntil there
are no sdditional proper-Gemsnd waiting AC‘s. |

To Mze sections 5.5 and 5.6, & sechanism has been
presented to perrm etﬂctently the loed m e)erat.tonl
reqiired in a multiple~stream purely absentes system, The

57

mechaninhua tﬁo following signifiocant ohmotoristius

1-

The System Administrator can control the amount

- of .mm, usage in each computation stream by

specifying the maximum number of AC's which may

. yun in that stream at one time.

The mechanism prevents waste of available slots
by allowing properiy~leoaded stresms to become
over-losded as long as there is no demend for these

‘slots from AC's in the streams to which the alots

belong,

The mechanism guarantees an AC first olaim’ to

slots in its own stream, If &1l stots on the

system are in use when an AC requests one of its
rightful slots then an AC 1s shelved from ‘one of

the over-loeded streems.. _

The System Administrator is provided with the ability

. to reapportion the loads in_the various streans at

any time auring syni- operation, .
mo'tebhaniuaris:cuas'm&ed 1n such a way as to
comply quickly and efficiciently with reapportionment
requests from the System Administrator, If &

‘reapportionment causes the system to assume an over-

loaded state, the over-=load 1s corrected quickly

58

.80 that the iystem operates wl.thanmr—lo.d for

the shortest possible time, and then any balanscing

‘which must be done to assure AC's first olaim to their
own stream’s slots is done on'w 'mmm&mtﬁtm'
basis to keep the system operating with all slots in

- UBG,

Now consider a system devoted to cuviciag only .
interactive computations. Ohe imprevement whieh might be

made to the scheme in Section 5.2 is to consider that there

'As some ordoring associated with the running IC's which indiocates

the next IC to be logged out in the event that sush setion
is indeed necessary. By analogy to the case of abeentee
computations we define here the notion ef an interastive
computation stream, ' Purthering the analogy we essums that it
is desirable for some reason (such as a priority scheme) to
differentiate between variocus types of IC's, Thus we arrive
at & multiple-strean mechanisz for handling intersstive
computations similar to the absentes mechanism desoribed in
Sections 5.5 and 5.6, In this section we consider the

59

modifications which must be made to adapt the: absentee
mechanism to the handling of interastive computations.

Note immediately that there. m no walting queues in
the interactive streams, This is the case beocause a user
is only present for as long as it takes for his logging in
attempt, Thus it 1s not meaningful to consider intersotive
demand at this level. : »

Next consider the protlem of attempting to fill all
intersotive slots if the demand for them exists. If the
system 'loul opontu-vat ‘a level sudh: that no -;tron’ ever
becomes properiy~loaded then the load sontrol operations
aTe identical to thoss in the absentes meshanimw, However,

.cuppo-e that one stream d.ou become” mporly-londcd uhne
some other streams remain under-loaded, If a nhew IC shonld
request to be initiated into the properly-loadedd- ltrm. ‘Load
Corityol has only two choices. Eithsr 1t ean initiate the

IC and over-losd the stream, or it sah refuss to initiate -
the IC {i.e,; the IC canmt be plased into a watting queue
for an indefinite period until a slot becocmes available),
Ir 1n1t1atien is rcrund theu waste ocours m an mnable
slot goes unused, If the IC is initiated then this ustovu
prevented, but another problem arises, What happens when

the overall system becomes prop'orly-,loaded'_(l.e.,. no more

60

available interactive slots), and a user attempts to log

into an under-loaded streem? In the case of the absentee
mechanism 1t was possible to make a slot avatladle immediately
by shelving one AC from an over-loaded stream. In the

1hteriotive' case, however, making a slot available would

necessitate logging cut an IC from an over-loaded stream.

This is contrary to the contiziuoun-- nﬁle’e‘p’ouey discussed
in Section 5.2, Several alternatives are avallable here, but
unfortunately none of them is as neat as the shelving of an

AC:
1 =

Do not allow any streams to become over-loaded,
Control the load in each stream independsntly of
the load in any other stream. This results in a
componaht—wlse-balmqed syﬁtm. The obvious
disedvantage 1s t?mt slots availabtle in under-loaded
streams oan never be used by IC's from overslodded
streams thus causing waste of avallable slots,
Allow overflow in all streams, Initiate new IC's
into. whichever stream they request as long as slots
are available in any of the stresm, Once all slots
are in use allow no additional IC’s until slots
again becbne eveilable., Thls method assures that

61

available alots never go to- uiato. ut has the
dissdventege that IC's do not get first olaim to
slots in the streams in which the IC's specify they
would like to run,

