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AB'STR.ACT 

Upper and lower bound• on the inherent computat:ional co11plexity of 
the decision pTobl .. for a mreber of logical theories are utabliahed. 

A general fora of lhrenf--"t. ,_ t;,echniqve for decicliJII t!Mories 
is developed whida t.nv.l'N8 ••J:ysiag the -,r-...tve ,-er of formula• 
with given quantifier •pth. The metlt.ocl altON one to dec'ide the truth 
of sentence• by U.aiting cpumt.ifiera to rage over finite Hts. In 
particular for the s;l!er:J· of int•.- .Wit.iaa • upper hound of space 

2cn 
2 is obtained. this is cloee to the known lover bound of nondetendniatic 

c'n 
time 22 • 

A general development of decisicm procedures for theories of product 
structures i• preHntal, which allon one to conclude in ..,.t: caaee that 
if the theory of a •tt11cture ia eleaencary rec.univ•• then the theory 
of its weak direct.--(• well aa other kinds of cltnct proclucta) 
is elementary recuraiff. In particular, for the t1Mory ti. !I!!, l!!!£ 
direct R9'!!r of <J!,-+> , and hence for integer ailtiplicatton, an upper 

2c;n 

bound of space 22 is obtained. The known lover bound is nondeterministic 

22 
time 2 

c'n 

Finally, the complexity of the theories of pairing functions is 
discussed, and it- is shown that no collection of pairing functions 
has an elementary recuraive theory. 

THESIS SUPERVISOR: Albert R. Meyer 
TITLE: Associate Profeeeor of Electrical Engineering 



-3-

Acknowledgements 

I'd like to thank Albert Meyer for his help and his interest, 

both personal and professional, during the last two and one half years. 

Most of my ideas for research were obtained through discussions with him; 

in particular, he is partly responsible for the main idea of the lower 

bound construction in Chapter 5. 

I'm also grateful to Gregory Cherlin for his interest and suggestions 

regarding this thesis. 

This research was supported by NSF grant GJ-34671. 



-4-

cypteir l: Inttogctiog -F~~-. 
Sectloa 1 : Inttoductf.a . ,, 

Section 2: Automata theory BackgrOWld. 

Section 3 r ...._ .._Dfltt,t .... .-, PeOM .:llppfs 
and Lawer Boua.da 

. '. ' 

Section 4: Mltbalatical Logic Backgromad and Notation 

Chapter.2: J!htef!fC!JS 9ee• ed.l!eslttmt-~• 
Section 1: Introduction ? -·.' : 

Sect1.on 2~ '!he· ~lit · ~ blattm 
and lllrenfeueht: Gaaea 

Section 3: All B-.•e DeetatoQ ~,...-• f,or lat.__ .A44it.f.,on 

Section 4: C...,IAnd.ty of E-pme Decision Procedures 

Oiapter 3: Weak l>irect Poper• 
Section 1: Weak Dlrect PGWet."a and Ehrenfeucht Games 

Section 2: Applications 

Chapter 4: SgN 9!ner•l Results About the fdeplegity of 
PU,st Products 

Section 1: Introcluction 

Section 2: Collplezity of Weak D.trect Powers 

Section 3: Results About Other Kinds of Direct Products 

Chapter 5: A Lower.Bound on the Theories of Paid.ag fwctiog 
Section 1: Introduction 

Section 2: Scae Undecidability Results 

Section 3: Construction of Formulas Which 
Talk About Large Sets 

Section 4: U.ing Formulas to Staulate Turing Machines 

Figure l: Illustrating ¼Pree 5,3,8 
RJferenc.ea 
Appendix 1: Writing Short Formulas for Inductively 

· Defined 'Properties 
Appendix 2: Notation 
Biographical Note: 

5 

9 

12 

15 

23 

25 

33 

43 

46 

54 

61 

63 

80 

84 

88 

93 

110 

99 
115 
118 

128 
129 



-5-

Chapter 1: Introduction and Background 

Section 1: Introduction 

The significance of the distinction between decidable and 

undecidable theories has been blurred by recent results of Meyer and 

Stoclaneyer [Mey73,MS72,SM73,Sto74] and Fischer and Rabin [FiR74] who 

have shown that most of the decidable theories known to logicians 

cannot be decided by any algorithm whose computational complexity grows 

less than exponentially with the size of sentences to be decided. In 

many cases even larger lower bounds have been established. In this thesis 

we investigate the computational complexity of a number of different 

logical theories, obtaining decision procedures whose computational 

complexities roughly meet the known lower bounds and deriving a 

new lower bound whose complexity is very close to the known upper 

bound. 

Let N be the set of nonnegative integers. Whether a sentence of 

the first order theory of N under addition is true is decidable 

according to theorem of Presburger [Pre29]. A more efficient decision 

procedure given by Cooper [Coo72] has been proved by Oppen [Opp73] to 
2cn 

require only 22 steps for sentences of length n, where c is some 

constant. In Chapter 2 we present a fairly general development of 

2
cn 

Ehrenfeucht games [Ehr61] which allows us to show that space 2 is 

sufficient for deciding Presburger arithmetic. 

* Let N be the set of functions from N to N of finite support, i.e., 

N* = (f: N ➔ N I f(i) = 0 for all but finitely many i EN}. 



The structure < N+. • > of positive mtegera tmder mo1tittlieation is 

* isomorphic to the structure < N , + > (the weak dbeet paw•r of < N, + >) 

where addition is 4efined coapcm-.,t~••• ~.first; order tbeory of 

this etTucture is k:aollll to 'b• deeUable 'by • tb.eor• of 1-•toweki [Moa52]. 

Mostowski'• prc,ceciure, how.,,... ia not ei..nt~ recursive in the 

sense of the follovbJ,g definition: 

Definitism 1,1: An !&!1!1Rt¥:t recs•iD ms.ue (OD 1tri.Dg1 or integer,) 

is one which can be NapUtecl 'by SOiie T\Jri-S Machin• vithia time bound-4 

above by a ff.xed caapNltioa of u:poa111tla1, f\mct.toaa of the leqth of 

the input. ('l'hla is .._ by CoMl• {<:Qb64] _. a.tt:41,.ie J;l.it63] to 

be equivalent to Xablar' a d.efSDiticm let. i.t67 }.) 

In Chapter 3 we use the technique of Ehrenfeucht g.amea to derive 

some general results about the theories of w.eaJt direct p(lll'.8t'8 which 

enable us to obt:aitl a new pnceclure for decidfaa llbetber emteacu are 

* . true over< N , + >. Our procedure ean be ial,pl~ted on • Turi!,& aa,:~ine 
c'n 

2cn . 22 
which uses a-t most 22 

taii>e equaree (_. hellce 22 et.ep8) on 

sentences of length n. As a corollary we obtain the ,ame upper bound on 

decision procedurN for die first order theory of finite abelian grc,up.9. 

Recent results of Fiacher and Jtabin [Fill74] show that for .ome conetant c 0 > O, 

* any procedure for die fint orfler theory of < lf , + > requir• time -
c''n 

22 
2 even on DODdetermilli.s.tic Turing 1UChines. Thus (see SectiGll8 2 &11d 3) 
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* the worst case behavior of our procedure for< N, +>is assymptotically 

nearly optimal in its computational requirements. 

In Chapter 4 we extend the methods of Chapter 3 in order to obtain 

general results relating the complexities of theories to the complexities 

of their weak direct powers and direct products, thereby obtaining 

computational versions of results of Mostowski [Mos52] and Feferman 

and Vaught [FV59]. In particular we show that the theory of the weak 

(or strong) direct product of a structure is elementary recursive if 

(but not only if) the theory of the structure is elementary recursive and 

if another condition holds; this other condition says roughly that not 

too many sets of k-tuples can be defined in the structure with 

quantifier depth n formulas. 

Chapter 5 is concerned with the computational complexity of pairing 

function structures. A pairing function is a one-one map P: N X N ➔ N, 

and the associated structure is< N,P >. Although the theory of the 

set of all pairing functions is undecidable and the theories of some 

individual pairing functions are undecidable, Tenney [Ten74] shows 

that many commonly used ones have decidable theories. Our main result 

is that no nonempty collection of pairing functions has an elementary 

recursive theory. In fact, for some 

any nonempty collection of pairing 

to decide. 

constant c > O, the theory of 

functions requires time 2
2000

jheight en 

In Section 2 of this chapter we present the definitions and basic 

theorems of automata theory needed to clarify the basic notions of 

upper and lower time and space botmds used in the following chapters. In 
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Section 3 we discuss the reducibility techniques which allow us to 

achieve many of the upper and lower bounds. Section 4 consists of 

a description of the notation and fundamental concepts of mathematical 

logic which will be needed in the rest of the thesis. 
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Section 2: Automata Theory Backgrpund 

We shall consider a version of Turing machine& whf:-cb.:, ~Y be either 

deterministic or nondeterminiat:ic,, one tape, cme.ohe-' automata. 

with a finite tape alphabet :t. For a rigoroua,4efi'JlU:i<m of these. 

machines the reader can consult; [Sto74, &ec.t:ion·2.i]., For 111111>st ef our 

purposes, however, the exact detail, of the definWon chosu do.not 

matter very much, so we provuie only an informal .detM:riptian,here. 

The tape is one-way infiuite .to the right -and·.~1:lhe ·autoaaton starts 

in the initial st41te with it.8 head on the left:mo&.1f B-.UIU'e :of t~e,,.«:ape. 

At any step, depending on the current state ·amt .~ 4urrent cQnt,ents of 

the tape square t1cam.ed by the head, the automaton C:8111 •tte a new 

member of ,I;. on that square, move the hea,:l .nght:- Ql' .lef~, . .apd. go into a 

new state. The Turing machine- is ;@~ti9,.lf :l~•·· .actipns at any 

step are completely determined by its •state and l>y,. the contents of the 

square pointed at by the head. If the :tllaebine :,g• 1'11i'de£':?aini•tjlc 

there may be a finite set of permissibt. actioll's .~i·J:>le at; caflY moment. 

Thus, the deterministic Turing machines fQrDLa sub•utt of the nonqet~rministic 

· ones. 

A (deterministic or noudeterm.inistic) i;o..autt11111&ton !Ul hat ~ as the tape 

alphabet; at any moment, all the symbols on the tape are frOlll.the 

* alphabet :t, ~ E :t. Let :t be the set of all finite sequences, or 

:-1- * "strings" of elements of :t and let E = :t - { X.} where Ao is the empty 

string. 
:-I-

If y E E , then !IR accepts ::x 'if there ia-'8:0llle. eeq~ of possible 

steps of !IR with the tape squares initially ~one.atning. the •~ring. y1'lit 

and the head scanning the leftmost symbol of :-y, tlhat enda 1fith an 
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accepting state. The set L{M) • ( y E 'I!" 1 · !Dt accepts y} ia ealled the 

language 'Nle5!1!i-4 'by 9. 

We nov defl.ne: wllat: we ...... by tke· dJle: aact, apace _. bJ'· Tmling 

machinea. If ~ ta, a, (__.-atalllb.ut:ic:-:) z;..nu:111g: wchbia ""1ch: scept• 

y E 1:;+ by w c-,ucat:ton ec.'lllbfniq &. aat n: at_. tlllD ,,.., ..,. -~-

!Ill accepts y wU:11'11 ....- Di. If !II acceplta y 1-y· -- ...-cat.lie durtaa 

which the head vta:ta at ... D diff....- ·UIMl ....... ~ .. .., that 

!Ill accepts y wt thin 8JMIC• n., · tat L • L(!I)··_ .mu.ti let f: If ➔ If. 'l'heD we 

say !Il recogniaea L nth& thle {apace) f(11) tf for ,nm:y y E L.. !II 

accepts y ¥1.thtn tS. fapaee) f (1-Yl)wlaan J.1 u cllll 1-gth of tu 
string Y• NTDEtffll)) (IISNCB(f{1t)),) U the~ Mt -of. ~ (,._. 

by language htwe •-•'a nbNt: of '1f for sc:ae aq,h.a.t I;) uch of 

which is recognised bf w ---~•te tJ'Urill&. ~ withf.n 

time (s-pace) f(tt). MDIE(f(n)} and DRA«mff(D.).): are deftMa- dmU.arly 

with reepect to dial....._nutio maeht.111.·, 

In order to Ch t •• tlle U9Pff atdl lCIIJS llomda for t:he CGllpUltat1 .. 1 

complexity· of the theeriee we allall conndw, it ia nec:etsa«y to untl-.tand ' 

certain relationshiptJ known to hold between time and apace for determiatstic 

in [Sto74 }. ) 

Fact 2.lt, Let f: M,... 1'. 

A. Nondet .... istic 'Mr&\18 deterministic tille 

a) DTDIB(f{•)) !;; IffDll(f(n)) 

b) lffIMB(f(n)) ~ LbTDIE(cf(n)). 
cEN 
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B. Nondeterministic versus deterministic space 

a) DSPACE(f(n)) ~ NSPACE(f(n)) 

b) NSPACE(f(n)) ~ DSPACE((f(n)) 2) 

c. Time versus space 

a) DTIME(f(n)) ~ DSPACE(f(n)) 

NTIME(f(n)) ~ NSPACE(f(n)) 

b) NSPACE(f(n)) ~ l.JDTIME(cf(n)) 
cEN 

All of Fact 2.1 is relatively straightforward to prove, with the 

exception of B.b. B.b is proved by Savitch [Sav72]. By (B), if we 

en are discussing a lower or upper bound of the form "space 2 for some 

constant c" it is unnecessary to specify if we are talking about deterministic 

or nondete~inistic space. 

2
• • .pheight en 

Similarly, we can talk about a bound of the 

form "2 JI 

for some constant " c without specifying if we are 

talking about time or space, either deterministically or nondeterministically. 

Each of the gaps between a) and b) in A, B, C above represent 

important open questions of automata theory. 
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Section 3: Usipg Reduef;bilt~iies to :1Toft 'Upper ad lfflr -BDunds 

Definition 3.1: Lat E
1 

and 1:;2 be f'infte iil,tiabets and let ,_ 1: "[;: 

+ I) for all y E I;
1

, y E L
1 
~ g(y) E L

2 
anJ:I 

II) there is some Turing machine which computee g within time a 

fixed polynomial in the length of the input and within space linear ir. 

the length of the input .• t 

* If S ia a collection of laguages O'Y'er :E
1 

(S i;;; p(.Ei)), then we say 

We now state 1..-a 3.2, which is a very powerful way of proving 

lower and upper 'botlad.•. For a preof (which is really very simple} of 

this fact and for a very thorougla discwaaion of reducibilitiea~ see 

[Sto74]. 

Leana 3.2: Say that 1,_ s pt½• Let f: N ➔ N. If 

DTIME(f(n}) 

DSPACE(f(n}) 

NTIME(f(n)) , then Ll E 

NSPACE(f(n)) 

DTIME(f(cn) + p(n}) 

DSPACE(f(cn) + n) 

NTIME(f(cn) + p(n) 

NSPACE(f(cn) + n) 

for some constant c > 0 and polynomial p (n). 

t 
A determini■ tic Turing macltille cgmputea l. if when it is started with 
yW ••• on its tape, y E L'i:, and its bead on the leftm>st aquare, it 

eventually halts and g(y) is the striag on the tape to left of the head. 
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NTIME(f(n) + p(n)) then L2 i 
NSPACE(f(n) + n) 

DTIME ('f(cn)) 

D§PACE(f~cn)) 

NTIME(f(cn)) 

NSPACE(f(cn)) 

for some constant c > 0 and some polynomial p. 

An example of the way we use Lemna 3~2 is the following: say that 

2
cn 

we have lla:lSuages L1 and t 2 such that we lcnow that ½ E SPACE(2 . ) for 

en 
some constant c. If t 1 ~ ptL2 then we can conclude that L1 E SP~CE(2

2 
) 

c'n 
for some constant c. If we know_ that L1 f. NTIME(2

2 
) for some 

constant c' > o,· and if L1 ~ p.tL2, then we can coriblude that 

1 
2c n t 

L2 f. NTIME(2 ) for some constant c' > O. This latter idea is often 

used in conjunction.with Lem:na 3.3. 

Lenma 3.3: (see[Co73pFM73-Sei74] .) Let f: N ➔ N be one of the functions 

. 2n .2} 
2
n 

2
2n 

2
2 

2
2•• eight n 

, , , or • Then there exists a language L such that 

LE NTIME(f(n)) and L f NTIME(f(n/2)). 

n ·y2 · n 2~ 22 2.• height n 
Theorem 3.4: Let f: N ➔ N be one of the functions 2 ,2 ,2 or 2 _ 

* * . and let Lo~ I; (for some I;) be such that NTIME(f(n)) ~ p.tL0• Then for 

some constant c > O, L0 i NTIME(f(cn)). 

t It is easy to see that if L i. NTIME(£(,n.,}h. then tJ11Y nondeterminietic 
Turing machine which recognizes L takes time at least f (n) on some 
y E· L of· length. n, for infinitely main¥ n. 
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Proof: Say that IITIME(f(n)) ~ p.t¾>· By I.- 3 .. 3, let L 'be such that 

L f NTIME(f(n/2)) and L E ftIME(f(n)). So L ~ p.t¾,• _,. Lemaa 3.2, 

L0 f. NTIME(f(cn)) for ~ ccmatant c > o. 

A typical way 'l'beorem 3.4 i• used is the following. Fucher and 

Rabin [FiR74] show that if TR i• the theory of integer addition, then 

~ r -
NTIME(2 ) S:: p.l,TR, concluding that TH f trrDIK(2 ) for cen.8tattt c. 

· c'u 
· · - 2 • In Chapter 2 we show that '111 E SPAC!(2 ) for 80IBe ccmatatlt c, and 

2
c•n 

hence that m E DTIM1!!(22 ) for soae coutant c•. 

A natural que•tion ia whether or not ve can 1ttt .a DTIME upper 

bound for TH aid • BTDIE lower bound for m which are c loller to 

c'11 
22 2cn 

each other than are 2 and 2 • If we could, this would a-ettle 

□ 

an importa,.t open «(UUtiOII of automata theory. 'tor iutance, aay that 
idl 

we could show that THE DTIME(22 ) for some constant c'. Since 

n . - - 2cJii 
NTIME(2fl) S:: pJ'ffl, Leaaa 3.2 would imply that HTIME(22 ) -~ U DTIME(22 ), 

cef 

narrowing the gap in Fact 2.1, A. Tb.1.s_,would alao contradict the popular 

conjecture tllat (for DI08t functions f that are esacountered) there 1• a 

· · f(n) 
language in NTIME(f(u))which reg.-u.irea DTIME(c ) for some constant c. 

The reason therefore that we have uot been able to narrow the gap between 

our DTIME upper bound and NTIMB lower bound for TB, is not because we do 

not under•tand the -.,.,_ive power. andot:her propertiM of TB, but 

rather becauae we don't understand many haaic propertiu of the very 

notions of deterministic and nondeterministic computation. 
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Section 4: Mathematical Logic Background and Notatign: 

Most of the notation of mathematical logic that we shall use is 

fairly standard; the reader can find precise definitions of those 

concepts not defined here in [~en64]. 

