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I. INTRODUCTION 

The design and implementation of programming languages is a complex problem 

which must be addressed from at least four distinct viewpoints. These viewpoints reflect 

the different but interacting interests of the designer, implementer, user, and theoretician. 

We address specifically the kinds of problems evident in the following two scenarios: 

Scenario 1: The old dangling ELSE problem. 

An early ALGOL grammar in Backus Nauer Form (BNF) was ambiguous Y.'.ith 

respect to nested IF-THEN-ELSE statements. This was noticed by implementers who 

often adopted the fairly local solution of attaching an ELSE to the most recent 

available THEN. Although BNF grammars were eventually discovered corresponding 

to this resolution, the grammar for ALGOL was rewritten to simply forbid nested 
conditionals [Nauer 1963). 

Scenario 2: A new, theoretically sound approach. 

This is a summary of advice given for the construction of deterministic parsers 

and translators in Tlit TlitOT'J of Parstng, Translatton and Comptltng [Aho & Ullman 
1972). 

1) Write your grammar in BNF. 

2) Decide whether you want top-down or bottom-up parsing (top down is more 

flexible for translation). 

3a) If you choose top~down: apply known transformations to the grammar and 

check the result for the LL(l) property. If successful, a reliable top-down 

parser may automatically be constructed which handles a general class of 

syntax directed translation. 
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3b) If you choose bottom-up: attempt to modify the grammar to satisfy the· 

SLR(l) or LALR(f) conditions. If successfu~ a bottom-up parser may be 

likewise constructed. 

4) In both cases, especially bottoffl.up, apply known optimizing transformations 

to the parsers to attain practical efficiency. 

In the first scenario BNF is being used as the formal reference tool, since it enables 

precise syntactic description. It does not, however, meal important properties (e.g. 

ambiguity) which the language designer needs ra condder. f'mthff', ·the implementer must 

work informaliy, since the grammar itself does not .suggest efficient parsing techniques (see 

the survey of varioUs approaches in ALGOL 60 la,.,,.,.doifObftdeU 19641). Finally, 

evidence indicates that the user may also be using mformal ·syntactic models (see the 

description of expression evaluation in lntrod'ltttton 10-ALC:Ol.,";{Baumann 196-i]). This 

situation precludes any serious attempt at formal verifkation. 

A consider.able amount of rigor has-beenobtaifted•ia-the formal approach in the 
second scenario, but Aho and Ullman adc.nowfedge snerahhortcomtngs. Many ·grammars 

cannot be made LL(I) and, even when they can, the resulting grammars are usually large 
and awkward and thus unnatural for syntax dir«tedtrans1ation rules; Formal techniques 

do not exist for obtaining SLR or LALR grammars. Finally~ in· both cases nontrivial 

changes to the original grammar usually reqwrethat theentittprucess be repeated. 
A fundamental weakness With these approuhes ts,tfla:tBNF iS inappropriate as a 

definitional meta-,language; it is essentially based on theories of generative grammars. The 

practical demands of parsing and translating restrict us to certain "tractable" grammars, but 

such grammars are often very difficult to recognize. In addition di$ ,ractable" grammars 

tend not to include the most convenient description of a language, so olte usually ends up 

with several representations for the same language definition; e.g., a -simple grammar for the 

user, and a complicated one for the parser. Finally, it is often necessary to transform the 

grammar into a parse table and then into an optimi1ed parse table. Such multiple 

representations form a severe obstacle to formal verification. 

What we would like, then, is a system whiclt includes: 

I) A natural and convenient definitional meta-language for the designer, 
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2) A user oriented meta-language which makes any defined language easy to learn 
and use, 

3) A simple method for automatically constructing an efficient parser/translator for 

any defined language, and 

4) Enough precision in the above to permit formal proof that all components agree 
precisely. 

Pratt presents a system in "Top Down Operator Precedence" [Pratt 1973] which 

addresses the first three of these issues quite well. He allows the implementer to "write 

arbitrary programs" while offering "in place of the rigid structure of a BNF-oriented 

meta-language a modicum of supporting software, and a set of guidelines on how to write 

modular, efficient, compact and comprehensible translators while preserving the impression 

that one is really writing a grammar rather than a program." This approach has been 

followed in the construction of CGOL, a combination definitional meta-language and 

extensible programming language [Pratt 197-4] which demonstrates the power anq 

convenience inherent in this approach. 

The CGOL system, as presented, does not satisfy the fourth criterion; it lacks a 

complete formal context in which correctness may be stated and proven. In this paper we 

complete a formal context, present an example implementation, and rigorously prove its 

correctness. 

We believe that many of the difficulties mentioned above may be avoided by writing 

grammars in a meta-language whose descriptive power is tailored to fit the intended 

application. We present and analyze such a meta-language for CGOL type translation; the 

meta-language expresses a class of languages which are easily and naturally parsed. For an 

exact definition of the describable languages, we present a user-oriented model which 

describes how sentences may be generated from any grammar. 

Since the meta-language is designed to fit the parsing method, it is possible to 

construct an extremely simple parsing program which operates by simply reading a given 
grammar as data. We give a LISP implementation of this parser, designed primarily for 

clarity and ease of proof. 

The correctness proof for the example parser is presented in two parts; theoretical 
properties and a program proof. The theorems of the first part deal exclusively with 
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properties of the meta-language; these proofs are completely independent of the program 
and the parsing algorithm. The use of these propertieS•llow• the actual progra~ proof to 
deal almost exclusively with argument passing aftd flow of allltrOI; ·die program proof is 

tedious but straightforward. 

Chapter Ii contajns an introduction and anaqsts of tlie CGOL approach to parsing. 
Chapter III is an introduction and inf orma.l discussion or our system: the syntactic 
meta-language. the generative model or defined lanpages, the pat'l.iRg program, and 
correctness criteria. Chapter IV covers the same materia1 ,With a,mp1ete tonnal definitions, 
and Chapter V contains the correctness proof 
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II. THE CGOL APPROACH 

We begin with a presentation and analysis of the parsing/translating method 

proposed by Pratt; a motivation and detailed introduction may be found in "Top Down 

Operator Precedence" [Pratt 1973). The discussion in this chapter centers on the parsing 

technique: how it works, what features yield unique advantages, and how it compares with 

known work in formal parsing theory. 

II.A The Algorithm 

Pratt's approach to translation (which we refer to as the CGOL approach, after its 

application in [Pratt 1974]), is specifically oriented toward the translation of expresstons, 
where an expression is simply an oper,ator (e.g., +or*) with its arguments. For those not 

familiar with expression oriented programming languages, the analogy to arithmetic 

expressions is sufficient for the moment. Each operator of the defined language has 

associated with it a program which embodies most syntactic and semantic information for 

that operator. The programs, called denotattons, are executed in a left to right scan by a 

simple, recursive algorithm; each denotation has the power to took at the next symbol in the 

input string, advance (but not back up) the current symbol pointer, and call the parsing 

algorithm recursively to scan another expression. The pointer to the input string is a global 
variable and may be advanced by any denotation. The denotation of a symbol may be 

called at two points in the algorithm: step 2 and step 4. Step 2 corresponds to the case 
where the operator is at the beginning of a string and does not take a left argument. Step 4 
assumes that the expression parsed so far is the left argument to the operator. 

PARSE is the function which is called to scan and translate an expression starting at the 

beginning of an input string. 

STEP 1: PARSE looks at the first symbol of its input string (it will never look farther ahead 

than the current pointer to the string). Since this symbol occurs at the beginning of an 
expression, it is assumed to be an operator which takes no argument on its left side 



10 

(constants and variables are treated as operators with no arguments). PARSE executes 
the denotation associated with this symbol. 

STEP 2: The denotation for the current operator moves the pointer rightward along the 

input string, when necessary to gather right arguments. The denotation returns the 

translation of this expression, leaving the input pointer at the symbol f oflowing the 

expression. 

STEP 3: PARSE now has the translation of an expression starting at tbe beginning of the 

input string. The question is asked: should this expressien be given as a left 
argument to the next operator in the string, or should it be returned (presumably as a 
right argument to the caller of PARSE)? The decision is made by comparing numerical 

binding powers associated with each operator; the next symbol must have a lift 
btndtng pmt>er associated with it, and PARSE was giffn, as an argument, the rtglit 
btndtng power of its caller. 

STEP 4-a: If the right binding power of the caller is greater (or equal), the translation 

obtained so far is returned. RETURN. 

STEP 4-b: If the left binding power of the next symbol is greater, then it is assumed to be 
an operator. and the expression translated so far Is its left argument. The translation 

is passed as an argument to the execution of the denotation ass«iated with this 

symbol. 

STEP 5: The denotation for this operator moves the pointer rightward along the input 

string, when necessary to gather right arguments. The denotation returns the 

translation of this expression, leaving the input pointer at the symbol following the 

expression. 

STEP 6: Iterate to step 3. 

We observe that the definitional information for each operator falls into four general 

categories. In the first category we include the specification or the operator's left.and right 
binding powers; these integers are used to locate the right ends or expressions. The second 
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category simply indicates the presence or absence of a left argument. This feature belongs 

in a separate category since the collection of a left argument is not directly controlled by a 

denotation;i.e., when a denotation is executed, its left argument, if any, has already been 

scanned and translated. Denotation for operators with a left argument are executed from 

Step 4b, those without from Step 2. The third category includes a procedure for right 
argument collection which may invoke a number of techniques, the most obvious of which 

is the collection of an expression (argument) by recursively calling the parser. In addition, 

parsing decisions may be made by looking one symbol ahead in the input string. The 
fourth category includes a procedure for translation. 

11.B Comparisons with other Methods 

From a theoretical standpoint a CGOL translator has unlimited syntactic power. 
This is not, however, the primary issue; it is much more important to ask what it can do 

well. We provide one answer to this question by comparing the algorithm to a number of 

known parsing methods, showing how CGOL combines certain advantages of each. This 

discussion presupposes some familiarity with formal parsing theory. The topics discussed 
are: 

I. Introduction and Example Grammars 

2. The Parse Type 

3. Skeletal Grammars, Ambiguity 

4. Operator Languages, Precedence Parsing 
5. Flow of Control 

6. Combination Unary/Binary Operators 

1. Introduction and Example Grammars 

The key to the effectiveness of the CGOL parser is the simple but powerful control 

structure. The syntactic power of the parser is theoretically unlimited, since arbitrary 

programs may be written as denotations; the control structure, however, creates an 
environment in which a great many grammatical constructs may be handled very simply 
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The language CGOL presented in [Pratt·l97if] and the translator constructor iJI this paper 

are examples. This flexibility and convenience resuttframa unique combination of parsing 

techniques, most of them \fftl knewn by· themselffs. 'Rather than,asking to which 

theoretical class·CGOL Nlongs, we-foak f« tinntarilia ..._. the-eperation of the 

CGOL. parser and those· in known catqortes. 'CGOL OllilMna>adftntages from many 
different approaches. 

We will refer to the foHowing grammars in this :dUCUISion. They Illustrate in a 

simple way several of the issues relevanttoparamgschemes. &ample A is an ambiguous 
grammar for the lang~e of arithmetic ex~s;,~• ts a Slllftdatld ·unambiguous version 

in which + and * associate to the left and 1' assoaates to lfte right. These properties result 

from the use of singre productions and left and right •NafFsion. BJs:an .ambiguous 

grammar for IF-THEN-ELSE statements (the wet~ daa,tmg,£LSE problem). 
Grammar B • is an unambiguous gramntar for the same.._..., n:presenting the usual 

solution to the problem. 

Grammar A 

1 E-+E+E 

2 E-+E*E 
3 E .. E 1' E. 
4 E .. ( E ) 

5 E .. a 

Grammar A' 

1 E-+E+T 

2 E -+ T 

3 T-+T•F 
4 T .. F 

5 F-+PtF 

6 F-+ P. 
7 P-+(E 
8 P .. a 
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Grammar B 

1 s ➔ if B then S 
2 s ➔ if B then S else S 
3 s ➔ C 

4 B ➔ b or B 

5 B ➔ b 

Grammar B' 

1 s ➔ if B then s 
2 s ➔ if B then S' else S 
3 s ➔ C 

4 S' ➔ if B then S' else S' 
5 S' ➔ C 

6 B ➔ b or B 
7 B ➔ b 

2. The Parse Type 

If we trace the operation of the CGOL parser, observing the order in which the 

components of the parse tree are recognized and assembled, we see that it is essentially 

producing a left corner (LC) parse. We begin the discussion of this observation with a 

brief look at top-down parsing. Parse types are categorized top-down, bottom-up, etc. 

according to the order in which they recognize the grammar rules used to derive the input 

sentence. An equivalent model is to imagine the derivation as a tree with the root 

nonterminal symbol at the top, and the leaves corresponding to the sentence. A top-down 

parser recreates this tree from the top downward, root nonterminal first. Stearns points out 

that this type of parser is especially useful for combined parser/translators; since each 

production is identified before its descendents in the tree, an implementation may 

conveniently use recursive descent. Translation rules may correspond to grammar rules, 

which may correspond to nested environments in the translating program. These ideas are 

discussed at length in [Knuth 1968] and [Lewis & Stearns 1968]. 
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LL Languages 

The LL(k) grammars are those which can be naturally parsed deterministically (i.e., 

without backtrack as the input is scanned) from left to right, top-down. The usual parser 

associated with LL grammars is the predictive parser which looks ahead k symbols on the 

input stream before deciding which production to recognize at any given point in the parse. 
In addition to the general usef,utness of top-down parsing, predictive parsers for LL{k) 

grammars are very simple; they may be implemented on a one-state Deterministic Push 

Down Automaton (DPDA) [Kurki-Suonio 1969]. Further, they are very efficient and handle 

errors reasonably well [Aho & Ullman 1972]. 

The central problem with LL parsing is that very few grarr:-,,e1i , are LL(k). In fact, 

very few languages have LL(k) grammars for any k; an example is grammar B', which 

generates a non-LL language. When languages do have LL(k) grammars, these are not 

always the smallest or most natural descriptions of the language. For example, Stearns 

discusses transformations which may convert grammars into LL(I) grammars at the expense 

of added complexity [Stearns 1971]. Grammar A' for arithmetic expressions is not an LL 

grammar for any k because of left recursion (in rules like E ➔ E + T). _Left recursion may 

be eliminated by converting a grammar to Greibach Normal Form (via a known algorithm). 

The GNF grammar for arithmetic expressions is essentially right associative, although the 

old grammar parse may always be recovered from a new grammar parse. Stearns presents 

optimizations which reduce the nonterminal explosion in the case of arithmetic expressions 

(in general the transformation squares the number of nonterminal symbols), but the result 

depends heavily on the fact that this is an operator precedence language. This property of 

arithmetic expression grammars (such as A•) allows a simpler treatment by the direct use of 

operator precedence (to be discussed below). 

Left Corner Parsing 

As mentioned above, LC parsing is a variant on top down parsing. While a top 

down parser must recognize the occurrence of a rule before any of its descendants, an LC 

parser does not until the leftmost descendant has been found. This leftmost descendant, the 

leftmost symbol in the right part of the rule, is called the left corner. This corresponds 

quite closely to the operation of the CGOL parser; each rule in CGOL corresponds to an 

operator, and each operator is recognized (its denotation executed) as it is encountered in a 
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left to right scan. Since operators may have expressions occurring as left arguments, they 

are recognized after their left corner. This parse method has been said to parse the left 

corner of a rule bottom-up and the rest of the rule top-down. When the first symbol of a 

rule is a nonterminal symbol, as with all NILFIX and PREFIX operators in CGOL, the 

parser is operating essentially top down. 

Nondeterministic LC parsing has been used for some time [Irons 1961] [Cheatham 

1967]. but only more recent work has examined deterministic LC parsing. Rosenkrantz and 

Lewis identify the LC(k) languages, those which have LC(k) grammars and can be parsed 

deterministically LC with k symbol lookahead [Rosenkrantz 8c Lewis 1970]. The class of 
LC(k) languages is shown to be identical to the class of LL(k) languages via the result that 

the elimination of left recursion produces an LL(k) grammar if and only if the original 

grammar was LC(k). Thus LC(k) grammars give us no ultimate increase in expressive 

power, but they do off er a naturalness and economy of description in many cases. In an 

LC(k) translator this advantage is gained at the cost of some potential flexibility (since left 

corner nonterminals may not be parsed top-down). An important advantage is that one rule 

corresponds to one operator, and the semantics for a rule may be conveniently localized. 

Grammar A' is LC(I}, and thus a transformed version, without left recursion, is 

LL(I); in fact, this is nearly identical to the example transformed by Stearns in [Stearns 1971] 
where the number of nonterminals becomes squared under the transformation. Grammar 

B', however, 'is not LL(k) for any k. In fact, it is intuitively clear. that the language 

generated by B' is not an LL language, since it is impossible to tell at the begining of a 

string which of two rules is to be applied; there can be no LL(k) or LC(k) grammar which 

generates the language. 

3. Skeletal Grammars 

While the CGOL parser traces a left corner parse and operates with lookahead 1, it is 

not actually an LC parser as defined by Rosenkrantz and Lewis, since it uses no grammar 

in the ordinary sense. There is only one nonterminal in the parser, the implicit one for an 

expression. All expressions are treated the same. What we have then is more like the 

grammar A', sometimes called a skeletal grammar. Skeletal grammars typically are 

ambiguous, so external means need to be used to resolve any ambiguous sentences. The 

CGOL parser resolves this ambiguity by a number of techniques sometimes seen in parser 
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implementations, linear operator precedence functions, flow of control decisions, and 

two-state unary vs. binary operator recognition. Some of these techniques have been viewed 

as optimizations to be used whenever a grammar is found with the r•ght property, although 

it is seldom obvious at a glance if this is the case. T«hntques't..ve even been developed to 

transform grammars in the hope that the desirable- properties mtght be obtatned. 

The CGOL approach is to avoid juggHng c:ontat·free grammars at all. This ts done 

by not attempting to describe difficult matters with cfg ntles. These rules are certainly 

useful for describing phrase structure (as ir, the' two~ ttampie' grammars), but 

begin to grow in size and lose clarity when tftey clescribe .,._acor htera:nhtes and 
association (as in grammar A). 

i. Operator Languages, Precedence Parsing 

Some of the information which is normaffy represented by nonterminal symbols may 

be defined as properties of the terminal !ymbols, if the faftgUaps are·def'tned by operator 
grammars. These are context-free grammars which have no a4jacent nonterminal symbols. 

Although these are something of a special case in the hteratutt on formal languages, a great 

many useful programming languages have (or are very close"to having) operator grammars. 

AH four example grammars are operator grammars; see also[Floyd 196,]for an operator 

grammar for ALGOL. In fact, it seems that adjacent nontennmats usuatly appear when we 

try to solve some "problem" with a grammar (say ambigUity, or left recursion) by 

transforming it into something less natural. Rules with no nonterminal symbols at all are 
especially nonintuitive; we like to think of each rule as having some meaning, but when a 
rule has no associated terminal symbols, its occurrence relativ~ to a lefl.-.ce wiU only be 
implicit. In the CGOL parser each rule is attached to some s,mt,ot, an operator. ~ith this 

restriction CGOL is able to apply the following techniques. 

Precedence Parsing 

The term precedence parsing describes a well known family of. techniques used in 

bottom-up parsing. T~e standard implementation of a bottont-up parse is known u a 

shift-reduce algorithm. This algorithm scans the input, one symbol at a time, from left to 

right. A shift step reads an input symbol and pushes tmo OMo a stack.' A reduce step occurs 
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when a sequence of symbols on the top of the stack correspond to the right side of a 

grammar production; this leftmost reducible phrase is called the "handle" of a sentential 

form. This series of symbols is popped off the stack and is replaced by the nonterminal 

symbol on the left of the rule. A parse is complete when the stack contains only the root 

nonterminal of the language and the input stream is empty; the output is a bottom-up parse. 
Precedence parsing methods are distinguished by the method of making the 

shift-reduce decision, i.e. deciding if the scan has reached the right end of a handle. The 

general technique is to derive from the grammar a relation (usually written ►) on the 

symbols of the language. Although a variety of precedence techniques have been 

developed, their essential feature is that they compare two adjacent symbols in a sentential 

form; if the relationship ► holds between them, the right end of a handle has been reached. 