3 - Allow overflow in all streans, Guarantese completion
to all IC's once initiated., If a new IC requests to
be initiated into an under-loaded stream thon
initiate the IC into that stresm and trim the load
An en overloaded stream by attrition. This method
prevents waste of avallable slots and assures IC's
first cleim to slots in the stresms in which the IC's
specifiy they would like to run, The disadvantage
18 that the trim=by=attrition might result in a slow
trim and hence the overall system might be forced
to operate in an overloaded state for some time,

Bach of these methods has its adventages and dissdvanteges,
but none of them is a “perfect® solution, Our mtmity to
arrive at such a solution here is attributable to the faot
that there is no nction which may be perfermed on IC's to
correspond to the shelving of AC's. Thus & particular
Load Control implementation might choose one of these schemes
(or perhaps others) depending upon the particular problems
at that inatallﬁtion. If we assume that the most desirable

PRSI RS Y

properties are preventing waste of anuublo_ slots and

guaranteeing IC's rirst claim to the slots in the streans
in which these IC's wish to run, then we arrive at another -
scheme (which is sti1ll, incidentally, not npe!'!'oet golution)
whioh s .similar to the third scheme above, btut prevents
the overall system from becoming overlosded: _
4 - Allow overflow in all 'strem;'mglir an IC
1s initiated into a properly-lomlted or over=loaded
stresm then the IC 1s given seconi-class status and
18 warned that his computation is Iikely to be
‘logged out 1f the overall system becomes properly-
loaded and an IC demands a slot in an under-losded
streem, This method aog{c not assure IC's continuous
service, but still aliows an IC to get on and use
a slot for as long as thc slot 1s not in demend,
Sinbe the IC 1s warned of 1ts second<oYkss status
"1t knows that 1t is 1ikely to be loggdout and hence
it can take advantage of being logged in bo get &
small job done. Of course, as other IC's log out
of this over-loaded stresm, the IC we are considering
may eventually be able to be removed from the over-losd
portion orfthe stream. At this tﬁwv the system could
inform the IC that it is ho longer of second-olus" status.

63

We will assume that this last method is used for the purpose .

of any further discussions. in this thesis, Again, other .

methods might be more desirsble in particular installations.
Now consider the reapportionment problem in a ‘

multiple-stream purely interactive system, ' Since we are

allowing streams to become over-loaded as long as the overall

systenr does not become over=-loadéd, reapportionment ocan

be handled rather straightforwardly. If the total mumber

of running IC's 18 less than or equal to the maximum allowed.

then no action need be taken (note that there are no walting

IC's to be. considered as in the absentee case), If the

total number of running IC's is greater than the allowed

‘maximum then Load Control logs out IC's from the lowest

priority over-losded streams until the number of running IC's
18 equal to the mim allowed, To ald the IC's ‘whioch’:

ars to: be logged out Load Control might warn them a few
minutes in advance to allow them to "clean up" any details
before being foroced off the systen,

08
b

d Control in e Hytrid System wi
In this section we combine the mechanisms developed

f£60* handling multiple-stream absentee systems and multiple-

stream interactive systems to form a mechanism for handling

- mixed 1nteract1fe/ubsento§ systeng.(;5; Pléurgs 5.10 and 5.11).
 Figure 5.8 illustrates a multiple-stream qt}eue:ins'

mechanism for handling a mixed 1nt_onc_t1vo/qbn§tu system,

For the purposes of this discussion we assume that there

are n absentee streams and m 1njtemtive streans. ‘Note that

there are no walting queues for Ié's'. This is c’on.lstbnt

with our provious discussion of 1ntemzivo ltrous.

, Figure 5.9 summarizes the pameterc used by Lo.d cOntrol
in making its variocus load bulmcang docuiom. The . redaat
fs-urged to: rm1&u1:o~_<-h1§sclf i'.tth thb dwmttﬁu ‘of these
parameters beTors: ..pmmmmm the cnitmng ‘41 soudston.

Previously, we have eonsiderod aystm whish 'upportod
either IC*s or AC*s: but ‘hot both, . In ﬂuse mm the
apportionment made by the Systen Adninistrator wu sald to
‘divide the system into a certain mmber of slotn uoh off
which was onpable of handling one rumung oouputatlon. It
is worthwhlle to note here that we have: '“gﬁ.&"aia ‘thiadsvision
that each slot is, in some sense, of equal size. l‘!ma we have also
assimed. that regapdless of the charabdtertstios: bf the -
computations ueing the slots, ‘the actuml &—an_da placod. upon
the system by fhese computations is dimtly__mp&rtlmi to

65

- an - e v - - - “ ,----Q-—P—‘-qF‘~--—q -———— e

ek
N "

stream stream . .. itrea’n stream strean AP

1 A T :.
Alilchldal |
B

nym

_ n nel M2
\ g) R, ‘
n absentee streans n intersctive stresns
(INTERACTI
ABSERTER RUMNING
RUNNING QUEUES
QUEUES ‘