I, will always represent a language of the first order predicate 

calculus with a finite number of relational symbols ~l' ~2, ••• , ~t 

where ~i will be a t 1-place formal predicate for 1 sis t. For 

technical convenience, I, will not contain function symbols. Sometimes 

we will choose I, to have a constant symbol e as well. 'l1le formal 

variables of I, are written as x0, x1, x10, 'x11, ••• , that is, the 

subscripts are written in binary. For expository convenience, we will refer to 

I I I ' 
X ,Y ,z , ...• 

The atomic formulas of I, are strings of the forin~(vpv2, ••• ,vt) 
. i 

where v1,v2, ••• , vt represent (not necessarily distinct) formal 
i 

variables; if I, has a constant symbol .!, then each v j, 1 s j s i, can 

represent either a formal variable or.!• We define the formulas of I, 

recursively as follows: Atomic formulas are formdlaa; if F1 and r 2 are 

formulas and vis a formal variable, then'each oft~ strings 
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~F 
1 

VvF1 

is a formula.t We use the usual notions of an occurrence of a 

variable in a for,aula being bo~d oz:.free, and ,d,•fi.M,, •tn\nss.of 

l to be a formula in which there are no free occurrences of variables. 

A structure for l, is a tuple 3 = < s, R1, ••• ,Rt> where Sis a 

t 
set and R. ~Si for 1 ~ i ~ t; if l has a constant symbol~, then a 

l. 

structure for l, is< S, R1, ·••~ R,e, e >where~ ES. We call S the 

domain of 3. If Fis a sentence of l, we will use the usual notion of 

F true in 3 or 3 satisfies For F holds in 3, and we will write this 

g ~ F. Sometimes we will say "Fis true" or "F holds" or merely assert 

"F" when g is uncleratood. Til(S) = the theory of 3 .= {F. I F ia a sentt;mce 

and 3 ~ F}. If P ia a noneq,ty collection of structures, th~n define 

t 'When writing formulas we will omit parentheses when it will not lead to 
confusion. 
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TH(f>) = theory of P = A '111(3). 
g E p 

OUJ: language l would have been just as powerful had we left out 

much of our logical notation. For instance x Vy is equivalent to 

"""X_➔ _y and VxF is equivalent to ~X"'-'F. It is only for convenience 

that we have made las large as we have. 

We say a formula F is a Boolean combination of eubformulae 

using perhaps A, V, ➔,to+,~ but no quantifiers. Ciearly every formula 

is equivalent to a Booleat1 combination of formulas, ea.eh of which begins 

with an existential quantifier. 

We now define apnotated formulas in order to be able to talk about 

substituting members of a domain for free occurrence• of 'Variables, and 

in order to be able to talk about the relations defined by formulas. Let 

F be a formula and say that we have a sequence of formal variables 

containing (not necessarily exclusively) the variables which occur 

F(x1, x2, ••• ,~)to be, formally, t~e ordered pair consisting of F and 

the sequence x1, x2, ••• , ~. Informally, when we vri te F <xi, x2' ••• , ~) 

we think of ourselves as associatiiig with the formula F the sequence 

x1, x2, ••• , ~- We will usually use F and F(x1, x2, ••• ,~)inter­

changeably, and call them both formulas, as long as this association is 
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understood; we will never associate two different sequences with the 

same formula. 

Say that F(x1, x2, ••• ,~)is an (annotated) formula and Sis a 

structure with domain S, and a1 ES. By F(a1, x2, ••• ,~)we will mean 

the formula obtained by substituting a1 for free occurrences of x1 

in F. Note that this is technically not a formula of l but rather a 

(non-annotated) formula in the language l' obtained by adding constant 

symbols to l for every member of s. If a1, a2, ••• , 8k ES, then 

F(a1 , a2, ••• , 8k) is defined similarly, and we write 

Fork> 0, we use~ to represent the k-tuple (x1, x2, ••• , ~), 8k 

to represent (a1 , a2, ••• , 8k), (~, b) to represent (a1, a2, ••• , 8k• b), 

k 
e etc. Thus F(~) will be used instead of F(x1, x2, ••• ,~),etc. 

k and e will stand for the k-tuples (e, e, ••• , e) and(!,~' ••• , ~). 

Skis the set of k-tuples of members of S. k (S is isomorphic to the set 

of functions from ( 0, 1, 2, ••• , k-1} to S. ) k 
Fork= O, S is taken to 

be the singleton set containing the empty set, and 8k• ek, etc., 

denote the empty set. However, we take (8k,b,c) to mean (b,c) when k = O, etc. 
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If we write F(~) when k = O, then Fis a sentence; F(~), F(~), etc., 

are in this case no different than F itself. 

If g is a structure with d01Dain S and A~ Sk and F(~) is an 

annotated formula, then we say F defines A in g if 

We say "F defines AN ·if 8 ,is understood. 

More generally, say that we are interested in a particular nonempty 

class of structures r. By a k-elace prop9rt;y G we ~ean a function which 

k assigns to each structure g Er a subset of S (where Sis the domain of 

g); we will usually refer to the value of G on 3 as the relation §. 

restricted to 3. If ~ E s\ then we ·write 3 I- GCaic) to mean that ¾ E 

the relation obtained by restricting G to 3. When G is a property we 

sometimes write G(~) to indicate that G is a k-place property. If 

Q(~) is a formula, we say that Q defines Gin r if in every g Er, 

§. defines G restricted to 3. We say "Q. defines G" when r is understood. 

Formulas F 1 and F 2 are equivalent in 3 if for some sequence 

x1, x2, ••• ,~of variables, the free.variables of both F1 and F2 are 

from among x1, x2, ••• ,~•and the annotated fonailae F1(~) and F2(~) 

k define the same subset of S. F1 and F2 are equivalent in P if they are 

equivalent in every member of r. We say "F 1 and F 2 are equivalent11 to 
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mean with respect: to the class of all ittructures, unleH S ar P 

is understood. 

Sin~ ~ &ball be interu,ted in Turing machines whose input 

strings are sentence• of l. we have to have a precise notion of the 

alphabet used to write fO'l"IDUlas and a precise notion of the length of 

formulas. our alphabet conaiats of:&•((, ), A. V~ ... ,.,.., S, Y, ~' x, O, l,J 

(where O and 1 are used to write subscripts of variables and relation 

symbols); if.! is a symbol oft, then.! E :& also •. If Fis a formula, then 

by the length of F, written !Fl, we will •imply mean ·the 1:ength of "t aa 

* a menl1!ter of ~ • 

Another usage of the notation F(x1, x2, ••• ,~)serves to 

emphasiae that the free variables of Fare from among x1, x2 , ••• , Xit• 

For instance, the more nmemonic notation ~F(~) will sometimes be 

used instead of i~F. If we write IF(~)j we simply mean IFI. 

Notation: If a is a string, then lal is the length of a. If a is a set, 

then lal is the eardinality of a. If~ is an integer, then lal is the 

absolute value of a. N+ is the set of positive integers. + For i EN , 

Qi will always repreaent a quantifier, i.e., either Y or :a:. All 

logarithms are to the base 2. 

Definition 4.1: A formula Fis in prenex normal form if it is of the 
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represent formal variables. 

Theorem 4.2: Every formula Fis equivalent to a formula Gin prenex 

normal form such that G has at most !Fl quantifiers and is of length 

at most IFl•loglFI. Furthermore, there is a procedure (i.e., Turing 

machine) which given F computes G within time polynomial in !Fl. 

Proof: There is a standard procedure for converting a formula.to one in 

prenex normal form [Men64]. The procedure basically just "pulls out" 

the quantifiers to the front, except that first the names of certain 

variables have to be changed in order for the procedure to produce a 

formula equivalent to the initial one. The procedure does not change 

the number of quantifiers, so G has at most IFI quantifiers. F has at 

most !Fl occurrences of variables, so if these are given all different 

names (in the worst case) and the binary subscripts are chosen to be 

as short as possible, then F grows by a factor of at most log lFI when 

put in prenex normal form. 

'l.'i thin polynomial time. 

This procedure can be checked to operate 

Thus, to show that a theory can be decided within space f(cn) for 

some constant c, where f grows faster than polynomially, it is 

sufficient to give a procedure which decides the truth of prenex normal 

form sentences of length at most n log n with at most n quantifiers, 

within space f(cn) for some constant c. 
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Definition 4.3: If Fis a formula, we will write g-depth(F) to mean 

the quantifier depth of F. Formally, if Fis an atomic formula then 

q-depth(F) = O; if F1 and F2 are formulas then 

q-depth(F1 V F2) = q-depth(Fl A F2) = q-depth(F1 ➔ F2) = q-depth(Fl ~ F2) = 

Max(q-depth(F
1
), q-cepth(F2)}, q-depth(~F1)= q-depth(F

1
),and 

q-depth(~vF1)= q-depth(VvF1)= 1 + q-depth(F1). 
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Chapter 1: Ehrenfeucht Games and Decision Procedures 

Section _l: Introduction 

In this chapter we present a development of the Ehrenfeucht game ap­

proach to deciding logical theories. This approach was originally 

described in [Ehr61], and in particular the reader may wish to consult 

this source to learn about the relationship to game theory. A discussion 

of game theory also appears in work by Richard Tenney [Ten74,Ten74']. Tenney 

uses Ehrenfeucht game techniques to decide the theories of certain 

pairing functions and to decide the second order theory of an equivalence 

relation. Neither Ehrenfeucht nor Tenney explicitly describes these 

techniques in generality. We shall present a development in this chapter 

which, although not completely general, is general enough to handle a 

wide variety of cases. Where possible we will describe our decision 

procedures in terms of bounds on quantifiers, so that to decide the truth 

of a sentence one need only decide the sentence when each quantifier is 

limited to range over a particular finite set. This idea, which will be 

carefully described in the next three chapters, is also used by Tenny, 

Ferrante and Rackoff [FR74], and Ferrante [Fer74]. In addition, as part 

of our development of the Ehrenfeucht game approach we shall characterize 

it in terms of the quantifier depth of formulas. 

Section 2 of this chapter consists of a general development of 

Ehrenfeucht games. Our approach is somewhat different from that of 

Ehrenfeucht or Tenney, but several of the basic theorems and ideas come 

from these sources. In Section 3 we derive a decision procedure for 
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the first order theory of integer addition as a corollary of our 

general development. In Section 4 we discuss an important open 

question relating the complexity of decision procedures to the index 

of the equivalence relation which characterizes Ehrenfeucht games. 
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Section 1= ~ Ehrenfeucht Equivalence Relatj.on and Ehtenfeueht·Games 

Let I.. be a fixed language of the first order predicate calculus 

with finitely many relational symbols ~ 1,~2, ••• ,~t where~- is a t 1-

place formal predicate for 1 ~ 1 ~ J,. Also, let I, have a single constant 

symbol~- Let 3=<S, fi
1

,R- 2 , ••• ,R-,,,e> be a fixed latruct~ for l. 

(Actua-11y, the constant symbol ~ plays no imp(>rtantf role in this chapter 

but 1s included so that we can talk about: weak1 direct powers later.) 

In addition we will assume we have a !!2I!! on 3, by which we mean a 

function 11 I l :S ➔ N, and we will denote the n°"" of a ES by 11 al I. 

If i EN, then we write a< 1 to mean I laf I ~ 1. We i,Jitroduce this conce-pt 

of norm in order to describe -simple d~i'sion procedurH which use space 

efficiently (and without a significant time loss)-. ·· lbwever the reader 

should note that many of the theorems below make no mention of the norm 

and are independent of this notion. 

We now define the Ehrenfeucht equivalence relation. 
- - k - -Definitioq 2.1: For all n,k EN and all 4k,_bk, ES , ~~fine 8k ~ bk iff 

for every formtJla F (~) of q•depthSn, F (8ic) _ and _F (bk) are either both 

true or both false (in 3). 

Remr""k 2. 2: For each n,k .EN, 
k == is an equivaleqce relation on S • n 

Ehrenfeucht origi~lly defined= by induction. pn n; his definition n . . . 

consisted of a combination of our defi11,;Ltioll o_f ff together with what 

we call 'lbeorem :2.3. We will pJ;'ove th;la.theo~.later. 

- - k - - ~ Theorem b_1: Let n,k EN and 8ic•bk ES • 'lben 8ic n:tl bk 

1) For each 8ic+l ES there exists some bk+l ES such that 8tc+l ii bJ.ti·l" 

and 2) For each bk+l ES there exists some 8ic+l ES such that 8k+l ii bk~l. 
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- - k Lemma ~: Let n,k EN and 4tc,bk ES such that 

- -1) For each 8tt+l ES there exists some bk+l ES such that ak+l : bk+l • 

and 2) For each bk+l ES there exists some 8ic+l ES such that 8it+t ~ bk+l • 

.Ih!m ~ nil bk. 

Proof: Say tha-t 1) and 2) hold. Since every formula is equivalent to 

a Boolean combination of formulas each of 1iibich begins with an existential 

quantifier, it is sufficient to prove, for F(~) of the form ~l <HXic+l) 

where q-depth(G) ::s:n, that F(~) ¢>F(~). 

So assume that F (4tc) holds.. Then let 8ic+l E S be .such that G(4ic+1) 

holds. By 1), let ~l ES be such tllat 4tc+t : bk+l• Since G(4tt+1) is 

true, G(bk+l) is true (by definit:l.on of:>, 44> F~) ls true. By 

synnetry, F(~) holds if F(bk) holds. D 

Definition b..2,: For each n,kEij let M(n,k) be the number of equivalence 

classes of= restricted to Sk. 
n 

- k Lemma 2.6: Let n,k EN.. 'nlen M(n,k) is finite and for each 8ic ES there 

• ~ k 
is a formula F (2\:) of q•depth n such that for all ok E S , 

8.,_F(bk) c:> bk ~ ~ (i.e., F defines the ii equivalence claaa of ~). 

- k -Proof (by induction on n): If n-0 and 8tt ES , we can clearly take F('xlc) 

to be a conjunction of atomic formulas and ttegatlons of atomic f()rmulas. 

Since an argument place of an at-end.~ f<mDUla can be occupied by either a 

formal variable or by ~, the mnaber of atomic formulas in which at most e, 
J, t 

x
1

,x2 , ••• ,,c occur is 
1

~
1

(k+l) i. So 

J, t 
2:; (k+l) i 

'M(O,k) ~ 2i=l 
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Now assume the lemma true for n (andt~ll k). We shall prove it for 

n+l (and k). Let F1(~+1),F2(~+l), ..... Blif(n,~1)(~1) be a sequence of 

b' .. C k+l h ,, ' i formulas of q-depth n sue that for each "k+l, S . t ete exists an , 
.. 

1 :s: i S:M(n,k+l), such that Fi defines tqe • equivalence class of "k+i• 
·ll·\. .., . 

.. k 
For each ck E S define 

W(~k)={ i I 1 :s: i :s: M(n,k+l) and ~l Fi (ck,~+1> is true). We shall show 

-- k - - - -

~
t/\ a: bk'Fc~ ~ S ,

1
b: 0

(~ /\ W(:(~•("!hu:)the 
i W(c ) -1c+1 i ~+l i~. W(_~. k) +l i. -~+l 

k . . lS:iSM.(n,k+l) . , ... 

defi~es the nft equiv~lenc'.e class pf ~-

Clearl;y, if bk ~l ck' then_ ~(~)-W\~.) ,ainee ;e~h, 1f~rmul~ 

~+lftr~1) is of _q-depth n+l. To ~ove th, .. c~erse we first prove 

the following Claim. 

Cla~: If W(bk)=W(~k), then for each ck+lEs there exis.ts some bk+l ES 

such that ck+l ~ ~k+l (and by s~try, f~r each b~l fs t:he~e,,·extllts'· 

some ck+l ES such that ~k+l : bk+1) •. 

Proof .2!·. Claim: Say that W(bk)-W(~k) and ck+l Es. Let i, 1 S: i S:M{n,k+l), 
:· \ ' ' { / . J,-·,,, - :, ... ,·: ..... f 

be such that Fi(~+l) defines the~ equivalence clan of ck+l" Fi(ck+l) 
• " • •_,- i~; .•,•, j- '•, /.- I .. ; : ' 

is true, so ~+1 F1 (ck,Xic+l) is true, so iEW(,c). So iEW(bk). This 

means that ~l Fi(bk,xk+l> is true, and tb~refore we d~n find bk+l ~~h 

that .J:'1 (bk+l) ie true. S1DC4 Ff ~f~ the ~ ~~~e, claes of '~l' 

we muat: have ~+l :_ bk+1• 

By the Claim and Lemna 2.4; W(bk)-W(ck), • t~ .iJl ~k. Note th•t the 
'' ' 

- ; • :_. .• -··· ,. . . : : r 

n~l equivalence class of ck is determin~ by W(ck) whtch is a aubiet' of 

(1,2~ ••• ,M(n,k+l)}. So M(n+l,k)~2M(ntk+l). This and the bound on M(O,k) 



-28-

imply that 

C 
2 (n+k) 

.•.}height n+l 
2· ' 

M(n,k) ~ 2 . for some constant c • D 

. 
Remark bJ..: There are structures g such that 

2n-+k 

• • } height E'n 
2· 

M(n,k) :i2:2 (for some constant E'>O), so M(n,k) is not in 

general bounded above by an elementary recursive function. For many 

structures, however, M(n,k) grows considerably 1110re slowly. 

Definition 2,8: Let H:; ➔ N be a function which is nondeeTeaaing in each 

argument. Then g is H•bounded iff for all n,k EN and all F(~l) of 
• k . • . 

q-depth sn and all 4k ES , if ~+lF(4tc,Xic+l) ii true in I then 

[~+l < H(n,k,1~~
1
/l la1 I1}) JF(~•~+l) is true iti 3. (We take,Max·.~ 

to be O.) 

Remark U: If our norm on Sis the identically O function and H:; ➔ N 

is the identically O function then clearly g is H•bounded. This means that 

often when we have a theorem which involves· the concepts of norm and 

H-boundedness, we can illlllediately obtain a simpler theorem which doesn't 

mention those concepts; sometimes, as is the case with Lenna 2.10,.chis 

new result is still interesting. 

Lemma l:.!Q: Let H:~ ➔ N be such that g is !I-bounded. Let n~k EN and 

- - ·k . - -
let 4k,bk ES such that 8k n~l bk. Then for each "8tc+l ES there edata 

some bk+lE S such that ~+l ii bk+l and such that 

I lbk+l 11 SH(n,k,
1
~~/ I lbi 11 }). 
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- - k -
Proof: Let ~'bk ES such that ak nil bk. Let ~+l ES. By Lemma 2.6 

there is a formula F(~+l) of q-depth n which defines the ii equivalence 

class of ~+i• Since ~+l F( ~'~+l) is true and ~ n+l bk' 

~+l F( bk'~+l) is true. Since g is H-bounded, we can choose bk+l ES 

such that F(bk+l) is true and llbk+lll S:H(n,k,
1
~~(llbill}). But 

F(bk+l) implies bk+l ~ ~+i• D 

Proof of Theorem 2.3: Theorem 2.3 follows immediately from Lemma 2.10 

(keeping in mind Remark 2.9) and Lemma 2.4. D 

H-boundedness of a structure guarantees that quantifiers in a 

formula ranging over all of Scan be replaced by quantifiers ranging 

over elements of S whose norms are bounded by a function determined by H. 

This is made precise in the following lemma. 

Lemma 2.11: Let H:~ ➔ N be such that g is H-bounded. Let n,k EN and 

let Q1x 1 Q2x 2 ••• Qk~ F ( ~) 

q-depth (F) ~ n. Let ~ E Jc 
for 1 ~ i ~ k. 

be a sentence of f. with q-depth s: n+k, i.e., 

be a sequence such that m. ~H(n+k-i,i-1, Max (m.}) 
1 l~j<i. J 

Then Q
1 
x

1 
Q'.!x2 ••• Qk~ F ( ~) is true ~ 

(Q1x
1 

""'m
1

)(Q2x 2 ~m2 ) .•• (Qk~ ~~)F(~) is true. 