Operator Precedence 

The application of precedence techniques to operator languages leads to a welt known 
and efficie.nt parsing method (see [Floyd 1963)). Operator precedence grammars are those 

for which the shift-reduce decision may be made uniquely by considering only terminal 

symbols; i.e., the uppermost terminal symbol on the stack is compared with the next input 

symbol. Considerable storage space and algorithmic complexity is saved by simply ignoring 

nonterminal symbols; i.e., not using them to carry information. The resulting parse tree is 

calted the skeletal parse, since all productions with single nonterminals on the right side are 
missing. The interesting structure is there, though, since extra nonterminals with rules like 

E ➔ T in Grammar A' are often included only to express properties like right or left 

association and have no semantic implications. 

Although operator precedence seems a somewhat obscure property for a grammar to 

have, Floyd argues that many useful programming languages are quite close to having 

operator precedence grammars. He offers an ALGOL operator precedence grammar as an 
example and identifies certain problems which he suggests be solved via escape clauses, or 

special parse techniques. It seems that the technique handles the majority of language 

f ea tu res quite well, but has certain difficulties which would be much better dealt with by 

exception, than forced in the basic scheme. CGOL deals with some of these problems quite 
wetl. 

Pratt conjectures that operator precedence techniques are widely applicable because of 

their intuitive appeal; they correspond exactly to the ordinary conventions for writing 
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arithmetic operators. Grammar A• for example is an operator grammar in which the 

relations t ➔ * ➔ + hold. These represent the notion of the precedence hierarchy of these 

operators. We also note that+ ➔ + and * ► *• meaning that these two operators associate 
to the left. On the other hand, the relation t 4 t holds; this means, in the operator 

precedence scheme, that this operator associates to the right. 

Linear Precedence Functions 

An optimization often considered for operator precedence schemes (and for 
precedence relations in general) is the encoding of the precedence matrix (i.e. the relation) 
via linear functions. Typically, two integer valued functions f an:.. g are defined over 

terminal symbols. If for two terminal symbols >< and y the relation >< ► y holds, then it wilt 
also be true that f (x) > g (y). While the technique only works for a small number of 

possible matrices, it turns out to be easily applicable to grammars like A'. Again, the 

conventional hierarchy of the operators in arithmetic expressions allows this encoding 
scheme to work. 

An operator precedence·parser for arithmetic expressions is very compact and 

efficient. CGOL makes use of the operator precedence technique, but without forcing the 

designer to express his ideas in BNF first, only to have them transformed by algorithm into 

what might essentially be the original idea. The designer simply defines left and right 
~inding powers for each operator. 

We recall that left corner parsing treats the left argument to an operator in bottom-up 
mode, and the rest of the rule in top-down mode. It is in the bottom-up mode that this 

technique is used by CGOL. When PARSE has scanned a complete expression, a decision is 
made by binding powers. If the next token of the string wins the expression, then the 
expression becomes a left argument. If PARSE returns the expression, then the expression is 

the result of a top-down call from some higher level. The operation of CGOL for 

grammars composed of only arithmetic operators, like 0, is exactly parallel to the operation 

of the canonical strong LC machine of Rosenkrantz and Lewis [Rosenkrantz & Lewis 1970]. 

The nested environments of CGOL correspond to the stack of the LC machine. An LC 
stack entry may either be a single nonterminal symbol, corresponding to a call to PARSE 

which has not yet parsed an expression, or a pair of nonterminal symbols, corresponding to 
a call to ASSOC which already has a left argument (or left corner) parsed, waiting to be 

attached to something. 
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5. Flow of Control 

A major difference between CGOL and the LC machine becomes clear when we 

consider grammar B'. This is an operator precedence grammar which is easily handled by 

traditional bottom-up methods, but it is not LL(k) for any k. By the result of Rosenkrantz 

and Lewis then it is also not LC(k) for any k. The CGOL parser handles this example 

with great ease, since the program for the operator IF can simply parse its THEN argument 

and then look one token ahead to see if it is ELSE. Both possibilities are treated by the 

same denotation, so we are using the equivalent of the ambiguous version, grammar·B. As 

with arithmetic expressions, CGOL uses an ambiguous grammar with a simple rule to 

resolve ambiguity; in this case it is simply to take the ELSE if it is there. Aho, Johnson, and 

Ullman treat this example in some detail, pointing out that this solution is a simple fix to 

the otherwise ambiguous top-down parsing table for grammar B 

[Aho, Johnson, & Ullman 1973). We have a situation where the top-down predictive parsing 

technique works for cases which are outside of the normally defined LL boundaries. By 

allowing arbitrary programs as denotations, CGOL allows an operator to collect any right 

arguments in a very general top-down fashion. We might say that each operator has its 

own top-down predictive parser for the grammar of its right arguments. It is this feature 

which allows the use of regular expressions to specify annotation patterns within the 

meta-language defined in this paper. In fact the restrictions placed on the use of the 

regular operators make each annotation pattern the equivalent of a miniature LL(l) 

language, although the restrictions are in fact even stronger than LL(l). 

6. Combination Unary/Binary Operators 

The third technique used to resolve ambiguity in a CGOL parser is a solution to a 

problem encountered by Floyd when he tried to write an operator precedence grammar for 

ALGOL. Certain symbols of the language have two uses, and operator precedence by itself 

can not distinguish between them. The common example of this is the minus operator 

which may be used either as unary or binary. CGOL allows this double definition in a 

general form. Any operator may have two unrelated definitions if one of them has a left 
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argument and one does not. CGOL is in this sense a two state machine, one state 

corresponding to an immediate call to PARSE, when no left argument is present, and the 

other to a call to ASSOC, when there is a left argument available. There is never any 

ambiguity. 
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Ill. BASIC CONCEPTS 

In this chapter we motivate and informally introduce the components of our language 
system. The notions pr:esented, will be given full formal treatment in the following chapters. 
We discuss first the meta-language, giving exampb Qf its use. St,lte the meta-language is 
nonstandard, we will present a generative model which determines the IC!lltences of a 
defined language. The chapter concludes with a brief discussion of the translator algorithm 
and its correctness criteria. 

Ill.A The Meta-Lancua,e 

Our formal language system is based on a syntactic meta-language which: 

(a) restricts the syntactic power of the system in a way which permits rigorous proofs, 

(b) embodies the full power of the scheme in the sense that we want It to express 
anything which the parse/translation scheme handles naturally and efficiently, and 

(c) allows the automatic construction of simple translators. 

We recall from Chapter II that the translator uses four types of information for each 
operator in the defined language: 

(I) Left and right binding powers, 

(2) Presence of left argument, 

(3) Pattern of right and annotated arguments, and 

(4) Translation rule 
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In the origirntil CGOL facility this informat.wn is specified by the designer in a varying 

mixture of declarative and procedural modes. To fadiitate·un:iform treatment. we will a1fow 
exactly one typer of meta-language statement, a:~• which wilt«Jlllain all of the data 

necessary to def me a single operator. W-e restrict tM'syMldk power of the' translator by 

requiriffg that aiJ s~ iffftm_. ~·t,.9''a tmw ~'l!Je JtlRd· in :r declaratiff' 
language, leaving Ol'lty the translation rule in procedurlt•form. This· declarative segment 
includes a te~of. argument pottttorts(parts·2 afflt!J)aml'1up1diQHon of binding 
powers (part t), Thus we might. write: 

Ex. I 

to define + as an operator of the languag.e With left and; right a,rguments; It has left and 

right binding powers of 14. and <denotation> i• a p~ wMcti: accepts as input the 
translations of the arguments and calculates the tnmslaflM·of tfle ffltjpg phrase; To deal 

with more generaf prografflt'ning laftguage feamres we, dl:tw p,edUtttom like: 

Ex. 2 •1F• ,., •THEN• ,., (•ELSE• ,., I >.l ,&;<denotation> 

which defines the stand ant conditienai operator. Th~ pFOduc:tiorf indtldes the specification 

of extra right arguments (in addlttoff to the normaf om, With lf actint a a prefix 
operator); we can •THEN" ,., • ■ELSE• ,., I >.l the" a'lffltltfltton pettw• of the operator 

• IF•. Here- the akffl'1atkm' (or uniOff) tymbof I is 11114 to specify• a choice of two pattems, 

one of which is.the! nufl· string >.. An, even more poti,e,fm conditionaf may be specified by 
the production: 

Ex. 3 "IF" ,., "THEN• ,.. ("!:LSEIF" ,., •nteN• .., )* (•ELSE• ,.. I >.) ,6;<den> 

which uses the star closure symbol * to indicate any number of occurrences. 

We write ann~atiOn patterns using regular expnnion notation (as in Examples 2 
and 3) because it rs well knoWt't, quite general; and amenable to formal treatment In an 

actual implementation one might e:ttemf this l10fMiel'r to include pattern operations 

expressible in terms of the basic notation. For example; w~ might introduce the brackets [ 

and J, and let Cal denote fal>.). We could then write-simply: 
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Ex. 2' "IF" N "THEN" N c·ELSE· N] , 6;<denotation> 

instead of Example 2. Another possibility might be < and > to mean + closure (one or 

more occurrences). Such extensions are not included here, since they do not affect the 

theoretical behavior of the meta-language. 

This meta-language is restricted enough to allow formal treatment (goal a above) and 

is general enough to exploit the power of the parsing scheme (goat b). The patterns, 

however, are too powerful for simple parsing (goal c); any of these patterns could 

theoretically be parsed, but not all of them easily or unambiguously. We solve this by 
restricting the class of permissible patterns to those within the power of a very simple 
parsing algorithm. 

This matching algorithm for patterns (arguments on the right side of operators) is 

deterministic and never looks more than one symbol ahead in the input string. Our model 

of the algorithm is a person with one finger on the pattern, one finger on the input string, 
and almost no memory! It should always be clear what to do next; no backing up allowed. 
To put this differently, the user should always be able to understand the parsing method. 

To insure the correct operation of the parser, we adopt the foltowing three rules. 

The first rule is that patterns joined by alternation not begin with the same symbol. 

Thus we disaltow the pattern: 

Ex. I' "IF• N (•THEN• NI •THEN• N •ELSE• N) ,6;<denotation> 

as an alternative to Example I. In fact we prefer the original form for the following reason: 

an annotated argument should be identified by the name of the preceding symbol, not by its 
position in a pattern. We intend that there be no difference between the two THEN 

arguments specified in example 1'. 

The second rule solves a problem arising from the use of the symbol ). in patterns. 

Whenever the pattern ). is an alternative, the scanner could "match" >. and miss a non-null 

matching symbol. This problem is solved by a fiat similar to the dangling ELSE solution. 
The parser will always match as much of the input string as possible; the pattern ). is always 
the lowest priority choice. 

The third rule prohibits certain other patterns which cannot be completely handled 

by the parser. For example, we consider the production 
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Ex. 4 

which describes .two possible phrases; one ilas one OCGUrreMe of BM, ·the other has two. 
Because of the fiat above, our algorithm can on1y pane the ·litfCIOnd :possibility correctly. 
Thts a local care of the dangtmg ELSE ·pNMem, and liftC!e tit-ts~ we disallow 

patterns in which it eccurs. Inf or-ma·lfy, this rule restriCtS the me of ,-.ns which give the 
parser a choice Whfflter to continue, bU!d on the presence ef sanw·-deltmittr symbol like 
ELSE. We wilt fflllJire that such a pattern not be~• the'Wt with a pattern 

which can stal't With one of its delimiter symbols. In ·,-e of Exampfe ·-t• we might use the 
production 

Ex. 4' 

which matches the same phrases but can be parsed ~-

While not immediately obvious, these restrktien& are ~lelelJ 1oca.1 to each 

production and a-r-e mtuitively mottvaed Patterns with vielaa them ad can sometimes 
be rewritten .in an acceptable form, and the aa:eptat,te ferm often male more sense. In 

fact, the verification of these conditions is computatianafty ·quke simple~ an interactive 

definitional facility would have verification al'td d~ His buftt<-tn. These rules are 

considerably simpler and more intuitively appealing than me LL alld LR a,nditions. 

On a g1oba1 revet, use of the meta~tanguage is qtnte straightforward; the global 

restrictions which do exist are very simple. Only one production ma, be given per operator. 
although some symbols may 'be used for two different operaors. one With a left argument 

and one without (-e.g., the binary and unary minus operaws would be ddiMd in two 

separate productiont). A S'YfflN1 defined as an operator may aiso be lltllJI· as a delimiter (in 

annotation patterns.) as long as tts binding powers remam welt defi'Mld. •ce the role of a 
delimiter is passive. This sort of detail is ~viaUy manageable IJy a def inltional facility. 

An important property of this meta-language iS that a set of produttions forms a 

complete languap definition; no other inf ormatton ts neoessary. It ts precilely this extreme 
modularity which makes designmg 8tensible taftguaga convenient. 
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111.B User Model 

Once we have a language definition, a set of productions, we want to offer the user a 

manual explaining how to use the defined language. We claim that the productions 

themselves are straightforward enough (and their syntactic interactions simple enough) to 

serve as the basic manual, once our generative model is understood. For precision and 

verification this model will be presented in formal terms. It should be understood, however, 

that the formalism is intended only to add rigor to intuition; intuition need not be bent in 

order to agree with formalism. Some of the assumptions on which the model is based are 

discussed in Top Down Operator Precedence [Pratt 73]. 

The operator is the basic definitional unit in these languages; appropriately, the 
user's primitive concept is the relation "is an argument of". We carry this one step further 

by specifying what kind of argument (what role it plays). Also, to allow more than one 

argument of the same kind, we specify an ordering. It is then natural to represent 

expressions as trees: nodes correspond to operators and subtrees correspond to arguments. 

The branches are ordered and· labelled to identify the argument: normal arithmetic 

arguments are connected by branches labelled left or right, and annotated arguments are 

labelled by the annotating token itself, the delimiter. This is very closely related to 

McCarthy's abstract syntax [McCarthy 1963). 

The purpose of syntactic convention is to uniquely represent these expression trees as 

linear strings of symbols. Two well known examples are the use of postfix and pref ix 

notation to represent ordered trees. In the domain of binary trees infix notation is 

commonly used, but here additional conventions are necessary to resolve the association of 

intervening arguments. An example of this problem is the string a+b*c, where we know by 
convention that b is the left argument of the operator * and not the right argument of +. 
The convention used here is usually viewed as a hierarchy of the arithmetic operators in 

which the higher operators "go first" or "take precedence" over lower operators. We use this 

convention to recover the correct tree from a given string; it may also be used to determine 

which trees are directly expressible as strings, and which trees require the use of 

parentheses. 

The languages we define use a combination of notational conventions including 

infix. To deal with association problems we adopt a convention based on the idea of 

operator hierarchy. A btndtng power is a numerical value which represents the precedence 

level of an operator; thus an expression between two operators is understood to be an 
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argument of the operator with the higher binding power. Thi1 conv-ention is generalized 
somewhat by allowing separately specified lift and right f>ttrdt'ltf fJMJltTs for eac;h operator, 
allowing operators to ~hav! atJmmetrklfly. 

We incotpma~ tlliS C01'tventkm tn a modtf for wrrttng linear eq,ressions from trees. 
ThE! bHit t'{N· tor WT1tffif f!XJ)tffltl'im fS: daJft ·0~·111 ftpressbl e ts a ~t (right) 
argument to an t,pffator op if the ieft (right) binding power or op is high enough to cause 

any subexprfflton or • to associate tftc:ornttfy. We't1M'1rtft•t- -,be used as an 
argument to +, btn a+b may not be used as an argutnlftt to•· F~tly. we measure the 
rest~tanc:e (on nm sld~) of ah expreuton ro ribe ~- Wt ·wffl d4!fine the r-i nde,c 

( I - i nde><) of an ~presston to be es-.,tlllty t1te f6wat rtpt {Wt) tnnatng power of any 
interhal opet11tot npowd to tM rtpt (left) side ef ttte· ftprmtoft. i=u: example, the 
r-- i ndtne of #+~ ts equal to the rtght bim:tlng potfft ·or +. stm:e 1n operator to the right 
of this expreuton (ny anoth~ •) mtght take i-.: intffl'Htfly o a· left argument. The 
1-i nde,c of the expression Sift a is •· sina lt iS totaW, tnvullerabte to false associations 
on the left. Altl'H,ugh this model does not aflow cettaiff eJCpmsions trees to be written, most 

defined languag~ tnt1ude a bratkettttg oreraror Otke parenthfles) wtridl ts semantically nu11 
and creates an expressiOn with 1.:.inc:te>c•r-lndex-t. Thus, '(a+bl may be used as an 
argument to *· 

The only other way in which operators may synta.tttcafly interact results from the 
generattted · dangttng ELSE ~- The e;cpmsion TF a THEM b hu the property that 
an ELSE occurring lt'mnediattty af~ b wi11 Clute the parter to conttti\le col1ecting arguments 
for this phrast (~ti th~ ftat: gtven the choice of tontMutng or not, the parser will always 
continue). ihe informal rute is: don't follow an exprfflttMt e :by a delimiter which will get 
incorrectly tnduded With e (or some subexptession of e). This rule pn,htbits the use of an 
IF-THEN exprestibn as the secood argument (i.e., the llEN argument) to an 
IF-THEN-ELSE expression. We formalize this rule by dettritng the c-a•t for each 
expression. the stt of tokens which would cause argument coflectiOn to continue incorrectly 
at some level We s.ty: an exprfflion may not be tollowtkl by a token in its c-aet. 

These thra! properties ( I - i nde,c, r-i nde,c, and c-ae t) completely describe the 
syntactic behavior of any expressioo. A standard BNF grammar would represent the same 
information itnplititly by the use of one nonterminal symbol. More closely related 

techniques have bMtl studied which attach various modifiers to nonterminal symbol" in 
context-free gra~fs; see espectany 1ndexed Grammars• [Aho 19681 and the 
transformation defined Oh wtfl-chained grammars tn[Steams 1'111 The COOL approach 
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is extreme in the sense that nonterminal symbols play virtually no role at all. 

The separate treatment of syntactic properties is an important feature of this 

approach; both designer and user can deal with the various syntactic issues explicitly and 

separately. The most prominent syntactic feature of a language is its basic phrase stru~ture, 
expressed by the productions as an ambiguous context-free grammar with one nonterminal 

symbol (called "expression"). Argument association is dealt with separately by binding 

powers, similar to the arithmetic conventions. Pratt argues that binding powers may be . 
usefully assigned on the basis of an implicit hierarchy of data types, corresponding closely 

to ordinary intuition and conventions for programming languages. The annotation patterns . 

are also treated separately. Delimiters like ELSE which can cause problems can be explicitly 
noted (an easily computable property) and the operator combinations which interact can be 
listed. For example, it would be observed that IF-THEN-ELSE expressions interact with 

themselves if improperly nested. In a well designed language, these interactions will be 
rather limited in number, freeing the user from this concern in most cases. 

111.C Automatic Parsing 

Our meta-language defines a class of programming languages for which the CGOL 
translation technique is particularly appropriate. We demonstrate by presenting a simple 
parsing program which, when given a set of productions as data, correctly parses sentences 

of the defined language and can be easily extended to handle translation via denotation 

programs. The program is a working (although inefficient) LI SP implementation which 

requires the transformation of productions into a suitable LISP representation. 

A definitional facility would be a set of programs to provide this and other services 
to the designer. The mtta-language processor is a program which accepts productions of the 
meta-language, either incrementally or in batches, and stores the information. In this 

implementation the data are simply attached to the name of the operator being defined (via 
the property list). A facility could also include automatic verification of annotation patterns 
with debugging advice, and automatic documentation. 

