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CHAPTER 1 

SORTING AND SORTING NETWORKS 

1.1 Sorting 

The ability to sort a sequence of objects seems to be important in the 

solution of many data processing problems. This thesis deals with a particu

lar kind of sorting algorithm called a sorting network; but before discussing 

sorting networks, it will be appropriate to deal with sorting~ g. 

Intuitively, to sort is to rearrange a sequence of "values" or "numbers" 

to conform to some order. There are always two orders involved in this 

process; the order implicit in the sequence and the numerical order of the 

values themselves. For example, if each of a sequence of locations in a 

computer memory contains a number, we can talk about sorting the sequence 

of numbers. This is done by changing the locations of the numbers so that 

after the process is completed, the nrnnber in location xis less than or 

equal to the number in location y whenever location x precedes location y. 

Note that sorting affects neither the sequence of the locations nor the 

values of the numbers. Rather, it changes the assignment of numbers to 

locations. Definition 1.1.1 generalizes these intuitive notions to deal 

with partially ordered sets. 

Definition 1.1.1 If D and Rare sets partially ordered by P and~, respec

tively, and if f is a function from D to R, a permutation TT on D sorts f 

(with respect to P) if 
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(Vx, yED)(TT(x)PTT(y) ⇒ f(x) ~ f(y)) 

or, equivalently, 

The function f is called an assignment from the locations of D to the values 

of R. If f is an assignment which is already sorted with respect to P, i.e. 

if f satisfies the condition 

(Vx, yED)(xPy ⇒ f(x) ~ f(y)) 

then f is consistent with P. ---

Letting f•g denote the composition of the functions f and g, i.e. f•g(x) 

g(f(x)) for all x in the inverse image of the domain of g, it is easy to 

see that if TT sorts f with respect to P, then n- 1.f is consistent with P. 

Example 1.1.2 If D and Rare the sets (a,b,c,d} and (0,1,2,3,4}, respec-

□ 

tively, with P and~ the obvious total orders, then the permutation (abd)(c) 

sorts the assignment f defined by f(a) f(d) = 0, f(b) = 3, f(c) 2 

-1 -1 -1 
with respect to P because f(n (a)) = 0, f(n (b)) = 0, f(TT (c)) = 2, 

and f(n- 1 (d)) = 3. n 

Of course, the most usual special case of sorting arises when Dis 

a finite set, Pis a total order, Risa set of numbers, and~ is the 

familiar total order. If Dis not finite or if~ is not total, it may 

not be possible to sort some kinds of assignments. 
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Example 1.1.3 Let D and R both be the set of positive integers, with P 

and~ the obvious total orderings. The assignment f defined by 

f(n) = {: 

if n is even 

if n is odd 

cannot be sorted because f(n) = 0 for infinitely many n, and therefore a 

permutation TT to sort f could not have TT(n) finite for n odd. 

Example 1.1.4 Let D and R both be finite sets, with P any partial order 

on D and~ the identity relation on R. Then no injective assignment f 

can be sorted unless Pis the identity relation on D, for if xPy with 

-1 -1 x ~ y, f(TT (x)) = f(TT (y)) is false for every permutation TT. 

It is clear that if Dis finite and P and~ are a total orders, any 

assignment from D to R can be sorted by an appropriate permutation. 

In fact, P need not be a total order, as the next theorem shows. 

Theorem 1.1.5 Let f be any assignment from a finite set D to a range 

R, with Pa partial order on D and~ a total order on R. Then any 

assignment f: D ➔ R can be sorted with respect to P. 

Proof: Let T be a total order on D such that P !::: T, and let TT sort f 

with respect to T. Then 

Since P ~ T, we have 

D 

□ 
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(Vx, yED)(xPy ⇒ xTy) 

and 

so TT sorts f with respect to P. 0 

It will be assumed in what follows that Dis a finite set and~ is a total 

order. It will be useful to let R be some set of numbers, with~ the 

familiar total ordering. R will be either a finite set of positive integers, 

the set of all positive integers, or the set of real numbers; most often, 

it will be unnecessary to state explicitly which of these sets R denotes. 

The domain D will usually be a set of numbers, or a set of letters where 

confusion might result from the use of numbers. 

It will also be useful to talk about sets containing all of the sorted 

assignments of a particular kind. 

Definition 1.1.6 If Pis a partial order on the domain D, then the sets 

AP, IP, and Zp are defined as follows: 

AP = ( f: D ➔ R!(Vx, yED)(xPy ⇒ f(x) ~ f(y)) 

Ip [ f: D ➔ Rlf F AP I\ f is injective} 

zP [f: D ➔ Rlf E AP/\ Range(f) = (0,1}} 

That is, AP is the set of assignments consistent with P, Ip is the set of 

injective (one-one) assignments consistent with P, and Zp is the set of 

zero-one valued assignments consistent with P. The set of all assignmEuts 

from D to R will be written A=; similarly, I denotes the set of all 
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injective assignments from D to R, and Z will denote the set of all 

zero-one valued assignments from D to R. Thus Ip= AP n I= and ZP = 

Ap n z • r 

1.2 Sorting Networks 

The familiar algorithms for sorting an assignment f make use of 

two primitive operations: comparison and interchange. For any pair 

of elements x and yin D, a comparison of x and y determines whether 

or not f(x) ~ f(y), and an interchange of x and y transforms f into 

-1 
f' = TT •f, where TT is the permutation (xy). These two primitive 

operations are combined in the definition of a comparator which can be 

viewed as a kind of sorting operation on a two element domain. 

Specifically, a comparator on x and y performs an interchange of x 

and y if and only if the assignment f has f(x) > f(y). Notice that 

a comparator on x and y transforms an assignment f into an assignment 

f' satisfying f' (x) ~ f' (y), so that f' (x) is the minimum of f(x) 

and f(y) and f'(y) is the maximum of f(x) and f(y). 

Definition 1.2.1 If x and y are elements of domain D, the comparator 

<x,y> is that operation which transforms any assignment f into the 

assignment f' = <x,y>(f) given by 

f' 
{

f 

-1 
TT • f 

if f(x) ~ f(y) 

if f(x) >f(y) 

where TT is the permutation (xy). n 
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A comparator <x,y> may be represented schematically by an arrow 

from x toy, indicating that the larger of f(x) and f(y) will be 

assigned to y and the smaller of f(x) and f(y) will be assigned to x. 

A composition of comparators can be drawn as a network, with locations 

in D represented by lines drawn from left to right and comparators 

represented by arrows connecting the lines vertically. For example, 

if Dis the domain (a,b,c,d}, then the composition of comparators 

can be represented by any of the networks depicted in Figure 1.2.l 

(a) 

------+-..------ b 

------------ d 

(c) 

Figure 1.2.1 Examples of comparator networks. 
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In Figure 1. 2 .1, the horizontal lines (often called "wires" by analogy 

with electrical networks) are labeled with the elements of D that they 

represent. For any labeled network, there is exactly one composition 

of comparators that the network represents, and for any composition 

of comparators, there is exactly one labeled network (as long as 

rearranged versions of the same network do not count as distinct.) 

Definition 1. 2. 2 A comparator network is a composition of comparators. 

If f is an assignmeat and C is a comparator network, C(f) will denote 

the assignment that f is transformed into by the composition of 

comparators C. If A is a set of assigmnents, the image of A under a 

comparator network C is written C(A) and defined to be the set 

Although a comparator network has been defined abstractly as a composition 

of functions called comparators, it is possible to implement a comparator 

as a finite state machine and thus to implement a comparator network as 

a network of finite state machines. This implementation is discussed 

more fully in Chapter 2. 

Definition 1.2.3 If C(A=) = AP for some partial order Pon D, then C is 

said to sort with respect tog. If Tis a total order on D such that 

C(A=) = ~• C is called a sorting network (with respect to .I). If C is 

a sorting network with respect to T such that xTy for every comparator 

0 

<x,y> in the network C, then C is called a standard form sorting network. [l 
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For example, it can be shown that the comparator network described in 

Figure 1. 2.1 is a sorting network; in fact, it is a standard form sorting 

network with respect to g . 
It is conventional to draw comparator networks with no wire crossings 

and with the wire labeled x above the wire labeled y iff xTy. If this 

is done for a standard form sorting network, all of the arrows will point 

down, so that the arrowheads are redundant and may be omitted. Notice 

that Figure 1.2.l(b) observes these conventions. 

The next theorem is due to [Knuth]. 

Theorem 1.2.4. For any network C that sorts with respect to a total order 

T, there exists a standard form network C' that sorts with respect to T 

and contains the same nwnber of comparators as C. rJ 

When there is an implicit total order Ton the domain D, it will be 

useful to extend the notion.of standard form sorting networks and 

the conventions for drawing them to comparator networks in general 

by omitting the arrowheads when xTy for every comparator <x,y> in the 

network. 

In what follows, the usual "higher is greater" convention for 

ordering diagrams of partial orders is inverted to conform to the 

conventions for drawing standard form networks. That is, xPy iff xis 

connected toy by a path going downwards in the ordering diagram for 

the partial order. P. This causes the top-to-bottom arrangement of 
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domain elements to be the same for either the ordering diagram of a 

total order Tor the wires of a standard form network that sorts with 

respect to T. 

Example 1.2.5 The standard form network 

l 
I 

I 

a 

b 

C 

d 

is a sorting network with respect to the total order 

1.3 The Analysis Problem for Sorting Networks 

It is often quite difficult to decide whether a comparator network 

sorts. For example, it is difficult to verify by inspection that the 

standard form network of Figure 1.3.1 is in fact a sorting network. 

I 
I 

I 

Figure 1.3.1 Sorting network. 

0 
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This difficulty is reflected in the fact that S(n), the minimum numher 

of comparators in any sorting network on an n-element domain, is unknown 

2 
for n > 8; asymptotically, S(n) is known to be at worst 0(nlog n), but 

might be as small as o(nlogn) [Knuth]. Another manifestation of tlie 

same problem is that it is very difficult to design networks which are 

"good" in the sense that they contain as few comparators as possible; 

the only systematic design techniques known are based on recursive merges, 

2 
and give rise to nlog n growth rates in the number of comparators required 

[Vanvoorhis]. 

There are at least two possible avenues to a better understanding of 

sorting networks. First, it would be useful to have better criteria for 

determining whether a comparator network is or is not a sorting network. 

In particular, a criterion which would lead to an improved upper or lower 

bound on the number of comparators in a sorting network would of course 

be very desirable. Second, better techniques for analyzing comparator 

networks are needed, since a more complete understanding of the capa-

bilities and limitations of comparator networks in general would lead 

to a better picture of what is going on within sorting networks. 

This thesis explores these two avenues. Chapter 2 discusses two 

criteria, one of them new, for deciding whether a comparator network 

is a sorting network. Chapter 3 develops two related ways of charac-

terizing the "state of the sort" in terms of sets of assignments that 

can appear as comparator network outputs. Chapter 4 explores the notion 
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of sorting with respect to a partial order. Finally, Chapter 5 contains 

a discussion of the results of the previous chapters and recommendations 

for further research in the area. 
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CHAPTER 2 

CRITERIA FOR DECIDING WHETHER A NETWORK SORTS 

2.1 Comparator Networks as Finite State Machines 

This section discusses an implementation of the comparator operation 

as a finite state machine. In this section, the term "comparator" will 

refer to the finite state machine implementation rather than to the opera-

tion itself, and the term "comparator network" will refer to the imple

mentation of a comparator network as a network of finite state machines. 

The term "assignment" will refer to an assignment with wires as the 

domain and sequences of binary digits as the range; each binary sequence 

implements the binary representation of an integer with the understanding 

that the most significant bit is first in the sequence. 