Proof: Consider the formula Q2x 2 Q3x
3 

••• Qkxk F( ~). Because g is 

H-bounded, if m
1 

";:c:fl(n+k-1,0,0) then Q
1

x
1

(Q2x 2 ••• ~~F(~)) is equivalent 

to (Q
1
x 1 <m

1
)(Q2xz-·•Qk~F(~)). 

Now for each a ES such that I la! I ~m
1

, consider the formula 

Q3x3 Q4x4 ••• Qk~ F ( a ,x2 ,x3
, •.• ,~). Because g is H-bounded, if 

m2 ';;!:fl(n+k-2,1,m
1

) then Q2x 2 (Q
3

x3 ••• ~~F( a,x2 ,x3 , ... ,~)) is equivalent 
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to (Q2x 2 <m2}(Q
3

x3 ... ~~F(a,x2,,x3 , ••• ,~)). Hence, 

(Q1 x 1 < m1 )Q2x 2 ... ~Xie F( ~) :ls equi.,,-alent to 

(Qlxl <ml)(Q2x2 <•2>q3X3•· ·'\Xie F( ~). 

By k-2 additional at,,t,lb:ations of" the l•boun4tl4'beas of 1-. we arrive 

at Leuma 2. 11. D 

We now demonstrate the existence of a general met:hod of proving 

H-boundedness • 

.!&!!!Y 2.12: Let H:~-+ N be a function which is nondecreasing in each 

argument, and say that for eaeb n.,k EN we have an e111uivalence relation 

k E on S satisfying the followt:ng propertte•: n 

1) For all kEN atMl all 8k•bkEsk, ~ 10 bk• 4tt ~ ~ • 
- - k . - r and 2) If n,k EN and 8k•bk ES such that. 81c &n+l Dk• then for .-ch 

4k+l ES there is some bk+l ES such that 8tc+l En blt+l and such that 

I lbk+l 11 ~ H(n,k, 
1
~

4
( I lh1 11} ) • 

.TI!fil! 

I) For all n,k EN and 8tc•bk E Sk, 8tc En bk ⇒ 41c ii bk. 

and II) g is H•bounded. 

Proof: 

Proof .2! 1l ll induction cm, .a: I) certainly holds if n=O. Assume I) 

is true for n; we will prove it for n+l. 

Say that~ En+l bk; we wish to show that~ nil bk. By Lemaa 2.4 

and the synnetry of Ea+l' it is sufficient. to show that for every 8k+l ES 

there is some bk+l ES such that ~l ii blt+t • So choose 8tc+l Es. By 2) 

there is some bk+l E S such that ~l En bk+t. By the inductl. on hypothesis, 
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- - E k Proof .Q1 II): Let F (~+l) be a formula of q-depth ~11 and. let 8tc S · 

be such that •~+lF(4tc,~.H) is true. Let""k+l E. S be. ~u~h that F(4ic+1), _ 

holds. Since 8tt En+l 8k• conclition .. 2) illplid th&t we ca~ find •ome 

8k+l ES s1JCh that ~+l En <-ic,a.fc+t) and 8!\ldl tha.t 

I lak+l 11 ~ H(n,k,
1
~( 1 l,a1 \11). But by 1:), 8k+l Ea (8tc•4k+l) =t 

8k+l ~ (8Jc,8k+l) ::0 F(8tc,8k;+{) holds. So 3 is''B-J>ounded. 0 

By applying Remark 2.9 to Lemma 2.12 we i.Dlllediately obtain Lemna 2.12'. 

Lemma 2. 12': Say that for each n,k EN we have an equivalence relation En 

k 
on S satisfying the following properties: 

- - k - - - -1) For all k EN and all 8tc•bk ES , 8tc Eo bk = 4t ff bk. 

- - k - -and 2) If. n,k EN and 8tc•bk ES such that 8tc En+l bk' then for each 

8k+l Es there is some bk+l Es such that ~l En bk+l" 

.!!!fil! for all n,k EN and 8tc'bk E Sk, ~ En bk ::0 ~ : bk. 

We loosely define an "Ehrenfeucht game (abbreviated E•game) decision 

procedure" for TH(3) to be one that involves defining relations En and 

proving that the conditions of Lemma 2.12 or 2.12' hold. This will be made 

· clearer in the examples of Section 3 and Chapter 3. In Section 4 of this 

chapter we present a general discussion of the computational complexity 

of E-game decision procedures. 

Lemma 2.13 shows how H-boundedness implies bounds on the norms 

of members of the= equivalence classes. n 

Lemma b.ll: Let H:; ➔ N be such that 3 is H-bounded •. Let n,k EN and 

let ii. E?f' be a sequence such that· mi :2: H(n+k·i, i-1, Max ( mj) ) for 
IC l~j<i . 
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1 :o;: i :<:;; k. Then for each ~ E Sk there is some bk E Sk such that ak n bk 

and !lb.II :5:m. for l:5:i:5:k. 
l. l. 

Proof: Let n,k,~, and ak be as in the statement of the lennna. By 

Lennna 2.6 there is a formula F(~) of q-depth n which defines the~ 

equivalence class of ak. Since F(;k) holds, :Bx
1 

mc2 ••• ~F(~) is true. 

So by Lennna 2. 11, (mc
1 

< m
1

) (mc2 < m2) ••• (~ < ~)F (~) is true. This 

means that for some bk E Sk, F(bk) is true and l jbil I :5:mi for 1 :5:i :5:k. □ 
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Section 3: An E-Game Decision Procedure for Integer Addition 

We now present some applications of Section 2. For the rest of 

this section let .c1 · be the language of the first order predicate calculus 

with the formal predicates v1 +v2 == v3 and v1~v2 ·~ the constant 

symbol O (where v1,v2,v3 represent fonial v~iabl~). 

Definition 3.0: Let Z be the structure< Z, +, ~, 0 > where Z is the set 

of integers and where+ and~ are the usual integer addition and order. 

If a E Z, define I lal I = Jal = ab~olute value of a. 

We will obtain a theoretically efficient decision procedure for TH(Z) 

using results of the previous section. Although Ve will be using an 

Ehrenfeucht game approach, many of the ideas we shall use come from a 

quantifier e1imination decision procedure for TH(Z) obtained by Cooper 

[Coo72] and analyzed from a complexity viewpoint by Oppen [Opp73}. We 

choose this example because it illustrates our thesis that all known 

quantifier elimination procedures can be converted to E-game decision 

procedures without significa.Dt loss of time &11d·aoaeti~s with a saving 

of space. Some of our results about TH(Z) appeared in preliminary form 

in Ferrante and Rackoff [FR74]. 

Although our procedure for TH(Z) has about the same time complexity 

as Cooper's, it only requires a logarithm of the space used by Cooper's 

procedure. 

Definition 3.1: If a, b, c E z, then a 111.:1 b moci c,(aia.eqµivalent to 

b mod c) if c divides a - b. If A is a nonempty finite set of integers, 

then lem A= the least positive integer which every non-zero eletGent of 
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DefiuiUrm 3,2: Let a, 'b E z and let d E N+. Then we wri.te a = b 
d 

if either 1) a• 'b 

or · 3) a :s: -d and b s: -d. 

When we talk about • holding between objects one of which is the 
ti 

cardinality of a set, we will often omit tbe vertical lines indicating 

cardinality. FM instance, if A and Bare sets, we will write A• B 

and A "' 5 iut.ead of lAI • I Bl and lAl • 5. 
d d d 

Lemma 3.3: Let a, b E Z and let d E 1.+. Then a • b.,. 
d .. 

for every c, ~d <cs; d, a -e c ~ b 2: c. 

Proof: Left to the reader. 

d 

CJ 

Definition 3.4: I>efine a sequettce ~f sets of integers v0 , v0, v1, Vi,··· 

as follows: v0 = (-2, -1, O, 1, 21. If v1 has been defined, define 

v ' = ( 1 • v' I 5 = 1cm V • v, v' E V., ; v ~ Ol and define 
i V i' a 

Definition 3.5: Let n, k EN. Then define the equivalence relation 

k - - k 
En on Z aa follows: Let 8Jc, 1,k f Z , let 6 • 1cm Vn. 

t We use this nonstandard notation for equivalence mod C 80 as not to C&UH 
conflict with other notation we uae. 
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k k .
2 

1) ~ v 
1 

a 
1 

1=1:1 'E v. b 
1 

mod 6 
i=l i=l 1 

k k 
and 2) 'E viai = 'E v1bi 

i=l O 2 i•l 

Legna 3.6: 
k . 

Let k EN and let¾' bk E Z such that~ E0 bk. 

Proof: Say that ~ E
0 

bk. We wish to show that for any quantifier 

free formula F(~), Z I- F(~) ~ Z I- F(~). Since every quantifier 

free formula is a boolean combination of atomic formulas, it is 

sufficient to assume Fis atomic. We need only consider the following 

cases for F: 

In these cases, in order to show that Z I- P'(4tt) ~ Z I- F(bk), it is 

necessary to show (respectively) that O ~ 0 ~ 0 ~ O, 

But since O, 1, -1, 2, E v0, all these facts follow from 2) in the 

definition of E
0

• □ 
en 

Lenana 3.7: For some constant c, Iv I~ 2
2 

and V = {-a I a EV} 
n n n 

2
cn 

and Max V . ~ 2
2 for all n E N. 

n 
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Proof: 

Max Vi+l s; Max(Max V1 , 2•Malt v:) s; Z•lcm Vi•Ma Vi 

Si 61 . 
s: 2· (Max v

1
)5 • Max v

1 
s: (Max w

1
)&, •. ~ Max. vn s: 

en z:n 
Iv Is: 22 

and Ma v s: 22 for some, coaa.t:ant c and all n E. N. D n n 

Theorem 3.8: Thee est.cs, a coaatallt' d1 atlllffl" that die £011-1.ng· t. true: 

Let n,. k E N and let 8kt bk E t' auch tlllit ~ En+l ~- 'ffien for- each 

~l E Z th'ere exf•t• Hmt! bk+t E Z such that 8\t+t En bk+l acl sue.II that 
' ~ ; .. 't; _, . , 

2d(n+k) 

I bk+ 1 I s: ( 1 + Max r b :I.)) • z2 • 
·l~:1$a 

. . - k 2 ' ' : .· ... 
note that 6 = 1cm vt since i E V ·• Let T ·= f tv1a1 n n i•l 

+vl·v Ev' i n 

for l s: ,:I. s: k and I vi s: 6 3} be a nonempty aubaet of Z~ .There amat 

exist either a mamber of·T which is s: 68k+l 6r a iataber of T ~ 68tc+l 

(or both); these two cases are symnetrical, ao ua.-without loss of 
'~ . ' 

generali.ty that soma me,aber of T ta s: 68tc+l" Let .t.. vi a1 + v be the 
i•l . 

largest member of T which is s: 6~+l where v1 E v; for 1 s: i ~ k and 

I vi s: 6 
3

• Conaider the sequence 
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If 68tc+l is not 

of them and one 

equal to any of them, then 68tc+l is bigger than all 
k 

of them (other than E viai + v) is equivalent to 
t=l 

3 
6ak+l mod 6 • It is therefore the case that for some u: lul ~ 6~ 

k 
and _E viai 

i=l 

k 
+ v + u Fl;$ 68tc+l mod 6~ and _E v

1
a1 + v :S: 

i=l 

k 
Claim: For every t ET, t ~ E v.a1 + v + u ~ t ~ 6a.+l and 

i=l i 1.e 

k 
t :2: Ev.a. + v + u ~ t ;;,: 68tc+l • 

i=l 1 i -

k 
Proof of Claim: If _E v

1
a

1 
+ v + u = 68k+l' then the claim is trivial. 

i=l 
k k 

So asstune _E v1a1 + v + u I 68k+l" 
i=l k 

Then u I 0, and so E viai + v + u is 
k i=l 

strictly between E viai + v and 68tc+l• 
i=l 

Since i~lviai +vis the largest 

member of T s 68tc+l' we canµot have any t E T such that 

k 
E v1ai + v + u ~ t s 68tc+l; hence the Claim follows. 

i=l 

Now let y = 1cm Vn+l' Since OE V, 0 EV'. n n Therefore V' ~ V +i· n n 

Since 6
2 

= 1cm V~ and Vn+l ~ (2ele EV~}, we have 26
2 

divides y. Since 

k k 2 
8tcEn+lbk' _E v1a1 Fl;$ _E vibi mod y , and so 68tc+l RS 

i=l i=l 



-38-

k 3 
+v+u .. .tvibi +v+u-_.6 

i=l 
k 

implying that 5 div:fdea l: v1tt1 + v + u. Oeft'tte 
i•l 

k - -
( .t v1b1 + v + u)/6. We will show that 8tc+lEn~l• 
i=l 

- E cv· )lt+l. 
Let wk+l 1l' 

k+l k+l 2 
We want to $1\ow_ that __ I: w

1
a1 ,_. I; ,v

1
b

1 
mod 6 

·1-t · i •,l · 
k+l k+l 

and that .t w1ai • :E w
1
bC If _wk+l • O, then theN facta follow 

i=l 
6

2 i•l 

- - 2 . 
immediately from the fact that l\:En+l bk since Vn ~ Vn+l amt 6 dividu 

2 
y • So assmae '\+t I O. 

_ _ k k 
2 

Since l\:En+lb1t• we have .t v1a1 1=11:1 .t wl:b::l aci:"6. 'l'hua 
isl f•l 

k+l k+l 2 
that .t wi a

1 
ti¥ .t w1 b1 mod 6 , it is s-ufficil!Rt to now that 

i=l 1•1. 

2 2 
wk+l8tt+t ~ wk+t'b.it+t mod 6 • But wk+l8iri-l All "k+lbk+l mod 6 _. 

2 
k+l k+l 

~ 64k+l ~ 6bk+l mod (6/w...,.1)6 ). Hence .t w1a1 Ad I;_ w1b1 mod 
i•l · i-1 . 

k+l k+l 
Next we will,,lhov that I; wf. a1 =-

2 
I;,w..?"t• Since .v = (~ala. E V ) , 

i=l 6 i•t' :t · · n · 11 

k+l k+l k+l k+l 
and since !: w

1
a 1 - 2 1'.;.v1b1 • l;.-w1a1.•2 

..t ~lbt• w,e can aasu• wi-thout 
i=l o i•l 1=1 6 i•l- . 

loss of generality than wk+l > 0. By Leana 3 •. l tt is sufficfan-t to show 

k+l k+l _ _ . 2 .. 
that .t w 

1 
ai ~ 'd ~ .t w 

1 
b

1 
lor every d, · j d t s:: 6 • · 1'htarefore fix d, 

i=l i=l 

ldl s: 5
2

• 
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k 
<i:l (-6/wk+l)w1ai) + d(6/wk+l) E T. By the above~, we can 

k 
continue: 6~+l .!: \:

1 
(-6/wk+l)w1ai)+ d(6/wk+l) ~ 

Because 8tcEn+lbk we have 

k 

i~l (vi + (6/wk+l)wi)ai .t d(6/wk+l) 

It remains to calculate the size of bk+l. 

Iv I •3 :s:: k•Max V +l•Max (b
1

} + 2-(Max V) n • Therefore by L8Dllla 3.7, 
n lSi:S:k n 

. , .i(n+k) 

we have for some constant d, I ~+l I :s:: (1 + Max {b1})2
2 

• □ 
l:S:i:s::k 
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Corollary 3.9: For 90lle conatan~ •• Z ia H-bmmded where 

2d(n+k) 
! 

H(n,k,m) = (1 + m)2 · . 

Proof: Innediate f'.tom Leanas 2.12, 3.6 and '11\eorem 3.8. D 

Theorem 3.10: Let F be the sentence of £1, Q1x1Q2x2 ••• QnxnG(xn) where 

G is quantifieT free. '11\en for some conatant d independent of n, F 

Proof: Say that Z ia ll•bounded where 
2d(trik) 

2 
H(n,k,m) = (1 + m)2 • 

for 1 s: i s: n. Applying Lenna 2.11 to Z, we see that 

since mi~ H(n - i, i - 1, Max clmjl}) for 1 s: is: n, Fis equivalent 
l:S:j<i 

Corollm 3,11: For some constant c, TH(< z, +, s:, O >) can be 

zcn 
decided within space 2 • 

0 

Proof: By '11\eorem 1.4.2, given a sentence F of £1' convert it to an 

equivalent senten.ce Qr1Q2x2 ••• ~xn G (Xn) where G is quantifier fr•e 



-41-

and of length at most n log n where n = !Fl. Fis equivalent in Z to 

2dn+n 
(Q x , 22 ·· ) G (i° ) .for 

nn n 

some constant d (by Theorem 3.10). 

F can be decided in Z by setting aside for quantifier Qi, 1 :S': i :S': n, 

ctn+i irdn+i 
22 + 2 tape squares; every integer~ 22 in absolute value 

can be written in this space in binary. Then decide F by cycling 

through each quantifier space appropriately, all the time testing 

the truth of G on different n•tuples of integers. We let• 'the reader 

convince himself that a Turing machine implementing this outlined 

2
cn 

procedure need use only 2 tape squares for some constant c. □ 

Theorem 3.12: For some constant c', any nondeterministic Turing 
. I 

2c n 
machine which recognizes TH(Z, +, :S:, 0) requires time 2 on 

some sentence of length n, for infinitely many n EN. 

See Fischer and Rabin [FiR74] for a proof of Theorem 3.12. Their 

proof uses the method described in Chapter 1, and hmce, for the 

reasons described in Chapter 1, the upper bomid of Corollary 3.11 matches 

the lower bound of Theorem 3.12 reasonably well. 

Definition: Let R be the structure ~, +, :;;, 0:--where R is the set of 

real numbers and+ and :S: are the usual real addition and order. 

As above, the upper bound for TH(R) in Theorem 3.13 is close to 

the lower bound of Theorem 3.14. 
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Theorem 3.13: For ecae canst.ant c-. TH(R) can be decicled 111 apace 2cn.. 

The proof appears ta Ferraat:e and llackoff [P'R14 }.. Although part of 

their proof uaea q,._t:ifier elimiDaticm., it could be Tewritten to follow 

the E-game foauc: UMC1 abc,ve w:U:baut loaa of efficieacy. 

'11leorem 3.14: Fer eoae enatant c 1 , my noncietarlllUliatic Turing m•chine 

' ··C1"A ,· . · . 
which recopisea TH(R) ~trea time 2 on w ••tence of length n, 

for inftni.tiely ~ n.. 
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Section 4; Copmlexity of E-Game Decisiop Pt;g<;ed~!P• 

We have mentioned that an E•game procedure for deciding 'l'H(8) is 

one which proceeds by definillg relations E and proving that the n 

conditions of Lemma 2.12 or 2.12' hold. It is then necessary, in 

order to decide a sentence with n quantifiers, to·be able to write 

down for every i between O and n representations of all the E1 

equivalence classes on g11•i; this is what ie really going on in 

LE!IIIIla 2. 11 and the examples of the previous aectiol:l., Ch-.pters 3 and 4 

contain further applications of these iaae. 

It is not enough only to be able to write··dcMl for every n, k E N 

k representations of all the E equivaleDCe •olueea .. OD S , .but this is. n 

certainly a neceaeary part of an E•game deci■tou ,pr,ooe4ure. Recalling 

that the B classes are at , least as maeroua as the = classes (because 
n n 

of Lenma 2.12), we see that if an E•game·procedure (as we have described 

them) is to be elementary recursive, it is necessary that M(n,k) be 

bounded above by an elementary recursive function. 

