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Ailanl..,._. 

This paper describes fhe imp,ementation .of a compiler for the proa,alllfllina lquap C. The CIJfflpffer MS 
been designed to be cap,ble of -,,rodutinc assembly...,..,... codt for MOit ,... .. .., ...... 1Nthiflft · 
with only minor recodina- · MHt of the. NC'hif'III.._..Mllftt infenHtiOn UMd tn· _. ....,...., ts · 
contained in a set of tables whtth we ccmstr~'tulb111lkilt f1"8ffl a MIIM• ._.,.,n·jlfWYllfed by 
the implementer. In the MachiM dHcrjptton, the tmpta....-r MDdlll fht .... t Mldlll• :by dltflM,s • 
machine-dape,sd9t11· ·abltAct 1wlilht• fer wttteh the· Wde ~ pr..._ lwh;W_._ t'i'ltde. : The 
abstract machine is abstratl in fMt it is I C Machme: its rqilttrs tnd ....,y .,,. MIMI 1ft Nr'MS of 
primitive C data types and i11 iMtrucfions -perform basic C operatiOns. The atract ·~ Is tMCN,_­
dep$ndent in that there is •'. close co~nce betwun the , .. lster-s ~f the Mtrat fflllChifte * 
those of the target .machine, and bet-..n the behavior of the lbstratt lftlChine instructilMI and the 
correspondina target macf:llne tnstrudions. or instrucflon ...-.,ces. ·.Ttfe lfflpleffllfffl!lr •flnn the 
tr anstation from an abstract·~ progr1m to I ta,pt ffllChine ,,,..,. by ·,rovidt"' in ht ·llYIChiM 
ttescription a set of simple -..cr.o dltimttions fer th, _.,.h-act fMttliM ... Nana. 1ft ....., IINilerO 
definitions may be pro•ided ti!' h 'fGnft of C routines ··where ....,._;,,._..ffll :ca,..,, :91 ••••"-
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1. Introduction 

This paper describes the implementation of a compiler for the pre,aramming language C [1,2]. an 
implementation language developed at Bell Laboratories and a d6scendant of the lquage BCPL [3]. The 
compiler has been desi1ned to be capable of producin& 11sembly-lan1uaae code for most re1ister­
oriented machines with only minor recoding. Versions of the compiler exist for the Honeywell HIS-6000 
and Digital Equipment Corporation POP-10 computers. 

C is a procedure-oriented l1ngua1e. It has four primitive data types (Integers, characters, and · single­
and double-precision floating-point), four data type constructors (pointers, arrays, functions, and records), 
and a small but convenient set. of control structures which encouraae 1oto-less programming. An 
important characteristic of C is the minimal run-time support needed. Although C supports recursive 
procedures, C does not have built-in functions, 1/0 statements, block structure, string operations, dynamic 
arrays, dynamic storage allocation, or run-time type checking. The only run-time data structure is the 
stack of procedure activation records. Of course, to run any useful programs, an interface to the 
operating system is required, and a standard set of 1/0 routines has been defined m order to encouraae 
portabiHty. But the implementation of these routines is optional and separate from the task of 
implementing a C compiler which produces code for a given machine. · 

The compiler described in this paper wis designed to be portable, that is, to be capable of generating 
code for many target machines with a minimum of recoding. When considering portability, three classes of 
machines can be defined: · · 

1. Machines which, can support C programs reasonably efficiently: This class of machines depends only 
upon one's interpretation of the term "reasonably efficiently.• Clearfy, Ill real machines can run C 
programs, limited only by some size constraint related to the availability of memory. However, the 
following capabilities are desirable: (1) the ability to access the current procedure activation record 
and the current argument list -in a reentrant manner· - this will require one or two base/index 
registers depending upen the calling sequence, (2) the ability to reference via a pointer variable -
this will require another base/index register or an indirection facility, (3) character addressing, (4) 
integer arithmetic, and (5) floating-point arithmetic. Not all of the above capabilities need be present 
in the taraet machine; however, the more that are missing, the more interpretive becomes the 
execution of a C program. For example, the HIS-6000 is word-addressed; thus references to 
character variables are interpreted by a small run-time subroutine. 

2. Machines for which the compiler can produce reasonably efficient code: This class of machines is 
clearly a subset of the first class; the size of the subset is again determined by one's definition of 
reasonable. The better the correspandence between the target machine and the machine model 
implicit in the compiler, the better will be the object code produced. On the other hand, if the 
correspondence is poor, the. compiler may be able to produce only threaded code or instructions to 
be interpreted by software. 

3. Machines which can support the compiler itself: Because the compiler is written in C, one may think 
that this class of machines is identical to the second class of machines; however, there are added 
restrictions which must be made in order to run the compiler on a given machine: the word size of 
the machine must be sufficient to hold all values used by the compiler; any implementation restriction 
on the size of procedures or data areas (as would be likely on the IBM S/360 because of addressing 
deficiencies) must not be such as to prohibit the proper execution of the compiler (this includes the 
ability of the compiler to compile itself). In addition, there are operating system and configuration 
restrictions: the memory size available to a proaram must be sufficient to hold the phases of the 
compiler; file space for the source of the compiler must be available and affordable;. the 1/0 routines 
used by the compiler must be implemented. This class of machines is not a subset of the second class 
of machines since the compiler does not use all of the features of the language, notably float'ing-point. 

This paper concentrates on the second class of machines, those for which the compiler can produce 
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reasonably efficient code, 1wen the rNtrictionl of the first ct-. of MKhinn, thole which CM support C 
proarems realONIDly ~. TtM, .,,...._..,... .._,,:..__....._ ilnp11•,..- win 
pneraUy ref• to U. allill1V et •dtl;lllr •••••u--•-. •IIN.■L · 

1.1 lloUvadoa 

One of the serious probhtmi in the field of software enaineerinc is the difficulty of transferrina proarems 
to new machines. This t. c--' • .._. part J,y U..~.._-' .....,_ ---••• ....... s 
and machines and U. sipif~ effart .,,.,..,.., to, ••••nt 1,........., ·•·-, ,.tlul■: ,...,.1111111, 
lanauaae and br:pt mchifle.., 0- .,..,Mdt r. .._._ ,-111111, • te-n1-1cd. wattn- , • ..,.,., 
to a few st...,diad _...... wl\lidl· w _,.. wu ••••"'"' • all ,..,... ......_ ·d Ina,.... A 
disadvantaae _Of this _,.,oem itJ Uttt it IDllfliGl& with :tlrte Mir~· el/..._,:.,--,. ,_,,..,.1d 
lanauases for specialized~ Anrdher ...,..... ;.,the,lact·n.t ......_..,.,..,. ... ,_.. 
"'ade in the. developmef1t of~,.., ...... M•ey ltle ._.,..,...,. • d11111 1 dlDdand 
widely available, it• alre14Y ..._, ... ~ It•• ~·•-••·11• ca•llitit,r .... U.vtrioul 
Implementations of a st~ ........ -£""' if, U.M...., .... .,, ._. _ _.it Id, :;t is dlffkut 
for compiler writers to rwtrliftU.•1.w.fraM.•• .. •'9dJ•.it-wtar ...... ,tetwst•:tt111il1•••-fNM 
usin1 the languaae ~ A ...., appirOHh to the proble• of ,roar ... t,...,abili,ty is to restrict 
the number of tarpt :whinft fer ~. a1mpillrt..,. ._.,._ tty n111h-. ----~'tlitw ••..,•• 
be compatible with •· widety--utN •••&ma ._.,., •·· llliflint. ti ,_.,.,. n tot.,...,. wctatectd'• 
which would result ff'Offl this ~ is a undesir.._ • the ,t.,.. of p,Olf a in ,.,.,._... 
lanauaaes which wouk.t r-..at f,-~ of tM ~ w,NCh. a addition, if tlllt new IMChiftN 
are only upward con 111,tibt. witit ..,. • ••••tt t.._, ,.. .. -, ,. www1 zise .... ,...., to 
transferrlna pr•- frNI new _....to•--. 
An alternative approach to U.O.. of i......,.. re1tr~ 111d anac-hit'9 compatibility is to ··de¥elop 
techniques that rNUCe the effort ,.._.. 1ft write ~• * various•.~ of . .......... and 
machines. ~ tacbniqun uy·· be ._.... a tw •p11a1,-.. that • .,.._•· tht, ..,...Jmr•••Un 
writina one particular compiler a M of.~J•~•.., ilt,,writi"I·-•· f~ ef ,... ... 
cOfflpilttrs •. The ..._,..,. • ._. tuh111i11• ,_.. ..__..,...._. a:d1■• te;•-•• • •iill·_.,.• 
transf•rabiUty, such • _.,. lt ...., to h•l••ant • --J•u• o, ...... J-.1111 ...,. wtdely 
available. · 

An early effort in this direction was an attempt to devise a universal computer-oriented lquaae lJCOl. 
[4], .which is both l~ndep•nanl and IMChi~. lo which aH tnF■-liftl I ........ 
could be translated ancS whiott itaatf. COWld •.lf..a.._ with . ...,.... efficiency mlD any ffllJChine 
language. The .idea wa t~at OM .~ writ• anty .... 11COL..-,..11Mne --~ fr..WO, for eaoh 
target machine and one source ,...__~ tf'Mtlator ,to, Ndt 'SOlll'a .....-.. ,...,_ than 
havina to write one compfler for. each- ...,. ~hine , ........ combiuation.. Jtit ......,._ if 
LH:OL were weH defifled, then the var-ious implementations of lNX)L could be ....,._,.lllllll, ttm.W 
insurin1 the compatfbtfity of the source lquap implementations. Unfortunately, the concept of • 
universal lqt.19. '- not Jed to •-"•«:a NluliM of U. ,pmll1l11111 the~ ~iltla' .ofi.,... atd 
machine fanav■a• ind■pend1nce •• •~ with· h nNCf'for --,,llb¥-effl1l1nl tr111.tattoft fFOM 
lKOl to machine &ena41aP-

More p~actical techniques · for redudn& u,. effort in\'olved in writinl compil■rt result if OM' con.Ider• 
techniqu.,s with more lilnit«I pats theft thole 4>f ·the- llQ)l. .project • . One approach is t• .develop 
techniques which reduce the eff.-t llMIJ• in. writ••- ,-tlaate, co1111illlr ·for ... , ........ 1MaChifte 
combination. Ex.mplM Qf ·•'5h t•~ •• ,.._ ...,,_ ,and, a)fflta"11redetts)tllllol p,eo111ers 
[5].. Another app,oacn _ ii .to -.top ~ fer •itina ftniiffes of COMPHe,■ fef ,_,y ..,,. 
languaaes and one tar:pt madlifte. An.....,. of IUCh a ·techni11• •• GOffltpiler .writffll •t• with 
code pnetation .primitives, such.• F$l [•l Tt,, lhiro .,,.Gad\-,_ the one which is talcaft in this WO"', 
is that of the portable compHer, a compiler fer • particular sourte lanauaae which can produce code for 
many te,:pt ~hines. It ~-.JIOted U- tect-.. -..... such.• ,._.,...,...,.,c_..,aft,aid tn ttle 

. implementation of a ,mile·.~. ean be --"Y UNful ift the implewt.tion Of._.. ...., .. syst•• 
· such as compiler writin& sys-. and portable compilers. ' 
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1.2 Baokcround 

A compiler can be considered to consist of two logical phases, analysis and generation. The analysis 
phase performs lexical and syntactic analysis of the source program, producing as output some convenient 
internal representation of the program, along with a set of tables containing lexical information and other 
information derived from the declarative statements of the program. The generation phase then 
transforms the internal representation into an object language program, using the information contained in 
the tables produced by the analysis phase. One can confir,e the machine (object language) dependencies 
of a compiler to the generation phase by a suitable choice of internal representation, i.e. one which is 
machine-independent. On the other hand, it is not practical to also confine the source language 
dependencies of a compiler to the analysis phase since this would make the internal representation a 
universal language. Thus the generation phase of a compiler is both source-language-dependent and 
machine-dependent. 

Most portable compilers require that the generation phase be completely rewritten for each target 
machine [7,8]. This effort may represent only about one-fifth of the effort r,eeded to rewrite the entire 
compiler [8]. In the case of the BCPL compiler [9], for example, moving the compiler may require only 
three to four weeks under ideal conditions (but otherwise may require up to five months). However, it 
would be desirable if the amount of recoding necessary to generate code for a new machine could be 
reduced. 

One approach is that advocated by Poole and Waite for writing portable programs [10,11]. They 
advocate that before writing a program to solve a particular problem, one define an abstract machine for 
which the program is then written. With this approach, in order to move the program to a new machine, 
one need only implement the abstract machine on the target machine, typically via a macro processor. 
The desired qualities of the abstract machine are that it contain operations and data objects convenient 
for expressing the problem solution, that it be sufficiently close to the target machines of interest so that 
acceptable code can easily be generated, and that the tools for implementin1 the abstract machine be 
easily obtainable on the target machines. 

This technique can be applied to portable compilers by considering the problerl"I to be the implementation 
of an arbitrary source language program. The operations and data objects convenient for expressing the 
problem solution are then those which are basic. to the source langua1e. With this technique, a compiler 
would be broken into two parts: a machine-independent translator from the source language to the 
abstract machine language and a machine-dependent translator from the abstract machine language to the 
target machine language. The translator from the abstract machine languaae to the target machine 
language should be smaller and simpler than the conventional generation phase would be; typically, it 
consists of a set of macro definitions which map each abstract machine instruction into the corresponding 
target machine instruction or instruction sequence. Moving the compiler to a new machine simply requires 
rewriting the macro definitions. 

The major difficulty with the abstract machine approach to portable software is in determining the 
appropriate abstract machine. If the abstract machine is of a high level (i.e., very problem-oriented), then 
the program will be very portable but the implementation of the abstract machine will be difficult. · On the 
other hand, if the abstract machine is of a low level (i.e., more machine-oriented), then, unless it 
corresponds closely to the target machine, either the code produced will be inefficient or the 
implementation will be complicated by optimization code. 

The solution to this difficulty proposed by Poole and Waite is to define a hierarchy of abstract machines, 
ranging from a high-level problem-oriented abstract machine to a low-level, machine-oriented, and easy­
to-implement abstract machine. In this solution, the higher-level abstract machines are· implemented in 
terms of the lower-level abstract machines, and only the lowest-level abstract machine need be 
implemented on a tar1et machine in order to transfer the pro1ram; once it Is transferred, higher-level 
abstract machines may be implemented directly in terms of the target machine in order to improve 
efficiency. While this technique may be useful for transferrin1 particular programs, it is unlikely that it 
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will be acceptable in practical terms • a compil1tion technique because of the need for additional 
translation steps. An.e99riftllfflt by Brown [12Jindicaln thlt,ftWNY NftPl.,..1nt• U.. oPtiMice· • 
low-fevef abstract machine in. -4·. U.,UN ta • , .. "-"- lo ifflllll. 11nt •·,...._ _... allatract 
mechine and that the'.iesutt~ im,1•••~ ... ..i'9r~,~. ;i·._., ... -.,_... ..,._ ia to 
use • low-level abstract ........ but .... u. il .. lMI- •. --- - ...... : .. IIDn ·ie MON 
likely to be acceptavle a.a compilatioft ..,._~ AthiNl..,._.-wilt-lNti.._.d ift-W.~. 

The technique of rewritin& the .. ._._. .,_.. NqUints tMt • ntn-tmial tr...._ .f,... tt.• intemal 
representation to t.,_ tarut ...._,, tqutae '-: wr"'to '- .. new ..._. ~ Sinlilwty. the­
abstract machine ~ recpr" that, a,.JrllJllllltor ft"Cl411h-"- ..._. .....__ -11• to U.,,t .... 
ma~lliM ,..,... be .writttln I«,_,~..._, •t!!iftll itq11_1nr•••,_• --• dllird-Mll-the 
abstract machine does riot car,...,.... wry closely to tt. ,.,... whine. hn this tr......,...., . ._ be 
non-trivial. 

A more desirable 1oal for a portabM compiter is that it hatte _. . ..,_.fltion _ _.,_ which ca be modified- to 
produce code for a new tarpt .·~ by a ,,_... ~• ~Y automttic. ,ltltpficit; in tfjJ.pal is 
the requirement that the madifie~.,.,...._ obtairt ~, ...... :alaout::• ._,et tMChiM ~ • (l"IOll­
pr~edural) description of the~ Alt .early effortjp .. :,._tiort,_.,ttw, SbAIGa,•nr;(lSJ, 
which attacked the probfem Of dascrfbina a madune-dependent process (code pneratioft) in a mactline• 
independent way. In the SLANG 1Y$t8m. -.wee lquap constructs •• tranalated into • set of basic 
o.,_rations called EMU.s.. U., ... 18. ,.....,._ ....... ,..,,_-.,.,.~ ~-wncl 
instruction format •~tloftl,., .tile ~ ........ a.,~.,.,.._._. Jprotldt ift-·tw i.,_ &Mlb 
can be: considered to .. be. the .~ of • ............... ;,,<thJ,4fflrwl • .... GOltit 
1e~ation al&OriU. _i,.., ~ ..._d ia ......... ~,.;,,,._,,., .tailor U. EMIL 
proeram to the t,_.t ....... -11-,NJ.s.,. ~••ttlltJ......,.,,.,t.,RlcN,ad ...... act 
machine in that thev •• ~1~ t-. ..., .. _, ...,.__AWIIIUPl__,• fn, 1111Mlon, 
the code_J_,.,_,._:does not -. ~.~ ~. ,..._ ._ ~---_...._which i.,...• that 
one wilt not be able to achie\le_tht d8Snd close cortfl{IOI....._ ~.U.·•--•t,..._..~wt 
register-oriented machines. Nevertheless, the method of describina the instructions of a lMChine by 
proviclina sifflple itiJt~u. ~j~d~~,U..;pt,;-,,~~,....,•• • 
1ood :compromise bttwte,f'.- tt,i;;.'~ to-..- ~-~.-",.. ~ c»f ••••-.UV cllfi"'l'I • 
machine and utHizina. such a ~!OJ:i-in · pneratma .code. · . 

More recently, Miller [141 hn nptoredJhe problem of coostr.uc.ting a code pner4to_r frOM • IMChine 
description. hMfl•r proposes tha{a ..,..ion pa,-. btl,cPntb-1,ctedJn two u-,,.. -J~ first ,te,._ tM 
lanauap des~r s~ftes ~ l~~t ~- of the ... @Ofl .p.,. ev· wffina: a ~ of 
procedurat machine-e~ ...,-o defmit'°"' f.« the_ aper~.-- .the i~• ,.,.....,.Ilion 
produced,. by the -analyfis _ ~ ~. ~-,.· ~in'~ ♦~1nf, .tt,:.e. ,.qper;at• et . th!t kdern.a 
represefttation, such as addition, in terms of mechine-indepe,.,,. (i.e., ,..,.,..,~.pr~s,, ~ 
as inteaer addition. which are cr .. ted by the lquap detianer. In the second,-., the ifflptementer 
provides a descriptiori of the tn-t~ w~i&,used.by.,,n ~•- teaatilr- .-m 
name4 DMAC$. (Da.c:riptJve· ~ Svst-) in· order to tiff-~ thl ~·•'""- .. ft.IN firat • .Mid 
thereby proc;tuce • coct..p-..., for the t«tiit ~~ .· ~-. waJhe -.e lMitfl •• SLAMa ~ th& 
DMACS machi,-_.dN$r~ttim-"'-··tht .• ,pr~~ .qper~;.by.&jvinf\•--t _,..._ _,. ••n•C"JCM 
which interpret them. tn addJtieft, ~ .tbe -~· ~ .. of tht. o..,.,. (ift. terma of U.r 
beina in memory or in particular r..-ters) in s;edlJ4•,Mti-,-oorr,w1.._,,_. •atiw. Tiws 
the primitives can be made to con.,ond Y8J"Y cloNty to the instructions of the tarpt tweehlne · so that 
the code sequences in the ntad1ine ~rif,tkNI are..,._,.,.,.. HNU..,°'Ned~· i♦_,,. .,,_...,._. 

Both the $LANG system and 0MACS are intenc:t,d to .be P"l!JI in ·that they are: ,,.a . ...,_, • for a 

specific. $0urce lqueJ•· 19.M~ •. t. r.ue ... , PfMl!II.·· ·.. . v is cliff __ • icu.l_l_ to. obt• ""'.- the. -•~ do reflect 
preconceived notions about MUl'Cf ~ ;:• .,._ved u.t, fine• t..,..,. IIIIUCh-moM sianificMt 
vari,.tl_ons. •mona ~-'.~• ~t-~:.~ lf!t~:•~-, ~,.,.."1-.. tor fff/ 

~• 
1
~ mr"•a~ r.·~--:~"~"T'.:...~=--= 
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convenient for expressing .the operations of the source language. On the other hand, DMACS contains no 
notion of storage classes (different mechanisms for accessing variables of the same data type) which are 
needed for C; the implementation of storage classes is machine-dependent and thus must be defined in 
the machine description. In this paper, techniques similar to those used in the SLANG system and in 
DMACS are used in the implementation of a portable C compiler. 

1.3 Method 

The goal of this research is to design a generation phase for a C compiler which can be modified to 
produce code for many machines by a process which is largely automatic. Some insight into this problem 
can be gained by examining the corresp0nding, but better understood problem of the automatic 
construction of an analysis phase. One common approach is the use of a parser generator [15J A parser 
generator is a program which accepts as input a grammar for a source language and produces as output a 
set of tables which are used by a language-independent parsing algorithm. The parsing algorithm is 
supplemented by a set of action routines which are provided by the implementer; these action routines 
are called by the parsing algorithm at appropriate points to produce the output of the analysis phase. 
The important characteristics of this process are as follows: 

1. The analysis phase is divided into two parts, a language-independent part (the parsing algorithm) and 
a language-dependent part (the parsing tables and the action routines). 