The state table for a comparator is shown in Figure 2.1.1. The 

starting state is E, and as long as the upper and lower input symbols x1 

and x 2 agree, the machine remains in state E. As soon as x
1 

differs 

from x 2 , the machine enters state Lor state G depending on which input 

digit is O and which is 1. State Lis entered if x1 is 0, indicating 

xl 
Compar-

x2 ator 

xl 

x2 

E 

zl 

L 
z2 

G 

E, 

L, 

...... 

G, 

0 

0 

0 
0 

0 
0 

0 
0 

L, 

L, 

G, 

0 

1 

0 
1 

0 
1 

1 
0 

G, 

L, 

G, 

1 

0 

Figure 2.1.1. Comparator state table. 

0 
E, 

1 

1 
L, 

0 

0 
G, 

1 

1 

1 

1 
1 

1 
1 

1 
1 
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that the integer represented on the upper input wire is less than the 

integer represented on the lower. In state L, z1 = x
1 

and z2 = x2 , 

thus leaving the assignment unchanged. State G is entered if x2 is 0, 

indicating that the integer represented on the lower input wire is the 

smaller of the two; in state G, z1 = x2 and z2 = x
1 

so that the outputs 

are the transposition of the inputs. If a new assigmnent is to be 

input to the comparator, the comparator must be reset to state E. 

Since a comparator network is a loop free interconnection of 

finite state machines, it is itself a finite state machine. A network 

k containing k comparators has 3 states, some of which may be equiva-

lent or unreachable from the starting state. It will be shown that 

a comparator network is a sorting network only if it contains a certain 

number of reachable states. 

Definition 2.1,1. Let C be a finite state machine, let f be any assign-

ment, and suppose f takes the machine C from its starting state to 

states. Then Cf(g) will denote the output that results when the 

assignment g is applied to C, starting in states. 

The notation of Definition 2.1.1 is consistent with that of Definition 

1.2.2 under the convention that C(f) is just another way of writing 

S-_(f), where~ denotes the input sequence of zero length. (Since~ 

leaves the machine C in its starting state, S-_(f) is the output that 

results when f is applied to C in its starting state.) 
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Definition 2.1. 2 For any finite state machine C, let - denote the binary 
C 

relation on input sequences defined by 

The relation= is an equivalence relation called the Nerode equivalence 
C 

relation of C. It is a well-known result in automata theory that the 

blocks of the partition induced by ~con the set of all input sequences 

are in one to one correspondence with the reachable state~ of any reduced 

machine equivalent to C. 

The following theorem is a variation of Bouricius's theorem 

[Knuth]. 

Theorem 2. 1.3 Let f 1 and f 2 be assignments on domain D and let C be 

any comparator network on D with C(f
1

) == f1 and C(f2) 

then 

That is, if f 2 is an order-homomorph of f
1 

then C(f 2) is an order-homomorph 

Proof: The proof is by induction on the number of comparators in C. 

Basis: If Chas no comparators, f
1 

== f1 and f 2 == f 2 so the statement 

of the theorem is obviously true. 
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Induction step: Let the statement of the theorem be true for all networks 

containing nor fewer comparators, and let C' be a network of n+l compara

tors. C' can be viewed as the composition of a network C of n comparators 

and a single comparator <a,b>. Let f
1 

and f
2 

be any two assignments on D 

with C(f
1

) = f 1 and C(f 2) = f 2, and suppose that 

Since Chas n comparators, the induction hypothesis guarantees that 

Letting <a b>(f') = f" and <a b>(f') = f" it is clear that f
1
1 = f" and 

' 1 1 ' 2 2' 1 

f' = f" as long as f' ( ) :o;;: f' (b) 2 2 1 a 1 · 

and f 2(b) :o;;: f 2(a), so that fl= n- 1.f1 and f 2 
permutation (ab). In any event, 

= n- 1.f 1 where TT is the 
2 

Corollary 2.1.4 If f 1 and f 2 are order-isomorphic assignments on D, i.e. 

if 

then for any comparator network Con D, f
1 

and f 2 leave every comparator 

of C in the same state. 

□ 
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Proof: For any comparator <a,b> in C, apply the theorem to the portion 

of the network to the left of <a,b>. The assignments f1 and f2 that 

appear at the input of <a,b> when C is applied to f
1 

and f 2, respectively, 

satisfy 

It is easy to verify that 

f1(a) < fl (b) ¢:> f 2(a) < f 2 (b) 

f1(a) = fl (b) ¢:> f 2(a) = f 2 (b) 

f1(a) > f1(b) ~ f2(a) > f2 (b) 

so that fi and f2 leave <a,b> in the same state. 

Definition 2.1.5 Let= denote the binary relation on A_ defined by 

That is, f 1 = f 2 iff f 1 and f 2 are order isomorphic. 

The binary relation= is an equivalence relation on A= whose equivalence 

classes (order isomorphism classes) form a partition of A. It will be 

useful to represent each block of the partition by a particular element 

of the block. 

Definition 2.1.6 For every assignment f on the domain D the assignment 

~ is defined as follows: 

~(x) = !{ f(z) lf(z) < f(x)} I 

□ 

That is, ~(x) is the number of values f(z) in the range off that are less 

than f(x). □ 
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Example 2,1.7 If f is the assignment on D = [a,b,c,d} defined by £(a)= 3, 

f(b) = 4, and f(c) = f(d) = 1, then~ is 

I (1} I = 1, ~ (b) = If 1 , 3} I = 2 , and ~ ( c) 

A 
the assignment defined by f(a) = 

Theorem 2.1.8 For any assignment f in A , ~ - £. 
= 

Proof: Suppose f(x) ~ f(y). Then 

[ £(2) r £(2) < f (x) 1 \'.;;[£(2)1£(2) < f (y)} 

n 

A A 
so f(x) :<=: f(y). Now suppose f(x) ~ f(y) is false, so that f(x) > f(y); then 

[f(2)lf(2) <f(y)} C [f(2)f£(2) < f (x) 1 

A 
and f(x) 

A A A 
> f(y), so f(x) ~ f(y) is false. 

Theorem 2.1.9 For any two assignments £1 and £2 in A=, £
1 

- £2 ⇒ ~l = ~2• 

Proof: Let £1 = f 2• Then for all x, f 1 (2) < £
1 

(x) if£ £2 (2) < £
2

(x) and 

f 1 (2) = f 1 (2') iff £2 (2) = f 2 (z'), from which it follows that l[f1 (z)l£
1 

(z) 

< £
1

(x)} I= l[£ 2 (z)lf2 (2) < £
2

(x)} land ~l ~
2

. n 

Theorems 2,1,8 and 2.1,9 imply that every block of the partition of 

I\ 
A induced by= contains exactly one assignment of the form£. It will 

now be argued that if C is a sorting network,= is the same equivalence 
C 

relation as -
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Theorem 2.1.10 If C is a sorting network on an n-element domain D, 

Proof: In view of Corollary 2.1.4, f
1 = f2 ⇒ fl 

-c ~l and f 2 

C f 2° 
6 

-c f 2' then since 

I\ 
Since f 1 

and f 2 

implies f
1 

= f 2 , it remains to show that ~l -c ~2 implies 

~l = t2' It will be convenient to let the domain D be the set [0,1,2, •.. 

n-11. 
I\ 

"f 
I\ I\ . 

"f ~2 (i) Let fl f2' so that fl (1.) for some i. The set 

I\ 
~2(i)) '~1 (i) "f ~2(i)} (min(f

1 
(i), 

is nonempty; let j be such that min(~1 (j), ~2 (j )) is the least element of 

this set and f
1

(j) I f
2
(j); without loss of generality, let ~l(j) < ~2(j). 

Let k denote the number of locations i in D such that ~
1

(i) < ~l (j), and 

define the function gas follows: 

Now consider C~ (g) 
1 

{

o if i = j 

g(i) 
i+l otherwise 

= hl and c~ (g) = h2. 
2 

and h 2 (k) "f o. First, since there are k 

~l(j), C (~l) = ~ 1 

1 
is an assignment with 

It will be argued that h
1

(k) = 

locations i with ~l (i) less than 

t 1 (k) 
1 

= ~l (j) because C is a 

0 

sorting network. Evicently, h1 (k) is the smallest of the values g(i) such 

that ~
1

(i) ~l (j); since g(j) is the smallest possible such value, h
1

(k) = 

g(j) = o. 
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Now consider h 2 (k). h 2 (k) = 0 only if there are exactly k locations 

i with ~2 (i) < ~2 (j). But since ~l (i) = ~2(i) for every i such that 

f1 (i) < ~1 (j) by definition of j, there are exactly k locations i such 

I\ I\ 
that f 2 (i) < f 1 (j). This implies that for no location i is it the case 

that 
6f

1 
(J') .,, /\.f

2 
(1.·) < 6f

2 
(J'). I · 1 h b 1 · · ~ n part1.cu ar, t ere can e no ocat1.on 1. 

I\ I\ I\ 
with f 2 (i) f 2 (j)-l. Since f 2 (j) is the number of elements in the set 

[f2 (z)lf2 (z) < f 2 (j)}, this is a contradiction. Therefore h2 (k) # 0 and 

C 
f is false. 

2 □ 

Example 2.1. 11 This example illustrates the proof of Theorem 2.1. 10. The 

• /\.f /\. (6, ) assignments 
1

, f 2 , C f
1 

~
1
', C(~

2
) = f, g h and h are given in the 2' ' l' 2 . 

table below. 

I\ f 2 (i) f1'(i) h 1 (i) ~2 (i) h2 (i) i £1 (i) g(i) 

0 2 1 1 0 2 0 2 

1 0 0 2 0 5 0 5 

2 1 1 3 0 8 0 8 

3 3 2 4 1 0 1 1 

4 0 0 5 1 3 1 3 

5 1 3 0 2 1 2 4 

6 2 2 7 2 7 2 7 

7 0 0 8 3 4 3 0 



First, notice that 

6£2(1.· )} . 1 . 1.s ; since 
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the smallest element of [min(~
1 

(i), 

I\ I\ 
f

1
(5) = 1 and f 2 (5) = 3, set j = 5. (The function g 

given in the table was chosen for this location j, although j = 0 would 

have worked equally well.) 
I\ . I'-. 

Since f 1 (1.) < f 1 (5) for i = 1,4, and 7, 

set k = 3. Notice that h
1 

(3) = 0 because g (5) = 0, but because ~2 (i) < 

~2 (5) for 7 locations i and 7 is greater than 3, h2 (3) # O; in fact, 

h
2

(7) = O. 

Corollary 2. 1.12 No two reachable states in a sorting network Care 

equivalent. 

Proof: Suppose f
1 

and f 2 leave C in equivalent states, so that 

f 2 ; finally by Corollary 2.1.4, f 1 and 

f 2 leave C in the same state. 

Corollary 2.1. 13 A sorting network Con an n-element domain has 

n 
'\" 

0(n) / kl {~} 

k=O 

n 
reachable states, where {k} denotes a Stirling number of the second kind. 

Proof: It suffices to count the number of distinct functions of the form 

/', I\ . 
f for a domain of n elements. In fact, the number of functions f 1.s 

equal to the number of totally ordered partitions on an n element domain D. 

To see this, let~ be such a partition, totally ordered by T, and for 

I\ 
any element xED let f(x) be the number of blocks off that are T-less than 



25 

the block containing x. It is not hard to verify that there is precisely 

I\ 
one ordered partition corresponding to a given f and vice versa. Since 

[~} is the number of unordered partitions of an n element set containing 

k blocks, and since there are kl ways of ordering every such partition, 

cr(n) is the number of totally ordered partitions on an n element domain 

/I 
and hence the number of functions of the form f. 

It can also be shown that any comparator network that has cr(n) 

reachable states has the property that the reachable submachine of 

the network is isomorphic to the reachable submachine of a sorting 

network with respect to state transitions. 

2,2 The Zero-one Principle 

Where as it might be thought that some comparator network could 

successfully sort all zero-one valued assignments and yet fail to 

sort a more "complex" assignment, this cannot in fact occur; Theorem 

2.2.1 shows that a test to see if all zero-one valued assignments are 

sorted by the network is conclusive. A proof may be found in [Knuth}. 