Now the only other method we know about for obtaining elementary 

recursive decision procedures is elimination of quantifiers, and we have 

stated above that in all known cases a quantifier elindnation procedure 

can be transformed into an E•game procedure without sacrificil1$ (if it was 

there ~n the fir~t place) elementary recursiveness. What this means is 

that in order fpr a logical theory to b~ elementary recursively decidable 

by ~Q,1fD •thods, it is necessaey ;or M(n,k) to be bo~ded above by an 

elementary recursive function. '11iis raises the follcn,d,ng i1;11portant 
: "'.' 

conjecture. 
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Conjecture 4.1: If TH(3) bu an el.-ntary recuraive decleten 

procedure, the M(n,.k) ia bound~ above by an el~~aryrecuraive 

functiOQ.. 

Although Cooject:ure 4.11a open, its con;v~rse ia definitely false. 

For the purpose of t:taia CGaDCer-...ple, let .I be the l..mguage of 

the firat order predicate CJ&tc.lua wtJth the fdmal llfNd:laat:ea '::111 • v.2 

and v1 ~ v.2 ("f'1 la 911Utvalen' to v 2) ad tile eou-..,1~ :0 (·although 

the conltant: ·syml,ol :l•"t s-ea.Hy •---y). ~-

For every na ■pt-y ce-t A of :poelti"N mteaer1 · let A 'be m 

equivalence relatiOll cm N nch that for-everJ;peaittve integer i 

1) ,if i E A then there ia ~atCtly one A tq¢.valence ~l!UI• of aise i. 

and 

2) if i f A then there are no eq:qivalence c~.aa••• of aise i. 

Define the 1tx,,cture SA • < N, •, ~• O >. 
·. A 

For any i E N+ ~ there ia a sentence Fi which can· be obtaf.ii.ed lt'l · 

time polynomial in i which aaya that there 1.- an equlvalence claaa o'f 

size exactly i. Therefore, if TH(3A) can be decided within ~ta t(n), 

then A can be decided within time g(P(~)) + P(n} for iame polynond.al p. 

Since we can make A arbitrarily hard to· dec:lcla or at'bttrard:,- ~ecuraive, 

we can make TH(SA) arbitrarily hard to d~tde ar arbitrarily notirecur1ive. 

Now let A be a fixed set of positive integers and consider M(n,k) 
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for gA; we will show that (no matter what A is) M(n,k) is bounded above 

by an elementary recursive function, contradicting the converse of 

Conjecture 4.1. 

- k - -For each 8tc• bk EN define 8k En bk iff for all i,j such that 

1 ~i,j ~ k, 

II) ai A aj ~ bi A bj, and ai = aj ~bi= bj. 

and 

III) (a EN I aA ai} = (b EN I b A bi}. It is not difficult to prove 
n+k 

Lemma 4.2 using Lennna 2.12'. 

Lemma 4.2: 

k Since the number of E equivalence classes on N n 

is bounded above by an elementary recursive function (of n and k), 

2c(n+k) 
namely 2 , M(n,k) for gA is bounded above by the same function. 
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Chapter 3: W.ak Direc.t Powers 

Section 1: Weak Direct Power• and Ebrmfeucbt Gw 

Let l, be a language of the firat order predicate calculus with a 

finite number of predicate aymbols !1' ! 2, ••• ,!t such that~ ia-a t 1 

place formal predicate for 1 s: i :s: J, and with a coaetat ayabol :!~ 

Definition 111: Let 8 = < S, a1 , iz, ... , it, e > 'be a structure for l.. 

For all a E S, 11 al I is the norm of a. . The DH direct e,r of 3 

is the structure g* • < s*~ i~, a;, ... , R:, •* > ..... 

s* = ( f: N ➔ s I f(i) ,I, e for only finitely aany J. E NJ; 

for 1 :s: j :So •., if 1.. E 1s*)tj • c'-- -t E 0 * "ff 1 (i) E O 
1:. 11 IIJ ... '-I ._ tt ·· "'.j , ,. t "'j ,.;Or a 

j j j 

i EN (where 1t (i) abbreviates (f1(i), £2(1), ••• , ft (i)) ); 
j j 

* e (i) = e for all i EN. 

* * For a norm an 3 we define, for f E S , 

I 1£1 I = Max((i EN I f(i) ~ e} u rllf(i)I I 11 EN)). By f < m we will 

mean 11 f 11 s: m. 
Mostonki [Mos52] and Feferman and Vaught [P'V59] both show that 

* TH(8) decidable = '1'11(8 ) decidable. Bawever, their proofs are such that 

* in every caae, the decision procedure for TR(8) obtained ia not elementary 

recursive. In this aection we will preaent some general theOt'- which 

will allow ua to derive stgnificmtly -,re effic.imt decision procedures for 
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* * Til(g ) in many cases, and in particular to obtain a procedure for Til(Z ) 

(where Z is the structure of integer addition defined in Chapter 2) 

which closely matches the known lower bound. In Chapter 4 we prove 

even more general theorems which give a condition under which we can 
* . 

conclude '111(8) elementary recursive if 'l'H(S) is elementary recursive. 

Now let H: N3 ➔ N be such that 3 is H•bounded. · Let M(n,k) be the 

function as defined for g in Chapter 2. definition 2.2.s. 

Definition 1.2: 2 Define the function µ: N ➔ N by setting µ(O,k) = 1 
n 

and µ(n + 1, k) = M(n, k + l)•µ(n, k + 1). Hence µ(n,k) = Il M(n - i, k + i). 
i•l 

* 3 * Definition 1.3: Define H: lr ➔ N by H (n,k,m) • 

Max {H(n,k,m),m + µ(n + 1, k), I lellJ. 

* * '11le major theorem of this section will shaw .that i3 is H •boU11ded. 

We now prove a combinatorial 1811111&. = is defined in Definition 2.3.2. n 

Leana 1.4: + Let N1 and N2 be sets and let n, m E N such that 

Let.A
1

, A2 , ••• , An be a sequence of (possibly empty) pairwise 

n 
disjoint subsets of N1 such that U Ai• N1• 

i=l 

I!!!!!, there e~ists a sequence B
1

, B2, ••• , Bn of pairwise disjoint 

n 
subsets of N2 such that U Bi• N2 and such that Ai; B1 for 1 sis n. 

i=l 



Proof: If IN1! '"' lv21 then the Lemma is obvious. Assume ·IN11 :! n•m 

and IN_2 1 ~ n•m. For some 1, 1 :s; i s n, we must have IA:r._1 ·.ii: m,_ so auume 

without loss of generality that IA11 ~ m. 

Clearly ; P1 s: (n - l)m = n•m- in.,. Since IN2l ;i\,..m. th~"ll'd:fftt .::: 
i-=2 

sequence of pairwise disjoint subsets of N21 namely B2' B3, ••• , Bn* · 

such that I Bi j = pi for 2 :s; i s n. So Ai i; Bi fc 2 s;; i ·:s.; G,: \et' 
. . 

n n 
B1 = N2 • U Bi. IN2 1 ~ n•m and U B1 s n•m - m, so IB1 1 ~ m. Since 

1=2 i=2 

I A1 I :i!:, m, A1 ; B1• D 

For every n, k EN, define the Ehrenfeucht relation ii on both 

k *k S and (S) as in Chapter 2, Definition 2.2.1. 

➔ k I 1. ➔ I ➔ ➔ iff for all~ ES, (i EN k(i) ~ 8tt} = (i EN stt(i) ~ 8k}• 
µ(n,k) 
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Proof: Say that fk E0 stc• We wish to show that for every quantifier 

- * - * -free formula F('1<), g ~ F(~) ~ g ~ F(gk). It is clearly sufficient 

to prove this for the case where Fis atomic. By syumetry, it is 

- * - . * sufficient to show that F(~) false in g ~ F(8tc) false in 8. 

. - * Thus assume that F(fk) is false in 3 • By definition of the 

* -relations of g we can choose i 0 E N such that F(fk(i0)) is false in &. 

{i EN I 8tc(i) 0 fk(i0)}. Since µ(O, k) = 1, we have 

- * So F(~) is false in & • D 

·- - * k - -Leana 1. 7: Let n, k E N and ~, ~ E (S ) such that ~ En+l gk. Then 

* * for each fk+l ES there exists some ~l ES such that 

and 
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Proof: - - . *k - ~ Let~, 3k E (S) be such that fk En+l 3t• Let 

11 11 * . -1 -a .:ttea. k+l) 
m = Max ( gi } and let ~l E S • Let .bk+l' ~ 1 , ••• , hi+i 

l:S:iS!t 

be a sequence of reprMtatativetJ of all the: equ1v.altlDfM clu•• on 

k+l * S • Our goal is to fiad ~t ES such thac if 1 :e. j s M(n, k+l), then 

(i EN 11k+1(i) ; ~ 1} • (i EN I iie,.:1(:l): ~ 1}; w alao wnt 
µ(n,k+l) 

11 gk+1 I I :s: H* (n,k,m}. Instead of definiug 8k+i liiaultmeoualy Ol1 all of •• 

we will define it separately 011 various pieca of R. 

for all j, 1 :s: j :s: M(n,k+l). 

and 

III) If 1 E N2(8k) and i :s: m + µ(n + 1,k), then I l'k+,
1 

(1) 11 s: H(n,k,m). 

* * An examination of the definitions of H and the norm on S will ab.ow 
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that II) and III) together imply I ,~JI I~ u*cn,k,m). Since 

· (N1 (8k) I ~ E s1) and (N2(a"J ~ E Sk} are each a collection of 

disjoint aets, it is easy to see from I) and the definition of 

• that if 1 s j S M(n,k+l) then 
µ(n,k+l) 

- k So now ~et 8k E . S be . fixed for the rest.· of; ~his proof.· . Abbreviate 

i E N2 ~d i > m +. µ(n+l, k); this guarantees II) above. • It J;"emaina to de-

. fine &ic+l on N3 '"' { i E N2 I i s m + µ(n + 1, k)} • 

The definition· of En+l implies that N1 • N2• We now 
µ(n+l;k) 

demonstrate that.N
1 

• N3 : if~ == ek then N
1 

is an infinite set, 
µ(n+l,k) n+l . .. 

and IN
3

1 ~ µ(n + l,k) since 8k_(i) = ek form< ism~ µ(n + _1,k); if 

So N • N • 
1 µ(n+l,k) 3 

Define, for 1 s j s M(n,k+l), Aj • ( i E 1'1 1 ~l(i) : ~+11 • 
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A1 , A2 , ••• , ~(u,:lc+l) form a aequance of pal.rwise diajomt set• whose 

union :1:s N1• · 'S1.1lce 111.:. == 'N3 and µtn +:. lfk} • iM(~k + l)'•µ(n,. 4' 1'°' 1)~ 
--:i µ(n+l,k) · · · 

pairwiae diajofat subaeu of N3 -vhoee union itl N
3 

,auch · tut 

A. = . B j if 1 :;; j s M(n, k + 1). 
J µ(n,k+l) · 

Now let i E 113; we want to deftne ~l Gil i. Let j be IJuch that 

=~ * gk+l (i) n bk+r Thus, we have defined 8k+l E S 80 t:ha-t for 

1 s j SM(n,k+l), 

(i E N3 I 1it+1<'i) = bt11 = Bj == Aj == (i E Nl I ~l(i) e ~1}. 
n . . µ(n,k+l) . . n 

To complete the proof of Lelllna 1.7, we must show I), i.e., 
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So fix j, 1 :s:: j :S:: M(n, k + 1). If 

i N3 = (i E N2 I i :s:: m + µ(n + 1, k)), there mus~ exist some i > m + µ(n + 1, k) 

- -j 
such that i E N2 (hence gk(i) = 8tc) and Btt+l(i): bk+l" But since 

n+l 

- k+l k 
i > m + µ(n + 1, k) implies 81t-t-iCi) = e , this means that 8k n+l e 

d -bj = k+l 
an k+l n e • Hence, both Aj and ( i E N2 

0 

* * Theorem 1. 8: S is H -bounded. Al so, for every n, k E N and 

Proof: This follows inmediately from Lemus 2.2.12, 1.6, and 1. 7. 0 



Section 2: . Appl:LcaUons 

We now ,pr.-ent :seme .applicattmu, of the 111&tertal ·t~ Section 1. 

Let .c1 be the .. 1~ of Chapter 2. 

Let Z = < z, +, s, ·o > be' the st~ucture of l~hapter 2 ··and J:et 

a E z let J lal I = tal and, followtug Defi11iti.on 1.:1, for f E z* let 

11 £11 = Max (£i EN I f(i) 4 O} u f lf(i)I Ii E NJ). 

2e(n+k) 

Lemma 2.1: * 2 'theTi! ex:iats a constant e '·such that Z is (1 + m) • 2 -bounded. 

2d(n+k) 

Proof: By Corollary ,2.:3.9, Z is H....unded where H(n,k,m) = (1 + m)•i 

for some constant :d. We ·now calculate bounds for the fu.nc.tion M(n,k) for Z. 

2d(n+k)+i 
2 

Letting mi = 2 fbr 1 s · i :S: k, ·"We ·,see ~that 

mi :i!: H(n + k - i, i ·- 1, Max ( ~mj I}) ·for 1 :S:. i ~ k. 'So by :LelliDa '2 ... 2.13, 
1:S:j~i 

1h1 1 :S: mi for 1 :S: is: k. Renee, since mis 11\t' we certainly have 

2d(n+k)+k 

M(n,k) :S: (2•22 + l)k. 

n 2d'(n+k) 

So µ(n,k) = Il M(n - i, k + .1) :S: 22 

i=l 

for some constant d'. 

* So for some constant ·e, H (n,k,m) = MaxfH(n,k,m), m + µ(il + 1, k), 01 :S: 

(1 + m) • 22 
2e(n+k) 
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2e•(n+k) 
Z* . 2 By Theorem 1.8, is (1 + m)·2 -bounded. □ 

is quantifier free. Then for some constant e independent of n, Fis 

2en+l 2en+2 2en+n 
* 2 2 2 equivalent in Z to (Q1x1 < 2 )(Q2x2 < 2 ) ••. (Qnxn < 2 )G(xn). 

Proof: Theorem 2.2 follows from Lenna 2.1 exactly as Theorem 2.3.10 

follows from Corollary 2.3.9. 

* 

□ 

Corollary 2.3: For some constant c, TII(< z, +, s:, 0 >) can be decided 

within space 2
2 2

cn 

Proof: By Theorem 1.4. 2 it is suff'icient to consider the sentence F of 

quantifier free and of length at most n log n. 

By Theorem 2.2, Fis equivalent to 

2en+l 2en+2 

(Qlxl < 22 )(Q2~ < 22 ) ... 
2en-+n 

(Q x < 22 
)Gc'i ) for some 

11 n , n 

constant e. 
2en+i 2en+i 

* < . 2 •22 Now if f E Z and f 2 . , then f (j ) == O for j ;:>· 

2en+i 2en+i 

lf(j)I s: 22 
for all j EN, so the first 22 successive values 
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en+t aen+i 
of f can be repreNnted on a tape with roughly (22 + 2) • 2

2 
, 

tape aquarea. So a procedure like the one outliued in Corollary 2.3.11 

CD 
* 22 

would decide TH{Z ) in space 2 ,for 80llle con•tant c. 

111 * * Defiq.it!On 2,4: Let N be the structure :< N ,: +. s: • 0 >, i. e, the 
; 

weak direct power of the nonnegative integers (under+ ands::). 

* Regiark 2. 5: The structure < N , + > ta iaoinorphtc'- to the structure 

< N+, • > (i.e., the positive integer• under a1ltiplicatiC1111). So an 
:.· . 

* + upper bound on the complexity of TH(N ) is an upper bound on TH( < N , • >). 

2cn 

Corollary 2.6: 'nt(N*) can be decid~ in space 2
2 

for some constant c. 

Proof: Since x ~Ota a formula of.\\, it is easy to see that 

* * TH(N) s:pt TH(Z ). So CarollaTy 2.6 follows from Lemma 1.3.2. D 

The upper bound of Corollary•2.3 and Corollary 2.6 

matches the lower bound of 'lbeorem 2.7 reaaonably well. 

Theorg 2. 7 : (Fischer and Rabin [FU\74].) For soae constant c' > 0, any 

* * nondeterministic Turing machine which recognizes 'm(Z ) (or TH(N ) ) 
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C 1n 
i2 requires time 2 on some sentence of length n, for infinitely many n. 

Our next goal is to present a decision procedure for the first order 

t theory of finite abelian groups; this theory was originally shown to be 

decidable (see [Szm55], [ELTT65 ]) by a less efficient procedure than ours. 

* Our approach will be to show that this theory is~ L TH(N) and conclude 
P, 

Theorem 2.8: The first order theory of finite abelian groups can be 

2cn 

decided within space 22 for some constant c. 

There is still a significant gap between the upper bound of Theorem 

2.8 and the known lower bound of Theorem 2.9. 

Theorem 2.9 (Fischer and Rabin [FiR74]): For some constant c' > O, 

any nondeterministic Turing machine which recognizes the theory of 

c'n 2 . 
finite abelian groups requires time 2 on some sentence of length n, 

for infinitely many n. 

The language of groups, t 2, merely contains the formal predicate 

v1 + v2 = v3• We are interested in deciding .which eeetances ,of Z2 are 

· true of every finite abelian group. Recall that every finite abelian 

t This t~pic is also discussed in Chapter 4 from a slightly different 
viewpoint. 
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group (hence·forth .abbteviated FJC) ta i~tc to a finite direct 

product of finite cyclic groups [MB68]. For i a poaitive integer, 

let z1 denote the cyclic group (0, 1, •• ~, i - 1) where addition 1a 

performed mod i. The basic idea of the •bedding (due to Michael .J. 

* Fischer {Fis73]) ia to think of every nonaero f EN aa repreeenting 

an F .M;, G f. Thie ia made precise in tlle followi11g defini.tion. 

Definition 2.10: Let £EN*, f• o*. Define~- l(iEN I f(i) ,Jo}I. 

,, 
mf(j) = the j

th 
wllut ran't' of (i EN, I f(i) ,JO} for 1 s: j s: "t• 

' ' * * Clearly every FA{; ia uomorpbic to Gf for aonm f E N , f ,I O • 

* * Definition 2.11: Let £, g E N , f ,J O , be such that for all i E N 

a) f(i) = 0 = g(i) = 0 

and 

b) f(i) > 0 • 0 <J. g(i) < :f~i). 

* * Clearly for each f .J. O , every INBlber of Gf is c-.-pr-.-ented by a unf.4,ue g E N • 

We now describe acae properties defiaable i:tt_ 1'1 by for--1,ae 

* interpreted over N. 
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1) ONE(x). * For f E N , <!iE(f) will hold iff for. some 

i EN, f(i) = 1 and for every j ~ i, f(j); O. ONE(x) is equivalent to 

* * * . x ~ 0 A Yx'((O ~ x' Ax' Sx) ➔ (x' = 0 V x' = x)). 

iff ONE(F1) and 

and f 2 represents a member of Gf • MEM(x1,x2) is equivalent to 
1 

* hold if£ £1 ~ 0 and £2,£3,f4 represent members of Gf and the member 
1 
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represented by f 4 ia the sua iJl. G f of the llllllben repru•ted by f 
2 1 

(x' + x' = x' V x' + x• * x' + x'}] 2 3 4 2 3 4 1 • 

Proof of Theor• 2.8: Using formulas defining MBM and PWS and the fact that 

* * . . 
£ E N represents a FM; if 8DCl only if f -,,. 0 , w obta:l:a a procedure which 

operates in polynOlllial time and linear ■pace which ta1IM a· ••tence F of 

.t2 to a sentence F' of J\, •uch that F· is crua of every 

* * FAG~ F' E TH(N ). So TH(FAG) s:p.t TR(N ;) .. 'J.'heoc- 2 .. 8 ,dlK~ fNlow• 

from Corollary 2.6 and Lesaa 1.3.2. D 
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Chapter 4: ,S9!!! General Results about Shs C99lex1tx; of Db;:eet Products 
'• ••, • ' •.s ,• • C 

Section 1: Introduction. 

