

This blank page was inserted to preserve pagination.

'f'JMi'.F A
I

uc C. oc,~j~~JL-~ ~~:":;-"'!°:,,,md l!M,j

--r~ ,~ -)~;"HJ/ J t~ .t~-:tcF':.t§:i s :to nol3rss!1J;:."'t~ns3. ~ 1mJ"! 1 L: ,·~ -~1-1,jd=')
-, ... /···I!.'!~ ;;o}::.-.;fn..-1 z:;. 9.d ff~h~ +7il~l,0 1 Jirr-b, i -i,; 't f~·\. J

. ,;.:. ·1.rl ,.;.:s._, :;~· .- l r~lltJfll\,-n -.-.,n .. :) :t rl2-~5-1.:~i Jo s!:Jn.-:i-~'J~ L \~-,d
· , • {; .,. il! ' r _;., 1' ri 1 • t :1 , •.. 'So.,..,..,, ..,, .,. ~ i- . ·, • -~ , '.~ ... fp':W -~ '- -.- ~,, C ? • ;;A &',t #;,.t"""'; .,, .i s-l'O.,;i11-,-,,,1!),.& ~,Jt;,;·8a- ,I:;) ~ ... _;;;; ::::.5 11!:.,,i

'·'' 8~1<:,ilJ(:;; :~,,! lR·; i:;;,~hu-rclb lllt&Fl1 IalJ!<l(.fitl ~ ~ e!d£;j.lJ529'.1tj9":f t t
"1 .i a:.-: .. ·_t~}f-_:; >.,~f: r·/_~ i- ,_ ~~-}.~ ?fTtrq· nt& ·"!.a'it:J '.la,flj gal~!oda 'tft! "/ . .;:.,JA:~tl qr~~-c;~)-·F;

!.)f,i:J.I •;.,;c · :;:, , • ~'- . ;,:., SW • ;;c~x:,Iq,11if_;:)•:!ii .;JO~t,§;!_j:•~rl 'td et.l4is.3flE>f;c",'".'(Ic. 1: 8-•0l:J

&., 1c , , ~ .,:•,;., :.,:;,11 ,,,,,::, ;;,,1 :·!:1,~e'l'qe.'t ~a.timr'toi :ic tilgu511J e,'::t :H;fiJ
,,wnd ·,t. ~,u;;1,.:;, ,, ls,·:; '-: ~!';n; :,,;, i:L & ftO .f1,Y9j:fi!~ ,I, 10 r:;-_s,rrh~ r_;!,/UF):l

.... ,nuJ :1 '-· a,.[,hl1:"";; 0 x1td.-ms.n +.1dj lo m:,l.-;:;,,v:ui ·rr:·,M1.J:.:."'

I
·•·", '.·'c' ;, ~:;J-:.J:: .,..:.r;, -~"- u t0 1,r,-r·' ~~:-;,-xsq *".fH b!!'!!!hl,Hi◊~ ueH:

]:-.1 :?e:..-.,;_i~!'I'~:,(! "T-;-.::; 1'~_,-:_~;-tjn"~-- ~,-,_~-.:..~ ~).tLt. .:y2 :l'r~ ij ~dei &l JT ; (b.Gv:rjqf.;,

,, ;; H~t:;:;,'.,J ni\ ,'-:ihr~·.::,,; :OJ ,;.;;;;-:.,j:l;) ~q :,J:1'::1~98 \;l!<il ,nsl!U!t1:Cf'S':I :101',frf;'}

,,, .. ·' L-'.,,ec. ;¾\IT. ' - .·;::::;•;7.,_;·3 '¼tL -;. ~toO'l~ sno :lat!:? $,l. :aid:t 1,)):;lt:,ij2c,

U .: ,.,,- ·:o gju, f ~: ,~nolJ..:,· ~.tll 79-vo 8£10'!:!(la:>-:rttq :r.;i;b:ro b":lbr,ut,,:
<L; '"''·1 "'IL .,,.,., .. , ,.., · ·;:.:1 ,::L,;.,\;,;,:.~ 9rh j~&!.'lqe'l o:t :rs::11d t,;1.J J.e

_ ,;, , .., ,,., • - . 5 i ,J;!: 1 .M -:~ 8;,,, bi·· >: f>cO::! :±.t ! 'l&b'to es-r 111p9-:r w:;.1 j ::i!'!:11
-~·-"H~) ;n_t .. , anv, ·:··})~r":. 0~; ::1-i '·iy~·; 1"c• ~13:) .srlj- :--J .fnleib aia<! 't()(i .. i{: ~ ~::~;

·,,_<• ' ,:g•,j '('n' ::~i :n11,..;.,:t·:;;i'l 1 i.onna:1 ::.tsrb &:l.2!::' H,~'Iq :'ll'.r:;9r;:,,v,2;

.'.~1 ii£-: ~, ··,:. !-ttlmur: "!el.ua el ano::Jq.:l!)"!'i.':/ :;:,'l.:::,'("

-- .,, :;·. ,,q .:sf: ·J. ';"', '>,:,cd {<' '"'.;; ,,,,~.¾l:f,"i>:' ;;i,d :.ra;;;; s:S£:,lL'>f)'.n: t.d:rlj , :uivsvK..H
.::.,, •J• . .J :c,···'""',.:,;i ,L.::j.,f1 1;a,.: >"VSi jJ .~J.,;.11ol:1s, $IL~ 1svo eno'T"l

,., __ _r-:-' ,d ,f,rtcq-:<'"r'c•)., '"," rr rt~ ·:r-9Jqm:J:a rl;:;,t.,m bn.;; -... :ra
-~:J.~n·, ... 3r··r ·: tj ~-_,;;\~c~ erf;~t::tJ!;.-~r~~~q- 70J: .J"lt~q.~t'J ~_tr .. ; {d

I
, ..•. ·, ,-,., , {~o--t>·• n;-,-•r ,.,. ~Ge. i.-t,· vn" "'W. vI r»,, i,..•.-.' .. ~1 • ..,__,,,.,.. _."-~ ~~.,,.,,. __ -Oi--:t JJ ,;;;:,.,.1,&a~~"l1.c,;._,;J.&-~ ..,.,~ {, "-~D-t~..;"

' .. ,lii'Bb!J • 1■1~ rbia~ • ,3Jq,uj- }{~ ·."Hi:i .: r s.1/.i
:::·,;.: -:.,,:, .H"?f'.ljs ,b:Ji 1'~JU!l}i"'1sq £ aeral.J :in ~•,d-.-..u.G

r l 2M19B-•Bti!lllll1M-. -- ·••ur l 111G ., j;,rb ff'4C>dB d
•,'..' 1o !?.f:iOl:::: - _ ~-- :.1$'!:!U&lulf> ,&'t;J.~a fJ''t'!,'JJ!\q""}' mn-r::

Cambridge
.~'1Lii.t'! stU lo ·:r~dilWn
-.muetta 02139

o:; .u ...
sJr;:t I

,. -, ·.-! ~:'.:~;boj .. ~q~rl-.:.t-:t:cs ·:-:;:2.Ln'
t ,-,1.,_, -i _., r .,J-·i',J... . '-J j· :~.,.:·~mj• :r $.,), ~ 9(; 9 i-i}

·f:Ji:;,_' - , .J1: ·15_t_j·::.tj_q .!1.L {f)0.f,.)f1fi,OJ .. :;<~'" Jo
\ \?i:.i.::.~ ,,,'":,i_ rrit..i :to "'J()J°?.)tJ'\1 .;()i :_:.~::,)·1r~:);) 9ff._j

I
i
I
I
{

2

THE COMPLEXITY OF FINITE FUNCTIONS

ABSTRACT

Lower bounds on the length of formulas for finite functions are
obtained from a generalization of a theorem of Specker. Let f:
(0,1, ••• ,d-l}n ➔ (O,l, ••• ,d-1} be a function which can be represented
by a formula of length~ c•n. For any m, if n is sufficiently large,
there is a restriction f': (0,1, ••• ,d-l}m ➔ (0,1, ••• ,d-l} off which
is representable by a special class of formulas called homogeneous
e-complexes. By showing that certain functions do not have restric
tions representable by homogeneous e-complexes, we are able to conclude
that the length of formulas representing the mod p sum, p > d, or the
connectedness of a pattern on a discrete retina cannot be bounded by
a linear function of the number of variables in the formula.

Also considered are perceptrons over finite fields (cyclic per
ceptrons). It is shown that cyclic perceptrons of bounded order
cannot represent the geometric predicate connectivity. An interesting
aspect of this is that one proof of the corresponding result for
bounded order perceptrons over the rationals rests on the inability
of the latter to represent the parity function. However, the parity
function requires order 1 if the field has chracteristic 2; thus,
this proof breaks down in the case of cyclic perceptrons. Another
geometric predicate that cannot be represented by bounded order
cyclic perceptrons is Euler number equals k (for an arbitrary k).
However, this predicate can be represented by bounded order percep
trons over the rationals. It must be noted, however, that our proofs
are different and much simpler than the corresponding proofs derived
by Minsky and Papert for perceptrons over the rationals.

Finally, ~e investigate k-pattern spectra of a discrete retina.
This is the zk -tuple, each component of which corresponds to the
number of times a particular kxk pattern occurs on the retina. It
is shown that the only topological predicates that can be determined
from k-pattern spectra of discrete figures are functions of the Euler
number of the figure.

This report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, Massachusetts Institute
of Technology, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy, February 1972.

3

. 1:., the heuristics of ~search. ~~%11~~ i~1'00uced me

to the problems described he~,$:,.~,:)~~ l~g hours with

me suggesti~~/-~~;o~~~~s ,.~n,.c1 :~~11~~~;il!~~:;d~·; A . : , ,

I am also indebted to my readers, 'Professor~ ~chael
~~>c:::iq:~;oo-~ .J .~

J. Fischer

and c. L. Liu for valuable suggestions.
;_- - ; u ·.:.... ·:~ i: * ·i .s ,i "'; t1 q,.: .:1s :,;.; l l £ ') ~,:; G.:),f!: e r?.:~ l ~ ~

~

I would like to thank Professor Frederick C. Hennie and
'>•,"!C Jt:"T l '.!f>ll::t.S.'.;C r:e': t ~:;

Project MAC for financial support during my study.
'r'I ,:"_ -.:(:t:r:. (~-:. -~J-t_;:1,m~..1 ~ir.J EM<JTT.i,:,J • .r,\zA :::a.H~-rr i~ "'-~;\>

Last but not least, thanks are due to Miss Marsha Baker for
• .i ,.i

consenting to type this thesis.

:~ .i.i _,/.'
,,

CHAPTER ONE:

CHAPTER TWO:

4

CONTENTS

INTRODUCTION AND SURVEY

1.1 Finite Functions

1. 2 Formulas

1.3 Measures of Complexity

1.4 Problems Related to the Length Measure

1.5 Specker's Theorem

1.6 Cyclic Perceptrons

A GENERALIZATION OF A THEOREM OF SPECKER

2.1 e-Complexes

2.2 The Generalized Specker's Theorem

2.3 On Specker's Theorem

5

5

5

9

13

20

23

26

26

38

41

CHAPTER THREE: APPLICATIONS OF THE GENERALIZED SPECKER THEOREM 50

3.1 Counting mod p 51

3.2 Connectivity 55

3.3 The Length of Synnnetric Functions

CHAPTER FOUR: CYCLIC PERCEPTRONS

CHAPTER FIVE: PATTERN COUNTING MACHINES

APPENDIX A: CERTAIN PROPERTIES OF SHORT FORMULAS

APPENDIX B: THE LENGI'H OF THE MOD 2 SUM OVER TI

LITERATURE

BIOGRAPHICAL NOTE

60

74

89

97

112

116

118

5

CHAPTER ONE

INTRODUCTION AND SURVEY

1.1 Finite Functions

Let n be nonzero and finite; then a partial functionIN'n ➔N , defined

on only finitely many n-tuples, is called a finite function. We will restrict

our attention to a subclass of finite functions. D = (0,1, ••• ,d-1} is an

initial interval of::Jl'[. Then we will consider~, the set of all (total)

n
functions D ➔ D for all possible D and (finite and nonzero) n.

Let f: Dn ➔ D. Then f is identified with a (functional) table with dn

rows (corresponding to all possible n-tuples over D) and n+l columns (corres

ponding to then arguments and the value off). Obviously the number of func
dn

tions Dn ➔ Dis d •

n Consider any function f: D ➔ D for arbitrary D, n. We will say that f

depends on the i th argument if and only if there exist two n•tuples

~ = (a1 , ••• ,ai, ••• ,an) and h = (b1 , ••• ,bi, ••• ,bn) such that aj = bj for j Ii,

a. I b., and f~) :f, f(h). Suppose that f does not depend on its jth argument;
l. l.

then we will say that the Jth
argument is a fictitious argument.

1.2 Formulas

Let there be given the countable sets E = {x1 ,x2 , ••• J of variable symbols

and O of operator symbols. Each element of O is a name for a function in~,

and conversely each function in~ has a name in O. Let~ E O represent the

function f: Dn ➔ D. Then we will write arg(~) = n and dam(~)= D.

6

1. 2.1 Definition

AD-formula is a finite expression F = ~(G
1

, ••• ,Gn) such that w E O,

arg(~) = n, dam(~)= D, and either G. E - or G. is a D-formula for 1 ~ i ~ n.
1 1

A formula is simply a D-formula for some D.

Let F be an arbitrary D-formula and let x be the highest numbered
n

variable symbol appearing in F. Then F represents a function f: Dn ➔ D.

This correspondence is well-known and we will not describe it in detail.

Without danger of imprecision, F will also be considered as a representation

for all functions obtained from f by adding fictitious arguments.

Let there be given two formulas F and G. Suppose that F represents a

certain function f, and also a representation for f can be obtained from G

by possibly choosing different variable symbols. Then we will say that F

is equivalent to G (F = G).

Remarks. Usually, if we are dealing with D-formulas for a single domain

D, we represent the identity function by a variable symbols (i.e., we omit

the operator symbol for the identity). In the formal model we use, we cannot

do this since it would be ambiguous. Also, for purely technical reasons, we

insist that every operator has at least one argument (otherwise, the wording

of several definitions and results would be more cumbersome). Thus, we do

not allow constants. Rather, instead of constants, we use operators with one

fictitious argument. Suppose we are given the formula F. Occasionally, WE

will say 1'8.eplace the variable x (in F) by the constant a 11
• This is to be

interpreted as "Replace the variable x with a (y) " where y is a variable

symbol not appearing in F.

7

n
Let f: D ➔ D and let g be an arbitrary finite function of n arguments

with domain E ~ Dn and such that g = f E. Let F be a D-fonnula for (i.e.,

representing) f. Then we can also say that (F,E) represents g. From now on

we will not be pedantic, and we will simply say that F represents g. Some of

the main results in this thesis are concerned with the question, given a

specific function Dn ➔ D, how much can we simplify its representation if we

choose an E-fonnula for it with D 1- E.

If Fis an arbitrary formula, then the set of variables appearing in it

will be called its support (denoted by S(F)). The set of operators appearing

in F will be called its basis (denoted by B(F)).

Let iJi ~ 0. Then the set of formulas F such that B(F) ~ ili will be called

the set of formulas~ ili. Hopefully without too much danger of ambiguity,

we will also say that iJi is a basis of operators (for fonnulas over ili). All

the significant results we will describe deal with formulas over ili when iJi

is finite (and representing a set of operators with domain D for a single

value of D). From now on, whenever a basis of operators ili is introduced,

it is always assumed finite. Usually, we are interested only in bases that

allow all function Dn ➔ D for a certain D and arbitrary n to be represented.

Such bases will be called complete bases (for D).

Notation. Elements of~ will always be denoted by lower case Latin

letters. The various bases of operators we will use will be denoted by

capital Greek letters; operators (i.e., basis elements) will be denoted by

lower case Greek letters (except for well known operators for which established

notation exists); fonnulas will be denoted by capital Latin letters; and D

will always refer to the domain of fonnulas. d will denote D.

8

1,2,2 Example.

If D = (0,1}, then the functions Dn ➔ D for arbitrary n are known as

Boolean functions, A complete basis for (0,1} conists of the binary operators

A (conjunction) and V (disjunction), and the unary operator - (complementation),

This basis shall be denoted by TI. The formula F = V(A(-(x
1
),x2),A(x1,-(x2)))

over TI represents x
1
~ x2 (the mod 2 St.ml of x1 and x

2
). Usually, this is

written as x1 A x2 V x1 A i 2• We have S(F) = (x1 ,x2J, and B(F) =TI.

A convenient representation of formulas is by trees, This is a standard

device that will not be described; suffice it to say that to each formula F

there corresponds a tree T(F) whose terminal nodes are labelled with variable

symbols and the nonterminal nodes with basis symbols, As an example, let F

be as defined in Example 1.2.2. Then T(F) is shown in Fig. 1.1.

Given a formula F, we need a notation for subformulas of F.

The definition of subformula is the standard one: (1) Fis a subformula

of F, (2) if F = w(F1 , ••• ,Fk)' then if Fi for 1 ~ i ~ k is not a variable

symbol, any subformula of Fi is a subformula of F, and (3) subformulas of F

are only objects satisfying (1) and (2). Subformulas distinct from Fare

proper subformulas.

Let G be a subformula of F such that G = Ct(H1 , ••• ,Hl). Then we will say

H. =G. for 1 ~ i ~ t. This notation can be iterated. In Example 1.2.2,
i .i

F. 2• 2 = -(x2). However, note that F. 2• 1 is a variable symbol which according

to our definition is not a formula. This can be remedied by replacing this

particular occurrence of the variable symbol x1 by id(x1). For this reason

we will require that all the bases we consider contain the identity function

whether this is specifically mentioned or not.

9

If G = F.j(l).j(2) ••• j(r)' then j = j(l)j(2) •.. j(r) is called the index

of G (for completeness, let A denote the index of F). If G is a proper sub-

formula of F, then F = H(X,G) where XU S(G) = S(F) and H(X,z) is a formula

(determined by j) where z appears only once. We write H = F/G. In this case,

with F and Gas given, we will also write s;(G) = X (i.e., the variables of

F that appear outside of G). We define s;(F) = ¢. The subscript F will

generally be suppressed when it will be clear to what formula F we refer to.

In what follows, whenever we will deal with a subformula G of F, it will be

assumed that the index of G is also given; for if not, then, e.g., F/G and

S*(G) are not uniquely defined.

Frequently, formulas will occur where certain variables have been re

placed with constants. Suppose Fis a formula over~. X ~ S(F), and a ED;

then, F with all variables except those in X replaced by a will be denoted

X
by F.

a
X

Obviously, F is a formula over~ U {a}.
a

If f is an arbitrary function,

X X a subset of its arguments, then f has the analogous meaning, viz., the
a

function obtained from f by restricting the elements outside of X to a.

The functional table of fX is obtained from that off by deleting all columns
a

except those that correspond to X and retaining only the rows with a

entries in the deleted columns.

1.3 Measures of Complexity

Let us introduce the three most widely studied measures on formulas:

(1) Length. The length of a formula F, denoted by L(F), is the number of

occurrences of variable symbols in F. In other words, it is the number of

terminal nodes of T(F).

10

(2) Cost. The cost of a formula F, denoted by C(F), is the number of opera

tor symbols in F. In other words, it is the number of nonterminal nodes of

T(F).

(3) Depth. The depth of a formula F, denoted by D(F), is the depth of nest

ing of operators in F. In other words, it is the number of arcs on the long-

est branch of T(F).

Now, given an arbitrary function f: Dn ➔ D and a (finite) basis P, we

define the length off over Pas

L(f,~) = min([£: There exists a formula F over P for f such that
L(F) = £})

If f cannot be represented by a formula over P, we define L(f,P) = 00 • Simil

arly, for cost and depth.