Theorem 2,2.1 (zero-one principle) A comparator network sorts every 

assignment in A= if it sorts every assignment in Z. 

The zero one principle is very u~eful for deciding whether or not 

a comparator network sorts, 

l7 

D 
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It is the purpose of this section to explore the question "for 

which subsets of z= do there exist comparator networks that sort 

precisely the assignments in those subsets". For .example, it .is 

possible for a comparator network to sort every zero-one valued 

assignment but one? the answer is yes. To prove this, a lemma 

will be needed. The proof is straightforward. 

Legma 2.2.2 The network N depicted below sorts every element of Z 

I 

I 

except-the uaignment 

Now for the theorem itself. 

= 

0 
1 
0 
1 

Theorem 2.2.3 If g is any assignment in Z= except the.constant zero 

or constant one functions, there exists a comparator network which 

sorts every element of Z except g with respect to.some total order T. 
= 

Proof: Let the domain D be the set (0,1,2, ••• n-l), and let g be 

an assignment on D of the form 

D 
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m 

locations 
(0 to m-1) 

·O 

0 
0 
0 
1 
0 

1 n-m-2 

~

l 

locations ~ 
(m+2 to n-1) : 

ll 

where O ~ m ~ n-2. Now let g be applied to the standard form network C shown 

below. The boxes marked "SORT" are sorting networks, and the boxes marked 

"N" are networks of the kind shown in Lennna 2.2.2. 

g=O 

g=-1 

g=o 

g= 

-------0 

SORT SORT ------ SORT m-3 

m-2 

m-1 

m 
N N N m+l 

m+2 

m+3 

SORT-------+ SORT 1------ SORT 1------- m¾ 

n iterations ------- n-1 

It is easy to verify that C(g) g is not sorted with respect to~. 

Now let h # g be any other assignment in Z=. If his applied to C, then 

at least one of the following four things must be true: 
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1. There is at least one 1 on input wires 0 through m-1; 

2. There is a 0 on input wire m. 
' 

3. There is a 1 on input wire m+l; 

4. There is at least one 0 on input wires m-1-2 through n-1. 

In any event, the leftmost pair of sorting networks in C transform h into 

an assignment such that the leftmost N network in C does not receive the 

pattern 

0 
1 
0 
1 

at its inputs. It follows from Lennua 2.2.2 that whatever 

this assignment may be, it is transformed by the leftmost N network 

into an assignment which is sorted on the wires m-1, m, m+l, and m+2; 

in particular, it cannot be the case that wires m and m+l are assigned 

1 and 0, respectively, at the output of the leftmost N network. This 

means chat 

0 
1 
0 
1 

cannot appear at the inputs of the next N network in C, 

or, inductively, at the input of any subsequent N network in C. In 

fact, every N network in C could be replaced by a four input standard 

form sorting network with no effect on the ultimate network output 

C(h). After this has been done, it is not hard to see that C(h) is 

sorted with respect to~; just verify that each iteration of the form 

SORT t---------

SORT 

SORT~-------
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decreases the distance between the uppermost one and the lowermost zero 

by at least one in propagating the assignment, and use the fact that 

there are n such iterations in C. For the degenerate cases m 0 and 

m = n-2, it will be necessary to remove the top (respectively bottom) 

wire from every N network together with all comparators touching that wire. 

Now let g' be an arbitrary nonconstant assignment in Z_, and let TI 

be a permutation on D such that g = TT•g' is an assignment of the form 

0 

m 
0 locations 0 
0 
1 
0 
1 

n-m-2 1 

locations 
1 

1 

If C denotes the network that sorts every member of Z= except g, let C' 

denote the network obtained by replacing every comparator <x,y> in C 

by the comparator <'TT(x), n(y)>. Since g(x) ~ g(y) iff g' (TT(x)) ~ g' (n(y)), 

C' sorts every assignment in Z with respect to the total order T that 

satisfies 

(nx, yiCD) (n(x)Tn(y) ~ x ~ y) 

i.e. the tbtal order defined by 

(Vu, v~D)(uTv ~ TT-l(u) ~ TT-l(v)) 

but fails to sort the assignment g'. 
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An example will be useful to clarify the construction of Theorem 

2. 2. 3. 

Example 2.2.4. It is desired to construct a network which sorts every 

assignment but the assignment g' on D = [0,1,2,3,4} defined by 

g' (x) 

Now the network C shown below 

if X = 3 

otherwise 

sorts every assignment but g, where g is defined by 

if X = 1 
g(x) 

otherwise 

0 

1 

2 

3 

4 

(Notice that since there is only one wire for which g(x) = 0, the top 

wire of the network N has been removed together with all comparators 

touching that wire.) 

Since TT= (13) is a permutation such that g 

shown below 

TT•g', the network C' 
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--+----'---+---L--+------L.-~----'-----+----...L-3 

--~-----~--------------------------------4 

sorts every element of Z except g' with respect to 

Corollary 2, 2, 5 

T 

0 

3 

2 

1 

4 

In verifying that an n-input comparator network sorts 

by means of the zero-one principle, it is necessary to try 2n-2 inputs, 

namely all the nonconstant zero-one valued assignments. 

Theorem 2.2.3 could be modifed to deal with standard form networks, 

which of course must sort at least those zero-one valued assignments 

that are already sorted. 

Among other things, Theorem 2.2,3 indicates that all nontrivial 

statements of the form "any comparator network that sorts every element 

of this set of zero-one valued assignments also sorts that zero-one 

valued assignment" are false. The nc..;<:t theorem, analogously, denies 

the possibility of similar statements about assignments not sorted, 
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Theorem 2.2,6 For any zero-one valued assignment g, there exists 

a total order T and a comparator network C which sorts only that 

assignment (and the two constant assignments) with respect to T. 

Proof: Let g be an assignment on D = [O,1,2, ••• n-lJ of the form 

0 
0 m 
0 locations 

0 
1 
1 

n-m 1 
locations 

1 

where O ~ m ~ n. Now let g be applied to the network C shown below. 

The boxes'marked "REV SORT" are sorting networks which sort in reverse, 

i.e. with respect to the total order~. 

g=O { . 
( 
} 

g=l < 
) 

. . . 
..... 

REV 
SORT 

REV 
SORT 

. 

0 

1 
2 

m-1 
m 

m+l 
m+2 

n-1 

Clearly C{g) = g is sorted with respect to~, as are the constant zero 

and constant one assignments, but no other assignment in Z is sorted 

with respect to ~ • Now let g' be any assignment in Z=, and let TT be a 
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permutation on D such that g = TT•g' is an assignment of the form 

0 
0 

m 0 
locations • 

0 
1 
1 

n•m 1 
locations• 

1 

A transformation of the comparators in C analogous to that performed in 

Theorem 2.2.3 establishes the theorem. 

There are certainly some sets of zero-one valued assignments for 

which there can be no comparator network sorting exactly the members 

of that set. 

Example 2.2.5 No comparator network containing one or more comparators 

can sort each of the assignments. 

0 0 0 1 

0 0 O 
0 0 1 
o, 1, 1 

. . . 1 

without sorting some other assignment. 

1 
1 
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Proof: The leftmost comparator in the network will receive a zero at 

one input and a one at the other for some assignment in the list. 

The assignment which results in the opposite arrangement of the zero 

and the one at the leftmost comparator input must also be sorted, but 

it is not in the list because interchanging a zero and a one in any 

assignment in the list will result in an assignment not in the list. D 
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CHAPTER 3 

COMPARATOR NETWORK OUTPUT BEHAVIOR 

3.1 Output Characterizations 

The set of assignments that can appear at the output of a comparator 

network is sufficient to determine which networks can be concatenated to 

the network to make the combination a sorting network. Thus it is often 

useful to know the assignments that can appear at the output of a given 

comparator network. To the extent that sets of output assignments can be 

represented succinctly and manipulated easily, the problems of designing 

and analyzing sorting networks will become easier. In this chapter, two 

different kinds of assignments will be considered: injective assignments 

and zero-one valued assignments. These two kinds of assignments are related 

by the notion of threshold. 

Definition 3.1.1 If f is any assignment from D to R then 0(f), the set 

of thresholds off, is defined by 

0(£) = (g:D ➔ [0,11 I (3:r E R)("\fx ED) 

(g(x) = 1 iff r ~ f(x)} 

If A is any set of assignments from D to R, then 

8(A) U8(f) 

£EA 

is the set of thresholds of~- [7 
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Example 3.1.2 The set of thresholds of the assignment f: [a,b,c,d} ➔ 

(O,1,2,3} defined by f(a) = O, f(b) = f(c) = 1, f(d) = 2 is the set 

(go, gl, g2, g3}, where the functions g. are given in the table below. 
i 

X f(x) go(x) gl(x) g2(x) g3(x) 

a 0 1 0 0 0 

b 1 1 1 0 0 

C 1 1 1 0 0 

d 2 1 1 1 0 ~ 

Notice that an assignment f is sorted iff all of its thresholds are sorted. 

The following theorem is a close relative of the zero-one principle. 

Theorem 3.1.3 For any network C and any assignment f, C(8(f)) = 9(C(f)). 

Proof: Let g' E C(9(f)), so that g' = C(g) for some g E 9(f). Since 

f(x) ~ f(y) ⇒ g(x) ~ g(y) for all x and y, Theorem 2.1.3 guarantees that 

f'(x) ~ f'(y) ⇒ g'(x) ~ g'(y). If g'(x) = 0 for all x, certainly g' E 8(f'); 

otherwise, set 

r' = min (f'(x)lg'(x) = 1} 
x~ 

and let z be any element of D for which f'(z) = r', hence for which g'(z) = 1. 

Now for all x, if r' ~ f'(x), i.e. if f'(z) ~ f'(x), then 1 = g'(z) ~ g'(x) 

and g'(x) = 1. Conversely, if g'(x) = 1, then r' ~ f'(x) by definition of r'. 

It follows that g' E 9(f'), and so c(0(f)) ~ 0(C(f)). Now, every element g 

in 9(f) is characterized uniquely by the number of elements in D mapped to 

zero by g. Since C merely permutes the domain of each g E 8(f), lc(9(f))I = 

l0(f)I; since C applied to f just permutes the domain off, l0(C(f))l = 
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I e ( f) I . Hence C ( e ( f) ) 0(C(f)). 

The following corollary illustrates the use of Theorem 3.1.3. 

Corollary 3.1.4 For any two networks C and C', the following statements 

are equivalent: 

1. C' sorts every assignment in C(Z_), the set of zero-one valued assign

ments that can appear at the output of C. 

2. C concatenated with C' is a sorting network. 

3. C' sorts every assignment in C(I=), the set of injective assignments 

that can appear at the output of C. 

Proof: --- 1 implies 2 because of the zero-one principle, and 2 implies 3 by 

virtue of the definition of a sorting network. It remains to show that 

3 implies 1. Let g' be any zero-one valued assignment that can appear 

at the output of C. Then g' = C(g) for some g. Now, g E 0(f) for some 

injective assignment f; letting C(f) = f', g' E 0(f') by Theorem 3.1.3. 

Since C' sorts every injective assignment in C(I_), C'(f') is sorted 

and so is every element of 0(C'(f')). Since 0(C'(f')) = C' (0(f')), every 

element of 0(f') (including g') is sorted by C'. 

Corollary 3.1.4 guarantees that either the zero-one valued output 

assignments C(Z_) or the injective C"~~ut assignments C(I_) adequately 
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characterize a network C for purposes of designing a network C' so that 

C concatenated with C' is a sorting network. On the other hand, if the 

network C' is given and it is desired to design a network C so that C 

concatenated with C' is a sorting network, then the network C' is 

characterized for this purpose by those assignments that it sorts. 