" Pigure’ 5.8 Queueing Mechanism for a sntn with
Multiple Interactive and Absentee Streams

66

P

C

2 I,
e WL L

& B2

s HATEIAIERIS

S D

i g

the number of slots in use, This is obviously a simplifying
assumption which can be avoided by providing a moduls capable
of deciding just how *big" the slot need be %o effestively

service a particular computation, With uth a wolule available
we could procesd to define an dtomic-slot as the wmtt of .
computation size neaqﬁré-ont; - Computation streams could
then be envisioned to consist of atonié-slots; and each
computation requesting to be run in & particular stream would
be granted ‘en apprcpﬁate number of atomic-slots in that
stream. A stresm would then be considered properly-loadsd
Af 411 of 1ts atomie-elots were ln'use; ' '

This proble,ﬁ was dlscussed here becsuse we must asdn
make a sihpliry;ng assumption, namely that sbsentse slots
are the same "size" as interactive slots, From the discussion
above we can envision n;s. of gvoidirfs this assumption, too, |

The System Administrator apportions system eong‘uting
power by specifying the maximum number of eoﬁputatio@é 'ihidh!
may run in each of the absentee and m.mtm»m‘ '
Re;ppoétth ‘may ‘also be done and is digcussed later
in this section, SR

When an IC attempts to log in to stream J (n+l<fensam) Losd Contrdl
checks,to see if the tqtal nunber of rumming computations
on the system ﬁ less than the uxim number allowed. Ir

68

APPORTIONNENT

Adminigtrator
spociﬂoa -.()
H)'..Ha
1(n+ [Tt Unend warn user of
o . : his segond~ ()
IC_ATIEMPTS TO LOG INTO STREAM J: [class status -

initiate the.
new IC into
‘stream }

shelve one AC . :

&

'} logout one
Ic E

camot

} '193 in now _bO

yos t:iﬁ.te
g -~ - e AC into
<*'1‘ . stream) —"O
no .
yes ; . , 1 -
<H'A log out o initiate
- one IC one AC
2~ 7% lghelve one S -
o.z'(3)<’I AC v
no

place AC in

waiting queue ().

for stream }

Figure 5.10 Load Control in a System with Multiple
" Interactive and Absentee Computation Streams

69

Ry Is indeed less than N, then the IC 1s initiated
immediately. Note that Load Control procesds to check - ,
Whether stream } is now over-losded, and if 1t }s over-loaded
the user is warned that there is a possibility hig IC . .
may be logged out (nm tho slot taken by ‘his xc really
belongs to another stress). "It the system s now full (i.e.,
By is aqual to M) thenl-ead Control ohecks 1f.the' umzve

“portion” of the aystea is m:l.. If not then ﬂm sone
absentes streem is om-lodod N mm -holmu one
computatioh from the lowest pnmey over-loaded mmn ant
initlates the IC into’stresm m.tn checking 1 31

over-losdet apd warning the user if 1t is, If the intoi'ictin
portton ar tho mm 1- run. Load emm‘.l 10.3:43 m .‘l
to no Af it is rnn. If streem 3 1% not full then ulmly _
ono‘ of the interastive qtﬂm is over-loaded sand Loed Genml
logs out oms IC from the lowest priority overciceded interastive
stream and initiates the new IC 1uto ltro- J. ff ltrou .1
urunmx.uconmx mfcrllmmthtthomaot

log in gt this time, Note that .ome Mﬂ'kcr gltpmeln As
still available to Load Control fbr gttmnc to mzuﬁ
this IC now, . Lo.dcmtrol ooﬂdohck&;mrg&mﬂth
lower priority than stresm § is overlosded and if so cogld
then log one Ic'ont of this stream -t mtutqtmm IC.

10

This alterhative is avolded here mostly because of our

efforts to provide continuous. service {if at all possible)
to running IC's, ‘

When a new AC requests to be run in stream J (1sjen)
Load Control checks to see if the system is full.and, if not,
initiates the AC immediately. Note that no warning need .
be given to an AC if stream j is overlosded, If the -
system 1.»-_rﬁn Load Control checks if the absentee portien
of the system isas full.: If not, then clearly some
interactive stresm 1s over-loaded and Load Control 1os¢i-out
an IC from the lowest priority over-lceded interactive stream
snd initiates the AC into stream j. .If the absentes portion
»of the system 1s full Load Control ohecks 1if stream J 18
full. If not, then clearly some other sbsentee stresm is
over-loaded and Load Cohtrql shelves .one AC from the lowest
priority over-loeded stream and initiates the mew AC into
stream j. If stream) is full, then the AC may not be
initiated now and Load Control places the AC in the waiting .
queue fdr strean J.