It is noteworthy that all the measures above are closely related. In fact,

for an arbitrary function f such that L(f,P), C(f,P), and D(f,P) are finite,

and certain constants c
0

, c
1

, c 2 , and c
3

that depends on P. The basis ~ is

also arbitrary, except in the case of the right inequality of (1.3.2) where

it must be such that all the constants and the function g (see Larrana 1.3.1)

may be represented.

We first establish the relation between cost and length (1.3.1).

11

Any formula F over~ can be built up from one which uses only one opera

tor symbol (an elementary formula) by successively replacing variable symbols

with new elementary formulas. If F does not contain one-argument operators,

then whenever we increase the cost during the build-up (by adding an elementary

formula with cost 1), we also increase the length. Specifically, the length

increases by between n. -1 and n -1 where n. and n are respectively
min max min max

the smallest number larger than 1 and the greatest number of arguments of an

operator off. This results in the estimate

1
n -l •L(F) ~ C(F) ~
max

C
n -1 -L(F)
min

(1.3.3)

where c = 1. Suppose F contains one-argument operators. In other words, T(F)

contains nodes with branching factor one. Let the maximal nt..m1ber of such nodes

that occur one after another on any branch of T(F) be c*; then (1.3.3) still

applies with c = c* + 1. (1.3.1) is obtained from (1.3.3) by noting that the

minimal length or cost representation of any function (over the chosen basis

f) can be achieved with a formula where c* ~ dd (the number of functions D ➔ D).

The left inequality in (1.3.2) is established by a trivial counting argu

ment (the maximal number of terminal nodes in a tree with branching factor~

n and depth dis nd). The right side requires more effort (the following
max max

argl.llllent is due to R. W. Floyd). We first state the following obvious

1.3.l Lennna.

Given a formula F such that F = F
1

(x1 ,F2 (x2)) where F2 is a proper sub

formula of F and F1 = F/F2 , the following holds:

12

where C. for D ~ i ~ d-1 is any formula representing the constants 0, ••• ,d-1
1

(or, as we have remarked previously, the one-argument function with constant

value), and F3 is any formula representing the function g(z 0 , ••• ,zd-l'zd- =

"zo if zd = O; z1 if zd = 1, ••• , zd-l if zd = d-1.

Let F be an arbitrary formula over iii, and let G be a proper subformula

of F. We already know that F = H(X,G). The claim is made that if L(F) > 1,

G can be chosen in such a way that

n
L(H)-1,L(G) < max • L(F) (1.3.4) n +1 max

where n is as defined previously. (Remark: L(H)-1 is the number of max

occurrences of the variables of S*(G) in H.)

To find Guse the following procedure: Start with F and proceed to sub

formulas of F. Assume you are considering the subformula K. Then two cases

can arise. Either amongK.j for 1 ~ j ~ k where k is the number of arguments

of the outermost operator of K there is one, j', such that L(K.j,) ~ a•L(F)

(0 <a< 1 will be determined later with the purpose of obtaining the lowest

possible estimate of L(H)-1 and L(G)), or not. In the first case, proceed to

K.j' and containue. Otherwise, set G = K.j" where j" is such that L(K.j") ==

max (L(K .)) and terminate. Before the procedure terminates, L(K) ~ a•L(F).
l~j~ •J

a
Thus -- ~ L(G) < a•L(F). This also n

max

a
means (1-a)•L(F) ~ L(H)-1 < (1---) n

max
.L(F) (because L(G) + L(H)-1 = L(F)). The lowest bound for L(G) and L(H)

a
is obtained by setting a= 1- ; hence (1.3.4)

n max

13

Now apply Lemma 1.3.1 with G replacing F
2

and H replacing F
1

. F
3

is of

depth c, depending on~- If the outlined procedure is applied recursively to

H(X,C.) for O ~ i ~ d-1 and to G, we obtain in (1.3.2) c = __s_
i 3 log2b where

n +1
b = max

n max

t

Note that unlike the cost-length relationship, the minimal value of

depth may not be achieved by the same formula as the minimal value for length.

Apart from the relationship between the various measures, depth and cor'·

will not be treated further, Even though in what follows (in this chapter)

many things hold mutatis mutandis for depth and cost, most of the specific

discussion and the examples shall be confined to length.

1.4 Problems Related to the Length Measure

In this section we will mention several questions that have been asked

about the complexity of finite functions, their status as of this writing,

and how they relate to the work to be described here.

t
A more precise expression is obtained if the right side of (1.3.2) is re-

placed by
__ c:_
log

2
b •log2(L(f))+t for some constant t. Namely, if we start out

with a formula F and decompose it according to (1.3.4) and

the length of H(X, Ci) and G is bounded by tL(F)+k where k

Lemma 1.3.1, then

is the length of C .•
i

After n applications of Lemma 1.3.1, the lengths of the relevant formulas are

1 1 1 1 k
bounded by j;rt L(F) + ~ + ... + ~k ~ bn (L(F)) + l- .l

b
above.

; hence the figure

14

The Problem of Aggregate Length

Let~ be a complete basis (for a certain domain D). The statement of the

problem is: What is the largest number L(n,~) such that there exists a function

It has been studied by several authors, and is now effectively disposed

of. Riordan and Shannon [Ri42] first derived a lower bound for L(n,TI).

Actually they studied series-parallel contact networks, but the two models

are equivalent. The first upper bound (for the same model) was obtained by

Shannon [8h49]. Krichevskii [Kr59J derived a lower bound for L(n,~) for

arbitrary domains and bases, while Lupanov [Lu59] obtained the best upper

bound for the general case. The result is

where O(f(n)) = g(n) means that lim
n ➔ CX)

are two remarks that are in order here.

im2
g(n)

is finite and nonzero.

The first is that

Formulas represent finite functions efficiently; i.e.,

the total number of formulas (over a given basis~) of

length up to L(n,~) closely matches the number of func

tions of n variables.

The second is

The fraction of functions Dn ➔ D that can be represented

by formulas of length up to L(n,~)•(1-e)for an arbitrary

0 < 8 ~ 1 approaches zero as n ➔ CX).

(1.4.1)

There

(1.4. 2)

(1.4.3)

The interested reader may obtain more information in the literature cited

above.

15

Obviously, we could define functions C(n,~) and D(n,~) analogous to

L(n,~) in terms of the cost and depth measures. In general, such functions

(aggregate complexity functions) can be defined in connection with any model

for the representation of functions Dn ➔ D and any measure on this model (an

obvious variation of L(n,~) is to remove the condition of completeness on~).

It should be noted that the asymtotic behavior of aggregate complexity functions

remains an active area of research. For references on the subject, see Lupanov

[Lu70].

The Minimization Problem

Investigation of the complexity of finite functions started on representa

tions of Boolean functions by logical circuits. In fact, formulas can be

thought of as circuits with fan-out one. Thus, the first problems studied

were those a logic designer is likely to ask: Given a finite function, what

is the minimal circuit (formula) that represents it (i.e., find the complexity,

and do so "effectively").

Unfortunately, no statisfactory solution to the minimization problem

exists (for any measure). This does not mean that it is impossible to obtain

a minimal formula for a given function f: Dn ➔ D; rather that existing

algorithms are impractical. Thus, it is always possible to order formulas

according to length, and then search all formulas up to length L(n,~) for the
dn

first formula that represents f; but since there are d functions of n argu-

ments this approach is absurb.

At the present, all existing algorithms for the minimization of functional

representations employ some sort of an exhaustive search (e.g., the Quine

algo~ithm for the minimization of disjunctive form representations of Boolean

16

functions). In fact, there is reason to believe that a more efficient method

does not exist, i.e.,

1.4.1 Conjecture

Any generally applicable exact minimization procedure is comparable (in

terms of computational complexity) to an exhaustive search among formulas.

It is useful to consider a specific machine model. Let us consider

implementations of such a procedure as a deterministic one-tape Turing machine

M~(see, e.g., Arbib [Ar69]) that receives as its input the dn-tuple defining

an arbitrary function f: On ➔ D, and whose output is the minimal formula F

(over~) for f. Conjecture 1.4.1 gives us that the computation time of

M~ may attain an exponential (in the length of the input). Let us venture

a more restrictive and precise version of Conjecture 1.4.1:

1,4.2 Conjecture

Let M~ be as described, mis the length of its input, and let ~(m) be a

function such that 1llml ➔ 0 as m ➔ 00 for an arbitrary constant c > 1. Then
m

C

the proportion of inputs of length mat which the running time of M exceeds

~(m) approaches 1 as m ➔ 00•

Actually, the specific machine model on which the procedure of Conjecture

1.4.1 above is implemented is not particularly important. It can be easily

shown (see, e.g., Arbib [Ar69J, Chapter 4) that different deterministic machine

models (this applies to the most widely used models, e.g., one-tape and multi

tape Turing machines) can simulate each other in such a way that the running

17

time of one is related to the running time of another at most by a polynomial.

In this way, whenever the running time is exponential (in the length of the

input) in one case, it must be so also in others.

It seems that Conjecture 1.4.1 was first expressed by Yablonskii [Ya59].

A very interesting result connected with this subject was recently obtained

by Cook [Co71J. He obtained strong evidence that a simpler problem requires

nonpolynomial time. The problem is that of recognizing whether a certain

disjunctive normal form (for a Boolean function) represents the constant 1.

Cook showed that if this problem could be solved in polynomial time (by a

deterministic one-tape Turing machine), then a number of other problems that

are regarded as very difficult (e.g., given the graphs G
1

and G2 , determine

whether G1 is isomorphic to a subgraph of G2; the recognition of primes; etc.),

would also be rapidly computable. Note that a fast minimization machine

would give us also a fast constant recognizer; hence, Cook's results supports

Conjecture 1.4.1.

The Classification Problem

In view of the difficulty of finding an exact nontrivial solution to the

minimization problem (i.e., one that does not employ exhaustive search), present

research is directed at establishing bounds for the length of functions. We

consider sequences of functions f
1

, ••• of 1, ••• arguments and study the

growth rate of the length of fi. Thus, we can talk of classes of linear

(length) sequences, quadratic (length) sequences, etc. Also of nonpolynomial

(length) sequences. Unfortunately, if a sequence belongs to a nonlinear class,

it is very difficult to estimate its length. We cannot even assign represen

tatives to the polynomial classes of degree> 2, let alone the nonpolynomial

18

classes. In fact, at the present we have only a very limited store of examples

of nonlinear sequences,

2 n
Consider the Boolean function f =.~1 x .• Subbotovskaya [Su61J gave a

n i= l.

striking proof that O(L(f
2, TI))~ n312• It was known already to Shannon (see
n

2 2
[Sh49J, or [Ya54]) that O(L(f ,TI))~ n (the length of this sequence, of course,

n

grows linearly if E9 is used). Unfortunately, it seems that the technique of

[Su61J cannot be generalized to d > 2,

been improved by Khrapchenko [Kh71].

Subbotovskaya's result has recently

He succeeded in showing that O(L(f
2

, TI)) n
.... 2
~ n. Since this result employs a very interesting technique, and since it

has not yet been translated into English, it is reproduced in Appendix B.

Neciporuk [Ne66J discovered
2

a sequence of Boolean functions f n
such that

O(L(f ,P)) = -
1

n for an arbitrary basis~- It is true that the functions
n og

2
n

involved in the Neciporuk sequence are rather "artificial" in that, while

defined in a straightforward way, they have no special significance; however,

lately Harper and Savage [Ha71] have succeeded in applying the Neciporuk tech

nique to a practical combinatorial problem (The Marriage Problem).

Neciporuk's construction is based on the following lemma: Let f be a

Boolean function of n arguments. Consider a subset X of the arguments off

and the set of restrictions off to X obtained by setting the arguments outside

of X to constants. Let the number of such restrictions be r. If Fis any

formula over a finite basis P for f, then the ntnnber of occurrences of variables

representing the argtnnents in Xis~ c•log2r where c depends on the basis P

(for the proof of this see [Ne66J or [Ha71]).

The Neciporuk function f of n argtnnents is then obtained as follows:
n

Then arguments are arranged in a rectangular array with dimensions as shown

in Fig. 1. 2. Each argument x .. is associated with a 0-1 valued m-tuple a ..
l.J -iJ

19

such that (1) not all components are O, and (2) if (i,j) # (k,l) then

aij # akt• Then we define

f
n

EB

all i,j
x ..

l.J

where K~j,k) denotes the conjunction of those arguments xkt whose second

subscript (t) corresponds to nonzero components of ai .•
- J

It can be verified that the number of restrictions off to the variables n

of an arbitrary row (except, perhaps, the last which may be imcomplete) ob-

n-m tained by replacing the variables of the other rows with constants is 2 •

This follows from the fact that any Boolean function can be uniquely represen

ted by a Boolean polynomial (see Lemma 4.5). Then, by the lemma above, the

number of occurrences of variables of any row (except, perhaps the last) in

any formula for f is~ c•(n-m); hence, the n
n length of f over ip ~ c• - (n-m). n m

2
In other words, O(L(~n'~)) = l~g

2
n for an arbitrary basis ip.

Neciporuk's construction may be viewed as a solution to a special case

of the following problem (the problem of exhibiting a function of arbitrary

length): Given a basis ~ and a number k ~ L(n,~), exhibit a function

n
f: D ➔ D of length~ k over ip. In Neciporuk's case O(k) =

n2
log

2
n

Since so few examples of functions that are known to be of large length

exist (in spite of (1.4.3)), the reader has no doubt already gained the

impression that this problem too is very difficult. However, we again have

the trivial solution that consists in examining formulas inn variables in

the order of their length, recording the functions they represent, and

choosing the first previously unencountered function represented by a formula

of length~ k. In fact, it is reasonable to state an analog of Conjecture

1.4.1:

20

1.4.3 Conjecture

The problem of exhibiting a function of arbitrary length is comparable

(in terms of computational complexity) to an exhaustive search among formulas.

We again make this conjecture more precise on the example of determin

istic one-tape Turing machines.

1.3.4 Conjecture

f is an arbitrary basis. Nt is a deterministic one-tape Turing machine

with input (n,k) where n is arbitrary and k ~ L(n,~), and whose output is the

dn-tuple describing a function f of n argtttnents such that L(f,~) ~ k. Then

there exists a constant c > 1 such that if k ~ €•L(n,~) for any O < €~ 1,
n

C the running time of N~ on input (n,k) exceeds c when n ~ n(€).

We can sum up the discussion of the classification problem as follows.

The problem is far from understood. At the present no sequence of functions

is known whose length grows faster than
2

n • Isolated examples of sequences

with growth rate~ n2 are known, and present research is directed at inven

ting more general techniques that can be used for estimating the complexity

of whole classes of sequences. Also techniques have to be devised ford> 2.

The importance of this will be discussed below in Section 1.5.

1,5 Specker's Theorem

The first general technique for proving the nonlinearity of a large

class of sequences (of Boolean functions) was discovered by Specker [Ho68].

Let the basis TIU {x ~ y} be denoted by~. Then

21

Theorem (Specker).

If f is a Boolean function of n arguments, if L(f,~) ~ c•n for some

constant c, then for any integer m, if n ~ ~8 (m,c), a subset X = (x
1

, ••. ,xm}

of the arguments off can be found such that (1)

(1.5.1)

where c 0 , c1 , c 2 are Boolean constants and ~
8

(m,c) is a certain number

t
theoretic function. Furthermore, (2) if the basis is IT (the other assump-

tions remaining unchanged), then c 2 = O.

This theorem has been used by Hodes and Specker to show that the predi-

cate

n
~

i=l
0 mod k

for k > 2 and xi f= (O,l} is of nonlinear length

Using the second statement of the theorem,

an alternative proof of the nonlinearily of the

(1. 5. 2)

over ~.
they are also able to give

n
length of EB xi over IT.

i=l
Another result obtained with Specker's Theorem is the fact that some

geometrical predicates (in particular, connectivity) discussed by Minsky

and Papert[Mi69] are of nonlinear length over r (see Hodes [Ho70]).

In Chapter Two we will formulate and prove a generalization of Specker's

Theorem (Theorem 2.2.2) to include the cased> 2 and multi-argument oper

ators in~. Our proof reveals the nature of both results more clearly.

t ~S Will be discussed in Chapter Two.

22

They belong to a class of combinatorial results reminiscent of Ramsey's

Theorem (see Ryser [Ry63J). In fact, an earlier version of our proof

of Theorem 2.2.2 used Ramsey's Theorem. Besides this, Theorem 2.2.2

enables us to derive the nonlinearity of new functions (sequences of

functions) such as counting mod p where pis a prime, d possibly equals

p, but there are restrictions on the basis, etc. An example of an im

provement over existing results is the connectivity predicate. Hodes

[Ho70J proves that it is nonlinear if d = 2. However, in Automata Theory,

for example, the result that a certain language can be computed in non

linear time if k states are used in the finite control would be considered

weak. Rather we search for proofs that work for arbitrary finite controls.

The Generalized Specker Theorem (Theorem 2.2.2) gives us a tool for proving

the nonlinearity of the length of the connectivity predicate regardless of

the domain D and basis t. We can apply it to connectivity by "reducing"

connectivity (for the meaning of "reduction" see [Mi69] or 3.2) to certain

symmetric functions.

We should note that the generalization of Specker's Theorem that we

prove is the obvious one to attempt; but, as the reader will see, the proof

turns out to be less straightforward. As an indication, consider (1.5.2).

It does not generalize directly to d > 2 since, e.g., the function (O,l} n➔
n

(0,lJ defined by t x. = 0 mod 6 can be represented in linear length with
i=l 1.

d = 3. This is because

n
[t x. - 0 mod 6J
i=l 1.

n
0 mod 3} A [t x. - 0 mod 21

i=l 1.

23

Hodes and Specker do not derive any bounds for the lengths of the

functions investigated by them. This question is asked (and to an extent

answered) in 3.3.

1.6 Cyclic Percept~ons

Cyclic Per-:eptrons will be treated in Chapter Four. They are an

application of ideas of Minsky and Papert to the representation of functions

by combinations of finite operators. In particular, one of the concerns

in [Mi69J is to formalize the intuitive idea that the connectivity predicate,

being "global" in nature, cannot be computed (or represented) by a "simple"

combination of "local" predicates.

The perceptron is the predicate

where I is an indexing set, ai E Q, the rationals, ~i E f, a set of Boolean

functions (whose value is interpreted as being either the rational O or 1.

The cyclic perceptron is defined as

where a. E F, a finite field, Y ~ F, and other symbols have the same inter-
1.

pretation as before. Thus, both represent a certain Boolean function.

Minsky and Papert introduce the concept of the order of a perceptron

(the maximal number of arguments on which ~i depends where i ranges over I).

They define then the order of a predicate as the minimal order of a per

ceptron that represents the predicate. They formalize "local" by defining

24

an infinite predicate sequence to be local if and only if every member is

representable by a perceptron of order~ r, for some finite r. They are

then able to show that connectivity is nonlocal.

The concept of order can also be applied to cyclic perceptrons. Chapter

Four will contain results on the order of the various predicates introduced

in [Mi69]. In particular, connectivity is shown to be nonlocal. This will

be an extension (to finite fields of arbitrary characteristic) of the results

described in [Vi70].

Chapter Five describes a model of computation (Pattern Counting Machines)

that again performs- a "local" computation followed by a "global" computation.

In this case the "local" computation is even more constrained than in the

case of perceptrons. The result is that no matter how cleverly we utilize

the "local" information in the subsequent "global" phase, the connectivity

predicated cannot be computed.

25

T(F) for the formula Fin Example 1.2.2

Fig. 1. 1

j
th

column

I
I
I

.th
1. row x.

l.

number of columns: m = r1og2nl + 1

number of rows: rn/m 7
The array of arguments used in the definition of the

Neciporuk function f
n

Fig. 1. 2

26

CHAPTER TWO

A GENERALIZATION OF A THEOREM OF SPECKER

2.1 e-Complexes

Throughout this section, all formulas are D-formulas for some fixed (but

arbitrary) domain D, and all operators are functions Dr ➔ D.