In the light of Theorem 3.1.3, it is not surprising that the zero-one 

valued assignments sorted by C' characterize the injective assignments 

sorted by C'. 

Theorem 3.1.5 If I is the set of injective assignments sorted by the 

network C' then for every injective f, 9(f) ~ 9(I) ⇒ f E I. 

Proof: Let 9(f) ~ 9(I) with f ~ I. Then f' = C'(f) is not sorted, 

so there is a zero-one valued assignment g' ~ 9(f') which is not sorted. 

Since g' E 9(C'(f)), g' E C'(9(f)) and so g' = C'(g) for some g E 9(f). 

Since 9(f) ~ 9(I), there exists an injective h in I with g E 0(h). Since 

h E I, C' (h) is sorted and therefore every element of 9(C' (h)) is sorted. 

This implies g' E C'(9(h)) is sorted, a contradiction. □ 

The example below shows that C' may in fact have to sort more injective 

assignments than those in C(I=) if C concatenated with C' is to be a 

sorting network. 

Example 3.1.6 The network 

I 
I 



39 

transforms the set I of injective assignments with range [1,2,3,4 1 

into the set 

and transforms z 

C(Z) 

1 2 1 

C (I ) 
2 1 2 

3 3 4 

4, 4, 3 

into the set 

0 0 0 0 0 1 1 

0 0 0 0 1 0 1 

0 0 1 1 1 1 1 

o, 1, o, 1, 1, 1, 1 

Since 0 ( I ) ~ C ( 7. ) and since any comparator network C' that sorts 

every element of C(I_) must also sort every element of C(Z_), such a 

2 

network C' sorts 
1 
4 
3 

This example suggests that zero-one valued assignments may be more 

useful than injective assignments for output representation. This 

hypothesis will be reinforced by the results of section 3.4; the next 

two sections will be devoted to a more detailed examination of the 

properties of these two kinds of output assignments. 

3.2 Zero-one valued output assignment 

Any set Z of zero-one valued assignments can be described by its 

characteristic function, which in turn can be described by a Boolean 

n 
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expression, For convenience, let the domain of the assignments be 

D = (O,l, ... n-11. 

Definition 3.2,1 If Z ~ Z is a set of zero-one valued assignments on 

domain D [O,l, .•. n-1 1 , then the characteristic function of Z is the 

function k from Z to [0,11 defined by 

k (g) 
if g E z 

if g (/- z 

Since there are 2n assignments gin Z=' each of which is a function 

from D to [0,11, it is possible to represent a characteristic function k 

by a Karnaugh map or a Boolean expression in then variables x
0

, x
1

, ••. 

xn-l' For example, the network 

---,---,---- 0 

-~----1 
---r--~--2 

-~----3 

has the set of output assignments C(Z) described by the table below, 

X 

0 0 0 0 0 0 0 0 1 

1 0 0 1 0 1 1 1 1 

2 0 0 0 1 1 0 1 1 

3 0 1 0 1 n 1 1 1 

The Karnaugh map for the characteristic function of C(Z) is 

r7 
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01 

11 

10 
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00 01 11 10 

1 1 1 0 

1 1 1 1 

0 0 1 0 

0 0 0 0 

and this function can be described by the expression XOXl + xox; + xo'x3 

+ x1x2x3• In this fashion, a Boolean expression can describe any set of 

zero-one valued assignments, and in particular, the set of zero-one 

valued outputs C(Z=) of a comparator network C. 

A comparator <i,j> concatenated to the output of a network C results 

in a new network C' = c-<i,j>, a new set of zero-one valued output assign

ments C'(Z=) and hence a new characteristic function described by a new 

expression. The following definition will be useful in describing this 

phenomenon. 

Definition 3.2.2 If Eis a Boolean expression in the variables x0 ,x
1

, ... 

xn-l' then E/( ) is the expression obtained by replacing every x. ,x. 
l. J 

occurence of xi in E byle_j and every occurence of xj in Eby xi. 

The theorem below describes the effect of a comparator <i,j> 

on a set Z of zero-one valued assignments. This is done by giving an 

I\ 
expression E for the characteristic function of <i,j> (Z) in terms of i,j, 

and any expression E for the characteristic function of Z. 

D 
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Theorem 3.2.3 If Z is a set of zero-one valued assignments on the 

domain D = [O,l, •.. n-1 1 and Eis a Boolean expression for the charac

teristic function of Zin the variables x0 ,x1 , ... ,xn-l' then the 

comparator <i,j> transforms Z into a set whose characteristic function 

/\ 
is described by the expression E, where 

I\ 
E = Ex'+E/ )x. 

i (x. ,x. J 
J. J 

Proof: Every assignment g E Z can be classified as to whether g(i) 

or g(i) = 1. Let zo and Zl partition Z according to g (i): 

zo - [ g E= zlg(i) = O} 

Zl [ g E= zlg(i) = 1l 

0 

and let E0 be the expression Exi and E1 the expression Exi. E0 is an 

expression for the characteristic function of z
0 

because g E z
0 

iff 

g E Zand g(i) O; similarly, E1 is an expression for the characteristic 

function of z1. Since Z = z0 U z1 , the expression E0 + E1 is an expression 

for the characteristic function of Z; moreover, the effect of the compara

tor <i ,j> on Z can be determined by its effects on z
0 

and z
1

• In parti

cular, the comparator has no effect on z0 , since g(i) = 0 for every 

g E z0, but the comparator interchanges the values of g(i) and g(j) for 

every g E z1 since g(i) = 1 for these g. It follows that 

or 
./\ 
E 

Ex'. 
l. 

+ ( Ex { I (x . ,x . ) 
J. J 
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is an expression for the characteristic function of the set <i,j> (Z). 

Since convenient representations for sets of zero-one valued assignments 

are desirable, let us explore representations for Boolean expressions. 

The product of sums form for expressions seems to be most useful because 

it provides a convenient way of representing the kinds of statements 

used to describe consistency. First, a theorem about the form of any 

product of sums expression for a set of output assignments. 

Theorem 3.2.4 If C is any comparator network and Eis any product of 

sums expression for the characteristic function of C(Z=), then every 

factor in E must contain at least one complemented variable and at 

least one uncomplemented variable. 

Proof: It is clear that C(Z=) must contain both the constant zero 

assignment (the assignment that is zero for every location in D) and 

the constant one assignment. Now suppose some factor in E contains 

no complemented variable. Then the constant zero assignment could 

not appear in C(Z=), a contradiction. Similarly, every factor in 

E must contain an uncomplemented variable if the constant one assign-

ment is to appear in C(Z ). 0 

Corollary 3.2.5 The set of zero-one valued output assignments C(Z=) 

for any comparator network Chas a c~~racteristic function which can 

be described by an expression of the form 
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m 

TT 1
( TT \, + ( 

\ 

x.1 7 E X-i' J -
k=l iE~ jEBk 

Proof: I 

xi Write the kth factor in a product of sums form for E as 

iE~ 

xj; theorem 3.2.4 guarantees that the sets~ and Bk are nonempty. 

j~ Bk 

The result then follows from DeMorgan's law. 

When the set C(Z=) of zero-one valued output assignments consists 

precisely of those assignments consistent with a certain partial order 

P, then a particularly simple form for Eis possible, based on the 

covering relation for P. 

Definition 3.2.6 If Pis a partial order on D, then the covering 

relation for f is the relation Pon D defined by 

-iPj ~ iPj A itj A (Vk) 

((iPk A kPj) ⇒ (k=i V k=j)) 

The covering relation P for a partial order Pis irreflexive, 

antisymmetric, and intransitive, and any irreflexive, antisymmetric, 

and intransitive relation Pis the covering relation for some partial 

order P (namely the reflexive transitive closure of P). 

+ 

f7 
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Theorem 3.2.7 Let C be a comparator network. The characteristic function 

for C(Z) has an expression of the form 
= 

-

E
p TT 

c i , j) t=P 
(X '. + X.) 

]_ J 

where Pis irreflexive, antisynnnetric, and intransitive, if and only if 

C(Z=) =Zp for some partial order P with P the covering relation for P. 

Proof: It will be shown that for any partial order P, Ej:, is an expression 

for the characteristic function of Zp; since every partial order has a 

unique covering relation and every irreflexive, antisynnnetric, intransitive 

relation is the covering relation for some partial order, this will 

prove the theorem. So let P be a partial order on D, with P the covering 

relation for P, and suppose gr:: zp. Then iPj ⇒ g(i) ~ g(j), and since 

- -P ~ P, iPj ⇒ g(i) ~ g(j). This means that g(i) = 0 or g(j) = 1 for all 

ordered pairs (i,j) r:: P, so that the expression EP evaluates to 1 (the 

characteristic function evaluates to 1) for g. Now suppose E-p evaluates 

to 1 for some g r:: z =' so that g(i) 0 or g(j) 1 for all ( i 'j) E P. 

This means that iPj ⇒ g(i) s g (j). Now let iPj. Since Pis the reflexive 

-
transitive closure of P, either i=j, and g(i) s g(j), or there exists a 

- -
chain i = a

0
,a

1
,a

2
, ... ar = j in P with a 0Pa

1
, a

1
Pa 2 , ... ar_ 1Par. In the 

~ g (a ) , so 
r 

that g(i) s g(j). Having shown that iPj ⇒ g(i) s g(j), we conclude 

that g r:: Z . 
p 
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Theorem 3.2.8 provides a generalization of Theorem 3.2. 7. 

Theorem 3.2.8 Let C be a comparator network on D, and let Rs;;; DXD be 

a binary relation such that 

(i, j) !'"R 
(x'. + x.) 

]_ J 

is an expression for the characteristic function of C(Z ). Then there 

-exists an irreflexive, antisymmetric, and intransitive relation R ~ R 

such that 

E
R 

TT_ 
(i,j}::R 

(X '. + X.) 
]_ J 

is also an expression for the characteristic function of C(Z ). 

Proof: It will be shown that R is antisymmetric. Given this fact, it 

will be possible to show that R, the "irreflexive intransitive part" of 

R, satisfies the conditions of the theorem. To show that R must be 

antisymmetric, assume (x'. + x.) and \X'. + x) both occur in ER, and 
]_ J J i 

consider an injective assignment fin C(I=). Because of the synnnetry 

between x. and x. no generality is lost by letting f(i) < f(j); this 
]_ J 

implies the existence of a zero-one valued assignment g E 0(f) with 

g(i) = 0 and g(j) = 1. Since g ~ 0(f), g E C(Z=) by Theorem 3.1.3. 

But ER evaluates to O for g because x'. + X· evaluates to 0, a contra-
] ]_ 

diction. 
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-Now let R be defined by 

R [ (i,j)ER! i#j A 

(Vk)((iRk /\ kRj) ⇒ (k=i V k=j))} 

R is irreflexive and intransitive by construction, and antisynnnetric 

because R is antisynnnetric. The only factors in E that are not in 
R 

E-
R are either of the form (X'. +x.), which is equivalent to 1, or of 

L I. 

the form (X'. + x_), with factors of the form (x.' + x ) , (x' 
1 J L a

1 
a

1 

(x '+ x.) all appearing in ER (and ER). In either case, it is easy 
ar J 

to see that omission of these factors from ER does not change the 

characteristic function described by ER, so ER and ER describe the same 

characteristic function. 

There exist algorithms ([Miller] pplS0-175, for example) which 

reduce an expression E to minimal product of sums (or sum of products) 

form. Here "minimal" means that any other equivalent expression contains 

at least as many literals as does the minimal one. Such a minimum 

expression affords a fairly compact representation for the zero-one 

valued outputs of a comparator network, especially when the conditions 

of Theorem 3.2.7 are satisfied. 