Incremental implementations would be convenient and could even be performed 

on-line. An extreme example is a bootstrap, in which denotations may be written in the 

language defined so far (e.g. the language CGOL [Pratt 1974]). 
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111.D Correctnen 

We consider a formal· proof of ·correctness. an essential. ~portent of the 

system; it is poittdess, to ha"fe automatkr paniftf ....._.,.,"....,._ tntm& mislakes witt be 
made; 'Fhe,ctaunwe,,waM,prCfflllt.: thlff.·:it.•pll. at•111u111,/ .... rpditflnlti0n,in the 

proper representatien, the parser works correctly. 
To. say that the paner·worls•correttly 1'eqtriresa,prect.def ...... of what it should· 

do. Our specifkations·of a meta~language alKl user medlll ~·atftmnal context in 
which correctnaunay be ngo,outly,deftned 

We say,tbaf,a,paner operating: on SGIM·laftg~is:atred when the 
following are tr:ur. 

I. If the expression (i.e., tree) e•.is written a«cmliRf,i.JanWllltim as the string w. 
then the·parser wiU reanrer:the,·tree •~ 

II. If the parser recovers a tree e, then theinput:string is in tlae::1ief ined language. 

Part I gµarantees that any. valid string of the language·wilbe-parsed-curr.ectly; part II 
assur-es that no,itllOlftU striftg$ wilt·be paned~ 

The correc:tnesJ. theorffll. is actually a statemeat retMmf: me behuior of two functions: 
writing (mappift§ tf'NI into stnngs):aml;parJiftf (mapp,iaf strinpdlll0,'1n!eS). Both parts of 
thetheo,em are pbtffR1 by induction; bttt··Oftr•dif,._,~,. put,towrthe domain 
of trees, and · p&rt 11·&¥« strings: It is acorolfary, oflh'eitleolMHhar.ttie- languages defined 
are unambiguous;.i.e., no string can.be·written fi'vm··fflGil'e'thattone·tree. 

From the sta11dpoiat of fwma-1 languap·thtery. the-t1.eotea'f:·W•tp,roof of 

equtva1eme of two: akernate laAguage-definttteff ~ · Ai,.,.,,.,.,,, dacrtptlon is 
presented as the· mer model; an· 41tal'Jllc description· is. lmpltdt· lrt ~ parsing· program. 

The proof itsetf is carried out in two phases. lrMlw f itst; we- prove, a number of 

theoretica I properties of the language, tlass, t,e,; o.t the deffftttiemtl mecbanu_m. These 
properties are· independent of any program w parstng·atgwidmt G1ven thea. results, the 
actual proof of the parsing progmn· il"tedtout, butquite.ttlafltitfcrwud 



29 

IV. FORMAL DEFINITIONS 

In this chapter we present the formal details of the language system introduced in 

Chapter III. Section IV .A presents the meta-language; the parsing program for defined 

languages is given in Section IV.C. The generative model of defined languages, given in 
Section IV.B, permits a formal statement of parser correctness, discussed and proven in the 

next chapter: 

IV.A The Meta-language 

We begin by naming the basic lexical units of our defined languages. 

Definition: A token is a single lexical symbol in a defined language. 

Notation: 
(i) Actual tokens will be represented using only upper case letters; e.g. IF, ELSE, 

+, and (. 

(ii) Lower case letters are used for meta-variables in this discussion; e.g. t (possibly 
subscripted) refers to some token. 

(iii) Greek letters represent strings of tokens; e.g. a, (J, 'I. 

While the token is a lexical unit, the operator is our basic definitional unit. 

Definition: An operator is a set of semantic and syntactic information, representing some 

operation. We use the meta-variable op for operators. 

Productions 

An important feature of this system is that all specifications necessary to define a 
programming language are in the form of operator definitions. A single operator definition 
is expressed in a meta-language statement called a productton; productions are the only 



statements in Utt meta-language. 

Definition: A production is a cluster of infermation wihith def mes ao operator and 
associates it with a token of the defined lattguag.e. A productkm defining the 

operator of> for the token OP mult'be in une,of feurf'9!111S depending on the operator 
type. , 

OPERATOR TYPE PRODUCTION 

NlLFI>< •OP• </I> ,<rbp>; <deno,t,at ion> 

PREFIX •OP•.., <P> ,<rbp>;<denatation> 

POSTFIX .., •ap• <P> ,<tbp>,<rbp>;<denatation> 

INFIX ,., •OP• ,., <,P> ,<lbJ»,<rbp>;<denetation> 

where: 

I) quotes(•) are meta-language symbols enclosing the token ·being defined. 

2) ,., is a meta-language symbol denoting the presence of an argument 

3) <P> is an optional annotation pattern, defined in the next paragraph. 

"l) < I bp> and <rbp> ar~ left and right binding powers, non-negative 
integers. 

5) <denotation> is a program which cakulates the translation of o/J, given 
the translations of its arguments. 
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Notation: When an operator op has been defined we refer to the components of the 

production as follows: 

type Cop] 

p top] 

I bp Cop] 

rbp Cop] 

den Cop] 

is one of INILFIX,PREFIX,P0STFIX, INFl)O. 

is the annotation pattern defined for op. 

is the left binding power defined for op, if any. 

is the right binding power defined for op. 

is the denotation defined for op. 

Aside from patterns, what we have is a simple formalism in which ordinary unary and 

binary arithmetic operators may be defined. The first part of each production is a template 

in which the defined operator is quoted and the symbol,., is a place holder for arguments. 

The left and right binding powers are stated separately, and the denotation incorporates a 

translation rule. We recall the production in Example l of Section Ill.A in which the 

operator + is defined: 

Ex. I ,., •+•,., ,14,14;<denotation> 

In this case typeC+J "" INFIX, and lbp[+J • rbp[+J .. 14. 

The optional use of annotation patterns is a distinguishing feature of this 

meta-language. A pattern allows an operator to take multiple right arguments, each labelled 
with an identifying token. In addition, tok.ens may be included which label no argument 

but play a purely syntactic role. 
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Definition: An annotation pattern, or simply ettem, is 'an ~X'pmlftM'I specifying powble 

labelled argument configurations. We use the meta-variables p, q, and r to 

represent patterns. A pattern p must be i1I one of ,the :fcltowing 'fDrms: 

2. "11" where d is a tok-en 

where d is a token, .., a 0m«a-~ ••• HGVe 

or, inductively, for some annotation patterns q and 'T, and the 

associated sets µ,si,, µrst r• and amtq: 

-t. qr 

5. (qfr) 

6. (q}* 

if f trst q n ftrst r • ♦ 

if cont" n ftrst" - ♦ 

Definition: A delimiter is a token used in a pattern. We we the meta-variable d (possibly 

subscripted) to represent a delimiter. 

Before defining the sets ftnt and cont, we refer -brieflJ'to Exa• 2 of Section Ill.A: 

Ex. 2 • IF• ... •nteN• ,., f"ELSP .., I ).} ,-&;<denotation> 

In this example the operator IF is defined with type lop) • PREFIX, and we have the 
pattern p CIFJ • •nteN" ... ("ELSe ■ ,., I ;>.) (which will be seen.to satisfy the 
restrictions). As in the operator part of a production quotes enclose the tokens, in this case 

delimiters, of the defined language, and ,., holds the plate of an argument. 

With the exception of the restrictions imposed on cases •• 5, and 6, these patterns are 

ordinary 'regular expressions with the usual interpretation; the symbols>., I, and * denote 

the empty string, pattern alternation, and pattern star closure respectively. 
Although the symbol,., is intended to hold the ptace of an argument (a 
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subexpression) we will expedite our discussion of patterns by considering a language in 

which we include the symbol ,., to match itself. Thus, we will say that the string d matches 

the pattern "d", and the string d ,., matches the pattern "d" "'· Two strings which match 

p [I FJ are THEN ~ and THEN ,.. ELSE "'• 

Notation: When the string w matches the pattern p, we write w<><p. 

Recalling the restrictions imposed in our definition of annotation patterns, we now 

define the sets ftrst and cont. We begin by defining our notion of ftrst. 

Definition: ftrst ( w) • the first symbol of the string w (undefined if w • >.). 

Definition: ftrstp • Uw<><p,w .. >. lftrstlwJJ. 

The set ftrstp is simply the gene~alization of ftrst(w) to all strings matching p. Similarly, 

we have two forms of cont. 

Definition: If w<><p then contp(w) • UwtJoep,tJ11 :>. lftrst(tJ)J. 

The set cont P (w) includes any symbol which may follow win a longer string, when 

both w and the longer string match p. In the context of finding a string to match a 

particular pattern, this set has the following interpretation. Assume you are scanning a 

string from left to right and have just reached the end of a string w which matches the 

pattern p. If any of the symbols of cont P (w) occur next in the string, then it may be 

possible to continue scanning and find an extension of w which also matches p. Ref erring 

again to Example 2, we have cont P CIFJ (THEN ,..) = lELSEI and 

cont P [I FJ lTHEN ,., ELSE ,.,) • q,. The set cont P is the generalization to include all tokens 

which might occur this way, so we have cont P CIFJ = IELSEI. 

The sets ftrst and cont enable us to state important restrictions on the use of 

patterns, restrictions which are directly motivated by our parsing algorithm for matching 

strings to patterns. While we can not in general prevent non-local interaction of annotation 

patterns (e.g., nested I F-THEN.:..ELSE expressions), it is possible to insure that there are no 
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ambiguities or unexpected results relative to a single pattern. The three restrictions prevent 

any such problems. 

The essence of the matching algorithm is as follows: look at the part of the pattern 

remaining to be matched and decide what to do next. If the pattern is :>., then simply stop. 

If it is "d", then look at the next symbol in the input string. It must be d or there is an 

error. Likewise, "d" ,., means to check ford and afterwards "collect an argument". When 

the pattern is the alternation ( q I r), there is the obvious problem of choosing which 

pattern to use. The decision is made by examining the next symbol and determining 

whether it is in the sets ftrst q or ftrst,. When the pattern is qr, the two patterns are simply 

matched in order. Finally, when the pattern is (q*), the next symbol is always checked for 

membership in ftrstq. If true, the pattern 'f is matched and the process repeated. 

The restrictions on patterns insure that the choices made by this method are always 

unique; i.e. that they are the only possible choices. Thus, in the case of (q Ir) we require 

that ftrst q n ftrst r = cp, no symbol may be in both sets. The problem with qr is slightly 

more subtle; the restriction here (contq n cont r .. cp) insures that the choice, whether to 

continue matching a longer string to q, or to stop and begin matching r, is always unique. 

The * operator is essentially an extension of concatenation, so the restriction on the pattern 

(q) * is similar. It must always be clear whether to continue matching an instance of q, or 

to go on to the next, so we require that contq n ftrst, - cp. Important properties of these 

restrictions, independent of any parsing algorithm, are proven in Section V.B. 

Sets of Productions 

We have now defined the local properties of a meta-language production; there is no 

other form of definitional information. A complete language definition is any set of 

productions, defining a set of operators, which satisfies minor global restrictions (to insure 

that all properties are well-defined). 

De,finition: An operator is of type NUL-TVPE if it is defined without a left argument. 

An operator is of type LEF-TVPE if it is defined with a left argument. 
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Definition: A language definition Dis a set of productions in which: 

I) no token OP has more that one NUL-TVPE production, 

2) no token OP has more than one LEF-TYPE production, and 

3) no token is both a LEF-TVPE operator and a delimiter. 

Conditions I and 2 allow a token to represent two operators in the special case where 
one operator takes a left argument and the other does not; i.e., when there will be no 

ambiguity. In this case, two separate operations are actually being defined, but they are 

represented by the same symbol. Such an token is both LEF-TVPE and NUL-TVPE. Context, 

i.e. the presence of the the left argument, will always make it clear which operator is meant. 

Condition 3 guarantees that the left binding power of every token is well defined, since the 

parser uses the convention that delimiters have I bp • 0. The left binding power of all 
delimiters is by convention 0. 

IV.B Generative Model 

We have presented in Section IV.A the structure of our meta-language. A generative 

model is now defined which determines the correspondence between a language definition 0 
(a set of productions) and the languages defined by D (a set of token strings). The model is 

closely related to the assumptions on which the CGOL approach to translator writing is 

based: the argument relationship among operators and the syntactic conventions for linear 

representation are related but separate issues. 

We begin with the set E0 of abstract expressions, collections of operators with 

specified argument relationships. We then define three properties of expressions which 

measure potential for syntactic interaction. Given these properties, we define the subset 

E'o ~ E0 of expressions which are grammatical; i.e., may be unambiguously represented as 

linear strings of tokens. The process of linear representation is defined as the function &.l0t 

mapping expressions into the set :E* of strings of tokens. 



Expression Trees 

Our basic notion of abstract expresskm is based un the relationship "is an argument 

oi' among o,rerators. This notion is extended by ordertng and ·~ each instance of 

the relationship, identtfytng the puticollr re1e being ,-ytd 'l,y the ·argument. Thus, an 

instance of the relationship might be "is a left argument of" or •ts an ELSE argument of". 

Our formal model of these expressions is a set of order«I tA!l!S with labels on both 
nodes and branches. A node corresponds to an operater wheie ·argt.lffl'ffltS (subtrees attached 

by ordered, labelled branches)occur in a·Cdnfigtlratton apprapdate cethe definition of the 

operator. Exa~ of these trees are ginn in Ftguret ':ftpre a ts a expression tree 
containing Mty arit'hmettc ~rators . .Arguments'hettffl 1at,eJled •ten• and "right", 

indicating thetr rotes. Figure lb shows a conditional·~ in which the test is the 

"r i gt, t• argument and the a1tmtative values are apprapriattly ~- Ftgures le and Id 

illustrate possible uses of detimiters which label no arpments. In these cases the tokens J 
and FI are included to signal the end of the expresskln. We formalin this latter technique 

by permitting labeHed branches which connect to the nul1 subtree, although we will not 
include the nutl trM as part of our set. 

We now define formally the set of expressiOns correspondklg to a meta-language 

definition. Our basic requirement is that the argumeM·lZOnfipralton for ach operator be 

appropriate to its definition. This requires a more pn!dle deflftitton af the correspondence 
between pat~s and sequences of subrrees. · 

Definition: The ordered subtrees e1, ••• , en (n~, ,labefted d1, •• , ct,,, match the 

pattern p iff one m' the foltowing ts true: 

I. p - ). and n-8, i.e. there are no subtrees. 

2. p • "d" and n•l, where e 1 ts null and d-d1• 

and n•l, where e1 is non--n111I and d•d1. 

or, where q and r are patterns, one of the following: 

i. p • qr and 3k 8$k$n such that e1, ••• , 91c match q, and 
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T X + 

A 8 X 1 

Figure la Figure lb 

IF 

D E 

Figure Id 

Figure I. Expression trees 



5. p • (qf r) 

6 .. II • l•r)* 

eic. 1 , ••• , en match r. 

and e1, ••• ,.en match If or r. 

and either n-8 er 3k l<tdn such that e1, ••• , ~ match 

q, and eic. 1, ••• ,e" mt.tdt (fJ*. 

We are now ready to define our complete set of exp,essitlln trees. 

Definitton: The set of expression trees Eo ·corresponding. to .a IBtg:uap definition D 
contains·the-set of finite tf'ftS defiaed iaducti.vely by; 

Bu i s: e£ Eo. where e is a single node with· no branches attached, iff the node 
has a label 011 such that of, is defiMd in 0, type·lotl-NILFIX, and 

">.<P,lof,l. 

lnduc.t ion: e£Eo- where e is a trtt with subtrees attached by labelled 
branches, iff the root mxt. has a latJe1 o; such tllat of, is defined in D, 

each non-nun subtree is in Eo. aad ene of die fellawtng cases holds: 

I. type CopJ •NILFIX and e tm sulm'ees e1, ••• , •n (n~I), labelled 
d 1 •••• ,dn, which match p,lopJ. 

2. type Copl •PREFIX and e has subtrees e8 , e 1, ••• , en (n~8). 

labelled r i gh t , ~ 1 ••••• dn, where e1, •••• •n match p Cop J . 

3. typelopl-POSTFIXand e hassubtrees ew1.e1, ••• ,en (n;;i:8), 

labelled I e ft, d 1 •••• , dn, where e1, • • • , en match p CofJ 1 . 

4. type Copl-lNFlX and e has subtrees e._,,, ea, e1, ••• , en (n;;i:8), 

labelled left, right, d1, ••• , cl,.. where e1, ••• , en match 

P (opl. 
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Syntactic Properties of Expressions 

Having defined our abstract domain of expressions, we now apply syntactic 

conventions. We claimed in the previous chapter that there are only two basic types of 

syntactic interaction possible among expressions in linear form. We define three properties 

of expressions (r- i nde><, 1-i nde><, and c-set) which explicitly measure the tendency for 

an expression to participate in such interactions. 

The first and most common form of syntactic interaction is the association of 

intervening subexpressions (arguments). For example, in the expression a+b*c there is a 
choice, governed by convention, for the association of the subexpression b; it may either 

associate to the left (and become an argument to +) or to the right (as an argument to *). 

Since operators are subject to this interaction on either side (and binding powers may differ 

from right to left), we define two corresponding properties, beginning with the left. 

Definition: If eE E0 then I - i nde>< ( e) is defined inductively as follows: 

Basis: If e is a node with no branches attached, then 

I - i ndex ( e) • •· 

I nduc t i on: If e has subtrees then let op be the label of the root node: 

a) if op is of type LEF-TYPE (i.e. if it has a left argument), then 

1-index(e) • 11in[lbpCopJ, 1-inde>e(ei.u)J, 

b) otherwise (if no left argument) 

1-index(e) .. •· 

The value of I-index is a numerical measurement of an expression's resistance to 

false association to the left. If an operator has no left argument at all, then there can never 
be an intervening expression on the left, so there can never be a problem. In this case, 
I - i nde>< is m. Since a left argument may itself be an expression with a left argument, and 
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so on, this property is defined inductively over atl'sudt,sulMKpressionS.· An expression's 
resistance is only as high as the weakest "exposed" operator:. 

For example; if 4t'ts theexpr-fflion1tn1e:~1~-,. there·are two operators 
exposed to tlreWt; + and *; By definitionrw:,,t..mJwthat: 

1-lnde>< tel • mln·ClbpC+J • lbp.1111, lt,plAU, 

but since I bp {A.J • • this is equal to min ( l'bp.{+J •• I bp'W,l. From,ttris1we understand 

that we- have two-~ubexpressions, A,'and Ml{ wWch,,mip1t1tJl;,f.....,,•amated· to the left. 
In an expres-iOrt treethete·exposed opnten a-re•theawl'l~·•1'4!11Ched from the top 
by foHbwing'btam::trel lal>eltecl I eft dewft,the,,tree: 

The- sitUatiOINNltheright side·of ex~1itattaloplD.'afthreup complicated 

slightly ·by the--presence,of mutiple, right•argUWll8. 

Definition: If eEEo thenr-indax(el is definect·t~•asfollows: 

Basis: Ife is a node with nobranthes~ then 

I nduct ion: If e has subtrees; then· let ofr be the· label-of the root node: 

a) if there is a subtree · en, and if 1Ms non-nul;· then 

r-i ndex ( e) • ■ i n{rbplo/d, r-indeJc4 e")), 

b) otherwise 

r-index{e) • •· 

The value of r-- index is analogous to I - i ndtt,c, except that we now ref er to en 
instead of ei.tt· Wht!n there are subtrees e 1, ••• , e11 wtrich matduhe pattern p [op1 (i.e., 

when n>8'_then en is simpfy the last (rightmost) one. It is this subertpression which, if 

non-null; is eKpOSed tothe,right and is subject to false association. For example, both 1 



and X+l are exposed to the right in the expression of Figure lb. If en is null, then its label 

dn is being used as a purely syntactic token to indicate that there are no more arguments to 

the right. In this case there is no possibility of false association, so the value of r- i nde>< 

is •· Examples of this are the expressions of Figures le and Id. Now if the annotation part 

of the expression is entirely null (i.e. n-0), then the expression is of the ordinary arithmetic 

variety (e.g., Figure la). In this case, en refers to the right argument e8, if there is one, 

and r- index is the exact counterpart of I - index. 