* Let t., S, and S be defined as in Chapters 2 and 3, and let M(n,k) 

be defined for gas in Definition 1.2.5. 

Theorem l,l: If m(3) is elementary r~'IU'sive and~~ M(n,lt) is bounded 
' ~ ' 

* above .by an elementary recursivef\.mCti0111 tben nt(S) is elementary 

recursive. 

Theorem 1.lcan be proven by mod:Lfyn,,g eitber-,Moatowa\c$~• or Feferman and 

* Vaught:'s decisi011 procedure for TH(S), [t:tos52:,FVS9h, but 1'8 present a 

different approach in Section 2 and prove,there a,-,qua.-titative version 

of Theorem 1.1. In Section l we present eome sillitar·· results for other 

notions of direct products (besides weak direct powers). 

'l'he converse to Theorem 1.1 1s false. 

COUD.terexanple to the Coaverae to Theorem i~l, 

· Let I, be the language used in the coui,.terepmple. izo: Conjecture 2.4.1. 

+ For every nonempty set A r;;; N define SA as in Chapter 2 to be 

< N, =, A' 0 >. As in Chapter 2, by varying A we can make SA arbitrarily 

hard to decide. Let A be a fixed set such that 1 ~ A, i.e., there are no 

A equivalence classes of size 1. 

* Claim: SA consists of an infinite collection of infinite equivalence classes. 
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Proof of Claim: Since 0 is not in an equivalflnCe clan of size 1, there 

exists some number, say 1, such that 1 AO. Since A-/: f, there exists 

some finite A class, and hence at least· two A classes. So there 

exists some number, say 2, such that it is!!!?!, true that 2 AO. 

* Thinking of every member of N as an infinite sequence of members 

of N, we see that the strings 0,0,0, ••• ; 2,0,0, ••• ; 2,2.0,0 • .:. ; ••• 

. * g*L form an infinite.set of pairwise inequivalent 11M111'bers of 11. So A·uaa 

an infinite number of equivalence classes. 

* Let y,O,O, ••• be any member of N , wba-e y is a finite •equence of 

infinite set of elements eciuivalent to y,o.o,... . So each equivalence 

* class of 3A is inftntte, prori.ng the claim. D 

From the above claim;' it is not hard to ... that a sentence of I. 

* with n quantifiers will be true in SA iff it is true in a domain of 

2 
size n consisting of exactly a equivalence c~ee of. size n., Therefore, 

* TH(3A) can be decided in polynomial space, even t~h TH(3-A) 111aJ be 

arbitrarily difficult to decide. 

t and Lemna 2.4.2 •. 
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Section 2: C0111J>lexity of Weak Direct Powers. 

Our goal in this chapter is to prov.e Theorem 1 •. 1; actually, we 

shall prove a quantitative version of Theorem 1.1, which relates the 

* complexity of TH(8-) to the complexity of TII(3) and-M(n,k). 

To begin with, let 3 = < S, R1, ••• , Rt, e > be a structure as before 

and let t,. be the corres~ing first. or.der; loana,Je. 3 and l, are fixed 

for the rest.of this chapter. Let~ be defiud on·Sk for each n, k EN 

as in Chapter 2, Definition 2.2.1. Let C k be the set of equivalence n, . k , .· 
classes det~rmined by~ on S · and let M(n,k) = lcn,kl as before. For 

- k - -8tc ES, let (8tc]n be the equivalence class of 8tt determined by:· 

- k -By Lemma 2.2.6, for every~ Es there,is a formula F(Xic_) defining 

[8tc]n. What we are now interested in is how much time is needed, as a 

function of n and k, to write down all such formulas. 

Remark: Here is the motivation behind what we will be doing. Using a 

decision procedure for TII(3) we will obtain (efficient) representations 

of the members of C k" This will allow us to use results of Chapter 3 n, 
. *k 

to obtain efficient representations of the s cl-asses on (S ) • We will n 

* then decide the truth of sentences in g by limiting quantifiers to 

range over appropriate sets of these representations. 

Definition 2, 1: We will define for every n, k E 1' a collec-tton of 

formulas, :1n,k' such that in every member of Sin,k exactly xl'x2, ••• , -~ 

occur freely. Firstly, for every k E N define 
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6k = {F(~) F ia an atc.ic formula}; for every W !:: ek 

define F O k w<~) t:o be the fcmmla ( /\ F) /\ ( f\ ➔); 4eftM 
' ' FEW FE6k -W 

Assuming "n;k+l b'a:8- hen· d'eft.ned aucb ~- 111 wery mellber exactly 

x1,x2 , ••• , ~l occur freely, we DOW define :Jn+t,k· For •very W ~ :,n.,k+l 

define F~l,k,W(~) to be the formula cA a!~lF) A ( " ~ ~lF) • 
. r.&r ·• . rs;n,k+l-W 

Lemaa 2.2: Let n,k E ». Thtm 

(A~ sk I some member of,. k define• A} • C k• Furthel"IIIOre, every n, n, 

taember: of cn,k 1• defined by a unique 1l8IDber of "n,.k· 

Proof: Lena& 2.2 fo.tla.. iDDecliately frqm the proof of l.Allpa 2.2.6. D 

We next wish to calc.ulate bow long it ~ aa a funct:LQD of n ~d k 

for a Turing machine to write down the set,. k on its tape when n, 

implementing Definition 2.1. In order fo% a Turing .machine t.o _do this 

at all it 1• BeCeu.-ry that TH(3) be dcj..dable, ao for the rest of this 

section aasume that there is some dec•ision procedure for 'rn(S) which 

t Every FE:, k is considered to implicitly contain the annotation n, 
xl, ~• •• •' ~• 
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opet"ates within time T1(n). In order to simplify the calculations 

to follow, instead of working with the function Ti(n) we will use instead some non­

decreasing function T1 (n) 2 Max (T1 (n), 2n}. It will si1Dilarly 

make things simpler below if we define the function 

T2 (n) = Max({M(n - k, k) IO :s: k ~ n} U {n}).t The reader may 

note that at many places in the calculations below •· ,make grose over­

estimates. This is because we are ultimately interested in the amount 

of nesting of exponentials in the complexity of our decision 

procedures, and our over-estimates do not affect this, whereas they do 

have the advantage of shortening the expressions we obtain. 

We first define L(n,k) to be the length of the longest formula of 

the form F k w· n, , 

To calculate L(O,k), note thd (aa in the proof of Lema 2.2.6) 

" jekl • ·:2; (k + 1/i (where~ is a ti•place r.lation for 1 :s: i :s: .t). 
i=l 

Ask increases, the length of the longest member of 6k will increase since 

longer subscripts of formal variables will have to be written; however, 

for every k 2 0 the length of the longest member of 6k will be :s: c1• (k+l) for 

some constant c1 independent of k. Everything of the form ~O k W loc,ks , , 

like a concatenation of the members of 5it, With some additional logic,al 

symbols, and is of length :s: twice the· length of theic_oncatenation of the 

members of E\• That is, 

tit is easy to see that T
2 

is nondecreasing. 
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of k. 

Everything of the form Fn+l,k,W looks like a concatenation of the 

membe:n of 3i'
11

tk+l' with aasae additional symbol■; for some ccmstant c3 

of the members of 3i' k+l" That is., n, 

C 

L(O,k) :s;; (k + 2) 2 and T2 (n + k) :t n + k we can ca_lculata •t 
c4(n+l) 

L(n,k)s(Max(T
2

(a-+k),2)). · for . .,,.,.-.. EN .aad fOl'-SOIM conatant c4 • 

Now define T(n,k) to 1,e the time wh:I..Qh a, Tur,1ag machiue i;mp1ementi.pg 

Definition 2.1 takea to write down :J k on its tape. We first calculate n, 

an upper bound on 'l'(n + 1, k) in terms of T(n, k + 1). 

To compute s;n+l.k we begin by computing "n,k+l ~~hin tiae T(n,k+l). 

We next write down beeid~ :Jn,le+l on the ta1e the_aet {Fn+l,k,W I W ~ :Jn,k+l}~ 

Then for each W ~- !Jn,k+l we write dows:t,• tt.-.--lt,nee 

3:x1!ilx2 • •. !ii~ 'm-t,k,W' ad ~bea,"UB• •om" decl•iolt. ,roc:edµre for 

m(S) to decide for each W i;;; "n,k+l if 3 I- :B:;3:x2 •• ~ !~ rn+l,k,w· 
. -· 

We lastly consolidate all the material on the tape (i.e. erasing F~l,k,W for 
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that next to :1n,k+l we have written :1n+l,k• 

For each W ~ ,.n,k+l' we know that x1 ,x2, ..• ,~occur in 

The decision procedure for TH(g) decides whether or not 

actually in order to decide if !i!x1s:x2 ••• ![l\. Fn+l,k,W E Tll(3) and 

return the Turing machine head (which started on the leftmost S:) to 

its original position requires times; 2T
1

(3·L(n + 1, k)). · So when 

computing ,.n+l,k' the total amount of time used ;in dec.iding me111bership 

1~ I 
in TH(S) is s: 2T

1
(3•L(n + 1, k))•2 n,k+l s: 

T2 (n+k+l) 
2T1(3•L(n + 1, k))•2 • 

We lastly calculate how much time is used in CODlpUting "n+l,k 

which is not used in either computing:1ti,k+l or in deciding ·membership 

in TH(g). The total amount of space used in this way is the space on 

which '°n,k+l is written plus ~he space to write Frt+l;k,W for every 

W ~ ,.n,k+l plus the space to WTite !i!x1ix2 ••• ![Xie Fn+l,k,W for every 

l3i I 
W ~ :1 n,k+l; this is :s: (L(n, k + 1)) • f:9i n,k+l I + (L(n + 1, k)) • 2 n,k+l + 

I,. I I,. I T (n+k+l) 
(3·L(n + 1, .k))·2 n,k+l s: 2 n,k+l •S·L(n + 1, k) s: 5·2 2 ·L(n + 1, k). 



The time our Tu~tng machine uses (aside from computing "n,k+l 

or membership in TH(S)) :i.s SlMfflt: in ltaving the head go back and 

forth in this sp·ace d'oilq. t:h:e neccuary anount of c~g; the reader 

'tz(n+k+l} k)')'c_, far 
csan verify for himael't' th•t t:hia ifr s: (S•Z •t(n + 1, 

some constant c 5• t 

So the total amaun~ a:f lime•• tn CDlllplllt"tng.1n+l,1J 

T2(n+k+l) T (n+k+l) c 
= T(n + 1, k) S:· T(n, k + 1) + 2"T1(3•·L~n + :t,. k)1):""Z +,(S•2 2 • L(n+l,k)) 5 

for some eonatant c1p 

It can also be Hett< drat the time needed to write dcND:- 6k is 

. C7 
polynomial in the -,.ac:e· n•eded,, and there£•• s: (L(,O,. k.})· fa •~ 

cons t~t c1• Ob,tad.&aUifir "• ,k from 6k is cer~.,µily ffUd.<lker ·tha.at o}i)tain::Lng 

c 7 _ c 6 {k+l) c 6 
:'ll,k from '"o,l+t' so we _k.,_ T(.O,kc) s: (L(.O,.k)), + ['l\ (;(,'.lz(k +.2 )) ) ] • 

f. 

Doing some final calcutaet.ic,n• w can concl:ude tf1at 

We are u&ing the fact that we can simultaneously uae space for two 
differeut pu.:tpoaes. F~ in,atance, ,.... of the ..,..:e oa. wl\d.c:h sen.te11Cea 
are written dawn is alao u•ed fer 4ecidiag truth of sentences i'tt 3-. 
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T(n, k) s: [T
1

((T
2

(n + k +2))c(n+k+l))Jc for some cons;,antc and all 

n,k EN. 

Lemma 2.3: For some constant c, there is a procedure which given n, 

writes down the sequence ';JO , ';Jl n-l' ••• , ';J O within time ,n , . n, 

. c(n+l). c . .. · . . c(n+l) 
[T 

1 
((T 

2 
(n + 2 ) ) ')] ; the ,length of this sequence !s s: (T2 (n + 2 ) ) • 

Proof: When we were calculating above the time to write down~ 0 , we n, 

were calculating as well the time to write down the sequence 

':JO ' ';Jl 1' ,n ,n- ... , ';j O. n, The length of the sequence is 

s: (n + l)(T
2

(n))•L(n,O) s: (T
2

(n +2 ))c(n+l) for some constant c. D 

Remark 2.4: Note that every member of ';J O must be a true sentence and n, 

hence define the set whose sole member is the empty set. Therefore, 

Lermna 2.2 implies that M(n,O) = l';J 0 1 = 1. n, 

Definition 2.5: For every n, k EN, let Fn,k be that member of :Jin,k 

k 
which defines [e Jri. That is, Fn,k is the un:tque··lleJllber of :1-'n,k such 

k k 
that 8 I- Fn,k(,! ) (where F(!, ) is the formula (o-f .C.). 

obtained by replacing free occurrences of xi by !., for 1 :s: i s: k.) 
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Lenna 2.6: Fer aome constant c there ia a J'l'OCedtire which ii"Mn n, wr·itea 

down the sequence 

,.0 ' "1 l' ,n ,n- ••• -t ,- o• Fo , Fl l' ••• , F O within time n, ,n ,n- n, 

l"t'oof: First compute the aequence "o.»• :,1,_.1 , ••"• Scn,O u in 1.eau 2.3. 

Then for each k, 0 ~ k ~ n, and for each P E ,. k. k' write out the formula n•, 

k F(.!, ) ; each of thue formula will be of length ~ L(n,O) and there are at 

most (t2 (n)) • (~ + 1) of them. Then uae the dee la ion procedure for g to 

decide each of the aentenc:u F~k), and then conaoli'date the information 

on the tape •. 

The time und in deciding each aentence F~k) (and retunat.11g the head) 

is ~ 2T1 (L(n,O)), eo tbe total time used in deciding tru.th of aentencea in 

so the time to write down "o , 'Si ,n l,n•l' ... , S plua die ti• 118ed n,O 

in deciding truth of -.tiences is :.1: 

Lenna 2.3. As in tha,proof of Leilaa 2.l, the re aWJta t'tae uaed ta 



-71-

F( k) itt which is.,.,. 2(T
2

(n +2))c(n+l). sentences £ are wr en, ~ 

L(n,O) s: (T
2

(n +2 ))c(n+l) and so we calculate that for some other 

constant c, the sequence :'fO,n' :'fl,n-l' ••• , :'fn,O' FO,n' _Fl,n-l' ••·, Fn,O 

can be computed within time [T
1

((T
2

(n +2))c(n+l))]c and its length is 

Definition 2. 7: For all n, k EN and every FE~ k' define W(F) n, 

to be the set such that F = Fn,k,W(F)• 

Remark 2.8: If n,k EN and FE ~n+l,k and F' E ~n,k+l and 8k E Sk 

such that 8.., F(~), then 

F' E W(F) ~ for some 8tc+l ES, 3 ~ F'(~+l). 

* . * * a* We are now ready to consider the structure 8 =·< S, R1, ••• , ~t' e > 

as defined in Chapter 3. For each n,k EN let 5 be defined on sk and on 
n 

(s*)k as in Chapter 2 and let E be defined on (S*)k as in definition 
n 

3.1.5 and let µ(n,k) be defined as in definition 3.1.2. 

Definition 2.9: For each n,k EN, define 

~* = {V: N ➔ ~ kl for all but finitely many i EN, V (i) = n,k n, F k} • n, 
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For every V Eis.* k~ define I Iv! I = Min (i ENI for all j 2 i, V(j) = F k} n. n, 

= the norm of V. 
- . * k Por every fk E (S}, let V £ be the tmi•ue member 

n. k 

of :1:,k such that l\,..\ (1) defines £\{Olzi for all i E N. 

Remark 2.10: * - * k For every VE '°n,k there exis.ts some fk E (S) auch that 

V = V - • 
n,fk 

Lemma 2.11: 

Also m,te that if 1t = O, we have l:1 0 1 = 1 and so n, 

* k Let n,Jr E N and f_ ,st. E (S ) such that V -£ • V - • 
7c -lt n, k n,8tc 

Proof: If V -£ = V - then for every i EN, [fk(i) ln = [i. (i) ]n, 
n, k n,,gk -k 

D 

Definition 2.12: * Let n, k EN and VE :1n,k and let F(~) be a formula 

of q-depth ~ n. - * k Let fk E (S) be such that V = V -f. Then we say 
n, k 

* -V I- F iff 3 I- F(fk). By Lenma 2.11, this notation is well defined. 

Remark 2.13: * If n E N and V E :1 0 and F is a sentence of q-depth ~ n, n, 
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Definition 2.14: * * Let n,k EN. Define the map EX: :Y.n+l,k ➔ J.>(:1n~k+l) 

(where EX stands for extension and P(A) is the set, of subsets of A) as 

* * follows: If VE ~n+l,k and V' E ~n,k+l' then V' E EX(V) iff 
,;,··., 

a) for each i EN, V'(i) E W(V(i)). 

and 

b) I Iv' 11 s: I lvl I + µ(n + k + 1, O). 

Lemma 2.15: Let F(~1) be a formula of q-depth s: n and let 

* V E ~n+l,k" 

Proof of 4= = . 
- * k Say that V is Vn+l_,-fk where fk E (_S ) , and that V'. is V -

n,gk+l 

* k+l where gk+l E (S) and say that V - E EX(Vn+l f) and 
n,gk+l ·· , · ' k 

V - ~ F(x. .
1

) where q-depth (F) s: n. 
n,gk+l k+ 

Let i EN. We have Vn+l f (i) defines [fk(il\.+1 and V - (i) 
'k . n,gk+l 

defines [Sic+1(i)]n and V - (i) E W(Vn+l f (i)) •. By Remark 2.8 we 
n,gk+l ' k 

So V' = V -f and V' r F(i.+1). By Definition 2.12 
n,. k+l k 
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'vn+l,£k I- ~lF(~). 

Proof .of.~ : 
' * -

Say that VE :1n+l,k euch that V I- ~ 1F(~1) where q•depth (F) :s: n. 

k . . - *k 
For i :.?: I lvl I, V(i} defines [e ]n+l" Therefore there exists fk E (S ) 

such that ~(i) = ek for i ~ I !vi I and such that V(i) defines [~(i) ]n+l 

for i EN. So V - vn+l f. 
, k 

* - * Since 3 t- ~ 1F(~, ~ 1), we ca find f E S such that 

* - - -g I- F(fk,f). fk En+l ~, ao the proof of I.-a 3.1.7 ahon that we 

* - -can find ~l E S such that ~flt,£) En ~l and auch that t....1(1) • e. 

when.ever i .?: I lvn+l £ 11 + µ(n + 1, k). By Lea& 3. 1.8, 
, k 

V - has norm 
n,~+l , 

s: I lvn+l,fkl I + µ(n + 1,k) ~ I lv.+1,7il I + µ(n + k .+ 1,0), and 

clearly vu,~l: I- F(~1). For each i EN, Vn+l,fk~i) defines 

[fk(i) ln+l and v-n,~l defines [fk+l (1) ]
11 

implying (by Remark 2.8) 

that V f_. (i) E W(V-...1..l f_ (i}}. So V -f E EX(Vn+l i._)• 
n,7'+1 -. •-ic . n, k+l , . ,-._ □ 
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Lemma 2.16: 

* quantifier free. Let v0 E ~n,o• Then 

* 

... Q x G(x) where G is n n n 

Proof: 3 I- F ¢> v O 1-- F. By n applications o-f Lemma 2 .15 we have 

••• Q x G(:ic )) 
n n n 

••• ¢> (Q1v1 E EX(V0)) ••• (Q V E EX(V 1))(V I- G{x )). n n n- n n 

Theorem 2.17: Say that T1 : N ➔ N is such that 'l'H(3) can be decided 

□ 

n by some algorithm within time T1 (n) and such that T1(n) ~ 2 for all n EN. 

for all k,k' EN. (Assume T1 is nondecreasing.) 