Note that this disoussion and the diagrems of Figure 5.10
have been simplified by the oni.u:l.cnj'vofr' some of the queue
manipulation detalls prevalent in previous discussions, Thus
when a computation is said to bs initiated or shelved in
this discussion 1t is meant to be fmplicit here that these
manipulations saxe .performed when appropriate,

71

Wheh an IC logs out of stream § Load -Control checks if
any AC's are walting, If there ere none then no operations
are performed, If there are ‘AC's waiting then Load Control
initiates one AC, | |

When an AC logs out of stream J Load Control ehecks if
any AC's are walting in stream j., If- there are. then Load
Control initiates one. AC into stream j, <If no. AC's arve
waiting in stream j Load Control cheoks if AC's are walting
An any other mbsentee streams. If thers ars then one AC is
initiated, ‘ _ |

~ Note that in a system in which the loed builde up
under the control of the above mechanism. the -oﬁrail. system

never becomes over=losded and ‘no AC:4is ever placsd into a walting

queue if ‘slots are available in the stresm in which the

AC wishes -{:o run, Reépportionnent; howevey,. ¢can oayed bbth
of -these conditions. to:dcour-and the ‘methods of alleviating
these problems will now be discussed,

Figure 5,11 111uatrates ‘the operations which nmst be

performed by Load Control to smoothly efrect a 1oad
reapportionment ordered by the System Administrator. The

72

rontl valun

ml)oao!‘(n)
b : o

5

,

initiate 'all
walting AC's:

, |1u1t1gta Wy-RBT
N T
jwaiting AC'S

- 5,11 Load Reapportiomment in s System with Multiple
Interastive and Abgentee Computation Streams

73

”r

mechani sm is designed to provide continuous serviae to those
oo-pufations which are entitled to continue rumming under the
hew apporticmnment, while, at the same time, quickly |
eliminating (i.e., shelving AC's and logging out.IC'a)}those'
computations which should mo longer bs allowed to run. The
strategy employed 1nirolver rirst: tncreajmg--x o'r. decreasing

the current losd untll the proper number of -_alth'm in use,
This results in the system becoming pwgpg:ly—londed uﬂaar
the new mpporticnment. Then Load Control proceeds to lovate
any AC's which should be running, -If ‘the overmll system is
stil] under-loadsd when this procedurs begina then Losd -
Control initlates enough of these AC's to bring the system
up to & properly-losded state. Onse the system is properly-
loaded if: any mbre waiting AC's should really be running then
clearly some streams are over-loaded. Lotd‘ccmtxéi. '
eliminates one computation from an over-loaded stream and
initiates one of these AC's, This procedure continues wntil

‘no noro_ot:the waiting AC's 'h¢94d:h’wf““”4”3!_ The

rollowins disoussion considers these operations in more
detaill. o

The Administrator effects s reapportiomment by
respecifiying the maximum mumber of computaticns which may

- 74

run in each stream in the system. Load Control rirst checks

if the total number of running ocomputations is greater than
the maximum allowed under the m apportionment., If BT is
greater than My then Load Control must eliminate computations
from over-loaded stresms to get the losd desm to My, If-the
namber of _runnins AC's, R, 18]:foc‘a*t:hn.n-;or‘;oqm:toxm
makimum number of AC's alloupd. H‘, ‘then -the total - over-load

‘18 made of IC's, Load Control logs out Bi <My of the IC's in

over-loaded interactive streams (begimming with ‘the lowest
priority stroa_-l_)-.-:,‘.Onbi these IC's have been 1@-«1 out ‘the
system 1s properly-loaded, However, it is still possitle that
the reapportionment caused some of the waiting AC*s to become
Proper-demant waiting AC's and hence Load Contrsl invokes

‘the balsncing mechanism to initiate all proper-demand waiting

AC's and log out encugh over-lowd.otmputaions:te keep-the-
$ysten from becoming, over-losded.