2. The language-dependent tables are constructed automatically from a finite description of the language 
(the grammar). · 

3. The analysis phase is •tilled-in" by the implementer by providing information in a procedural form (the 
action routines). 

4. The choice of a specific parsing algorithm determines the class of languages which can be handled by 
the analysis phase. 

The process of constructing an analysis phase can be made ·more automatic through the use of a compiler 
writing system. In a compiler writing s~tem, the action routines are in a sense built-in; the implementer 
invokes these action routines from a higher-level description of the translation. The use of such a system 
may involve much less effort than would be required to write a complete set of action routines. However, 
the important point here is that the use of built-in knowledge, as opposed to allowing the addition of 
arbitrary procedural knowledge, restricts the class of translations (and thus source languages) which can 
be handled by the automatically generated analysis phase. 

For the compiler described in this paper, techniques analogous to those described in the preceding 
paragraph are used in the implementation of the generation phase. The generation phase is split into two 
parts, a machine-independent part and a machine-dependent part. The machine-independent part of the 
generation phase is a machine-independent code generation algorith'm, corresponding to the language­
independent parsing algorithm of the analysis phase. Just as the choice of a particular parsing algorithm 
limits the class of languages that the analysis phase can handle (the parsing algorithm is not completely 
language-independent), the choice of a particular code generation algorithm determines the class of 
machines for which the compiler can produce reasonable (non-interpretive) code. The machine-dependent 
part of the generation phase consists of a set of tables produced automatically by a stand-alone program 
GT (Generate Tables) from a machine description, which corresponds to the grammar in the construction of 
an analysis phase. The information contained in the machine description may be supplemented by a set of 
routines which correspond to the action routines of the analysis phase. However, the CO"lpiler described 
in this paper is closer to the compiler writing system approach in that implementer-supplied routines form 
only a minor part of the generation phase. The extent to which the implementer can easily and safely 
include such routines in the generation phase represents another factor determinin1 the class of target 
machines handled. 
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A code generation algorithm, if it is to be machine-independent, requires • &nOdel of • macbiM .wUh which 
to work. This model may expreu such ~lions • memory, r-.isters, . .-,...,._ eperationa. and 
hardware d1t1 typa.. In t .. mtchi.ne ducriptiqn, thl. ~,: dd• ..,.ta,pt ..,..: in ••·of 
this model and also specifies the form of the object ,..,.,_. The "- _,; _..,_ ter which •hi codl 
aener ator can produce acceptable code directly corresponds to the 1enerality of the machine IIIOdel. 

The machine model used by the C compiler is. a C machine: a machine whose reaisters and Memory are 
described in terms of the primitive C data tY11N and whose ~._ .,. prtfflitwe c; ..,.... The 
implementer models the tarpt ..,._ in ..,_ of ,1,C ~¥odl.wiaa· • ••II• •11-1-. The 
abstract machine may be ~ ..... to.or 'MY,differ.,,t "-t.U. iarpt■NNM;,.,tntllnaMIIIQn how 
closely the tarpt machine flt, the .ffllChine Ndet. The. codit, . ...,.... .,,._ . .,.,.. itil .__,. 
model, produces coc:le for the alatr•t machine. The •~y• 1..,.... of. thit ,...ara:t NChine .is ctllletl 
the intermediate,....,.._ ,n in~• lquap,,pr:QI(-. ~•lathe #0,IJl of a NriM Qf NCl'O 
cans, is translated into the t•pt .~ 111Nlllblt ..._-. ••• QI· .,o,, cltfi~ fH'OVided by 
the implementer in the machlne .,-iption.. ~~-l--,9 ~ . ..-•• ..,.... ·for 
the output of the COMpNr blew it is far ellilr to clelcrih IM·lllfGaa in a 1111tiN-'nd1t11r:dllnt 
fflanner than machine code or object modules. 

The abstract C machine plays the same role in the C compiter • would a Poole and Waite abstract 
machine. The difference is that inst,ead of there bei,. one fixed abstract machine, thet'e is a class of 
abstract machines, corr-.ondi"I to the variability iJI. Ahe. ·~ mc:adlll. Thie, .-.i•ffi~ ... tM 
implementer to define I particUNII' abstract machine which more closely r ... mbles his t.,...i _......_ 
The result is that the translation from the abstract machine lquap to the tarpt 1HChine li1f11V818 
becomes simpler, and •• •fficJent code is ,-,oduc:ed. 

The process of model.inc the target machine Is described in chapter two •. A detailed discunion of the 
code generation .aaorit1- is ........ in CNtPtar •• ~•iolll .,.. "''.,.._kl..., ....,_ 
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8. Modelln• the Tarsei Maoblne 

The code :pnerator•s model of •--machine ;s-.,. abstract-C ftlllChu!te, 1·111aChiftit whOle tnslructlons perforin 
the pri~e operations of the C lquap. The. data types of tM abstract -.chine are the pi-tmfflve C 
data types ~acters, inteaers-, and sinala- and double-precision floetlN ,.ant). suppleffleot.«f. by q,- .or 
more pointer 'anses which are distinauishec:I by their ability to retOIYe .......... The ·IJtisic ·Mldresia&te­
unit of the abstract machine memory is the byte, which hoka I slfllle character value (characters are thlt 
smallftt S data ·type). ValUN-« the other ....,act .......... #.,_-~;:• klt-.,M number of 
byt911t possibly alig,_, ln taraer units ef •tn1MOfy. The abilt11lllt..,.._W ~ ·.-or ,..ishws which Mey 
be used to w the operands « the abstract· • .-..w ihilrucu.-. ::,_,..,.!'.aachifte: ,...ter is 
capable of holdifll valuH of SOM subNt-of •---&t ....,..:_.. tt••J~-~ of the -
abstract whine are three-addr.- iMtf~ Each•• ·---•df$· :~IMtht,_,,_.ster 
or a location in fflefflO,ya tha tlllChaniat- for- re....,._ a Mi t1cwy~fo-- ...,,_,,nd ·to the ,witnttwe 
addressin& mod..- in C. · 

In the tMChlne dnc:rlption, the Implementer dltcribts the t.,..t ffllChi,. m t•ms of this machi_ne model 
by definina a particular ~tract fflld1ine for: which the codt .._._, pt0#dl11:lf1Wiadiati~: ,,_ 
implementer specifies the -sizes and -alianments of the prinwtiw C data twet· and defines pointer . classes 
as convenient. The ltnpleNmer ..... -tM -.allltrlct-·MudN ·•11,i•NrilJ~ ...,_.Y corres;ona to 
those registers of the taraet machine which .,.. to. -tMr-Vlllt •·•1 ........ -1of''~~pressions. The 
implementer also speeifies the NIii.ten which may ._.. ,,.._,,el'tft•.·•- •tract machine :data 
types. In addition, the implementer may specify that any two •tract ......_ . ..._..,s conflict in the 
tar1et machlne; .. afti"I that only one_, hDld·-a .,..._., ... wi.._ ..... ,,11phNnter deftnes>-the 
abstract machine Instructions in terms of their opermd/reeult locettonl and poulbte...,.ffects on other 
re1isters. In addition, the i•••nter, pMVidN. a·•t ot-~,wlleh · ilt-Nnt the abflrac:t 
machine instructions on the- taraet NchiM. · · · · · ·. 

8.1 The Intermediate Laasua-,• 

The intermediate lan1uap is the w1r1bly tansUII• of U. INttat ..... •• "Ylinl the information 
contained in the tables C0Mtn.tGtect c'#i'CNn the- ffllldilfaile·-•l;iltlls.; ... :,.-.;;twntor proc:ludK • 
translation« the IOUi'c:w ~ in the- W.rnwtdl*' ....._,F'Aft:;-.•Ll•-·-uaa• --proatam 
consists of • sequence of macro caffs, each of wtildt· _,,.,.,..,.111111 -·tfttO;;.-w .,,. •. object languaa• 
statements usina the macro definitions provided in the MIChiM .......... There are two types of 
maffl)S in- ·the tnt.Ndiate J ....... l h· first· typl-'.'IN·'....,........ 1ilijj11tfd tfw'·filnl9'1ddNII 
abstract machine instruct10n1. The NCOnd type.,. ~,_.-;IIIAW!il:if,1c1r·~ to-elflwr 
Hsembly-languaae pseudo-operations or instructions ~ the pr~ive C control structures. 

8.l.1 A.bstran lluldne 1..-.etlou 

The ·abttract-- fflllChlne instructionl •• t......,...,... n..,.... wNdt 'plirfoni •\flw ftlluation of C 
expreselons. The operator• of tt. IINtraet-,..._ ~-c-... illlt1-eel ·IMICNne'o,tWator•-
(AMOPs), the addresses are called ,_f'Wflc:el (ftEtrs). · - · · 

8.1.1.1 A.MOPs 

AMOPs. are b•ic C operations which are qualified by tht:~ ....,Id-._,.._ dltl types of their 
operands. For example, in tt. HIS-tOOO tmpteNnh,t• tMr•·'-• ftlt,;ii._.,.".WNllpONlril to the C 
ope,ator •+•: · 

+i lntea•r-addition 
+d double-,, ... ftoatitc-,;oint lddltiOn 
+pO addition of an intqer to a pointer to a byte•IJli.lned object 
+p 1 addition of an inteser to • pointer to • word-atiped object 
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In addition, there are AMOPs for data movement, data type conversion, :and conditional juMpl. AMOPs are 
represented in the compiler • an integer opco• •~• •i ~ ,-. •· 1fl 216. U. _,..._ """'8 .,. 
listed in Appendix lL 

A REF is • C-oriented ~iplian of the IGcatiott of an Qperand or the result of an IIKtract machine 
instruction. A REF may specify eilMr • ~ of U. abtlfact Midttne o,. 1 locatN ift m"llt'YJ ttw 
pcssible ct .... s of ---~ Nte...-.. iMkNlt C va, ..... of varilUI ....... d•• W••lllc, •tatic. 
external, par...,, lefflppr~.• wef•--... •ffllfiNct r••ca. All&' •8P'•11Rt.ct bV • 
pair of intea-1 caMM,MFJMSE ... IJIF..GFFSET1,fEF.MIE .,.,... .... a ~ r11i1llr or • 
partmar dfla of MlftlNV ,...,....,,fl&fMfift _..,.;•• -the,....t,•1li1n.,.,.,_,.....,_ NWY 
reference class. The possible v._ of REF.BAS£ •• u.t.d Nlow with their ~I•• tectUllt 
inteaer values are 1hown for COftefetenMS; the COMpiler itNff use1 ffllflifeat c:onttants): · 

REF..8AS£ 

-1 

-2 

-3 
-4 

~s 
-6 
-7 
-8 
n s ... 9 

.....,,,..._ 
- repter • ~ riumlNrs •• ....,.... to U. ,..Wers•of the abstract 

IHCfflM "' • ..,... ... - by GT> . 
- an autoNticor leMpera,y varilllle; QFFSET ia the effNt of the ~ ifl. the 

staff ... 
- an --• vartable, ,..,_enced by NIIMI <JFf'SET ii an intema1 Wentifier 

number 
- • static ,..,.,_, varialllte; OFFSET is an intef'nat.stallc flrilWe __..r 
- a paraMeter; OFFSET is the offset of the var11~l1 er its acldr1111 1ft tM 

ar1ument list 
- a label; OFFSET is an internal label number 
- an inte19f constant whose value is OFFSET 
- • flNthw , ..... c ..... Off:SET is tn internal COftStant number 
- a ehaMder··Sffltll ODN._.. OFFSET il••ffltem,l:s.._ ....... 
- .ref.,._. ·in!lllect.·~•-......-•,,.._••• (-n ~lt:G"f&IT is tile, off•t 

of U. •••nee NWwe to h Pointer . 

The specific v.t.,.es of REF BASE MeCI .flOt be ,ef,rred to in fflOSt macro ·definitions; the earception is the 
NAME macro, which ·~rhl a '1EF into a sytftbolic .address. 

The representation of a three-address instruction in the intermediate lana..,..e is that _of a macro call with 
five or seven integer arauments representina the N,lt)P ...,,~t,, tt111-f9Wt.wd ttw . .,..... of tbe 
AMOP. (Each REF consists of two •1uments, REF.BASE and REF.OFFSET; only two Refs tre provided in 

· the cue of a unary ~J ,._...,...__.m.tt. . ..--o~;s•~• . ..-;..ftwm._...••lfflN.an 
entry in a tabht produced .. ~ tt. ~._,...., by ..... Gf,._•ithis ._...,,.,....,..to the 
represent•tion of the correspondift& macro definition from tta ..._ ~. 

2.1.2 Keyword Macros 

Keyword macros are those macro e.11$ which. ~ with the. three-address instructions, tMke WP an 
intermefiate....,.. pr01r.._ Unlike.~ macros whose .nlnl8$ ar, pneretect bv J;it,.h-narnet ,of 
the keyword macros are predefhwd, as are their functions. For example, keyword macros •• used to 
define external variable ffllffl8S and internal labels; _.o specify initial values in storap, and to produce the 
function proloas and e,,itoas. The various keyword .._acros defined in the inter•j't1ltJ•••• •• hted 
below ■Iona· with a brief dHcription of their functions; t__ ,._ C811Pl■t. -1 .t •11,....,_ .,,•ar• in 
AJ,pendix m. . . 



macro 

HEAD 
ENTRY 
EXTRN 
INT 
CHAR 
FLOAT 
NFL.OAT 
DOUBLE 
NDOU8LE 
ADCONn 
STRCON 
EQU 
ZERO 
STATIC 
STRING 
ALIGN. 
LN 
LABCON 
LASOEF 
ION 

ENO 

PROLOG 
EPILOG 
CALL 
RET~ 
GOTO 
LSWITCK 
TSWITCH 
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function 

produce header statements. if nNded 
ctafine.anentrypomt 
.,.,. M QtemetHfer~ 
dllfirllt a intepr constant 
defiM • cheracter. COMtant 
define• floaUril'!f)Oint COMtant 
define a neaattve floatifll-point constant 
define a double-precision float constant 
define a neaative dou.,_-precilion constant 
dafiM •.a1n.•n-.poinr.,:COMtalt' ·. 
den,_.__..,. refer8ndnl •·atrifla CGNtlflt 
define. ,vmbDl ' 
AWlne· • ••,of .tor ... iftWlllizedJto a,e 
define • ;Italic v•i•ble 
define the strina constants 

. forff .,. ..,,.... of U. licltioftcountw 
define a line-number symbol 
define a label constant 
define an Internal label 
translate an internal identifier number 
into the cor....,_.ftl. ailH tlilllt';t) mllet · 
produce an end statement, If needed 

produce the prolo& GGde of a C ft.Melton·• 
produce the epiloa•;Ceded a C ~ . 
produce a function call 
produce code for a return statement 
produce a jump to I lllbej exprN1ion 
~• switch: juMp,Clitt*IIOn). ·. 
.p,Oduce1witclh)t,llp(_.i¥Wlilft) · 

The actual macro names which appear in an intermediate lancuap pi'Olram are abbreviations of the 
names listed above. 

2.2 The Maohlne Desorlptlon 

The machine description is • •proeram• written in I specill-purpose ~ from which i1 constructed 
the machine-dependent tables of the pNr1tion phaN. The ·.~ ~19" • two functi~ns: U) it 
defines the particular· abstract machine for which the todi .,....,., ....... ,..,,._.~• codt, and (2) 
it specifies the translation from an intermediate lquaae ~• to the. ~~na object l•nau.,• 
prOlf'atn. ·' · •·· ·· · · 

The abstract machine Is defined in two sections of the machine dncriptlon. First, • set of defmltion 
statemen_ ts defines the r .. isters and memory of the abst.ract MIC· ... tiine. ~.··...in~ Of'l.:OC ... sec:. ~ton..Jhe .. 
AMOPs are defitwd in tenns of tMit o,iierlnd/tesult ...._ n.,~~i'ttom~·ffie fntetnMM11te · 
lanauep to the object ·fanaulip is s,,tclfied by • set' :Of ffltia'o"--11 In 'ffif' MKro ~ of the 
machine description. More information on the wriffns•coft-• iMdtlflil"-ellfillliiii''miy be''founclin ~--ftdi• 
I; the machine description used in the HIS-6000 Implementation ts listed in ~x. IV. 

2.2.1 Deflnlnc the A.bstraot Maoldne 

In the mat.hine description, the implementer first •ffftet the ,..isters of the abstract machine. For 
example. the statehleftt ·• 
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reg names (xO,x 1,x2,x3,x4,a,q,f); 

defines the eight abstract machine registers used in the HIS-6000 i,...._ntation. The , .. liters XO 
through X4 corresp0nd to the first five of eight H1S-600Q ffldN .,.._.,., the A' .. Q ~ to the 
accumulators, and the F r-.;ster is a fictitious floating-pGiftt• accw1••• whidl ~ to the 
combined A, 0, and E (exponent) rqisters on the Mls-eocD./llllt,fat.,lllf,... i' flllitW ai..a. in the 
taraet machine with the A and Q reatsters is -,.cifted by h·ttal•••ftt 

conflict (a,f),(q,f); 

The remainina HIS-6000 index registers are not ,......nt_, in the lbltraet Mlehine ttnce it was not · 
desired that they be used by the code .......,, in,._..,._, of..,...... two of ·tt.w , .. i,ters 
hold •environment pointers,• the other is used • 1 scratch reatster~1Jy .... of 1he macro _,initions. 
There is -nothing that requir-. that the ...tract IUChiM 111tulu:t w·flli•••d • .._. tMChine 
registers on the target machine; they may allO be ilftplement-ed••ffwd n■-wy---. 

For convenience, the abstract whine rqisters can w pthlrN iflto d111111 fe'r ex...-. in the HIS-
6000 implementation, the statement 

class x(XO,x 1,x2,x3,x4), r(a,q); 

defines the class of index rqist«s X and the daN of ...,., r.....,_ R. 

The implementer also defines the ctnses of abstract machine pointers. Pointer classes are necessary on 
machines which are not byte-addtened since .....,.. to llyte.li■IN ... wll tNt Mnlllled41fferently 

· than Pointers to word-aliped ebjeds. ln the ......,. •••• da:lltAIM; .. ,st•.-nt 

pointer pO(l), p1(4); 

defines the class PO of byte Point..-s and the class Pl of word ,-terL rt. ■..~ nlc.- ffial· tht value 
of a Pl pointer is always a MUitipie of four byta· 'Rw ·W.tb,atttww1 ... few-,tes pillr _,don the 
HIS-6000 is specified in the statement 

size l(char), 4(int,float), 8(doubht); 

A similar statement is used to specify the aligftftlent restrictions. 

The statement 

type int(r), char(r), float(f), double(f), pO(r), pl(x); 

defines the registers which can hold values of each of the abstract machine data typn. For. example. in 
the HIS-6000 implementation, word pointers are held in the index , .. ister1 X while byte pointers are held 
in the aeneral reg.-ters R. 

The dftfinition of the· ab$tract .. ~ is completed in the 0PLOC section of the IIMIChine description 
where the implementer specit-. t~ .. ~ of t• . ..,.ct . MaChiM operaliOM ia .,.,.. of ttleir 
operand/result locations. For n.-, tbe ._._ ._.._ 

+d: f,M,f; 

specifies that t.,_ AMOP '+d' (doubte-precision floating-paint addition) can take its first operand tn the F 
register and its second 0per,1nd in any •mory tec.tion 1111d, under tbeN -circuNt-, the result is 
pl.aced in the F reaister. The construct on the ript In the location •flnition is clllMI • .OfllU:IQ it 
COMists of three location ..,. .. ,1,-, one for the first operand, second operand, and NIUlt (......_ from 



- 15 -

left to right). A location expression may specify any set of abstract machine registers or any set of 
memory reference classes; for example, the location expression 

r Ix 

represents the set consisting of the general registers R and the index registers X, and the location 
expression 

,., intlit 

represents the 5et consisting of all memory reference classes except that. of inteser constants. An OPLOC 
may specify that the result is placed in the first or second operand location. For example, the location 
definition 

+i: r,M,1; 

specifies that the AMOP '+i' (integer addition) takes its first operand in a general register and its second 
operand in any memory location, and the result is placed in the register which contained the first 
operand. This location definition is equivalent to 

+i: a,M,a; q,M,q; 

which explicitly lists the two alternatives. An OPLOC may also specify that the contents of certain 
registers are destroyed during the execution of an AMOP; for example, the location definition 

q,M,q [a]; 

specifies that an integer multiplication destroys the contents of the A register. 

2.2 .2 Defining the Object Language 

The translation from the intermediate language to the object language is specified by a set of macro 
definitions included in the machine description; macro definitions are provided for the abstract machine 
instructions and the keyword macros. The simplest form of a macro definition is a single character string 
which is substituted for the macro call during macro expansion. For example, the macro definition for 
floating-point unary minus used in the HlS-6000 implementation is 

-ud: .. FNEG" 

This macro definition specifies that each occurrence of a •-ud' abstract machine instruction is to be 
translated into the assembly language instruction "FNEG" which complements the contents of the F 
register. The macro definition for •-ud' is closely related to the •ocation definition for '-ud', 

-ud: 

which states that the operand is found in the F register and that the result is placed in the F register. A 
.macro definition for an AMOP can assume that the actual operand/result locations appearing in an 
abstract machine instruction satisfy the constraints specified in the correspcnding location definition; at 
the same time, a macro definition must produce correct code for all combinations of operand/result 
locations allowed by the location definition. 