We turn now to the second type of syntactic interaction, the generalized dangling 

ELSE problem. We recall that our pattern matching algorithm (i.e. for collecting right 

arguments) will continue to gather arguments as long as possible. We are interested in the 

case where the pattern p has been matched (say by the string w) and there is a choice 

whether to continue. Any token for which this is possible is by definition in cont P ( w J . 

Looking at our standard example where pCIFJ • •THEN• N (•ELSE• N I :\), we have: 

cont P UFJ ( THEN ,., J • tELSEI. 

This tells us that if the operator IF has so far collected the token THEN and a following 

argument then the collection may stop, but if ELSE appears next in the input string, it will 

be included. When we deal with general expression trees, this problem can be caused either 

at the top level (by the pattern of the topmost operator) or at lower levels (in exposed 

rightmost arguments), so the property c-set is defined recursively, similar to r-i ndex. 

The c-se t of an expression is the set of all delimiters which would be incorrectly included 

if placed after the expression in linear form. 

This definition requires the property cont to be defined on an ordered set of subtrees, 

rather than the on strings of the original definition. The correspondence is quite 

straightforward: a null !>Ubtree e; with branch labelled d; corresponds to the single symbol 

d;, and a non-null subtree e; labelled di corresponds to the string di N. As is proven in 

Lemma 11 of Section V.B, this translation does not affect the definition of cont; the symbol 

,., can never be in the set. 



Definition: If e£Eo then c-Nt (e) is defined lAclvctively u follows: 

Basis: U e is. a node With no flrwltel aaadted. dien 

c-•·tfel • ""',1o,1 Q}. 

Induction: If e has subtrees. then let 0/I N the lllllel of the ioot node: 

c-set(e) • cnt,-w,.r<•i•• •• ,eJ U o-aetl-.>, 

b) otherwise 

Grammatical Exprfflions 

We now use these three SJRtactic properties to MlriCt mt • Ee of expressions by 
eliminating those which permit·-unwaifted syntactklitas..._ 

Definition! e£Eo is grammaticat iff one or tt. folowffll ls true: 

Bas i s: e has 110 branches attached. or 

Induct ion: e is a tree With root ftOde labelled -,, Mel dh mbtNel satisfying: 

O) each non-nuft subtree ii grammatiQI. 

for 8slsn. when e1 ls non-null 

for lsisn, whtln e1 ts non-nun. 
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This definition allows us to build trees while watching for syntactic problems. The 

restrictions correspond to the i~formal rules described in Section 111.B; each restriction may 

be understood as the prevention of unwanted syntactic interaction. Restriction I covers the 

use of an expression as a left argument; it insures that the whole expression will be treated 

as the argument, not some exposed fragment. For example, this restriction would prevent 

the use of the expression in Fig. la as a left argument to the operator t, since the 

subexpression C would incorrectly become the left argument of t. Restriction 2 is the 

equivalent on the right side. Restriction 3 insures that no delimiter will be improperly 

included with a subexpression; e.g., don't use an IF-THEN expression as the THEN argument 

to an IF-THEN-ELSE expression. 

Definition: E'o"' let::Eol e is grammatical}. 

Our defined language will be based on only the expression trees which are 

grammatical. Ungrammatical trees may be easily fixed by the addition of some operator 

with bracketing properties, typically the semantically null operator (. For example, the 

expression shown in Figure le would, given a reasonable definition, have I bp • rbp - 8 
and cont .. 4>; i.e., it is syntactically secure. 

The Writing Function 

Now that we have eliminated syntactic problems from our set of expressions, we may 

use a trivial writing function. 

Definition: The writing function 1.10 is defined recursively on the set E0 as follows: 

OP is the token naming the operator at the root node of e. 

o: .. I-lo ( e1eu) if e1ett exists, :>. otherwise. 

j3 "" 1-10 ( e0 ) if e0 exists, :>. otherwise. 



44 

· di ,. the label on tree ei for 1 s i Sn. 

~\ = I-lo ( ei) for 1 s i Sn, when ei is non-null, ~ otherwise. 

The linear representation of trees defined by U0 uses a very simple convention. An 
argument is preceded by its label, with two important exceptions: the labels I ef t and 

r i gh t are implicitly represented by juxtaposition with the operator. 

The Defined Language 

Finally, the defined language S0 is simply the linear form of the grammatical trees. 

Definition: Given a set D of productions, the defined language is s0, where 

IV.C The. Parsing Program 

We present the parsing program in two parts; in addition to the actual program 
(which we will view as a function from strings into expression trees) we give a specification 

of the internal representation required for meta-language productions. A program which 

automatically converts a meta-language production to this internal form is ca11ed the 

meta-language processor. 

The Meta-language Processor 

There is virtually no processing of the information given in the productions of the 

meta-language. It is simply broken into the natural categories, converted into a standard 

LI SP representation, and attached to the property list of the defined token. The categories 

and their property list names are: 



l. Type (e.g. INFIX) 

2. Annotation Pattern 

3. Left binding power 

4. Right binding power 

5. Denotation 

NUL-TVP. LEF-TYP 

Nll.-PAT. LEF-PAT 

LBP 

NUL-RBP. LEF-RBP 

NUL-OEN, LEF-DEN 

Since it is possible to have two operators for the same token, one with a left argument and 
one without, the two sets of data will be separately named so they may coexist and be 
independently retrieved from the property lists. The one exception is the left binding 
power, since it is irrelevant for NUL-TVPE operators. Any token used as a delimiter, 
however, will have its left binding power set to 8. The denotation properties will not be 
used in this implementation, since it will.only parse and not tral\$,fate. 

The definitional information will be represented as LI SP data in the following forms: 

Type: The NUL-TVP and LEF-TVP properties are simply the appropriate names. Thus 
NUL-TVP may be either NILFIX or PREFIX. and LEF-TVP may be either 
POSTFIX or INFIX. 

Left binding power: The property is a non-negative integer. 

Right binding power: The property is a non-negative integer. 



Annotation Pattern: The representation of a pattern p is the Hst repr [pl defined 
recursively by: 

I. If 11 • ~ then repr c, J • fLMIU . 

2. If p • "d" then repr [I'] • htt , where d is the token. 

3. If Jl • "d" .., then repr C1>l • (.d MG) , where d is the token. 

or, if ff and rare patterns, and repr [f·J l.ftd r.,- tr} their representations: 

4. If p • qr 

6. If p • f q}* 

then repr [pl • tCONC repr [qJ repr Cr)). 

then repr [:,t) • ttltJON repr (q-J repr Cr]). 

Since this information is on property lists, it is globally available to the parsing 
program; a request for one-of these propertte.s wiltltave•·thft same vaiue independent of the 
particular environment from which it is made. For the pu,,_.of proof, we give the 
following ax,ioms w.hich f ormaUy specify the operattoR of the meta,..hmguage processor. 

Axiom 1: If the tokett OP is defined in O as a nilfix operator, then· 

fa} (GET 'OP 'NtJL-TVP) • NllFlX 

(b) (GET 'OP 'NUL-PAT) • repr CpCo;JJ 

(c} (GET 'OP 'NUL-RBP) • rt,p to;J 
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Axiom 2: If the token OP is defined in D as a prefix operator, then 

(a) (GET 'OP 'NUL-TVP) • PREFIX 

(b) (GET 'OP 'NUL-PAT) • repr Cp Cop] 1 

(c) (GET 'OP 'NUL-RBPJ • rbp Cop] 

Axiom 3: If the token OP is defined in D as a postfix operator, then 

(a) (GET 'OP 'LEF-TYPJ • POSTFIX 

(b) (GET 'OP 'LEF-PAT) • repr [p Cop] J 

(c) (GET 'OP 'LEF-RBP) • rbp top] 
Axiom 4: If the token OP is defined in D as an inf ix operator, then 

(a) (GET 'OP 'LEF-TYP) - INFIX 

(b) (GET 'OP 'LEF-PAT) • repr Cp Cop] 1 

(c) (GET 'OP 'LEF-RBP) • rbp Copl 

Axiom 5: If the token OP is used as a delimiter in any production in D, then 

(5) (GET 'OP 'LBP) = 0 

It may now be seen how our global restrictions on sets of productions insure that all 
of these properties are well-defined. Properties NUL-TYP, NUL-PAT, NUL-RBP, and 
NUL-DEN can only be determined if a nilfix or prefix operator is defined for OP, but we 
only allow one such production per token. Similarly, LEF-TVP, LEF-PAT, LEF-RBP, and 
LEF-DEN are well-defined. LBP may only be determined if a postfix or infix operator is 
defined for OP (in which case only one such definition is allowed) or if it is used anywhere 
as a delimiter (in which case the LBP is 0, no matter how many times it is used). A token 
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may not, however, be both. 

The Parsing Program 

We present below the LI SP code for a straightforward parser implementation. The 
parser returns the expression tree in a simple list representation defined below; an extension 
to the full translator would have the arguments passed to the denotation, rather than being 
assembled into a list. 

Expression Tr~: The representation of a tree eEEo is the recursively defined list: 

repr[el • (Op ri.tt r,ilht r 1 ••• rn) where 

r1en = (LEFT repr Ce1enl} if er.n exists, otherwise non-existent 

r ,iiht .. (RIGHT repr Ce0J) if e0 exists, otherwise non-·existent 

Several prominent features of this program should be kept in mind; it was written for 
perspicuity and convenience of proof. There are therefore no global variable references; 
for each subroutine the input stream is passed as an argument and returned as a value. 
The result is a program which is approximately twice as long and much less efficient than it 
could be. The main problem is that passing the input string as an argument often requires 
that the same expression be evaluated more than once. This problem could be easily solved 

but would result in rather more obscure code; efficiency has been sacrificed for clarity. An 

equivalent but efficient program could be proven correct by proving its equivalence to this 

one. Such a proof should be considerably shorter than an original proof of correctness as 
given here. 



The Basic Parsing Program 

(OEFUN PARSE (RBP STRING) 
(ASSOC R8P INUL-TVPE STRING))) 

(OEFUN ASSOC (RBP STATE) 
(COND lfLESSP RBP (GET ICADR STATE) 'LBPJJ 

(ASSOC RBP (LEF-TVPE STATE))) 
IT STATE) J J 

This is the top level control structure of the parser. The function PARSE receives as 
input a right binding power and a list of syml>ola, ihe 1tring iJI, $a . .., be parsed .. The status 

of the parse is contained in the variable STAlE whkh is passed and returned among the 

procedures. STATE is always a list whose first element is the representation of the 

expression (tree) par~ed so far, and whose remainillf elements are the unparsed input string. 
Given that an expression has been parsed, the function ASSOC (not the standard LISP 
function ASSOC) decides whether to give it as a left argument to the next operator in the 

string (by calling ASSOC recursively), or to return the current ate.· .. 

The function NUL-TVPE collects the argumentsfor the ~•aperat.or in the string, on 

the assumption that it is nilfix or prefix. It in twn caHs NILFl>C or PREFIX to handle the 
separate cases. The functioo LEF-TVPE is similar, except ~t th,:expression parsed so far 
is assumed to be the left argument to the next operator i'l the string. The subroutine FI ND 

handles the collection of all annotation tokens and arguments; it uses the functions 

LAtlBOA-P (predicate for null string membership in a pattern)anc:1,FIRST (the set first 
previously defined). 



50 

Functions to Process NUL-TVPE Operators 

(DEFUN NUL-TYPE (STRING) 
(CONO ( (NULL (COOR STATE)) ERROR) 

( (EQ (GET (CAR STRING) "NUL-TVP) "NILFUO 
(NILFIX (CAR STRING) 

(COR STRING) 
(GET (CAR STRING) "NUL-RBP) 
(GET (CAR STRING) ~'NUL...PATJ)) 

l(EQ (GET (CAR STRING) 'NUL-TVP) "PREFIX) 
(PREFIX (CAR STRING) 

(COR STRING) 
(GET (CAR STRING) 
(GET (CAR STRING) 

(T 

(NILFIX (CAR STRING) 
(COR STRING) 
e 
' (LAMB) ) ) ) ) 

(0EFUN NILFIX (OPERATOR REST RBP PAT) 
(CONS (APPEND (LIST OPERATOR) 

'NUL-RBP) 
"NUL...PATt)) 

;end of input 

;operator 
;unparsed string 
; rbp topl 

· ; p topl 

;as above 

;default case 
;variable or 
;constant 

(CAR CFINO RBP (CONS NIL REST) PATJJ) 
(COR (FINO RBP (CONS NIL REST) PAT)) )) 

(0EFUN PREFIX (OPERATOR REST RBP PAT) 
(CONS (APPEND (LIST OPERATOR) 

(LIST (LIST 'RIGHT (CAR (PARSE RBP REST)))) 
(CAR CFIND RBP 

(CONS NIL CCOR (PARSE RBP REST))) 
PATl)) 

lC0R lFIND RBP (CONS NIL (C0R(PARSE RBP REST}))PAT>J)) 
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Functions to Process LEF-TYPE Operators 

(OEFUN LEF-TVPE (STATE) 
(CONO ((NULL (COOR STATEJJ ERROR) .· ;end of string 

({EQ (GET (CAOR STATE) 'LEF-TVP) 'POSTFIX) 
(POSTFIX (CAR STATE) ; left arg 

(CAOR STATE) 
(COOR STATE) 
(GET (CAOR STATE) 'LEF-RBP) 
(GET (CAOR STATE) 'LEF-PAT) )) 

((EQ (GET (CADR STATE) 'LEF-TYPJ 'JNF'l)(J 
(INFIX <CAR STATE) 

(CAOR STATE) 
(COOR STATE) 
(GET fCAOR STATE) 'LEF-RBPJ 
(GET (CAOR STATE) 'LEF-PAH ) ) . 

n ERROR) ) ) 

IOEFUN POSTFIX CLVAL OPERATOR REST R8P PAT) 
(CONS (APPEMJ {LIST OPERATOR) 

(LIST (LIST 'LEFT LVAL)) 

;operator 
;unparsed string 
; rbp Cop) 
; p Cop] 

;as above 

; no I e f t def. 

(CAR (FINO R8P (CONS NIL REST) PAU J J 
(COR (FINO R8P ICONS NIL REST> PAT> J H 

(DEFUN INFIX (LVAL OPERATOR REST R8P PATJ 
(CONS (APPEND (LIST OPERATOR) 

(LIST (LIST 'LEFT LVAL)J 
(LIST (LIST 'RIGHT (CAR (f'ARSE RBP RESTJ))) 
(CAR (FINO RBP 

(CONS NIL (COA (PARSE RBP REST) J J 
PATJ)) 

(COA (FIND RBP (CONS NIL (COA(PARSE R8P RES-HHPATJ J JJ 



Annotation Argument Processor 

(DEFUN FINO (HBP STATE PATJ 
(COND ((EO (CAR PAT) 'LAMB) 

STATE) 
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;p•qr 

((EQ (CAR PAT) 'CONCJ 
(FINO RBP <FINO RBP STATE (CADR PAT> J (CADOR PAT)) J 

: p-(ql rJ 
((EQ (CAR PAT) 'UNION) 

(COND ((MEMBER CCAOR STATE) (FIRST lCADR PAT))) 
(FINO RBP STATE (CAOR PATJJJ 

((MEMBER (CAOR STATE) (FIRST (CADOR PATJJJ 
(FINO RBP STATE (CADOR PATJJJ 

( (LAMBDA-P PATJ 
STATE) 

(T ERROR) J J ;neither alternative ■atches 
;p-(q)* 

({EQ (CAR PAT) 'STAR) 
lCONO {(MEMBER (CADR STATE) {FIRST CCAOR PAT)}) 

(FINO RBP (FIND RBP STATE (CAOR PATJJ PAT)} 
(T STATE))) 

((ANO (NULL (COR PATJJ (EQ (CAR PAT) (CADA STATE))) 
(CONS (APPEND (CAR STATE) 

lLIST (LIST (CADR STATE)))} 
{COOR STATE)) J 

( {EQ (CAR PAT) (CADA STATE)) 
(CONS (APPEND (CAR STATE) 

(LIST {LIST (CADA STATE) 

;p•"d" ,., 

(CAR (PARSE RBP (COOR STATE)}}})} 
(COR (PARSE RBP (COOR STATE))))) 

(T ERRORJ)) ;Missing token-- (car pattern) 
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Pattern Processing Functions 

(DEFUN LAMBOA-P 
(PJ 
(CONO ((EQ (CAR PJ 'LAMB) TJ ;p-~ 

(DEFUN FI RS T 
(PJ 

( (EQ (CAR P) 'CONC) ; p•qr 

(ANO (lAMBOA-P (CADA PJJ (LMBDA-P (CADCJRP))JJ 
HEQ (CAR PJ 'UNION) ;p-(qlr) 

(OR (LAl'IBOA-P (CADA P)J (LAl'eDA-P (CAIJOR P)))) 

((EQ !CARP) 'STAR) TJ JP•(q)* 
(T NILJ)J ; p••d" or "d".., 

(CONO ((EQ (CAR PJ 'LAMB) Nil) ;p-~ 
( (EQ (CAR P) 'CONCJ I P•fr 

(APPEND (FIRST (CADR P)) 
(COHO ( <LAMBDA-P (CADR PlJ (flRST (CAOOR P)}) 

n NJi.J))) 
((EQ (CARP) 'UNION) ;pa(qlr) 

(APPEND (FIRST (CADR P)) (FIRST (~ PH)) 
((EQ (CAR PJ 'STAR) (FIRST (CADA P))) ;p-(q)* 

· n (LIST (CAR PJ) J J J 



V. COlll£CTftESS 

Using the defmitims presented ift Otapter IV, we are now prepared to formally state 
and prove the notion of correctness ducussed informally in Section 111.D. ln the first section 

of this chapter we state our main result, the PMSE t1leGreffl. and ditCUtS ·dm!e important 

corollaries which embody more closely our intUllive notianl flt cot,eaness. Section V .B 

presents a mtmber of preliminary lemmas, deatiftg priM11ri1y -.it1h ~ies of annotation 
patterns in our meta-language. These rau1ts are ~ p,aperties and are completely 
independent of die parsing algorithm. Seaiuns V;C nd V.t) CORtatn .the proofs of parts I 

and II, respectively, of the PAffSE theorem, these ttteorems are long but atraightforward 
since the interesting theoretical results are separately proven. 

V.A Formal Statfflleftt 

We begin a formal statement of correctness by recaHing the user-oriented description 

of a defined language. For any set of meta-languagepredtacdonl 0, :the 1anguage So S: i• 
defined by O is So • Wo (E '0) , where "8 is the~ f tlftttiall and 'E'o is the set of 

grammatical expression trttS. The parser r« the lapage, tanstrUCted by the algorithm of 

Sect.ion IV :C, is represented by the f unttton Po- This fVIICtien maps strings of !* into 

expression trees (defitted in IV.C). The functton Po is partial; when we write Po(6J • e, 
we mean that the parser, when given the input string s, hlb error-free and returns e. We 
state now our main result. 

PARSE THEOREM: 

I. 

II. VO Vse:>:* (P0 (6) halts ttror·free • 6 e Sol 

For the rest of this chapter we assume that D refers to some language definition expressed 

in the meta-language of Section IV .A; i.e., we drop the "for all O". 
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We examine now the sufficiency of the result relative to general notions of 
correctness in the form of corollaries. The first is that a trans~or should be. an a,cc,ptor for 
the language S0 in the ordinary sense: the translator should halt error-free nactl1 when 
given a sentence in the language So-

Corollary 1 (Acceptor}. 

Vset* (P0 (s) halts error-free• 6 e So> 

Proof: One direction simply restates part II of the PARSE theorem. Now assume s E So
By definition there is some e e E'o such that 6 - W0 (e). Part I says 
Po(Mo(e) > • P0 (s) • e; i.e.; PARSE halts error-free.I 

We also expect that the translator, when it halts error-free, returns a valid parse of 
the input str~ng. 