If B, 18 greater than M, then some AC's must be shelved,
In partioular, if the absentes over=lodd is greater than the.
total system over-losd then RT-HT AC's are shelved, If the
absentee over-load is not greater than the total system
over-losd then all over-losd AC's are iholycd and then
enough over-load IC's are logged out to bring the total
system 16ad down to M,. In each of the sbove two cases
the load-balancing méchanism 18 invoked after the eliminations,

75

Up to this point we have been considering cases in- =
which the overall .system ummm If after the
reapporﬁimt the overall Mﬂl becomes ‘propsrly loeded
(Rp=i,) ‘then it is still possible that some: #AC's have

become m-opdr-demd mting AC's and henoe the ch

balanolns m:n is hwokd ,

Ir mwﬂzmmcmnmta- |
becone under-londed thun Loed cmtrol R first Wring the
system up tcammlond&smtt thmilww
demand. If the mumber of waiting AC's is less than or
 equal to ﬂu systen wider-load; thonmmmw'qm
initisted and we are done; If there are mare walting AC's
many of these AC's are Proper-demend weiting AC*'s, If the
number of proper-demand walting AC's ig grester tham the
under-load then Losd Control initiates encugh of thess to get
thom-nptoamporlg-lodeﬁ MIBMIMB
the load MMM“&O imitiate a1l of mmmu
' prqpor-deuud walting AC's, If the mmler of propur-demand
walting AC's is less than or equ&l to the W then
Load Control initiates all of the proper~demand waiting AC's
and then muatu nanugh of the remaining AC'- to- Mm the
overall srcton up to a- mmly-loma ntch and we.are done,

76

o e R e R

MR T e g S

The load balancing mechanism is only invoked whon ,
the overall system load 1s equal to the meximum losd allowed
under the new apportiomment, The mechanism checks if thé;e
are any proper-demand walting AC's. If not then we are
done, If there are proper-demand waiting AC's then clearly
some stream 1s over-loaded, We kmow at this point that
all slots are in use, 'H_nis 1t #ust be trua that either
AC's: are using-all AC:slote &nd'IG"s are usii:g all Ié'slbts.
or one of the modes is using more than its allocated number
of slots. If both modes are using their allocated slote and
there' are proper-demand waiting AC*'s then clearly some
AC's :are running’'in over-loeded streams, Load Control
‘shelves one of these over-load AC's and initiates one proper-
demand waiting AC and repeats this process until all proper-
demand waiting AC's have been initlated. If AC's are using
more than their allocated number of slots then the balencing
procedure 13 the same as if both modes o.re using thqir_anooated
slots. However, if IC's are ﬁs:.ng more than their allocated
slots then Load Control logs ocut one over-load IC and initiates
one proper-demand walting AC, This process continues until
elther the number of running IC's is equal to the maximum
number of IC's allowed or all proper-demand waliting AC's are
1n1tiated. If the first condition is satisfied first then

77

there may still be some proper-demand walting AC's, Load
Control handles this by shelving one over-load AC and
initiating one proper-demand walting AC and continuing
this process until all proper-demand walting AC's have

been initiated.

78

e R e A s e e R

CHAPTER 6 .
Commands for use with Absentee Cmpt;tations

Users of the computer system communicate with the
system by issuing commands (usually in the form of
typewritten statements) at réno_te terminals. This chapter
discusses a éet_of commands used by system usérs and
administrative personnel to c'rea.tev. ‘nomtor. and terminate
absentee computations. The dlaéussion here 1s less detalled
than in Chapters 4 and 5; 1t 1s insluded to illustrate
what funetions might: use_ﬁll}.y bb"pontioiled At the command

level,

6.1 Creating an AC I

Creating an AC involves two funotions, First, the
identification of the user must be validated to prevent
unauthorized access to the system, Second, the user must
inform the system of the absentee source file which is to
be used for input to the computation, and the absentee output
file which 1s to receive output from the computation.
Additional perameters are supplied to specify in which
stream the user wishes his AC to be run, the time limit
to be placed on the running AC to prevent waste if the AC

79

develops problems while the user 1s not present, and

.perhaps the user may wish to give a date and time before
which his AC should not be run (useful if it is known that
data needed by the AC will not be available until that time).
The CREATE-ABS command iz provided for users to create
AC's, CREATE-ABS may be used by an IC or an AC belonging to
the user orea’tiné the new AC, - 'Sinée tho.‘! computation st
already be logged in there is no identity validation necessary.
CREATE-ABS results in a call to Load Contiol which either
1n1tia£eé ‘the computation 1mediatolif'oz? places 1t into the
walting queue for the specifié_d stream depending upon the

current. system load,

6,2 Te t C

Every computation, upon completion must undergo an
orderly logging out procedure to remove the computation
‘from the system and take care of certain "cleamup® problems,
In addition, it is sometimes desirable to be able to tring
a computation to an early end (such-as when the user discovers
he has left an AC Mns with bed input dats), -

The TERM-ABS command is provided to perform both
the normale-end and early-end fumtiom'foi- AC's, The user
specifies the camputation-identification of the AC to be

80

terminated, Load Control is oalled upon to gesrch the .
queueing mechanism to see if the AC is waiting to be run,

running, or no longer on the system (either 1t 1s done or
the computation;1dent1fioat1an‘uas incorrect). If the
AC 18 walting to be rTun then the entry t‘or the AC in the
walting queus 1a deleted. If the Ac 18 currontly r\mmins
then it 1is stopped 1mod1ately and 1ogged aut. If the
AC is not on the system then the user is 80 ’_j.;!n’prmod.