A macro definition for an abstract machine instruction can refer to symbolic representations of the 
operation and the operand/result locations by using the character sequences .0 (operation), ·•F (first 
operand), •S (second operand), and •R (result). These character sequences are abbreviations for calls to 
an implementer-defined macro which converts an AMOP opcode or a REF into the desired object languase 
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representation. For • ....., the ntaero definition tor '+r (.lntepr addition) in the Hl9-iOOO 
implementation is 

+i: • A09R 

If the first operand location (,-hid, is •t0 tlw result toc:atioft) is U. A ,..a.ter· and h ...,. operllnd is 
an external var,._ -x•, then the ca pr..,_. by this ·MaerO definition it 

ADA X 

which adds the contents of "X" to the A reai&ter. A macro dlfinit• can .a.e contain dlarster .tri"IS 
whose Jnctusfon in the . .,....._. df a fllilero cllf is·~··"""' thf ..._ of a._,.,. Mid/or 
result. An example is the MIS-6000 1ftlCrO 1:lllfinition for '<~ (Wt lhift) 

<<: 
(,intlit,): 
(,Nintlit,): 

• 
• 

ttFLS 
LXL5 
.ns 

which produces different code sequences depending upon whether or not the QCOnd operand (the 
number of bit-positions to shift) is an inteaer constant. A macro definition may include refertlflCH to the 
argufflftnts of the macro catl UI.R'll.lhe char.-hn' ..._. ... .0, •1. ... dt. • w,o dlfiftltion aq include 
embedded macro c.lls, such • the ,-.9ST'in ·fhe lllt ••....., which ,...,. the wful of the iftteaer 
constant. · · 

A macro definition may also N specified in the 'form of IC routine. C routine macro definitions are used 
when processing is needed which is be)(Ond the ~ties of the..,. flNlffl> sc:heffle• so tar deecdbed. 
C routine macro definitions may define afobal vartlbles, perform •itlwww"c Md toeictll operations. and 
select code sequences on conditkw\s other than OJMN'.-.d locations.. In tht Jn l~•t n,,le•ntation,. 
however, C routine macro definitions are unable to 'interact with the code ....,..tian alprithm. 1ft the 
HIS-6000 implementatien, -C ~ macro def tuitions are ,UMd t9 tr ... • IEF• int. ~. ~ .to 
tram.late the source 1...,_.. reprQentations. ~f identif~,:s .and ,_.,.~ COlllJtaffls .iftto GMAP, to 
define character stri,,a tonStat1ts,, and to buffer c'-ad•r• white.~••• ...... (GMAP 
does not ~ •byte..-,:~,.• ts~ itt,~ inf4(~ ..... -. ... ). lheC ,.._ macro 
definitions used in th11dlS___, ~lti9n .,. ·lisW ifl ~ V. · · 
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8. Generatlne Code for an Abstract Maohlne 

The most interesting part of the compiler is the code generator since, unlike most code generators which 
produce code for a fixed target language, the code generator of the C compiler is designed to produce 
code for a class of abstract machines. 

8.1 Punctlons of the Code Generator 

The code generation process consists of three fairly distinct functions. First, there is the generation of 
intermediate language statements to define and initialize static data areas and constants. Second, there is 
the translation of source language control structures into labels and branches. Third, there is the 
translation of source language expressions into sequences of abstract machine operations. 

The C compiler is designed to produce assembly language code for conventional machines; thus, the 
intermediate .language statements for defining and initializing static data areas directly correspond to 
assembly language statements which define symbols, define constants, and align the location counter. The 
only complication is that the code generator must use the size and alignment information from the machine 
description in order to specify the sizes and alignments of data areas. More information and redundancy 
could be added to the intermediate language in order to accomodate a larger class of target languages; 
see [16) for examples. Another possible improvement would be to emit segment specifying instructions 
so that the output could be segregated into different segments according to whether it is code, pure data, 
impure data, or uninitialized data. •· 

The process of translating source language control structures into labels· and branches is rather 
straishtfoward. The only com~lications come when emittin1 conditional branches which test the value of 
an expression; these problems are covered in the next section. 

8.2 Generatlne Code for Expressions 

The generation of code for expressions is the most difficult part of the problem. The code generator 
must generate a correct sequence of abstract machine instructions to carry out ·the indicated operations. 
The operand and result locations it specifies in the abstract machine instructions must conform to the 
location definitions provided in the machine description. Moreover, the code generator must keep track of 
the locations of all intermediate results and correctly administer the abstract machine registers and 
temporary locations. 

The generation of code for expressions is performed in two steps, semantic interpretation and code 
generation. 

3.2.1 Semantic Interpretation 

The code generator receives expressions in the form of syntax trees whose interior nodes are source 
language operators and whose leaf nodes are identifiers and constants. Thus, an expression can be 
considered to consist of a "top-level• operator along with zero or more operand expressions. The first 
step in the processing of an expression consists of translating a tree i,i this form to a more descriptive 
form whose interior nodes are AMOPs. This translation involves checking the data types of operands, 
inserting conversion operators where necessary, and choosing the appropriate AMOPs to express the 
semantics of the source language operators. The selection of an AMOP to replace a source language 
operator is based primarily on the data types of the operands. For example, on this basis, an addition 
operator may be translated into either integer addition, double-precision floating-point addition, or one of 
a number of pointer addition AMOPs. However, it is useful to be able to choose AMOPs also on the basis 
of what is provided in the machine description. The basic idea is that of defaults. If the semantics of a 
particular AMOP can l;>e expressed in terms of a composition of more basic AMOPs, then the AMOP can be 
left undefined in the machine description; the code generator can use the equivalent composition of 
AMOPs instead. The advantage of having optional AMOPs is that the implementer need define one of 
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these optional AMOPs in the machine description only if his definition will retuft in suffidently better code 
than will be produced usins the equiv1hmt composition of more bHic ~ 

An example of this technique is the handling of a class of C oper.atOrs called assipMent operators. An 
example of an assignment operator is'•+', where "l •+ R" is defined to be the same as ,_ • L + R" except . 
that the expression L is evaluated onty once (it may co~tain ,...._tfects). Coas.idfr. an .••f>"dlion 
•L -op R.• If the correspondtna abstract machine assigniwtnt operator is defined · in the machine 
description, then the source ,..,,,... . ~ .,...,. t, tr•IMH into that .. _.act Machine 
operator, otherwin, the eXJ>(eqloft ,: -op rf'' is COftVtllttid to ""·· ICPV•ftf tor,- !'l • L • R",, •~t 
that there is only one copy Of' t.•"hivffla two point«s to it (1 fl•• ..ti" the root ""8"0f "L" so that 

. later routines will recocnize this tact): Ther~are, 1 p,rticul• alMtr,ct ~ -.,~ ..,,tor. need 
be included in the machine dkc:rtptlbft onty if 'th& code sequeflCeC it. pnerates ate better than the code 
that would be 1enerated by the ecMv,atent. ~ ~ AA· extfflPle: fr•• the- Hls-6000 
implementation is the. abstract 11~ :.-,ator ·•""1➔ Ci ..... ~••IIQ•J ~· istrnteted 
into an add-to.-stor• ·· ift$t~, the, •c.-r•---· ,...,, ••. ,..,W•ntw,., ._.,,, is not 
defined in the machtne dNcft,tton ._,no·ftiNtml~-·to·,.,•>~ ... • u. 
machine. 

Other examples of optional AMlPs whi'ch have been implemented are the .pomr comparison c,pwators 
for pointers other .than class, PO'. point.,& (the dltf.,at is to .conv«t to U. • .,..._.. c ....... dlftotniNter• 
pointer class for which theoper.tioft''it impt,....._) nfthlttNt for d/MR--'1 ,,._.,,.....,.(the 
defautt Is to convert the poinw to •mt.pr· and t..t for..,.,~ wtttl 0). ~ ,,,_..n& 
candidates for ~•na optional AM0Pa •t,.,,.._Jncr.,.11• ..-••••,~ 
8.2.2 Code Gen•••tlen 

The second step in the processing of an expression is the pneration o.f • ~e of altstr•t .-.acrnne 
instructions to carry out the evatu.tien of the expression. This 'code anration is performed by a set of 
recursive routines~ some of which will bt ~-- in,tijs section. Tbt:~ation.of ~.code..,_ation 
routines is basically top-down. Wh,n a c.aU .is made to ....., ..... ,to.·~,tu,te .,, ..,..,"liotJ. :• set. of 
desired locatio~ for the result of that evlluat4QJ'I is Jlc·ffMtclf• iw., ~Jqtiqn, ..,.,<:With olMr 
available inform~lon abc>ut the ..,,_,.,of .the top . ..fe'ffl•OJ*.• of the ~:ff uaecl·to:cho0$tt 
one of the OPLOCs ·from U,e· to,-levej .oper.elorj location,~~·• llllt ~ 4'tSCJ'iJ,tten-(~ 
definmons are described in section 2;2.l). From the chosen OPLOC and, possibly, the de&irM-"41cetic>M for 
the result of the Hpression are derived sets of desired locations for the operands of the top-level 
operator. Recursive calls are th,n made to pnerate ~·tQ,valuatet•"'Pl'~:.if.lto,thet!e deliNd 
locations. Next, an abstract machine lnstructiol'\ is efflitted ·for the top-levtt operation. Fineilly.,. if 
necessary, abstract machine instructions •e emitted to move the reeult of the nprenion to an 
accept able location. 

8.2.2.1 Speolfylnc Dealreci Looatl~n• 

A set of desired result loc.atiqns is·specifled by~ structure called a .LOC. A U>C atructure has two intepr 
members, LOC.FLAG and LOC.WQRQ. The posublt v.,_ ofLOCILAG •• fisted below -., with their 
interpr•t•tibns: · •. · · · 
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LOC.FLAG interpretation 

0 the •result• is the internal label specified by LOC.WORD (used only for 
conditional jump AMC>Ps) 

1 the result is to be placed in a register; acceptable resisters are specified by 
one-bits in LOC.WORO (bit O corresponds to re1ist49r number O, etc.) 

2 the result is to be placed in memory; acceptable classes of memory references 
are specified by one-bits in LOC.WORD (this field is used only to select re1isters 
for pointers in indirect references) 

3 the result may be left in any location acceptable for values of the particular 
data type · 

Note that a particular memory location·is never specified as the desired loc11tion for a result; rather, 
classes of possible memory locations are specified. 

For convenience, if the LOC passed to the top-level code generation routine specifies that the result is 
desired in a register, then all · registers not capable of containina the particular data type of the 
expression being evaluated (as defined in the TYPE statement of the machine description) are removed 
from the LOC. Similarly, if the LOC specifies memory reference classes, then all indirect classes where the 
pointer register is unable to hold pointers of the correspondi°ng pointer class (as specified by the TYPE 
statement) are removed from the LOC. Thus where the code generator simply desires that a value be in a 
register, it may provide a LOC specifying that the result may be left in any register. 

The removal of "impossible• re1isters from a LOC is not performed when such an action would leave no 
remaining acceptable registers; this situation can actually occur in certain special cases, such as return 
statements, where an operation requires a value in a register not normally used to hold values of that 
type. 

8.2.2.2 TTEXPR 

The top-level code generation routine is TTEXPR. The function of TTEXPR Is to generate a sequence of 
abstract machine instructions which will evaluate a given expression and leave the result in an acceptable 
location, as specified by a LOC parameter. The operation of TTEXPR begins with the removal of 
impossible cases from the LOC parameter, as described above. Then, TTEXPR passes the expression and 
LOC parameters to a routine CGEXPR, which generates abstract machinet instructions to evaluate the 
expression, using the LOC parameter as a non-binding inqieation of preference. Finally, TTEXPR calls the 
routine CGMOVE to emit, if netJtssary, abstract machine instructions to move the result to an acceptable 
location • 

. a.2.2.a CGEXPB 

The function of CGEXPR is to generate a sequence of abstract machine instructions which will evaluate a 
given expression. CGEXPR is given a LOC argument which specifies preferred locations f~r the result of 
the expression; however, unlike TTEXPR, this specification is non-binding and is used only where a choice 
Hists. 

The operation of CGEXPR consists basically of testing for a set of special cases and then performing the 
appropriate action, which is usually to call another routine which does the real work. The first special 
case is where the expression node is shared and the expression has already been evaluated; in this case. 
no action need be taken. Another special ease is where the top-level operator is a conditional AMOP and 
a value is desired (as opposed to a jump, which is the usual case); in this case, a routine JUMPVAL is 
called to emit the desired code. The other special cases involve particular top-level operators: 
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indirection, assignment, conditional expression, function call, and the "leaves" of the expression tree, 
identifiers and literals; in these cases, the code generation routine corresponding to the particular top­
level operator is called. Finally, in all other cases, the routine CGOP it called to emit code to evaluate the 
expression. 

S.2.2.4 CGOP 

The function of COOP is to emit code to evaluate an expression whose top-level operator is not one 
special-cased by CGEXPR. Like CGEXPR, COOP is passed a LOC indicatin1 non-bindin1 preferences for the 
location of the result of the expression. 

The operation of COOP is performed in six steps. First, a routine CHCX>SE is called to select an OPLOC 
from the top-level operator's location definition in the machine description. Second, desired locations for 
the operands of the top-level operator -are determined. Third, a routine EXPR2 is called which makes 
recursive calls on TTEXPR to emit code to evaluate the operands into the desired locations. Fourth, code 
is emitted to save any registers which are specified• in the machine description to be clobbered by the 
execution of the top-level operator. Fifth, the exact location of the result of the expression is 
determined. Sixth, the actual abstract machine instruction for the top-level operator is emitted. 

If the result location specified by the LOC parameter is a label, or if -the select•~ OPLOC speeifies that the 
result is left in the first or second operand location, then the exact location of the result of the 
expression is fixed. Otherwise, a particular register must be chosen from the set of reaisters specified in 
the result field of the OPLOC (the compiler is currently unable to handle OPLOCs which specify a set of 
memory references as the location of the result). In the search for a result resister, the priorities are as 
follows: first, free registers which are preferred result locations; second, busy registers which are 
preferred result locations, third, free rqisters which are not preferred result locations; and fourth, busy 
registers which are not preferred result locations. If a busy register is selected, reaister contents are 
saved in temporary locations as necessary. 

For the purposes of finding a result register, a register containing an operand is considered free and a 
register containing a pointer to an operand is gi,ven lowest priority. A register containin& a pointer to an 
operand is protected because the implementation of a AMOP may alter the contents of the result resister 
before the operand referenced by the pointer in that reaister is used. An example is the followina HIS• 
6000 code for the AMOP '+pl• (addition of an inteaer to a pointer to a word-1U1ned object): 

LXLO I 
ADLXO P 

This code loads index register O with the integer I and then adds to register O the pointer P. (The code 
for the AMOP includes the load instruction since in general integers cannot be stored in the HIS-6000 
index registers as they are only halfword resisters.) If the code generated for P leaves P referenced 
through index register 0, the load instruction will •clobber• register O before P is accessed by the add 
instruction: · 

LXLO I 
AOLXO 0,0 

However, if index register O is protected, index register 1 will be chosen instead to hold the result, 
producing the following correct code: 

LXll I 
ADLXl 0,0 
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3.2.2.15 Seleotln1 an OPLOC 

The purpose of OPLOC selection is to select a set of operand/result locations for the top-level operator 
of an expression by choosing one of the .OPLOCs from the location definition of the operator in the 
machine description. The choice of operand/result locations will affect the amount of code produced to 
evaluate the expression, both because of different code sequences which "'ay be produced by the macro 
definition for the operator and because of additional loading, storing, and savina operations which may be 
required in order to set up the operands and move the result to an acceptable location. A general 
solution, taking into account all possible locations of operands and results, is a complex optimization 
problem. Instead, a more limited approach has been taken which uses the provided preferences for 
result locations and available information about the possible result locations of the top-level operators in 
the operand subexpressions. For example, if an operand is an identifier, then its location is known to be 
a memory reference of a particular class. Similarly, various operators may be defined in the machine 
description to always place their result in one of a particular set of re1isters. Using information of this 
sort, plus knowledge about the current register usage, a rough estimate can be made of the number of 
additional load and store instructions which will be required for each OPLOC in the location definition; 
from the set of OPLOCs, the one with the lowest additional cost is chosen. 

-
For example, consider the expression •1 + (J / K).• (For clarity, source language operator symbols are 
used in this example to represent the corresponding integer abstract machine operations.) Assume the 
following location definitions (the OPLOCs are numbered for future reference): 

+: r,r,1; (J) 

r.M,1; (J) 
IIA,r ,2; (3) 

/: rl.r,1 [r2]; (4) 
r2,r,1 [r3]; (5) 

r3,r,1 [r4]; (6) 
r l,IIA,l [r2]; (7) 
r2.M,l [r3]; (8) 
r3,IIA, l [r4]; (9) 

Here M represents all memory reference classes and r represents a set of general registers consisting of 
r 1, r2, r3,_ and r4. The division operator is modeling a machine instruction which produces pairs of results 
(the quotient and remainder) in adjacent reaisters. For the division abstract machine operator, only the 
quotient is used; the other register is considered to be •clobbered• by the execution of the operator. 
Note that one can deduce from these location definitions that both operators always leave their results in 
general registers. 

The generation of code for the expression •1 + (J / Kt begins with the selection of an OPLOC from the 
location definition of the '+' operator. In this case, all of the OPLOCs specify the same set of result 
locations (the general registers); thus, the desire(! locations for the result of the expression does not 
affect the choice of OPLOCs. Instead, the choice is made on the basis of the possible locations for the 
operands. In this case, the first operand Is a variable I which is known to be a memory reference of a 
particular class. The second operand is the result of a division operator which is known to leave its 
results in either rl, r2, or r3. On this basis, OPLOC (3) is chosen because no extra operations are needed 
to move the operands into acceptable locations, whereas both OPLOCs ( l) and (J) do require such extra 
operations. 

Next, a recursive call is made to 1enerate code to evaluate the subexpreHion •J / K.• fhe desired 
locations for the result of this expression are those specified by the chosen '+' OPLOC for Its second 
operand, namely r, the set of 1eneral registers. However, since the '+' OPLOC specifies that the second 
operand location is also the location of the result of the '+' operator, the intersection of that location set 
with the set of desired locations for the result of the '+' operator is used instead, if that intersection is 
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In addition, when selectina an OPLOC from• location definiti.Gn. oet;,~ Qet..OCs,_~ ,be r•jected entirely 
because they specify conditions ,which ~ not be •t~ f.91" • ...._,,,_. ~ ..... _<emw ,diractty 
or indirectly throuah an~Md ~) that thit ,_. _;.,lettin • , .. ~.,out,.,U.. . .....- ii Mir4l!d m 
memory, then th_at OPl.0: wiff -8' ~ if •. tempPrtrY --- is.,lfOll·:--.,-.. n.i,_. -..0C is 
rejected because, aiven a v• in a ~er, th,e only ....-a1 ~ la¥,~- tt- .code _,..ator can 
make that value into a memory ,._,._.. is py savi• it in .J ftt:WW ....... ...._,,.,y locatioll. (Reca.11 
that a specific memory·toc.tjon is not provided for tht Ntult,~ a;•t,9',~~ ~-~•r~ 
classesJ. Similarly, if the reautt wffl be ___ •: ---.in"'""'¥_--_• __ - i•_ ,...._ ___ , _in_·~-_ - .. __ -- ~1-1---Jhat ___ ----~._wiu ,be 
rejected if there are one or fflOf9 ~- result~ r~: ~ which _.. -aot acceptable 
result locationsi this is done because the code pnerator is not capable of trantfGrMinl • metnCH'Y 
reference from one dass to tnQther .. $lfflilar ~in&-is ,.,,-Mtd,en,the.,o,erand ••l'l pcitiqations 
in the OPLOC: if an opierlnd ii ,..,;nt9 t.y the OPLOC ~ l;le in_ ..... ¥ ~ ,IIOt .W ~ .. ..,,y 
reference cl•ses are allowed, then_ t~ _QPL()C -"1 bet~ iJ)he ._..,,. ~,4&,not ,.__..... 
to place its result in an ~ . IMfflOf'Y location or ,f it can place its result in • "'lister W 
temporary locations are not -accept.able. These NStrict-- -.allow a location -~ to conf,ift •Ira 
OPLOCs whtc:h apply only in SJ18Cial caees since such OPt.OCI wffl ~ be cNINn unlNs the special 

· cues hold. - -

An example of how the OPLOC selection method can be utilized in the writffll of a machine description is 
the followifl& definition of the '+pl' ~ (addition of a ialapr to a ~- to, e. WONHlitMd object) 
taken from a hypothetical MIS-tOOO madliM -dnctiptfon (~, de1erill•d -~ ~ •lhod was Ml 
imp1emented at the time thl -actwl- MlS..aGOO .machine ••.c,iplton w• ~.; ;r. thDrtett code for 
executina the '+pl' operatlon in ttt. ..,.,., c .. is -

LXLO I 
AOLXO P 

where I is the intff•r in the low-at*' ~f _Qt a word in ~¥ IO(t_ p, is the painter in U. hip~der 
half of a word in nwtmory •. Tl)t rf!IUJt of this -.,.atftln is left. irllllmdlttc ......-,,~ the 0_11\00 for this-code sequenc. is · - ·- · -- - - .- · 

M,M_Xi 

However, if both the inteaer and the pointer mu$t be cc>mputo.d into rqister,• (which OCC\lf'I frequently in 
reterencina •~ts of an .,.,_.y_). ~he Jntqer _ and the _,~.r,t•r must f~ .,..,. .,. jrl,tp ~ary 
loc,tions before this codt -~. ~¥\ bit wf• r,,.,r~.,J•ini flit cJ_.: :• .....- _., 
these circumstances resutt, in ftCNSlw obj_td code. ~-dMnd axtl is - · 

ALS 18 
STA TEMP 
ADLXO TEMP 

whic~ shifts the integer in_ the, pneral re,aisbtr into the ~h-or~, ~fWQr~~!toreJ il into • tefflPOfary 
locat,on, ,net adds it to the ;otnbt,r in _ltje index_rvter._ The OPLOC·•·tNt ~ ....,_ i!1 -· 

x,r,11 



In the case where the pointer is in an index regis_ter and the inteaer is a constant •n•, then the desired 
code is 

EAXO nl) 

with an OPLOC of 

x,intlit,l; 

The described OPLOC selection method allows all three OPLOCs to be included In the location definition for 
'+p 1 •. In particular, it guarantees that the third OPLOC will never be selected unless the second operand 
is an integer constant. 