It is possible to replace any product of sums expression of the 

form given in Corollary 3.2.5 by an equivalent expression in a form 

which will be useful in Section 3.4. 
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Theorem 3.2.9 An expression of the form 

( I xj) J 
jEBk 

with~ and Bk subsets of D, describes the same characteristic functions 

as the expression~ given by 

A 
E = 

where (R is the family of binary relations on D such that RE~ iff 

R ~ ( U ~) X ( lJ Bk) and Rn(~ X Bk) is a singleton fork= 1,2, .•• m. 
k=l k=l 

Proof: Rewrite each factor of the form 

= + 

in the product, duplicating terms as necessary to obtain a factor of the 

form 

(x •' + ) x. 
1 J 

Then multiply all the resulting factors to yield 

TT 
RE~ (p,q)ER 

(X 1 + X) 
p q 

where CR. is the family of binary relations described in the statement of 

the theorem. 
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Example 3.2.10 The expression 

E = (x Q + X 1. + X 2 ) (x 2 + X 1 + X 3 ) (x 3 + X 1 + X 4 ) 

is of the form 

( \ \7 

+ I 
xj, I 

· c13 
J k 

with Al = [ 0 , 1} , ~ = [ 2} , ~ = [ 3 1 , Bl f 21 B ' , 2 

Rewriting the factors of E gives 

Multiplying out, we get 

which is an expression of the form 

I\ \ TT E = L x' + X ) 
p q 

RC (X (p,q)ER 

where (R is the family of relations 

[ [(0,2), (2,1), (J,1)}, ((0,2), (2,1), (3,4)1, 

f(0,2), (2,3), (3,1) 1 , f(0,2), (2,3), (J,4)1, 

( (1, 2), ( 2, 1) , (3, 1), , {(1,2), (2, 1), (3,4)1, 

. (1, 2), (2 ,3), (3,1)1, [(1,2), (2, 3) , (3,!4)1 
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By a construction similar to that used in 'Ibeorem 3.2.8, the 

binary relations R in~ can be replaced by irreflexive and intransi

tive relations R; this is because the •~eflexive and transitive parts'' 

of Rare redundant. Such a replacement will result in a reduction in 

the size of the expression~- It is not obvious that each R in~ 

is antisynunetric, however; Theorem 3.2.8 does not apply because 

the expressions ER do not individually describe the entire set of 

output assignments. Moreover, a considerably smaller family of 

relations could be constructed than that arising from the procedure 

used in the proof; for example the proof procedure would rewrite 

(x1+x2+x
3

+x
4

) as the redundant expression 

rather than the more compact expression 

'Ibese two peculiarities of the theorem are related; 'Ibeorem 3.4.17 

will demonstrate that the redundancy in the family~ will allow & 

to be reduced to a family of covering relations; the members of~ 

whose reflexive transitive closure is not antisynunetric can be dis

carded. It will follow from this and other considerations in Section 

3.4 that the set of zero-one valued assignments at the output of any 

comparator network can be characterized by a family of partial orders. 
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3.3 Injective output assignments 

In contrast to the zero-one valued case, it is easily shown that 

C(I=),the set of injective assignments that can appear at the output 

of a comparator network, can be characterized by a set of partial 

orders. 

Theorem 3.3.1 For any comparator network C, 

u 
PEP 

where Pis a (finite) family of partial M"ders P. 

Proof: Let P = (Pl(P is a total order on D) A (af E C(I=)) (fEIP)} 

Since Dis a finite set, Pis finite as well, and certainly 

C(I) ~ u Ip = PEf> 

Now let f' be an element of Ip for some PEP, so that for all x and 

y in D, xPy ⇒ f I (X) :0::: f I (y) • Now Pis in P by virtue of the existence 

of an assignment fin C(I=) such that xPy ⇒ f(x) :-::: f(y). Since f is 

injective and Pis total, f(x) :-::: f(y) ⇒ xPy, so that f(x) :0::: f(y) ⇒ 

f' (x) :-::: f'(y). Finally, to show f' E C(I=)' let TI be a permutation on 

D such that C(TI.f) = f; it is easily verified that C(TI•f') = f' using 

Theorem 2.1.4. 

Theorem 3.3.3 will show that it is in general unnecessary to require 

that every member of P be total. It will be useful to prove the following 

important theorem first. 
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Theorem 3.3.2 If P1 and P2 are partial orders, then P
1 

~ P2 ~ 

Proof: (⇒) if Pl~ P2 , then xP
1
y ⇒ xP

2
y for all x, y ED. By 

definition of Ip, if f E 1p then xP
2
y ⇒ f(x) S: f(y) and therefore 

2 2 
xP

1
y ⇒ f(x) ~ f(y), i.e. f E Ip • (~) Let Pl 1' P

2
, so that there 

1 
exist elements a and b in D with aP

1
b and, ( aP

2
b). Let T be a total 

order containing P
2 

such that bTa, i.e. any total order containing the 

partial order obtained by taking the transitive closure of the set 

P 
2 

U { (b , a) } • If f E IT then xP2y ⇒ xTy ⇒ f(x) ~ f(y) and f EI , 
P2 

but since bTa, f(b) ~ f(a) and fir because f is injective. 
pl 

Theorem 3.3.3 If I is a set of injective assignments satisfying 

I= LJ 
pEfl 

I 
p 

for a family of partial orders P and if P' = n fl, then I= 

every total order contain P' also contains some PE fl. 

I I iff 
p 

Proof: (⇒) If I= Ip, and P' ~ T for some total order T, then 

IT ~ Ip, by Theorem 3.3.2 and hence IT ~ I. If f is any element 

of IT, f E I implies f E IP for some P, and for all x and Y, xPy ⇒ 

f(x) s: f (y). Since f is injective and Tis total, f(x) ~ f(y) ⇒ 

xTy, so P ~ T. 

(~) Certainly I~ Ip, since P' ~ P for every PF P 

then let T be the total order defined by f, i.e. the total order 

with f E IT· It is easy to show that P' ~ T. But by hypothesis, 

n 
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P ~ T for some P ~ P. This implies that f E IT~ Ip~ I and since f was 

arbitrary, Ip•= I. 0 

Theorem 3.3.3 states that some subsets of the family e of total orders 

discussed in Theorem 3.3.1 may be describable by intersections over 

those subsets, thereby giving a smaller family of partial orders. 

It remains to consider the effect of a comparator on a set I of 

injective assignments. 

Theorem 3.3.4 For any partial order P the comparator <i,j> transforms 

Ip into the set 

where P
1 

is the smallest partial order containing P and (i,j), P
2 

is 

h 11 i 1 d . . TT-1 p t e sma est part a or er containing , .TT and (i,j), and TT is 

the permutation (ij). 

Proof: Let D = {0,1, ..• ,n-1} and let Ip= LP U Gp, with 

LP= {f E Ip 

Gp = { f E Ip 

f(i) ~ f(j)} 

f(i) :ii: f(j)} 

If jPi, then LP is empty; otherwise let P1 be the smallest partial order 

containing P and (i,j). Since iP
1
j, 

every fin Ip satisfies f(i) ~ f(j), so Ip ~ LP. Now if f E ~ then 
1 1 

-.,-----



,:here exists a t,~t :i l (n·der with f c I~, p ~ T, and iTj. Since Pl is the 
l 

smallest partial order sat is Cying P c r
1 

and iPj, Pl r;:: T and f r IT - r . 
pl 

Therefore LP rp_· 1~e comparator <i,j> has no effect on any element 
l 

,)f LD, so that the imaf;C' of LP under the comparator is L = Tp 
l , p 1 

If iPj then Gp is 
-, -, 

containing" ·.p.- and 

Since everv element_ o: 

empty; otherwise, let P
2 

be the smallest order 

( _i_ " l ) • Certainly ~ ~--1 ~ 
p2 - • p. ,, ' so that 

r; 
p J_s prccisel:,.7 the same set as 

because 

[ ) ) 

sati_siies f(i) < ,- -~). TP 
p~ '2 

r;;-c the total order wi t!i ~- IT. 

Select 

-1 Now "T • P. -,-- -;:; I 
T 

and iTj; since P) Lt:;,, s,,wllest Ul,-al 1Jrcler satisfying thi:'Se cnnditions, 

Tr .. 'i:1erefure 
_-1 

transforms evc,rv into 

under <i i> is T '.J . ·p 
. ' 

,--
• \.:r p P, 

The comparator <i,j> 

so that the image of C p 

Flitting tho tw,1 1m20;c co 6 ether, ~he comp2rator transfonns Ip to 

L, if iPj, 
t-1 

T r i~ neither is 
Pl-· 'r.) true. 

cor:1narator 

T 
/ 

the set of injective 
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into the set 

where P
1 

= (P
1

1 (~PE P)(P
1 

is the smallest partial order containing P 

and (i,j»}, P2 = (P21 (~P ~ P)(P2 is the smallest partial order con

-1 taining TT ·P•TT and (i,j))1, and TT is the permutation (ij). 

An example is in order. 

Example 3.3.6 Consider the comparator network <1,2> • <3,4> • <1,3> · 

<2,4> • <2,3>. The family of partial orders P with C(I) = U Ip 
PEP 

is given below for each stage in the network. For each comparator 

in the network and for each PE Pi' the partial orders P1 and P2 

are given, and the next family Pi+l is of course the set consisting 

of all P
1 

and P
2 

arising from partial orders Pin the preceding family 

P. • 
l. 

p = 
0 

<1,2> 

pl 

<3,4> 

( 
1 2 
• • 

p 

.. . 
1 2 

( 11 
2 

I 11 
2 

3 ~} • 

pl Pz 
• • ~ I • • ~ I • • 
3 4 3 4 3 4 

. . 
3 4} 

p Pl p2 

• • 
11 :[ ~I :1 l 3 4 
2 

0 
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() lj :1· 2 
')~ 
L. 

<1,3> p p] 
P~ 

L 

\ 
~l :t I ~!73 I 

3rr I 2 4 
~ 4 

r 
3 

lh3 
? •4 

311 
:[ JI 

<2,4> p 
~ 

~ 

I lll3 lt:JJ H i 
'/ 

I !~-
i...c Cl l,- i -- - !1 

i 
"4 

----------1--- ' 

rr p 3CJ1 - I 
•4 4 2 

2 2 
4 
-

1 

I\ t] 

()4 2(J> i3 
== I ? . -

4 
14 

<2, 3>: 
p 

2 

2◊1--
4 

none 
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Notice that there is no partial order P1 arising from the partial 

order ti and the comparator <2,3>, and that 

cannot be expressed as IP, for any partial order P'. Also, the total 

orders 

l4
j2 occurring after comparator <2,4> could have been eliminated 

via the criterion of Theorem 3.3.3 or merely by observing that 

I I 

In section 3.4, the notion of a lattice of partial orders on a set 

will be introduced. This notion will help elucidate the connection 

between zero-one valued assignments and injective assignments. 

3.4 The lattice of partial orders 

In sections 3.2 and 3.3, two techniques for characterizing network 

outputs were developed which have many similar features. In both cases, 

for example, the effect of a comparator on the output set is reflected 

in the characterization by the format:un of a union, and when certain 

conditions are met the characterization can be reduced to a single 

~ --,,------- -

□ 
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partial order. The lattice of partial orders on a domain is a convenient 

vehicle for exploring this similarity further. 

Definiton 3.4.1 Let OD denote the set of all partial orders on the set D 

together with the relation DXD = o2
• D 

The proof of the next theorem is straightforward. 

Theorem 3.4.2 The set OD, ordered by~, forms a lattice with respect to 

the operations of set intersection and supremum, where the supremum 

operation Vis defined in the usual way: 

Pi v P 2 = n c P E oo I Pi ~ P " P 2 ~ P } □ 

Figure 3.4.1 depicts the lattice 0(0,l,2}' The lattice OD is not 

modular, and therefore not distributive, for domains of more than two 

elements. However OD is useful because of Theorem 3.3.2 and the 

following result. 