6,3 C the Stresm (P: 0

 VWhen the system is heavily loaded the user may find
that his AC's take longer to run 0 sdmpletion, To speed
up the proeelalng '!:ho user may wish to paaéa the AC into
a higher priority stream {for which he may be charged more
but will get better servioe). ' ‘

The CHANGE-STREAM command is provided to remove an

" AC from one stream and place it into ahother. The user‘
specifies the commtatlon-identiﬂcation of his Ic the
stream it is currently 1n, and the atream 1nto which 1t 1s
to be placed, Note that the CI-IANGE-S‘I‘BEAK oomnand is’ also
useful for switchipng IC's from one interactive stream to

another .

81

.4 Converting en IC to an AC

A user may xuh-:;o run a large computation as absentee
but in order to be sure that he has set the computation up .
properly he may want to run it interactively for a while,
Once the computation gets going lﬁcoégﬁfullﬁ (perhaps thvo_
user notes that the proper output is belnslgoﬁgr#tod) then the
user may convert this running oonput.éion o ib-énﬁo.,

The CONVERT command 1s provid;d:'tlog omble & usger to
switch a rumning IC to an AC, The user first presses the
QUIT" button at his temiﬁal to sto§ the computation so
that the CONVERT command may be typed,

6,5 Con AC to an IC

The user may wish to monitor the progress of one
of his AC's for a while to make Bure that it i1s running
smoothly, or perhaps to user would like to meke scme changes
in the absentee source flle or other data gup_plidd to the
AC. | _

The ‘CAPTURE command 1s pr‘ovldéd to allow the user to
capture ocontrol of one of his AC's so that 1t can be controlled
from the user's terminal, Note that the user may \;1811 to -
finish. the"“c’éhpiutatlon interactively or he may wish to issue
a CONVERT command to allow the computation to finish as absentee,

82

Note that by using CAPTURE and CONVERT the user may
actually control several computations at one time from a

single terminal, This is particularly convenient for
computations which may need only minor intervention. -

6,6 Obtaining Status Information for afvse;fs'comggtgtaéns
A user may have many computations: ruaning:at one time

and may have many absentee tomputations in the waiting queues
walting to be run, The user may want to monitor the prog.fess
of these computations and find out 1f it might be necessary
to intervene (via CAPIURE and CONVERT) with some of them

to correst any error conditions which might exist, Also

the user may find that some computations are rumins too
slowly and thus it may be desirable to issue a CHANGE-STREAM
‘command, .

The STATUS command is provided to give the user
information about his various computationé on the _system.»
STATUS may be used either to. f£ind out about a spooif_ic
computation, a group of computations, or about all of this
‘user's computations, Information is returned to the ’user
indicating how much time each computation has used, what
dedicated resources are being used by each computdtion, when

each computation was initiated, etec,

83

6,7 Reguesting Intervention by an IC

‘Normally, if an AC develops problems while 1t is
running 1t 'cannot'be ‘run to completion because it needs
information which 1s unavailable to .1t in the absence
of 1ts owner, However, if a user who submits an AC happens
to also be rumning interactively when such trouble occurs
then it is possible that the user will be able to supply
the necessary information (or corrections) to the AC so
that it may run to. conplﬁtion. , ,

The INTERVENE command 1s- proviéed to ald an interactive
user in specifying that he 1s available to aid his AC's if
trouble develops, Sometimes_the hature of t!;.az, u'ztemtivev
user's.work would make it undesirable to be mtgrrﬁp;ed by
a oall for help by an AC.and in such a case INTERmE would
not be issued by the IC., An 1nteraotive.use'1§.\-us'es CAPTURE
and CONVERT to effect an intervention,

6,8 Spec)fying the AC-IC Load Apportionpent

The System Admiﬁistrator must specify the apportionment
‘of system computing power between the warious computation
streams on the :system'.'

The LOAD-SPEC command is provided to allow the

o :««&Wﬁeb%—&‘%ﬁuww@

System Administrator to make & load appdbrtionment or
Teapportionment, The initial load apportionment is

perforned' éti system astartup t1n§ and reappoftiomnts

may be done uhomm.-moossafy;.A' If for a particular
application the appoftiomonts should 'bo "the same for

oermn regular periods (shifta) than the Sysm Administrator
may specify apportionnents for each of these shifts and

Load Control 1111 keep these available. whonmr the

time for a new shift arises then Load Ccmtrol will dynamioally
reapportion the system. 1n the manner diacussod in

Chapter 5.