Given the formulas F1 , ••• ,Fr' we shall call the formula F = ~(F1 , ••• ,Fr)

where~ is an arbitrary operator a parallel combination (PC) ofF
1

, ••• ,Fr. ~ is

called the decoding operator of F.

Let F(X,z) be a formula where the distinguished variable z appears only

once, and let G be an arbitrary formula. Then F(X,G) shall be called a series

combination (SC) of F and G through z.

2.1.1 Definition

We give an inductive definition of an elongated n-component (e -component) n

for n :2: O.

(1) Let ~in be an arbitrary unary operator and z an '.:lrbitrary variable symbol.

Then ~in(z) is an e0-component. z is the input variable while ~in is the

input operator.

(2) Let~ be an arbitrary binary operator, Gan arbitrary e 1-component, n-

and x {/. S(G). Then F = ~(x,G) (or ~(G,x)) is an e -component. The input vari
n

able and input operator of Gare also the input variable and input operator

of F. xis a lateral variable of F. Any lateral variable of G is also a

lateral variable of F. ~ will be called an internal operator of F.

27

An example of an e -component is given in Fig. 2.1. Let F be an arbitrary n

e -component, and let~ be the sequence of lateral variables arranged in the n

order they are connected to the branch of T(F) extending to the input variable.

Then~ is the lateral sequence of F. If Fis an e
0
-component, then the lateral

sequence of Fis~ (the empty sequence). For example, the lateral sequence of

thee-component in Fig. 2.1 is x1 , ••• ,xn.

An e -component with all internal operators equal is a homogeneous n

e -component. n

2,1.2 Definition

A formula Fis an er-complex if (1) Fis a PC of thee -components F1 , ••• , n n

F, and (2) the lateral sequence of F. for 2 ~ i ~ r is either equal to the
r i

lateral sequence of F
1

, or the reverse of it.

F1 , ••• , Fr are the components of F. If the variables of F1 are numbered

as in Fig. 2.1, the second condition of Definition 2.1.2 means that any compo-

nent F1 , ••• ,Fr either appears as in Fig. 2.1, or as in Fig. 2.2. The compo-

nents of the former kind will be known as standard components, while those of

the latter kind will be called the reverse components. The lateral sequence

of F1 will also be called the lateral sequence of F.

r
Both in the case of e -components and e -complexes, one or both indices

n n

will occasionally be omitted if the particular property they refer to is

irrelevant to the argument at hand.

An e-complex composed of homogeneous e-components is a homogeneous

e-complex.

28

One might wonder what the purpose of introducing e-complexes is since

for appropriate rand m every function of n variables can be represented by

r
an e -complex. Thus, it would seem that this class of formulas is trivial.

m

However, we will be concerned with er-complexes where r remains fixed as n
n

grows without bounds, and this will allow us to obtain interesting results.

We introduce some notation. Let F be an e -component with lateral
n

sequence xi(l)'xi(2), ••• ,xi(n)" a ED is an arbitrary constant. ~j denotes

the internal operator corresponding to xi(j)" Also set ~n+l = ~in" Then

1n (1n (In (W))) if 1 ~ J' < k ~ n+l '!'j a,yj+l a,.·· ''!'k-1 a, 'k • • •

a
~ (j 'k)

~j if 1 ~ j = k ~ n+l

undefined otherwise

a Note that Cl)(. ') is a unary operator if j = n+l, otherwise it is a binary
l. 'J

operator (if it is defined at all). Usually we will suppress the superscript

a because it will be clear what constant is referred to.

We now state the simple

2,1.3 Proposition

Let F be an e -component with lateral sequence~ and input variable z.
n

y is an arbitrary subsequence of~ of length m ~ 0 and a ED is an arbitrary

constant. If we denote the set consisting of z and the elements of y by Y,

then FY is equivalent to an e -component G.
a m

29

Proof

Let~= (x1 ,x2, ••• ,xn) and y = (xi(l)' xi(2), ••• ,xi(m)) ~ ~• Set i(O) = 0

and i(m+l) = n+l. Then G has the operators Wj = ~(i(j-l)+l, i(j)) for i ~ j ~

m+l (~m+l is the input operator of G). 0

2.1.4 Remark

Obviously, Proposition 2.1.3 holds fore-complexes as well; one merely

has to perform the above construction for each component.

Proposition 2.1.3 will be frequently invoked. Namely, we will take an

e-complex F, select a subsequence y ~ ~, the lateral sequence of F, and obtain

Gas above. In this case, G is called the result of an a-merger with basis

Y.2.!!F.

We introduce another restricted class of formulas.

2.1.5 Definition

A series parallel combination of e-components (SPCeC) is obtained accor-

ding to the following rules:

(1) An e-component is an SPCeC.

(2) Let F and G be an e-component and an arbitrary SPCeC respectively.

Then the SC of F and G through the input variable of Fis an SPCeC.

(3) If F1 , ••• ,Fr are SPCeC's, then a PC of F1 , ••• ,Fr is an SPCeC.

(4) An SPCeC is only an object satisfying (1), (2), or (3).

30

Given an arbitrary SPCeC F, we describe its set of components. If F

consists of the single e-component G, then G is the only component of F.

If Fis the SC of an e-component G and another SPCeC H, then the set of

components of F consists of G and the set of components of H. If F is a

PC of F1 , ••• ,Fr' then the set of components of Fconsists of the sets of

components of F. for 1 ~ i ~ r. Among the components of F, those whose input
1.

variable corresponds to a terminal node of T(F) will be called terminal

components while the others will be called internal components. An example

of an SPCeC is given in Fig. 2.3. This particular SPCeC has four terminal

components and two internal components.

2.1.6 Proposition

An SPCeC is equivalent to a PC of re-components where r = d•I+J and I

and J respectively are the number of internal and the number of terminal component of F.

Proof F can be converted into a PC of e-components by using Lennna 1.3.1.

The estimate of the number of e-components in the PC is also obtained from

there. □

Remark It is a simple matter to verify that if F of Proposition 2.1.6

has k components, then I~ k-1; and thus r ~ d· (k-1)+1.

2.1.7 Proposition

Fis a SPCeC with k components F1 , ••• ,Fk. F. for 1 ~ i ~ k is an e -
1. n

component for n ~ O, and, furthermore, the sets of lateral variables of F.
1.

and F. are equal for 1 ~ i, j ~ k. Let X be the set of lateral variables
J

of F. and let Z be the set of input variables of F. Then for any m ~ 0 and
1.

31

a~ D if n ~ ~l (m,k) where ~l (m,k) is a certain function (to be defined),

there exists a subset Y ~ X with I l YUZ Y = m such that F
a

is equivalent to an

r
e -complex G with Y as the set of lateral variables. Furthermore, r ~ d· (k-1)+1.

m

Proof If m = 0, we can immediately apply Proposition 2.1.6 and obtain an

r
e0-complex where r is as described in the statement of the proposition; thus

~l (O,k) = O. We assume, therefore, that m > O.

We recall the following familiar result:

Let i(l), i(2), ••• ,i((p-1)
2
+1) be a sequence of distinct integers. Then

we can extract a subsequence of length p that is either increasing or decreasing

(for the proof see Berge [Be71] p. 16).

Without loss of generality, we can assume that the lateral sequence of

F1 is x1 , ••• ,xn. Then the lateral sequence of F2 is xi(l)' xi(2), ••• ,xi(n)•

The sequence i(l), i(2), ••• , i(n) consists of distinct integers; therefore,

2
if n ~ (n1-l) +l, we can apply the above result and find a subset x

1
~ X of

n
1

variables such that after performing an a-merger with basis x
1

on all

components of F, the lateral sequences of the descendants of F1 and F2 are

either the same or opposite. We can continue in this way, processing one

after another all components. We end up with an SPCeC with components

G1 , ••• ,Gk such that the lateral sequence of Gi for 2 ~ i ~ k is either equal

to that of G1 or the reverse of it. To obtain G, we apply Proposition 2.1.6.

In order that lyl = m, we must have

n ~ ~l (m,k)

form~ 1. The estimate for r is obtained from the Remark following

Proposition 2.1.6. D

32

Another equivalence that will be used later is given by

2. 1.8 Lemna

Eis an er-complex, Xis the set of its lateral variables, and Z is the n

set of its input variables. Then for any m ~ a and a ED, if n ~ Tl2(m,r),

there exists a subset Y ~ X with IYJ = m such that EYUZ is equivalent to a
a

r
homogeneous e -complex F.

m

Proof If m = a, we simply use Proposition 2.1.3, and the result is a homo

geneous ea-complex (obviously, any ea-complex is homogeneous~. Then Tl2 (a,r) =0.

Thus, from now on we assume that m ~ 1.

The proof will be given for the special case when E has two components:

a standard component E1 and a reverse component E
2

. It will then only be

indicated how to generalize the proof.

A procedure (The Homogenizing Procedure~-HP) will be described that will

2
transform an ep-complex G consisting of a standard component c1 and a reverse

component c
2

with p ~ Ti
3

(q) (for a function Ti
3

that will be defined later)

and with the properties: (1) There

R2 ~ D such that coi (a ,y) ~ Rl = idRl

for 1 ~ i ~ p where coi and wi is an

exist (possibly empty) subsets R1 and

(identity on R1) and iri (a ,y) t R2 = idR
2

operator of c1 and c
2

respectively

and the first argument corresponds to the lateral variable, and (2)

co. (x ,y) J
1.

(2. 1. 1)

(i.e., the operators of c1 are identical on the inverse image of R1). Simil

arly for the operators of c2 on R2•

33

Remark Note that if R1 and R2 include the range of every operator,

Property 2 translates into the identity of the operators. In particular,

this holds if R1 = R2 = D.

Remark 2
Note that an arbitrary e -complex satisfies Properties 1 and 2

2 The result of applying HP will be an e -complex H that will either be
q

homogeneous, or will have Properties 1 and 2 with s
1

and s
2

replacing R
1

and

~ 4 R2 respectively and R1 r s
1

or R
2

f s
2

• Due to the Remarks above and to

the fact that Dis finite, repeated application of HE on E finally yields F.

The condition on n is

(2.1.2)

2d times

This bound for n corresponds to the worst case when R1 or R2 increase by only

1 on each application of HP.

Before describing HP, note the useful fact that because of Property 1,

Properties 1 and 2 are preserved under a-mergers.

Description of HP The lateral sequence of G is of length (v+l)•u-1 for

certain values of u and v that will be defined later.

Consider the sequence

a a
(w((k-l)•u+l,k•u)' W ((v-l)•u+l, (v-k+l)•u)) (2.1.3)

fork= l, ••• ,v. Sequence (2.1.3) is illustrated in Fig. 2.4. Th.e two

vertical lines represent G
1

and G2; the numbered horizontal outlets represent

the lateral variables (with the corresponding number); the boxes indicate the

34

variables and operators that take part in the formation of any particular

W(. ")and~(..); an 'x' beside a variable indicates that it is not set to 1,J 1,J

the constant while 'a' indicates that it is set to a; the two checked boxes

represent the first member of (2.1.3).

In the sequence (2.1.3), either (Case I) the ranges of ~((k-l)•u+l,k•u)

and t(() for 1 ~ k ~ v are included in R1 and R2 respectively, v-k •u+l,(v-k+l)•u)

or (Case II) not.

Case I. If vis large enough, we can find q identical elements in the

sequence (2.1.3). Let the indices k corresponding to these elements be

k1 , ••• ,kq. Performing an a-merger with this set as basis, the desired

e-complex His obtained. Note that in this case we use Property 1 of G.

Namely if~* is the first component of a pair in (2.1.3) whose range~ R1

and if~ is an arbitrary operator of c1 , then ~(a,~*) =~*(similarly for

the second components of the pairs in (2.1.3) and operators of c2). Thus,

the components of the identical pairs in (2.1.3) become the operators of H.
2 2

A bound for vis q• (dd) 2 (dd is the number of operators D
2 ➔ D).

Case II. Assume ~((£-l)•u+l, £-u)(b,c) i R1 for some b, c ED and

1 ~ £ ~ v (the case when ~((v-£)•u+l, (v-t+l)·u)(b,c) f. R2 can be treated

similarly). But then

(2.1.4)

for all O ~ j ~ u-1 (as a consequence of Property 1). Provided that u is

large enough, we can find an element e ED that appears w times in these

quence (2.1.4). Let the indices j corresponding to the appearances of e be

j(l), ••• ,j(w) (see Fig. 2.5). Obviously then (all the variables considered

except x~ have been set to a), ~-u

for 2 ~ t ~ w

35

i:.o • ~ (a e) = e · (£•u-J(t), N'u-j(t-1)-1) '

(the first argument of~(. ") corresponds to the lateral
1. 'J

variable). Thus,

At this point we consider separately two cases:

Case IIa t = 1 and j(w) = u-1. We perform an a-merger with the basis

consisting of the variables with indices u-j(t)-1 for 1 ~ t ~ w-1. As a re-

2
sult of this we obtain an e 1-complex G' such that Property 1 holds for G' w- 1

on R1 U (eJ (G2 satisfies Property 1 on R2 ~ R2; in any event R2-R2 = m).

Note that at this point Property 2 is still satisfied only on R
1

and R
2

by

G1 and G2 respectively.

Case IIb. £ # 1 or j(w) < u-1. We perform an a-merger with the basis

consisting of the variables with indices t.u-j(t)-1 for 1 ~ t ~ w. As a result

of this we obtain an e!-complex G" such that Property (almost) holds for G{'

(the same remarks regarding Gt and Property 1 as well as G1, G2' and Property

2 apply as in Case IIa). The only exception may be i:.o1 (the operator of c;
that is closest to the decoding function). By definition, ~l = i.D(l,t-u-j(w)-l)'

and there is no assurance that ~1(a,e) = e. We may rectify this situation

by absorbing i:.o1 into the decoding function in the following way: Let G"

0(G1, G2). Now set x
1

= a (after the a-merger the variables have been

renumbered). Let S(G") - (x} = U.
1

where G1 equals G1 minus i:.o1 and c2 equals G2 with the input operator modified

as follows: ,J.r! = ,J.r,.(a,,J,r'.')(remember that G" is a reverse components, and,
1.n w 1.n 2

hence, x1 is attached to~;).
2

Clearly, G' is an e -complex satisfying
w-1

36

Property 1 with R
1

U (eJ replacing R
1

•

We can now resume considering Cases IIa and b together. To obtain H

(with components H1 and H2) we must find among coi for 1 ~ i ~ w-1 q operators

that are identical on the inverse image of R
1

U (e} (i.e., (2.1.1) with

R1 U (eJ replacing R
1

) and again perform an a-merger. We again emphasize

that the operators of H
2

are identical only on the inverse image of R2 , and

this property has not been violated by any of the transformations of the

original e-complex G.

To obtain q operators that are identical on the inverse image of R1 U (e},
d2 d2

it is sufficient that w-1 ~ q•d ; therefore, u ~ d. (q•d +1) and

(2. 1.5)

d2
where 8 = d • This is obtained from the values of u and v derived above.

Recall that ~
3

(q) = (v+l)•u-1, the length of G, ~
2

for r = 2 can then be

obtained from (2.1.5) and (2.1.2).

The proof for the general case is obtained by defining the Generalized

H Procedure (GHP) with the corresponding function ~4 • We consider instead

of (2.1.3) the sequence

1 r' 1 r"
(co(s,t)' 00

• ,co(s,t)' ~ (s' ,t') , •• • ''(s' ,t))

1 r'
wheres= (k-l)·u+l, t = k•u, s' = (v-k)•u+l, and t' = (v-k+l)•u. co., ••• ,co.

l. ' l.

1 rrr
denote the operators of the standard components of G while w., ... ,~. denote

' l.]_

the operators of the reverse components (r' + r" = r). Without detailed

argument we state that in the general case v = q.8r while u remains the same

(u is determined by the requirements of Case II at which time only one

37

component is considered). From this we obtain analogously to (2.1.5)

2 r+l r
\Cq) = q •d.5 +q•d• (5 +5)+d-l

~2 (m,r) can then be obtained from

r•d times
D

which is an analog of (2.1.2).

2 .1. 9 Remark

As we have seen, ~2 in Lenuna 2.1.8 depends on r, the nlllllber of components

of F. However, we shall mostly be using e-complexes that contain many components

that are identical except for the input operator (such e-complexes are obtained

e.g., by the use of Proposition 2.1.7). It may be checked that in the application

of GHP only one representative from each such group of components need be

considered. This significantly reduces ~
4

• Similarly, in computing ~2 from

(2.1.5), only i-d compositions are required where tis the number of groups of

similar components (corresponding to d compositions for each group of similar

components).

2 .1. 10 Remark

r The operators of a homogeneous e -complex F obtained as a result of
m

applying Lenuna 2.1.8 possess an added property that will be used later= Let

R be the range of ~(x,y) an internal operator of R (x corresponds to a lateral

variable); then ~i(a,y) R = idR (the identity on R). This fact follows from

the definition of HP (GHP). This particular property of the operators of

a the components of F will be called the IR-property relative toy. In what

38

follows, we will always suppress "relative toy" since there is no danger

of ambiguity, We will simiarly suppress the subscript R unless we will be

interested in a specific range. We will abbreviate "Fis an e-component

(complex) whose operators possess the Ia-property" to "Fis an e-component

(complex) with the Ia-property".

A familiar and convenient way of representing a binary operator ~(x,y)

is by a labeled directed graph. The graph of~' denoted by f(~), is defined

as follows: The nodes of r(w) are labeled with elements of D. A directed

arc labeled with a ED exists from b to c if and only if ~(a,b) = c.

If D = (1, 2, 3, 4J and R = (2, 3, 4J an example of a graph f(w) for

2
an operator~ with the IR-property is shown in Fig. 2.6.

Given an arbitrary en-component F, the output of the operator ~k is

in the case of a homogeneous e -component with internal operator w this will
n

be abbreviated to

2,2 The Generalized Specker's Theorem

We first give the following

2,2.1 Definition

Let~ be an arbitrary basis and a ED any constant. Let F be a formula

over~ with S(F) =XU YU Z such that lxl ~ n -1 (the maximal ntnnber of
max

arglllllents of an operator of~), Y is disjoint from X, but otherwise arbitrary,

39

and Z = (z} is a singleton (disjoint from X and Y) such that z occurs only

once in F. The set of functions f(X,z) represented by all possible such

formulas F with the elements of Y replaced by the constant operator a will

a be denoted by~.

In particular, every operator of~ with all but k ~ 1 arguments (k is

arbitrary) replaced by a is in ~a. Note that if ~(X,z) E ~a, then~ may

qualify for ~a by virtue of a number of different representations. If z

(or any variable of X) in any one of them corresponds to a variable that

occurs only once, it is called a distinguished argument). The other arguments

are called free arguments. Thus we may easily find a basis~ and an operator

~ such that all arguments are at the same time distinguished and free.

We now define a restricted class of e-components and e-complexes: ~ is an

arbitrary basis and a ED is any constant. Let F be an arbitrary e0-component;

a a then Fis an e0-component ~ ~. Let ~(x,z) r ~ be a binary operator, z

a
a distinguished argument (hence xis free), and Gan en_ 1-component over~ ;

then ~(x,G) is an e -component over ~a. An e-complex over ~a is an e-complex
n

such that all its components are e-components over ~a.

The main result of this chapter is

2.2.2 Theorem

n
Let there be given the function f; D ➔ D such that L(f,~) $; c.n for some

constant c and basis~- Then for any m ~ 1 and a r D if n ~ ~
5

(c,m),there

exists a subset Y of the arguments off such that lYl = m and fy is either a
a

constant or is represented by F, a homogeneous e:-complex over ~a with the Ia-property,

Y as the set of lateral variables, constant input operators, and r ~ d· (2c-l)+l.