8.2.2.8 Generating Code for Subexpressions 

After an OPLOC has been selected, CGOP calls a routine EXPR2. to make recursive calls on TTEXPR to 
generate code to evaluate the operands of the top-level abstract machine operator. The LOC arguments 
passed to TTEXPR in these calls are taken from the operand fields of the selected OPLOC and, in the case 
of operators which place their result in an operand location, the desired locations for the result of the 
top-level operator. If there are two operands, EXPR2 makes sure that the two operands will not require 
the use of the same register (for example, by using a register to hold both one operand and a pointer to 
the other operand); this is done by checking the LOCs for "overlap" and removing certain possibilities. In 
addition, EXPR2 evaluates first the operand which is more complicated on the basis of the sizes of the 
subtrees for the two operands; this tends to reduce the number of saving and restoring operations 
performed. In the course of generating code to evaluate an operand of a binary abstract machine 
operator, it may be necessary to use the register containing the already computed value of the other 
operand or a pointer used to reference it, in which case code is generated to save the contents of this 
register in a temporary location. Thus, after generating code to ev.atuate both operands, EXPR2 calls a 
routine RESTORE to generate code, if necessary, to restore the saved value fo its original register. 

8.2.2.7 Register Management 

The status of the various abstract machine registers with regard to register allocation is contained in an 
array of structures called REGTAB. Each element structure of the array represents the current state of 
one abstract machine register. An element structure consists of two members: UCOOE, an integer 
indicating the current use of the register, and REP, a pointer to the subexpression tree whose value is 
currently in the register. The possible values of UCODE are listed below with their interpretations: 

UCOOE Interpretation 

0 the register is free 

-1 the register contains the value of the expression pointed to by REP 

-2 the register has been marked "do not use unless necessary• for the purpose of 
finding a register for the result of an Ah()P; although the register contains a pointer 
to one of the operands of the AMOP, it is free in that it may be selected as a last 
resort without having to save its contents. 

n>O the register does not directly contain a value, but there are •n• conflicting registers 
containing values which must be saved before this register can be used. 

The routines used in register management are described below: 



CLEAR(R) 

ECLEAR(E} 
FREEREG(W) 
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- Reaister R,. which must directly contain tt. value of an exprHSion, is fltade 
avaihlbte for use; its current value is not saved. 

- The resister asocieted with the expression E, if any, • CLEARed. 
- A rqister from the set specified by W is made avaHable for use; the 

contents of resisters are HYed if necessary. 
GETREG(Wl,W2) - If possibte, an IJflftlariced reaister from the set Wl is made availabte tor 

use. Otherwise, tf possible, an unmarked r .. tster f..- the,set W2 is m8de 
aYail41bie for use. Otherwise, • marked ,..itter fNM 1M at Wl is fflllde 
... ~,Jar tae. Withift·wh,.-1. ftwe ...... ,.;-;dllt-~ftfR1de1'1N• 

MARK(£) 

NBUSY(W) 
NFREE(W). 
RESSM(R,E) 

RESTORE(£> 

SAVE(R) 

UNMARK(E) 

to.~..-$iif•._ l'tlplter•~tts........._.,,..._ 
- lf the exprnaion E is an if'ldiNct ret.rence, ttw ....-w e••-••• h 

peint.r ts mar-"8d •do not UN unlffS l'IICelSlf'Y.• 
- Return tt,,,e ~-·-.,....,.in'<twl ..tW. 
- R8turn the ftUfflber of free ,..;.ters in the •t W. 
- Reaisw R is aUoa•d·to.hotd the --• the•---•£. llqister R 

must lie waitable-f« ... 
- If the vakll'.ot .tt. ~ E (or•~ ill the c-« 11n indirect 

fef...--) .bas ,bNn NYM in·• teMpor.ery taelllilfl..it a......,_. te thlt 
orf&mal r:etl•tiar. 

- ..__,Ris1Nd9w_....forweby..._thlt.....,_•of·w1...., 
............ ll8CalMl'y. 

-laldo,a+.wk 

The followinc is a typical ,.._ of .. ""5 .made by CG0P in h . .....,atioft of cGdl f8r ., _,.,.__,. £ 
whose top-level operator is •iNnlr¥ ..,..,_, with.,.,.,. ,QPi .., QP2i 

OPLOC-a«>os£(£.U)C} 

EXPR2(0P 1,0P2} 

ECLEAR(OPl) 
ECLEARWP2) 

SAVE(•) 

MARK(OPl) 
MARl<(OP2) 

UNMARl<(OPl) 
UNMARl<(OP2) 

RESERVE(R,E) 

C-..anOPLOC 

recursively pnerate code to evaluate 
the operands into accept.able .... 

... •ctobberecr n11isters, if any 

mark registers used to hold pointers 
to .,-ands 

· select • result register 

NtMf'.ve result register 

8.2.2.8 Poaslbllltles for i'allure 

The code generator can fail m two ways; (1) it can reach an impossible .tuation and announce a compiler 
error, and (2) it can unknowinafy aenerate lncorrect code. Examples of intpOSsible situations are ( 1) 
discovering that there -are no acceptable OPLOC. in the tocatton definition for art --••• (e}·bltn& told 
that the result must be placed . in a r91ister from the empty set of registers, and (3) discoverin& that an 
essential location definition ·or mec:ro definition of an al,str.ct M1Chine operator w• not provided by the 
implementer. The most likely CIUN of a t.iure is an incorrect whit• dNcription. C...IH of errors 

. . . . 
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which c·an be made in the machine description are (1) an OPL.OC specifyifll tt.f both OQtr• ,,......t, ~ in 
the same realster, (2) an OPLOC specifyifla I set of memory ... ftrence ..._ for the rliulflocafion. (3) a 
macro definition contlinina, errors, and (4) 1 ~o. defif,it~ . -~, ~ not. '9tfcip•\• .•. P''·tif~•r 
oper.nd or ... u11 ...-, or -lnltlon -• ~-'1'',!!!ii7iln11~ or olhel'llliff 
nserit ... ief Ciff·tt.. ·ca• ot·mow. *.· r•.t.fons··wNc .. h. •.t· .~ .. ~,-,~ .. ''.t ,;~.·.·. ·.. ·.; .• .. ' · .. t•. ll. "f•r• .. al'Ki be ... · .. }""." re1isters and memory). Some of ffleo errors coufd be dell.tlttftiV~ ffi.,' Sit i-,n ~ prGCeQeS ~,-
machine ·dNcrlption (GT). AnotMr 'possible c191e of 'f~Jr_. iW~~~~,. with an insufficient 
number Of TWtisterii· 'Soeh I machine fflliy require thal'a "i•&r be. usild 'to 'hold bo_th a poinf!'r, to an 
Operand and the result of an operation; IS described above, this situation may'.-rfiult in incorrect code. 
Hopefully, abstract machine models of real machines will not suffer froM ttn ~. Of ~.,,.: ... the 
other possible cause of failure is I bus in the code pnerator ittelf. It would be trifet .. flna and useful if 
such a code 1eneration alaorithm could be proven correct, &iven. ~nsitate ,...trictk>ns on t~ .,..chine 
description and the NIUfliption Of cortect'fwacro deflnitkml. · · · ' · 

" 
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4. Conclusions 

This paper has described the i,nplementation of a portable c9"'Piler for the. proarammin& Janguaae C. The 
compiler was first implement9'1by.U.· .. .u,or itl.t l\Mlfl·_,,.·~.on U,.,~.Lalltor-.•Com...., 
Science Research eent.r•s F'OP-i l/41 tJIX ~ The,_..... w~,.-. •••ttt•·~ ,itself, arwUhe 
resulting code moved to the JG...,_ ~ ~ .. ~lf~,if ..... ~.•!lllfllflr,.Wllit the 
version of the compU.r ~· on fhllt ·~ ..... ~ ~.--- .· Thil.:W• , .. _...- • • 
significant test of the compi..,; · · · · · 

4.1 The OomplJer 

The major problem with the compiler itsetf is Its speed. The compiler appears to be more t~ twice IS 
slow as other compilers for similar source tanauages. · This ..,_ is due almost entirely to the use of a 
macro expansion phase (a phase not til!.ely .to be present in ordinary comphrs), since the compiler tends 
to spend half or more of its ·twin the NCro expansion ph .... The slowness of the compiler seems to 
be a problem inherent in the c._.., compfler structure; no amount of mere recodina is likely to 
significantly reduce the percentap of ftme spent in the macro expansion phase. One approach toward 
improving the speed of the COMPiler would be to eliminate non--essential processina such as the 
construction and interpretation of character-strina representations of macrq calls and the rescanning of 
Macro definitions. The m«ro lanawaae could be modified so that the result of the expansion of a macro 
call would never be needed • an ar1ument to another macro call and thta could be printed directly, 

· rather than returned n a strina Ind r•scat'IMd. Given this restriction, the fflllCrO definitions could be 
compiled into procedures which simply print strinp and call offw procedures. n.s. ,rocedurel could 
be called directly by the coda pnerator; alternatively, they could be caNecl by • procedure which 
interprets a suitable encodina of the intermediate lquap. 

A second problem with the compifer is its size. in terms of both the amount of file space necessary to 
supp0rt an implementation. of the compiler and the MIOUnt of. fnefflOry required to execute the compiler 
phases. The source of the cOlllpHt' is about 2501< characters, the source of GT is about 80K characters; 
thus, the file space required ·for source, object libraries, and executtble files is on the order of 1M 
characters. On!y the size of the code of the code pnerator is a result of desianina the compiler to be 
portable; it is likely that a code 1enerator deli&ned for a specific machine would be much smaller. Other 
reasons for the Iara• size of the COMpiier stem. fl'OM the. particular proarllftfflina techniques Uled. In 
particular, keeping the entire tree rep,esentatien of a function in core at one time d\winl code aeneration 
requires that a large block of stor•. be reurved. Alto. the use of a bottom-up table-driven LALRO) 

. parser seems to result in a lar&tr syntax analysis phase. thin would result -from uaina recursive. dnc:ent, 
as does the UNIX C compiler. The larp size of the COMpHer liMfts.the number of computer·•ystems which 
can support the compiler. 

Despite these problems, it is believed 'that were one prepared to make the investment necessary to 
implement C on another machine, the size difficulties and refated costs would be outweiahed by the 
relative speed with which one could brina up a workina impltmentation. One could then concentrate on 
makina it more efficient, havinl the tdventaps of • C compilw to work with and the ability to proarem in 
C. 

The least flexible machine-dependent component of the compiler is the code generation. algorithm. It is 
acknowledg~d that a clean mechanism for allowin& the implementer to tailor the code generation alaorithm 
throuah the addition of procedural knowtedp would be an improvement. On the other hand. clin&ins to 
the idea that the code of the compiler will never be touched is unrealistic. A likefy prospect for 
modification is the code related to the cam,. sequence since it may be desired to use a systM standard 
callina sequence instead of the one built into the compiler. Another problem which would be tOlved most 
easily by modifying the code 1enerator is the IBU S/360 addretSin& problem. Because a S/360 
instruction cannot contain an arbitrary memory address, C external vtriables must be referenced by first 
loadi"I a reaist•r with a pointer to the variable (an ac1c1r ... ~•>·Md then usma the reaister • • 
b ... rea~ster In the actual fnttructM These actions c:outd be .,,or•d, by the macro deffnltioN utins 
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conditional expansion; however, it would be easier to modify the code generator to handle this particular 
case. 

The most direct method of moving a portable compiler based on a machine description requires acce~s to 
an existing implementation of the compiler. The process of moving a compiler written in its own language 
from machine A to machine B is as follows: First, one writes a machine description for machine 8. 
Second, the machine description is used by a construction proaram running on machine A to produce a 
new compiler which produces code for machine B. Third, the compiler on machine A is used to compile 
the new compiler, producing a compiler which runs on machine A but produces code for machine 8. 
Fourth, the new compiler is used to compile itself, producing a compiler which runs on machine B and 
produces code for machine B. This process is called a half bootstrap. On the other hand, the Poole •nd 
Waite approach does not require the use of an existing implementation. One need write only an 
interpreter or a translator for a very simple abstract machine langua1e in order to move a program to a 
new machine. This technique is called a full bootstrap. In practice, the need for a half bootstrap often 
represents a si1nificant obstacle to movin& a program. 

The full bootstrap method can be used to move a portable compiler based on a machine description as 
follows: Initially, a simple imaginary machine is defined as a vehicle for bOotstrapping. A compiler which 
runs on and produces code for this imaginary machine is then constructed using the half bootstrap 
method described above. Now, in order to move the compiler to a new machine, one implements an 
interpreter for the imaginary machine on the new machine. This action results in an •existing 
implementation" of the compiler, running on the new machine, which can then be used to carry out the 
half bootstrap as described above. 

4.2 The Complied Code 

Although there are weak spots, the code produced by the compiler is good considering that it is almost 
completely unoptimized. It is certainly better than would be produced if the abstract machine were the 
typical machine-independent abstract machine with one accumulator and one index register, given the 
same complexity of the macro definitions (they do not perform register allocation). Such an 
implementation would not be able to take advantage of the HIS-6O00's two accumulators or the multiple 
index registers, nor would it recognize the fact that byte pointers cannot fit in the index registers. 

One of the weak. spots in the compiled code concerns floating-point operations. The code generator 
"performs" all floating-point operations in double-precision, issuing single-to-double conversi~n 
operations before using single-precision operands. It is unable to utilize the HIS-600O machine 
instructions which operate on a single-precision operand· in memory and a double-precision operand in 
the F register. Since the implementation of a single-to~ouble conversion is to load the single-precision 
operand into the F register, very poor code is produced for single-precision floating-point expressions 
(as opposed to very good code for double-precision expressions). One way to handle this situation would 
be to implement a general subtree-matching facility for optimization. With such a facility, the implementer 
specifies in the machine description that a particular combination of abstract machine operators (specified 
in the form of a tree) is to be replaced by the code generator with a new abstract machine operator; the 
new operator is defined by the implementer in the machine description just like any of the built-in 
operators. In the floating-point case, one would specify that a subtree of the form (using a LISP-like 
notation) 

( double-prec-add ( •1 , sinsle-to-double ( •2 ) ) ) 

would be replaced by 

( single-prec-add ( •1 , •2 ) ) 

where single-prec-add is a new abstract machine operator which would be defined to be the "FAD• 
instruction. This method of subtree-matchinii can be compared to the hierarchy of abstract machines 
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method in that the new abstract machine operators can be considered to be instructions of a higher-level 
abstract machine. The differences are that, in the case of the subtree-matching method, the definition of 
higher-level operators is optional (thus there is no multistage translation when optimization is not desired 
or needed) and that the implemE.nter defines the l'ligher-level operators to suit his needs. The subtree­
matching approach to machine-dependent code optimization has been investigated by Wasilew [17]. 

Another weakness in the compiled code concerns array subscripting. Instead of placing the offset of an 
array element into an index register and performing an indexed memory reference, the code generator 
adds the offset to a pointer to the base of the array, producing a pointer (in an index register) which is 
then used to reference the array element. Thus, the code generator regards index registers only as base 
registers to hold pointers, and not as index registers to hold offsets. One reason for not implementing 
the capability of using index registers for subscripting is that this method of subscripting is often not 
possible. For example, on machines like the HIS-6000 with single-indexed instructions, this method can be 
used only for external and staflc arrays; all other arrays require the use of an index register just to 
reference the base of the array. (Actually, one can perform double-indexing on the HIS-6000 by using 
an indirect word; however, this was not recognized at the time the compiler was written.) The capability 
of using index registers for subscripting could be implemented using the subtree-matching facility 
described above; one would test for subtrees of the form 

( pointer-add ( address-of ( extern I static ), <any> ) ) 

and replace them with a new abstract machine operator which would be defined to· produce the desired 
code. A more satisfying solution would give the code generator more knowledge about addressability so 
that it could use index resisters for subscripting whenever possible, based on information gi'1en in the 
machine description. 

A third weakness of the compiled code is the use of indirection. The code generator only indirects 
through pointers in registers; it is unable to utilize an indirection-through-memory facility (except through 
a specific location which implements an abstract machine register). Again, a better understanding of 
addressing is what is really needed. 

4.3 Summary of Results 

This paper has presented a technique for the design of portable compilers and has demonstrated its 
practicality through the implementation of a portable C compiler. The main difference between this work 
and the previous work described in section 1.2 is that in this work, the system was designed specifically 
for the language being implemented; it is this restriction which contributes most to the practicality of the 
approach. In addition, this work has emphasized the concept of a machine-dependent abstract machine, 
thus tying together the work on portable compilers and program transferability. 

The advantages of the technique presented in this paper over the technique of rewriting some or all of 
the generation phase are (1) that the implementer can modify the compiler to produce code for a new 
machine with less effort and in less time, and (2) that the implementer can be more confident in the 
correctness of the modifications. Almost the entire code of the generation phase, already tested in the 
initial implementation, is unchanged in the new implementation. This code includes the code generation 
algorithm, the register management routines, and the macro expander. Furthermore, the· modifications 
which must be made are localized in two ~reas, the machine description and the C routine macro 
definitions. The implementer is primarily concerned with the correct implementation of the individual 
abstract machine instructions. The interaction among these .instructions, in terms of their correct ordering 
and the use of registers and temporary locations, is handled by the code generation algorithm and need 
not be of concern to the implementer. It is this reduction in the complexity of the problem which leads 
to the increased confidence in the results of the modification. 

The portability of the compiler has been tested by the construction of version of the compiler for the 
DEC PDP-10. The initial machine description and macro definitions for the POP-10 implementation were 
written and debugged by the author in a period of two days. 
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4.4 l'urther Work 

There are three main directions for further work. One is to develop mahine models whitti will altow the 
1eneration of acceptabJe code for a la,aer class of. machine$. · Such Nthint · ftt0de1s will ·have the effect of 
reducin1 the _eomplexity of the descriptions of machinet ~ ~ rd ~lely ~rrnpot,d to the 
machine model described ~" thfS paper. ··fAth tt. ·ta..-O:· flt'. ~. · ffiw· 'only·· Major area of 
complexity in the machine description 11 that of character =at~, ~. ~ desire • machine 
model which allows the implementer to describe "'°"• COfl\11~ · ''lffl ......,lltiOW of characters on 
his machine~ Similarly, • machine model which allows a better ~rat....,. ,pf l!ddf'eHif'.11 would. be 
desirable. ·· · · · · · · - · . 

A~1o1the~~ct~o-~~-thejr = is
1
to~_-v_ elo,.p_m~ne.;-~~t __ cocte_.,, ,_ •• ~ ...... ~-·, a~•!,.._ri .. th __ ms w~1ich w, pr- -• _..""'"' • •. · n ,,1,,n...,.~•• ~- · 'Vl ":8 , __ "'9' comp e,c 

constraints shautd 1,e· •Qfflifted. · IV\·•«tdltfot( ~~• 0\ii'cttiir''to fttend ••ilY and 
safely the code 1eneration alao,ithm thrqh the addition of procedural knowtacfCe should be· developed. 
Such techniques should allow the compUer to be ~fled . to produee code. for unanticipated .-w 
machinet. · ,. ·· .. , ·. : · ·· 

The third direction for further work is to ~P.Plr .th.e tee~ of_ ~•IP'! -~C\'!!i•r~ t.o more complic,ted 
and more "J>O:Wll"ful la~. 'The t~ •"' :u_t", , ~~~~ ~'-'~~~" 1l1or1thm 
and a machine clescr1pbon, even nidt fl"Offl'•poi'fatiifflf; ·'·1n·r.\lWY~O.aK· and modular code 
1enerator. It would ~ interesti111 _ to SN if this. t~.,:~ r~ .. , ~ ~~Jel'Y of code 
1eneratora · for i.,... 1.,.,_. .. anct Whether'lM)rtablt'lty td -stilt be ... ..._. 'without' cMTroyina the 
efficiency of the object code. 
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The for ... of ttw, IMCIII,_ ~ lo.~ In .clo!i.t11ffJi,_ --- Eno,plfs -:a I~ 
frOttt''tfw Hl94000 _..., •. ~r,tP'''·~··kt ~.-·w .. '1,Wt"¥'1I'. ·~,::~~.,· .. ,. "-·:,~'·-' 

fi.t yri .. ;la·wi1eh~ dftcriptfon wfMf'Jt" r!utflti,ttlf~aflir ..... ,· " · ·· · :if thi·'&,aj"\erie~tt~~- · 
The convention of writina syntactic alternatives on separate tines is UNd throuahout. · · 

1. DeflnU:lon ·Statement& 

The.· Machine ~. ription beahw. with. • ·sene• .. ·of. def. lnltreri st .. ~ ·%Ai.•.··.· .cfe,flni.,. t~. t,atement. 1.• ~• 

described in h Mdionl Nlow tn tM Oi'!ftr In whlchltNty:...,,tiW• ''lf,if~-~-- . , 

1.1 The· TTPJINAII. Stat•••nt 

The TYPENAMES statement def inn the .names which ar• Ultd in thl ~· dNcrlption to r•preMnt · the 
primitive C data types: character, int .. er, floatins-point, end double ~;,~"1lf!IINIL.:,n. .to,m of. 
the TYPENAMES statement is . · .. , · · · · · · 

<typentltnesJtmt>: 
<name.Jist>: 

typenames ( <name.Jist> ) ; 
<nan.e.Jist> , <n_.> 
<nan.e> 

The first name corresponds to the internal type number 0; t"' = '.~ type 1, etc.· Bee.Ml;" the 
internal type numbers are fixed In the compil9r, the· l'Yf'ENAM($ .~ri'M iflould always be ~alent 
to)· · - · · · ··. ··· ·· · · :·,, ,:·~•,·.· · : ·•· •· . ·· 

typenames (char, int, float, double); 