Theorem 3.4.3 

zP. 
1 

Proof: (⇒) Let P1 
c;;; p with g F zp • Then (Vx, yED)(xP

1
y ⇒ xP2y /\ 2 

2 
xP y ⇒ g(x) ~ g (y))' so g F Z and ZP c;;; z • (~) Let zp ~ z 

2 Pl 2 Pl 2 Pl 
and suppose x and y are such that xP1y but -, (xP2y). Then let 

the assignment g be defined by 

g(w) = 

else 
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H H 

• • • 
0 1 2 

Figure 3.4. 1 The lattice 0 f 0,1,21 
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Now g(x) = 1 and g(y) = o, so g f zp. Since zp ~ zp, g ~ zp 
1 2 1 2 

implying that for some a and bin D, aP2b, g(a) = 1, and g(b) = O. 

By definition of g, xP2a, so by transitivity of P
2

, xP2b and g(b) 

= 1, a contradiction. 

Theorems 3.3.2 and 3.4.3 state that the assignment functions 

I and Z are monotone decreasing functions from the lattice of 

partial orders O to the power sets of the injective and zero-one 
D 

valued assignments respectively. (Setting I. 2 
D 

= dJ and Z = . 2 
D 

is consistent not only with the definitions but also 

with these theorems.) The next theorem follows from Theorems 

3.3.2 and 3.4.3. 

Theorem 3.4.4 

(a) Ip Vp = Ip n Ip' and 
1 2 1 2 

(b) ZP Vp = zP n zP if P
1 

V P2 -/: D2 
1 2 1 2 

Proof: (a) (injective case) Let P
3 

be the set of pairs (x,y) 

consistent with every assignment in both I 1 and I 2 ; more precisely, 

let P3 = [ (x,y) I (Vf E Ip n Ip ) (f(x) :s: f(y))}. 
1 2 

It is readily 

verified that P
3 

is a partial order. Moreover, Ip n Ip ~ I , 
1 2 p3 

for if f E IP n IP 
1 2 

and xPy, then f(x) :s: f(y) by definition of P3• 

Now P
1 
~ P

3
, for if xP

1
y, then by definition of I , f(x) :s: f(y) 

pl 

for every f E IP and hence for every f E IP n IP; similarly, 
1 1 2 

n 
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p2 ~ P3. It follows that Ip ~ Ip and Ip ~Ip' so that Ip (;; I 
3 1 3 2 3 Pl 

n Ip and Ip = I n I • It remains only to show that p = Pl V p 
Pl P2 2 

2 3 3 
Since Pl ~ p3 and P2 ~ P

3 
have already been proved, let P

4 
be such that 

Then Ip 
4 

(b) (zero-one case) Let P3 = ( (x,y)l(Vf E ZP n ZP )(f(x) 
1 2 

Now P3 is certainly reflexive and transitive,with Z n ZP 
Pl 2 

If P
3 

is not antisynnnetric then for some x and yin D, x :/:y 

~ f(y))} 

but 

f(x) = f(y) for all fin ZP n ZP. 
1 2 

This can only happen if xP1y and 

2 
event, P

1 
V P2 = D. The remainder 

of the proof parallels the proof for the injective case. 

Theorem 3.4.4 suggests that sets of partial orders exhibiting 

closure properties under supremum may be useful. 

Definition 3.4.5 A subset F of OD is a filter of OD if, for all PE F 

and all Q E OD' P V Q ~ F. Alternatively, Fis a filter if, whenever 

Pis in F and P ~ Q, then Q is in F. 

Example 3.4.6 The sets 

IL 

rJ 

□ 



62 

i\t ,/4\i.H. H, H, (0,1,2)
2

} 

i 1: y2 /,\ vl r r r r r (0,1,2)
2

] •l 1 2 1 0 2 
, O, 1 2, 2, o, 1, 2, 2, o, 

are all filters of .the lattice O shown in Figure 3.4.1 
[0,1,21 

Definition 3.4.7 If I is a set of injective assignments, F(I) = 

(PE oDI Ip~ I1; if Z is a set of zero-one valued assignments, 

F(z) =(PE oDlzP ~ z}. 

Theorem 3.4.8 For any set of injective assignments I, F(I) is 

a filter. Similarly, for any set of zero-one valued assignments 

z, F(Z) is a filter. 

Proof: Let PE F(I) and Q E OD. Since P ~ P V Q, IPVQ ~Ip~ I 

so P V Q E F(I). The proof for Z is similar. 

The set of generators of a filter is merely its set of minimal 

elements. 

Definition 3.4.9 The set of generators of a filter Fis the set 

G(F) =[PE Fl (Vq ~ F)(Q ~ p ⇒ Q = P)}. 

If G(F) is a singleton (P}, then Fis said to be principal. 

The principal filter generated by Pis written (P). 

D 

0 

D 

0 
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The connection will now be made between filters and sets of out~ut 

assignments. It will be shown that for any comparator network Con D, 

C(I) = 

C(Z ) = 

lJ Ip 
PEF(C(I)) 

The injective case is easily resolved; Theorem 3.3.1 guarantees that 

C(I_) = 

for some family of partial orders P. Certainly P ~ F(C(I=), and since 

C (I) = \ J Ip 

PEF(C(I)) 

The situation for zero-one valued assignments is not so simple. 

First note that the set of zero-one valued assignments C(Z=) that 

can appear at the output of a comparator network C can be described 

in terms of C(I=). This is by virtue of Theorem 3.1.3 and because 

the set of all zero-one valued assignments on Dis just the set of 

thresholds of the set of all injective assignments on D. Hence 

= 0(C(I )) = 
= 

for some family of partial orders P. The next theorem relates Ip and 

z 
1:' • 
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Theorem 3.4.10 If Pis a partial order, 0(Ip) = Zp. 

Proof: Let g E 9(Ip), so that g E 9(f) for some f E IP. If f(x) ~ 

f(y) then g(x) ~ g(y); since f E Ip, xPy ⇒ f(x) ~ f(y) and g E zp. 

Conversely, let g E Zp, and without loss of generality let the range 

of the assignments in Ip be the integers. Certainly Ip contains some 

assignment f with range (0,1,2, ••• n-1} (where D has n elements) so let 

h be the assignment defined by h(x) = f(x) + n.g(x). Now his injective, 

for if h(x) = h(y) then h(x) = h(y) (mod n) so f(x) = f(y), implying 

x = y. Moreover, his an element of IP' since xPy ⇒ f(x) ~ f(y) A g(x) 

~ g(y). Since g(x) = 1 iff h(x) ~ n, g E 9(h) ~ 9(Ip). Therefore 

g E 0 (IP)~ g E ZP' so 9(IP) = ZP. 

Theorem 3.4.10 and the remarks preceding it imply that 

C(Z) = L ! z / p 

PE=F (C (Z)) 

The foregoing discussion is recapitulated in the following theorem. 

Theorem 3.4.11 For any comparator network C, 

and 

C(I) = U Ip 

PEF(C(I)) 

C(Z) = 0(c(I)) = \ I zp 

PEF (C(Z=)) 

0 

□ 



65 

The next theorem deals with the cases I 

Proof: Let Q E F(Ip); then IQ~ Ip and P ~ Q, so Q E (P). If Q E (P), 

The proof for ZP is entirely similar. 

As an innnediate consequence of Theorems 3.4.11 and 3.4.12, we have 

Corollary 3.4.13. For any partial order P, 

F(C(I )) 
= 

F(C(Z )) 

(P) ~ C(I) 

(P) ~ C(Z) 

Theorems 3.4.10 and 3.4.11 and Corollary 3.4.13 provide the raw 

material for Theorem 3.4.14. 

Theorem 3.4.14. For any comparator network C, if F(C(I=)) = (P) for 

some partial order P, then F(C(Z=)) = (P) as well. 

Proof: If F(C(I )) = (P), then C(I) 

ZP' so that F(C(Z )) = (P). 

Ip and C(Z ) = 0(C(I )) 

The converse of this theorem is false, and the example below demonstrates. 

Example 3.4.15. For the network of Example 3.1.6, namely 

--.---~----a 

----t-----+----.-1-- b 
-~ ..... I_.___.____ __ C 

__ ___. ______ d 

ri 

D 

D 
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the corres]_!»Clnding filter F(C(I )) is 
= 

This filter is not principal; it is generated by the last two elements 

listed. F(8(C(I_))), on the other hand, is principal and is generated by 

In general, then, F(C(I=)) and F(8(C(I=))) are different filters 

with different generating sets. They are not totally unrelated; the 

filter F(8(C(I=))) always contains the filter F(C(I=)). 

Theorem 3.4.16 F(I) G F(8(I)) for any set of injective assignments I. 

Proof: If PE F(I) then Ip GI, implying Zp = 8(Ip) G 8(1) and 

PE F(8(I)). 

When F(C(I=)) is principal, this fact can be determined by applying 

Theorem 3.3.3 to any family of partial orders P such that 

C(I) = 

[1 

0 
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If F(C(I=)) is not principal, it is not clear how to obtain the 

generators of the filter without first constructing the entire 

filter. The generators of F(C(Z=)) may be obtained in an easier 

fashion from any product of swns expression for z. 

Theorem 3.4.17 Let Ebe a product of swns expressions for the 

characteristic function of C(Z=) in the form specified by Corollary 

3.2.5, so that 

E = TTm !( TT x.)' + ( \ 
if'.'.A. 1., • B 

k=l -ic J~ k 

I\ 
Let E be the equivalent expression defined in Theorem 3.2.9, so that 

I\ 
E = TT 

(p,q)ffi 
(X 1 + X) 

p q 

where~ is a family of binary relations R with R n(Aic X Bk) a singleton 

fork= 1,2, ••• m. Then every member of F(C(Z=) contains some R ~ ~-

Proof: Let P be a member of F(C(Z=)), so that ZP ~ C(Z=). Then any 

expression describing the characteristic function for ZP, and in parti

cular the expression EP given by 

Ep = TT (X 
1 + X ) p q 

(p,q)EP 

implies~; that is, if Ep evaluates to 1, so does~- It will be shown 
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that P n (~XBk) is nonempty fork= 1,2, ••• m, implying R ~ P 

for some R E ~. Suppose P n (~ XBk) is empty for some k. Let g 

be the assignment 

g (t,J) 

First, g E Zp; if this were not so, there would exist x and y such 

that xPy, g(x) = 1, and g(y) = O. But if g(x) = 1, aPx for some a E ~; 

by transitivity of P, aPy and g(y) = 1,a contradiction. g(a) = 1 

for every a E ~ by definition of g, but g(b) = 0 for every b ~ Bk; 

if this were not so, then P n ~X~ would be nonempty. Now EP evalu-

d . 1 1 . . kth . A ate at g is c ear y zero, since its term is zero, so E 

at g is zero, a contradiction of the fact that Ep implies~

R ~ P for some R E tR . 

evaluated 

Hence 

The statement of the theorem is much more cumbersome than its 

application in practice. 

Example 3.4.18 Consider the network shown below. 

□ 
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One expression for the characteristic function of the zero-one valued 

outputs C(Z=) is 

E = (x'+xb)(x'+xd)(x'+x )(xd'+x.+x) a a a e o e 

According to Theorem 3.4.16, any partial order in F(C(Z=)) must contain (a,b), 

(a,d),(a,e),(b,f),(c,f),(e,f) and one element from each of the sets 

[ (d,b),(d,e)} and [ (b,c),(e,c)l. That is, any partial order in F(C(Z=)) must 

contain one of the four partial orders 

b e 
b e b e 

f 

Since none of these partial orders is contained in any other, they are 

the generators of F(C(Z=)). 

Note that if there is no partial order containing a relation 

RE {R then that R may be discarded for purposes of finding the 

generators of F(C(Z=)). This will occur if the expressions for 

C(Z=) gives rise to relations R whose transitive closure is not 

antisynnnetric. An example is the expression 

E = (x'+x. )(x.'+x +x )(x'+x) a b b a C a C 

IIba which describes the outputs of the sorting network ~ 

C 

e 

0 
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albeit not minimally. It also may happen that for some Rand R' in 

the smallest partial order containing R also contains R'; in this event 

R may be discarded. 