40

Proof

If f has rn fictitious arguments, then let Y be the set of these arguments,

and fy is a constant.
a From now on we assume that f has~ m-1 fictitious

arguments..

The statement of the theorem gives us that there exists a formula E

over~ such that L(E) ~ c•n. Therefore, there are~ 1/2.n variable symbols

representing the arguments off which either do not appear in E or appear

~ 2•c times. In other words, there are~ l/2n-m+l variable symbols that

actually appear in E and such that the number of occurrences of each is~ 2·c.

Denote the set of these variables by x
1

•

If n ~ 2•~
8

(n2 ,2c)+-m-1, we can apply Lennna A.9 and obtain a subset
x2 x2 ~ x1

with lx21 = n2 and such that Ea is equivalent to E
2

, and SPCeC over

fa with at most 2c components and such that the set of lateral variables of

every component is x2•

~1 (n3 ,2c) we can apply Proposition 2.1.7 and obtain a subset

lx3 1
x3

= n
3

and such that Ea
r

is equivalent to E3 , an e -complex
n3

over ~a with r ~ d• (2c-1)+1). The estimate for r is obtained at this point.

If n
3
~ ~

2
(m,2ci we can apply Lemna 2.1.8 and Remark 2.1.9 and obtain

F, the desired homogeneous e:-complex over ~a with the Ia-property. The

Ia property is a consequence of Lemna 2.1.8.

41

Discussion of ~5• The present proof yields

The exact representation of ~
5

is extremely complex, and in what follows we

shall use only a very rough approximation. In Appendix A it is seen that

~8 (t,k) (as a function of k) grows faster than iexp(b,2k) for any constant b.

The functions ~land ~2 contribute only insignificantly to this, and thus we

state:

~
5

(m,c) ~ iexp(b,4c) for c ~ c(b)

and an arbitrary constant b
(2.2.1)

(Later we shall se that the size of ~
5

prevents us from obtaining any

interesting bounds for the functions investigated with Theorem 2.2.2. The size

of ~
8

which contributes most to ~S results from the technique used in Lennna

A.3 to obtain a nesting sequence for a given formula F. It is not known

whether this technique can be improved. Our guess is that it cannot be.) 0

2. 3 On Sp ecker 's Theorem

In this section it will be shown how Specker's Theorem follows from

Theorem 2.2.2 (the statement of Specker's Theorem is given in section 1.5).

In Theorem 2.2.2 set D = {O, lJ, f = r,, a= 0 and let f be as described.

Then by Theorem 2.2.2, we obtain that for an appropriate choice of n, we can

find a subset X of the arguments off with lxl = m and such that f~ is either

a constant or represented by

42

r
where o/:(0, lJ ➔ (0, lJ and Fi for 1 ~ i ~ r is either a standard or reverse

0 0
homogeneous e -component over~ with the I -property and constant input

m

operators. The value of r is bounded as described in Theorem 2.2.2.

We now analyze the various functions that can be represented by e-compo-

nents with these restrictions.
0

First note that~ consists of all Boolean

binary operators; furthermore, if f(x,z) E ~
0

, then both x and z are free

(because every Boolean binary operator can be represented over~ in such a

way that each variable appears only once), and thus there are no restrictions

on the use of operators in thee-components we encounter.

All possible graphs f(~) for~ E ~Oare shown in Fig. 2.7. The ones that

satisfy the IO-property are starred. The functions obtained by choosing a

value for the constant input operator for the starred graphs are shown in
m

Table 2.1. In general, this function is either b0 $ b1• TT where TT=

m

TI (1 !+' x.)
i=l

1

or c0 ffi c 1·cr where cr = i~l xi for some values of b
0

, b1 or c0 , c1• Now, taking

h
into consideration the fact that TI•cr = 0, and that every o/: (0, 1} ➔ -0, l}

can be uniquely expressed as a Boolean polynomial

2h-1

ffi
i=O

where ci f (0, 1) and Mi is the monomial (of degree one in each variable) in

those among x
1

, .•• ,¾ corresponding to nonzero bits of the binary representatior

of i(see Lennna 4.5) we obtain the first part of Specker's Theorem.

The second part of Specker's Theorem could be obtained directly at this

point; however, we will derive a generalization of it in Example 3.1.3, and thus

omit it here.

43

It must be pointed out that our derivation of Specker's Theorem results

in a slightly larger bound for n; however, since no known application requires

a specific value for the bound, this is immaterial. Specker's bound (see

[Ho68]) is obtained from the function

µ(m,O) = m
)6kµ(m,k-l)

µ(m,k) = 4(k+l •µ(µ(m,k-1),k-1)

by setting ~8 (m,c) = 2µ(m,2c). Our bound is slightly larger due to the addi

tional processing implicit in the application of Proposition 2.1.7 and Lemma

2.1.8. However,µ resembles ~7 and this function by far contributes the most

to ~5 ; thus, we can state that the bounds are approximately equal.

Finally, let us note the fact that Theorem 2.2.2 allows us immediately

to amplify Specker's Theorem. Namely, the statement of the theorem involves

the basis consisting of all binary Boolean operators. However, the proof

of Theorem 2.2.2 works for bases consisting of operators of an arbitrary

nwnber of arguments.

44

.. •·.

T(F) where Fis an e -component
n

Fig. 2.1

T(F) where F is a reverse component of au e-complex

Fig. 2. 2

45

F is an SPCeC

Fig. 2.3

46

G

1--t-.. a (v+l)•u - 1---• a

.

u-l~a v•u+l=tLJ a
U X v•u x

u+l a . .
• .

• • •
I ~ la

. . •
(k+l) •u-1 2u-l=tLJ a

2u X • • •
• • • • k,u+l=t;w a •

I t la
k•U X

(k-1).u+l I • •
I • •

• 3u-l-ma X (• k,u-l=tLJ a • • k•u X • • • . •
I . • 2u+l=ltia '

. • .
I I

(v-l)•u+l~ a 2u X

2u-l a . I ♦ I ' ' I • I v,u-1 ==ttJ a
v,u X

u+l=ijJ•
U X

• :

(v+l). u-1 --t l -----t Gl G2

X=Q ((k-1) •tHl, k•u')

y = W((v-k),u+l,(v-k+l).u)

Illustration of the HP procedure (I)

Fig. 2.4

}Y

47
• •
-◄----

(t-1),u-l--ITT a .
. -~---

1,u-j(w) --+-t I a

e

e

£,u-j(2) --t--1 a e
• • # • • • . .

£,u-j(l) I t I a

• • • • . .
i•u t b

C

Illustration of the HP procedure (II)

Fig. 2. 5

2
2

r(cp) for an operator cp with the 1(2 , 3 , 4 } -property

Fig. 2.6

2

0

48
0, 1 1

0 1 (a)*

o, 1

0 (b)

0

1 (c)*

9 8 (d) ">'(0

0

0

(e)

(f)

(g)*

(h)*

The graphs of all Boolean binary operators

Fig. 2,7

(i)

(j)

(k)

1

(.R,)

1

(m)

(n)

(o)

(p)*

49

f(t:P) q:, in(y) Function

a 0 0

a 1 0

C 0 0

m
C 1 n(lEBx.)

i=l 1

d 0 0

d 1 1

m
g 0 EB xi

i=l
m

g 1 1 EB EB x
i=l i

m
h 0 1 EB n (1 EB xi)

i-=1

h 1 1

p 0 1

p 1 1

Table of functions that can be represented bye-components
0 with the I -property (see Fig. 2.7) and constant input oper-

ators if D = {O, 1)

Table 2.1

50

CHAPTER THREE

APPLICATIONS OF THE GENERALIZED SPECKER THEOREM

The principal results obtained previously [Ho68, Ho70] by the use of

Specker's Theorem are

3.0.1
n

A new proof that the Boolean function iWl xi is of nonlinear length over

This is accomplished as follows. First note that the restriction of the

mod 2 sum of n variables obtained by setting certain variables to O is again

a mod 2 sum (but of a smaller number of variables). Now apply Specker's
n

Theorem (see 1.5). Suppose i~l xi is of linear length over IT. Choose n

large enough to obtain m = 3. The theorem states that for this particular

bases c 2 = 0 in (1.5.1). However, it can be checked that in this case no

choice of c0 and c 1 will yield the mod 2 sum of three variables. A contra

diction.

3.0.2
n

The function f: { 0' 1} n ➔ {O, l} defined by f = 1 if and only if Z:: X.

i=l 1.

-

mod 3 is of nonlinear length over '2:. We proceed similarly as before. Assume

it is of linear length. Apply Specker's Theorem with n sufficiently large to

t
Of course the results of Subbotovskaya and Khrapchenko are stronger for this
particular example.

0

51

obtain m = 3. If we replace x1 , x2 , x
3

in (1.5.1) once by 1, 0, 0, and

another time by 1, 1, 1, then the value of (1,5.1) remains unchanged. However,

the value off (with all variables except x
1

, x 2 , x
3

replaced by the

constant 0) is different on these two assignments. Again a contradiction,

Both of these results were derived by Hodes and Specker in [Ho68J.

We might note that the technique of 3.0,2 can easily be generalized to

counting mod k where k is an arbitrary integer (see (1,5.2)).

3.0.3

Certain geometric predicates (see [Mi69J), in particular the connectivity

predicate, are of nonlinear length if expressed with binary Boolean operators

(this result was obtained by Hodes in [H070]). We will not discuss this in

greater detail now since this technique will be treated later in 3.2.

In this chapter we will use Theorem 2,2.2 to generalize all these results.

3.1 Counting mod p

then

Consider the function (0, l}n ➔ (O, l}

1 if
n
r x. - 0 mod p

i i=l

0 otherwise

3.1.1 Theorem

If pis a prime, if !nl < p, then fp is not of linear length over an
n

arbitrary basis.

52

Proof

Suppose the statement of the theorem is not true. That is, there exists

a prime p, a finite set D such that lo!< p, a basis~ of operators on D, and

L(fP, ~) ~ c•n for some constant c. n

First note that if Xis a subset of the arglllllents of fp and Ix!= m, then
n

(fp)X = fP. W 1 Th 2 2 2 n O m e can now app y eorem ••• For an arbitrary m, if n is

sufficiently large, there exists a subset X of the arg\llllents of fp with !xi = m
n

and such that (f~)~ is represented by a homogeneous em-complex F (over ~O and

with the I
0
-property) with X as the set of lateral variables. In addition,

since fp is a Boolean function, the lateral variables of Fare restricted to n

(0, lJ .

Consider now any component Fi of F and f(~i) where ~i is the internal

0
operator of Fi. Since ~i has the I -property, f(~i) has the general appearance

of Fig. 3.1. Fi is determined by ~i and the constant input operator a.•
l.

Now

let m ~ d and consider the sequence (sj) for O ~ j ~ m where s O = ai and

sj = ~i(ll ••• 11,ai) for j > O. Let sk(i) be the first element in the sequence

j times
that is repeated at some later point; in fact, let k(i) be the position of the

first occurrence of this element. Let k(i)+t(i) be the position of the second

occurrence of this same element. Then we shall call k(i) the prefix of Fi

while l(i) will be called the period of Fi.

Clearly, if Fi is a standard (reverse) component, then ~i(x1x2 ••• xm-k

11 ••• 1,a_) (~i(xmxm_ 1 ••• xk+lll ••• l,ai)) where k ~ k(i) is a function of the
l.

n\llllber of l's among x1 , x2 , ••• ,xm-k (~+1 , ••• ,xm) mod l(i).

Thus,

53

If we set Y = {'1<
1
+1 , ••• ,xm_k

2
J and choose k

1
(k2) to

exceed or equal the prefixes of all the reverse

y
(standard) components of F, then F

1
represents a

function of the nlllllber of l's among the variables of

Y mod .tcm(i(l), ••• ,1(r)). (3.1. l)

On the other hand, by the initial assumption, F~ is a function of the number

of l's among the variables of Y mod p; this results in a contradiction since

d < P•

On the basis of (3.1.1) we can obtain the following

3,1.2 Theorem

Let D be an arbitrary domain, ~ is a certain basis, and pis an arbitrary

integer> 1. If t 0 is such that any e•component over ~O with the IO-property

and constant input operator has period one, then fp is of nonlinear length
n

over ~.

3. 1. 3 Example

This is an example of a basis satisfying the hypothesis of Theorem 3.1.2.

Consider an arbitrary domain D = (0,1, ••• ,d-lJ. Then a complete basis

for Dis t
0

= (min(x,y), max(x,y),0,1, ••• ,d-1, e0 (x), ••• ,ed-l (x)} where min

and max are defined in the usual way, O, ••• ,d·l are the constants, and

r d-1 if x =- i.

= LO otherwise

54

(Note that *(O,lJ = (A,V,0,1,-,idJ; thus, a result on the nonlinearity of the

length of a certain function over *(O,l} is also a result on the nonlinearity

of the same function over IT; in particular, applying Theorem 3.1.2 to ~(O,l},

we obtain (2) of Specker's Theorem.)

~Dis interesting because it gives rise to an analog of the disjunctive

normal form for arbitrary D: Consider the table for an arbitrary function

f: On ➔ D. Then

where Mi

value of

follows

dn-1
f = max (Mi)

i=O

equals O if the current

the function at h .th t e 1

assignment is not the ith

assignment otherwise. Mi

where a(i,j) is the j th component of the i th assignment.

assignment and the

is represented as

We claim that *o satisfies the hypothesis of Theorem 3.1.2. Note that

~; = *~ for all a, b ED because *o contains all the constants. Therefore,

* we will write simply ~D.

* 0 Given~ E io with the I -property, the statement that there exists b ED

such that the homogeneous e-component with internal operator f and b for its

input operator has period tis equivalent to saying that there exists a subset

L ~ D with ILJ = t and ~(O,z) Lis the identity (idL) while ~(1,z) Lis the

permutation with cycle length t (pt)•

* We contend that for any L ~ D, ~(x,z) E i
0

and c, e ED, if ~(c,z) L

55

and qi(e,z) L are 1-1, then ~(c,z) L = qi(e,z) L. Since idL / Pt if t > 1,

this will establish the original claim.

This can be proved by induction on the depth 8cp of the distinguished

variable z in the formula F that represents cp (since there may be many such

formulas, let F be one of the formulas where the depth of z is minimal.

If 8 = 1 then either F = max(F',z), or F = min(F",z). Assume the first cp

case (the second can be argued similarly). * I By definition of i
0

, F contains

only the variable x. If we replace x by c, F' represents a constant c' FD.

Now if c' ~ L, then cp(c,z) L is the identity, otherwise it is not 1-1.

* If 8~ > 1, then either cp(x,z) = ei (~' (x,z)) where 1n 1 F ,1,
0

and 8
1

< 8
't' . ..l::. cp cp

. *
or cp(x,z) = cp•(x,cp1

" (x,z)) where cp", cp"' E 10 and 8 11 , 8 111 < o (to see this, cp cp cp

think of F). In any case cp', cp", and cp"' satisfy the inductive hypothesis,

and we are done.

Note that Theorem 3.1.1 and 3.1.2 hold with fp replaced by the
n

3.2 Connectivity

n
~ xi= 0 mod p since

i=l
g~ t (0, 1f = f~.

function

The connectivity predicate was already discussed in 1.6. It attacted

considerable attention after Minsky and Papert [Mi69] succeeded in obtaining

interesting results on the complexity of perceptrons that represent the

connectivity predicate. Works that follows [Mi69] and that treat specifically

the representation of the connectivity predicate by finite operators are, e.g.,

[H070J, [Mi71J, and [Vi70J.

56

Minsky and Papert describe a circuit for computing the connectivity

2
predicate of depth (of the order of) (log

2
n) which on intuitive grounds

seems minimal. This circuit translates into a formula of nonpolynomial length.

Thus, the connectivity predicate seems to be a good benchmark for testing

estimation methods for the complexity of functions (i.e., any appropri~rely

general method which is presumed able to give estimates for length up to
log2n

f(n) < n should declare the connectivity predicate complex).

Consider a set

tivity predicate is

of n
2

variables (xi.] for 1 ~ i, j ~ n; then the connec-
J 2

the function c : (0, l}n ➔ (0, l} defined as follows:
n

(we will not give a formal definition since the formalization is obvious)

Given a specific assignment to the variables, consider it as a square array

of O's and l's. Then c = 1 on the empty pattern (i.e., consisting of all O's),
n

or if the l's form a connected pattern. By "connected" we mean that any two

l's can be linked by a sequence of adjacent l's (two l's, corresponding to the

variables xij and ~tare adjacent if Ii-kl+ lj-tj = 1). For example, the

pattern in Fig. 3.2 is connected.

The general approach used here to obtain an estimate for the length of

c is to consider reductions of c.
n n

Given an arbitrary function f, a function g will be called a k-reduction

off if g is obtained from f by replacing each argument off by a function with

at most k arguments.

Suppose we want to prove that fi of i = 1,2, •.• argl.llllents is of nonlinear

length (over the basis~). Assume there exists a k-reduction g. off. such
l. l.

that the number of arguments m in g i•s m ~ a..n for some constant O < a. ~ 1.
n

Assume L(f ,~) ~ c•n for some constant c. That is, there exists a formula
n

57

F for f and L(F) ~ c•n. Since the length of any function of k arguments n n n

is bounded by L(k,~), we obtain

by making substitutions for variables in F.
n

If (g.J is rearranged (and renumbered) in the order of increasing number
L

of arguments, and all but one functions with the same number of arguments

are deleted, then we obtain

for some constant c'. Finally, if we can prove (e.g., by applying Theorem

2.2.2) that~ is nonlinear, we obtain a contradiction, and we are done.

Hodes [Ho70J shows the nonlinearity of the length of c overt by reducing
n

c to the function n

m
V (/\ yj) /\ Yi

i=l j:~i

(i.e., exactly one variable is 1) which can then be proved to be nonlinear

using Specker's Theorem. Unfortunately, this reduction does not work for

domains with more than two elements because this function is linear over an

appropriate basis in such domains. However, another approach works, and we

can state

3.2.1 Theorem

Regardless of the size of D and the nature of~, c is of nonlinear n
2

length (i.e.,, L(c ,~) ~ c 0 n is not true for any D, t, and constant c).
n

58

Proof

Minsky and Papert [Mi69J succeed in reducing c to counting mod 2 by
n

exhibiting a contact network such that its connectivity depends on the number

mod 2 of contact variables equal to 1, and then by simulating this network

on the square array of variables (they call it the "retina"). We shall proceed

similarly.

ct is reduced to the functions~: (O, l}n ➔ (O, 1} (for an appropriate

t) defined as follows:

1 if~ arglllllents are equal to 1

=
0 otherwise

sP, can be represented by the connectivity of a contact network sP. sP is
n n n

shown in Fig. 3.3a. It hasp contact arms for each variable yi. The O value

of y. corresponds to the upward position of the corresponding arms while the
1.

1 value of yi corresponds to the downward position. The contact arm of SP
n

are arranged in prows (n arms in ~ach row). Whenever an arm for yi is in

the upward position, it is connected to an arm for yi+l in the same row; if

the arm for y. is in the downward position, it is connected to an arm for
1.

yi+l in the next row. Thus, it may be easily checked, point A1 is connected

to Bp+l if and only if at least p among y
1

, ••• ,Yn are 1. It may also be

verified that in this case all the contact arms in the network are connected

either to Ao or to Bp+l' and since these two are connected together, the whole

network is connected.

sP in turn can be simulated by a rectangular array RP of O's and l's
n n

where certain positions are constant and others depend on they. 's (see
1.

Fig. 3.3b). The size of~ is (3(p+l)+l).(3n+p-1).

59

We now show that sp is a 1-reduction of c for some t. This is done
n t

by cutting RP into smaller rectangular pieces along vertical lines. The n

first piece is of length (1-l)·q where q = 3(p+l)+l and twill be defined

th
later, the second through t-lst piece is of length (t-2).q, while the t ,

last, piece is of length between 1 and (t-l)•q. These pieces are then

arranged into an t•q x i•q square pattern TP as shown in Fig. 3.4 (the
n

arrangement depends on the parity of£). Corresponding rows of adjacent

pieces are connected by =>- or c- shaped patterns of O's (in the case when

one of the positions along the cut at the row in question is O) or l's.