1.a · Th• ·■BCIN&II., ftateaent 

The REGNAMES statement defines the names of the abstract lftlChint ,......,.. these reatatert · are 
1Ssi1ned Internal realster nUfflbers (used in. REFJJAst, sec:tion 2.1.1~), ~---~f 0, in 
the order in which they appear in the AEGNAMES statewtient. The fori¥"9\RI· ' statement i.s 
similar to that of the TYPENAMES statement; for exampfe, t-. =~ .st~~ .\Md. in the ~S~ 
implementatfon is · ' ·· ' ' ·. · ·· · ·•. ·_· · · · 

reanlfMI (xO, xl~ x2, x3, x4, x5; a, q, f); 

In this example, all but the .. F r~ister corres~ dir~U.y to -:tu~. r,~i!~f,,;~. ;:J,,<~--6000.,, . =J~ter! 
XO through X4 are the first five (out of ••&ht) Index rqtStetc, ·....-,. A ·,nt/ '-0' are fhe two 
accumulators. The F rqister is • fictitious floatlna~~t ac:cUffl.Uli.!~ ~·.;':' reality cqrr~~l')C:ls ., ~Q the 
combtfted ·A. Q, and E. (ftpeNilt) r .. isters. The f11et 11jtt the. ,-,np~ _COl'lftlcts ·w~th the· A and Q. 
re1teters is specified in the COt.fl.lCT' stwtement, dnttiNCf Wtow~· ONtf' ltioW~)c:t~ m.:hine; reais~ers 
whith are to be used by the cOde pner,to,'in proaucma ·c,ocil. to ttijfu.,__-~lofi'shoutd l>e if\C~ 
in the ·R£0NAM!S stllifflentr=,tpttf'.9 UMd onty. for e~o(" .... •.ll~" ... --.···,,~ .. ·:·.·.·. addre ... ,.~. s c.··•,t·ul.·atlons, 
or. othet 11enkh,clllcuNfions<~,wifhin the code:for~.~ '"-ff~~~·ftOt be included ii! the 
REGNAMES stat...,.. Fc,j,'.,exaMpfe, on ·n. 0HJS-6000~'h'·iftilflti"rtjhstl6r1''are ._,, defined In the· · 
REGNAMES statement: X7, which contains a pointer to the cwrent ,t• fr,..;, X6, .which contains a 
pointer to the current ar1ument list, and X5, which is used as a scrattfi•·~·1,y kN/:Jlls ;•hlch access 
characters. 
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1.8 The MBMNA:11111 9tatement 

The MEMNAMES statement 1$~ift# name, with the various c:.t,ases. Qt .• ~ ,.,_.... • -,.cifilld 
by ne1ative .valuts ... o.t,RE,F~ltecfieftZ~,1~ jfll ... ·~• .. •.:• . .. ff .... J ":MQ .. .. ~4'tft!tl'1fll -•• ._,.._ 
of the TVPINAME$ . st._nt; for ---► .the .. ....,,.... . .,.._ ••.. .- " U. ·•---
implementation is ·· 

memnames (rec, auto, ext, stat, par am, label, intiit, tloatHt, strlnalil, hrO, ••1• i112, Jd.'"'4, ·ta, icl)s 

The first nine names rew to ~med meaaory r.,.._. ~ ._._ • .0.-4,--2, - ,..., the 
remaining names refer to indi,ett ~ tbrQUlh ~~. ~ ,..._, ,._..,. ••• In the 
REGNAMES statement (REF.SASE • -9,-10, - ). The .first name •, ... is never U11NS it NrYN only • • 
placeholder. No name is provided for indirect referencet:.~-.llll' ~•..,Wf .,.-ttr a. 
not used to hold pointers and, beifts the hilhnt ~ ,.,1,t.e, ..... it._ fldt llff9ct the .. 
positions of the other nemes in tht list. · 

1.4 The SID Statenumt 

The SIZE statement defines the sizes of the primitive C 4-la tyP111,,in ••• of byta The .form of the 
SIZE statement is 

<size_stmt>: 
<size_defJist>: 

<size_ctef>: 
<type.Jist>: 

size <size_defJist> ; 
<•iat,.Jie1Jist>, <sin_clef> 
.~f~ . 
<intepr> ( <typeJist> ) 
<typeJist> '<type> 
<type> 

The integers specify sizes in bytes; the ty.pes are the nalNf flf p,•••'"L~ -:~..-pt ,,tlllfCi,_, ·i,l the 
TYPENAMES statement) with the t0rr..,.ondina size. For etta1Pl1, the IIZE stlb1•nt UNd fn the HIS-
6000 implementation is 

size 1(char),4(int,float).B(double); 

All addresses computed by the compiler are in terms of byte addreuina; byte addrHNS are.·~ to 
word addresses for non.:.Charicter o,,.rations by the Nero definitions. Far ..... , Oft tM tlS-6000, if 
the first element of an tntepr array bqins at offtet O in the .ii• ..., -. •·••--IJfll •••• of 
the array are at offsets 4, 8, lZ 16, etc. · · · · · · · · 

1.5 The ALIGN' Statement . 

The ALIGN statemctnt defines the alia""'8nt facto,:.s of the primitive.C data types; these 4ili&ftfllltnt f.iors 
are in bytes. The (byte) ~ss of a var.iable with 1r1 aijg~t. ~or •,;" MUSt be nro IIIOCAulo •n!'a :for 
example, on the HIS-6000, the .(~r~ladclr"' of • ~ MUil •-..--•of 4 Alt...,...._ tcter 
must be divisjble by all smaller ali~Jac.tors.Jhfs .allowsJbt ~ _.:~··••••• ...,.._ to 
a base Ythlch utisfies tht _l"lf,"9st,~:·r~pcli.Oft. ti. ..... "'1Mlt: ~ .... llhl.-t·tJl _..., ,to 
that of the SIZE stat4nnenti for eUMPle,.the AL.1'1N,stetemM1t~m.~••-11111ien • , · 

alian 1 (c:har ).4(int,f loat)Jl(double)f 

1.8 The CLA.SS Statement 
', 

l 
The CLASS statement is an optional st•tement which allows the implementer to define J....s of abstract 
machine reaisters which are used in similar wa.ys; the rept.,- d.nHs tO dtfiNN:t can .then be UNd in the 
machine description as abbr~ations for the corl'flPO'IClinl lilts of rapiers.· n. fonn of tht CLASS 
statement is 
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<class_stmt>. 
<class_def _list>: 

<class_def>: 
<register _list>: 
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class <class_def_Jist> ; 
<class_def_Jist> , <class_def> 
<class_def> 
<name> ( <register Jist> ) 
<register _list> , <register> 
<register> 

T~ name is the name of the register class, the registers are the names of the abstract machine re1isters 
(as specified in the REGNAMES statement) which make up the corresponclina register class. The CLASS 
statement used in the HIS-6000 implementation is 

class x(xO,x l,x2,x3,x4), r(a,q); 

This statement defines the class of index registers X and the class of general registers R. 

1.7 The CONFLICT Statement 

The CONFLICT statement is an optional statement which allows the implementer to specify abstract 
machine registers which conflict in the actual implementation. The form of the CQN='LICT statement is 

<conflict_stmt>: 
<conflict_def _list>: 

<conflic;t_def>: 

conflict <conflict_defjist> 1 
<conflict_defJist>, <conflict_def> 
<conf lict_def> 
( <register> , <register> ) 

Each register pair specifies two abstract machine registers such that only one of the registers can be in 
use at one time. The CONFLICT statement used in the HIS-6000 implementation is 

conflict (a,f), (q,f); 

which indicates that the F register conflicts with both the A and Q registers. 

1.8 The SAVEABEASIZE Statement 

The SAVEAREASIZE statement is used to specify the size of the save area which is reserved at the 
beginnin1 of each stack frame. The save area is generally used for savina re1i1ters upon entry to • 
function, for chainin1 stack frames together, and for holding other per-invocation information. The form 
of the SAVEAREASIZE statement is 

saveareasize <integer> ; 

The integer specifies the size (in bytes) of the save areL The save area used in the HIS-6000 
implementation is 16 bytes (4 words) long. 

1.9 The POINTER Statement 

The POINTER statement defines classes of pointers according to their resolution; these pointer classes 
represent different implementations of painters on the target machine. The resolution of a pointer 
corresponds to the alignment factors of the objects to which it can refer; in particular, a pointer with a 
resolution of •n" bytes can refer only to objects whose alignment factors are multiples of •n• bytes. The 
primary use of pointer classes is on machines whose smallest addressable unit is larger than bytes; in this 
case, two pointer classes are defined: one which can resolve only machine-addressable units and another 
which can resolve individual bytes. By defining separate painter classes, the implementer allows 
computations involvina pointers which are known to refer to machine-addressable units to be performed 
in terms of machine-addressable units, and therefore more efficiently. The form of the POINTER 
statement is 



_... 

<pointer _stmt>: 
<pointer _def _Jist>: 

<pointer _clef>: 
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pointer <pointer .,pet.Jilt> ; 
<pointer _def _list> , <pointer _def> 
<pointer _def> 
<naMe> ( <infecer> ) 

The names define the names of the pointer classes, the inte1ers are the rNOlutionl of the correspondina 
pointer class-.. At feast .._.,..,..no...,...._. ,._.;cl1•-,..., •••• .._ pct1llw d111 .. 
are referred to as PO, Pl, P2,• Pi•h~•• h·MOilll. 

The POINTER statement used in the HIS-6000 implementation is 

pointer pO(l), p1(4); 

PO is the class of pointers to byte-alianed objects; Pl is the dlN of-~ _to, '4f0r(t.._ned ol>J,c:ts. 
Word pointers can be held and operated upon in the index nlil■Nf;.,...sflr.dwt.n 1ill■Nl1el__,. ifl 
the aener al registers and indirected throuch by subroutine. · 

1.10 The Ol'PBJffJIARGJ: •-•• 
The OFFSETRANGE statement is an optional statement which dilfi--, for eadt pointer daa daf!.• • the 
POINTER statement, the ranp of offsets perlllitted ift ,..,._.indnlt ,wht wdi a.., Cta Nltion 
2.1.1.2). The form of the OFf'SETRANGE statUMtnt is 

<offsetranae...>tmt>: 
<offset_def ..Jist>: 

<offset_def>: 

offsetrange <offset_defjist>;. 
<of-'..Jt9f...Ht> • <of'-t~ 
~. 

<pointer ..class.J1eme> ( <loJ,ound> , <hi.J,ound> ) 

where the lo_bounds and hi..,bounds are option1I inteaers. Each offset_def specifies the ranp of 
allowable offsets for a particular pO,iftt,r.~this ,.,.... thl .-, ......... ~•U••·-thllt,lo..;JN,ald . 
and not areater than hi..,bound. If a bound is not present_ then the ,.,.. it --NII~ unbounded in the 
correspondina direction. If no ranp is SJ)eCifted fo, • ,eiflllefl.rfl••3'11--'~...-,-., •• 
any specified ran1e must include zero. 

The RETURNREG statement specifies in which rqisters functions returnina y._._ef .,...._.t,._. retur.n 
those vatues. Reaisters MUSt be specified for types INT and DO a£ • welt • for Ill point• c,__. 
defined in the POINTER statement. The form of the AETI.RRG .t._nt ii 

<ret.urnrea,_stmt>: 
<return_clef Jist>: 

<return_def>: 

returnrea <return_dafJist>, 
<return_def.Jist>, <return_def> 
<return_def> 
<register> ( <typejist> ) 

The types may be n1mes of primitive C data. types.• defined -in tM . .t•■-- or ,...... of 
pointer ''classes . as defined in the POJNT£R ~tetnent, U. cor .. _ . ·. r J1 •--• to I:. ·11'9 
reaister in which functio.,. ralurfffl"IJ v_..,ot». t ..... ~:--~,. . . ,_ • .,.. fw • . 
the RETURNREG state,._.,-~ m. the t:1~ im;l,11,.ite.1' -_.. . 

returnrea q(int,pO,pl), f(double); 

It is advised that Pointer, of; alt ~~,be ~..turntd in tlw .._ ,...., in a c111111atib1e fon.n to ~ 
errors cwd by mismatchel.in"fhl,,,.._..,., funet.on.~,omlllL I . . . . , 
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1.12 TIie TYPB ltatenaeat 

The TYPE statement defines which r .. isters are to be used 'in Vie. av~ of exprftlions to hold 
values of the various abttract machine data types. The form of the "n'fll ....... nt is 

<type_stmt>: 
<type_def .Jist>: 

<type_def >: 

type <type_def.Jist> ; 
<type_defJJsJ>: t <type--f>. 
<type_def> ' 
<type> ( <reaister .Jist> ) 

T~ type is the na~ of~ pri.mitive C data type••. fi~J" lt.tf1.··· ·· ''@.statement or the name of ■ 
pointer class as ct.fined ,n the POINTER statementlt.he r.......,. w . :lbstrect mchine resister, or 
classes of abstract machine reaisters which "!!Y. be .Ufffl•." ~.~,-~>the corr~ type.. For 
example, the TYPE statement used in the HIS.:.l(M)C ••d• 'ii' . '" ~ . · · 

' ',,_, ,, ';.'' ,. 

type ch1r(r),int(r),flo1t(f),double(f),p()(r),pl(x); 

The reaisters specified in the TYPE statement need not include ~l'X+~ister physicatly c..,.t,le of 
holding • particular type; only thoN rqisters which the itttpl1....,_" _.,.. to UN in evaluating 

~=si9~tlM:! . tY,pe .~a,~ i;n, ttw .~,~ .,Jf!,*,~~'~,,ODl{,,,tlw,, 
~■p~:1,~ ~~~\:t :;.1'ft ..; in:,~l-='~Ul1 ~f u. ~~;i.r~<J: 
Pointer wi.o··,et= i,y·~ l\m1on e!i11J ft!iii,w., -..:;,;~~~ - "' ti. 
a•Mhl naistwt' . w,·relaffvely fWw In~. .· . . · ,. . ·· 

-, " :: .' -, . ,_,_ ,.~ . - ; : ... 

2. TIie OPLOC SeoUon 

In the OPLOC section of the machine description, tne AWJPs are ct.fined, in. t«• of. the possible locations 
of_ their operands and the corr~ locations .of ~ ,~ ~;;d!tfinltion consist• ,of, • l.t. of 
triples called OPLOCs; an OPLOC. specifies • pert,~,~ aM .i~l fAit . -,fl!9d locat10nl, ~,,..,end 
locations, and result locations. An OPLOC may alto' spikify tfNll1c ....... ~ ,eaisters ••. dobbe·.. red by 
the execution of the code for an abstract machine instruction. ttfi · . ., -· . ·. , code ..,.,. t,.:Jt iHY 
be necessary to emit instructions to save the contents-:Of *.,~llfl,,,riJiJflPters· bef~:,eMittiJll>the 
abstract machine instruction. The forms of an OPlOC are · - · · .· - . ':. · 

<locJxpr> , <IOC..Jtxpr> , <loc-,xpr> i 

and 

<loc_expr> , <loc_expr> , <loc:_expr> <clobber> ; 



<loc_expr>: 

<reaister Jtxpr>: 

<memory Jtxpr>: 

<r .. ister _.xpr> 
<memory _expr> 
1 
2 
<null> 

<register _expr> I <rqtster _expr> 
,., <r .. i,ter _expr> , 
( <resister _expr> ) 

. <r8Jitler ...pame> 
<realiter _da$_,name> 

<memory _expr> I <memory ..-xpr> 
,., <memory _.,rpr> 
( <memory .,Jtxpr> ) 
<memory Jef ...class.J\HMt> 
hA 
indirect 

The negation operator ,,.,, has precedente over the union operator T- The: location expr....,. •1 • and 
"2" may be used only for the location of a result; they specify that the reaJllt is plac:N in h first or 
sacond operand tocatton. r~; Om~ thtt ~•~ ~pa:~ for the ~ w,~ of. • unary 
AMOP·may be nun. Th&_.. . ......,. V ,__..,,lhl •- .a:,,~~.,r.a--- d-• lie 
location expression indiract'" represents the Mt of aU indirect ......ry ,.......,_, d....._ 

The OPLOCs are associated with Ma's in tocation cWWliDnl which conalSt of one. or _,. Nll)IIJ ...,. 
followed by one or more OPLOCs: 

<loc_def>: 
<AMOP Jist>: 

<AMOP Jabel>: 
<OPLOCJtst>: 

<Ah«>P _list> <OPLOCJist> 
<At.O" Jist> <A~_label> 
<AMOPJlbel> 
<AMOP>: 
<0Pt.0C.)lst> <OPLOC> 
<OPLOC> 

Each AMOP in the list of Ah«>P JabeJs is 11soci1ted with the list of OPt.OCs; each OPLOC In the list of 
OPLOCs represents an acceptable- sat of ope,w/result locations for Mch of the M/t1h. For .. ....,.., 
the location definition 

+d: -d: td: /d: f,M,f; 

used in the HIS-6000 machine dncrip.tion. spteifies that the AMlPa for ~-precisk,ln floatina-point 
addition, subtnctton, MQltiJ)ffcttinn, lftCf division IA t ... t~ ft1t ~~, ~ ~ F ,.t4tt, tbetr MCOnd 
c,perand in JMmory, and place tf'leir result m the F NJ&ilter. Ano1htr _...,. iJ. .the .locatfoft :et,fillition _ .. 

-<<: ->>: ti,\a,q; M,q,a; 

which specifies that the AMOPs left-shift-assignment and riaht-shift-auipment both take their first 
Operand in memory, their second· Operand in a pneral resister, and place hlr result in the other ...,...., 
realster. A third example Is the location definition · 

q,M.q(a]; 

which specifies that the AMOPs for integer multiplication and division both take their first operand in the 
Q reaist•r, their second o"rand in ,...mory, pl• thetr resul_t in the Q N1ister, end cfollber the content• 
of the A resister in t~ Pf'OCfl•• Note that the location definitions 
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+i: r,M,1; 

and 

+i: r,M,r; 
\ 

are not equivalent. The second ~finition al'°'" the.~ ..,...ior _ to emit an •tract machine 
instruction which adds an intepr in •mory to at1 ~~"1N~tt..,_,. -~ ttit1

tftsuft in ttw Q 
re1ister; the first definition requires ttlat the result be ptaced rn._,,,jbttr cOtN,i~ the first operand. 

• • r' . ~ 

> ,: ' .' :-; 

The OPLOC section of the machine description CGnlilts of'. 11 ...,._ iOf tocatton.4efinitione which define 
the Ar-.«:>Ps of the intermediate lquaae. (A small number of AM:JPs should not be defined in the OPL0C 
sectic:>n.,of \M.machiM_•:~tionJ:,._..ar•:i~ffll.lp,afsA«U.) ~~;M19P~,.,,._.-,..more 
than onceJn.\be OPLOC sectfen«lf:thll ......,.d,Nripta •·: • •. · · · '. . . 

!t ~~ .. ~~: ;· . . 

a. Tlie Kacro S•otl~ 

The macro iection of the machine description contains the -macro definitiant ·tor the AMOPs; these macro 
definitions •xpand into the object4quaae statement• ,_.,_.; int...., the c:orrespGnding ....,Kt 
machine instructions. A MICl'O definition consists of a litt of ll1JI////I JlbltlJ'....,_ed by a list of c~ter 
strina constants. The list of A~ labels specify that abttractlillchine fllMrudions for these AM()ll. iare 
to be emitted as macro calls which refer to this macro definition. The character strlnas mau up the body 
of thtt. m,ecrp ~ojtioflt. •-.•• w-fl'-' out m •---•* 1112 a • •·et 'it •••oe•ll · Maet'O -dll. 
The ~haf.:ter sfrinp_,. hM ... )_,tiollpwiNsr...__._, •,_111,dflt•••t.,~. of fhe 
oper .. and-res&.Jlta.1 c~•-•,w-• lft,_.....,,. .......... -.._ •• _..,_lM.of lh!J 
macro call only if the. Jest~ DY· the,Jocalbn, ~,~: ·'A 1.._.W,;ttrfna· ·,-y 'ebntain 
embedded macro calls and references to the ar~t• of U. NcrO call ltM Appendi,c VI, section . 4). 
The .,Q.~il,;Upn ... _, MQtMW1t••• .. •• .. J111111,·1~ ln;fltit'cortWa ·· 
code inuat-. pner.ated for ·an CONiMtioM ot~11•• 1111•:diflirr..._, ~ m. toe.trot, 
definition. . \:•!; .' ,·•~>,;:· 

The ~tcro definitiont can. refer to.-U. ND' ancl the •r•--•t '-111Mlty &alftl t,-· fotlowina 
abbr•viation.: ; 

abbreviation 

-0 
ttF 
•S 
•R 
•'O 
••F 
•9S 
••R 

e••••n 
~(.O) 
ln(-3,-4) 
Snitll6;W) 
ln<•l,•2) 
.0 
93,a4 
15,-6 
•1,•2 

........ 
symbolic repr-.nt.,, of;.,.._.ion 
symbolic representtlion of fJl'Jt operand_ -.,....~•••..,,~••·•rltld 
symbolic repreiefttetion of rNUlt 
internal represent.tion of oper.tion 
interNl\0.r.,,........,.._lflf:,:ft •~ · 
mterfllf r....,__. •• o,irtf'fd 
lftternal;N,,,....atelf~ ·· ::,,J •., 

"!'· . • ·~; >: f-:-t-,, ,. ) ':_., ·>·";..-' ':~ ' . ' 

Recall that in the intermediate lanauaa• ..,._~Oft' df. ',ttl ~t; triichirie. inslruction, the first 
ar1ument of the macro call is the M«>P. oPCode, and the followiftl .,.. ...... ••· REF• for the rffUlt. first 
operand, and second operand (see section 2.1.1.2).i The MICl'O •n• is the-. ilnplenanter-defined NAME 
macro which can return any convenient symbolic ri9presentation for an· operation or operand/result 
location; it is assumed to be implemented as a C routi~alled ANAME (SN_ Appendix VI, section 4). 