Corollary 2 (Parser): 

Proof: Assume 6 E S0. Then there is some e E E'o such thats • M0 (e). By Part I we 

know Po(S) • PoU.10 (e)) • e e E'o- Furthermore, since Po(SJ • e, we have 

W0 fP0 (s>> - W0 (e) - s.1 

We note that Corollary 2 only guarantees the output of sowv valid expression tree, or 
parse, for each input. We have not proven that such a parse must be unique; i.e., that the 
language is unambiguous. Ambiguity is a property of a language and its means of 
definition, not of a particular paning scheme. 

Corollary 3 (Uniqueness}. 

Ve,e'eE'o (M0 (eJ-M0 (e') • e-e'J 

Proof: Assume Mo<e> • IJ0 (e'> fore, e' E E'o- Since the parser is a function, 
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P0 {W 0 {el) = P0 {W0 {e'). ThenbyPartlwehavee = P0 U.10 (e)) 
= P0 {W0 (e')) = e'. I 

Although not strictly a property of the parser, we treat this property here for completeness 
and convenience of proof. 
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V.B Preliminary Lemmas 

This section formally states and proves a number of necessary properties of our 

definitional system. Some are merely restatements of definitions and are included for 
uniform reference; the majority are derived properties which are essential to the program 
proof. The final two lemmas are correctness proofs of two simple utility programs, 

LAMBOA-P and FIRST. 

We begin with binding powers. 

Lemma 1 (Binding powers): 

(a) If the token op is defined as an operator in 0, then rbp Cop] 2: 8 and I bp Cop] 2: 8 
if defined. 

(b) If the token d is used as a delimiter in D, then I bp Cd] • 8. 

(c) For any ee: E0, I - index Ce] ~ 0 and r- index Ce] l!: 0. 

Proof: Parts (a) and (b) are immediate from the definitions. Part (c) uses part (a) and 

follows by trivial induction over the definitions of I - index and r- i ndex.l 

The following lemmas describe properties of annotation patterns. Although patterns 

ultimately determine sequences of labelled subtrees, these properties will be stated and 

proven in terms of a simpler but equivalent language. We say that a pattern may be 

matched by strings of symbols, where the symbols include the special symbol ,., and tokens 

of the defined language. The same convention was used in the discussion of ftrst and cont 
in Section IV.A. The correspondence between the strings used here and the ordered sets of 

labelled subtrees is straightforward. The symbol ,., can only follow a token in strings which 

match patterns. A token d followed by ,., in one of these strings corresponds to a non-null 

subtree labelled d. A token d not followed by ,., corresponds to a null subtree labelled d. 

Lemmas 4 and II guarantee that the symbol,., is invisible; i.e., it plays no role in any of the 

results presented here. The results apply equally to sequences of labelled subtrees. 

For convenience we restate here an essential feature of the definition of patterns, the 

restrictions on the inductive use of pattern concatenation, alternation, and star closure. 



Restrictions (Definition of patterns): Let p, q, r be patterns. 

Rt. If p • qr then cont, n ftrstr • 4>. 

R2. If p • (qi r) then ftrst, n ftrstr • ct,. 

R3. If p • (q)* then cont, n ftrst, • ct,. 

Because our parsing algorithm continually requires us to treat>. as a special case, we 

would like to know some of the null-string properties of patterns. 

Lemma 2 (:>. predicate): Let p, q, r be patterns. 

(a) If p = qr then ).oc:.p iff ).oc:.q " ).-<r. 

·(b) If p = (qi r) then ).o<.p iff >.-<q v >.-<r. 

(c) If p = (q)* then ).o<.p, 

Proof: Immediate from the d~f inition of match.I 

Lemma 2 is the basis for the algorithm used by LAMBDA-P, which calculates whether or not 

:>. matches a particular pattern. 

The next lemma is relevant to the computation of the set ftrst for a pattern. 

Lemma 3 (ftrst): Let p, q, r be patterns. 

(a) If p = qr then 

I. if ). et. q then ftrst P = ftrst q 

2. if ).-<q then ftrstp • ftrst, U ftrst,-

(b) If p .. (qfr) thenftrstp • ftrstq U ftrst,

(c) If p • (q)* then ftrstp • ftrst,. 
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Proof: Immediate from the definitions of ftrst and match.I 

The parser look at the first symbol of a string in order to decide how to begin 

matching the string to a pattern. The next lemma guarantees that the parser never looks at 

N when deciding; i.e., that the first symbol is always some delimiter and not part of a 

subexpression. 

Lemma 4: If p is a pattern, ftrst P contains only tokens (not ... ). 

Proof: By induction on the definition of a pattern. If p .. )., "d", or "d" .., then 

ftrst P • cp, fdJ, or fdl respectively. If p • qr, (qi r), or (q)*, then by 

Lemma 3 and induction ftrst P contains only tokens.I 

We turn now to properties of the set cont. We begin with its value relative to the 

null string. 

Lemma 5: If pis a pattern and ).o<.p then contp().) - ftrstp. 

Proof: From definitions, 

This result has a strong implication for star closure; restriction R3 prevents the use of star 

closure on nontrivial patterns matched by the null string. 

Lemma 6: If p is a pattern and cont P n ftrst P • cp and ).o<. p then only ). matches p. 

Proof: Assume ).o<p. By Lemma 5 we have ftrstp • contp().) ~ contp. Since we assumed 

cont P n first P • cp, it must be that ftrst P - cp, implying that no string other than ). can 
match p, I 

The next lemma is a preliminary result to be used in the proofs of Lemmas 8 and to. 
It deals with the way in which a string can match a concatenated pattern. 
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Definition: The string w is a prefix of string w' iff <a>' • w« for some string a; if a t1- >. 
then w is said to be a nontrivial prefix of w'. 

Lemma 7 (Ambiguity): Let q and r be patterns. If 

(I) cont q n ftrst r - q,, 

( 4) w is a prefix of w ', 

Proof: Since w is a prefix of w', exactly one of the following cases must hold: (i) w1 is a 

nontrivial prefix of Wt', (ii) Wt' is a nontrivial prefix-of w1, or (iii) w1 • w1'. We will 
show that (i) and (ii) do not hold. 

(i) Wt' • w1a for some a .- A. By definition, ftrstCa) E cont,<w1) ~ contq. Since 

w2 ,. A, we also have ftrst (a) = ftrsHw 2) E ftrst r• violating condition (I). 

(ii) wt .. wt 'a for some ex ,- A. It cannot be the ca·se that w2' • >. because w - w I w2 is 
a prefix of w'. By symmetry this reduces to case I.I 

It is a corollary of Lemma 7 that when a string w matches p • qr, it matches in_only one 
way. Applying Lemma 7 inductively, we get the same implication for star closure. 

Lemmas 8, 9, and 10 describe the contents of the set cont relative to concatenation, 

alternation, and star closure. Since these are the essential lemmas for the actual program 

proof, they are stated in terms of specific strings; i.e., they describe cont P ( w) rather than 

cont p· The lemmas are intended to directly imply the correctness of the pattern matching 

part of the parsing algorithm. For example, Lemma 8 guarantees that concatenated patterns 
may be dealt with locally, one at a time. 
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Lemma 8 (cont): Let p .. qr and w • w1w2 with w1-<q and w2-<r, then 

Proof: (a) 

~ We have cont r ( w2) .. U w2'3-< r, /3;,e;>. tftrst(/3) J S: U w 
I 
w2'3-< P, /3 1111 :>. lftrst (/3) J 

= cont P ( w) by definition arid since w2/3°<r implies that w I w2'3-< p. 

~ By definition contp(w) • uw/3oc:p,/3;,e;). {ftrst(tl)I. If w/3 =W1W2/3-<p, then let 

(b) 

w/3 =- w' =- w1'w2' where w1'oc:q and w2 '-<r. Since w is a prefix of <i>' and <i> 2.,.>., we 

have w 1 = w 1' by Lemma 7. Then w2' • w2/3, so ftrst (/3) E cont r (w2). 

~ As in part (a) contr(w2) S: contp(w). In addition, 

cont(((w,) = uw,/3-<q,/3;,e;). fftrst(/3)} !:; uw,/Joc:p,/31111:>. fftrst(/3)1 • contp(w) since 

w 1/3-<(( implies that w1/3=w 1:>./3oc:p. 

S: By definition contp(w) • Uw/3«p,/3.-:>. fftrst(/3)1. If w/3=w,w2'J•w 1/3-<p then let 

w 1'3=-w'=-w 1'w2' where w1'oc:q and w2 '-<r. We consider the three cases of the relationship 
between w I and w2 '. 

(i) If w I is a nontrivial prefix of w 1 ', then ftrst (/3) E ftrst r 
(ii) If w1' is a nontrivial prefix of w1, then w2'1111:>.. But then ftrst(w 2') E cont,<w 1'J. 

Since ftrst (w2') E ftrst r• this violates RI. 

(iii) If <i> 1 = w 1 ', then /3 = w2' and ftrst (/3) E ftrst ,.. By Lemma 5 

ftrstr • contr(:>.) • contr(w2LI 

Lemma 9 (cont): Let p, q, r be patterns and p • (" I r). 

(a) If w=:>. then cont P ( w) • ftrst" U ftrst r 

Proof: (a) By Lemma 5 cont P (:>.) • ftrst P' and by Lemma 3b ftrst P • ftrst, U ftrst r· 



(b) Claim <4!<>< p iff wlJ« q: Clearly wf1""-q impfiel wfJ• ,. Conversely, if' ~-<JI then either 

w'3-< q or wtJ« r. If wll-< r then ftrst<w(.U € ftrst r· But since wtit;\-, 

ftrst{w/3) • ftrstlw} e ftrst,,. violatingR?; •-'-.'' Wecondudethat 

contp (w) • U(a)'3-<p,t3_.;x (ftrst(/1) J • Uw,,..i.,-.~ lfltst(flll • amtfr(wl. 

(c) Similar to part (b).t 

Lem,m 18 (cont}. Let p. q, r be patterns and p • Cd*· 

(a) If w•:>. then cont ,.cw) • first tr 

(b) If :>. .. w-< p where w•w 1 ••• Wn for nd and wi-<• for l~isn, then 

ccmt P (wJ • cont-, (w"t u (t.rstf" 

Proof: 

(a) If w•:>. then cont_,(:>.) • ftrst P • ftrsttr by Lemmas 5 and 3c. 

(b) By Lemma 6 we need only consider 2 cases: either' c,;:is-fflllt:Chea by:anly >., or f is not 
matched by•:>. at' a.ti. Since w,.). we assume tbe·HCond::. a., where·~•; 

2 We hav.e fl.Tu• • U{l;ooeq, (l.,). lftrSl ((U J s;, U~,,.~•::\.JP.,•'°"91 • contp (w), since 

(l«q and w-<p implies that f»{l-<p. We haveatso.ccmt,,lwJ -· lJw,p~.tJ,a>. lfrrst('3)} 

s;;; U w(l<>< P, {l,t). (ftrst (JJ) t • ccmt P (wl, since wJl-<f and w1 ••• w.1 ~, implies that 

wf.l-<p. 

~ By induction on n. 

n•l: By definition cont, (w 1) • UwilJ-<p,'3"). lflrst (JIU. Let W1'3•w'•w1 ' ••• w,,/ 
where w;'-< q for 1:s i SM. Since w '.-:>., ■d. We consider th& three'~ relationships 
between w I and w 1 '. , 

(i) If w1' is a nontrivial prefix of w1 then•~. and sim.e·wz,'~ (recalling that :>t..tq), we 
have ftrst(w 2'J E cont'1(w 1') ~ cont,. Sat also ftrst(w,z') £ first« violating RS. 

Contradiction. 

(ii) If w 1 •w 1' then, since ,:3":>., we; have •~- Again w2'.-). so 
ftrst ((l) • ftrst (w2') E ftrst q· 

(iii) If w I is a nontrivial pref ix of <a> 1' then ftrst (IJJ e cont q ( w 1). 

n> 1: Assume the result for n-1. If w•w 1 ••• Wn then by definition: 

cont P (w) • Uw,:3-:p,'1.-:>. lftrst('3)}. If <a>{l-c.p then let ~w'-w 1' ••• w"'' where wj'-c.q 

for 1 s i s■. Apply Lemma 7 as follows. We have w is, a pref ix of w '. Decompose w as 
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w =- w1 w2 •• • wn where w 1<><q and w2 •• ,Wn<><p. Likewise w' = w1' w2' ••• wm' where 
w1'<><q and w2' ••• wm'<><p. Since ftrstp .. ftrstq by Lemma 3c, we have 

contq n ftrstp - cp (using R3). So by Lemma 7, w 1-w 1'. We now have 

w2, •• w,JJ=w 2' ••• Wm'<>< p, so ftrst ((.3> E cont p (w2 ••• wnl. By induction we have 

cont P (w2 ••• wn) = cont
11 

(wn) U ftrstq. I 

Our final lemma about the set cont is the counterpart of Lemma 4 for the set ftrst. 

Lemma 11: If p is a pattern, cont P contains only tokens (not ... ). 

Proof: By induction on the definition of patterns. If p = )., "d", or "d" ,., then 
cont P = cp. If p == qr then by Lemma 8 and induction. If p • { q I r) then by Lemma 

9, induction, and Lemma 4. If p = (q)* then by Lemma 10, induction, and Lemma 4.1 

The final two lemmas_ are proofs of the pattern utility programs LAMBDA-P and 
FIRST. Their correctness will follow almost directly from Lemmas 2 and 3. 

Lemma 12 (LAMBDA-P): Let p be a pattern. Then (LAMBDA-P p) • Tiff ).-cp. 

Proof: By induction on patterns. The program deals with five exclusive cases. When p•">,. 

the answer is T. When p="d" or "d" ... , then the answer is NIL. When p=qr the 
answer is (AND (LAMBDA-P q) (LAMBDA-P r)), by induction and Lemma 2. Similariy, 
when p ... (qfr) the answer is (OR (LAMBDA-P q)(LAMBDA-P r)),andwhen p-(q)* 

the answer is T.I 

Lemma 13 <FIRST): Let p be a pattern. Then <FIRST p) • a list containing the 
symbols of ftrst p· 

Proof: By induction on patterns, the same five exclusive cases as the previous lemma; we 

use now Lemma 3 inductively .. When p.).. then NIL. When P•"d" or "d" ""• then (d). 

When p=qr then (APPEND <FIRST q) (COND((LAMBDA-P q) (FIRST rJ))), where 

:>. <>< p is determined by Lemma 12. When P= ( q I r) then 
(APPEND (FIRST q) (FIRST r)J. Finally, when p-(q)* then simply (FIRST qLI 
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V .C Parse Theorem I 

We present oow. the proof of the- fiffl,PMSI: th,__..__. ift. Section V .A: 

where E'o is the set of expression trees.<W fQffltallJ,iJti;Smiolt{Y.B. Wo is the writing 

function of Sectien IV.a. and the parsing f ioltPj>,..GGA'eap•cb. to,ttae LlSP program 
PARSE presented in Section IV .C. TM pc . .11 .... ~-.,~ lilt of l0ken1; its 

value, if it halts error-free, is the LIS, l'lllttesll'ltat•·ol/1.ft:_,,... llee; as defined in 
Seaion.lV.C. The,fiaat token in,.an;y·.· strittJta,IUEll_..ll!Uiatteffflinatton 
symbol-I; the, Wt: bindiog power. a£. thisc ......,,ta• ~-t~non neptive 
left binding power l.tlld. In terms of tbt< t•tfleerem. * 
PARSE TheoNRI I: If e E E'o and s • 

(PARSE -1 (& ·O) • (repr [el ·U 

Its inductive proef requires a restatement · the follDwing l'IICIMgeneral form: 

ThtNuem t9: If for some· e and rbp we• 

Cl. eE.E'o and 6 • t I· •• tk • f.el for ~1. 

C2. r-inde,c[el ~ lbp[tk•IJ. 

C4. rbp < 1-inde,c[e]. 

then 
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PARSE Theorem I is a special case of Theorem 1.9 by the following argument. Cl is the 

given, letting 6 =- t 1 ••• tk. The symbol tk• 1 is -I which has a left binding power of -1; 

from Lemma I we know that r- i nde>< Ce] ~ 0, so C2 is satisfied. For condition C3 we 

observe that since -I is not is the defined language, it cannot be in c-se t Ce]. As above, we 

know that I - index Ce) ~ 0, so Ci is true. Finally, we know that rbp - I bp C-11 • -1, 
satisfying C5. 

Outline of Proof 

Theorem 1.9 is the last in a sequence of nine subsidiary theorems, which correspond 

roughly to the subroutines of the program PARSE. Theorem I.I (FINO) covers the correct 

parsing of the annotation part of an expression. Theorems 1.2, 1.3, and 1.4 (NI LF I><, 
PREFIX, and NUL-TVPE) deal with NUL-TVPE operators, and Theorems 1.5, 1.6, and 1.7 

(POSTFIX, INFIX, and LEF-TVPE) similarly treat LEF-TVPE operators. Theorems 1.8 and 1.9 

(PARSEa and PARSEb) state the top level behavior of the PARSE and ASSOC programs, the 
essential part of the parsing algorithm; Theorem 1.8 corresponds to the recursive parsing of 

left arguments and Theorem 1.9 to right arguments. Each theorem guarantees that if its 

arguments meet certain conditions, then the result of the corresponding subroutine has the 

desired property; i.e., that the ·subroutine operates correctly. With the exception of the 

language definition attached to property lists, as described in Section IV.C, each subroutine 

uses only values given as explicit arguments. No side-effects need be mentioned since the 

given implementation of PARSE contains only local variables. 

The theorems are proven using simultaneous induction over the set E'o of expression 

trees. At each level of induction, they may be proven sequentially according to their 

dependence by subroutine catls, as diagrammed in the partial ordering of Figure 2. In this 

figure the proof of the upper theorem of a linked pair depends on the lower theorem; the 

inductive use of Theorems 1.8 and 1.9 is indicated at the bottom of the graph. For instance, 

Theorem 1.4 depends on Theorems 1.2 and 1.3, which in turn depend on I.I. In addition, 1.3 

and I.I depend inductively on 1.9. 

We use simple induction in this theorem to correspond exactly to the definition of the 

domain E0; i.e. using a basis and an induction step. This form of definition was chosen for 

clarity and precision. The nature of the domain would, however, allow a proof by strong 

induction (without a basis step), since the theorem only requires induction in the cases when 

there exist non-null subtrees. Rather than redefine the domain or create unnecessary 
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figure 2 Interdependence of Theorem• 1.1-1.9 
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confusion, strong induction is not used. 

We now want to examine the five conditions we will impose on our input string in 

order to guarantee that PARSE returns the correct value. When viewed relative to a call to 

PARSE, they have the following interpretations. Condition I requires that the input string 

begin with a sentence 6 of the language. Condition 2 insures that no subexpression on the 

right end of 6 becomes associated as a left argument to tk+I• if tk+I is an operator. If tk•I 

is a delimiter then condition 3 prevents its inclusion in any annotation within 6. The right 

binding power of the call to PARSE must be low enough for the entire expression to be 

returned, condition 4, but not so low that the expression is given as a left argument to tk•I• 

condition 5. 

Statement of Theorems I.I through 1.9 

We precede our list of nine theorems by a formal statement of the conditions Cl 

through CS, on which they depend. For convenience in the proofs, the first three have 

been broken down into their definitional components: conditions Cla through Clf are 

equivalent to Cl, C2a and C2b are equivalent to C2, and C3a and C3b are equiv11lent to C3. 

Conditions: 

Cl. eEE'o and 6 .. cxOPtJw • U0 (eJ • t 1 ••• tk 

Cla. ex - 1.10 ( ei.,t) if ei.n exists (:>. otherwise), '3 - U0 ( e0) if e0 exists (:>. otherwise), 

and w - d 1¥ 1 ••• dn¥n for n2:0, where ¥i - U0 (ei) for lsisn when e; is non-null 

(:>. otherwise), and e,.,t, e0 , e 1, ••• enE E'o when they exist and are non-null. 

Clb. r- index Cei.n1 2:: I bp Cop] if e1e,t exists. 