The unused positions of Tp (corresponding to the case when the last piece
n

is not of the maximal length) are replaced by O's.

tis set to t•q and the variable x .. inc is replaced by the correspon-
1.J t

ding position in T: (one among O, 1, yi,

obtained by this replacement is sP. If
n

xis the positive solution of

2
X -2(x-1) =

3n+p-l
q

or y.). Obviously, the function
l.

3n+p-l ~ 1, J, is obtained as 1x l where
q

We also have that n i=::,j(l/3q)t, and, thus (by the reasoning outline previously),

if c is linear so is sP.
t n

With the assumption that sp is linear, we apply Theorem 2.2.2 with a= O.
n

In this way we obtain that (s;)~ where Z is a certain subset of the arguments

of sp of size mis represented by an e -complex F (with the requisite restric-
n m

tions) where mis arbitrary. Note that (s;)~ = s:.

60

As noted in 3.1, if a sufficiently large number of variables at the

beginning and end of the lateral sequence of Fis replaced by 1, then F with

this substitution represents a function of the number of l's among the

remaining variables mod the 1cm of a set of integers~ d. The number of

variables that have to be set of 1 is u ~ 2(d-l) (at most d-1 at each end

of the lateral sequence). Thus we obtain a representation of the function

p-u s if p ~ u.
m-u

If p ~ 2(d 1)+2 b i f ' if 1.· '2 - , we o tan a unctions. or ' •
J

However,

i it is clear thats. is not a function of the number of l's mod k for any integer
J

k. Thus, we have arrived at a contradiction, and, hence, c is of nonlinear n

length over any basis t. 0

3.3 The Length of Symmetric Functionst

As we have seen in the previous examples, Theorem 2.2.2 has been applied

only to functions that are either synnnetric or that can be reduced to symmetric

functions. While we know of no formal statement that can be proved and that

asserts that this indeed exhausts the applicability of Theorem 2.2.2, it

intuitively seems probable.

In this section we will discuss several bounds on the length of synnnetric

functions (both specific functions and all symmetric functions). Recall that

in 1.4 we have already mentioned several such bounds (Subbotovskaya, Khrapchenko).

tAll of the results in this section were suggested by A. R. Meyer.

61

Does Theorem 2.2.2 (or Specker's Theorem) give us any information on the

length of the functions investigated? Hodes and Specker do not treat this

subject, and, in fact, the bound that can be obtained is very weak; however,

we do mention it for the sake of completeness.

In an application of Theorem 2.2.2 (or Specker's Theorem) to a certain

function f, we proceed with the assumption that L(f,~) ~ c•n. To apply

Theorem 2.2.2 we must haven~ ~
5

(m,c) where mis a sufficiently large number

to obtain a contradiction. However, m does not depend on c. Thus, n depends

only on c and mis assumed constant.

Consider now c as a function of n. We ask what is the maximal value

c for c(n) for which Theorem 2.2.2 can be applied (and a statement contradic

ting L(f,~) ~ c•n obtained). ;(n)•n is then a lower bound for L(f,~). Due

to (2.2.1); grows slower than (1/4)•ht (p,n) where ht (p,n) = maximal x

such that n ~ iexp (p,x). Then we have

(3.3.1)

for an arbitrary constant b > 1 and for sufficiently large n.

This bound seems unrealistically low, and it is useful to compare it

3 with known bounds for length for the particular function f over some bases n

consisting of Boolean operators (we will suppress the subscript n).

It has already been established that f 3 is of nonlinear length if D =

{O, 1} (see 3.1). We introduce the following notation: f 3 = f 3 ,
0

, f
3

'
1

,

3 2 n
and f' stand for ~ xi= 0, 1, and 2 mod 3 respectively. We will repre-

i=l

sent t 3 ' 0 , f 3 ' 1 , f 3 •2 by the fonnulas Fo, F1 , and F2 respectively. FO is

obtained by the following recursive relation

62

(3.3.2)

(If Xis the singleton {x}, then
0

F (X) = ~)

1 2
Similar identities can be obtained for F (X) and F (X). When these identities

are used recursively, we obtain

(3.3.3)

an exact description how we obtain a bound of the form (3.3.3) from a recur

sive relation similar to (3.3.2), see [Ya54J.

This upper bound can be further reduced by
J,

Let y: (0,1,2} ➔ {0,1,2} be the operator

using multiargument operators.
R
r y. mod 3. Then f 3 can be

i=l 1.

represented by a formula G which uses y recursively (i.e., the arguments of

3 f are repeatedly divided by l together with an outermost decoding operator

(0,1,2} ➔ (0,1}. G is of linear length. If we use D = (0,1}, y can be en

coded by two operators y' and y", and G translates into a formula such that

0(L(G)) = n (3. 3. 4)

Thus, as J, increases, the upper bound for L(f3 ,~) (where y ~) approaches

c•n. However, the gap between this bound and (3.3.1) is still huge. But,

the important thing to note is that any theorem that retains the same broad

assumption (bases with an arbitrary number of operators) as Theorem 2.2.2

cannot yield a better bound for £
3

than (3.3.~).

63

Another example of a function that is nonlinear in length (over all

Boolean binary operators) by Specker's Theorem is f4 . However, it too has

a relatively short representation (the previous and this example show that

Theorem 2. 2. 2 is a sensitive tool for deriving the nonlinearity of functions;

i.e., it can be used on functions that are only "slightly" nonlinear).

A representation for f4 with Boolean operators is obtained by dividing

the argtnnents of f 4 into disjoint (nonempty) pieces Y and Z, and adding the

bineary representations of f4 (Y) and f 4 (z). Let the binary representations of

f 4
(x) be given by the formulas F'(X) and F"(X), obtained by the following

recursive relations

F"(X) = F"(Y) ~ F"(Z)

F' (X) = F' (Y) EB F' (Z) E9 F"(Y) /\ F"(Z)

(If Xis a singleton F"(x) = x and F'(x) = 0)

Consequently,

L(F"(X)) = L(F"(Y))+L(F"(Z))

L(F' (X)) = L(F' (Y))+L(F' (Z)+L(F"(Y))+L(F' (Z))

By choosing Y and Z always as equal as possible, we obtain

L(F"(X)) =n

O(L(F'(X))) = n•log 2n

Since f 4
(x) is represented by F'(X) /\ F"(X) n•log2n is also a bound for

O(L(f ~) where EB,/\ ~.
n

We now turn our attention to an upper bound for the length of all

synnnetric functions.

64

n Note that a symmetric function g: D ➔ D where D = -0,1, ••• ,d-lJ depends

exclusively on N1 , ••• ,Nd-l where Ni is the number of variables equal to i.

It can be represented, e.g., as

where Mn(l) ••• , n(d-l) equals* if Ni= n(i) and is O otherwise. The number

of combinations of n(l), ••• ,n(d-1) is a polynomial inn -- (ni~
1

) -- and the

max function can also be represented in polynomial length, regardless of the

basis t. The latter fact is established by representing max using the two

argument max recursively. Thus, if Mn(l), ••• ,n(d-l) were polynomial, g would

also be.

M. J. Fischer and A. R. Meyer discovered that Mn(l), ••• ,n(d-l) can,

indeed, be represented in polynomial length by using a special code for

integers described by Avizienis [Av69].

We will illustrate the construction on Boolean symmetric functions. It

will be seen that if the basis of operators is appropriately chosen, the

length of an arbitrary symmetric function is bounded above by a polynomial

of a surprisingly low degree.

The Avizienis code is a redundant positional representation of integers

to an arbitrary base b > 2. We describe it for b = 3.

An integer n is represented by all possible r1og
3
nl - tuples

where ai E {-2,-l,0,1,2J for 1 s: is: r1og3nl and

65

= n
i=l

'The property that is exploited is that there are no long carry's in

addition. Th.us, if we want to add two Avizienis coded integers a= akak_
1

•••

a1 and b = bkbk_1 ••• b1 , we can do it in two steps using the following

3.3.1 Algorithm (Avizienis)

(1) Find the carry c and intermediate sum r such that

where ai' bi E (-2,-1,O,l,2} and ci, ri E (-1,0,1}.

(2) Compute the sums according to

Let us estimate the length of the formula representing any ternary place

in the Avizienis representation of N1 for X = (x1 , ••• ,xnJ.

Again let X =YU Zand Y n Z = ¢. ri (X) and ci (X) can be represented

as

and

If Xis a singleton, ri and ci are O if i > 1, or 1 and O respectively if

i = lo P and X are certain operators f-l,O,1J
4 ➔ (-1,0,1} which can be

obtained from the definition of Algorithm 3.3.1. Strictly speaking, the

66

domain used here is not permitted in our definition of finite functions;

however, the difference is merely one of coding. Thus,

and

L(Ci(X)) = L(R.(Y))+L(R. (Z))+L(C. 1 (Y))+L(C.
1

(z))
1 1 i- i-

If we use these relations recursively and always make Y and Z as equal as

possible, we obtain

O(L(R.)), O(L(C.)) ~ n2
1 1

If D = {0,1}, we need two bits to encode ri and C. •
1

Therefore, using certain operators p' , p 11
, X' , and ')(11 to encode p and X,

we can encode Ri(X) and Ci(X) and combine them into a (0,1}-formula Ai

th
representing the i ternary place of the Avizienis representation of N1•

We have

(3. 3. 5)

Let there be given a positive Avizienis coded ntm1ber a= a a
1
••• a .• pp- 1

We desire to convert it into its binary equivalent b = bqbq_ 1 ••• b1• Let

U ~ (ap, ••• ,a
1
J. Then we define bi (U) = 1 if and only if the i

th
bit of

z:
a. Eu

1

i-1
a.3 is 1.

1
Note that even if a is positive, b.(U) may be negative

1

for some i and U. This is further discussed below. For the moment we asstm1e

that b. (U) is always positive. We can then again compute b. (a ••• a1) by a
1 1 p

recursive method. Let U =VU W, V n W = ¢. Then b. (U) is the i
th

bit of
1

67

bi(U) is represented by the formula Bi

B.(U) = ~(B. (V),B.(W),G. 1 (U))
l. l. l. 1.-

where G. represents the carry from the i th place;
l.

G. (Y) = y(B.(V),B. (W),G. 1 (U))
l. l. l. 1.-

G
0

represents the constant O and~ and y are certain Boolean operators. Then

we obtain

i
L(B. (U)) R:1 L'. L(B. (V))+L(B. (W))

i j =l J J

If a is the Avizienis representation of a number~ n then p = r1og3nl and

q = r1og
2
nl. Thus, we obtain the following bound for L(Bi(a))

log
2
log

3
n

O(L(B. (a)))~ (2q) R:1
l.

log2log
3
n

(2log2n)

(l+log 2log2n)log2log3n

log2n

R:1 n (3.3.6)

Note that (3.3.6) means that O(L(Bi(a))) ~ n e(n) for 1~ i ~ r1og
2
nl where

e ➔ 0 as n ➔ 00 •

It has already been remarked that b(U) need not be positive. Thus

b(U) must be treated as a signed number. If we use the l's complement

representation and the en-around carry technique (see, e.g., [Gr59]), addition

can be performed as follows. Let b(U,g
O

)=G(V)+b(W)+g
O

where gO is either O

68

or 1 and let g1 denote the carry from the highest position of b(U,0). Ther.

b(U) = b(U,O) if gl = 0 and b(U,1) if gl = 1. This means that in (3.3.4)

we obtain (i.q)exp for some constant i instead of (2q)exp where exp has the

value given above.

If aj for 1 ~ j ~ 1log3n l, in Bi for 1 ~ i ~ 1log2n l is replaced with

Aj, we obtain formulas Fi (X) representing N
1

in binary form. Combining

(3.3.5) and (3.3.6) we obtain

where €(n) ➔ 0 as n ➔ co.

To obtain the desired representation of an arbitrary Boolean symmetric

function, we proceed as follows: Consider the formula Si defined inductively

(3.3. 7)

Take S110g
2
nl and replace xiO and xil by Fi and Fi respectively. It is easily

seen that S 11 7 with this replacement is identically 1 (this can be proved, og
2
n

e.g., by induction; for s1 it is trivially true, and the general statement

follows from (3.3.7)).

Let there be given an arbitrary symmetric function g. It is defined by

a subset M ~ (0,1, ••• ,nJ of possible values of N
1

• Each branch of length

1log2n l in T(S 11 7) corresponds to one value of N1 (given by og
2
n

number j(llog2nl), ••• ,j(l) where x 110g
2
nl,j(ilog

2
nl)'"""'xl,j(l)

the binary

define the

branch in question). If we remove branches of T(Sr1 7) corresponding to , og
2
n

M, thus obtaining the formula S', and perform the substitution defined pre

viously to obtain the formula p, we obtain a representation for g.

69

4+€(n) We have O(L(S')) ~ n and thus O(L(P)) ~ n where € ➔ 0 as n ➔ 00 •

Thus, if a basis~ is given that contains all operators used to obtain P,

then L(g,~) ~ n4+€(n).

In Lu70 Lupanov announced a result of Khrapchenko to the effect that an

arbitrary symmetric function is of length~ n4 • 93 • Since the assumption were

not made explicit, and the result itself is unavailable as of this writing,

no exact comparison can be made with the estimate above.

70

0
r(tp i) where cp i has the I -property (only arrows labeled with

0 and 1 are drawn). r• denotes the set of nodes cpi(x x 1 ••. mm-
x20,ai) where mis as described in the text and xm, ••. , x2
may assume arbitrary values in {0, l}.

Fig. 3.1

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 1
00001001
01101011
0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A connected pattern of l's

Fig. 3. 2

t-rj
I-'•

()Q

w

(")

0
=3
rt
I).)
n
rt

=3
(1)

~
0
'1
?;'

• C/l

~ ::J 'O
H,
0
'1

rn
::J 'O

A4

A

A
p-2

Ap-1 ~ " y

AP ~~==---~::::::::::... ___ -;:-----,~ Yn_l n
A +l Y2 Y3 p Y1

BO
Bl

B2

B3

B4

__ BS

B
p-2

B p-1

B
p

B
p+l

........

AO
Al

~ A2
II>

~
11 A
0 3
0 s

l 1 l l l l 1 1 1 1 1 1
1 1 1 1 1 y

1
1 1 y

2
1 1 y

3
00 011011011
0 0 0 0 y 1 0 0 y

2
0 0 y3 1 1 1 y

1
1 1 y

2
1 1 y

3
1

0 0 1 1 0 1 1 0 1 1 0
0 0 0 yl O O y2 0 0 y3 0
1 1 y 1 1 y 1 1 y 1
0 0 ~ 1

1
0 1 1

2
0 1 13 0 1

,.,....__.._ -----------------__,..-•-----------·---~--------,,__. -------~ ~------...____. ---.__,,.-, --·---~----- ____ .--'---. __ -- -
'"rj II)

~- g_ A _3 1 1 1 1 1 y
1

1 1 y
2

1 1 y
3

1 1 y
4 ~- p O O O O 1 1 0 1 1 0 1 1 0 1 1

w ~ 0 0 0 0 0 y O O y O O y O O y
~ .!J A 1 1 1 1 - 11 1 y 12 1 y 13 1 y 14

o- 0 p- 2 0 0 0 1 i1 0 1 12 0 1 13 0 1 14 0
~

S O O O O y O O y O O y O O y 0
!:,. A 1 1 1 - 11 1 - 12 1 - 13 1 - 14 1
11> p-1 y 1 y 2 y 3 y 4
~ 0 0 1 1 0 1 1 0 l 1 0 1 1 0 1
o O O O y O O y O O y O O y O 0
~ A 1 1 y 11 1 y 12 l y 13 1 y 14 1 y
~ P O 1 1

1
0 1 12 0 1 13 0 1 14 0 1 15

en
:j 'O

\
0 0 y O O y O O y O O y O O y)

A 11 1 1
1

1 1 1
2

1 1 1
3

1 1 1
4

1 1 1
5

p+l O O O O O O O O O O O O O O OJ

l 1 1 1 1 1 1 1 1 11 B0
1 y _2 1 l y _ 11 l y 1 B1 1 n 1) 1 n O 1 ln 0

1 1
Oy OOy OOyO

- n-21 - n-1 1 - 1n llB y y l y
n-201 1 n-lo 1 ln O O 2

1 1
y O O y O O y O 0
ni21 y - nill y 1n l llB
0 1 n 1o 1 ln O O O 3

---l._'. ____ ----- --- ---------

/
-- 7 --~----~-1 y 1 1 y 1 1 1 B

,
l ni

1o 1 ln~ o o al p-
3

0 y l l 1 - 0 0 0
y ni

1
1 y / l l l 11 B

nllO 1 ln] - 0 0 0 0 p- 2

Y 1o O y (0 0 0 O
ni 1 y 1 n / l 1 1 11 B
0 1 ln 0. ~ 0 0 0 0 p-l

0 0 y 1/0 0 0 0 0
1 y ln 1 1 1 1 1 B
1 ln O Ii O O O O ol p

OyO}aOOOOO
- 1 ln 1 1 1 1 1 1 B
\ o o o' o o o o o ol p+l

.._.
N

Ap+l

73

q

Tp for ,R, = 5
n

Fig. 3.4a

1----,-,.--------1

Tp for i, = 4
n

Fig. 3.4b

74

CHAPI'ER FOUR

CYCLIC PERCEPTRONS

The perceptron has already been discussed in 1.6. In the beginning

of this chapter, we will first expand on that discussion in order to further

motivate the study of cyclic perceptronso

The classical perceptron (for references on the subject see [Mi69J

became the subject of extensive research centered around concepts such as

pattern recognition, learning, adaptive behavior, etc. A whole myth had

been created around it -- about its capabilities and its potential for use.

The thing that attracted people most were its ability to learn from experience

and its simplicity -- it combines many small decisions, the values of the

functions w., into a fir.al decision by considering their weighted sum.
i

Minsky and Paper deflated this myth by showing that such a scheme has its

inherent drawbacks. In particular, it cannot compute predicates such as

connectivity.

The most general intuitive basis for the result that the connectivity

preciate cannot be represented by a perceptron is the following: First of all

the reasoning makes sense only if the complexity of the functions w. is limited
i

in some way; if not, we can choose ro. to be the function that we desire to
i

represent and then it can be represented by a perceptron trivially. Minsky and

Papert use the order and diameter restrictions (see [Mi69]). The former is also

used by us.

Suppose we want to represent connectivity. Then, if the ro. 's are bounded
. i

in complexity (so the reasoning goes), the weighted sum is too simple a function

75

to be able to integrate all the information that is required in computing

connectivity.

We set out to apply the same basic reasoning to models where the inte

grating function is constructed out of finite operators. In particular,

we choose addition in a finite field because of the unique representation

property for functions in such a field (see 4.5) which makes proofs rather

simple, and because of the purely formal resenblance to perceptrons.

One particularly interesting aspect of using addition in a finite field as

the integrating function is that one proof of the inability of perceptrons to

compute connectivity is based on the reduction of connectivity to addition

mod 2. However~ this function is precisely the simplest one possible in GF(2).

This underscores the need to make different reductions for different models

of computation that are presumed to be incapable of computing connectivity.

In this chapter we shall limit ourselves to Boolear. functions.

We introduce cyclic perceptrons formally:

4.1 Definition

GF(pk) is the finite field consisting of pk elements. ~ (the basis)

. w
is an infinite set of Boolean functions (O,lJ ➔ (O,lJ such that each w E ~

(w is the first infinite ordinal) depends on a finite number of arguments.