The results of this chapter indicate two things: first, that 

zero-one valued assignments are usually more convenient than injective 

assignments as a tool for characterizing output behavior; and second, 

that sets of assignments described by single partial orders are parti

cularly simple to work with. Chapter 4 explores further the properties 

of sets of assignments described by single partial orders. 
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CHAPTER 4 

OUTPUTS CHARACTERIZED BY A PARTIAL ORDER 

4.1 Sorting Injective Assignments with respect to a Partial Order 

It is easy to show that for any partial order Pon a finite domain 

there exists a comparator network such that all possible injective 

outputs of the network are sorted with respect to P; sorting with 

respect to any total order containing P will suffice. Perhaps not 

so obvious is the fact that for any partial order P there exists a 

comparator network such that C(I=), the set of possible injective 

outputs of the network, consists of exactly those assignments that 

are sorted with respect to P. A lenma will be useful for establishing 

this result. 

Lemma 4.1.1 Let P be a partial order on D with x and y elements of D 

such that-, (xPy) and-, (yPx). Let the set X be 

X = (a E nlaPx /\-, (aPy)1 

Now, Xis nonempty since x EX, so let a be a P-least element of X. Next 

let the set Y be defined by 

y = (b E n!yPb /\-, (aPb)} 

Y is nonempty because y E Y, so let~ be a P-greatest element of Y. Then 

P
1

, the smallest partial order containing P and the ordered pair (a,~), 

is contained in both 
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-1 
the smallest partial order containing n .p.n and (a,p), 

where TT is the permutation (a,p), and 

P
3

, the smallest partial order containing P and (x,y). 

For example, if Pis the partial order 

0 

1 2 

3 4 

.':i 

with x ,;, and y 1, then n: -= 2, P 1, 

P,, is 

and P
3 

Ls 

Cl 

4 
1 
3 
'i 
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(remember the ''higher is smaller" convention for partial orders.) 

To show P
1 

~ P
2 

it suffices to show P ~ P2• Let aPb. 

Case 1. a= a. Now b /~.because ap~ contradicts ~ E Y. Therefore 

~P2b, and since ap2~, ap2b, i.e. aP2b. 

Case 2. a=~- Now b / a, because if ~Pa, then aPx and yP~ would imply 

yPx. Since ~ is a greatest element of Y, either b = ~ or aPb. In either 

event ~P2b, i.e. aP2b. 

Case 3. a I a, a j ~. b = a. Then since a is a least element of X, aPy; 

and since yP~, aP~ and aP2a, i.e. aP2b. 

Case 5. a I a, a I~, b # a, bi~- Then aPb implies aP2b. 

To show P1 ~ P3 , it suffices to show that aP
3

~. But since aPx and yP~, 

aP3x and yP3 ~; since xP3y, aP
3

~. 

Note that aP1~ but--, (aP~); in fact, it is not difficult to show 

that P1 =PU [(a,~)}, so that P1 contains exactly one more ordered 

pair than does P. 

From this construction it is easy to see how to obtain any set of injec

tive assignments of the form Ip as the set of outputs C(I=) of some 

comparator network; in fact, it is possible to construct a network 

that transforms any Ip into IQ' as long as Ip contains IQ. 

□ 
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Theorem 4. 1. 2 If P and Q nre partial orders with P ,- Q then there 

exists a comparator network which transforms Ip into IQ. 

Proof: The pr:Jof is by induction on the number of ordered pairs in Q-P. 

Basis: Tf Q- P is empty, then Q Ip, and a vacuous network 

suffices. 

Induction Step: Suppose a comparator network exists to transfonn Tp to 

IQ as long as Q-P contains n or fewer ordered pairs, and suppose Q-P 

contains n+l ordered pai.rs, one of which is (x ,y). Apply the comparator 

<a, a> determined by Lemma 4, 1. 1 to bv Theorem J.3.4, this comparator 

transfon1s Ip into Tp ;_· 1
1
, , where P

1 
is the srna1 lest partial order 

1 ) 
containing P and ,S), and P., is the smallest partial order containing 

is transformed hv 

Q contains I',.' 
j 

3ff1d 11.,_.'S t 

Si nc e Lemr:1c1 ! • • .l . 1 ;_; ls c 

Since (x,y) is a member of Q and Pr::: Q, 

~.Jartial order containing P and (x,y). 

Now since ap
1

~ but 

(:tPS), Q-P
1 

has , ur fe,,er elements, so that hy the induction hypothesis, 

can ~e transformed tn I b·y- some comparator network. Q . H follows that 

<CT., j3> concatcnat.:ecl with 

Repeated application 01 che induction step in the theorem will give 

rise to 3 comprn-ar.cr ,11c,twork t11at transforms T
0 

into I and that contains 
[ Q 

as many comparators as there are ordered pairs in Q-P. In particular, 

□ 
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if Pis the identity relation on D and Q is a total order, the resulting 

network will be a sorting network containing(~) comparators. Such a 

network is inefficient, but it has the interesting property that at any 

stage, the injective assignments that can appear (and, because of Theorem 

3.4.14, the zero-one valued assignments that can appear) are characterized 

by a single partial order. 

Example 4.1. 3 The sorting network 

I 
I 

a 

b 

C 

d 

conforms to the inductive construction of Theorem 4.1.2 for the sequence 

of partial orders 

• • • • 
a b c d 

Lemma 4.1.1 and Theorem 4.1.2 are not the only ways to guarantee a 

single partial order at each stage; a lemma dual to lemma 4.1.1 can be 

established which guarantees that the partial orders P1 and P2 described 

in Theorem 3.3.4 satisfy P2 ~ P
1

• An inductive argument similar to 
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Theorem 4.1.2 but employing either lemma in the induction step would 

give rise to a broader class of networks than those derivable from 

Theorem 4.1. 2. 

It is sometimes possible to transform Ip into IQ by sorting Ip 

with respect to a partial order S. 

Theorem 4.1.4 Let P and S be partial orders on D, and let C be a 

comparator network so that 

1. C(I) = I s 

2. (iff E IS) (C(f) = f) 

3. C(Ip) ~ Ip 

Then C(Ip) = Ip n Is = Ipvs· 

Proof: By statement 3, C maps Ip into a subset of Ip; by statement 1, 

C maps Ip into a subset of IS. On the other hand, C maps Ip n IS onto 

IP n IS by statement 2. Hence C maps IP onto IP n IS, which is equal 

to IPVS by Theorem 3.4.4. 

[Gale and Karp] have developed a necessary and sufficient condition 

for statement 3 to hold when Sis a partial order whose maximal chains 

are disjoint and C is a standard form network that sorts according to 

the maximal chains of S. Before stating Gale and Karp's result, a 

definition will be useful. 

Definition 4.1.5 Let P be a partial order on domain D. For any 

element x of D, the sets xP and Px are defined as follows: 

xP = (y E olxPy} 

Px = (y E olyPx} 

D 

D 
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Theorem 4.1. 6 [Gale and Karp] Let C be a standard form comparator 

network such that C(I_) = IS' where Sis a partial order on D with 

maximal chains disjoint. Further, let P be a partial order on D. 

Then C transforms every element of Ip into an element of Ip iff 

1. SUP is antisymmetric; 

2. If xPy then for every set B ~ yS U Sy with !Bl = jsyl there 

exists a set A~ xS U Sx with !Al = lsxl such that every 

element of A is P-less than some element of B. 

[Liu] has extended this result by showing that if C is a 

comparator network satisfying the hypothesis of the theorem and if 

condition 1 of the theorem is satisfied, then C(Ip) is a set I such 

that Q, the largest partial order satisfying I~ IQ, is equal to 

S VP', where P' is the partial order consisting of all those ordered 

pairs (x,y) from P that satisfy condition 2 of the theorem. It is 

readily shown that the largest partial order Q such that I~ IQ 

is just n(F(I», the intersection of all of the partial orders in 

the filter F(I). The key fact that makes this construction possible 

is the fact that S has disjoint maximal chains; if this were not 

the case, then there might exist two networks which have a different 

effect on Ip even though both networks sort with respect to the 

same partial order. 

0 



Kxamn 1 e !1. 1. 7 

a 

b 

C 

d 

/ 

" . 

t- J!( 
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4.2 Real-valued Assignments and Convexity 

In this section, we will consider assignments whose range is 

the set of real numbers. It will be appropriate to refer to such 

assignments as vectors in real n-dimensional coordinate space Rn. 

One reason this is convenient is that if a comparator <i,j> on 

the domain D = (0,1, ••• n-1} is applied to a vector in Rn, then 

the effect of the comparator can be described by means of a hyper

plane in Rn. 

Definition 4.2.1. For any two distinct elements i and j in [1,2, ••• n}, 

let Hij be defined by 

H .. is certainly a hyperplane (i.e., an n-1 dimensional subspace) of 
l.J 

Rn. By the projection theorem, any element u of Rn can be written 

uniquely as a sum u = v + w, where vis an element of the hyperplane 

H .. and w is an element of 
l.J 

.l.. 
H ..• 

l.J 
(Recall that if His a subspace 

of vector space V, H...L is the set of vectors of V such that the inner 

product of any element of Hand any element of H is zero). From the 

..L definition of H .. , H •. 
l.J l.J 

.1.. 
H •. 

l.J 

is the subspace 

= [w E Rn !w. + w. = 0 A (Vk) 
l. J 

(k = i V k = j V wk= O} 

Now, an element u in Rn lies on the positive side of H .. (u.-u. ~ O) 
l.J J l. 

or on the negative side of H .. (u.-u. ~ O) or possibly both; the side 
l.J J l. 

of the hyperplane on which u resides is determined by the sign of 

0 



u .-u .. 
J ]_ 

Notice also that: if ,1.-11. ito potoLtivc, the comparator, <'i,f> 
1 ]_ 

has no effect on u, whcreds 

<i, j > interchanges u. 
L 

if u.-u. is negative, 
J l 

and w 
J_ 

i::: 11 .. 
1-J 

, then clearly v, 

If u is ,-rritten u 

u.+u. 
vi "" __ i __ J and 

.L _, 2 

1,,..,1 

i 

u -u _i_i 
2 w. 

J 

u -u 
_i__i 

2 

the comparator 

v+w wi th v r: I l . . 
lj 

If u lies on the positive side of H .. , t 11e conmarator 
1. J ' 

transforms u = v~~ 

into u' if u lies 

transforms u \7-f-vJ i n t O tl 

vat ions. 

.m thl" negative c,ide o.f H .. ' l.J 
the comparator 

up these obser-

Theorem :+. 2. '.'. l,.1 > i:_, ./4 cor:1parator on the domain rl,2, ... n· 

and u is 2ny vector i:1 \-Ji t 11 u -" v-J-w, 

<i, j > trans forms u into 

t_J 

V ~ H .. , 
lJ 

_L 
and w ~ H .. 

]_ J 
then 

Thl' trar1sfornwtion i'CYLounc·d ,1 comparator i:::; riorll 1.cear. In essence, 

the comparator ::'i,j, "rc<leccf;" every vector u to the positive side of 

H ..• 
]_ J 

It would seem ;Jlausihle that a comparatc~r uet,,•ork would at least 

transfonn the set [\n L1t,1 a ~-rn,vex .sc,c; the It:i:1ainJer of this section 

will consist of a D!'.'cHJf tL~t t11i.s is tn,-,, i.f :11°,l onlv if the comparator 

network maps 

order. 

n 
" ., some partial 

r:J 



81 

Theorem 4.2.3 The set A of real vectors that can appear at the output 

of a comparator network C is convex iff A= AP for some partial order P. 