* Then there exists an algorithm for deciding TH(S) which operates 

for some constant d. 

Proof: By Theorem 1.4.2 it is sufficient to consider the sentence F of 

the form Q1x1Q2x2 ••• QnxnG(in) where G is quantifier free and of length 

at most n log n. The decision procedure proceeds in three steps. 

Step 1: Compute the sequence 

~o ' ~ , ,n 1,n-1 ... ' ~ O' FO 'Fl 1' n, ,n ,n- • • ., F 0• n, By Lenna 2.6 
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of the sequence is ~(T
2

(n +2 f (n+l). 

Step 2: Compute µ(n,0) (way, in unary). 

n 
computed and written dOlffl uaing at moat (T2(n)) aore tape .aquares 

than those containi:rqg the sequence -ec,mputed in Step 1. 

* Step 3: Say that '°n,O • (V0}. We want to decide if 

To do thi• we have te h&'ft a wa, of vt'tti.ng d-.irilpnnntationa of 

* members of S 
1 1 

f.or O :s:: 1 s n. Our convetttiiffl ls aa follow: if n-, 

v E :1;, i' then REP(V) is the aequence V(O), V(l), ••• , V( llv If). 

* for O ~ i < n (1fhere v0 E ~n, 0), then since I lv01 I • 0 and 

So for each Qi, 1 ~ i ~n, set aside (L(n,O))~(l+i•µ(n,O)) additional 

tape squares; this is enough space tc write down the representation of 

* . any member of :'r' n•i, 1 of n<>rm !!i: i• µ(n,O) (si:nice L(n,O) ·~ t.(n - i, i)). 
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Claim: There exists a procedure which given 

* y = REP{V) for some VE~ ii' 0 ~ i < n, determines, using 
n-' 

no more space than the input takes up, whether or not y' E EX(y). 

Proof. of Claim: Say that y is the sequence y(O), y(l), ••• , y(J) 

and y' is the sequence y' (0), y' (1), ••• y' (J') for some J, J' E N. 

We first calculate i (say in unary) auch that y(O) has free variables 

Assuming i < n, in order to ensure that y' -E BX(y) we need only check that 

1) y' is a sequence of members of :Jn•i•l,i+l' and J' s J + µ(n,O). 

2) y'(J')=Fn-i-l,i+l and if J' > O, then y'(J'•l) I Fn-i-l,i+t• 

and 

3) for every j .r: 0 such that j ~ J and j ~ J', we have y' (j) E W(y{j)). 

For every j such that J < j ~ J', we have y'{j) E W(y(J)). 

1), 2), and 3) can be checked using no additional space, and so 

the Claim is proved. 
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Now to decide F,., cyc.1,e tbroagh each quantifier .apace appropriately. 

That is, use t1re •pac• Ht aid~ for ~l tto ,cych through ·tbe ·repre•entatives 

of members of 'EX(V
0
),, obt:c.l!llll different 9&1aa for m(V1 ), the apace 

set aside for Q2 to cycle through fhe .repreaentattvea of tbe members of 

for every .formula FE'9'"' .. of tile ·aeqwe aBll(V ), .Q.
0 

·E W(F).. So 
~~n · n 

and REP (V ) are wri tttm.. n 

The totel apace uaed tn Steps 2 and 3, including the output of 

Step l, is ~ (T (n + 2))c(n+l) + (T (n))n + n• (L(n,O))• (1 + n•µ(n,O)) 
2 ,,2 

outpttt.ofiSwp l . Step 2 .• Step 3 

(the n log n spane un w'idh G ie written :is insignificant). The time 

used by Ste,,• 2 and 3 ie at moat exponential in thia bound. Si.nee 

µ(n,O) :s: (T2(n))n c(n+l) 
and L(:n, 0) ~ (T 2 (n + 2 )) , we have that the 
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total time used in all three steps is~ [T
1

((T
2

(n +2 ))dn)]d for 

some constant d (since the length of a sentence is> 0). □ 

Corollary 2.18: Let s
1

, s 2 , c EN, s
1 

~ 1 and s
2 
~ 2, such that TH(&) 

can be decided within time 

2
• • • 

20

) height s
1 2

• • • 

20 

(n+1 height s
2 

2 ) and such that M(n,k) ~ 2 ) for 

all n,k EN. 

-'· 
Then TH(g") can be decided within time 

height s
1 

+ s 2 
for 

some constant c'. 

Proof: Innnediate from Theorem 2.17. D 
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Section 3: Result• about Other Kipds of Direct Products 

In this section we state some results about other kinda of direct 

products, thus giving quantitative versions of acme additional theorems 

of Mostawaki and Fefer--. and Vaught [Moa52, l'VS91. We will not present 

proofs here, but our results follow froa exteaalona-,af tlae w .... la 

Chapter 3 and th• preceeding parts of this Chapter. 

Definition 3.1: Let I be a nonempty set, andlet(3{i)I i EI) be a 

collection of atructune for S:. indexed by I; aay that 

g(i) = < s(i), R!1>, R~1? ••. , aii>, e(i) > for all i EI. Let 

D = (f: I ➔ U s(i) I £(1) E s(i) for i EI). For each j, 1 s: j s: J,, 
iEI 

for all i EI. Define e ED by e(i) = e(i) for all i EI. 

Define the strgng dirw;t ,i:oduct of the system (3(i) i EI) by 

••• , R1,, e >. 

Let D' ~ D be the aet (f ED I for all but finitely ma12y i Et, f(i) • e(i)}, 

t 
and let Rj be the relation Rj restricted to (D') j 

for 1 s j s J. Define the yyk dirast prpduc;t of the system 



If I is finite, then STRONG(S (i) I i E I) = WEAK(S (i) I i E I). 

If we take I to be N and g (i) = g for some fixed structure g 

and all i EN, then we denote STRONG(3(i) w 
i EN) by 3 and call it 

the 1trona direct PQWW of 3; WEAK(3(i) I i EN) is s*, the weak 

direct power of 3, which was defined earlier. If Pis a nonempty 

collection of structures, then STRONGCP) is the class 

{STRONG(S(i) I i E I) I I is a set and3(i) E P for i E I} and 

WEAXlP) is the class 

{WEAK(g(i) I i EI) I I is a set and g(i) E P for i EI}. 

w Mostowski shows that if TH(3) h decidable, then Tlt(3 · ). is decidable. 

Feferman and Vaught show that 

TH(STRONG(f>)) = TH({STRONG(3(i)li E I)I I is a f:lpite set and g(i)E P for i EI}), 

and if TII(P) is decidable, then Til(STRONG(P)) and Til(WEAK(f>)) are decidable. 

We can prove stronger versions of these theor81118. 

Theorem 3.1: Let 3 be a structure and let M(n,k) be de~i,ne4 as before 

(Definition 2.2.5). Say that T1: N ➔ N is such that TII(3) can be decided 
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by some algorithm within time T
1

(n) and such that T
1

(n) 2 2n for all 

n EN. Say that T2 :N ➔ N is such that T2 (k + k') :ii!: M(k,k') and 

for all k, k' EN. (Assume T1 is nondecreasing.) 

Then there exist• an algoritb for deciding '1'11(3 w) which c,penttes 

for sone conatant d. 

Definition 3 9 2: If P is a collection of structures, let 

INFSTRONG{P) • (STllOS(& (i) I i E I) I I iB an infipite .aet and 

g ( i) E P for i E I} • 

Let INFWEAK(P) • (WEAK(3(i) I i EI) I I is an infinite set and 

3 ( i) E P for i E I} • 

Theorem 3.3: Let P be a nonempty collection of structures and for each 

3 E P, let Mg(n,k) be defined for 3 as before (Definition 2.2.5). Say 

that T
1

: N ➔ N is such that TH(P) can be decided by some algorithm 

n . 
within time T1 (n) and such that T

1
(n) 2 2 for all n EN. Say that 

k, k' E N and all & E P. (A.saume T1 is nondecreasing.) 

Then there exists algorithms for deciding TH(STR.ONG(P).), 
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TH(INFSTRONG(Pl), TH(WEAK(P)), and TH(INFWEAK(P)) which operate within 

for some constant d. 

It is important to note that in Theorems 2.17, 3.1 and 3.3, the 

decision procedure that is produced is obtained effectively from the 

one that is given. For instance, in Theorem 3.3 TH(STRONG(P)) t's 

completely determined by m(P). 

Now let P be the collect:1,cm of finite cyclic group structures. 

Since every finite abelian group is is01110rphic. to a fi~ite direct 

product of finite cyclic groups, the first order theQry of finite abelian 

groups is the same as TH(STRONG(P)). TH(P) is ~ecidab\e, and we could 

have used the technique involved in proving TheoreDl 3.3 to prove Theorem 

3.2.8. Every finitely generated abelian group is isomorphic to a finite 

direct product of cyclic groups [MB68]. So if P' is the collection of 

cyclic group structures, then TH(STRONG(P')) ia the first, order theory 

of finitely generated abelian groups. But using results of [Szm55] it 

can be shown that TH(P)_= TH(P'), and so by Theorem 3.2.8 we see that TH(STRONG(P')) 
2cn 

can also be decided within space 22 for some constant c. 
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Chapter 5! A Lawer Bound· on· the Theoriee of Pairing Funetiona 

Section 1: lntroduetion 

A pairing fune ti.on is defined to be a one-one map p : N x N ➔ N. 

The language I, we shall uae to talk about pairing functions in this 

chapter is the usual language of the first order predicate calculus with 

the formal relation p(v1, v2) = vr If p: N x N,-+N :i.a a.particular 

pairing funct:tcm.- then we can· interpret fOftlllla• : and s4tlldllcu of I. 

in the structure.< N, p > hr the ohfbtle way; lJy a 11'-atrwature·ft ■hall 

mean a pafr < 1,, p >· wha.-. p f• a·' pairing functton. Let P. be. the· 

collection of alt 'P•atrm:tu:rea. Note that altliougli equaH.ty ii not a 

formal predicate of: ,, we can 4efiu ectualf ty• tn P· 'by wrttti\lg 

as v1 = v2 (wher•v1 an• v2,repreeent·f--.l var~iea). In {Ten74] 

Richard Tenney refers to some unpublished reaul ts of Hanf and Morley 

which show that TK(P) is undecidable. We will present our on proof of 

this in Section 2. Tenney also proves, that the theories ·of a large 

class of pairing functions, including the moat conaon examplea, are in 

fact decidable; however, none of the decision procedUl"es for P·trtr.ucturea 

t that he arrives. at are elementary recursive. 

t 
In an earlier version of Tenn'9Y • s WOTk [Ten72] he presented some 
elementary recursive algorithma which were suppoaed to be decision 
procedure• for some theoriea of pairiq fuuctione. We pointed out to 
him that thi• w• i.mpo9•ible~ and he baa ■ince written a corrected 
version (Ten74] in which all the algorithma preaented are non•eleuientary 
recuraive. 
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The major result of this chapter will be that this is an intrinsic 

difficulty of pairing functions. We shall show that no nonempty 

collection of P-structures (and hence no single P-structure) has 

an elementary recursive theory. 

Definition 1.1: Define 

2 

f: N ➔ N by f(i) • 22•••Jheight 1. That is, 

f(0) = 1 and f(i + 1) == 2f(i) for i .i: O. 

Theorem 1.2: Let C be a nonempty collection of P-structures. Then 

NTIME(f(n)) ~ pLTH(C). 

Theorem 1.2 will be proved in Sections 3 and4~ Using the methods 

described in Chapter 1 for proving lower bounds, Theorem 1. 2 yields the 

following corollary. 

Corollary 1.3: For some constant c > O, the following is true: Let C be 

a nonempty collection of P-structures and let !.mbe a nondeterministic 

Turing machine which recognizes TH(C). Then for infinitely many n, there 

is a sentence in 'm.(C) which!IR takes at least f(cn) step$ to accept. 

We have remarked that Tenney shows that aany pairing functions have 

decidable theories; in fact, some of the decision procedures that he 

presents run within time f(c'n) for some constant c'. So the lower bound 

of Corollary 1.3 is achievable (except for the value of c). 

We conclude this section with some simple generalizations of 

Corollary 1.3. 
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Definition 1.4: Let n be an integer > 2. fften an n~ttg fpct:igp 

ia a one-one .map p: .. ➔ N. in, the ·1.mauaa•·· fcW n-ltng. f'Ul.cttcm•, 

is the language of the firat order predicate calculue with the formal 

where p is an n-U.ng func tian. 

Corollary 1.5: Let n > 2 and let C be a nonempty collectiot1 of 11-1tructure1. 
. . ' 

Then TH(C) baa no el-tary recursive '4iclaion procedure. 

h'oof: As•..- for QODWln~ ,thai: n • _l; ttua o~ber cuu are haruiled 

similarly. If p la a 3-U.111 fuDF~jon •d. a EH, de~t.ne the pairina 

function Pa by Pa (al'a2) • p(a,al'a2). If F 1B a ••.-:• of l (the 

language of pairing function.a) and x ia a variable not occurring in F, 

define F'(x) to be the forD1la of t 3 obtained by replacing every atomic 

to see that far any l••tructure < N,IJ > an4 ay • e·•, 

< N, p > t- F' (a) • < N, p > f,o P. 
a 

Now let C' be a nonempty collec::t:lon of l•atructut•• and defiae 

c = (< N, p
8 

> I < N, p > E C' and a E 'N) ; c ia a nonempty collection 

of P-structurea. Let F be a sentence of I. Th• Ct- F • for every 

< N, p > E C ' and a E N, < 'N, p > t- F • for every < N, p > E c' and a 
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a EN,< N,p > r F'(a) ~ C' r VxF' (x). An elementary recursive 

decision procedure for TH(C') would therefore yield an elementary 

recursive procedure for TH(C), contradicting Corollary 1.3. D 



Section 2: Some ·;U•deddabilitY Ruults 
I 

Our goal in <·this section is .to prove that the aet of sentences 

true of ill P-•tructures is not recursive, ,anc1 that ..- individual 

P-structures alao 'have usul-ecioable theories.. Tbeee ,pr-oo.fs are due to 

Let N !: ·N be the .set .gf even, nonnegative inHIIJ••• 
e 

Lemma 2.2: .Le:t R !i;; ·N X N • Then for some pairing function p, e .e 

REL(< N,p >) = R; furthermore., we can chooa.e .p to be onto as well 

as one-one. 

Proof: 

pair occurs exac·t.ly once and euch that bi ,,J 21 for each i E N+. (For 

instance, we can choose an enumeration (O,O), (0, 1). (1,0), (0,2), (l, 1), 

where the nUllbers .gra, sufficiently slowly to ensure that b
1 

t/, 21.) We 
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+ Let n EN and assume that p(ai,bi) has been defined for 

0 < i < n; we now define p(a ,b ). n n 

Case 1: (a ,b) ER. Define p(a ,b) = 2n. 
n n n n 

Case 3: Otherwise. Let m be the least membe:r: .. of N suc:h that 

and 

a) mis not equal to either 2i or 21 + 1 for any i such that (ai,bi) ER. 

c) m ~ b • n 

Then define p(a ,b) = m. 
n n 

been define via Case 1, so j = k = i. If J = 2i + 1 where (a1,b1) ER, 

bj =bk= 2i + 1 and aj = 8k = 2i. If we do not have either J = 2i 

have been defined via Case 3; by Case 3b), we must have j = k. So 

pis one-one. 
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We will now show that pis onto. Let m EN. Assume that p 

is not defined to take on the value m via either-Case 1 or Cue 2. 

Then we do not have m • 2i or m • 2i + 1 where (ai,bi) ER. Let 

S = ((a,b) E N2 I b E Ne and a f. Ne and b ~ m}. p cannot have been 

defined on any tn tsr of S via. Case 1 or Caee 2, IIO p wt have 

been defined on every aaa1>er of S via Case 3. Since S 1a infinite, 

( (a, b) I p is defiaed aa (a,b) via Caee '1 and 'b I •l 1• mftaite. So 

p eventually t_... on Qt! value• ;via Caae 3, ,l1lfi hence p ia onto. 

It remain• to show that REL(<N,P >) • R. Say that (ai,bi) ER. 

By Caae 1, p(a
1

, b1) • 2i, and by Case 2 (since Case l doesn't apply to 

(2i, 21 + 1), p(2i, 2i + 1) • 21 + 1 and hence (a1,b1) E REL(< N.p >). 

Say that (a1,b1) E REL(< N,p >). Then for some c EN ad acne j EN+ 

Since we can't have 

cj=2j, p cannot have been defined on (aj,cj) via Case 1, and looking 

at Case Jc), we see that p cannot have been defined on (aj,cj) via Caae 

3. Sop was defined on (aj,cj) via Case 2. This means that cj • aj + 1 

and aj = 2k where (8it,1\_) ER; that is, p(ai,bi) • 2k and (4k,bk) ER. p(a1,bi) 

cannot therefore have been defined via Cases 2 or 3, and therefore we have 

D 

Definition 2.3: Let t 1 be the language of the first order predicate 
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calculus with only a 2-place formal predicate ID· Define the class of 

structures for £1, C = (< D,R >IR s;;; n2 and D = domain R} (where domain R 

for a 2-place relation R means (a I for some b, (a,b) ER or (b,a) ER}). 

Lenna 2.4: (Kalmar [cf. Ch56]). t Til(C) is undecidable. 

Theorem 2.5: a) TH(P) is undecidable. 

b) There exist particular P-atructures with undecidable 

theories. 

Proof: If F is a sentence of J\, let F' be the sentence of £ 

obtained in the following way: 

1) For every quantification Qv in F, change it into a quantification 

over the values of v which satisfy ix
1
ix2 (FREL(x1 ,x2) A (v = x1 V v = x2)). 

and 

2) Replace each atomic formula of. F of the form B!1(v1,v2) by 

x1 nor x2 occur in F.) It is easy to see that for any g E P and sentence 

F of ;~ < d.omain(REL(&)), REL(&) > I- F ~ g I- F'. 

t I 2 Actually, the theorem 48. stated by Church a, TH({< D,R > R ~ D 1) 
is undecidable, but Leuma 2.4 follows inmediately from the proof. 



-92-

Proof of (a): We will shaw that C 1- F ~ P f- F'. 

C f- F => for al 1 < D, R > E C, < D, R > f- F => 

for all g E P ,- < damain(UL(&)), REL(3) > I- F => 

for all 3 E P, 3 I- F' =>PI- F'. 

Conversely, P f- F' "" for all 3 E P, 3 f- F' => 

for all 8 E P, < daaain(REL(3)), REL(&) > I- F => 
(1>7· IAala .. 2.1) 

By the Skolem-1.olNnheia theor• [cf. Men64}, thi■ impli .. that for m,n: 

< D,R > E C, < D., R > ,- F, f.Jllplytng C f- 'F. So C f- F to P f- F'. -

Hence, a dec..taton procedure for m(P) would yield •• tor Tll(C), 

contradicting I.emu 2.4. 