Elements of~ are assumed to be ordered (in an arbitrary way). Then a (p,k)

perceptron (over~) is a pair P = (a,Y), where~ is an w-vector such that the

1th component a. E GF(pk) and a.IO for only finitely many values of i;
i i

76

Given a function f: {0,lJw ➔ {0,lJ, we will denote the set of arguments

on which it depends by S(f).

Let P = (A,Y) be a (p,k)-perceptron. Then P will represent the predicate

(Boolean function)

00

f = [t ai ~- E Y]
i=0 1.

where the value of~- E {0,lJ ~ GF(pk). Obviously,
1.

We will indicate the function represented by a

(4.1), or simply [P].

(4. 1)

S(f) ~ U S(~i)
iE(j: Oj :rOJ

(p,k)-perceptron Pas in

Let us recall a concept from [Mi69J. Given a (p,k)-perceptron P = <l!,Y)

over a certain basis 4>, its order (ord(P)) is max (S(~i) •

iE[j: a. ;&OJ
J

We can also introduce the order of a function.

4.2 Definition

The (p, k)-order of a Boolean function f over a given basis 4i ((p, k)-ord4i (f)

is the smallest£ such that there exists a (p,k)-perceptron of order£ repre

senting f. If no such perceptron exists, the (p,k)-order off is defined to

be 00 •

Let O be the set of all Boolean functions with finite support. Note then

that for an arbitrary Boolean function f, (p,k)-ord0 (f) is finite and~ S(f),

for all primes p and arbitrary k. Also note that for an arbitrary basis 4i

(4. 2)

77

We show now, as is done in [Mi69l, that we can choose for the basis a

more restricted set. Let the set of arguments of the basis functions be~=

(x1,x2, ••• J; then we define the set of masks M = (A x.: Sis a finite sub•
iES i

set of'Il\I }. A convenient way of ordering Mis to assign to ~EM the binary

number bjbj_1 ••• b1 where bk= 1 if and only if~ appears in the conjunction

defining~-

4.3 Proposition

Any Boolean function f can be represented by a (p,k)·perceptron over M

for any prime p, and arbitrary k.

The proof is the same as that of Theorem 1.5.1 in [Mi69l, i.e., we util·

ize the following correspondence between Boolean operations and operations in

GF(pk) if the variables assume only the values O and 1:

If f is a function of n arguments, then from its disjunctive normal form, by

using this correspondence and by multiplying out afterwards, we obtain the

following representations for f:

2n-l
~

i=O

X
m = 1

where cr .. is the j th bit of the binary representation of i and a. E GF(pk).
1] i

Note that the mask ~i (see the ordering above) is represented by the monomial

with exponents corresponding to the binary representation of i.

78

Theorem 1.5.3 of (Mi69J also holds in our case. We state it as

4.4 Proposition

The following holds for an arbitrary Boolean function f, an arbitrary

basis~, and an arbitrary integer k and prime p:

Proof

The same as in [Mi69J.

Note that if we take O for the basis in Proposition 4.4, and combine it

with (4. 2), we obtain that (p ,k)-perceptrons over M achieve minimal order.

We state without proof the following well-known

4.5 Lennna

Every function GF(pk)n ➔ GF(pk) can be uniquely represented as a polynomial

inn variables over GF(pk) that is at most of degree pk-1 in each variable.

(see, e.g., [La67].)

It has already been noted that we will be interested in whether a function

can be represented by a (p,k)-perceptron with a limitation on its order. For

this we need the following

4.6 Definition

A sequence of Boolean functions f 1,f2 , ••• of 1,2, ••• arguments is of

finitet (p,k)-order (over a given basis~) if there exists a finite r such

t Bounded would be a better word, but we conform to the terminology of [Mi69]

79

that for all i (p,k)-ord~(fi) ~ r.

Let there be given a (p,k)-perceptron ~,Y). If Y = (y
1

, ••• ,ym}, then,

recalling that GF(pk) is a vector space of dimension k over GF(p), and desig-

. h ,th (nating t e J component of a. by a .. similarly for yh E Y), we have
l. l.J

Cl) m
= V

h=l

k
A

j=l

Cl)

[I: a .. cpi =yhJ.]
i=O iJ

(4. 3)

We can restrict the diversity of perceptrons we are dealing with by noting

4.7 Proposition

Let~ be a basis closed under conjunction (i.e.,~,* E ~ ~ ~A* E ~).

If a Boolean function f is of finite (p,k)-order over~, then it is of finite

(p,1)-order (but the order may change).

Proof

We have f = [~,Y)J where ~,Y) is a (p,k)-perceptron. Suppose !YI = m

and the (p,k)-order off is t. From~.3) we have

m
f = V

h=l

where a .. , Yh. E GF(p).
l.J J

(4.4)

By Lennna 4.5, we know that for all a E GF(p) there always exists a poly-

nomial P (x) over GF(p) of degree p-1 which takes on the value of 1 if x = a
a

and is O otherwise (the degree follows from the number of zeros of the poly-

nomial). Thus substituting the Boolean operations with the field operations

introduced in the proof of Proposition 4.3, we obtain from (4,4)

k
f = Q(rr

j=l

00

t
i=O

80

k oo

aiJ_•q,i), ••• , TI P (I: ai.•co.))
j=l Ymj i=O J ·i

(4. 5)

where Q(x1 , ..• ,xm) is the polynomial (of degree m) that represents the Boolean
m t

function V ~. Each P is of degree p-1. Hence f can be expressed as
h=l yij

a polynomial in the q,i's of degree~ m•(p-1). Obviously, q,i for j > 1 can be

replaced by q,i since it assumes only the values O and 1. Also, q,•~ represents

the function q,A~ and ls(q, A v)I ~ ls(q,)j + !s(v)I); thus, if the basis is closed

under conjunction (as, e.g., 0 or M), (4.5) describes a (p,1)-perceptron for f

of order~ m•(p-l)•l. □

Remark

Incidentally, this proof also shows that we can assume the cardinality

of Y to be 1.

Since we shall subsequently be concerned only in whether the order of cer

tain functions is finite or not, we will be able to limit ourselves to (p,1)

perceptrons. For convenience, we will write simply 11p-perceptrons". Also, we

will be only concerned in whether there exists a basis over which a function is

of finite order. This is equivalent to whether a function is of finite order

over M.

t
Q(x1 , ••• ,l\n) is obtained by using y1 V y2 ~ y1 + y2 - y1 • y2 recursively;

i.e., Q(x1, ••• ,xm) = Q(x1 , ••• ,xm_1)+ xm + xm•Q(x1, •• •,l\n-l). If Q is a poly

nomial over GF(2), then Q = EB IT y where the sum ranges over all nonempty
yES

81

We first turn our attention to the case when p = 2. Instead of "2-percep

tron", we will say 11Boolean perceptron".

From Lemma 4.5 we conclude that every Boolean function can be uniquely

represented as a polynomial over GF(2) that is at most of degree one in each

variable (a Boolean polynomial).

Noting that the terms of a Boolean polynomial represent marks, we conclude

that every Boolean function f has a unique representation as a Boolean perceptron

over M. Furthermore, by Proposition 4.4, this representation is a minimal order

representation for f. Note then that 2-or~(f) corresponds to the degree of

the Boolean polynomial for f.

'lllis unique representation property allows us to establish the minimal

order of certain interesting predicates very easily. As in 3.2, we are again
2

n interested only in functions (0,1} ➔ (O, l} that are interpreted as functions

of nxn patterns of O's and l's, In particular, we are interested in the Boolean

function of n
2

variables c (introduced in 3,2) and e k (the Euler number of n n,

a pattern of l's on a square array of O's and l's is equal to k). It is well

known (see, for example [Mi69]) that the Euler number of a planar figure is

the difference between the number of its components and the number of its holes.

If we use the notion of connectivity introduced in 3.2, then the Euler number

of the pattern in Fig, 4.1 is 1,

4.8 Theorem

The connectivity predicate is not of finite 2-order over M (hence, over

any basis).

82

Proof

We use the One-in-a-box construction introduced in [Mi69]o Before pro

ceeding, however, we must define certain auxiliary predicates. n, the size

of the pattern is assume odd (henceforth, we will suppress the subscript n

in the notation for functions). The variables representing positions in the

square array wil¼ as usual, be denoted by xij for 1 ~ i, j ~ n.

and

r = (x
11

A x12 A

(x31 A x32 A

(xnl A xn2 A • •.

s = (x21 v x22 v

(x41 V x42 V

A x
1
n) A

A x3n) A ••• A

AX)
nn

V x 2n) A

V x
4
n) A ••• A

(x l l V x l 2 V ••• V x l); n- , n- , n• ,n

Then we define

i.e., r is 1 only on patterns with odd rows consisting exclusively of l's,

ands isl only on patterns where each even row has at least one 1 (the One

in-a-box predicate). Then,

rAc=rAs (4. 6)

(c is the connectivity predicate).

Now, for arbitrary functions£, g, h,if h = f Ag, then 2-ordM(h) ~ 2-ordM

(4. 7)

83

Replacing h by r As, f by r, and g by c we obtain

(4. 8)

n+l _n-3 We have 2-ordM(r) = 2 •n; 2-or~(h) = 2 •n (recall the Boolean
m

polynomial for V x described in the footnote on p. 80)
i=l i

n(n-1) (because ;the Boolean polynomial representations of rands have no

variables in connnon). Using this we obtain from (4.8) 2-or~(c) ~ n(n;3)

i.e., the 2-order over M of the connectivity predicate is not finite. □

We next establish

4,9 Theorem

The predicate "the Euler number of a pattern equals k" is not of finite

2-order.

We again consider the case when Mis the basis. The general case follows

from Proposition 4.4. n is the size of the pattern. We need to consider a

subset T ~ S = (xij: i+j even} (note that all points of Sare disconnected

from each other, in the sense we use this word). jrj =twill be determined

subsequently.

We define the following predicates

-pr = 1 if and only if all points of Tare O; i.e.,

pr = TI (1 EB x)
x~T

q = 1 if and only if k points of Tare 1; i.e.,

84

TI X •

xEU
rr (1 my)

yET-U

where the sum ranges over all possible subsets U ~ T with lul = k. When the

expression for q is multiplied out each term produces exactly one term of the

form TI x and thus the above Boolean polynomial is of degree t if and only
xET

number of terms in the sr is odd. The number of terms is (~). But

is odd for all O ~ k ~ 2 Ml and all t. t Thus if t = 2t-1 0 ~ k ~ t
'

then 2-ord(q) = t.

Recalling once again the ek is the difference between the number of compo

nents of a figure and the number of holes, we have the relationship

pr A E\ = pr A q

Again using (4.7) with g = E\' h = pr A q, f = pr we obtain

2
:2: n -

No matter how large we choose t, we can £ind an n such that we can obtain

a set T with !Tl = 2t-1. Thus, the Euler predicate is not of finite order

over M. c::I

Theorems 4.8 and 4.9 can be extended to p•perceptrons for arbitrary

p. The generalization will only be indicated for Theorem 4.8.

t Proof~
t

First show that (
2

)
k

m
is even for all t and all k~O, 2. This is done

by induction.
t

Now observe that due to
J,

n n•l n-1
(k) = (k) + (k_ 1), and the fact that

2·1,
(2 ; 1) is odd, 2 -1)

(2 is also odd (for otherwise (2) would not be even). We

can continue this way and establish the claim.

85

The obvious difficulty is that Boolean functions do not have a unique

representation as polynomials over GF(p) for p > 2. Specifically, in the

case of Boolean perceptrons over M, we were able to reduce the problem of

the order of connectivity to the order of rands (see above). The orders

of these predicates (equal to the degrees of the corresponding Boolean poly

nomials) were easily computed due to Lenma 4.5.

Suppose c is of finite p-order over M (we have already remarked that this

brings no loss of generality) for some p > 2. Due to Proposition 4.7 we can

assume that we have an expression of the form of (4.5) for c. When multiplied n

out, we obtain

C = n

a,

(4. 9)

th where mi_is the monomial representing the i mask. mi is of degree one in

each variable, and the values of the variables are restricted to (0,1}. Since

the perceptron from which we obtained (4.9) is finite order, we can assume that

the degree of (4.9) is~ t.

We can now extend en to the domain GF)p) (i.e., to square patterns A =

{bijJ, 1 ~ i, j ~ n, an~ bij E GF(p)) by defining c~(A) = 1 if and only if

cn(f(A)) = 1 where f(bijJ) = (cij) such that cij = 1 if bij = 1, otherwise

cij = O. We have from (4.9)

CI
n

c:c

(4.10)

where mi is obtained from mi by replacing each variable xj by P1(xj) such that

p
1

(xj) = 1, otherwise P
1

(xj) = 0 (see the proof of Proposition 4.7 how to ob

tain P
1

(xj)). Now we have a total function c~ over GF(p), and thus its

86

polynomial representation obtained by multiplying out (4.10) must be unique.

Since the degree of (4.9) is~ t,

the degree of the polynomial (4.10) ~ (p-l)t (4.11)

Another estimate of the degree of the polynomial for c' is obtained using
n

the predicates r' ands' obtained from rands of Theorem 4.8 similarly as

c~ was obtained from en. The polynomial Pr' representing r', is obtained from

the polynomial representing r by substituting each variable x with P
1

(x).

Similarly, for the polynomial representation P, of s'. The degrees of P,
s r

n+l n-3 and Ps, are then found to be~ 2 n•(p-1) and~ 2 n(p-1) respectively

(2-or~(r) and 2-or~(s) multiplied by deg(P1)). Since the analogs of (4.6)

md (4.8) again hold, we obtain that deg(P ,) is not bounded, contradicting
C

(4.11), and thus also the finite order of c.

Note that the obvious generalization, i.e., if a function is of finite

2-order, then it is also of finite p-order (over M), is not true: Consider
n

the Boolean function ~ ki. We will investigate the degree of the polynomial
i=l

representation of ffi' (obtained in the same way from EB as c' was from c above).

If a p-perceptron over M of finite order exists for$, then we obtain a poly

nomial representation of bounded degree fore:?' similarly as (4.10) was

obtained from (4.9). On the other hand we have the following representation

for ffi

I: II xi n (1-xj) mod p (4.12)
iES i~S

where S ranges over all subsets of (1, ••• ,nJ of even size. When multiplied
n

out, each term produces exactly one monomial of the form n x .• The number
i=l 1

•
of auch ---.ala .,,..t.aa ~ '"~lPlfJl'f, fOIII of (4.12) i•

0 I I O O O O 0
L JJ o r 1 o 0 o o o

ll O ~0 1 ! f 0
t (21) ~ t O O IO I 0

i-0 •1 O n :'i :' r 1 u" \..: vu~~..t.

,a ll•l O O o_o._ 0 0 0 0
(uae the identity \1) • (

1
) O ., f'i!'iJl '- O .,_. tld.s 1 ■I>• 1• not O

Md p, (4.12) Ji•l4-~JPl'iJJ4' pl9I' a for f'f'. If x1 ta

replaced 1'J , 1 <:x1) iJe olttata a C~f,\yla r lal ntr••tatioll fen:

<f1 of cl._rN a•(p-1), coaaadiettlla dae _...._.of• Batte orcler

p-perceptroa ewer II for &

d (!U .+\) ~o no\ '9 r, eialaloaolr lbv• lo

• ••·•t•"" , .• •••:tf· · .. l• i.fJ : ~ : t .·· .) (~) !?

t 1. l l:. • ·•• 0-.t

o •on al ,,._, a.lb -: :J:f !:r;"> • <;, ""l_,J 8M -)

a.t 1x U .~ -:rol s -. Jj]f f ... 1J ~ (lI ••) ,q ._

'lOl .aol:ta:!naU'Xq9'I Ia~,!'., (.tx) 1." ~ .:,a.t .. ,

"t5b"to a:tlnfl: a lo a.,_:ta.la ·..r:t aab=>lk'ltOD::> .U~ •• ..,._1, lo •

#Ii m If 'leYO ao'IlCJ90D4-q

89

CHAPTER FIVE

PATTERN COUNTING MACHINES

In this chapter we shall permit ourselves a certain degree of informality.

We are again concerned with the power of machines that combine a large

number of "local" computations through an integrating function. Only this

ti.me we shall not be limited to functions that can be represented as a combin

ation of finite operators.

This class of machines again operates on square patterns of O's and l's.

The operation is divided into two phases: In Phase I the pattern is scanned

with a square ''window" of a certain size. Each time a nonzero pattern appears

in the window, we take note of it (there is a finite number of nonzero patterns

since the window is of finite size). At the end of the scan we have a count

of the various patterns,and we are then allowed to utilize this data in Phase

II which consists of computing the value of a partial recursive function for

this data. The formalization of this model is obvious and we omit it.

What can such a machine do? Clearly the computation of this machine is

divided into a local phase and a global phase, so that it fits into the broad

class of problems considered in [Mi69J and Chapter Four.

Note that the boundedness of the window size is essential. If we insis

ted only that the window contain a given number of points, but otherwise

allowed it to be of any shape with arbitrary distances between its points,

then Phase II could reconstruct the whole figure as was observed already in

[Mi69J.

We again inquire whether these machines can recognize the familiar

90

topological predicates connectivity and Euler number.

5.1 Theorem

Pattern Counting Machines (PCM) cannot recognize the connectivity pred-

icate.

Proof ---
We need only exhibit two patterns, one connected and the other discon

nected, with the same pattern spectrum. In this case, no algorithm of Phase

II could establish the difference between them.

Two such patterns are given in Fig. 5.1.

Specifically, these patterns are equivalent under windows of size 2x2.

However, it is easily seen that increasing the dimensions of the patterns

in Fig. 5.1 linearly by a factor of k makes them equivalent under windows

of size up to k + 1. We can arrive at this conclusion by setting up a 1-1

map between occurrences of the same pattern in the window in the two pat-

terns

5.2 Theorem

PCM's can compute the Euler number.

Proof ---
It is shown in rMi69] how to compute the Euler number from the spectrum

of patterns of the shape

EB [TI B Cl
□

91

Before proceeding, we need a notion of continuous deformation. Pattern

B can be obtained from pattern A by continuous deformation if B arises from

A by a sequence of additions or deletions of l's of the following kind: Let

us fix attention on a 3x3 square with the central position in the place of

the 1 being added (deleted). For simplicity assume that the boundary positions

are always O. Each position of the periphery of the square which has a 1 in

it is either connected or disconnected to another 1 on the periphery (not

necessarily by a path in the square). This set of connections may be described

by a symmetric 8x8 0-1 valued connection matrix, i.e., aij = 1 if and only if

h i
th

d · th · i h · h h 1' d d Th t e an J posit ons on t e perip ery ave s an are connecte. e

proposed addition (deletion) is permitted only if (1) the connection matrix

remains unchanged as a result of it, and (2) there is a 1 adjacent to the

proposed addition (deletion).

Any predicate whose value remains unchanged if the pattern A is replaced

by B, obtained from A by continuous deformation, is ca~led a topological

predicate. We assert without proof that connectivity and Euler number are

topological predicates. The reader is warned, however, that there is a pitfall

in proving this fact for the Euler number predicate. The number of holes in

Fig. 5.2 should be one, not two (i.e., O's are connected diagonally in addition

to their usual connections). This is discussed more fully in [My71J. However,

if the holes are sufficiently large (so that all the O's in them are connected

in the usual way) this difficulty is not encountered.

5.3 Theorem

Any topological predicate recognized by a PCM must be a function of the

Euler number.

92

Proof

We will have established the theorem if we succeed in shewing that,

given any PCM P computing a topological predicate, then for two figures

x1 and x2 with EULER(X1) = EULER(X2),we also have P(X
1

) = P(X2).

In [Mi69J it is shown that for every figure X there exists an "Euler

canonical" figure C(X) such that EULER(X) = EULER(C(X)); and if for two

figures x1 , x2, EULER(X1) = EULER(X2), then C(X1) = C(X2). If the Euler

number of Xis n > O, then C(X) consists of n components without holes. If

the Euler number of Xis n ~ 0, then C(X) consists of 1 component with-n+l

holes.