An example of a simple macro definition is the ·definit-ion for lntepr acidltion ~ in the HIS--6000 
machine description. The location definition is 

+i: r,M,1; 
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and the macro definition is 

+i: • AOaiR 

This location/macro definition of the AW/JP '+i' expands .to produce n1etnbl,y-t-.uaae, at•......t• euch • 

ADA 
ACX). 
ADA 
ADQ 

(fltemal variable· T) 
(m.,a& .. -a, 
(indirect throuah X2) 
<• automatic or temporary) 

A more comp~ated macro•Mttit.Gn is•. usecMor the, AwtJP 'Ji' (MOYe;intqer). This rnacro·dltfinition must 
be capable of 1enerattns code to move an intepr betiwNna,::JRlltf a.tlln ltllf:1. .... d',......, or • 
from one 1eneral reaisM to ttle.ottw. Thre c:tlarader ttdnpwittt localieff;...-..· ... _.. for. U. 
thrN cases reaister-t<, lftMGIY, MNIOry4o..,...,• anct:r1111a.r-te ra1i1Wf. . . 

. ii: 
(r"M): • ST• .rt" 
(M,,r)z • LO.· .r 
(rnr): • LLR 31• 

The location prefixes coASist. of locetion ftPl"9:S$iOnt: for tt. first oper• seconct opet ilftdt and mutt. 
The operand and· result loc11ltio•of· a: .,.tioulaf, Wt'O caM .,.. .........,,,. ..,. ,....,._ 9KPf'llllliM in· 
the locat«>n pt:ef:hc. (c:Gfflp---"wffl't;•,,,~ ........... Wli:■•-'tf'aw..,_'°._..,_ 
succeed, the cor-r~dw•ter •--• indullld ift!:ffill::...,.ion ~-c._ · 

The macro section of: the maehine, dNufptieff mav also define,· -,lidtty1 _... lllllffl>I;. tflna· may· be 
keyword macros (SN saetiott Zl,2h>r, ••••--r •H•• .....,_wMffl,.,. dllN itf>•~ of 
other macros. A named macro is defined by usina the name of the !MUG in place of an Nlt//J in· the 
label(s) precedin1 the ~ of the mac,o defintion. A sinpe macro definition may have bath AtllJP and 
macro name,labels; t~i.,....,_wtlilffitie·n1irn';,thaMhe•~ -,:\• IIWttact~••'lmtn,ctton 
itself contain another abstract fflllOhine instruction since the internal• ~ UIM. to refar to ffW' MllttO 

· definitions of AM0Ps ere .not ... .._, to U. writ« of ~he nNIChiM clHct'.iptton. Alt ....,.. of • 
kltyword macro.definition in tt.,,.HIS-6000 fMChine. ~•ht for ---,nact'O: .. . 

en: • SYMAEf tJ!i" 

The argument to the ENTRY macro i$ an .........,. •Yftlbol • produced by the IDN·mac:ro (SN A.,peridix 
III). 

The macro section of the machiM dn«iplion consists of the reserved word "~ros• followed by a 
sequence of macro definitiOflS. Macro definitions -..t be ,rottided for molt' of the AMOPs of the 
intermediate lan1uap (exception$. Mt;jMi,: •. \11,,..,..,_.u}:e,ld for aU. of U.lt.tl)wd WfOS ot,tt,e· 
intermediate tanauaa. w~ • not def.fned by C routines. An Mll'JP· or a lltlla'O .,.. May not be 
defined JnOr• •~.Qnee in the . .-,o,,...._ Qf._tht -- ........ 
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A.ppendlx II· The Intermediate wncu•M::1.61109• 
• .' • • ; • •• < 

The operations of the abstract machine are repr,esented in the inlerMdiat• lana~• as three-address 
~nstructionls the operators of these instructions, C~;I! ... ,...,,.-1' (~ q,~ril.,:t 
,n the tabln below. For each AWOP is listed its ~ ¥ od ·. · ill aylllbolic re,nsentation in the 
machine detcrlptton. the types of itt operandi and retwJ..-.♦;t..,lptton of the b•ic o..,.at~ 
involved. The type entry consists of 1 .list of types for -. .. ;~ NCOnd. oPCP (if aJtY>. and 
rnult of an AW/JP, in that order; the types are t1Mn f.r••ftlliawill tilt • tbbreviat .. : 

c character 
i intecer 
f flo1tina-point 
d double-precision flo1tina-point 
x any type 
p any pointer 
p0 class O pointer 
pl class 1 pointer 
p2 class 2 pointer 
p3 class 3 pointer 
I a location (the result of I jump) 

The followina notes are r~ferenced in the NI/JP tables: 

1 - This AtJOP should be defined only if the pr.~,..-, d ..... are df6ned. 
2 - The definition of this AMOP is optional. · .. ·. . . . · : .. · · . · . 
3 - OPL0Cs should not be specified for thk A)l)P. :: . ·' . • .. 
4 - This AtJOP is used only in the tr•_ ,_........... .._ .· . '.-. • .... ·.Y. _,;~~_._: tnterna1_ .... tc» the ~ 

aeneration phae: it lhould not . .,.,ffl•m·' .. ' ' )''iptfOft.,;· . .. ·.. ·. 
!5 - This AtlOP cws • side-effect ~••A~••, .. , _ . ..,,... --- MUii ta,,"" Iv"~ 

therefore, Ill 0PlOCe for thit M/IJP •. . . .. . ., ••· • ~- location ~ the (f!f•U 
operand. . . . .. . . · . . 
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... eyfflNI ty .... ..... ............. 
0000 -ui IJ unwyffliftUI 
0001 -ud d,d UMry minus 
0002 ++bi iJ 5 ,pre-iftcr-..nt 
0003 ++ai iJ 5 polt-incr-.nt 
0004 --bi iJ !5 pre--dlcr.-.nt 
0005 --ai iJ !5 post-decrMent 
0006 .SNOT i,i bitwise neaation 
0007 x.i 4 truth-value neption 
0012 .SW iJ switch 
0013 ++be cJ 5 pre-increNnt 
0014 ++ac cJ 5 post-increment 
0015 --be c,i ~ pre-dllcrtftllftt 
0016 --ac c,i 5 post-dllcrtftl8nt 
0017 &uO x.pO lddress of 
0020 &ul x.pl 1 address of 
0021 &u2 x.s,2 1 addrfls of 
0022 &u3 x.p3 1 ...... of 
0023 •u p,x 4 indir«tion 
0024 •-OpO pOJ 2 jump on null painter 
0025 •-Opl plJ 1,2 .iUfflPonnult~,, 
0026 --Op2 p2J 1,2 jump on .null JM)fffler 
0027 -c)p3 p3J 1.2 jlffllP.OnlfUII,.., 
0030 !-OpO pOJ 2 . JUfflP on~··~ 
0031 !-()pl 'PU !,2 JuMp1:1nnon-nuU·JIOinttr 
0032 !-Op2 p2,I 1,2 --~·--0033 !-Op3 p3,I 1,2 ju.p.on non....,U Point• 
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Convenion Abstract• Machine O,.,atora 

opcode symbol ty,- not" bllic oper"""' 
0040 .ci cJ convert c to i 
0041 .cf c,f convert c to f 
0042 .cd c,cl convert c to d 
0043 . .ic i,c convert i to c 
0044 .if i,f convert i to f 
0045 .id i,d convert i to d 
0046. .ipO i.pO convert i. to pO 
0047 .ipl i,pl 1 convert i to p 1 
0050 .ip2 i,p2 1 convert I to p2 
0051 .ip3 i,p3 1 convert i to p3 
0052 .fc f,c convert f to c 
0053 .fi f ,i convert f to i 
0054 .fd f,d convert f to d 
0055 .de d,c convert d to c 
0056 .di d,i convert d to I 
0057 .df d,f · convert d to f 
0060 .p0i pOJ convert p0 to i 
0061 .p0pl pO,pl 1 convert pO to p 1 
0062 .p0p2 p0,p2 1 convert pO to p2 
0063 .p0p3 p0,p3 1 convert pO to p3 
0064 .pli plJ 1 convert pl to I 
0065 .plpO pl,pO 1 convert pl to p0 
0066 .plp2 pl,p2 1 convert p 1 to p2 
0067 .plp3 pl,p3 1 convert pl to p3 
0070 .p21 p2J 1 convert p2 to i 
0071 .p2p0 p2,p0 1 convert p2 to pO 
0072 .p2pl p2,pl 1 convert p2 to pl . 
0073 .p2p3 p2,p3 1 convert p2 to p3 
0074 .p3i p3J 1 convert p3 to I 
0075 .p3p0 p3,p0 1 convert p3 to pO 
0076 .p3pl p3,pl 1 convert p3 to pl 
0077 .p3p2 p3,p2 1 convert p3 to p2 
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liftary Mmract MachiM o,,,_. 

opcode eytnbol ty,- -- bllic operation 

0100 +i i,i,i addition 
0101 •+i i,i,i 2.5 addition-assignment 
0102 +d d,d,d lddition 
0103 •+d d,d,d 21' addttion-nsianment 
0104 -i i,i,i subtraction 
0105 •-i i,i,i 2,5 subtraction-assipment 
0106 -d d.d.d subtraction 
0107 •-d d,d1d ,,5 subtraction ......... t 
0110 •i i,i,i multiplication 
0111 ... i i,i,i 2.5 multiptication-assi.-.nt 
0112 $Cl d.d,d muttiplication 
0113 -$Cl d,d,d 2,5 mutUplication-llSi.....,. 
0114 /i i,i,i- division 
0115 •/i i,i,i 2,5 divis,on-assianment 
0116 /d d,d,d division 
0117 •/d d,d.d 2,5 division-assignment 
0120 I i,i,i modvto 
0121 •I i,i,i 21' moduto-Hlianment 
0122 << i,i,i left-shift 
0123 e<< i,i,i 2.5 left-shitt-usianment 
0124 >> i,i,i riaht-shift 
0125 ->> i,i,i. 2,5 right-shift-assilftN"t • 
0126 & i,i,i bitwise AND 
0127 -& i,i,i 21' bitwise ANO-assiaftlMlltt 
0130 I\ i.i,i bitwise XOR 
0131 •I\ i,i,i 2.5 bitwise XOR-•siaftlNnt 
0132 .OR i,i,i bitwise OR 
0133 -oR i,i,i 2,5 bitwtSe OR-assignftlent 
0134 && x,x,i 4 truth-value At«> 
0135 .TVOR x,x,i 4 truth-vatue OR 
0136 -pOpO pO,pO,i pointer subtraction 
0137 - x,x,x 4 assi1nment 
0146 +p0 pO,i,pO increment pointer by 
0147 +pl pl,i,pl 1 tncrement pointer by 
0150 +p2 p2,i,p2 1 increment pointer by 
0151 +p3 p3,i,p3 1 increment pointer by 
0152 -po pO,i,p0 decrement pointer by 
0153 -pl pl,i,pl 1 decrement pointer by 
0154 -p2 p2,i,p2 · 1 decrement pointer by 
0155 -p3 p3,i.p3 1 decrement pointer by 
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Abstract Uachine Operators, continued 

opcode symbol types notes buic operation 

0160 .cc c,c 3 move character 
0161 .ii i,i 3 move integer 
0162 .ff f,f 3 move float 
0163 .dd d,d 3 move double 
0164 .p0p0 p0,p0 3 move pointer p0 
0165 .plpl pl,pl 1,3 move pointer pl 
0166 .p2p2 p2,p2 1,3 move pointer p2 
0167 .p3p3 p3,p3 1,3 move pointer p3 
0171 ? x,x,x 4 conditional 
0172 x,x,x 4 conditional 
0200 ••i i,i,I jump on equal 
0201 !•i i,i,I jump on not equal 
0202 <i i,i,I jump on less than 
0203 >i i,i,I jump on greater than 
0204 <•i i,i,I jump on less than or equal 
0205 >•i i,i,I jump on greater than or equal 
0206 ••d d,d,I 
0207 !-d d,d,I 
0210 <d d,d,I 
0211 >d d,d,I 
0212 <-d d,d,I 
0213 >-d d,d,I 
0214 ••p0 p0,p0,I 
0215 !•p0 p0,p0,I 
0216 <p0 p0,p0,I 
0217 >p0 p0,p0,I 
0220 <•p0 p0,p0,I 
0221 >•p0 p0,p0,I 
0222 ••pl pl,pl,I 1,2 
0223 !•pl pl,pl,I 1,2 
0224 <pl pl,pl,I 1,2 
0225 >pl pl,pl,I 1,2 
0226 <•pl pl,pl,I 1,2 
0227 >•pl pl,pl,I 1,2 
0230 ••p2 p2,p2,I 1,2 
0231 !•p2 p2,p2,I 1,2 
0232 <p2 p2,p2,I 1,2 
0233 >p2 p2,p2,I 1,2 
0234 <•p2 p2,p2,I 1,2 
0235 >•p2 p2,p2,I 1,2 
0236 ••p3 p3;p3,I 1,2 
0237 !•p3 p3,p3,I 1,2 
0240 <p3 p3,p3,I 1,2 
0241 >p3 p3,p3,I 1,2 
0242 <•p3 p3,p3,I 1,2 
0243 >•p3 p3,p3,I 1,2 
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Abstract Machine ()per.ton, contiftued 

opcode symbol types .... bllic operation 

0260 ++bpO pO,i.,pO 5 pre-increment by 
0261 ++apO pOJ,pO 5 pest-increment by 
0262 --bpO pO,i.pO 5- pre-decrement by 
0263 --apO pO,i.pO 5 post-decrement by 
0264 ++bpl pl,i.pl 1,5 pre-increment by 
0265 ++apl plJ,pl 1,5 post-increment by 
0266 --bpl pl,i,pl 1,5 pre-decrement by 
0267 --apl pl,i,pl 1,5 post-decrement b~ 
0270 ++bp2 p2,i,p2 1,5 pre-increment by 
0271 ++ap2 p2,l,p2 1,!5 post-increment by 
0272 --bp2 p2J,p2 1,!5 pre-dtcrement by 
0273 --ap2 p2J,p2 1,5 post-decrement by 
0274 ++bp3 p3,i,p3 1,5 pl'e-increment by 
0275 ++ap3 p3J,p3 1,5 post-increment by 
0276 --bp3 p3,i,p3 1,5 pre-dittr.-ntby 
0277 -ap3 p3J,p3 1,5 post--dlcrement by 
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Appendix III • The Intermediate Language: Keyword Maoroa 

The keyword macros of the intermediate language are described below in alphabetical order. Each 
section is headed by the name of a macro and its calling sequence; following is a description of the 
arguments and the intended function of the macro call. 

1. ADCONn: U.n<NAME> [n=0,1,2,8) 

This is a set of macros, one for each possible pointer class. NAME is an object-language symbol 
constructed from an identifier by the ION macro. The expansion of an ADCONn macro should define a 
pointer constant of pointer class "n" which points to the external variable or function with the given 
name. This macro is used in the initialization of static and external pointers and arrays of pointers. 

2. ALIGN: U.L<N> 

N is an integer specifying the CTYPE {an internal type specification) of an object for which the 
appropriate alignment of the location counter must be made. The relevant CTYPEs are: 

value ctype 

2 char 
3 int 
4 float 
5 double 
6-9 pointer 

The expansion of the macro call should be the pseudo-operations needed (if any) to properly align the 
location counter. This macro is used in the initiafization of static and external variables. 

a. CALL: '%CA <NARGS,ARGP,0,FBASE,FOFFSET) 

The CALL macro generates a function call. NARGS is an integer specifying the number of arguments to 
the function call; ARGP is an integer specifying the byte offset in the caller's stack frame of the 
arguments which have been so placed by previous instructions. FBASE and FOFFSET are integers which 
together make up a REF specifying the location of the function being callud (it may be indirect through a 
pointer in a register); these are passed as arguments 3 and 4 of the macro call so that they may be 
referenced as •F in the macro definition. 

4. CHAR: '%0 <I> 

The CHAR macro produces a definition of a character constant whose value is the integer I; it is used in 
the initialization of static and external characters and arrays of characters. When producing code for an 
assembler which does not have a byte location counter (for example, the HIS-6000 assembler GMAP), the 
characters produced by CHAR macro calls must be stored in a buffer until either enough are accumulated 
to fill a machine word or a macro call other than CHAR is issued; in this case, all macros which may follow 
a CHAR macro must first check to see if there are any characters in the buffer and if so, print the 
appropriate statement and clear the buffer. 

DOUBLE: iD<I> 

The DOUBLE macro produces a definition of a non-negative double-precision floating-point constant 
whose C source representation is stored in the internal compiler table CSTORE at an offset specified by 
the integer I (the compiler itself does not use any floating-point operations). This macro is used in the 
initialization of static and external double-precision floating-point variables and arrays. 
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a. BND: UlND<> 

The ENO macro marks the end of the intermediate l•r,c~ prQSraM. It .,..y.p~ M OOstel...t, if 
needed, or signal that any procestina usoc:iated with the end of the,p,OpeM lhluld INt ,.._Nd. 
7. ENTRY: IBN<NAIIB> 

NAME is an object lanauaae symbol constructitd from an identifier by the ION tMCro. The.expansion of 
the ENTRY macro should define the symbol as· an .entry point, that -. .OM which is ,lllfinld ,1" U. CUffllnl 
program but accnsible to other fWC)lrams. 

8. BPILOG: IBP <Ptl'NCNO,.l'BAIIBIIU > 
The EPILOG macro produces the epilog code for a C function. The epiloa c:odlt should rfl.toN the 
environment of the c:allina function and return to that function. In the HJS-aoo<> implementation, these 
actions are performed by a subroutine. FlAO«l and FRAMESIZ£ .,. ,.,.._, ... :.,.tfv ·U., inWnal 
function number of the function ad Ow size in twtu of it. ,1'->k ,,.,.., •••~.Clthiety. In •U. NIS-IQQG 
implementation, these int ... rs are used to dltfine an anembly-t....,.._. &yalbol whoN ¥alw is the size in 
words of the stack frame; this symbol is used by the code produced i.y ._ fllGI.OG _,. which ........ 
the stack frame. 

9. EQU: U:Q<N.A.IIB> 

NAME is an object language symbol constructed from an identifier by the ION macre; iHs to be deflMd as 
having a value equal to the current v.alue of the location counter. 

10. BXTBN: 11:X <IIA.KB > 

The EXTRN macro is similar to the ENTRY macro except that it defines the · syint,c,I · to be an ext.rnal 
ref ere nee, that is, one which is uted in the curr1nt ·Pf'Olf,liM W ••u•d to ie ,cllfinld in -..lheT' 
pro1ram. 

11. FLOAT: 

The FLOAT macro proc:IUCM a definition of a non-nqative singht-precitfon floatinc-point . COMtenl; the 
.argument has the same interpretation as that of the DOUBLE -.cro. 

12. GOTO: '1GO <O ,BASB,OPPSBT > 
The GOTO macro produces an unconditional jump to a location denoted in the source prqram by a label 
constant or e,xpress«>Jt. BA$E M1d.QFFSET .tc,aether make u,.• REF whidt.apecif.- tt.,tarpt ,Jeclltioriof 
the jump; these are passed ... ai"I~• 1 and 2 of the __...ceJho that they ,1H)•• ••-•••· • . .rf 
in the macro definition. 

18. BEA.D: '111D<> 

The HEAD macro marks the beainnina of the intermediate lanauap Pl'-0&~ It may ·p,11duce header 
statements, if needed, or si&nal that any initialization proc8Hffll should be performed. 

14. IDN: U<X> 

The ION macro should expand to the object lanauap repretentation of the identifier whoM C source 
representation is stored in the internal compiler table CSTORE at -" offset specified Jay the •"'-' X. 
The processing performed by this t,NCro may include .the trurQlion of .,.,.......,. the •--nt .of .the 
underline c:harac:ter (which is allowed in C identifiers), and the insertion of spedal charac:tetu) to avoid 
conflicts between, C identif iets and other object lquaae symbols. 
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115. INT: IIN<I> 

The INT macro produces • definition· of an int .. er constant whose vllue ii ~ified by the int91e,r J.. It 
is UIH•in the initializ1tton ot .W.-.ct .....,_. • .,....., • .,..: .. ;JJI • ~ion oft .. .for · 
the I.SWITCH maet0. ·: • , 

The LABCON macro 1ener1tn an addrNJ conattnt whose value ii tlW•-..••·--respe,ndine:~to tnternat· 
label number N. The LABCON macro is used to construct thi · tlblet for the I.SWITCH and T$WITCH 
macros. · · ·' · · · · 

17. LABDBP: IL<N> 

The LABDEF macro defines the location of internal label nUfflber N. 

18. . LN: iLN <N > 
The LN macro associates the line in the source proar• whose HM number I• specified by the int•r N 
with the current value of the location counter. Thil tMCrO May o,tionllty•.·~ a ~tJ"11,ift the, 
object proaram to aid in the readina of the object proaram, or it may deW'l'h-number •YMbOI to be 
used In conjunction with • clebugina system. 