Proof of {b): It i• euy to see that there exists aome R ~N X N e e 

such that Ne • doaatn R and '111(< N
8

,ll >) (in -Ci> ia undec.iclable. (We 

can, for example, choose R to be an equivalence relation so .. to make 

nt(< Ne,R >) undecidable, as described in Section 4 of Chaptw 2.) By 

Lenna 2.2 we can find 3 • < N,p > euch that REL(3) • R. Then for any 

sentence F of .1\ we ha"J'e < Ne,R > f- F • 8 I- F'. So Tlt(8) 1■ undecidable. 0 

Remark 2.6: Let P' ,,. (< tc,p > E P I p ia Oil~},• The proof of 'theorem 

2.5 shows that (a) '11l(P') is undecidable and (b) 'Dl(3) is undecidable for 

some g E f>'. 
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Section 3: Cgnstruction of Formulas Which Talk About Large Sets 
~ . . ... 

Our goal in these next two sections is to prove Theorem 1.2, i.e., 

that NTIME(f(n)) s: pJ.TH(C) for any nonempty collection C of P-structures. 

We shall do this as follows: Let !IR be a nondeterministic Turing machine 

over the alphabet~. Then for every w Er+" we will produce a sentence 

F oft, such that for any P-structure 3, g ~ F ~!lll accepts w within w . . w . 

time f( lwl); furthermore, the time it take, to produce Fw will be poly­

nomial in lwl, and the space needed will be linear in lwl. If !IR 

operates within time f(n) and C is a nonempty co-Uec-tion of P-structures, 

then we have C ~ F ~ !lll accepts w within ti• f(lwl) ~ !IR accepts w, and w 

hence NTIME(f(n)) s: pl,'lll(C). 

The way F will "say" that !IR accepts w -within time f( lwl) is as w 

follows: We regard the instantaneous _configuration of a computation of 

!IR on w at any time as a string of length f( lwl), and hence the 

concatenation of the first(f(lwl + 1) / f(lwl )) (which is ~ f( lwl)) 

successive instantaneous configurations is a string of length ~(lwl + 1). 

Fw will "say" roughly that there exists such a string of length £( lwl + 1) 

which contains an accepting cOJ]figuration. In order to write such 

sentences as Fw' we will first have to be able to write down formulas of 

l of length proportional ton which allow us to describe the basic 

set-theoretic relations on the subsets of an ordered set of size f(n + 1). 

The above is an intuitive outline of our •ppra.:Jt •. , The ideas ~or 

this outline first appeared in Meyer's proof th,tt WSIS is not elementary 
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recursive [Mey7l], and also occur infPiR74], [Fer74], [MS72·1, [SM73], [Rol:t7l],{Sto74]. 

In the rest of this section we shall shQW haw to . ..,,rite formulas of length 

proporUonal to n which "talk about" sets of, siJe f(n + 1); t~ue 

theorems do not appeal to any of these previous paper• sbace the 

development in this section is necessarily intimately connected with 

the nature of P..struct\lrea. In Section 4 we shall present a development 

along the lines of Meyer, etc., vbieh shows how to uee the fonmlaa 

derivect in Section 3 to prove ThMrea 1.2. 

Let < N ,P > be a P-structure. We first define partial fuilcttona 

l,: N ➔ N anti r: lf ➔ 'N •• follan: for a E W, '(a) • 'b if for ■oae 

c EN, p(b,c) • a; r(a) • b.if for SOiie c EN, p (c,b) • •• Since 

pis one-one, rand J, are indeed partial functions. Clearly rand J 

depend on p, but it will always be clear from the context what pairing 

function a particular rand J come from. 
* .. · . 

Let a E (r,J}. be a string; 

we define the partial f\mction fa: N ➔ N in the obvious way, namely 

if >.. is the empty string then f>.. (a) • b if£ a • b, and if a is 

Jc' (ra'} then fa• J•fa,- ( •r•fa,). Henceforth we will uee a ambiguou■ly 

* . 
to designate both the string in (r,.&) and the function fa• 

Let F1,(x1,x2) be the formula lx3 (p(x2,x3 ) • x
1

) and let Fr(x1,x2) 

be the formula !x3(p(x
3
,x2) = x

1
). Then for any 3 E P and any a,b EN, 

be expressing properti•• uei,ng the partial functions r md J, and since 

we will be interested in writing down formul .. that define these 
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properties, it is important to realize that we will be implicitly 

using the formulas Ft and Fr. 

Definition 3.1: Let< be the reverse lexicographical ordering on 

All the properties mentioned in this chapter will be with respect 

to P. 

Definition 3.2: For each n EN, we define the property ORDn(x,y1,y2) 

as follows: let< ~,P > E P, let a, b1, b2 EN. Then 

Remark 3.3: * <N,p > r ORD (a,b,b) iff for some a E (r,t} , n 

lal = f(n) and aa = b. Cl~arly l(bl < N,p > r ORD (a,b,b)}I n 
~ 2f(n) = f(n + 1). 

Definition 3.4: For n EN we define the property FULL (x) as follows: n 

let< N,p > E_P, let a EN. Then< N, p > r FULL (a) iff 
n 



-96--

LeDlna 3.5: Let< 11,P > be a structure and let n E lt. Let 

al' a2 , ••• , a be the increaaias (with reepect to <) •sequence of 
2• 

* those members of ( r, .t) of length n. Let bl' b2 , _ •• ~ , b ifl be a aequenc• 

of (not necessarily dis tine~ --1>er• of N. l1!.e there enats a EN such 

Proof: (by induction on n). 

Let < •,P > be a P••tructure. lAl.aa l.5 1a true if n • O, •iac• 
we can chooae a • b1• So asatae the X..... for n; we will prove it for 

n + 1. 

of length 2n+l. 

D for 1 s: i ~ 2 • Let a 1 , a 2 , ••• , a 
2

n. be the increasing aecruence of 

* those members of (r,J) of length a. By the induction hypothesis, we 

can choose a E ll sueb that c 1a = c 1_fc: 1 ~ 1 ir. 2n.. Ry .definU:ioa of <. 

a is the element we w«e looking fer •. ffenc•. we ere; done. D 
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Lemma 3.6: Let< N,p > E P and let a, n EN. Then the following two 

statements are equivalent. 

(I) < N ,P > I- FULL (a) 
n 

(II) For every a' EN, if [(ORD (a,b,b) = ORD (a' ,b,b)) for all b E NJ 
- n n 

then [(ORD (a' ,b,b) = ORD (a,b,b)) for all b EN] 
- n n 

Proof: 

(I= II): Say that FULL (a) holds in< N,p > and that a' EN has the 
n 

property that for all b EN,< N,p > I- ORD (a,b,b) = < N,p > I- ORD (a',b,b). 
n n 

s: f(n + 1). Hence< N,p >I-ORD (a'b,b) = < N,P >I-ORD (a,b,b). 
n n 

(II = I): Say that II is true. Let A ~ N be a set of cardinality f(n+l) 

such that {b I< N,p >I-ORD (a,b,b)} ~ A. By Lemna 3.5 we can choose n 

a' EN such that {b I< N,p > I- (IU) (a',b,b)} = A, so n 

{b < N,p >I-ORD (a,b,b)}~ (b 
n < N, p > I- ORD ( a 1 , b, b)} • So by I I, 

n 

{b < N,p> I- ORD
0

(a,b,b)} = {b < N..,p > I- ORD
0

(a' ,b,b)) = A. Hence, 

Remark 3. 7: If < N ,P > I- FULL (a), then clearly C1a ls defined for . . n 
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ordering on the Mt (b I < M,p > I- (lU)n(a,b,b)} of eudinality f(n + 1). 

Lenna3.6 showed how FULLn ce be exprM•ed from. the pro,-rty CIU>n; 

the purpose of L...,. 3.8 ia to show how amn+l ca be ex~•••ed fr• 

ORDn and FtJl.Ln. Let< 11,p > E P and let a,b
1

,i,2 E II X.... 3.8 aaye that 

< N,p > I- Cimn+l (a, b1 ,b2) if and only if there exieta 8°"9 c E It 'lllt.tce 

. * I 

"codes" atringa a 1,a2 E (r,J) of lenath f(n + 1) tuch tut a
1

a • b1 

and a2a • b2 and a1 < a2• To ••• how thte cod1:ag i.e tlolM, ---n• Figure 1. 

Every node in the tree in Figure 1 repr•••t• a (not ueea■arily dtttinct) 

member of N. The value at a node is p of the valuea of the tvo •on• 

(if they exist); for instance. p(g,h) • c. In order for c to code the 

that c may code n1.Derous pairs of strings. In order to eay that c codes 

and their ordering from left to right, and'for thil reuon we ineiet that 

c 1 , c2 , ••• , cf(n+l) all be distinct so that we can talk about their 

ordering using ORD. 
n 
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ympa 31.8: Let< 'N,.p > E P, let n EN, let a,bpb2 EN. Then 

the followillg four facts hold. 

1) < N,p > I- FULL (c). n 

Let@be the linear order imposed on the aet (b I < N,p > ~ OllDn(c,l>,b)) 

by ORDn. ~ c 1,c2, ••• , cf(n+l) be the el..-u ordered by © li■ted in 

increasing order (with re•pect to©). 

and e
1 

= rtci for O < i :s:: f(n + 1) (r.&c
1 

is defined •iKe .t.&c
1 

ia defined). 

3) For O < i :s:: f(n + 1), either di• rdi•l or di• .tdi-l' and either 

4) Either di• e1 for all i, O :s:: i :s:: f(n + 1), or there exists some i, 

O < i :s:: f(n + 1) such that 4.1) dj • ej for O :s:: j < i and 4~2) 

di: 1.di-1 and 8 1 • rei•l• 
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Proof: Fix< N,P >, n,a,b1,b2• 

(If): Say that for some c EN, 1) through 4) hold. 0 If O <is: f(n+l), define 

yi = i, if di = .tdi-l' and 'Yi = r if di = rdi-l and di ,/: .tdi-l. If 

cr2 = 6f(n+l)"""6i\· It is clear from 2) and 3) t:ba't o-1a =bland 

o-2a = b2: We wish to show a1 < a
2

• If a
1 

I- o-
2

, then for some 1 we have 

Sod = e for O < j < i •. j . j If 

yi E (r,L) and 51 E (r,L) for O <is: f(n + 1). Define the sequence 

for O < 1 s: f(n + 1). Clearly df(n+l) = bl and ·ef(n4-l) "" b2• 

1 s: is: f(n + 1). Define h1,h2, ••• , hf(n+l) EN as follows: let h1 be 
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this way since pi• one-one.) Define tile .....-ce•f cllatinct 1lilmber• 

1 s: i s: f(n + 1). Clearly -c .. c.iafiee pr■f!el"tt• 1), 2)., aid 3) .. 

implies that there esi• ts 1. O < i s: f (n + 1), :euch that y J • 6 j 

if O < j < i, and yi ~land 61 • r. Tllis aeans, that dj • ej if 

0 ~ j < i and di= td.1_1 and e 1 • rei•l' so 4) holds alao •. 

Leoma 3.9: There exists a sequence of foraulaa of & 

(I) ~ (x,yl'y2) defines the pr~rty ORDn for n ~ If. 

(II) There is a procedure which gi~ _,. E JI+ c..,..-tu .91mn within 

time polynomial in n and apace linear in n. 

0 
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Proof: Define ORD0(x,y1,y2) to be 

If we have ORD defining <XlD , then by µsing Lenma 3. 6 we can obtain --n n 

a formula FULL (x) which is of length proportional to the length of 
---n 

ORD and which defines the property FULL. Leoma 3.8 therefore gives 
---n n 

a way to define OR.Dn+l using~• (This is completely straightforward 

if one notes the following fact: in Lemna 3.8 we occasionally quantify 

over i, 1 ~ i ~ f(11 + 1), but this can 1:>e expr~ssed indirectly as 

quantification over the ordered set (b I <XlD (c,b,b)))t. 
n 

If one used Lemna 3.8 in the simplest way to write down OR.Dti+l 

using subformulas CIID, then since ORD would occur more than once in ----n ----n 
' 2 

ORD
11
+l' the length of~ would be at least proportional ton. We 

can, however, use a result due to Fischer and Meyer [cf. FiR74] to 

obtain (using Lemma 3.8) a formula am,• ,of length proportional to n ---n 

+ which defines ORD for all n EN. This result is stated formally and 
n 

is proven in Appendix 1. Thus by 'l'heqrem A,.2 ,of Appe~~ii~ 1, we,.can conclude 

Lenma 3.9. '7 

t It is at first difficult to see how to use L~'3.8 to write ORDn+l 

using ~ as· a subformula, since ,:the -free varial,les of ORDn are fixed 

and we might wish to use formulas similar to ORD but.with different 
free variables al: different placea Jn ORDn+l •~• way is by under-

standing the phrase "using ORD as a subformula" to mean using ---n ' ' 
formulas like ORD but with the variable names changed. Another way ---n 
is by the followi~ trick: Say we.. have;, a ,fo.~lr~ J1'(x,i) and we wish 
to have a formula G{y,z) such that F and G define the same property. 
We can let G be Vx1,Vx2((x1 = y /\ x2 = z) ➔ VxVy((x = x1 /\y= y2) ➔ F(x,y))). 
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Corollary 3.10: fllere exist• a •eflU8DC• of f--.ilae of S!, 

FUIJ..o (x) ,· FULq (X), • • • such that 

(I) FULL (x) clefinea the property FULL for all n E 11. ----n D 

' . ', "+' '' ' ' 
(II) There i• a procedure whi.eh given. a E 1' computu ~ •1thin 

time polynomial in n and within space linear in n. 

Proof: Use L ... l.6 to expreo PUU using ORD for n E lt. ' ----n ---n 

Lemua 3.11: There exists a •fNl'l8DC• of foraalaa of I.,. 

I) If g E P and n.a,h1.b2 € N, then I~ ~(a,b1,b2) • 

(1) g I- nJLLn(a) 

(2) g 1- ORDD(a,b1,b2) 

(3) .. The 41:ac-• £irtOa 81. to 1,2 in the or.4eriag ---•• by amn 

is exactly f(n)., 

II) There is a p!'CICWdure wbictl given n E •• computu mT within time -----n 

polynomial inn md space linear inn. 

Proof:. Let DISTO be p(y1,y2)_• xA :,
1 

r/- y
2

• 

+ 
Let 3 E P, 1tEB , a. o1 ,-,~ E lf. We ·wtell u aay d1At 8 t,- IULLn (a) 

. ' ' 

and I { c E. K I c 9' ltp and 3 t-- (IU)n (a.i,1.,c) _. 3 t- <JU>n (a .. c.it.z) I •·· f (n). 

(This implies that 3 I- CllD
9

(~1>1,b2).) But by Lela& 3.5, thia will be true if£ 

3 I- ·rou.
0 

(a} and_ there t• some c • E: N such that S'.f FUt.La•l (ct) U.S such that 

for all c EN, 
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We can therefore write down a formula .illin(x,y1,y2) for n EN (by using~, 

ORD, FULL land ORD 1) such that (I) and (II)- are satisfied. 0 ---n -n- ---n-

Definition 3.12: For all n EN, let SETn(x,y1,y2) be the property 

Lema 3.13: Let g E P and let n,a E N auch. that g I- FUL1tt(a). 

Let A~ {b I g ~ ORDn(a,b,b)J. Then for some b1 EN, 

Proof: Say that g .. FULL (a) and A ~ (b I 3 .. ORD (a,b,b)}. Let A' s: N n n 

be such that 0 < IA' i :s: f(u + 1) and A• A'{'\ {b I g .. ORD
11

(a,b,b)}. 

By Lemma 3. 5 we can find some b1 E N such that 

A'= {b2 I 3 .. ORDn(b1,b2,b2». Hence, A= (b2 I 3 ~ SETn(a,b1,b2)}. □ 

LE!ll!P4 3.14: There exists a sequence of formul~~ of £,SET0 (x,y1,y2), 

(I) ~(x,y1,y2) defines the property SETn for n EN. 

(II) + There is a procedure which given n EN computes SET within ---n 
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time polynomial in n and apace linear in n. 

Proof: One can easily vrite down SET using FULL and ORD. 
---n ----- --n 

D 

Note that by Leana 3.5, ~(x) ia aatiafiable in any P•atructure. 

Hence, the formula !Y.LLn and·~ allow u• to write formulas which, no 

matter which P-atrw:ture they are interpreted in, talk about an ordered 

set of size f(n + 1). uatag ,otST we ca talk about· u,o 1•aatera of ----n . 

this ordered set being f (n) apart. Using SET we can talk about all ---n 

subsets of thi• ordered ••t and refer to Cle Mete. aet•tlaeoretic .. ~---

In what follon we Will think of a aubaet of thi• ordered eat aa 

correaponding to the 'binary string which 1• the characteriltic aequence 

of the subset. It will be uaeful to be able to 8lq)Haa the ,ro,erty that 

such a binary string begins in a particular way. 

Definition 3.15: * For every y € (0,1} let STARTy<x;y,11) be the propetty 

such that if n = I yj, 3 E P, a,b,c 'E N, then.3 t- STM\T (a,b,c) tff y 

1) 3 .. FULL (a) 
n 

Let@be the ordering determined on (b' f 3 t- ORDn(a,b1 ,b')} by OltD
11

• 

Let a be the characteristic sequence (with respect to © ) of the set 

(b' 31- SET (a,b,b')} = (b' I 81-Cltl) (a,b',b') a:nci31-CIID'(b,b',b')}, n n n 

i.e., a is the binary string of length f(n + 1) determined by b, a and 3. 
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2) a= y•Of(n)-n.5 for some 6 E (0,1}* of length f(n + 1) - f(n). 

3) c is the n + 1 smallest member (with respect to ,@ ) of the set 

(b' I 31- ORD (a,b',b')}. n 

Lfuma 3.16: Let y E (0,1}*, IYI = n, and let i E (0,1}. Let g E P and 

let a,b,c EN. Then gr STAR.Tyi(a,b,c) ~ the following eight properties 

hold for some a',b',c' EN. 

2) g .. FULL (a') n 

Let © be the ordering determined on ( c" I 3 t- ORDn+l (a,c" ,c"} by 

ORDn+t• Say that c 1,c2 , ••• , cf(n+l) are the first f(n + 1) elements 

in increasing order (with respect to ©). Let @ be the ordering 

determined on ( c" I 3 .. 0RDn (a' ,c" ,c")} by ORDn. 

7) c is the i111Jlediate successor of c' in the ordering@ 

8) g does not satisfy SETn+l (a, b,c") for any c", c@)c' '@:f (n+l). 
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Proof: (3) says that 1:he oriered set of Bise f(n+ 1) 4etermtned by 

ORD and a' (and 3) is the same as the first f(n + 1) el.eats of the 
n 

ordered set determined .by ORDJri-l and a. 4) therefore says that the 

binary sequence of size f(n + 1) determined by SET and a' and b' i• n,. , 

the same as the firet f(n + 1) elements of the binary eequence of sin 

f(n + 2) determined by SETn+l and a and b; 5) and 6) say that this 

sequence of length f(n + 1) begins with yi and 8) ••Y• that, the rest of 

it is oo... . 7) says that c is the n + 2 ntalleet 'lllllbu·'of t:he 

ordered set determined by (ltl)n+l and a. 

* Lemna 3.17: For every y E {0,1} there exiats a formula of l 

START (x,y,z) such that 
y 

* (I) START (x,y,z) defines the property START for y E (0,11 • 
y . ' ,,' ' ' : • 'Y 

+ (II) There is a procedure which given y E (0,1} computes START 
y 

within time polynomial,in !vi and space linear in fvl. 