We will show that we can deform any figure X into C(X) without changing

the value of P.

The deformations available to us are:

(1) Continuous deformation. If we subject X to this kind of deformation,

then P(X) remains unchanged because it computes a topological predicate.

(2) Deformations that leave the pattern spectrum unaltered. By defini

tion of PCM's.

As a consequence, we have

(3) Removal of components inside holes. To accomplish this without

changing the value of P(X), we first apply (1) until the window cannot scan

simultaneously an interior component and the wall of the hole in which it

resides. Then it is obvious that the pattern spectrum will remain unchanged

if we remove the component from inside the hole. After this we can apply

(1) in the reverse direction.

93

If we are given two figures x1 and x2 with same pattern spectra, then

we can add equally shaped holes to the figures in such a way that the pattern

spectra remain the same. The holes have only to be placed in such a way that

the window cannot scan any other boundary while scanning the newly introduced

hole. We can then repeat this to add any number of holes.

Specifically, given two figures of the shape of A and Bin Fig. 5.1, we

can add holes in this way and still have the same pattern spectra. For example,

C and Din Fig. 5.3 have the same pattern spectra for a sufficiently small

window size. Note that given any two components, one of which has a hole,

we may apply deformation (1) to obtain a figure proportional in dimensions

to C and they apply (2) to obtain D. We call this sequence of deformations

"cancelling a hole and a component",

We deform X into C(X) by cancelling as many holes and components as

possible. We first apply (3) until no component remains within a hole.

Then we may either have a hole and a component not containing this hole, or

not. In the latter case, we are done. In the former, we select a hole and

a component not containing it and cancel them. After this we are left with

one less component and hole. We repeat this until we arrive at C(X).

We can summarize the results on the recognition of topological predicates

contained in [Mi.69], Chapter Four, and in the present section in tle following

table

94

Recognition Cyclic Classical
of Perceptrons PCM Perceptrons

Predicates

Connectivity NO NO NO

Euler NO YES YES

Other Functions of Functions of
Topological ? Euler number Euler number
Predicates only only

Thus, all these results support the conjecture expressed in [Mi69J that

no "local-global" computer can recognize connectivity.

It appears, however, that all models are extremely sensitive to altera

tions. We have already mentioned how PCM's can be converted into universal

machines with the removal of the restriction on the size of the window.

A. R. Meyer noticed that ordinary perceptrons may be modified to recognize
00

any Boolean function with order one. Instead of 'E ai ~i ~ 0 consider
i=O

I:
i=O

ai ~i E Y for some subset of integers Y. Now we can choose the coeffi-

cients a. in such a way that the sums of the coefficients in no two subsets
1.

of the set K of all coefficients is the same, ie.,

V(X,Y I: K) ['E a. =
1.

the coefficients inductively, i.e., choose a to be greater
n

We can define
n-1

than 'E a
1

•
i~l

This is in the spirit of stratification (see [Mi69]). Now

notice that if~ is the set of m2Jks of order 1, then a Boolean function~

• 0 O O O O O O O O O 8 0 0 0
000!000 0000000
0 0 0 I O O O O l I l O O 0

:l• aillply t tolltctiflloof •--eta of L J Pl iefc+N• u die ••t
o o O l O O O . G l I. .I 9. Ct 0

of tat...,. 111•,.•lf• ._ .., of ..,IWIJ)totl··...,t•'!. •••au
0000000 00001•0

k~.h~S A

O O O O O O O 0
00000000
00ilIJ:OO
00101!00
00.tlOlOG
OOil!iOO
0 0 O O O O O 0
00000009

aao a..t ,na.:,:,aq ald:f al •lod lo ~• •- •lff

t .e .an

(I

Dftaoq.110!> a hrt• etod • .-.u.1.-ao
t .. e .an

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0001110
0101010
0001110
0 0 0 0 0 0 0
0 0 0 0 0 0 0

A

96
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0001000
0111110
0001000
0001000
0 0 0 0 0 0 0

B

Two figures with the same 2x2 pattern spectra

C

Fig. 5.1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00111100
00110100
00101100
00111100
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The number of holes in this pattern is one

Fig. 5.2

D

Cancelling a hole and a component

Fig. 5.3

97

APPENDIX A

CERTAIN PROPERTIES OF SHORT FORMULAS

The purpose of this appendix is to modify certain results of [Ho68J in

the light of our different requirements. Our goal is Lemma A.9 which is used

directly in the proof of Theorem 2.2.2. We prove it by way of a series of

intermediate results, none of which are used elsewhere.

In what follows we would frequently use the phrase "Fis a formula in

n variables over~, and such that no variable occurs more thank times".

This will be abbreviated to "Fis a (~,n,k)-forrnula". If any of the para

meters is not present, we will replace it by*• For example, "Fis a (~,*,k)

forrnula" and "Fis a (~,n,*)-formula" mean "Fis a formula over~, and such

that no variable appears more than k times" and ''F is a formula in n vari

ables over ~n respectively.

A. l Definition

Let there be given the sequence of formulas .Q = (G1 (X1,z), ... ,Gp-l

(X
1

,z),G (X)). If 1 ~ i ~ p-1, then Gi contains the distinguished
p- p p

variable z, occurring only once. Xi for 1 ~ i ~pis nonempty and is

either a singleton or !: I J X.. Let F be an arbitrary formula, and
j<i J

G = G1 (X1 ,G2 (x2 , ••• ,Gp-l(Xp_lGp(Xp)) •••)). If F = G, then .Q is a nesting

sequence of length I?. for F. If, in addition, the total number of occur-

rences of any variable (except z) in g is~ the corresponding number in F,

then g is a proper nesting sequence for F.

98

A. 2 Remark

Let Q and G be as described in Definition A.1. Furthermore, let all

X. for 1 ~ i ~ p be singletons and distinct. Then G is equivalent to an
1.

ep_ 1-component. Also, suppose Xi is arbitrary and Gi is a formula over~-

Now replace all variables except possibly one in G. for 1 ~ i ~ p-1 by the
1.

constant a. Let the set of variables that have not been touched be Y.

y a
Then G is equivalent to an e-component over~.

a

Let F be an arbitrary formula over~, X 1- S(F), and a~ D; then we

would like to obtain a formula over ta with the following properties:

(1) G (2) S(G) = X, and (3) the number of occurrences of any vari-

able of X in G is~ the corresponding number in F. G can be obtained

by a straightforward replacement of operators in F such that the variable

X symbols that are replaced with a in forming F (and subformulas of F
a

where S(F) consists entirely of such variable symbols) are removed, and

the remaining operators are changed to preserve equivalence with Fx.
a

More precisely, if w(F1 , ... ,Fk) is a subformula of F, then if S(Fi) r:f:- X

for all i, cp remains the same; if S(F.) c X and S(F.) r:f:-X for J#, then
1. J

~ is replaced with cp(x1 , ..• ,xi-l'Fi,Xi+l'""" ,xk) where all variables of

F. have been replaced with a (if there are more such indices i, we proceed
1.

in the obvious way); and if S(F.)C X for all i, then cp is eliminated. This
1.

X
transformation will be called normalization and G will be denoted by norm(F).

a

99

A. 3 Lermna

If Fis a (~,n,*)-formula, then for any p, q ~ 1 and a ED, if

n ~ ~
6

(p,q), there exists a subset X ~ S(F) such that either

(1) Ix! = q and F: is equivalent to a PC of the formulas F
1

, ••• ,Fr

where r ~ n and F. for 1 ~ i ~ r is a formula over ~a such that each element max 1.

of X occurs in at least two among F1 , ... ,Fr, and the total number of

occurrences of any x ~ X in F1, ... ,Fr is~ the number of occurrences of x

in F; or

(2) Ix! is arbitrary X
and Fa has a proper nesting sequence .Q = (G1 , ... ,

G 1 , G) where G. for 1 ~ i ~pis a formula over ~a. p- p 1.

b:.Q,2i

Assume there is no X ~ S(F) such that FX is as described in (1) of
a

the statement of the lennna.

We will describe a (proper) nesting sequence extraction procedure

(NSE) whose inputs will be a formula Hover ~a and a set of variables

Y. The output of NSE will be two formulas H'(Z,z) and H" over ~a such

that Z is either a singleton or~ Y; furthermore, HU= H' (Z,H") for some
a

U ~ S(H).

G will be obtained by the repeated use of NSE, Initially, the input

of NSE will be

will be G
1

and

F -= F
0

Fl (Fl

and¢. In the first application of NSE, the output

is an intermediate formula whose significance will

be describe irmnediately). In general, the i th application of NSE will

receive the input F. 1 and ! I X. and yield as output G. and F .. We will
1.- ·< . J 1. 1.

J 1

100

show that if n ~ ~6 (p,q), we can apply NSE p-1 times and end up with F
p-2

from which G is obtained as will be described below.
p

Description of NSE. The input to NSE is as describe above. Then

we can distinquish two cases:

Case I. L(H) = 1. In this case we cannot apply NSE, and the output

is undefined.

Case II. L(H) > 1. In this case we can assume that H has no unary

operators; for suppose there exists a subformula J of H such that J = w(t(

J 1 , ••• ,Jr)) where Ji for 1 ~ i ~ r is either a variable symbol or another

subformula of H. In this case ~•t = p E ~a and we can replace J by the

equivalent formula P(J1 , ••• ,Jr). Similarly, if J = ~(J1 , ••• ,v(Ji), ••• ,Jk)'

we can eliminate~ because ~(x1 , ••• ,v(xi), ••• ,xk) = P(x1, •.• ,xi,•••,'1c)

~ ~a (thus, if a unary operator of H corresponds to an internal node of

T(H), we can eliminate it by either of these two means; on the other hand,

if a unary operator of H corresponds either to the root node or to a node

next to a terminal node of T(H), then we can use only one of the two methods

described). Now choose i' such that S(H.i,) is maximal among S(H.i) for

1 ~ i ~ r. Since support is defined only for formulas, S(H.i,) may be

undefined if all arguments of the outermost operator of Hare variable

symbols. In this case replace one of them by the identity operator

which is possible since id~ ta. Consider H/H_i' = K(Z,z). Again two

cases can arise:

101

Case Ila. Y n Z = ¢. Choose any variable of Z, e.g., x, and let

H' = norm(ix,zJ). z is a distinquished argument (hence xis free).
a

In this case set V = S(H .)-Z U(xJ. The significance of V will be
• l.

seen immediately.

Case Ilb. Y n Z # ¢.

argument V = S(H. ,)-Z UY .
• l.

H' = norm(KYU(zJ)]
a

In both cases H" V
= norm ((H . ,)) •

.1. a

z is again a distinguished

Analysis of NSE. Let 1s(H)I = m, and let us estimate ls(H")I.

Obviously, l S (H. i,) I ~ n....!!!,_ In the case that H results from a chain
max

of applications of NSE to a formula F, and F does not satisfy (1) of the

statement of the lennna, then we claim that in Cases IIa and bless than

q variables are set to a in H. ,. Suppose this is not true. Let the
• l.

set of variables that is set to a on this occasion be W. Then W ~ Z-(x}

(Case IIa), or W ~ Z-Y (Case IIb). In any case consider Fw. This is
a

equivalent to ~(H_i(l)):, •.• ,(H_i(s)): where i(l), •.• ,i(s) are the

indices corresponding to the subformulas H. where all variables have
• J

not been replaced by a (if in H.k all variables have been replaced by a,

then it is absorbed into~). But then

satisfies (1) of the statement of the lemma. A contradiction.

Thus, IS (H") I

Hence, if we define

:::!:_!!!__
n

max
-q+l

i.e. ,

102

1'16 (1,q) = 1

11
6

(p+l,q) = ('Tl
6

(p,q)+q-l)·n , max

1'16 (p 'q) P-1
= n •q+ max

P-1
n -1
max

n -1
max

. (q-1)

for p,q ~ 1 (and if F does not satisfy (1)), we will be able to apply NSE

p-1 times and obtain F 1• G can then be obtained as follows= If S(F 1)
p- p p-

n S(G.) =~for 1 ~ i ~ p-1, then choose any variable y ~ S(F 1) and
i p- p-1

obtain G from (F 1)(y} by normalization; otherwise, denoting U S(G.)
P p- a i=l i

by U, obtain F 1 from (F 1)U by normalization. It can be checked that p- p- a

G. for 1 ~ i ~ p satisfy the conditions of (2) of the statement of the lennna.
i

Consider a sequence of (nonempty) sets Xi for 1 ~ i ~ p such that

X. is either a singleton, or is included in
i U xf

j<i
a sequence of sets a normal sequence (of length p).

We will call such

Note that the sequence

x1 , ••• ,XP in Definition A.l is a normal sequence. Then

A.4 Lennna

Let x1 , ... ,Xp be a normal sequence of sets with the additional pro

perty that each element of LI X. appears in at most k elements of the
i

sequence.
i=l

Then if p ~(k+l)m, there exists a subset Y ~ l1 X. and an
i=l i

increasing sequence of indices i(l),i(2), ••• ,i(q) such that (1) q ~ m,

0

103

(2) i(l) = 1, (3) Xi(j) n Y is a singleton for 1 ~ j ~ q,(4) X£ n Y = ¢

if l ~ i(q) and l 1 i(j) for 1 ~ j ~ q, and (5) if x ~ Y, jl < j 2 < jJ

and x E X. (.) ,
1. J 1

'Proof

(this is a direct

our terminology). Let

assume that x
1

E x
1

.

translation of the proof of Lenuna 2 of [Ho68J into
p
U X. = (x

1
,x2 , ••. J. Without loss of generality

i=l 1.

If m = 1, set Y = (x1 }, i(l) = 1, and conditions

1-5 are satisfied. For the inductive step two cases are distinguished.

m-1 Case I. x
1

occurs in none of the sets Xj, 2 ~ j ~ (k+l) + 1.

m-1
Setting r = (k+l) +1, the sequence x

2
, ••• ,Xr is normal and each element

r
occurs in at most k of the X., 2 ~ j ~ r. If Z ~ U Xj and the sequence

J j=2
j(l), ••• ,j(q-1) are obtained by the inductive hypothesis, then (x

1
} U Z = Y

and i(l) = 1, i(2) = j(l), ••• ,i(q) = j(q•l) satisfy conditions 1-5.

Case IL
m-1

Assume that x
1

occurs in some Xj, 2 ~ j ~ (k+l) +1 and

let h be the smallest such number j. Furthermore, let V be the set of

elements different from x1 , and occurring in x2, .•• ,¾-i· Delete the

elements of V from x1,¾,••• ,Xp' and delete those among x1x2 , ••• ,Xp

that remain empty. Let the resulting sequence be Y
1

, ••• ,Yp. The length

m-1
of the sequence (X1,~,~+l'''' ,Xp) is at least p-(k+l) +1.

There are less than (k+l)m-l distinct variables in x2 , ••• ,¾_1 ,

each one occurring in at most k-1 of the formulas x1,¾,•·•,Xp.

Therefore,

104

m-1 m-1 r ~ p-(k+l) +1-(k-l)(k+l) ,i.e.,

r :2!': (k+l)m-l+l

The sequence Y2 , .•. ,Yr is normal and its length is at least (k+l)m-l.

(q-1) be obtained

Then Zand i(l) =

conditions 1-5.

r
Let Z ~ I I Y. and the sequence j (1) = 2, j (2), ..• ,

j;2 J

according to the inductive hypothesis for Y2 , ••• ,Yp.

1, i(2) = j(l), ••• ,i(q) = j(q-1) (where q ~ m), satisfy

Let there be given a (*,*,k)-formula F with the proper nesting

sequence G = (G1 , ••• ,G) such that G. is a formula over~. As has
p l.

already been remarked above, x
1

, ... ,Xp (see Definition A.1) is a normal

sequence of sets.

If p ~ (k+l)m, then by Lemma A.4 there exists a set Y ~ P1 X. and
i=l 1.

q indices i(j) for 1 ~ j ~ q such that conditions 1-5 hold. Note that

if m = k·t, then IY! ~ t since no variable appears more thank times

inf (Q is proper). In particular, consider only Z = {x1 , ••• ,xtJ ~ Y

where x1 , .•• ,xt are numbered in the order of their appearance inf.

Note that due to condition 5 of Lemma A.4, if x, y EY and y follows x

inf, then x cannot appear again after yin f. Let G be as de~ined in

Definition A.1. Then we will let the reader convince himself that G2
a

z
(hence also Fa) is equivalent to K(Z,G') where K(Z,z) is an et-component

over ~a with input variable z, and G' is a certain formula over ~a such

that each variable of G' occurs at most k-1 times.

□

105

Note that in this case we do not know the size of S(G'). This

can be remedied in the following way: There are two cases; either

is(G')I ~ l/2·t, or not. In the first case perform an a-merger on K

with basis S(G'), after which we obtain an SC of an e-component K'

of length~ l/2·t and a formula G11 (through the input variable) such

that S(G0
) equals the set of lateral variables of K'; in the second

case perform an a-merger on K(Z,G') with basis Z-S(G') in which case we

obtain an e-component K' of length~ l/2•t with a constant input operator.

We summarize the preceding in the following

A.5 Lemma

Let there be given a (*,*,k)-formula F with a proper nesting sequence

of length p ~ 1 composed of formulas over~. Then if p ~ (k+l)
2
k•t, there

exists a set Z ~ S(F), IFI ~ t, and F2 is either equivalent to an SC of
a

an et-component Kover fa and a formula Gover ~a such that S(G) is the

set of lateral variables of K, and no variable of G occurs more than

k-1 times in G; or to an et-component Kover fa with constant input

o~erator.

Let there be given a PC F of the formulas F
1

, ••• ,Fr where r ~ n max

such that !s(F)I = q and each variable appears in at least two among

F1 , ••. ,Fr (i.e., a situation as described in (1) of the statement

of Lemma A.3). We are interested in obtaining a (nonempty) subset

X ~ S(F) such that when the variables outside of X have been replaced

106

by the constant a, IS(norm(F.)X))I for those F. where not all variables
l.a , l.

h2ve been replaced with a is equal or larger than a predetermined number

t (as large as possible).

We could solve the problem as follows: Each variable of S(F) appears

in a certain subset of the formulas F
1

, ••. ,Fr. The number of such
n

b · 2r (1.· n 1 2 max) h f · d b su sets 1.s genera , ~ ; t us, we are sure to 1.n a su set X

with !xi ~ g such that all elements of X appear in the same subset
n

2
max

of F1 , ... ,Fr.

However, we can improve this number. Let us construct the occurrence

table of F. The table consists of rows corresponding to elements of S(F),

and of columns corresponding to F. for 1 ~ i ~ r. The entry a .. is 1
l. l.J

if xi occurs in Fj and O otherwise. We will try to extract a subset

X f;;; S (F) such

X
S (norm (F.)))

i. a

that either all variables of F. are replaced by a, or
l

contains~ elements (twill be determined later).

If all columns in the occurrence table contain~ t l's, we are

done and X = S(F). Suppose not. Let the column j contain< t l's.

Delete all rows corresponding to the l's in column j and column j

itself. Let the set of variables corresponding to the remaining rows

be x1. Consider the remainder of the occurrence table (i.e., minus

the deleted rows and column); and again look for the column with< l's.