Cle. rbp Copl < I - index Ce01 if e0 exists. 

Cid. ~bp Cop] < 1-i ndex Cei] for ls i Sn, when ei is non-null. 

Cle. d 1 f c-set Ce01 if e0 and d 1 exist. 

Clf. di f c-set [ei_ 11 for l<iSn when ei is non-null. 

C2. r-i ndex [e] 2:: I bp [tk+'IJ. 

C2a. rbp Cop] 2:: I bp [ tk. 11 if en exists and is non-null. 

C2b. r- index ten] 2: I bp [tk+ 11 if en exists and is non-null. 
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C3. tk+I f c-set Ce]. 

C3a. tk•I f cont P Cop] ( e1, ••• en). 

C3b. tk•I f c-set CeAJ if en exists. 

C4. rbp < 1-indeMleJ. 

C5. rbp ;'!: I bp [tk•I]. 

Notation: 
(i) When writing LISP expressions, upper case words and pattntheses will always 

refer to LISP code; when describing known values within llSP expressions, 

tower case and square brackets wtH be used. Spedf'ically, the meta-variable of, 
represents the token defined for op. 

(ii) The representation of the annotation part produced by FINO is 

( (d1 repr [e1J), •• (dn repr lenl) J and wt11 be written repr Ce1, ••• enl. 
(iii) Since the representations of. patterns are not manipulated in this program, we 

will abbreviate repr [pCopJJ to simply p(oJ,J. 

(iv) In proofs, we will use the names Cl, C2, etc. to refer to the given conditions for 

the theorem being proved; Cl', C2', etc. wifl refer to the antecedents to be 
satisfied when using Theorems·t.8 and 1.9 inductimy. 

We now state the nine theorems in full. 

Theorem 1.1 (FINO): Given Cl-C3 for some e. Then 

Theorem 1.2 (NILFIX}: Given Cl-C3 for some e. If op is defined NJLFIX, 

{NILFIX op (w tk. 1 ... ) rbplof,1 pCof>H • (reprleJ t 11• 1 ... ) 

Theorem 1.3 CPREFIXJ: Given Cl-C3 for some e. If op is defined PREFIX, 
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Theorem 1.4 (NUL-TVPE): Given CI-C3 for some e. If op is defined NILFIX or 

PREF I><, then 

(NUL-TVPE (op tJ w tk•I• •• )) .. (repr (el tk+t• •• ) 

Theorem 1.5 (POSTFIX) : Given CI-C3 for some e. If op is defined POSTF I><, 

(POSTFIX repr Ce1eul op (w tk•I • •• ) rbp Cop) p Cop)) • (repr Ce] tk•t • •• ) 

Theorem 1.6 (I NF IX) : Given Cl-C3 for some e. If op is defined I NF I)(, 

(INFIX reprCe1eul op (tJ w tk. 1 ... ) rbp[opl plop])• (repr[e] tk•I···) 

Theorem 1.7 (LEF-TVPEJ: Given CI-C3 for some e. If op is defined POSTFIX or 

INFIX, then 

Theorem 1.8 (PARSEal: Given CI-C4 for some e and rbp. Then 

(PARSE rbp (6 tk•I • •• )) .. (ASSOC rbp (repr Ce] tk+t • •• )) 

Theorem 1.9 (PARSEb): Given CI-C5 for some e and rbp. Then 

(PARSE rbp (6 tk•I • •• )) • (repr [e] tk•I • • •) 

Proof of Theorems 1.1 through 1.9, Basis Step 

For the basis step we assume that the tree eE~'o is a single node whose label we 

denote op. Then op is defined NILFIX, ).o<p[opJ, and t 1 • 6 ... M0 (e) • op {n•0, 
k=l), so the annotation part is w•:>.. Note that since op is defined NILFIX, Theorems 1.3, 

1.5, 1.6, and 1.7 are not applicable. 

Theorem 1.1 <FINO): If w•). matches pCopJ and if ti~ contpCopJ ().) then 
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Proof: The proof is by induction over the definition of the pattern p Cop]; the six possible 
cases are handled by the six conditional clauses in the program. 

Case I. lfpCopJ,. ).then (FIND rbpCopJ (nil t 2 ••• ) p£opH • (nil t 2 ••• ) 

immediately. 

Cases 2,3. Impossible since if p Cop] = "d" or "d" ... it could not be that :.\-< p Cop]. 
Case 4. If p Cop] ,. qr, then £FIND rbp Cop] (ni I t 2 ... ) p CopJ) 
• (FI NO rbp Cop] (FI ND rbp . (n i I t 2 ••• ) q) r) by the program. We now use 

induction on the expression (FIND rbp (ni I t 2 ••• ) q). Since :.\-<pCop] and 

t 2 q cont P Cop] {).), we know by Lemma 2a that :.\-<q and by Lemma Sb that 

t 2 q contq{).),sothisexpressionis (nil t 2 ••• ) and we have 

= <FINO rbptopl (nil t 2 ... ) rl. Asabovewehave:.\-<rand t 2 fcontr(:.\),soby 

another induction we have 
.. (n i I t 2 ••• ). 

Case 5. If p[opl = (qlr),then £FINO rbp[opJ (nil t 2 ... ) p[opl) is a conditional 

with three clauses. The first test is (MEMBER t 2 ftrstq), using Lemma 13 for the 

correctness of FIRST. Since t 2 ,. cont P Cop] (;).J, we know that t 2 ,_ ftrst
11 

by Lemma 

9a, and this test will fail. Similarly the second test (MEMBER t 2 ftrst r> will fail. The 

third test (LAMBOA-P p Copl) will be true by Lemma 12 and our assumption, so the 

result is (nil t 2 ••• J. 

Case 6. If pCopl "' (q)*, then £FIND rbptopl (nil t 2 ... ) pCop1) is a conditional 

with two clauses. The first test is (MEMBER t 2 ftrstq). Since t 2 f. cont P (:.\) we have 

by Lemma 10 that t 2 ,. ftrst q• and the test fails. The second clause then always returns 

(nil t 2 •.• l.l 

Theorem 1.2 (NILFIX): Given CI-C3 for some e. If op is defined NILFIX, 

(NILFIX op lt 2 ••• ) rbpCopJ pCopJ) • (reprCe] t 2 ... J. 

Proof: From the program we have the expression 
a (CONS(APPENO (op) 

(CAR (FI NO rbp Cop] (n i I t 2 ... ) p Cop]))) 

(CORCFIND rbp[opl (nil t 2 ••• ) pCop1J)) 
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By Theorem I.I we know the call to FIND returns (ni I t 2 ••• ), so we have 

• (CONS(APPEND (opl ni IJ (t2 ••• n, which is 

• (repr Ce] t 2 ••• ) by the definition of representation.I 

Theorem 1.4 (NUL-TYPEJ: Given Cl-C3 for some e. If op is defined NILFIX or 

PREFIX, then 

(NUL-TYPE (op t 2 ••• J} = (reprCeJ t 2 ••• ) 

Proof: By the program and Axiom l covering definitions, we have 

• (NILFIX op (t2 ••• J rbpCop1 pCop1 ), which by Theorem 1.2 is 

• (repr Ce] t 2 ... l. I 

Theorem 1.8 (PARSEa): Given Cl-Ci for some e and rbp. Then 

(PARSE rbp (6 t 2 ••• )) • (ASSOC rbp (repr[eJ t2,,.)) 

Proof: By the program we have 

• (ASSOC rbp (NUL-TYPE (6 t 2 ••• J J), which by Theorem 1.4 is 
• (ASSOC rbp (repr[el t 2 ••• )}.I 

Theorem 1.9 (PARSEbl: Given Cl-C5 for some e and rbp. Then 

(PARSE rbp (6 t 2 ••• J) • (reprteJ t 2 ••• ) 

Proof: By Theorem 1.8 we have 

• (ASSOC rbp (reprCeJ t 2 ... J J, which makes the test (LESSP rbp I bp Ct 21 J. By C5 
this is false, so the value is 

.. (repr(e] t 2 ••• ).I 

Proof of Theorems I.I through 1.9, Induction Step 

We assume that the tree eEE'o is a node, whose label we denote op, with subtrees. 

We assume Theorems 1.8 and 1.9 inductively for any of these subtrees. 
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Theorem 1.1 (FINO): If w •d1V1 ••• dn'tn matches 11fDl,J for n~I where Vi • Mi,(e1J and 

ei r:: E'o for ls i ~n. and if Cid, Clf, C2b, CSa. and C31, hold for w, then 

Proof: Since FINO is called recursively, in general there will be some annotation fragment 

v, not necessarily nil, which has already been parsed at some _pre¥ious stage of the 
execution. Thus, we wtff actually prove a more ge,eaf asMttan than that in the 

problem statement itself: 

(FINO rbp(ttp] (v W t11., ... , ,ro,n • t .. e,rre ...... e..J tk♦ I·• 

whtte, for conVfflience, the result of appending two' lists a at1d b' is written aeb. As in 

the basis step, the proof is by induction O\fer the definition oft~ pattern p Cof,l; the six 

possible cases are handled by the six separate clauses of die concHtional $tatemmt. 

Case I. If p Cop] • ). then (Fifi) rbp'°') (11 w tk•I• •• } pto;JJ 
• (v w t1c., • •• J. Since w•)., then n-8 and k-8, so 
• (v t 1 ••• ). But repr (e1, ••• enl • nil so we have 

• (verepr [e1, ••• en1 t1c.1 • •• J. 

Case 2. If p CopJ • "d" then we must have w • d - t 1• ay the program then, since d 

matches t 1, (FHID rbptopJ (v w tk+l".) ,r.,n 
• (CONS (APPEND v Hd))) Uz ... )) 
• (vw( (d)) t 2 ... ) whtch is 

• (v.repr Ce,, ... enl t11.1 • .. ). 

Case 3. If ptopJ • "d" ,., then we must have w • d 1Y1 where Y1 • Wo(e1L By the 
program we have (FINO rbpCopJ (v w t11• 1 ... J plof1H 

• (CONS (APPEND v (LISHLIST d (CAR CPAfiSE rbp(ol'1 (Y 1 tk•l• •• )))))) 

(COR (PARSE rbp Cop] (\' 1 tk•I • • •)))) 

We apply Theorem 1.9 inductively to tPAffSE rbp t~l (\' 1 tk•I ••• )). Cl' is satisfied 

by our assumption about w. Since n•l, C2' and C!' are sattsf'ied by C2b and CSb 

respectively. FinaHy, C4' and CS' are satiJfied directly by Clcf'and eta. We have then 
(PARSE rbp Cop] (V 1 t 11•1 ••• l) • (r.epr (e1J tk+I• •• ), so our result is 

• (CONS (APPEND v ((d repr[e 1H)) (tk.1 ... lJ 
• (verepr(e1, ... enl t 11., ... L 

Case -t. If plop] • qr then we must have w • w1w2 where 

w 1 • t 1 ••• t 1 • d 1Y1 ••• d 111V111 matches f, with IQland JNI, and 
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w2 = t;.1• •• tk = dm•l..,m•I· •• dnYn matches r, with n~• and k~j. 

Bytheprogramwehave <FIND rbpCopl (v w tk. 1 ... ) pCopn 

• (FIND rbpCopl <FIND rbpCopl (v w tk•I· .. ) q) r). Wefirstapplyourinductive 

assertion to the nested expression which is equivalent to 

<FIND rbpCop1 (v wI t;. 1 ••• ) q). ConditionsCld'andClf'abouttheinternal 

properties of w I follow directly from Cid and Clf respectively. C2b' through C3a' deal 

with the token t l• 1 so we must deal separately with the cases where w21111:>. and w2•:>.. If 

w 2,-:>., then ti•I must be a delimiter by Lemma II, so I bp Ctk. 11 • 0, satisfying C2b' and 

C2a'. In this case t;. I is also the delimiter dm•I• so C3b' is satisfied by Clf. Finally, we 

know that t;. 1 E ftrst r• and by RI contq n ftrst r .. ct,, so C3a' is satisfied. If w2•:>., 

then ti+ I -tk. 1, and 111-n. In this case, since em=en, C2b', C2a', and C3b' are satisfied 

directly by C2b, C2a, and C3b. Finally, since t 1•1 • tk•I t cont P Cop) le1, ••• en) by 

C3a, Lemma Sb says that ti• 1 ,. cont q ( e 1, ••• en), satisfying C3a'. We have then by 

induction that this nested expression is (v11repr Ce I , ••• em] ti•I • •• ), so we have 

=- CF I ND r bp Cop 1 ( v@r epr Ce 1 , ••• em] w2 tk• 1 ••• ) r). We again use the assertion 

inductively. As before Cid' and Clf' are directly satisfied, but since the last part of w2 is 

also the last part of w conditions C2b', C2a', and C3b' are also directly satisfied. Since 

tk. 1 1/. cont P Copl ( e 1, ••• en), Lemma 8 says that tk+ 1 ,. cont r ( em+ 1, ••• en), satisfying 

C3a'. We have finally, 

• (v@reprCe I , ••• em1C!reprCem•l••••en1 tk•I·••) 

• (VC!repr Ce I , ••• en] tk+I • •• ) 

Case 5. If pCopJ .. (qlr) thenbytheprogramwehave 

CFIND rbpCopl {v w tk+I'") pCopH 
• {CON□ ({MEMBER t I ftrstq) (FIND rbpCop1 (v w tk•I·••) q)) 

{(MEMBER t I ftrstr) (FINO rbpCopl (v w tk. I ... J r)) 

{ llAMBDA-P p Cop]) (v w tk+I· •• ))) 

It must be that either w1111:>. matches q, w";). matches r, or w=:>.. In the first case we have 
t I E ftr st q• so the first test is true, and we get the value of 

CFIND rbptop1 (v w tk.J••·) q). Allconditionsforinductionaresatisfied 

automatically except C3a'. From C3a we have that tk•I 1/. cont P CopJ (e 1, ••• en), but 

then Lemma 9b tells us that tk•I 1/. contq(e I , ••• en). By induction then, this returns 

the correct value. In the second case, the first test will fail because t I E ftrst r• and R2 

says that ftrstq n ftrst r • ct,. The second will be true, and as above the correct result 

will be returned. In the final case where w•A, the first two tests must fail for the 
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following reason: C3asaysthattk•I .. t 1 f contpeopile1, ••• en) • contpcopJ(~J.so 

we know by Lemma 9a that t 1 can be in neither ftrstq nor ftrstr. By Lemma·12 

(LAMBOA-P p CopJ) will be true, so (v w tk•I • •• ) is returned; since 

repr [e 1_. ••• en] .. n i I, we here too get 

• (v@repr [e 1, ••• en] tk+I). 

Case 6. If p Cop] • (q) * then by the program (FINO rbp Cop] (v w tk•I • •• ) p CopJJ 
- (COND ( (MEMBER t 1 ftrstq) 

(FIND rbp[opJ (FIND rbpCopJ (v w tk. 1 ... ) q) p[oplJ) 
(T (v W tk+l ... ))) 

By definition either w=:>. or w=w 1 ••• w, for r~e. where wio<q for lsisr. If w-~ then 

the first test must fail for the following reason: from C3a we have 

t 1 • tk•I f cont P Cop] (e 1, ••• en) • contq ().). But by Lemma 10a we know then 

t 1 f ftrstq·• so the correct result is returned. For r>0 we prove the assertion by 
induction on r. 

n==0. Then we have w .. w 1 .. d 1'1 1 ••• dn'in matches f(. By the program we have 
(FIND rbpCopJ (v w1 tk. 1 ... ) pCopJ) 

.. (CONO ( (MEMBER t I ftrstq) 

(FINO rbp[opJ (FlND rbpCopJ (v w1 tk+I"') q) p[op])) 

(T ( V <A> I tk+ I• • • ) )) 

By our assumption the test t I E ftrstq will be true. We first apply our induction 

hypothesis on patterns to the nested expression (FINO rbp[opJ (v w1 tk•t• •• ) qJ. 
We know by assumption that w Io< q. Conditions Cid' through C3b' are satisfied directly 

by Cid through C3b respectively. From C3a we know that tk+t f cont P Cop] ( e,, ... en>. 

By Lemma 10b we know that tk+I f cont,<wn>, where Wn'"'WJ, so C3a' is satisfied. We 

then have 

• <FIND rbpCopJ (v@repr[e 1, ... en1 tk•I'") p[opll. NowweknowbyC3athat 

tk. 1 f cont P Cop] ( e 1, ••• en) so we know by Lemma 10b that tk•I f. ftrst,,. The test is 

false and the value of the program is 

... (v@repr[e 1, ... enl tk•I'"). 

n>0. Thenwehavew • w1w2 ••• wnwherew 1 "' t 1 ••• t 1 • d 1¥ 1 ••• dm¥mmatchesq, 

with ln>0 and j>0, and w2 •• ,Wn :'" t 1•1 ••• tk .. dm•t¥m+I' •• dn¥n matches p[oJIJ, with 

n>■ and k>j. By the program we have (FINO rbp[opl (v w tk•t•••) plop]) 
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• (CON□ ( (MEMBER t I ftrstqJ 

(FIND rbpCopJ (FINO rbp[opJ (v w tk. 1 ... J q) pCopHJ 

(T ( V W tk+ t • .. ) ) ) 

By our assumption the test t I E ftrst q will be true. We first apply our induction 

hypothesis on patterns to the the string w I in the nested expression 

ff IND rbp Cop] (v w1 w2 ••• wn tk. 1) q). Condition II' is true by our assumption 

about w. Cid' and Clf' are true directly from Cid and Clf. By Lemma 5, t;. 1, the first 

symbol in w2 ••• Wn is a delimiter, and so I bp Ct;.11 • 0, satisfying C2b' and C2a'. We 

also know that t;. 1=dm•I• so C3b' is satisfied by Clf. Finally, since tj+ 1 E ftrstq we know 

by restriction R3 that t;. 1 f. cont((, satisfying C3a'. We have then the value 

• ffIND rbpCopJ (v@repr[e 1, ... em1 w2 .. wn tk•I) p[opJJ. We now apply the 

induction on n to the string w2 ••• Wn- Conditions Cid' through C3a' are directly satisfied 

by Cid through C3a respectively, so we have the value 

• (V@repr [e 1, ••• em1@repr [em•I • ••• en] tk•I • •• J which is 

• (v@repr [e 1, ••• en] tk•I • •• LI 

Theorem 1.2 (NILFIXJ: Given CI-C3 for some e. If op is defined NILFIX, 

(NILFIX op (w tk•I• .. ) rbp[op] p[op]) • (repr(e] tk+J•••) 

Proof: From the program we have the expression 

= (CONS (APPEND <op) 

(CAR (FIND rbpCopJ (nil w tk+I' .. ) pCopHJJ 
(COR (FIND rbp Cop] (ni I w tk+t• .. ) p Cop]))) 

By Theorem 1.1 we know that the call to FIND returns (repr Ce 1, ••• en1 tk•I • •• ), so 
• (CONS (APPEND lop) reprCe1, ... en]) ( tk+J • .. )) 

=- (repr Ce] tk•J • .. ). I 
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Theorem 1.3 (PREFIX}: Given Cl-CS for some e. If op is defined PREFIX, 

Proof: From the program we have the exprmton 
• {CONS (APPEND fof,) 

{LlSTILIST 'RIGHT ICM fPAR9E raplof,J f,S w tk•I•••))))) 

lCAR(FIND rbplo/11 

(COR(FINO rbpCopJ 

(CONS Nil tCOR WMSE r•l¥J .(tJ w t11.1• • •)))) 
p (op)})) 

(CONS NIL (CDR (PARSE rbp (opJ (4' w tk•I ••• J J ) ) 
p Cop])) ) 