Proof: Let STARTA(x,y,z) be the formula :Rz'(P_(~,z•) • XI\ z -,I z'), 

□ 

Leana 3.16 shows that STAR.Tyi can be expressed in a fixed way (depending on i 

but independent of y ) using STAR.TY, together with FULLn+l' FULLn, ORDn+l' ORDn' 

SETn+l' SETn, and DISTn+l where n = lvl. All of theae latter propertie• can be 

expressed in a fixed way from ORDn, and so StARTyi can be expressed in a 

. ' ' 

fixed way from START and ORD • In order to, ctmc lude Lem11a 3 • 17, 
Y n 
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we have to use a more powerful theo:t"em frODlAppen!i;lx 1 than that used in 

the proof of Lemna 3.9. Since for all n EN, ORDn+l can be expressed in 

a fixed way from ORD , we can appeal to a special case of Theorem A. 9 
ll 

in Appendix 1 (in which I.;, = Ii} to conclude Lenna 3.17. □ 

. . * Remark 3.18: For y E (0,1} let START'(x,y) be the property such that y 

g 1-- START' (a, b) ~ for some c, Sr START (a, b,c). We will really only use y y 

the fact that we can write short formulas defining the properties START'; y 

the reason we have dealt with the more complicated START was in order y 

to be able to express these pt'opertiea inductt'vely. 
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Section 4: Uitipg PonplM: to Simulate 'l)rtag' 'KachiM• 

In this section we will use the formul.~ FULL
11

, ~, 

DIST , SET , STAltt to talk about Turi!II aachtnea· ..... oh ,zoccgai.M 
----,i ---n f 

languages E NTIME(f(n)), and hence prove Tbeor• 1.2. 

Theorem 1.2: NTIME(f(n)) ~ ,,il'H(C) for ay nonempty collection C of 
. p . ·, . 

P-atructures. 

within NTIME(f(n)). In cder to pron~ l .. 21'6•,ecify in 

detail (partly reviewing from Chapter 1) the nature of our Turing 

machine. The tape alphabet is :t, f E ~. and !Dlhaa one head and 011e 

tape where the tape is one-way infinite to the right; initially the head 

is on the leftmo•t square of the tape and !m never tries to read off the 

:-1- . 
tape. If w E :t , then we input w to !I by having the initial tape contents 

be wW... . Let the state set of ml be {1,2, ••• , It) where 1 is the initial 

state and k is the accepting state. !IY accepts w if there is some 

computation starting on wQ ••• such that !11 eventually enters state k. 

Let us aasume that after entering state k, 9R thereafter stay■ in state k 

without moving the head or changing the tape contents. Since !Ilt operates with• 

in NTIME(f(n)), if !ffi accepts w then there is some computation of !l'lt on 

w which enters state k within f(iwl) steps and hence without leaving the 

first f(lwl) tape Bfluarea. 



-111-

Let w E It, lwl = n. _Let g(n) = f(n + 1)/f(n); g(n) ~ f(n), so 

if !IR accepts w there is some computation which accepts w within g(n) 

steps. Consider now a particular computation of !IR on w wbieh goes for 

* g(n) steps without leaving the first f(n) squares. Let Wi ·E !; of 

length f(n) be the contents of the first f(n) tape squares at time i 

(where !IR begins at time 0). * Let Ui E (0, 1, 2, ••• , _k} of length f(n) 

q f(n)-q-1 be such that Ui = O j O where at time i,!Dl is in state j and the 

head is pointing at square q (where the leftmost tape square is square 0). 

* lwl = lul = f(n + 1). Define the tpat'kiR& str£9& ME (0,1} of length 

f(n + 1) by M = (1 Of(n)-l)g(n). We will call (W,U,M)' the computation 

triple of the computation (on w). (W,U,M) is an accepting computation 

triple if k appears in U. Clearly !JJl accepts w if and only if there is an 

accepting computation triple for w. 

Let (W,U,M) be a computation triple for w E 2f, lwl = n. For any 

stringy, let y(i) be the i + 1 member of y so that 

W = W(O)•W(l)• ••• •W(f(n + 1) - 1), etc. For every j, 0 ~ j < g(n), and 

every i, 0 s: i < f(n), the values of W(j • f(n) + i) and U(j • f(n) + i) tell 

us the contents of square i and whether or not the head is .pointing at 

square i (and if so, then the state of !Dr), at instant j. The rules 

(of the finite state control) of !IR together with the fact that we only 
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consider computations which do not leave the firs.t f(n) tape squares 

put coastrai11:ta on,1:he value• of w,u~ ad M· aouni plaoe 

j • f(n) + i + f(n) (if j • f(n) + i + f(n) < f(n + 1) ),·d•pntitig on the 

values ef Wand U at j•f(n) + i .. 

For instance, aay that O ~ k < k + f(n) < f(n + 1). Say that 

W(k) = 0 and U(k) = 5 and aay that if D ia tn etate 5 with the head 

pointing to a square containing O, tlien the machine is allowed to 

permissible therefore that: W.(lt + f(ll)) • land U(k + f(J.l)) • 0 ad 

U(k + f(n) + 1) = 1 and M(k + f(n) + 1) ,I 1. If U(k) • O, tmm we 

must have W(k + f{n)) == W(k). The point is that thee are only certaia 

values ·of (W(tc), 11(.k), W(k + f.{ll)). W(lt:'+ f~a), • 1), U(lt + f(a,)). 

U(k + f(n) + 1),M(k + f(a) + 1)) 

which are permiaaible, i.e., CODfistent: with 9. These ideas are developed 

rigorously in [Sto74, Section 2.2}. 

* * * Let W E }; , U E (0, 1, 2, ••• , k} , ME f 6, 1} k ati"tngl Leuma 4.1: 

of length f(n + ~). 'l'hen (W,U,M) h • ac~•P~ 1;:011tpUtatioa for 

w E (0,1)*, lwl = n, if and only if 

* 1) ME 1•(0,1) and every contiguous f(n) symbol of M contains exactly 

one 1. 

2) W E w•ff(n)-n.,,;*. 

3) U E 1-of(n)-l_{O,l, ... , * k) " 

4) For O s:: i < f~ + 1), if M(i) • 1, then naetly on♦ of' the ftUIIIMI"& 

U(i), U(i + 1), ••• , tJ(f + ffn) - 1) 1• noaano.. 



-113-

5) For all i such that 1 ~ i < i + f(n) < f(n + 1), the value of the 7-tuple 

(W(i), U(i), W(i + f(n)), U(i + f(n) - 1), U(i + f(n)), U(i + f(n) + 1), 

M(i + f(n) + 1)) is consistent with !In. 

and 

E;) U contains an occurrence of k. 

Proof: 1) through 6) say roughly that Wand U begin with the right 

configuration, that the transition between •Y two successive, configuratiCllS 

of length f(n) (marked off by M) are permitted by the rules of !In, and 

that the accepting state appears in u. These are necessary and sufficient 

conditions for (W,U,M) to be an accepting computation for w. 

Completion of the proof of Theorem 1.2: Let w E "£+, lwl = n. We have 

shown that with formulas of length proportional ton we can talk about 

an ordered set of size f(n + 1). Every subset of this set can be 

thought of as a string of length f(n + 1) over {O, l}. Every sequence 

y1, y2, ••• , yv of v strings over {O, l} of length f(n + 1) represents 

CJ 

a string of length f(n + 1) over the alphabet (O,l)v (the set of v-tuples 

containing just 1 and 0), namely the stringy where 

1"£U(o, 1, 2, ••• , k) I V = 2, we can think of y1 , y2 , ••• , yv as 

representing a string of length f(n + 1) over the alphabet 

"£ LJ {O, 1, ••• , k) by coding"£ LJ (O, 1, ••• , k) into (O, 1) v. Say that ¥ is 

f(n)-n coded as(O,O,. •• ,O). Then the string w1' will be represented by 
v times 
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... , 
length n for 1 ~ i ~. v. 

Therefore utJilll ~, ~, DIST , SET , STAI , SJMT , ••• ,rrM.t... 
~ ~ '1 "2 .·~ 

we can write a ••t--• Fw of 1-.th ca .._.. ..,. that ,t'Mre --•• 

(W, u, M) eat:iafytna cOll4t.tioa 1) throush 6) in x...a 4. 1. '111.at ia, for 

any I E P, J'w •U.1 ,'9 . .true ia I if and •"1 if D aot·epca "• H~ ·if C 

is a tta11emp,:y col'.1-t!.'Oia ,ctf P..attuct.un1, P
9 

E. 'l'lr(C) • 9 _,c-... t,a w. 

So L(!m) :s;; . ,'l'H(C). pi{/ 0 
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Appendix 1: Writ:f.g SbeU FeeJYlts fen; lplycUyelY JlefiW!sL PJ:.onrties 

Let r, be the langwige of the first order predicate calculus with a 

finite number of relational symbols ~l' !_2 , ••• , ~,. Let P be a 

class of structures for I,. Henceforth all properties and all 

equivalences between fMWllaa of I. will be with respect to P, The 

purpose of this ..,,,.m11x is to prove that one can con•truct short 

formulas defining certain inductively described properties. 

Theorem A.2 below will essentially say the following: given a 

sequence of properties G0, G1, ••• such thJt G0 is defined by a formula 

of t, and such that Gi+l can be expressed in a fixed 11ay (independent of i) 

from Gi using the language t., then for every i > 0 there i8 a foraala of 

l of length proportional to i which defines the property G1• 

We assume for convenience that equality is definable in P, and 

hence for convenience assume that v
1 

= v2 is an atomic formula of J:. 

We also assume that every structure in P has a domain of cardinality 

~ 2. 

Now let k EN be fixed and let l' be the language of the first order 

predicate calculus which is the same as l, except that a k•place formal 

t predicate~' has been added. 

Two formulas of .z, are eguivalent if they are equivalent in any structure 
obtained by adding to a structure from Pan interpretation for~-
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DefinitiQll A.l: Let!(~) be a formula of l' and let G(X:tc) be a 

property. We define an infinite sequence of properties, 

- k and for every structure g E P with domain Sand for every 'ic ES, we 

say that g ~ Gi+l('ic) iff g ~ !('ic) when the formal predicate~ is 

interpreted in Sas Gi (restricted to 3). 

Theorem A.2: Let!(~) be a formula of l' and let Q(~) be a formula of 

l defining the property G(~). be the 

properties defined in Definition A.l. Then there exists a sequence 

~ (~), Q.1 (~), • • • of formulas of I. such that 

(I) .~ defines the property Gi for each i EN. 

(II) + There is a procedure which given i EN computes .!4 within 

time a fixed polynomial in i and space linear in i. 

'Theorem A.2 is due to Fischer and Meyer [cf. FiR74], working from 

earlier ideas of Stoclaneyer [SM73]. A key part of the proof will be 

Lem:na A.3. 
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Lemna A.3: Let! be a fOTmUla of l.'. Then the,:e exists a formula F' 

of l' equivalent to ! such that !'' has exactly fil!! occurrence of the 

predicate letter~; this occurs in an atomic formula in which all the 

k formal variables are distinct. 

Proof: Let !. be a formula of l' • Since any formula of S!' can trii.dally 

be extended to an equivalent one with at least one occurrence o.f ~, 

assume that ! contains at least one occurrence of ~- Assume !," is in 

a quantifier free formula containing m ~ 1 occurrences of the symbol ! 

and where v1 , v2 , ••• ,v J represent formal variables. Let us say that the 

m atomic formulas of ! in which~ occurs, from left to right are 

~(vll'v12' •••, vlk), ~ (v2l'v22' ••·, v2k), ••• , ~(vml'vm2, •••• vmk) 

where the symbols vi,j for 1 ~ i ~ m and 1 ~ j ~ k represent formal 

variables. 

Let y1 , Yi, Y2 , Y2, •·•,Ym,Y~ be distinct formal variables not 

appearing in A. Let A' be the formula obtained from A by replacing 
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of P there are interpretations of y and y' which ca1:19e the formula 

y = y' to be true, and interpretations which cause y = y' to be false, 

we see that A is equivalent to 

Now let y, y', z
1 
,z2 , ••• , zk be distinct formal variables not 

/\ [(y = y') M R(v 1,v , ••• , vik)] 1s equivalfllJ.t to 
lsism i i - i 12 • . 

SQ we have sh~ that! is equivalent to a fonaila,ytt~ tx-.ctly one 

occurrence of~, which occ'lll:'s in the ateaic i(tE11Ula~<-ic>• D 

Definition A.4: Let!(~) be a formula oft, and let zl'z2 , ••• , zk be 

distinct variables all of which are different from x1,x2, ••• , ~-

- 1-
Then let !(8tc ~) (ik) be the formula obtained from! in the following way: 

If vis an occurrence (not necessarily free) of a formal variable in!, 

then if v = zi for some i, 1 sis k, replace v by xi; if v = xi for some i, 
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1 ~ i ~ k, replace v by z1• 

Definition A. 5: If I. is a formula of l, define the •ise of I., •<!J, to 

be the length of I. when each variable subscript is counted to be of 

length 1 and all other aymbola are counted normally. 

The foll-owing lema follows inaediately from the definitions. 

Lenna A.6: be as in 'Deft11itlon A,,,;4. 

Then s(I.) 

property. 

Proof of Theorem A,2: Let !(~) be a formula of l' and let Q(',c) be a 

formula of ,£ defining the ,rei,ercy G(~). 'By LellliLkl A. 3 u•mae that . ! 

contains exactly one l>Ccurreace of!; the pl'oef -of Lelila A.3 aaut-es us 

in fact that we can insist that the atomic formula in 'Wh:tch ~ occurs is 

-Now define a aequence ~ ('\:), Q.1 (~), • • • of forn1las of Z ae follows. 

Let ~ be Q.. For all i E N, let ~+l be the formula obtained by 
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(ikl~) 
substituting~ for ~(zk) in!• It is easy to see by induction 

(using Le1Illla A.6) that~(~) defines Gi(~) for each i EN. 

cikl~> 
For c0 = 1!1 we have s<!4+1) ~ c0 + s(2.t, . ) = c0 + s(~) 

for i EN, sos(~)~ s(Q.) + i•c0• Every variable occurring in each ~i 

is either from the set {x1,x2, ••• , ~} or occurs in! or occurs in Q. 

If c1 is the maximum length of any such variable subscript, then 

independent of i. It can also be checked that one can compute Q,
1 

within time polynomial in i and space linear itt i. D 

Remgk A.7: Theorem A.2 can be improved :ln a nUIUer•of 11ays. Firstly, 

we can obtain our result even without the restrictions that equality be 

definable in P and that every structure in P have a domain of cardinality 

~ 2. In addition, using a trick suggested by Solovay [S0173] we can obtain 

the same result even if our language of the predicate calculus doesn't 

contain ....,. • 

Theorem A.2 can be generalized in a number of ways. We will only 

present the particular generalization which·we neecl in the text. 

To begin with, let t.11 be the language of the first order predicate 

calculus which is the same as t, except that we have added two new formal 

k-place predicates: ~ and ~' for some fixed k E N. 
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Let G(~) and G'(yk) be properties. * For every y E {O,l} we let 

* let GA. be G and let a;,._ beG.'. For every 6 E (0,1} and every 

- k 3 E r with domain s and every '\. E S we say 

be formulas of l defining, respectively, the properties G(~) and 

* -For each y E {O,l} , let Gy(Xic) and G~(yk) be• iu Definition 

A.8. Assume that for any g E P, the relations obtained by restri'ct:f.ng 

G and G' tog are both nonempty. y y * Then for each y E {O,l} there exist 

(I) G defines G and G' defines G'. -y y -y y 

(II) There is a procedure which given 'Y. E ( O, it compute• ~ and Q,' Y 

within time a fixed polynomial in I y I and space linear in I y I . 
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Proof: '11ie basic idea of this proof is wh't we c,#1. "s~~lfaneous 

. * definition"; for every y E ( O, l} we will write down a formula which 

defines both G and G' , as described below. 
- y y 

- - .. 
For each y, let HY(~,yk) be a 2k-place proper·ty which we define 

* .. -
Let 6 E (0,1} and let i E {0,1). We now show informally (this will 

be made precise bel°':') how H01 can be expressed from H
6

: It is sufficient 

to show that G0 i and G6 i can be expressed from H0 • Using Et and ,r1 we 

can express c61 and c6i by using G0 and c6• Since for any 3 E P 

. k 
with domain S and any 8k E S , 

can be expressed from H
0

• 

Proceeding more formally, let £0 be the language of the first order 

t 
since the relations obtained by restricting G0 and G6 to 3 are nonempty. 
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predicate calculas obtained from l, by adding a 2k-place fol"iBal predicate !!• 

Let w1,w2 , ••• , wk be distinct variables not occ.ttrring in !o,!l'l.'o•li• 

For i E { O, 1} , let ~ (~) be the formula of t 0 obtained from 1t by 

. -- . , 
(where v1,v2, ••• , vk represent formal variables), ad subatituting 

* One can now see that for 6 E {0,1} , i E {0,1}, 

when U is interpreted as H6 restricted to 3,and therefore 

Now let {z1,z2, ••• , z2k} be a set of 2k distinct variables not 

contains exactly one occurrence of Q, namely in the atomic formula Q(i2k)' 
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and such that Io is equivalent to .'.fo· and ,[1 is equivalent to !i• 

For every y E (0,1}* define the formula !!yC~,yk) oft as follows. 

and i E (0,1), let ¾i be the formula obtained by substituting, for 

- <i2k I c~,;k> > 
Q(z2k) in Ti, the formula ~ • It is now easy to see that 

Theorem A.2, we can check that 111.yl s: c I yj for I YI > o. ~tly, for 

(II) of Lemna A.9 hold. n 
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Awendix 2: Notation 

The empty set. 

{xix E A and x f. B} (set _difference). 

The set of all subsets of the set A. 

The cardinality of the set A. 

The length of t:he string a. 

The absolute value of the integer n. 

The set of all strings over z; if l; is a .finite alphabet. 

The empty string. 

Concatenation of the strtugs a and y. 

The i + 1 (from the left) member of the strtq •• 

If a is a string, then a.a. 

If Sis a set, then S XS X 

. . . •a (k times) if k > 0 and~ if k = O • 

XS (k times) if k > 0 and.¢ if k=O. 

(e,e, ••• , e) (length k) if k > 0 and© if k = O. 

. . . , ~) (length k) if k > 0 and~ if k = O • 

Maximum of the set A. 

Minimum of the set A. Min A= 0 if A=¢. 

one-one f(a) = f(b) =a= b. 

f is 
onto B 

N 

z 

R 

For all b EB there is some a such that f(a) • b. 

The set of nonnegative integers. 

The set of integers. 

The set of real numbers. 



IN 

z 

R 

n 

-n 

~ mod k 

M(n,k) 

TH(S) 

TH(P) 

g t, F 

I lal I 
FAG 

!DI 

:S: p.t 

DTIME(f(n)) 

NTIME ( f (n)) 

DSPACE(f(n)) 

NSPACE(f(n)) 
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The structure< N, +, s:, 0 >. 

The structure< Z, +, s:, 0 >. 

The structure< R, +, :S:, 0 >. 

A logical structure with domain s. 

The weak direct power of S. 

* The domain of g . 

The strong direct power of 3. 

The Ehrenfeucht, equivalence relation (defini.tion 2. 2~1). 

Equal up to size n (definition 2.3.2). · 

Equivalence mod k. 

The number of• equivalence.class-es on Sk. 
n 

The set of sentences-true in 8. 

The set of sentences tru& in every structure in the set r. 
F is true in S. 

The norm of the element a of a logical structure. 

Finite abelian group. 

A (one tape, one head) Turing machine. 

A language recognized by !DI. 

Polynomial time, linear space reducibility. 

The set of languages recognizable within time f(n) by a 
deterministic Turing machine. 

The set of languages recognizable within time f(n) by a non­
deterministic Turing machine. 

The set of languages recognizable within space f(n) by a 
deterministic Turing machine. 

The set of languages recognizable within space f(n) by a non­
deterministic Turing machine. 
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