19. LSWITOB: ILS(N,LBMIB~. . . . ■.IOJPIIIIIT> 

The LSWITCH macro should ..,_. code which; juMps It/mil di~· te~ Hit ·wlue of the lftteitrr wtloM 
location is given by IBASE and IOFFSET (selected from tht locattoM penllitted·by the OPI.OC for ,.,. ••~ 
oper.t~). ThiatUUOil i~f-...by,tt._.,~_,1...,_M · · •,~~.,_~_,t,fy 
followed b)t N lAB00N macros «.eorr~'-•111. A__.~=·•J...-tthe c ... ffst; 
if a 11\ttch ;. found, ·• jump lhOuld, t. fllildaiie the .. ...,·••·•• aattt"•• Nlifil lAtl9(lf tMCrd. 'If 
the _...r fflllches ftOM « U.:ild _,.., thM·a jun1p,.ttlllut4lt.,..,•;1ttlf~liWl diiflNd by 
LBASE and LOFFSET. .. . . . .. •· . -. . . . 

ao. NDOUBLB: IND(I) 

The NOOUBL£ macro is the s11118 • the DOLB..E. Ntro -,cctpt. that tM ..,.,. of the defined constant is 
made negative. · •· · 

21. NPLOAT: iNF<I> 

The NFLOA T macro is the same as the FLOAT macro except that the value of the •fined constant is made 
negative. 

aa. PBOLOG: IP(l'UNONO,PUNONAIIB) 

The PROLOG macro produces the protoa code for • C function.· F\H':NAME ·1s 1n inteaer representinc the 
name of the function as it appears in the source program; its interpretatk>n is the saMe as that of the 
argument of the ION macro. FU\O() is an intqer which speciflet the internal function number of the 
function; it may be used in conjunction wtth the EPILOG macro to '""9 the aize of the ·function•• stack 
frame. The PROLOG macro should define the entry point name and pr-..ce the code necessary to save 
the environment of the c1llina function and to set up the enviromient of the called function osins the 
information provided in the function UII. In the MIS-6000 impltlllefttation, ihlM actions ere performed by 
• subroutine. The PROLOG macro call appears in the intermediate lanauaae proaram lfflffllldiately before 
the first instruction of the correspondina function. 
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23. RETURN: IBT < > 
The RETURN macro produce• ,tM stlhtments needed to return fNM a fwldllft to the atlftl fMtftm; 1ft 
1eneral, this macro witl r81ult in a trtn1f1tr to tt. EPILOG COCfl. Thi~ valul ot✓• fuM:tkM ii 
loaded by precedina m1c:ro calls Into ttw ~• rtpw •.,... lff N ~. ••••'ti of 
the machine description. · ·· ·· · · · · 

The STATIC macro defines the location of the st•tic v,rieble whose int.,nal static v.-iable number is N. S · 
is the size of the static variabt. in •ytes. Typically, this Mcro wffl dtfmrt If'\ .... mbly ,...,_ symbot . 
by which the static variable can bit referenced. · · 

215. STBCON: 18C<R> 

The STRCON macro should pnw,te • c:htracter pointer which. point• to ttw ttrffif, COMIIM •hose 
· i11ternal strlna number Is N. The STRCON t'itacro it UNd in h hlftializltlon .Of atatte lflCI •wt•rMI 
variables. · "' 

28. STBlNG:. s.11&<> 
The STRING macro marks the place in the object proaram where the strtna cotistants should btt ct.firied. 
This macro is impltJmtnUd aa.Cmc;tm,mwtto~ ~-~• fhvoWMt 

97. TSWITCB: 1Ta<LO.,LIIM•tLO•nn,1a&1a,ao.....-•• ) 
The TSWITCH macro pr.oduces an ~xff j,-p blMd Off the Y11ue of ttwt ilalll1' ...,_. tDlitk;ft ._ IMN\ 
by IBASE and IOFFSET <s•~ f,- the ~ .peNliltacl !¥h (lllhQe,tor the .-t .. dtm). 1"8 
macro Is im~ly ~.,~ a ..,...of ~lJ ...... .-r_,. ... .,_. ..,,..,._. t..-, 
~orr.espondifta to_mtepr v.- from M),,to:HL v.iu-· ••"'-•..._ ... --• INUI~•• •• 
internal label defined by Lll\SE and LOFFSET. ,. -

:18. ZBRO: IZ<I> 

The z~ macro ~iet the:.delinition of • block of storap iftiti.._ to_,. the .._ It l,yt.' of this · 
storaae area.is spec:ifitcfby the intepr L · r· 
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Appendix IV - The BIS-8000 llaohln• .. Daarlptloa 

The machine description used in the HIS-6000 lmpleffllfttation Is listed Wlow.' Much of Its complexity is • 
direct result of the fact that the 'HIS-6000 ;, not byt..._.Niad. In the ffllCf'O definltton., the dwtracter 
sequence '\n' represent, lt• newline chlracter. 

·_, J 

typenames (char Jnt,flo1t~~ 
reanames (x0,xl,x2,x3,x4.a,q.f)J · 

~\ 

memnames (rea,autO#Xt~tat,pa,am.iabel,mtlit,flo1tlit,1trinalit,ix()Jx1Jx2,hc3Jfr4,faJCI); 
size 1{char),4(int,float),8(double); · ' · 
alian 1 (char ),4(int,float ),8(double); 
class x(x0,x1,x2,x3,x4), r(-,q); 
conflict (a,f),(q,f); 
saveareasize 16; 
pointer pO(l), p1(4); · 
returnrea q(int,pO,p 1),f(clouble); 
type char(r )Jnt(r ),f loat(f),double(f),pO(r ),p 1 (x); 

.sw: 
+pO: -pO: +i:-i:&:I\: .OR: -pOpO: «: »: 
+pl:' 
-pl: 

•i: /i: 
+d: -d: $Cl: /d: 

&u: 

.Bf\OT: .ic: .ci: 
. - -ui: --bi: 

.cf: .cd: -.if: .id: 

.fc: .de: .fi: .di: 

.fd: 

.df: -ud: 

.ipO: .pOi: 

.ipl: .pOpl: 

.pli: .plpO: 

++bi: 
++al: --ai: ++be: ++ac: 
--be: --ac: 

++bp: --bp: 
++ap: --ap: 

•-0: !-0: <O: >O: <-0: >-0: 
••p: !ap: <p: >p: <-p: >-p: 

a.,l[x4]i 
r.M,1; 
~; 
x.q,1; 
M,r,1; 
-~,) 

t.M,f; 
q,M,a[q]; 
M,a.qa-·~ 
M.,x; .. 

autolextlstatlstrfnllit li•Jicw• 
r,.1; 
M.,r; 
l,.f; 
f.,q; 
M,,f; 
f .,1; 
r.,1; 
M,,r; 
r.,x; 
M,,x; 
x,.r; 
M.,r; 
M.,1; 

M.,a[q]i 
M.,q(a) . 
M,M,rfx; 
M,M,a[q) 
M,M,q[a) 
M.M,x; 
rlf,,r; 
rlx,M,M; 



macros 

.sw:. 

.ci: 

.cc: 
(auto"):• 
(stat.,): • 
(ia,.q): • 

TSX5 

EA-.R 
EA.-R 
STA 
LOO 
STQ 
LOA 

(autolstatPndirect,,): 
"'lif(SO< •'F), Ao.tl 
. TSX!i 

(extlstrinallt,,): 
• LO.R _, 

.-RRL 21· 
Crnr):. EA-.R o,.n. 

•RRL 11• 
Cr n8Utolstatlindtrect)strinalit): . 
• EA>C5 O,-Fl \tt• 
(r ,,auto): • EAaF 0;1\n• 
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(r.,stat): • EA.-F .STAT\n• 
(r,.autolstat): "lif(lo(•'R), AC,,, Ice(~ 

TSX4 • .,-roe- . 
(r .,strinalit>: • EAd' • 

TSX4 • .-roe• 
(r,,ext): • -rLS 21 

sr.r • 
-rRL 2r 

(q,,ia): 
"'lif(SO<•'R), ADA 1co( e'R}\ft,) 

TSX4 .Aroc· 
(a,,iq): 
91if(lo( •'R), ADO leo<•'R)\n,) 

TSX4 .oroc· 
.ii: 
(r,,M): • STaF 9R" 
(M,,r): • Lo.R ,r 
(r"r): • LLR 36• 

.ff: 
(f,,M): • FSTR ~ 
(M.,f): • FLO tr. 

.dd: 
(f,,M): • DFST --(M.,f): • OFLO .r 
.pOpO: 
(rnr): • LLR 3&• 
(r,.M): • ST_, eff' 
(M.,r):. LDttR .,. 



-53-

.plpl: 
<xnx): • EAttR. o,.a· 
(x,,M): • STZ •R 

sr.r: 9R· 
(M,.x):. LD-.R •F• 
(x,.q): • EAQ o,.a· 
(q,.x):. EAttR 0/1.1' 
(h,\,q): • LOQ .. 
(q,,M):. STQ 9R" 

.pOpl: 
(r"x): • EAttR o,.nr 
(M,.x):. LD.R .. 
.plpO: 
(xnr): • EAtaR o,.a· 
(M,,r):. LO.R .. 
.le: • AN• -0077,DL. 

.ipO: 
(M,,r): • LD-8 
(r nr): "\\" 

.ipl: 
(r ,.x): • EAtaR o,.nr 
.pOi: 
(M,,r): • LDtaR 
(r ,,r): "\ \ .. 
• pli: 
(xnr):" EAtaR o,.a· 
.fd: • · FLO •F" 

• df: .. ,, . 
.cf: .cd: .if: .id: • LOQ O,DL 

LOE "'35825,DU 
FNC>■ 

.fi: .di: • UFA •71825.DU" 

.fc: .de:• UFA •71825,DU 
ANQ. -0077,DL· 

+i:. AD•R •S• 
-i: • SB•R •S• 
•i:. MPV •s· 
/i: I: " DIV •s· 
+d:. OFAO •s· 
-d: • OFSB •s· 
$Cl: • OFMP •S• 
/d: • OFOV •s· 
•+i:. AS•S 9R" 
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>>: 
(JntlitJ: • eFRS IGC•'Sl• 
(.-intlitJ:. UCL5 -s .,_. 

0~ 

C<: 
(Jntlit,): • · eFlS 1o<•'S) .. 
(.-intlit,): • LXL5 .s 

9FLS 01,· 

->>:. Lo.R f,f 

eARS 0.•Sl 
STeR .,. 

-<<:. LD•R ., 
ttRlS O,.st 
STeR .,. 

+pO:· eFRS 16 
~ -s 
t,FLS 1,· 

pO•· .. . -.FRS ·. 16 
SBe.F •S 
_-LS 1&· 

+pl:• LXL•l •S 
ACLttR .,. 

-pl:• QLS 18 
STQ .TEMP 
SSL-, .Tar 

~ui: • LCeR .r 
--bi: • LDeR eF 

S8eR •1,Dl 
ST•R .,. 

-ud:. FNEG" 

++bi:• AOS eF" 

++ai: • LDeR eF 
AOS eF" .. --••= LOA 9F. 
LDQ eF\n. 

C,..): • S8Q •1.DL 
STQ .,. 

(.,q): • SBA •l.Dl 
STA .,. 
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++bp: 
(.,x): • LD•R •F 

EA•R lo(•'S)/4,•1 
ST#R aF" 

(,.r): • LO#R ttF 
AOL#R ko(•'S) 
ST#R aF" 

--bp: 
(.,x): • LD#R .aF 

EA•R -lo(•'S)/4,•1 
ST•R ttF· 

(,.r): • LD#R . ttF 
SBL•R ko(•'S) 
ST#R aF" 

++ap: 
(.,x): • LD#R •F 

EAX5 lo(•'S)/4,•1 
STX5 aF" 

("alq): • LOA ttF 
LOO •F\n• 

<ne>: • ADLQ ko(•'S) 
STQ •F9 

(,,q): •. All.A ko(•'S) 
STA •F9 

--ap: 
("x): • LD•R •F 

EAX5 -lo(•'S)/4,•1 
STX5 •F9 

("alq): • LOA •F 
LOO ttf'\n• 

("a):• SBLO 'ko(•'S) 
STQ aF" 

(,,q): • SBLA ko(•'S) 
STA aF" 

.BNOT: • ER•F --1· 

&u: 
(ialiq,.r): 
'°"'if(%o(•'F), ADL•F ko(•'F)\n,)\\• 
(ia,,q): • LLR 36. 
(iq"a): • LLR 36. 
(autolstatnr): • EA•R ln(-3,0) 
1if(%o(•'F), ADL-R 'ko( •'F)\n,)\\. 
(extlstringlit,.r): • EA•R aF" 
(.,x): • EA•R ttF· 

&:• AN•F •S• 
-&: • ANS•S •F9 
/\:· ER•F •S• 
•I\:. ERS•S aF" 
OR·• . . ORttF •S• 
-oR:. ORS•S aF" 
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••p:• ~ ·-S 
TZE -"" 

lap:• CMP9F .s 
TNZ eR" 

ICp:• Chf)~ .s 
TZE •+2 
TNC .. 

>p:. ·CMP.r . .s 
TZE .. 2 
TRC ·fiff' 

<•p:• CMP.t=' •S 
TZE -.R 
nc .. 

>•p:• CMP9f .s 
TRC ... 

jc: 
(.,f): • OFCMP -000\n. 
(.,r): • CMP~ o,1)1..\n• 

"lajc(.o_cr 

,.,Opo:• SSL4tf .s 
.r:Rl 1,· 

hd: •1 GMAP" 

jmp: • TRA .o· 
0: ·-1· 
en:• SYMOEF .o· 

ex:" SYMREF .o· 
st: .. SYMREF .PROLG,.EPJLQ.. TEMP.,SWTCH 

SYMREF .cTOA,.CTOQ,.ATOC,.QFOC 
.STAT EQU •• 
p: "lidn( • 1) EQU • TSXO .MOLG 

ZERO .Fs.o• 

co: ••V20/•l,16/0• 

c,:. TSXl 9F. 
ZERO •1/4,flO. 

rt:• TRA .EPILG" 

ep:• TRA .EPILG 
.FS.O EQU •1/4"' 

10: • TRA «" 



-57 -

cpq: 
(auto,,): • EAQ O,7\n• 
(stat,,): • EAQ .STAT\n• 
(ia,,): • LLR 3&\n· 
(autojatatllndirec:t..): 
"lif(ic»( ~'F), A0Q ko(•'F)\n,)\ \. 

++be: 
(autolstatlindirect,,): 
"'kpq(0,0,0,•'F) 

STQ .TEMP -~ 
LDA .TEMP 
TSX5 .CTOA 
ADA 1,Dl 
ANA --037711 
EAX5. O,AL 

(ext,.J:• 
rsx~t .• QTOC-.LRA••·• ., 
ADA -01000,CU 
STA tr 

--be: 
(autolstatlindirect,.): 
"'kpq(0,0,0,•'F) 

STQ .TEMP 
LOA .TEMP 
TSX5 .CTOA 
SBA l,Dl 
ANA -0377P.. 
EAX5 O,AL 
TSX4 .Qroc· 

(ext,,):• LDA fiF 
SBA -01000,0U 
STA tr 

++ac: 
(auto 1st at !indirect,,): 
"'kpq(0,0,0,•'F) 

STQ .TEMP 
LOA .TE~ 
TSX5 .CTOA 
EAX5 1,AL 
TSX4 .QTOC-

(ext,,): • LOA fiF 
LOQ fiF 
AOQ -01000,DU 
STQ tr 
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A.ppendlx V • The B18◄000 0 Boutin• 11•.-o Deflnltlons 

The C routine macro definitions used in the HIS-6000 implementation are tist-4 on ttie follewinl p.,,,! A 
C routine macro definition is written as a C function returnina a character strina value. This ffl.,acter 
string is •substituted• for the macro call and rescanned by the macro expander; thus, it may 'contain 
references to its ara~ments and embedded macro c.U.. ,,:n. ..,...,.,........,_,.._ ,c, ""'""9·,•• ARGC 
and ARGV: ARGC is an Integer specifyina the numbtr,,.,.__,...,.._!.,...._.,t, present in the 
associated macro call; ARfltl Is an array of pointers to those arlU'Mflts. 

When the followin1 routines were written, the formatted print routine PRINT was capable of producina 
output only onto a file and not into I strina in core; thus, wt.re forlNtt~ is necessary, t"8N routines 
print their output directly and return the null strina- Althouah there •• ....,.. inherenUn fhia ""actice, 
in these cases the effect is the same as if the formatted strina were returned and printed nortnally. The 
character sequences '\r, '\n', and '\ \' represent tab, newUne, lftd becktfNh, rnpectfvely. 



char •fn[] 
{•in•, •c•, "f ","nf", "d", •nc:r-,•11•:ajc", 
•ad•,■z•,•;•tsr•:n•:n•,-.•,,,,.•. 
-C,ther•,'"if"}; 
char (..,f{])() . 
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{aint,-ctw,at,lo,t....,,.....kta,...__.,.jc. 
w:k:oR,az..-0.11.._..,.., .......... 
other,aifh 

int nfn 18, 
lineno O, 
mfla& 0, 
packb{4]. 
packno; 

char •aln(ar1c.ar1v) int qc; cher ..,.,vD 
{lineno•atoi(ar1v[0]); 
packf(); 
return(".N.O • EQU •"h 
} 

char •aequ(ar1c,ar1v) int qc; .dw ..,,v() 

{packf(); 
return("-<E:QU •"); 
} 

char •aint(ar1c,ergv) int ar1c; char ..,..v[j 

{packf(); 
return("\tOEC\t.O"); 
} . 

char •achar(ar1c,ar1v) int ar1c; ch,r •av{) 

{if (argc>O) packc(atoi(arav{OJ); 
return("\\"); I• CCM'leeaf followtftl newline •I 
} 

char •afloat(arac,argv) mt arac; chtr tarev(]i 

{packf(); 
if (ar1c>O) print("\tDEC\tlm" .aloi(ar.M0])); 
return(-); 
} 

char qdpubte(ar1c,er1v) int qc; cher *MIYO 

{ 

packf(); 
if (arac>O) 

Nturn(""); 

{print("\tDEC\t"); 
return(adbk(etoi(ar&Y[O]))); 
} 



} 

char ••ne1f(ar1c,ar1v) int ar1CJ char *lrlYD 

{packf(); 
if (ar1c>O) print(•\tDEC\t-1m•,atoi(ar1v[O)}); 
return(-►, 
} 

char *■ne1d(ar1c,ar1v) int ar1q char *lrlYD 

{ 

packf(); 
if (arac>O) 

{print("\tDEC\t-•); 
return(adbfc(atoi(arsv[O]))); 
} 

return('!"'); 
} 

char •astrin1(ar1c,ar1v) int ar1q char •arcv[) 

{auto int i,f Jc,c; 
auto char *Cp; 

lc-0; /• location counter in STRING file •/ . 
f-xopen(pname,fn_strina,MREAD,SINARV); 

while(!) 
{packf(); 
c-c:aetc(f); 
if(ceof(f)) break; 
print(•.s1ct\tEQU\t•\n•Jc); 
le++; 

. while(!) 

} 
cclose(f); 
return(•\\•>; 
} 

{if (c••'I') 
{c-c:ptc(f); 
le++; 

else 

if (c••'O') c•'\O'; 
packc(c); 
} 

(packc(c); 
if (!c) break; 
} 

c-c:getc(f); 
le++; 
} 

char •und(ar1c,ar1v) int ar1c; char *■r1v[]; 
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{packf(); 
return(•\tENO•); 
} 

char •re1names[] rxo·,-x1 ·,-x2•,-x3•,-x4•:A•,v,-h . 

char ••name(argc,ar1v) int arac; char wlY[l 

{auto int base.offset; 

i-f (argc> 1) offset•atoi(argv[l ]); ..tse offset-0; 
if (argc>O) base•atoi(arav[O]); elu base-0; 
if (mfla1) cprint(•ANAME(1d,1q)\n•,bau.Gfftet); 
if (base>-0) return(reanamn{bale]); 
base • -base; 
if (base >• c_indirect) 

{print("ld,1d• ,off set/4,base-c_indlrect); 
goto check; · 
} 

else switch(base) { 

case c_auto: 
print("'ld,7" ,offset/ 4); 
aoto check, 

case c_ttxtdef: 
return(~(•l>■); 

case c_static: 
print(•.sr AT +Id" pffset/4); 
goto check; · 

case c_param: 
print("ld,6",offset/4); 
aoto check; 

case c_Jabel: 
print(".Lld•,otfset); 
break; 

case c,Jnte1er: 
if (offset<O II offset>32000) print(•iald" ,offset); 
else print("'ld,DL" ,offset); 
break; 

case cJloat: 
print(••k",adbtc(offset)); 
break; 

case c_strin1: 

return(~); 
check: 

print(• .Sld",of fset); 
break; 
'} 

if (offset'14) error(6025Jmeno)I 
return(-); 
} 

AALIGN - alian location counter 



•I 

char •aalisn(ar1c,ar1v) int ar1c; char .. r1v[) 

{ 

switch(atoi(argv[O])) { 
case ct_double: 

packf(); 
return('"\tEVEN'"); 
} 

return(.\\•); 
} 
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, ..................................................... , ....... , ....•.... 