Adninistrativa personnel w nm the MATUS and
TERM-ABS couands useful, STATUS m be uaed to obtain
status mromtion for any conwtatlon on tha euz:.re aystem_
and TERM-ABS m be used to ternimte an AC \lh.tch
appears to be causlng problems (suoh as tylng up ocertain

:pesouroes) .

85

'y“‘»--s

CHAPTER 7

The work desoribed in this thesis was:cohsshtrated in
two areas; & general d1soussion abeﬁtntﬁeﬁbhlrnctcrtctiea
of absentee qonputatlohs.aand'thp;detlgnGOfna;hobﬁlﬁlgm“tor
" handling absentee computations in a pultiple-sccess computer
system, |

Perhaps the most significant contributions of the

thesis are the concepts of shelving and unshelving absentee
computations, the concepts of absentee and 1ntoradtite
computation streams, the design br'the multiplé;:treAn“
queueing mechanism, and the design'ot the losd control
 mechanism for hybrid_multiﬁle-strein 1nteracfivo/absentee
systemq. ' _ _

The design of the combined queueing and load control
mechanisms has the following significent characteristics:

1 - The System Administrator may apportion the computing
capability of the system bétween interactive and |
absentee computatiochs in any proportion whatever.
This allows the system to be 100£ interactive,

86

100% absentee, or any intermediate combination

of the two mbdes.

The eomputation‘Stfean~comcept allows computations
of different "types® to run in different streams.
One such difrerenﬁxatsanfnight'bu'atpriorxty scheme
in which each strésm: contdins all the computations
of a perticular priority. -

Absentee streams have the property that running

computations may be teémporarily suspended and

restarted (shelved and unshelved) several times

as they flow through the stream. This property

1s one of the keys to the suecess of the load control

mechanism,

The multiple~gstrean meoh@nlsn has the property that
the 1oad in each stresm is individually contrelled.
The multiple-stream mechanism maintains a precise
ordering among all conputlﬁions whether they be
interactive or absentee and waiting or running,

For exsmple, in a priority':ﬁﬁeno the computation
streams are ordered by their respective priorities,
Within each computation stream walting computations
are ordered by virtue of their position within the
waiting queue (first-in-first-out discipline 1s
used in this work for choosing the next entry), and

87

running computations ‘are. ordered by virtue
of their position within the running queue (last-in-
first-out-disoipline is.used in this work),

_Thus, AT at. ahy time. the load control mechanism
‘wishes to eliminate or initiate a computation, the

cholce of which computation to eliminate or which
to initiate is detemlﬁpd:by the ordering described
above, Thus.the losd control mechenism 1s made
nor‘c'offioientv'thm-'lt_.wauldﬂ.bg A thg abbve cholice
was not always predetermined. |

- The load control mechanism prevents waste of avallable

computation slots by allowing streams to become
overloaded 4f slots in oth‘_er_ntmg;u?e' unused,
At the same time, the mechanism assures computations
in & partioular :strean*flratuo;gi to slots which
have been specifically allocated to that stream,
Thus: stream i ¢ah becomé -pvo;'f}oadad_ by using
available slots in stream J. N'VHAopte_v__ez". if the
demand builds up again in j, then the over-load
stream 1 computation sust relinguish the usurped
slot and is either shelved if it 1s absentee or is
logged out if it is interactive,

7 = Finally, the load control mechanism

effects load reapportionments quickly

and smoothly,. If a computation running

before the reapportiomment 'thaﬁld also

run after the reapportionment, losd control

carefully avoids ‘either shalving of logging

out the computation, Initiation of walting

computations and elimination of running

ocomputations is done gquickly because the ordering
. described 1in (5) above makes the selection

such computations trivial,

It is worthwhile to note here that there .are. two -obvious
levels at which load conttol desisions can bé mads, némely
the admission level and the scheduling level. At the admission
level decisions are made regarding which AC's and IC's shall
be allowed to log in to the systems At the scheduling level
deciaioni are made regarding which of the logged in AC's and
IC'e shall be the next to be given a processor when one
becomes available. The mechanism designed in this work
operates at the admission level ohly. Once this load
control mechanism allows a computation to log into the
system, the computation must then fend for itself in the

89

competition for processors. At this higher level deciéiqns'
must be made on the basis of less specific information and
must be intended to be enforced over longer periods of time.
The apportionment we speak of would probably be in force
for at least several hours at a time, and the load control
mechanism we propose might be'rou:onaﬁiy'eertain to assure
that actual usage closely approximates the'appo:flonment'
in the average over such a long period.