If it does not exist, we are done and X = x
1

. If such a column exists

continue. Now two things can happen. Either at some point we end up

with a certain subset of columns, all of -which contain~ t" l's, or we

end up with two columns that both contain< t 1 1 s. We shall see that by

107

an appropriate choice oft, the latter case cannot happen. The number

of l's in the whole table~ 2q (each variable occurs in at least two

formulas). The smallest number of l's remaining after all but two columns

have been deleted~ 2q-m where mis largest possible number of l's that

can be deleted in the course of this procedure. m = (t-1)· (r+r-l+r-2+ •.•

+3) = (t-l)· (r+3) (r-2)
2

(this corresponds to the case when each deleted

row contains only l's and at each stage t-1 rows are deleted). If, after

the table is reduced to two columns, both columns are to contain~ t l's

(both have to contain the same number of l's since each variable occurs

in at least two formulas), then

or since r ~ n
max

where c = (n +3)(n -2)
max max

For large n this is better than the previous bound. This result
max

can be summarized in

A. 6 Lemma

Let there be given a PC F of the formulas F1, ... ,Fr over~ where

r ~ n such that !S(F)j = q and each variable appears in at least
max

two among F1 , ••. ,Fr. Then if

108

:?: (c+4)t-c
q 4 where t :?: 1

we can find a subset X !:;; S (F) such that Fx
a is equivalent to a PC of

the formulas c1 , ••. ,Gs a S(G.) :?: over i1i and t for 1 s: i s: s s: r.
l.

Lennnas A.3, A.5, and A.6 can be canbined into

A. 7 Lemma

Let F be an (ili,n,k)-formula. Then for any t:?: 1 and a ED if

(see Lemma A.6 for the value of c), there exists a subset X ~ S(F)

such that either

(1) F: is equivalent to a PC of the formulas F1 , ••• ,Fr over qia

where rs: nmax' each variable of Fi occurs at most k-1 times in it,

and F. contains at least t variables of X or
l.

(2) FX · · 1 SC f K over ~a a 1.s equ1.va ent to an o an et-component ~

with a formula Gover ilia (through the input variable) such that S(G)

is the set of the lateral variables of Kand no variable occurs more

than k-1 times in G; or to an et-component Kover ilia ~ith a constant

input operator.

A.8 Lerrnna

Let F be a (ili,n,k)-formula. Then for any t ~ 1 and a ED if

109

then there exists a subset X ~ S(F) such that FX is equivalent to an
a

SPCeC over ~a G such that (1) G has~ nk components, (2) each
max

component is of length~ t, and (3) the terminal components of G

have constant input operators.

Proof

~7 (t,1) = nt . In this case T(F) has at least one branch max

connected to t+l variable symbols (k=l and thus all variable symbols

are distinct) at different nodes. This branch can be converted into

an et-component with constant input operator. The idea is illustrated

in Fig. A.l.

(c-1-4)• ~7(t,k)-c)
4

We can apply Lemma A.7. The result is either (1) an e-component K

of the correct length and constant input operator, (2) an SC of an

a e-component over~ of the correct length and a formula to which we

can apply the inductive hypothesis, and (3) a PC of formulas to which

we can apply the inductive hypothesis. In each case we obtain an SPCeC

with the desired properties. 0

Let F be a (~,nk)-formula. Then for any t ~ 1 and a f D if

110

there exists a subset X ~ S(F) such that FX is equivalent to an SPCeC
a

a
over~ G such that (1) G has~ k components, (2) each component has X

as the set of its lateral variables, (3) the terminal components have

constant input operators and (4) lxl = t.

Proof

Apply Lennna A.8 to obtain a SPCeC G' with all components having length

~ s·t. Since each variable appears at most k times, it can occur in

at most k components. sis the number of nonempty subsets of~ k elements.

Thus, if the number of variables is as indicated we are sure to kind

in G' a subset oft variables that all occur in the same set of components

of G', After performing an a-merger with this set as basis, we obtain

the desired SPCeC G. 0

Remarks on the bounds in Lemmas A.3-A.9, If ~6 is approximated by

np q
max' ' then ~7 is inductively defined as follows:

t
= n

max

.
that ~8 (t,k) ~ iexp(b,2k) = b

; b' k
for a certain constant y. Thus we see

fork~ k(b) for any constant b (t has not been included in the estimate

because in applications it is constant).

times

111

Conversion of a formula F where each variable occurs only once
into an equivalent e-component by setting certain variables to a.

Fig. A.1

112

APPENDIX B

THE LENGTH OF THE MOD 2 SUM OVER Tit

There is an isomorphism between the set of formulas over TI and series

parellel contact networks. We assume the reader is familiar with this model

as well as with the isomorphism in question. In this case if Fis a formula

over TI, then L(F) corresponds to the number of contacts in the network corres

ponding to F.

For convenience, we will derive the result in contact network terminology.

Given a (series-parallel) contact network C, a chain is set of contacts

such that when they are all closed, C conducts (we will say "C is 1"); a cut

~ is a set of contacts such that when they are all open, C does not conduct

(we will say "C is 0"). In the obvious way, we define minimal~, minimal

ill.~ (i.e., when one contact is deleted the corresponding property does not

hold).

B.1 Lemma

Given a contact network C and any minimal chain and minimal cut set, their

intersection is a singleton.

t
This result is due to Khrapchenko (Kh71J.

113

Proof

By induction on the number m of contacts in C. Form= 1 the assertion

is obviously true. If m > 1, C must be either a series combination of smaller

networks c
1

and c2 , or a parallel combination of smaller networks c
1

and c2.

In each case it is simple to establish the lennna. □

n
Suppose now we have a contact network S that represents $ x .•

l.
Let m.

i=l J

denote the number of contacts labeled with x. or
J

X. • Then we are interested
n J

in ;::: m .•
j=l J

Consider n-tuples (a.) for 1 ~ i ~ n and a. E [0,1}. Ann-tuple of this
l. l.

kind will be called~ if it has an even number of l's,otherwise it is odd.

Obviously S must be 1 on odd n-tuples and O on even ones.

Consider an arbitrary odd n-tuple A= (a1, ••• ,ai, ••• ,an) and an even

n•tuple .h = (b 1 , ••• ,bi, ••• ,bn) at Hamming distance 1 from g. If bi= ai, then

all other components of g and.hare equal. e. will denote then-tuple with
-1

a single 1 in the i th place. Then we will write b = a $ e .•
- - -i

To each odd n·tuple A we can assign a minimal chain c~) (consisting of

a subset of contacts of S that are closed at g and that do fonn a minimal

chain); similarly, to each even n•tuple ,h we can assign a minimal cut set

s(.h) (consisting of a set of contacts of S that are open at ,hand that do form

a minimal cut set).

Let g be odd, .h = g ~ ~ even. Then by Lemma B.1, c ~) n s (h) is a

singleton; in fact, it is easy to verify that it must be a contact labele0

either with xi or xi.

114

We build now Tables I and II. The rows of Table I correspond to odd

n-tuples while those of Table II correspond to even n-tuples. Thus both

n-1
have 2 rows. The colunms of both tables correspond to the variable x.

l.

for 1 ~ i ~ n. The entry a.~,j) in Table I is c~) n s~ EP-_gj). This entry

will be represented by a number between 1 and m .•
J

Lett .. denote the number of times contact number i (among those labeled
l.J

with x. or i.) appears in column j of Table I. Then
J J

(B.1)

The entry ~(h,j) of Table II is s(J?.) n c(h EB il.j). (B.l) again holds.

Construct now Table III. The rows of Table III correspond to all possible

pairs ~,h) where~ and hare odd and even n-tuples respectively. The columns

of Table III again correspond to variables. An entry of Table III is y~,Q,j) =

(a.~,j), P(h,j)).

Consider now the diagonal entries of Table III (i.e., (a.,~) such that

a. = ~). Let (CX~,j), ~<12,,j)) be such an entry. Then cx~,j) = ~(h,j) =

c~) n s(h). Thus, by Lemma B.l, there can be only one such entry in a row.

n
The number of diagonal entries is t

j=l

Combining a

n
t

j=l

version of

..l.
m.

J

(

Cauchy's inequality

mj m.

tij)2 ~
J

't z:
i=l i=l

2
t . .•

l.J
Thus,

(B.2)

2
t ..

l.J

with (B.l) and (B.2), ve o1>ta1Dgi\')I

ll

:1: ,~,·1~·1
j•l j

'! :, \'.;iY-" r, ·· '>J · ·,,,;•tLL~,,_.,,.;~;;r,<:) .L ;,1'"'Ir.fo:r! &rl.3 t1'fl t alsffi.l:slvi\. .A p;;1c,r#,.
c~r .' uq;:"F,7) L, . ~·•At.f .1:.u _;.;,fnJ}'!r.:<; ,·.'.:'·1 , :;;11 i ini..,l::l;>Gi! :.>.}jif.lf!Ufj :tA

'l'hia tiae .. 1MS: .. ly • .-~•·•·••lf•- ,(~.& bb ;;ilJl'Yt><~ .e~! ,t-i: '(ll-H

L""IL ,.. ~-::·1 ... 'l_

J~('! , '<
(for both

........ ,.., ..•.. ·•,r•l...,.,,._J, ~~-'-,.-,;,.,,,-I.ru,-,.,'"\ "'o-q ... r,,,'";(<1-,, ,,,,..:; .. .:: .p, c:ect
~C.•-£ .. ·-1 .J~•- v-~----tt- t ~--.,--,,,..,i•--•..- -_,,.-~ ,J;._~..,,,;;;:,,,¼,'-4•-··--~--.a.:I. t•..if4:1 .·;:r\;.. -

' - (t •). (t) ~ • .
,·r1·',_rL, :,•i J,.},i,,;J ,,i',>'.ij!,11 ,, 1(:!lli!:o!qmo;) :>f!"r :J-foo~, .A .G He<)
,,,.r.r,O a.td"'?.hh l:,~,,,d2 ,;jnlj.r.r~ino:> '('f'.0$rl'J a;lao~2 ,,uM
in.equaU.tiea aee, ••I•, f)lt64Jp. 9),-' ;111~.tlle.+.aired result

l'...c:J.r,1,•\0A•u ;,;:,:,Jbfla!. U j,,. s,,dd,r,ru .M$1lS;$1J:.i ta'loj.J'.}.S ~',:-.;)

t •j ~l:'f ~~~!+1-i tufoL ,S .J.oV ,,lo'!jn,.;;::l bn.s

•~t:.1!!£!fV j,C fL lJF.;.:J

fl:$":fO~.i • is. , C .t.;3 • :,; c ., l

j•l
:,-~,f1,:11n:J .,;1;1 -- ,">~c.,;i;S .i .i:. i:ms ".1-eq"l~ .H

" (h-!,rl:;d:: ! 0L 1 qf' u)

;: ··::,!J.,,;:- ~ , --t 1 ~sll~A\q~ ~~ baa attboH .J

0
:<.~,. 'a: .i :1~~<:jpY, ::;1 e.noJ:J-udi'l:fgo.:) ~I i'rsJ,;

.:. L -,,,,,-' :r . ··> .t;;.;0l qi!toO 1,1!.:,; ~nJ 9.t:tf.' ~ ;;s; boh k..l Cf~ ;>ii

~ .• i'_f 1"~ "r-1q ~ i .oK tll ttOA Ia.c-: .. ,JoL

•;,._ • ·:":1 t ,-;:; :.1::i-~.t~)·,~, lr,, :ni:;!:; 9fl:l qJ: rml:1•;if~u-\J.
• tn.alaai,d!) o,.i..,~ct: .qq

:1 _ ,~,o.:J s~IsH,,>! ill:~&vi,doJ'l;i .a .2. •::CH

r~ 1 ,.J·~.:1 "J ,,,j ~ ·:~~>he-~.~ fl qt; <t I ~J-~J 1: 'I! e:1J:j9,.t.r"!Stf(O

• (m:.1 ::uu.,1 E

(Hu, i q,mO t vvnaq;JJ. .ff 0

• t:fcrl ,. .S''.HJ£itg!A La::: !;~v.l
, qq c 5: i}{) I • lf\ ~• '.!":i m::,!ll',~ -;i ccq

; f :J ,.;:?i a.'il◊<l DO (VQU£!jUJ: .~! • ()

:r-"; l < r:,·:J J ,;ar:H,1nI l "Jtl!E:1 r,:;a lo'l:.L,o:'i ·:
(.~;:ls~11Ji) S.!:~i;! .,,11 io=· .. ~_r

116

LITERATURE

Ar69 M. A. Arbib, Theories of Abstract Automata, Prentice-Hall, 1969.

Av69 A. Avizienis, On the Problem of Computational Time and Complexity of
Arithmetic Functions, Proc. ACM Symposium Theory of Computing,
May 5-7, 1969, Marina del Rey, California, pp. 255-258.

Be71 C. Berge, Principles of Combinatorics, Academic Press, 1971.

Co71 S. A. Cook, The Complexity of Theorem Proving Procedures, Proc. 3rd
Ann. Sympositrr11 Theory Computing, Shaker Heights, Ohio, May 3-5, 1971
pp. 151-158.

Gr59 Editors, Eugene M. Grabbe et al., Handbook of Automation Computation
and Control, Vol. 2, John Wiley, 1959.

Ha71 L. H. Harper and J. E. Savage, On the Complexity of the Marriage Problem
(unpublished).

Ho68 L. Hodes and E. Specker, Lengths of Formulas and Elimination of Quanti
fiers I, Contributions to Mathematical Logic, K. Schutte, editor, North
Holland Puhl. Co., 1968, pp. 175-188.

Ho70 L. Hodes, The Logical Complexity of Geometric Properties in the Plane,
Journal ACM, 17, No. 2, pp. 339-347.

Kh71 V. M. Khrapchenko, On the Complexity of the Realization of the Linear
Function in the Class of TT-Circuits, Mat. Zametki, 1, No. 1, 1971,
ppo 35-40 (Russian).

Kr59 R. E. Krichevskii, Realization of Functions by Superpositions, Prob.
Cypernetics II, 1961, pp. 458-477, Pergamon Press (translated from the
Russian).

La67 s. Lang, Algebra, Addison-Wesley, 1967.

Lu59 0~ B. Lupanov, Complexity of Formula Realizations of Functions of
Logical Algebra, Prob. Cybernetics III, A. A. Lyapunov, editor,
Pergamon Press, 1962, pp. 782-811 (translated from the Russian).

Lu70 b. B. Lupanov, On Some Results in the Mathematical Theory of Synthesis
of Control Systems, Information Materials 5(42), Ac. Sci. USSR, Moscow
1970, pp. 16-22 (Russian).

117

Mi69 M. Minsky ands. Papert, Perceptrons, MIT Press, 1969.

Mk71 R. McKenzie, et al. On Boolean Functions and Connected Sets, Math.
Systems Theory, 1, No. 3, pp. 259-270.

Mt64 D. S. Mitrinovic, Elementary Inequalities, P. Noordhoff Ltd. Groningen,
1964.

My71 J. P. Mylopoulos and T. Pavlidis, On the Topological Properties of
Quantized Spaces I, II, Journal ACM, 18, No. 2, pp. 239-254.

Ne 66 E. I. Neciporuk, A Boolean Function, Soviet Math. Dokl., 1, No. 4,
1966, PP• 999-1000.

Ri42 J. Riordan, C. E. Shannon, The Nt.ttnber of Two Terminal Series-Parallel
Networks, J. Math. and Phys. 21, 1942, pp. 83-93.

Ry63 H. J. Ryser, Combinatorial Mathematics, MAA Math. Monographs, No. 14,
John Wiley, 1963.

Sh49 C. E. Shannon, The Synthesis of Two-Terminal Switching Circuits, Bell
System Tech. J., 28, No. 1, 1949, pp. 59-98.

Su61 B. A. Subbotovskaya, Realizations of Linear Functions by Formulas Using
V, &, -, Soviet Math. Dokl., 1, No. 2, 1961, pp. 110-112.

Vi70 B. Vilfan, Cyclic Perceptrons and Pattern Counting Machines, Proc.
4th Ann. Princeton Conf. Info. Sci. and Syst., Princeton U., March 1970

Ya54 S. V. Yablonskii, The Realization of the Linear Function in the Class
of TI-Circuits, Dokl, Ac. Sci. USSR, 94, No. 5, pp. 805-806 (Russian).

Ya59 S. V. Yablonskii, On the Impossibility of Eliminating Exhaustive Search
of Boolean Functions in the Solution of Some Problems in the Theory of
Circuits, Dokl. Ac. Sci. USSR, 124, No. 1, pp. 44-47, (Russian).

This empty page was substih,ted for a
blank page in the original document.

CS-TR Scanning Proiect
Document Control Form

Report# LC5-TA.- 71

Date: l1:J'J1'1C

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

¥ Technical Report (TR)

D Other:

D Technical Memo (TM)

Document Information Number of pages: / /8 (JJ:..If.-·,'rnAv£S)

Not to include DOD forms, printer intstructions, etc ... origina(pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
0 Typewriter O Offset Press

Intended to be printed as :

D Single-sided or

){ Double-sided

0 Laser Print

0 Ink.Jet Printer ~ Unknown □ Other:. ______ _

Check each if included with document:

~ DODFonn

D Spine

D Other:

D Funding Agent Form

D Printers Notes

Page Data:

~ CoverPage

D Photo negatives

Photographs/T anal Material (by page numbe<l: ________ _

Other <note descriptionlpag number):

Description : Page Number:

XmAGJf m~r ~ (I .., I {CZ) 4N~)JfD T,l"U PAG'(
1

;;_. · / 11/,.i_J.Jft>'ro 01..w~ l-<-

{lf Cf~ JJ...Jf:) Sc=.'°acotJTn.tlLi c:..c-;J{A. DoO ~$ (J)

Scanning Agent Signoff:

Date Received:_/_, J.J /~ Date Scanned: _I I J..(1 <-tfi Date Returned: ol 1_/_11 £

Scanning Agent Signature: ______ /1w ___ ✓..,.."(l.....,• A..,.,..f ___ 'Jt'v_. """'~ ·_ ___ _
Rev IW-4 OSILCS ~ Control Form csuform. Y5d

I \ P

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security claa ■ lllcatlon of title, body of ab■tracl -,d Ind••'"' -,notation muar be entered when the overall report ia c/11••1/led) -- .

I. ORIG IN A TING ACT I VI Ty (Corporal• author) 2 •. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP

NONE ..
3. REPORT TITLE

The Complexity of Finite Functions

4. DESCRIPTIVE NOTES (Type of report and lnc/uelve datea)

Ph.D. I Department of Electrical Enqineering, February 1972
5. AU THO RISI (Leal name, flral n_,,e, Initial)

Vilfan, Bostjan

6. REPORT DATE 7•. TOTAL NO. OF PAGES
17b. ;S OF

REFS

March 1972 118
811. CONTRACT OR GRANT NO. 9•. ORIGINATOR'S REPORT NUMII ER(Sl

N00014-70-A-0362-0001
b. PROJECT NO. MAC TR-97 (Thesis)

c. 9b. OTHER REPORT NOlSl (Any other n...,b•t• that may be

• .. 1,ned thl• r■port)

d, NONE
10, AVAILAIIILITY/LIMITATION NOTICES

Distribution of this document is unlimited

11. SUP,.LrMENTARY NOTES 12. S"ONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D. c. 20301
IJ. ABSTRACT The topics covered are the length of formulas for finite func-
tions, the order of cyclic perceptrons, and pattern counting machines.
Using a generalization of a theorem of Specker, it is shown that the
Boolean function is 1 if the number mod p of arguments equal to 1 is 0
cannot be represented by a formula of length proportional to the number
of arguments if k-ary logic is used with p>k. The same thing can be
shown for arbitrary k if the only binary operators used are max(x,y)
and min (x,y). It is also shown that the connectivity predicate cannot
be represented by a formula of this kind, regardless of k and of the
operators used. Next shown lS that the connectivity predicate and the
Euler number predicate cannot be represented by finite order cyclic per-
ceptrons. Finally, it is shown that the only topological predicates
that can be reconstructed from the k-subpattern spectrum of a given
square pattern of O's and l's are functions of the Euler number. The
k-subpattern spectrum of a pattern is a tuple given the number of
Or.r.11rrpnrAS Of anv kxk sauare subn;ittern in the oriain;il n:::ort-Prn _

14, KEY WORDS

computational complexity
combinatorics
finite functions

(M.I.T.) UNCLASSIFIED

Security Classification

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