Since il • UO<e8 } and e8e:E'o, we know that if we can &how eur Hve conditions hold for 

e0 then we can apply Theorem 1.9 inductively in order to obtain 

(PARSE rbp Copl {tJ w tk+t- •• ) l • h-epr (teJ w tk•I •. • J. 
From Cla we obviously have Cl' satisfied. Ck tells us that rbs,upl s I- i nde,c (eel, 
which immediately gives us C4'. For C2', CS', and C5' we must consider whether the 

annotation part ., is the null-string or not If c,111)., then the fir'St,IOlten of w is the 

delimiter d 1, so C3' is satisfied by Cle. Since lbplt .. 11 • I, conditions C2' and C5' are 

also satisfied. If w•:>., then n-0 and we ilnl1t«lia~J get CS' fram>C91>, C2' from C2b, 

and C5' from C2a. Thus, the value of the expression is 

• (CONS lAPPENO (Dpl 
((right repr Ce0J) J 

(CAR (FINO rbplopl (ni I w ~.1 ••• J plopU» 
(COR (FINO rbplopl (nil w tk+t•••} pCofJJJ)) 

By Theorem 1.1 we know that the value of the call to FIND is 

(repr Ce 1, ••• en] tk•t ••• }, so the value of the expression is 

• (repr [el tk•I· •• ). I 

Theorem 1.4 (NUl-TVPE): Given Cl-CS for some e. If op is defined NILFIX or 
PREF I K, then 
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Proof: We consider the two possible cases. If op is defined NI LF I )( then 

(GET op 'NUL-TYP) = NILFIX by Axiom I, so we have by the program and Axiom I 

,. (NI LFI X op ('3 w tk• 1 .. ,) rbp Cop] p Cop]), which by Theorem 1.2 is 

- (repr Ce] tk•L'., J. Similarly, if op is defined PREFIX the correct value is returned by 
the program, Axiom 2. and Theorem 1.3. If there is no NUL-TYPE definition for op, then 

the value is 

.. (NILFIX op ( tk.t• •• ) 0 ).), which is the default condition. In this case op is 

assumed to be nilfix with no a-rguments and null pattern, so by Theorem 1.2 the correct 

value is returned.I 

Theorem 1.5 (POSTFIX): Given CI-C3 for some e. If op is defined POSTFIX, 

(POSTFIX repr[e19u1 op (w tk+I' .. ) rbpCopJ pCopH • frepr[e] tk•I•••) 

Proof: By the program we have the value 

- (CONS (APPEND <op) 
( ( left repr Ce19n1)) 

(CAR (FIND rbp Cop) (ni I w tk•l•,.) P Cop]))) 

(COR (Fl ND rbp Cop] (n i I w tk•I • •• ) p CopJJ)) 
By Theorem I.I, the call to FI ND has the value h-epr Ce 1, , •• enl tk• 1 ••• ) , so we have 

the expression 

• (CONS <APPEND <op) 

( ( I e ft repr Cei.tt1 ) ) 

repr Ce 1, ••• enl) 

( tk+ I• • • ) ) 

• (repr Ce] tk+I ••• ). I 

Theorem 1.6 UNFIX): Given Cl-C3 for some e. If op is defined INFIX, 

(I NF IX repr te19n1 op ((l w tk. 1 ... ) rbp top] p Cop]) - (repr [e] tk•I • .. ) 

Proof: By the program we have the expression 



78 

• (CONS (APPEND lop) 

( ( I ef t repr {e,.ftJ H 

(LISHLIST 'RIGHT fCMfPARSE rbplol11 (~ w t••I" •• JJ J H 
(CMHFIND rbp£o1'l 

(COR(FINO rbpCopJ 

(CONS Nil tCORtPAR!IE rt,pfol'l (ti w t••• ... ) JJ) 
plop]))) 

(CONS Nil (COR(PARSE ri,p(O,ltlJ w tk•I• •• J))) 

p Cop])) ) 

We use Theorem 1.9 inductively on the expression {PARSE rbplo;J {IJ w t 11• 1 ••• )) in 
exactly the same manner as in the proof of Theorem 1.3 (PREFIX), yteldtng t~ value 
(repr Ce01 w t 11• 1 ••• ). We have then the eKpression 

• (CONS ( N'f'Efll (op J 
((left reprte,.ul)) 
({r i gh t repr tee]) ) 
(CAR (FIND rbptopl (nil w t11♦ 1 ••• J plot,)))) 

(COR (FINO rbp[opl (nit w t 11• 1 ••• J ,eo;Hn 
By Theorem IJ we know that the call to Fifi> returns the correct value, giving us 

• (CONS (APPENO lop> 
(( I e ft reprCei.nl )) 
((right repr [eg))) 

repr Ce1, ••• enl) 

(tk+I • • •)) 

• (repr Ce] tk+I • •• ). I 

Theorem 1.7 lLEF-TVPEJ: Given Cl-C3 for some e. If op is defined POSTFIX or 
I NF I )(, then 

fLEF-TYPE (repr Cei.tt1 op tJ w t 11• 1 ••• )) • (repr [el t 11• 1 ••• J 

Proof: We consider the two possible cases. If op is defined POSTFIX then 

(GET op 'LEF-TYPJ • POSTFIK by Axiom 3, so we have by the program and Axiom 3 
• (POSTF I)( repr Ce1et,l op (w t 11• 1 ••• ) rb.p Cop) p [ol'H, which by Theorem 1.5 is 
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• (repr [eJ tk• 1 ••• ). Similarly, if op is defined INFIX the correct value is returned by 
the program, Axiom 4, and Theorem 1.6.1 

Theorem 1.8 (PARSEa): Given CI-C4 for some e and rbp. Then 

(PARSE rbp (6 tk. 1 ... )),. (ASSOC rbp (repr[e] tk+J•••)) 

Proof: We consider the two possible cases: op is NUL-TVPE or LEF-TVPE. 
Case I. If op is defined NILFIX or PREFIX then we have ex=:>.. in 6 = exop(!,w, so t 1 • op. 

By the program we have (PARSE rbp (op (!, w tk•I •• )) 

• {ASSOC rbp (NUL-TVPE (op (!, w tk+I ... ))), which by Theorem 1.4 is 

• (ASSOC rbp (reprCeJ tk+I•••))· 

Case 2. If op is defined POSTFIX or INFIX then ex.,;>,, We apply Theorem 1.8 inductively to 

the expression (PARSE rbp (ex op (!, w tk•t• •• )). From Cla we have ex .. IJo(ei.n) 
where eiett E E'o, satisfying Cl'. From Clb we have r-i nde>< Cer.n1 c!: I bp Cop], 
satisfying C2'. We do not allow LEF-TVPE operators to be used as delimiters, so since 
only delimiters can occur in c-se t Ce1en1, C3' is trivially satisfied. From Ci we have 
rbp < I - i nde>< [eJ, and since I- i nde>< [e] • 11 in [ I bp Cop], 1-i nde>< Cei.u11, we have 
rbp < I - i nde>< [e1.n1, satisfying C4'. By induction, then, we have 

{PARSE rbp (a op(!, w tk+J••·)) 

• (ASSOC rbp (repr [e1.,t1 op (!, w tk•I· •• )). The value of the call to ASSOC is a 
conditional whose first test is (LESSP rbp I bp Cop]). By the same argument we used to 

satisfy C4' above, we have rbp < I bp Cop], so the test is true and the result is 
.. (ASSOC rbp (LEF-TVPE (repr Cer.n1 op (!, w tk•I • •• )). By Theorem 1.7 this is 
• (ASSOC rbp {repr[eJ t~ 1 ••• }).I 

Theorem 1.9 (PARSEb): Given CI-C5 for some e and rbp. Then 

Proof: By Theorem 1.8 we have (PARSE rbp (6 tk•I • •• )) 

- {ASSOC rbp (repr Ce] tk•I • •• )). The value of the call to ASSOC is a cond.itional 
whose first test is (LESSP rbp I bp [op]). By C5 this is false, so the second clause 
returns (r epr Ce] tk. 1 ••• ) • I 
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V.D PARSE 'Theorem II 

We complete this chapter with the proof of the second PARSE theorem stated in 
Section V.A: 

VStZ* (P0 (6) halts error-free =t &e:Sol 

where l:* is any string of tokens and S0 is the defined language as described in Section 

IV.B. The program PARSE is given as input a Ust of tokens; if it halts error-free then that 

string must be the linear representation of a grammatical expression tree. Notice that our 

work is simplified by the fact that we do not worry about the. value returned by the 
program; this leads us to adopt the following convention. 

Notation: We write ( ••• ) • ( ••• ) to mean that the LISP expression on the left 

evaluates error-free to the value on the right. The presence of LISP expressions whose 

value need not be discussed w~II be indicated by ( ••• ) . 

We can now restate our theorem in terms of the program PARSE as follows. 

PARSE Theorem H: If se:t* and if (PARSE -1 (s -ti I • (( ••• ) -t), then &e:So-

Outline of Proof 

The statement and proof of this theorem closely paraUel those of the first PARSE 

theorem. As before, our desired result is a corollary of the last in a series of nine subsidiary 

theorems, which correspond (in this case precisely) to the subroutines of the program PARSE. 

These theorems, however, are now in the converse form: whenever the subroutine returns a 

value certain properties are shown to be true about the input string. The proof is again by 
simultaneous induction with the theorems proven sequentially at each level. Their 

interdependence, including the inductive use of Theorem 2.9, is illustrated in Figure 3. The 

essential difference between the two PARSE theorems is the domain of induction; in this case 
we use induction on the length of strings in the set t*. 
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2.9 PARSE 

\ 
2.8 ASSOC 

2.4 NUL-TYPE 2.7 LEF-TYPE 

I /\ 
2.3 PREFIX 2.2 NI LF IX 2.5 POSTFIX 2.6 INFIX 

2.9 PARSE 
( I nduc t i on) 

Figure 3. Interdependence of Theorems 2.1-2.9 
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Statement of Theorems 2.1 through 2.9 

Since we are given that SEE*, we wifl assume that the input list to PARSE is the list 

of tokens ( t 1 ••• t 1 ), for sc:.1, with the convention that t.•-1. As in the proof of PARSE 
Theorem I, we use an inductive generalization, Th«nem 2'.9. which makes use of 
Conditions Cl through C5. In this cue, however, Ct through C5 are the consequents of the 

theorem. From Cl we have the desired result that t 1 ••• tk E So, 

Conditions: 

Cl. ee:E'o and 6 - a0P'3(1) - U0 (e) • t 1 ••• tk 

C2. 

C3. 

Cla. <X - IJ0 (e_.,) if ei.ft exists (A otherwise), I' • "1,te•) if e0 exists(>. otherwise), 

and (I) • d IV 1 ••• dn'I' n for n2:0, where \'i • We, (ei) for ls i Sn when ei is non-null 

(:>.. otherwise), and et.ft• ee, e1, ••• ene:E'o when they exist and are non-nuH. 
Clb. r-· i nde,c lei.ft] l!:. I bp Cop] if et.ff exists. 
Cle. rbpCopJ < 1-i nde,c Ce01 if e9 exists. 
Cid. rbpCopJ < 1-inde~CeiJ for lsisn, when ei is non-nutl. 
Cle. d 1 f c-set Ce01 if ee and d 1 exist. 

Clf. d; f c-aet tei_,J for 1< i sn when ei is non-nuH. 

r-i ndex Ce] l!:. I bp Ctk•I]. 

C2a. rbp Cop] c:. I bp Ctk.11 if en exists and is non-null. 

C2b. r- i nde,c Cen1 i!: I bp C tk• 1 J if en exists and is non-null. 

tk• 1 f c-se t Ce]. 

C3a. 

C3b. 

tk+t f contptopJ(e1, ••• enL 

tk. 1 f c-set Cen1 if en exists. 

C-t. r bp < I - i nde,c [ e J . 

We state now the theorems in full. 
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Theorem 2.1 ffINDJ: If (FINO rbptopl (nil tj+l•··t,) p[ol'H • atatefor 
lSj<s then 

(a) state• (( ••• ) tk.t•••t,) where jSk<B 

(b) tJ+I• •• tk - w • d 1¥ 1 ••• d"¥" for ni!!:8 where ¥i•IJ0 (ei) and ei£E'o for lsisn, 
and wo<p. 

(c) Cid, Clf, C2a, C2b, C3a, and C3b hold for tJ+I• •• t1r 

Theorem 2.2 (NILFl)O: If t 1 • op is defined NILFIX and 

(NILFIX op U 2 ••• t 1 ) rbpCopl ptopH • atate,forl<a,then 

(b) Cl, C2, and C3 hold for t 1 ••• tk. 

Theorem 2.3 (PREFIX): If t 1 • op is defined PREFIX and 
(PREFIX op U 2 ••• t,) rbpCopl pCoplJ • state,forl<a,then 

(a) state•(( ••• ) tk.t•·•ta) wherelSk<s 

(b) Cl, C2, and C3 hold for t 1 ••• tk. 

Theorem 2.4 (NUL-TYPE) 1 If for l<s (Nll.-TYP H 1 ••• t 1)) • state then 

(a) state•(( ••• ) tk•t•••t,J wherelSk<s 

(b) Cl, C2, and C3 hold for t 1 ••• tk where t 1 is defined NILFIX or PREFIX. 
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Theorem 2.S (POSTFIX): If t .. 1 • of, is defined POSTFIX, t 1 ••• t, • "1,lei.tt) for 
ei.t1eE'0, r-inde,cCei.nl > lbplt .. 11, and 
(POSTF l >< ( ••• ) of, H,.2 ••• t 1 ) rbp (opJ , lD,,J • state where a+l<a then 

{b) CJ, C2, and C3 hold for t 1 ••• tk. 

Theorem 2.6 UNFIX): If t .. 1 • op is defined INFIX, t 1 ••• t, • 1i10 (eleft) for 
e1enEE'o, r-inde,c(e,_uJ > tbpCt .. 11, and 

UNFIX L •. ) op u .. 2 ... t,) rbp[opJ pfD1,J) • statewherea+l<ethen 

Theorem 2.7 (LEF-TYPE): If t 1 ... t, • "'1,lewt) for 9wteE'o, 
r-inde,<Cei.ul > lbpCt,.11,and {LEF-TVPE ( ••• ) u .. , ... t.)) • statewherea<a 
then 

{a) state• (( ••• ) tk+l···t,) wherea<k<s 

(b) CJ, C2, and C3 hold for ti' •• tk where t .. 1 is defined POSTFIX or INFIX. 

Theorem 2.8 (ASSOC): If t 1 ••• t1 satisfy Cl, C2, C!, and Ct, and 

{ASSOC rbp (( ••• ) t,♦ 1 ••• t 9) • state where j<e then 

(2) If rbp < lbp(ti•tl, then 

{a.) state=- (ASSOC rbp (( ••• ) tk.1 ... t 1 )) where j<k<s 

{b) CJ, C2, C3, and C4 hold for t 1 ••• tk where tJ+t is defined POSTFIX or INFIX. 
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Theorem 2.9 (PARSE): If (PARSE rbp (t 1 •• t 8)) • state fc;,r l<a then 

(b) Cl through C5 hold for t 1 ••• tk. 

Since this proof is essentially concerned with error handling, we precede the basis 
step with a preliminary lemma about the behavior of the PARSE program on trivially 
invalid inputs. The theorem itself deals with list arguments to PARSE of length two or 
more, and it.is important to know that no value will be returned for shorter lists. 

Lemma 2.1: (PARSE rbp ( t 1 ••• t 8)) returns an error if s<2. 

Proof: By the program (PARSE rbp ( t 1 ••• t 1 )) 

• (ASSOC rbp (NUL-TVPE ( t 1 ••• t 8))), but NUL-TVPE immediately tests by evaluating 
(COOR ( t 1 ••• t 8)). If s<2 this will cause an error.I 

Proof of Theorems 2.1 through 2.9, Basis Step 

For the basis step we assume that s•2, so the input string is ( t I t 2) • ( t 1 ·O. 
Since Theorem 2.9 is the final result and is the Mly theorem to be used inductively, it is the 
only essential part of the basis step proof. To prove Theotem 2.9 for the case s-2 we will 
also need Theorems 2.1, 2.2, and 2.-+. 

Theorem 2.1 (FINO): If (FINO rbp[opJ (ni I ·O pCopH • •tate, then 

(a) state • ( ( ••• ) •O 

(b) i\•w matches p Cop] 

(c) Cid, Clf, C2a, C2b, C~a. and C~ hold for i\. 

Proof: Since k<a, the second argument to FINO must be (ni I ·O. We prove then the 
following assertion inductively over the definition of the pattern p Cop). If 
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(FINO rbpfopJ (ni f -n pCopH • &tate, then ).«p and state • (ni I ·O. This 
assertion implies that w•:>t and so Cid and Clf are trtviaRy satisfied. Since lbp [·fl•-1 

C2 is satisfied, and C3 because ·tis nOt i1I tiff! dlfifled .... ge. 
Case I. If p Cof,l•°A then true immediately. 

Cases 2,3. It cannot be that p Copl •"d" or "d" ""• because: a value would only be returned 
if d,.-1 and we know that -f is not part of the defined language. 

Case 4. If p Cof,1 =q·r then the value must be 
(FINO rbp [cp) fFINO rbpCopJ (ni I -f) q) rJ. ly two wa of pattern induction 
we have :>.-= q and :>t-< r so :>. < p fo/11, and the fmaf result (ft i I -fl. 

Case 5. If p Cop J • hr I r J then, since -t caMOt w ht etffler et first, or prst r tt must be that 

:>t-<p topl and (nit -f) is returned. 

Case 6. If p Cop J • ( q) * then, since -f cannot be in ftrK f' the result fn i I ·O is returned 

and ). -< p Cop J by def inition.l 

Theorem 2.2 (NILFI XJ: If o,, is-defined NILFIX Md 
(NILFIX op HJ rbpCopl pCopJJ • statethen 

(a) state,. (( ••• ) -f} 

(b) Cl. C2. and C3 hold for t 1• 

Proof: By the program (NILFIX op HJ rbfitlo;} P.'°l>H 
•(CONS( ••• } (COA<FINO rbpCojd (nil -fl p{o/,HH. ByTheorem2Jthlsis 

- ( ( ••• ) -f), and we know ;>...:p£op1. Since of> tJ.defiMdftll.FU,C we have then that 

s-t 1-op•Wo{e) for ee:E'o, completing Cl. We have atready C2 and CS from · 
Theorem 2.l. 

Theorem 2.4 lNUL-TYPEJ: If (NlR.-TVP (t 1 -f)) • st.ate then 

(a) state• ({ ••• ) -f) 

(b) Cl, C2, and C3 hold for t 1 where t 1 isdefined.NllFIMorPREFIX. 

Proof: NUL-TYPE only returns a val~ in three cases. 
Case I. If t 1 -op is defined N ILF IX then we have the value 

(NILFI>< op (-f) rbpCopJ pCopJJ andwearedoneimmediatetybyTheorem2.2. 
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Case 2. If t 1-op is defined PREFIX then we have the value 

(PREFIX op (-f) rbpCopl ptoplL ButPREFIXevaluatestheexpression 

(PARSE rbp Copl (-0) which by Lemma 2.1 causes an error.I 

Case 3. If t 1 =op is not defined, then it is assumed by default to be a variable or constant; 

we have then the value (NILFIX op (-f} 0 ).) and we are again done by Theorem 2.2. 

Theorem 2.9 (PARSE): If (PARSE rbp U 1 -0) • state then 

(a) state = ( ( ••• ) -n 

(b) Cl through C5 hold for t 1• 

Proof: By the program (PARSE rbp ( t 1 -0 ) • (ASSOC rbp (NUL-TYP ( t 1 ·t> } ) . By 
Theorem 2.4 we know that this is • (ASSOC rbp ( ( ••• ) -f) ) and that Cl, C2, and C3 
hold. Since we know that I bp [·tl ... -1, ASSOC returns the value ( ( ••• ) -0, and C5 is 

satisfied. Finally, since op has no left argument we have 1-i nde,c tel • •• satisfying 

C4.I 

Proof of Theorems 2.1 through 2.9, Induction Step 

We now assume that s>2 and that Theorem 2.9 holds for strings of length less 

than a. 

Theorem2.1 (FINO): If (FINO rbpCopl (nil t,.1 ... t 8 ) p[opH • state for 

l~j<a then 

(b) ti•I· •• tk • w .. d 1V1 ••• dnVn for ni!:8 Mhere vi .. lJ0 (e;J and e;e:E'o for lsisn, 
and woc:p. 