Recalling the simplifying assumptions made in Chapter
5, namely that each slot is the same size regardless of the
particular tralts of the computntibn’using the slot, we see
that perhaps it would be useful to have our load control
mechanism receive information Trom the scheduling level. Such
information combined with an atomic-slot mechanism as
discussed in Chapter 5 would help to provide much more
precise control over the system load than the mechanism
proposed in this work. The detignforaiuch-awnechanisn is
suggested for those interested in pursuing research in

this area,

90

REFERENCES

Abbreviations used in the references:

AFIPS American Federation of Information Processing Socleties

FJCC Fall Joint Computer Conference

8JCC S8pring Joint Computer Conference

ACM Association for Computing Machinery

References:

(1)

(2)

(3)

(4)

(5)

(6)

i diers H Smm s,

IBM System/360 Time Sharing System, “Concepts and
Pacilities,” IEM Systems Reference Library, S/360-20,
€28-2003-0, 1966. '

IBM System/360 Time Sharing System, "Command Language
User’s Guide,” IBM Systems Reference Library, S/360-36,
€28-2001-0, 1966, .

Saltzer, J,H., "Traffic Control in a Multiplexed
Computer System,” MAC~TR-30, Project MAC, 545 Technology
Square, Cambridge, Massachusetts, 1966,

Corbato, F.J., and Vyssotsky, V.A., "Introduction

and Overview of the Multics System,” AFIPS Conf,

Proc. 27 (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp., 185-196,

Glager, E,L., et al,, "System Design of a Computer
for Time Sharing Application,” APIPS Conf, Proc, 27
(1965 PJCC), Spartan Books, Washington, D.C., 1965,
PP, 192-202, »

91

(7)

(8)

(9)

(10)

(11)

Vyssotsky, V.A., et al., "Structure of the Multics
Superv¥isor,” AFIPS Conf. Proc, 27 (1965 FJCC), Spartan
Books, Washingtonm, D.C., 1965, pp. 203=212,

Daley, R.C., and Neumann, P.G., "“A General-Purpose
File System for Secondary 3torage,” AFIPS Conf, Proc,
22 gi?gzg.rcm. Spartan Books, Washington,D.C., 1965.
PP, - .

Ossana, J,F,, et al., "Communications snd Input/Output
Switching in a Multiplex Co-pugj.ox Systen,” AFIPS Conf,
Proc. gz (1965 FJCC). swt‘n 8, wmmtm D.c"
1965, pp. 231-241,

David, E.E., Jr,, and Fano. R.M.. "Some Thoughts
About the Social Implicatiom of Accessible Computing,”
AFIPS Conf, Proc. 27 (1965 PJCC), Spertan Booka.
Washington, D.C., 1565, pp. 243-247.

corb‘to. P.J, » Qt_ al-‘ » "An Exmi Tinﬂ'mins

System,” APFIPS Conf, Proc, 2 (1962 8ycc) ﬁntional
Press, Palo Alto, Calif., 1962, pp. 335-s.

92

UNCLASSTIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of ab and indexing ion muat be entered when the overall report is classified)
t. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

Massachusgetts Institute of Technology 25 GROUF
Project MAC) None

3. REPORT TITLE

Absentee Computations in a Multiple-Access Computer System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Masters Thesis, Department of Electrical Engineering, August 1968

5. AUTHORI(S) (Last name, firat name, initial)

Deitel, Harvey M.

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
August 1968 104 11

8a. CONTRACT OR‘GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S)

v Sff"i;icngBaval Research, Nonr-4102(01) MAC-TR-52
§R 048-189 95. OTHER REPORT NO(S) (Any other numbera thet may be
RR 003_09_01 asaigned this report)
d

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
None 3D-200 Pentagon
Washington, D.C. 20301

13. ABSTRACT
In multiple-access computer systems, emphasis is placed upon servicing

several interactive users simultaneously. However, many computations do not
require user interaction, and the user may therefore want to run these computations
"absentee" (or, user not present). A mechanism is presented which provides for the
handling of absentee computations in a multiple-access computer system. The design
is intended to be implementation-independent. Some novel features of the system's
design are: a user can switch computations from interactive to absentee (and vice
versa), the system can temporarily suspend and then continue absentee computations
to aid in maintaining an efficient absentee-interactive workload on the system,
system administrative personnel can apportion system resources between interactive
and absentee computations in order to place emphasis upon a particular mode during
certain periods of operation, and the system's multiple-computation-stream facility
allows the user to attach priorities to his absentee computations by placing the
computations in either low-, standard-, or high-priority streams.

14, KEY WORDS

Absentee computations Machine-aided cognition Real-time computers
Computers Multiple-access computers Time-sharing
Interactive computations On-line computer systems Time-shared computers

DD .:24 1473 (M.LT.) __UNCLASSTFIED

Security Classification