Proof: (-4==-) if A= AP for some partial order P, i.e. if 

A= (u E Rnl(Vi,j)(iPj ⇒ ui ~ uj)} 

then for any two elements u and u' in A and for any~, 0 ~ ~ ~ 1, the 

vector ~u + (1-~) u' is in A, since if iPj, then u. ~ u and u' ~ u'· 
i j i j' 

since both~ and 1-A are positive, Au.~ ~u. and (1-A)u' ~ (1-~)u'.. 
i J i J 

This means that Au.+ (1-A)ui' ~Au.+ (1-A)u'., so Au+ (1-A)u' 
i J J 

is an element of A. 

(⇒ )Let A be a convex set, and let P be the set ( (i,j)!(Vu E A)(u.-u. ~ O)}. 
J i 

Pis obviously reflexive; Pis antisyrrnnetric because A contains 

injective assignments. P is transitive because if u.-u. ~ 0 and 
J i 

Thus Pis a partial order. Now A~ AP, since 

iPj implies ui ~ uj for every u EA, so it remains to show that AP= A. 

Now AP and A are surely nonempty since A is the set of possible 

vectors at the output of C. In fact, A contains injective assignments; 

according to Theorem 3.3.1, the set I of injective assignments of A can 

be written 

where each Tis a total order. It is also true that IP, the set of 

injective assignments in AP' can be written 
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and since A C AP' I c:;: T p' Moreover, since IT c I for all T E ~, 

IT 
c;:; 

Ip and p c;:; T for every T C: g;t_ It will be shown that p c; T ⇒ 

T E:f; this will imply 1 -p I, zr z, and finally AP = A. 

Let p c;:; T with l (1~ and let u be an assignment vector in 

IT 
i;::; I -I with every component u, a distinct power of 2. In particular p 1_ 

let the 
.th 

smallest component of be 2J j 1,2, .•• n. Select J u 
' 

--- any 

total order T' ,::~, and letv be an assignment vector in IT, c;:; I 

_r,n h h .th with every component v. a distinct power of,. , so t at t e J 
]_ 

smallest 

f . ,-ln . . 7 component o vis ,_- , J = 1,.-, ... n. 

By construction, u ,_· ,\p-A and v ~ A; since AP is convex, every 

vector w = /\.u + (1->.)v belongs to AP for all\ in the interval O::;; /\. ~ 1 

but w belongs to .4 on1Y L·JJ: certain values ol r-.. Since A is convex, 

the collection oi thes, . 1ornis a,1 intervc1l O s: >-. ,-: \.
0 

or O ~ /1. ~ /\.O 

for some \.
0

• x .
0

u ··, (l-.. 
0

:iv is not i.nject:ive; if it were, then 

some sr:icill neighbc,·ilooL; 

every vector within 

i 
lrr," Since this small 

neighborhood wo•ilcl :i.ncJ.,_:,i b;__,i: 1, vu:tot·., in T and vectors in Ip-I hy 

definition of ···o' -, v/Oul, '·T 'k [., subset of !Joth r and Ip-I, a contradiction. 

Therefore x. ~ x. fer s orne ~, l f-. J .• It will be argued that 
1. J 

Suppose x. = z. and 
l I 

w1.th i : , 1, I- J, and ; i, J : 
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(v. -v. ) 
" l 

(v.-v.)-(u.-u.) 
J l J 1. 

(v -v )-(u -u) 2, k 2 k 

or 

1 -

whence 

(u.-u,) 
.L 

(v.-v.) 
J ]_ 

(u.-u.) 
l 

1 -
(u,e-uk) 

(v -v ) 
f k 

(v -v ) 
~_i_ 

= (v 2-vk) 

(u.-u.) 
Now either 

1 ]_ 

(u ~-u1 ) 
< 1, '>1 that 

or 

l < 

i-2 
n 

2 -2 

(u.-u.) 
]_ 

•1n " L .... L. 

~ 

)0 ,< 

(u.-u. ) 
7 l 

(u ,-u. ) 
/2 k 

it remains to be shown that 

-- ') 

< 
2'1- 2.:. 

2n -1 

/1._'.c'. 
-··· 

2 
') ) 

~::. l 

li2s outside these intervals. 

First, consider tho cise in wr:i.:h max (v.,v.) '" max (v,e,,v
1 

). In this 
J 1. \. 

case, it can be shu,vr1 th<lt: 



2 2 
2

n _
2

n -n 

2 

,, \'. -v.) 
, l 
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2 ') 
2n -2n 2

n _')n -n 

Since 

'7 
211 -2L 

2n_') 

2 
2n -2r: 

-n 

) 

2
n _,,,n 

2 2 
~ .-.n -n 

and from the bounds prPviously found, 

(u.-u.) 
l 

(-v . -v ~ ) 
, C 

L 

Now suppose max(v_,_,v,) -L max(v;,vl<-). 

or 
(v.-v.) 

] 

n 2 
2 -2 



Since 

2 2 
2n _2n -n 

2 
2n -n_ 2n 

2 • 

is greater than 1 for n ~ 3, 

2 
n -n n 

2 -2 
2 2 

2
n _

2
n -n 

and once again 

so that 

=/: 

n 
2 -2 < 

i-2 

85 

2 2 
2
n _

2
n -n 

2 
2n -n_ 2n 

The foregoing argument establishes that x lies on exactly one hyperplane 

Hij" As a result, there exists an E-neighborhood N~(x) of x such that for all 

yin this neighborhood, y is in A if the signs of yj-yi and vj-vi agree, and 

y is in AP-A if not. Without loss of generality, let vj-vi < 0, so that for 

ally E N~(x), y EA if y. < y. and y E AP-A if 
l. J 

Since there 

exist vectors y satisfying this latter condition, iPj is false; by definition 

of P, there exists a z EA 

shown in Figure 4.2.1 

so that z. > z .. 
l. J 

A diagram of the situation is 
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! 

Figure i+.:!., r,' u!ti',''. fron, the ass,1mption 

Tl •. 
lJ 

1-r /c"" 
p 

A so 

that some pointy' on thv }i;ic, sc,~rn,,nt joi.nin; v 2nd;;: lhrough x does 

not lie in A. 

of u was impossible dnrl P p TL- remains 

only to find y 01wi y . 
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Let a denote the distance between x and z, i.e. 

a 11 x-z II 2 l 1 n (x.-~.) 
l l 

and let 
C ,-

(1 + 2"a )x ( 
t: 

y = + ) ., 
2a ';, 

Now 

II x-y JI II 
•- C p C !I 7-x II C 

( )x + ( )z 
\, = - ')'"Y -

2a =2 L~ ~2Cl 

Since x =x 
i j 

and 7, > 7., v < y. and y c A. 
1, J "i J 

On the other 

hand, 

y' (1 -

satisfies 

II x-y' II II ,_ C I' 
I ( --- )v < ~ > 7 I I, ' 2 ~l " - ' 2a ,, 

so that y' ~ N~(x); s.f_nce n x. and 7 

J ' 

y' (1-
C 

2CI )x + ( 7-a i:: 
C 

C 

(1 - ):,.,) ,_ ' 
y 

C 

C V + 
(1 + 2'.l ) (1 --'- - ) 

' 2CJ 

I! x-z II 
2CX 

C 

- 2 

" ' ·~, y: and y ' ~ 
_j 

A -A p • But 
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and y' is a convex combination of y and z, contradicting the convexity 

of A. 

It has been shown that if A is convex, I= Ip. By Theorems 3.4.11 

and 3.4.10, Z = 0(1) = 0(rp) = ZP, and it remains to show AP~ A. 

first that for any real number r, the vector r[n], defined by r~n] 
l. 

Note 

= r 

for i = 1,2, .•. n, belongs to A. Also, A is closed under positive com

bination; that is, for any vectors u, v EA and any positive real 

numbers r and s, w = ru + sv E A. This result is based on the fact that 

is in A by convexity, and since r+s > 0, 

Theorem 2.1.3 guarantees w EA. Now let x E AP. Clearly 0(x) ~ Zp, so 

0(x) ~ A. w can be written 

[n] 
w = [min[w. li=l,2, •.. n1] 

l. 

z • [min(w. lz.=11-rnax(w. lz.=0}] 
J..' l. l. l. 

[n] 
Now [min[w. Ii = 1,2, ••. n}] t= A. Also min{w. jz.=l} > max(w. lz.=0} 

l. l. l. l. l. 

because z E 0(w). Since w has been written as a positive combination 

of elements of A, w EA and AP~ A. Therefore AP= A. D 
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CHAPTER 5 

CONCLUSIONS 

The analysis of sorting networks appears to be a complex and difficult 

subject. The results of this thesis reflect the kinds of complexity 

that occur; most often, the problem is one of succinct characterization 

of the phenomenon to be studied. For example, the Boolean expressions 

of Section 3.2 are quite compact in contrast to the partial order 

theoretic characterizations of output behavior found in Section 3.3, 

but in fact these expressions are not nearly as economical as one might 

desire for a domain of eight elements, say. 

Another source of difficulty is the seeming lack of algebraic 

structure on the objects of interest: compositions of comparators, 

sets of assignments, and so forth. There is at least one significant 

exception to this generalization, however. When the set of injective 

assignments that can appear at the output of a comparator network is 

precisely the set of injective assignments consistent with a single 

partial order, then many structural regularities occur. For example, 

it can be shown that the number of injective assignments consistent 

with a partial order Pis a multiple of the number of symmetries of P -

-1 
i.e., the number of permutations TT on D such that TI •P.TT = P. Other 

examples of structural regularity arising from the single partial order 

case may be found in Section 3.4 and in Chapter 4. 
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Aside from the difficulties, there are two interesting phenomena 

that deserve mention. The first is that as a tool for network design, 

the Boolean expression characterization for sets of zero-one valued 

output assignments is much more satisfactory than the partial order 

theoretic characterization for injective output assignments. The 

manipulations required are simpler to perform, and it is easier to 

determine a minimal Boolean expression for a particular set of zero

one valued assignments than to determine a minimal family of partial 

orders by means of Theorem 3.3.3 in the injective case. Also, 

Theorem 3.4.14 and Example 3.4.15 indicate that sets of zero-one 

valued network output assignments are characterized by single partial 

orders more frequently than the injective output assignments are. 

The other phenomenon is that in establishing properties of 

sorting networks, it is often useful to go back and forth from in

jective assignments to zero-one valued assignments. This kind of 

interplay occurs in Section 3.4 and especially in the proof of 

Theorem 4.2.3. This phenomenon is probably due to the fact that 

for any injective assignment there is a unique total order with 

which it is consistent, so that the relationship between a zero-one 

valued assignment and a partial order with which it is consistent 

is sometimes best explored by finding an injective assignment which 

has the zero-one valued assignment as a threshold. 

Insofar as directions for future research are concerned, it is 

probably fair to say that no direction seems particularly promising 
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for a resolution of the outstanding open problem about sorting networks, 

namely, how many comparators suffice to construct one. It would be 

desirable to know more about the kinds of sets of assignments that can 

occur as network outputs and the kinds of sets of assignments that 

can be assignments that are sorted by a network, but it is likely 

that a successful resolution of the question of the number of 

comparators will be based on considerations as yet unexplored. 

The possibility of new techniques that will be useful for designing 

good networks for particular domain sizes is somewhat more hopeful. 

The results of Section 3.2 provide a way of exploring this area in 

an efficient manner. The idea is to start with the set Z and apply 

comparators in sequence to obtain sets of zero-one valued assignments 

that are progressively "closer" to a sorted set of zero-one valued 

assignments. At each stage in the construction, the degree of "closeness" 

t9 the sorted set could be evaluated by the number of assignments in 

the set, the form of the partial orders that generate its filter, and 

so forth. It would probably be desirable to use product of sums 

expressions for an evaluation of the "state of the sort" and sum of 

products expressions for evaluating the effect of a comparator on the 

current set of assignments because of Theorem 3.2.3. 
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