(c) Cid, Clf, C2a, C2b, C3a, and C3b hold for t 1•1 ••• tk. 

Proof: The proof is by induction over the definition of the pattern p Copl; the six possible 
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cases are handled separately by the six conditional clauses in the program. 

Case I. If pCopJ .. ")..then {FIND rbpCopJ {nil ti+l· .. ts) plop]) 

• ( (. •• ) ti•I • •• ts). In this case w•").. which clearly matches p Cop]. Only condition C3a 

is relevant to this case, but since p•").., we have cont P CopJ ,. ff,. 

Case 2. If p CopJ ::s"d" then the program will only return a value if d-t1•1. If it does, the 

value is 

• ( ( ••• ) t;.2 , •• ts)· It must be the case that j+l<s, since j+l•B would imply that 

t;. 1=-i which we know cannot match any delimiter in the defined language. Clearly 

w=t;. 1 matches p top], and since there is no e 1, the only relevant condition to satisfy is 

again C3a. Since p="d", we have cont p top) .. <t,. 

Case 3. If p Cop) ="d" N, then the program will only return a value if d•tJ+t· If it does, 

the value is 

• ( ( ••• ) (CDR (PARSE rbp Copl ( ti.2 ••• ts)))). We must have j+2<s, since PARSE 

returns an error otherwise by Lemma 2.1. We have then by an inductive use of Theorem 
2.9 the value 

• ( ( ••• ) tk•I • •• ts> where j+2Sk<s. We also know that the following conditions hold 

for V1 .. t;.2,,. tk: Cl' V1=LJ0 (e1J for e 1e:E'o, C2' r-index[e 1] 2:: lbp[tk+J], 

C3' tk. 1e:c-set te 1J, C4' rbpCopJ < l-index[e1J, and C5' rbptopl 2:: lbpet,♦ 1 1. We 

now show that the necessary conditions hold for ti•t· •• tk. We have first that 

ti• 1 ••• tk=dV I which clearly matches CopJ. Cid is satisfied directly by Ci'. Condition 

Clf does not apply, since n=l. C2a is satisfied by C5' and C2b by C2'. C3b is satisfied 

directly by C3' and C3a from the fact that cont P Cop] =-<I> in this case. 

Case 4. If p Cop] =qr, then the value of the program is 

• <FIND rbp[opl CFIND rbp[opl ({ ... ) ti•l···ts) q) r). By pattern induction on 
the innermost expression we have the value 

• <FIND rbp[opl ({ ... ) th•l'"ts) r) for jSh<s. We know that 

t l• 1 • •• th=d IV 1 ••• dmV m=w 1, for 0sm, which matches q, and that all conditions (call them 

Cid', Clf', etc.) hold for w1• By another use of pattern induction we have the value 

.. ( ( •• ,) tk+)• •. ts> for hSk<s. We know that th+l• •• tk=dm+lvm.J• •• dnVm•W2, for IISn, 

which matches r, and that all conditions (call them Cid", Clf'', etc.) hold for w2• We now 

show that all conditions hold for t;.i· •• tk. Clearly jSk<s and t 1•1 ••• tk=w 1w2 matches 

p topl. Cid follows directly from Cid' and Cid". Ctf follows from Clf' and cu•· with 

one exception. We must show that dm. 1fc-set [eml; i.e., that the first delimiter of w2 is 
not in the c-set of the last argument of w1. This case is covered by C3b'. If w2":>. then 
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C2a follows directly from C2a", otherwise from C2'. Similarly C2b follows from either 

C2b" or C2b'. We know from C3a" that tk. 1fcontr(em+I• ••• en). If w2.-;>. then by 

Lemma 8a we know tk. 1e:cont P Cop] (e 1, ••• en). If w2=:>. then tk•l-th•I and we also 

know that t 1• 1 qcontq (e 1, ••• em}. But by Lemma Sb it is also true that 

tk+ 1 f. cont P Cop] { e 1, ••• en), satisfying C3a. Finally, C3b follows from C3b" when w2.,.)., 

otherwise from C3b'. 

Case 5. If p Cop]= (q Ir) then the program only returns a value in one of three cases. If 

the first test is true, t 1• 1Eftrstq, then we have 

• lFINO rbp[op1 (( ••• ) t1• 1 ••• t 8 ) q. Bypatterninductionthisis 

• ( ( ••• ) tk•I • •• t 8), where all conditions except C3a are satisfied immediately. We know 

from C3a' that tk•I f. contq (e 1, ••• en). By Lemma 9b, since w"). in this case, we also 

know tk• 1 f. cont P Cop] { e 1, ••• en), satisfying C3a. If the first test is false and the second 

test, t 1• 1Eftrstr,is true then we have the same situation. If the first two tests are false, 

and the third is true, :>.-< p Cop] , then the result is 

.,. ( ( ••• ) ti• 1 ••• t 8), where w•).. In this case the only relevant condition is C3a. Since 

we know by the failure of the first two tests that tJ+ 1f.ftrstq and tJ+ 1tflrstr, we know by 

Lemma 8 that t1• 1e:contpCopJ ().), 

Case 6. If pfopl-(q)* then value of the program is a conditional whose test is t1• 1eftrst,. 

If the test fails then the value is 

• ( ( ••• ) ti• 1 ••• t 8 L If the test succeeds, then the value is a a recursive call to FI NO for 

p Cop], after another wi has been found to match q. We prove by induction on the 

number of calls to FIND for p Copl made before returning. The hypothesis is that each 

time there is a call of the form (FIND rbp Cop] ( ( ••• ) th•I • •• t 8 ) p Cop] J, then all of 
the conditions except C3a are true of the string t 1•1 •• , th. Thus, when the test finally 

fails, we only need show that C3a is true to be done, but by Lemma 10 we know that if 

tk+if..ftrstq, when the test fails, and if tk. 1fcontq(en), which we know from the 

induction hypothesis C3b', then tk•I e: cont P CopJ ( e1, ••• en), satisfying C3a. We now 

prove the hypothesis. 

Basis: At the first call, we have j•h, or <.u=A. Since pCopl-(q)*, we know that w-<-pCop1. 
No other conditions are relevant to this case. 

Induction: If all conditions except C3a are true of t 1•1 ••• th=w 1 ••• i-l (call these conditions 

Cid', Clf', etc.), and if the test th+ 1 E ftrstq is true, then we have 

(Fl ND rbp Cop] ( ( ... ) ( th+I, .. t 8) p Cop]) 
• (FINO rbpCop1 (FINO rbp[opJ (( ••• ) th+ 1 ... t 8 ) q) p[op1J. We know by our 
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induction over patterns (the higher level induction in this theorem) that this is 

• (FI ND rbp lop] ( ( ••• ) tk.1 ... t 1 ) p CopH, where the string tti.i • •• tk-wi matches ff. 

We also know that all the conditions are true for this strmg (calf these Cid", Clf", etc.). 

We now show that all conditions are true for the whole ltrfflg t;.p •• tk•I· Since 

w 1 ••• wi- 1 « p and wi«q, we know that tJ+I • •• t 11-w1 ••• wi-<p. Cid is satisfied directly by 
Cid' and Cid". Clf is similarly satisfied by Clf' and Clf" with one exception. We need 

to show that the first symbol of Wn is not in the c-ut of the last argument in w 1 • •• w;.1, 

but this follows from C3b'. We recall that Lemma 6 says that). cannot match ff .. Then 
we have conditions C2a, C2b, and CSb following dtrecdy from eta', C2b♦• and C3b' 
respectively. Thus all conditions except C!a are satisfied.I 

Theorem 2.2 (NILFIX): If t 1 • op is defined NILFIX and 

{NILFIX op U 2 ••• t 8 ) rbplopJ pEopH • state,forl<■,then 

(b) Cl. C2, and C3 hold for t 1 ••• tk. 

Proof: By the program (NI LF IX op l t 2 ••• t 1 ) rbp lop] p Co;J) 

• {CONS l ••• ) lCDR (FINO rbp Cop] (nil t 2 ••• t 1 ) p lopH) ). So by Theorem 2.1 
• ( ( ••• ) tk+ 1 ••• t 8 ) where 2Sk<e. Since the annotation part t 2•· •• tk matches p Cop] by 

the theorem and Cid and Clf hold, we have satisfied Cl, because Clb, Cle, and Cle are 

not relevant to theNILflX case. Then t 1 ••• tk • Wo{el for e£E'o- By Theorem 2.1 we 

also have C2a, C2b, CSa, and CSb, which give us C2 and CS for e.l 

Theorem 2.3 lPREFlX): If t 1 • op is defined PREFIX and 

{PREFI )( op U 2 ••• t 8 ) rbp Cop] p £opH • state, for l<s, then 

(b) Cl, C2, and CS hold for t 1 ••• tk. 

Proof: By the program (PREFIX op U 2 ••• t 1 ) rbpCof,l pCoplJ 
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• (CONS ( ••• ) (CDR (FIND rbptopJ 

(CONS NIL CCDR (PARSE rbp Cop] ( t 2 •• , t 8 ) J J J 
p Cop]})}. 

We first consider the expression (PARSE rbp top] ( t 2 ••• ts>). It must be the case that 
s>2, otherwise PARSE causes an error by Lemma 2.1. We have then by the inductive use 
of Theorem 2.9 that the result is 

•(CONS( ••• ) (COR <FIND rbptopJ (nil ti+l'"ts) ptop]))),whereweknowthe 

following about t 2• , • ti • {3: Cl' {3-IJ0 ( e0) for e0 e: E'o, C2' r- i nde,c [e81 ? I bp Ct J• 11. 
C3' ti• 1 ~ c-se t te0J, Ci' rbp top] < I - index te0J, and C5' rbp top] ~ I bp CtJ+ 11. 
Finally, we know that j<s, so we apply Theorem 2.1 and get 

• ( ( ••• ) tk+I ••• ts>, where we know k<s and that Cid, Clf, C2a, C2b, C3a, and C3b 
already hold for the expression t 1 ••• tk. We satisfy the others as follows. We have now 
t 1 ••• tk=-op(!,w where op is defined PREFI )(, and annotation part w matches p Cop], 
satisfying Cla. Clb is not relevant to this case. Cle is satisfied by Ci'. Cle is only 
relevant if W-'A in which case it is satisfied by C3'. If w•'.>. then en is part of the 
annotation w and conditions C2 and C3 follow from C2a, C2b, C3a, and C3b obtained 
from Theorem 2.1. If wa)., then en•e0. In this case C2 is satisfied by C5', and C3 is 
satisfied by C3a and C3'.I 

Theorem 2.4 CNUL-TVPE): If for l<s CNUL-TVP (ti'. ts>) - state then 

(b) Cl, C2, and C3 hold for t 1 ••• tk where t 1 is defined NILFIX or PREFIX. 

Proof: NUL-TYPE returns a value in three possible cases. 
Case I. If t 1=op is defined NILFIX then we have the value 
• (NI LFI X op U 2 ••• ts> rbp top] p top]) and the result is immediate by Theorem 2.2. 
Case 2. If t 1 =op is defined PREF I)( then we have the value 
• (PREFIX op ( t 2 ••• ts> rbp Cop] p Cop]) and the result is immediate by Theorem 2.2. 
Case 3. If t I is undefined, then it is assumed by default to be NI LF IX with rbp•8 and 

p Cop] :a).. We have the value 

• (NI LF IX op ( t 2 ••• ts> 0 ). ) and the result is immediate by Theorem 2.2.1 
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Theorem 2.5 (POSTFIX): If t .. 1 • op is defined POSTFIX, t 1 ••• t 1 • "c,(eleft) for 
ei.ne-E'o, r-inde,clei.n1 > lt,pCt .. 11, and 
(POSTFIX( ••• ) op U .. 2 ••• t,) rbplopl p(of,l • st,tewherea+l<athen 

(b) Cl, C2, and C3 hold for t I• •• tk. 

Proof: By the program we have (POSTFIX ( ••• ) op fta.2 ••• t 1 ) rbp [op] p Cop)) 

• (CONS ( ••• ) CCOR (FIND rbpCopl (ni I t .. 2 ••• t 1l plof,U H. So by Theorem 2.1 
• ( ( ••• ) tk+ 1 ••• t,t for a+l ~k<s, and w•t .. 2 ••• \ matches p lof,1 With Cld, Clf, C2a.. 

C2b, C3a, and C3b already true. Since t 1 ••• t 1-«-1o(ei.nl by assumption we have 
t 1 ••• tk•aof,"1, satisfying Cla. Clb is satisfied by given, and Cle and Cle are not 
relevant to the POSTFIX case, so we have t 1 ••• t 11-Mo ( eJ for eE'£'o, satisfying Cl. C2 
and C3 now fotlow directly from C2a, C2b, Oa, and Cb.I 

Theorem 2.6 HNFl)(J: If t,.1 • of, is defined INFIX, t 1 ••• t 1 • lilt,(e.tt> for 
ei.ne-E'o, r-inde,clei.u1 > lbp[t,.11, and 
(INFIX ( ••• ) op u .. 2 ••• t,) rbp Copl p EopU • state where a+l<a then 

(b) Cl, C2, and C3 hold for t 1 ••• tk. 

Proof: By the program we have (I NF IX ( ••• ) op ( t .. 2 ••• t 1 ) rbp [opl p Cop]) 

• (CONS ( ••• l (COR (FINO rbp Cop] 
CCONS NIL (t()R (PARSE rbp Eopl C t,.2 ••• t,J J J J 
p Cop)))) 

Using the same argument as in Theorem 2.3, substituting ( t .. 1 ••• t 1 ) for ( t 2 ••• t,J, we 
apply Theorems 2;9 and 2.1 in order to get 

... ( ( ••• ) tk• 1 ••• t 9 ). Conditions Cl-CS are also satisfied for the same reasons as in 

Theorem 2.3, with the exception of Clb which is no tonger irrelevant but is satisfied by 
the given.I 
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Theorem 2.7 (LEF-TVPE): If t 1 ••• t 1 • IJ0 (e1attl for e1attEE'o, 
r-inde><Ce1att1 > lbp[t1• 1J, and (LEF-TVPE ( ••• ) u,. 1 ••• t 9 )) • state where a<s 
then 

(b) Cl, C2, and C3 hold for t 1 ••• tk where t 8• 1 is defined POSTFIX or INFIX. 

Proof: It must be the case that a+l<s, otherwise LEF-TVPE returns an error by checking 

(COOR ( t 8• 1 ••• t 6 )), and LEF-TYPE only returns a value in following two cases. 

Case 1. If t 1• 1 ... op is defined POSTFIX then we have the value 

• (POSTFIX ( ••• ) op ( t 2 ••• ts) rbp Cop] p top]) and the result is immediate by 

Theorem 2.5. 

Case 2. If t 1• 1 ... op is defined I NF IX then we have the value 

• (INFIX ( ••• ) op ( t 2 ••• t 8 ) rbp top] p Cop]) and the result is immediate by 
Theorem 2.6.1 

Theorem 2.8 (ASSOC): If t 1 ••• ti satisfy Cl, C2, C3, and Ci, and 

(ASSOC rbp (( ••• ) ti•t•··ts) ""statewherej<sthen 

(2) If rbp < lbp[ti+J], then 

(a) state• (ASSOC rbp (( ••• ) tk•t•••ts)) where j<k<e 

(b) Cl, C2, C3, and Ci hold for t 1 ••• tk where ti• 1 is defined POSTF I)( or INFIX. 

Proof: The program is a conditional which tests (LESSP rbp I bp tt1•1l). If the test is 

true then we have part I. If false we have 

• (ASSOC rbp (LEF-TYPE ( ( ••• ) ti+ 1 ••• t 8)). From the given we know Cl', C2', C3', 

and C4' for t 1 ••• ti. By Cl' and C2' the conditions for Theorem 2.7 are satisfied so we 
have 

... (ASSOC rbp ( ( ••• ) tk+I' •• ts) where j<k<s. We know further that Cl, C2, and C3 

hold for t 1 ••• tk where t;. 1 is defined POSTFIX or INFIX. Ci holds since we have 
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rbp < I bp [ t;. 1 J by assumption and c4•;1 

Theorem 2.9 (PARSE): If (PARSE rbp U 1 •• tsl) • etate for l<a then 

(b) Cl through C5 hold for t 1 ••• tk. 

Proof: By the program (PARSE rbp U 1 ••• t8 )) 

• (ASSOC rbp (NlJL-TVP ( t 1 •.•• t 8 ) ) t. By Theorem 2.• we know that this is 

• (ASSOC rbp ( ( ••• ) t;. 1 ••• t 8 ) where lsj<a, and Cl, C?, and C! hold for t 1 ••• t, 
Since t I is defined NI LF IX or I NF IX we know by definition that 1-i nde,c (el • •• so 

C4 is also satisfied. We know by Theorem 2.8 that ASSOC either returns when 

rbp lopl ·~ lbp Cti.11 or calls itself recursively with condWOris Ct, C2, CS, and C-t still 
satisfied. By induction, when ASSOC does halt, Cl, C2, 0, and C4 still hold. In 

addition condition C5 is satisfied by the failure of the test C1early ASSOC must 

eventually halt, since at each can we know j<~<a; i.e., every can removes more symbols 

from the input stream.I 
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VI. CONCLUSIONS 

VI.A Summary 

We began with the observation that BNF is not effective as a practical 

meta-language for programming language designers, implementers, and users. We used 
Pratt's CGOL technique for translator construction, and specified a meta-language which 
avoids many of the difficulties inherent in BNF approaches. Its essential feature is an 
expressive power which is very closely related to the actual parsing technique of the 

translator: we can conveniently describe exactly those languages which the translator 

technique handles well. An immediate consequence is freedom from the awkward 

restrictions inherent in most automatic translator construction systems. 
We have demonstrated these advantages by presenting the design of a CGOL based 

parsing program; although the meta-language is based on Pratt's informal syntactic 

guidelines, we have demonstrated with a formal correctness proof that none of the rigor of 
more traditional approaches has been sacrificed. The first part of this proof deals 
exclusively with properties of the meta-language; these results permit a very straightforward 
program proof, and may be applied equally well to proofs of other implementations. 

VI.B Further Work 

The use of nonstandard syntactic descriptions is an open area for research. The 
example presented in this paper treats a class of languages appropriate to the CGOL 

technique; it should be feasible to apply the same approach in other, perhaps more 

specialized, contexts. Even within the CGOL system there are a number of issues which 

need more thought. For example, the meta-language presented in this paper uses regular 

expressions to specify multiple ri~ht arguments. More than half of the proof is devoted to 

patterns, and the parser for them is the one long program in the system. The generality of 

regular expressions may not be worth the effort involved. Other unresolved issues deal 
with delimiters, e.g. it is not absolutely necessary that they have left binding powers of zero. 

This convention was imposed for simplicity. 
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There are also a number of unfinished implementation issues. The LI SP 

implementation of the parser is much longer and less efficient than necessary but could be 

immediately improved by the use of global variabies and side effects. The actual parser 

should be as short as most of the definitions for CGOL given tn [Pratt 197-tl In addition, 

an actual implementation of the meta"language processor is desirable. This could take the 

form of an interactive definitional facility, providing the designer with on-line assistance, 

such as production debugging, and with incremental implementation, e.g. for bootstrapping. 
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SUMMARY OF NOTATION 

p, q, r are CGOL annotation patterns 

N is a metasymbol used in productions to denote the presence of an argument 
D is a language definition (a set of productions) 

e is an expression tree 

E0 is the set of expression trees corresponding to a definition D 

E'o is the set of grammatical expression trees corresponding to a defJniUon 0. 

op is an operator 
t is a token, a lexeme 

d is a delimiting token 

a, '3, 't, 6, w are strings of tokens 

~ is the empty string 

S0 . is a set of strings, over ~e alphabet of tokens, corresponding to a def lnition D 

I.lo is a writing function defined on E0 with values in So 

Po is the parse function corresponding to a definition D 
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