A~ - emit conditional jump 

•I 

char •ajc{argc,ar1v) int argc; char ••rgv[) 

{auto int cond; 

cond•atoi(ar1v[O]); 

switch(cond) { 

return('"\tTZE\t•l •>; 
returnC'"\tTNZ\t•l "); 
return('"\tTMI\t•l "); 

case ccJqO: 
case cc_neO: 
case cc_ltO: 
case cc...aeO: 
case cc..atO: 
case cc_leO: 

return('"\tTPL \t•l •>; . 
· return('"\tTZE\tu2\n\tTPL \t•l "); 
return('"\tTZE\t•l\n\tTMI\t•l "); 

} 
return(-►, 
} 

char .ather(argc,argv) int ar1c; char •ar1v[) 

{switch(atoi(argv[O])) { 
case 5: return("Q"); 
case 6: return<•A"); 

} 
return("BAD•); 
} 

char •1if{ar1c,ar1v) int arac; char "riv[) 

{return(atoi(argv[O])?"•l ":"•2"); 
} 

PACK CHARACTERS INTO WORDS 

packc(i) int i; 

•I 



{ 

} 

p.ackf() 

{ 

while(packno!-0) packc(O)J 
} 

char •aadcon<arac,arav) int .ara,q dw ..,.v() 

{packf(); 
return("\tZERO\t.O•); 
} 

char •azero(ar1c,ar1v) int artc; dw -.vO 

{auto int i.j; 

if (ar1c>O) 
{i•atoi(arcv[O]); 
while(pac:kno U i) {JMIClr.c{0);--;} 
j - i/4; i al 4; 
if (j>O) print<"\UISS\tld\n. J>J 
while<i-)packc(O)J. 
} 

r•turn("\\->; 
} 

char *8idn(ar1c,ar1v) int w1c; char ..,,vO 
{auto char *Cpl ,$Cp2J 
static char n[7}; 
auto int i,c; 

if, (arac>O) 
{cpl • ac,tore[.toi<arsv[O])) 
cp2 • n; • 
for(i-c>;i<&Ji++) 

{c • tcpl++s 
. if (C - '_,.9) C • '.f} 
*Cp2++ .. c; 

*Cp2•'\0'; 
return(n); 
} 

return<->, 

} 
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} 

adblc(i) 

{auto char *CP1,*cp2; 
static char buf[30]; 
auto int c,flag; 

flag•FALSE; 
cpl • &cstore[i); 
cp2 • &buf[O]; 

while(c • *tpl++) 
{if (c •• 'E') 

{flag•TRUE; 

if {!flag} 

C - 'O"; 
} 

if (cp2 < &buf[27]) 
*tp2++ • c; 

} 

{*tp2++ • 'D'; 
*tp2++ • 'O'; 
} 

*tp2++ • '\O'; 
return(&buf[O]); 
} 
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Appendix VI - Overall Deaorlptlon of the Ccmipller 

The compiler consists of four major phases. First, the lexical analysis phase (Cl) transfonM the source 
program Into a strin1 of lexical tokens such as identifiers, constants, and operators. SecOftd, the syfttacttc 
analysis phase (C2) parses the token strinc and produces a tree repr ... ntatlon of each function 
(procedure) defined in the source proaram. Third, the code aeneration phase (C3) transforms the trees 
produced by the syntactic analysis phase into an intermediate lquap- proaram consistina of a ...-~ 
of macro calls representin& instructions of the partkular abstract~machine defined by the if ... meflter. 
Finally, the macro expansion phase (C4) expands the macro calls, producffll an object llnlutp J)l'Otram 
as the output of the compiler. ln addition, there is an error mess .. • editor (CS) which Is Invoked rnt in 
order to format -any error messages produced by the other phases. The phetes of the COMPiltfr Ire 
invoked in sequence by the control proarem (CC). The control proaram communicates with h various 
phases by passing as ar1uments to an invoked phase a set of character str• ,_. ... ntina file names 
and an option listi the invoked· phase returns a COfflPl4,tion code which indlcatei .._her or not any 
serious or fatal errors occurred durina the execution of that phase. The veriow phelet communicate 
with each other using intermedi~t• files. 

The lexical and syntax analysis phases may be run sequentially as described above, or, where I system's 
program size restrictions r,ermit, may be combined into a sinafe phase, .thus eliminatffll the use of an 
intermediate file. This option is implemented throuah the UN of COMpi~tiM c:onditiOMtt. Thi ,.,.......,. 
of this chapter will assume that the two phases are eeperate. 

1. The Lexlaal .A.nal7als Ph&N 

The lexical analyzer reads in the source proaram and breaks it into a strina of tokens such as identifiers, 
constants, and operators. The lexical analyzer also interprets compile-time control lines which aUow one 
to include source from other fites and to define manifest constants. The lexical analyzer produces out.put 
onto three intermediate files: the TOKEN file, which contains the strina of tOkens, the CSTOAE fHe, which 
contains the source representations of identifiers and ffoatina-point const1nts,.ind the STRING fite, which 
contains character strina constants. The TOKEN file is passed to the syntax analysis phase; the CSTORE 
and STRING files are not used until macro expansion. · 1n addition, the lexical analyzer may write error 
messa1es in an internal form onto the ERROR file. A token is represented by a pair of integers called the 
TYPE and the INDEX of the token. The syntax analyzer performs its analysis on the basis of the token 
TYPE; thus most operators have a distinct TYPE, and there are separate TYPEs for identifiers, inteaer 
constants, floating-point cOMtants, and character string constants. The INDEX is used to distinauish 
particular identifiers or constants; for example, the IN>EX of an identifier is the index of the source 
representation of the identifier in the array of charact•rs written onto the CSTORE file. 

The main routine of the lexical • analyzer consists of a loop which calls a routine GETTOI( to return the 
next token in the input . stream and then writes the token onto the TOKEN file. This loop also contains 
code to interpret compile-time control lines. GETTOK Obtains input characters from a routine LEXGET 
which contains the toaic to switch the input between the primary source file and "inctuded• files. Except 
when processin1 character strina constants, GETTOK translates the input characters Ulina a translation 
t.able. On GCOS, this transJation maps lower case into upper case, tabs into blanks, and carri• returns 
into newlines. This table. would be chans.-d when movi"J the compiler te> a· system usina other thin the 
ASCII character set. GETTOI< partitions the character set into the followina character c1 ..... : 
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1. letters 
2. digits 
3. apostrophe (') 
4. quotation mark (") 
5. newline 
6. blank 
7. period (.) 
8. the escape character (\) 
9. invalid characters 
10. characters which are unambiguously single­

character operators (such as '{') 
11. characters which may begin a multi-character 

operator (such as '<' which may begin '<•') 

GETTOK uses the character class of the current input character to determine its actions in analyzing the 
input string. 

2. The Syntax Analysis Phase 

The syntax analyzer accepts as input the token string generated by the lexical analyzer and produces 
output onto three intermediate files for the code generation phase: a tree representation of each function 
defined in the source program is written onto the NODE file; a symbol table containing declarative 
information about identifiers is written onto the SYMTAB file; and information regarding specified initial 
values of variables is written onto the INIT file. 

The main routine of the syntax analysis phase is a table-driven LALR(l)·parser. The tables are generated 
by a parser-generator YACC, written by S. C. Johnson [18l The input to YACC is a BNF-like description 
of the syntax of C, augmented by action routines which are to be invoked by the parser when particular 
reductions are made. YACC analyzes the grammar and' produces a set of tables written in C which are 
then compiled into the syntax analysis phase. 

The tables produced by YACC represent instructions to the parser to test the TYPE of the current input 
token, to shift the current input token onto the staclr., to perform a reduction and call an action routine, or 
to report a syntax error. When a syntax error is discovered, the parser wri.tes error messages onto the 
ERROR file which give the current state of the parse. It then attempts to recover from the error so that 
any additional syntax errors in the program can meaningfully be reported. The parser attempts a 
recovery by popping states from the stack and/or skipping input tokens in various combinations. A 
recovery attempt is considered successful if the next five input tokens are shifted without detecting a 
new syntax error. If a recovery attempt is successful, error messages are written which describe the 
recovery actions taken and parsing is continued. If a successful recovery cannot be made within a limited 
region of the input program, the parser ceases execution after writing an error message. 

The following C program illustrates the compiler's response to a syntax error, in this case unmatched 
parentheses: 

int c; 
int f(file) 
{if ((c-getc(file) !• 0) return(-1); 
return(0); 
} 

The first error message, listed below, gives the state of the parse when the syntax error was discovered, 
followed by a cursor symbol •_•, followed by the next five input tokens. The next error message indicates 
that the parser was able to recover from the error by skipping the next two input tokens. The resulting 
program, although syntactically correct, is meaningless. Therefore, in order to avoid extraneous error 
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messages, the code generation phase and the macro expansion phase are not. executed .after syntax 
errors have been detected. 

3: SYNTAX ERROR PARSE SO FAR: <ext..def_list> <function_dcl> 
<blockJ,ead> IF ( <e> _ RETUIN ( - 1 ) 
3: SKIPPED: RETURN ( 

The following progran, also contains a syntax error due to unmatched parent._l howeYer, since there 
are no more riaht parentheses in tht stat4tment followtJII. t11ie "9int wn,,•. the . .,,., is ._ted, the 
parser recovers from the error by dltetiftl the unfinilhN IF dalae-.. . . . 

int c; 
int f(file) 
{if ((c-aetc(file) ~ ·o) c • -la 
return(c); 
} 

3: SYNTAX ERROR. PARSE SO FAR: <ext_def_list> <functlon_dcl> 
<block.)lead> IF ( <e> _ C • - 1 ; 
3: DELETEO: . IF ( <e> 

The followina proaram.is .n e,.._.. ol a symaxerrorfrom whid>tlte ~-GOUid flOt OCO'\Mlf, within it• 
allowed Umlts; thus, after skippma input toMns up to this limit, h..., IMS up. 

int c; 
int f(fite) 
{if ((captc(flle) !• O) c • 1; 
else c • O; 
return(c); 
} 

3: SYNTAX ERROR PARSE·SO FAR:. <ext_def_list> <function_dcl> 
<block_h4tad> IF ( <e> _ C ~ 1 1. El.SE 
3: SKIPPED: C • 1 ; 
4: I GIVEUP 

8. The Code Genei:-atlon Phase 

The code generation ph~ per(orms the followina operations: (1) allocates storap for (determines the 
run-time locations of) variables, {2) p0rforms type checks on oper.,,ds and i,-.rts convel'Sion oper•tors 
where necessary, (3) translates tN trN representation of expressions into a more descriptive form with 
AMOPs, (4) performs some n1aehine4ndependenl Qptimiz~ on eu,u,ions, (5) 11~ macro calls to 
define names which may be referenced by other proarams (ENTRV symbols) and to declare~ which 
are assumed to be defined in other proarlfflS (OORN symbols), (6) eMits macro calls to define and 
initialize variables, (7) emits macro calls to execute the control statement• of each function defifted in the 
source program, and (8) emits macro calls to evaluate expressions. 

The code generation phase reads the r«>OE, SYMTAB, and INIT files produced by the syntax analysis 
phase and writes an intermediate lquaae pr01ram in the form of macro catls onto two intermediate files, 
the MAC file and the HMAC file. The HMAC file contains the macro calls definina ENTRY symbols and 
EXTRN symbols 'Nhich are pr~ l•t by the code 1ener~ion pt,,... but which, in SQfflf, ')'St..._ may 
be required to , appear at the be&Jnni"I of the asembly ,.,.~. · ,.,,...... · The MAC· file contains the 
remainder of the int♦riwedlilte ........ proaram. ' 

The main routine of the coc» aeneration ph ... consists of a call to a routine SALLOC, which allocates run-
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time storage and emits macro calls to define and ini.tialize variables, followed by a loop which reads in the 
tree representation of a single C function from the NODE file a,:,d generates code (macro calls) for that 
function, followed by a call to a routine SDEF which emits macro calls to define ENTRY and EXTRN 
symbols. · 

The generation of code for a C function begins with a call to a routine FHEAD with the name of the 
function as an argument. FHEAD emits a PROLOG macro call which defines the entry point and produces 
code to set up the proper run-time environment. FHEAD then allocates storage in the run-time stack 
frame for the automatic variables of the function; storag·e is allocated for automatic variables in order of 
decreasing alignment requirement so that no space is wasted in the stack frame. The stack frame is 
assumed to be aligned according to the strictest of the alignment requirements of the various C data 
types (usually that of double-precision floating-point). A save area of the size specified in the machine 
description is reserved at the beginning of the stack frame. 

The call to FHEAD is followed by a call to the routine STMT to generate code for the compound statement 
which is the body of the C function. The generation of code for the body of a C function occurs on two 
levels, the statement level and the expression level. The generation of code for statements is handled by 
the routine STMT which takes one argument, a pointer to a subtree representing a C statement. STMT is 
actually a very short routine which makes recursive calls to itself for the branches of a STATEMENT_LIST 
node and calls a larger routine ASTMT if the specified node is an actual statement (as opposed to a 
statement list). The purpose of splitting code generation for statements into the two routines STMT and 
ASTMT is to minimize the amount of stack space used while recursively descending the statement tree. 

Following the call to STMT to generate code for the body of the C function, the size of the stack frame is 
adjusted to be a multiple of the stack alignment and an EPILOG macro call is emitted. On the HIS-6000, 
the EPILOG macro defines an assembly-language symbol whose value is the stack frame size; this symbol 
is referred to by the code produced by the PROLOG macro which allocates the stack frame. 

4. The Macro Expansion Phase 

The macro expansion phase expands the macro calls on the HMAC and MAC intermediate files using the 
information on the CSTORE and STRING intermediate files and places the result of that expansion on the 
output file. The macro expander is not a general-purpose macro processor; in particular, there are no 
built-in macro calls for defining macros or for handling local or global ·variables. Furthermore, the total 
number of characte.rs (after any macro expansion) in the argument list of a macro call is limited to 100. 
The maximum allowed depth of nested macro calls is 10. 

The macro expander processes a stream of characters terminated by a NULL character. Within this 
stream of characters, the characters -,;•, •••, and '\' have special significance. The 'i' character indicates 
the beginning of a macro call, which consists of the -i:•, followed by the name of the macro, followed by a 
(possibly null) list of character string arguments separated by commas and enclosed in parentheses. The 
••• character is used within the body of a macro definition to refer to the arguments of the macro call; the 
character sequences '.O' through '•9' refer to arguments O through 9, respectively. The '\' character is 
an escape character. The special interpretation of a character such as '%', •••, ')' or •; is inhibited when 
that character is preceded by a '\'. In addition, the character sequences '\t', '\n', '\r' are used to 
represent tab, newline, and carriage-return, respectively. A '\' character followed by a newline character 
results in both characters being ignored; thus a macro which expands to a backslash will swallow the 
newline which followed the macro call in the input file. (A macro call in the input file which expands to 
the null string will leave a blank line in the compiler output; this is generally a sign that the implementer 
has not completely specified the macro definition for an AMOP.) The backslash character itself is 
represented by '\ \'. 

The normal operation of the macro expander consists of copying characters directly from the input stream 
to the output stream. When a -,:• is encountered, the name of the macro and the arguments of the macro 
call are evaluated and collected in a buffer; this evaluation may itself involve the processing of embedded 
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macro calls. The input stream is then switched to the body. of the macro definition and normal processing 
is resumed. When a '•'·is encountered, the araument number is re~ ~·1.heinput streaM•i• switc~d, to· 
the correspondin& character strmc lf'1ument of the current macro cad, which Is stoted·ln the associ•l~ 
buffer. Normal procffsing is then resumed. The input stream oper1tes in I stack-like manner in that 
when the end of a macrc, defmilion or ,an ar1ument •~r"I if, r~,c~: t.,. J~t st,;••, is ,rest~ad t~ ,its 
previous st1te. When end of file .. ,,ached on the._ ,...,_.input)traad• 1wftth\MI to fht MA.C 
file;. when end of file ts reactiecf on the MAC file, mtcro exp~ is termi,..ita · 

There are three types of macros . which are handled by t.,. m1Cro eipander '.. fir,t,. there . are the m1eros 
representina thrH-addren ~tract. machine i""tr'-lCtiops, ~hlc:b art pr~ I)~ the, ~ ..-r1tQr 
while proc:essina expressions. . ThHt macros are defined °"'Y,.ln ... tht ~,. ~~fiq,n; the macro calls 
are of a special form which clr.ctly specifies the i_nterntl . """"' of the •retpOndifll •ro defini.tk>n, 
as assigned by GT. For example, the macro call 13 refers fo mtcro definition number 3. Second, there 
are the keyword m1eros whi~ are prQMfd by tt.t cocle ,&e!'erlt«. ,wttile.~~• function, -.,initions. 
and statements. These macrc:,s may ,be cfefl• either {ti .. ti. ~ ·~~ttloci c>r by C r~it'leS; the 
macro earls specify the meero ~ • itV9(tJn ~l(.Ql. F ... f).', tt\!lr• _,.. .Jhe m,cr• w.hk:h are 

createdi>y the implemetlter a,,cf.,..S····· wtttltn.otber.· ... ffllC\"Q.~iNf~ .. TbfN." .. · •r·°"· .... inl)' •·~.· ... wther. 
in the machiM dHcriptiori dr by C rautinetf n.·~ ctli .,.cify.thl.Mr,O,rwne • ...... by tbe 
implementer. · .· · 

A macro which is defined in the machine description is specified a, ,a list of .one or more char1eter string 
constants, possibly with usocilted loc.ation prefixes for conditional expantion. Such a macro definition is 

imp.Jeme.nt•. d. •. a. l.ist a.J ,oiatM.s tJ the .. chN.~tet .. strjna·•··.·. ~ .. ·· .•. · .. ,.· ... · -~ .. ·.· .· .. · ~ .. ••·.·SOC .......... in.••.··.·.'s 
representtn1 the condition$ specified in the~ pre,~ if~- :~ I~ ~.-~-.d -~~ .an 
1rr1y MACDEF, pr~ by GT, which. ii< index~ by ·t~ )nt.,,. . ., •. ~tiot, .• ~ -~::by 
GT to each macro dtlfinition ill ibe maclline •riptlon. "'·· Jll(tftlklPtct -..,., ~o .. elf! r...,.a,tmJ • 
three-address abstract tNChine mstruction directly specifies the mtcro .definition number. Other macros 
defined in the m1ehine description ate represented in a taa- ~.triv,.QT. ~ ~-ta., macro 
names with the corresponding macro deflnit-ion numbers. · · · ·· · · 

Macros defined by C .routines •• repretented in a t.t>i. providtcl ··a,y »-,, impt,menter ~hich ~tas 
the macro names with the corrnpondjna C f.unc:tions. This table ,cQA$ist, of _., array FN of pointers to 
the character strina macro ,,..._,., arrav FF of ~,rs to the.co,;~ C f•ti~," _, 
;nteaer NFN specifyu,a the ~r .of .entries iQ tt,i, ;tat.. Jt wOI#,. be -.e .~ forJlle 
implementer to specify the C macro definifi<,ns in t~ ,..._ ~WiM,..,.., let. $1. conQ:~t .Nfl'it l'.'N. 
and FF; however, this wn not done because of the lexicar dffrteulties lliociatecf witft fncrudiiij C source in 
the m1ehine description. 

The m1ero expander is implemented as two levels of get-character roµtines. The. lower level routine, 
GETCl, returl\S the next char,cter from the current input source wbicft may be eit~r the input file 
(HMAC or 'MAC intermediate file) or • character strinc in rneQIOJ'.y. lf it i1 a char,icter strinc, it may be 
part of a definition of a mac~o ~ified in the mtehine ~~riptio,I,. an arJUnWnt of the CLlf'Nflt macro call, 

or .the .' .. "ult r•. turned .. ~y ~ ... C.rotitine ..... ~ mac .. ro •H,:,ifi,On-··· .. T"8.c.iJr .. r·en ... tJl.t . .e, '.'•·~.irp,t··· .·· .·str··.'·.umjs.· .Mt>.··· . . t.· '? a 
stack of structur.- cal'-d input c;m,JrOI blocks UC:SS>diETCl .t.US, the ~. ICf;I on tt. "eq. to •t~,n,ne 
the source of the next chad1cter •. i'ht ,...,_ of an laJ structure If~ ~btlow,. with ·.fhllr ....,;.,._: 

~i" ' 
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F a flag indicating the type of the current input source (the input file, a macro 
defined in the machine description, or a character string) 

LOCP if the current input source is a macro defined in the machine description, this is a 
pointer to the current position in the list containing the pointers to the character 
strings which make up the macro definition 

CP if the current input source is not the input file, this is a pointer to the next 
character in the current character string 

ARGV[lO] an array of pointers to the character string arguments of the current macro call 

BASE[3] the REF.BASEs of the result, the first operand, and the second operand of the 
current macro call, used when computing conditional expansion 

A NULL character indicates the end of a character string or end-of-file on an input file; thus if the current 
input character is NULL, GETCl updates the current state of the input stream by advancing LOCP or by 
popping an ICB off the stack or by switching the input file from the HMAC to the MAC intermediate file, 
GETCl returns the NULL character only upon end-of-file on the MAC intermediate file. 

The higher level get-character routine is MGET, which implements the •••, '%', and '\' conventions. MGET 
begins by calling GETCl to obtain a character. lf the character returned is a backslash, then GETCl is 
called again to obtain the second character of the escape sequence and the appropriate action is taken: 
If the escape sequence is '\t', '\n', or '\r', then the character is taken to be tab, newline, or carriage 
return, respectively. If the second character is a newline, then it is ignored, and MGET returns the resuH 
of a recursive call to itself. Otherwise, the second character is returned as the value of MGET (thus it is 
protected from special interpretation). 

If the resulting character is not a '•' or a '%', then MGET returns that character directly. A '•' followed 
by a digit results in pushing a new ICB onto the stack pointing to the appropriate character string 
argument of the current macro call. A '•' followed by 'O', 'F', 'S', or 'R' (see Appendix I, section 3) results 
in a call to the C routine ANAME (which implements the NAME macro) with the appropriate arguments. 
When a '%' is encountered, the macro name is collected and the arguments are assembled into a 100-
character buffer. The macro name and the arguments are obtained by recursive calls to MGET so that 
embedded macro calls are expanded; the result of expanding an embedded macro call may include c;ommas 
or right parentheses without interfering with the argument structure of the macro call being processed. 
If the macro name is an integer, the correspondingly numbered macro definition from the machine 
description is used; otherwise, the macro name is looked up in a hash table containing the names of all 
defined macro names. If the macro is defined in the machine description, a new ICB is pushed onto the 
stack with LOCP pointing to the beginning of the list of pointers to character strings which represents the 
macro definition. Otherwise, if the macro is defined by a C routine, the C function is called and an ICB is 
pushed onto the stack which points to the character string returned by that function; thus references to 
arguments and embedded macro calls in the string returned by the C function are processed. MGET then 
resumes normal operation by calling GETCl. Note that the effect of a call to an undefined macro is to 
replace the macro call by the null string; no error messages are produced by the macro expander. 

The main routine of the macro expander consists of initialization, including the setting up of the hash 
table, followed by a loop which calls MGET repeatedly and writes the returned character onto the output 
file; this loop terminates when the returned character is NULL 

5. The Error Message Editor 

The error message editor is invoked as the last phase of the compiler to read from the ERROR 
intermediate file the error records written by the previous phases and to print error messages 
corresponding to those error records. The error message editor allows variable data, such as identifier 
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names, to be included in the printed messqes. In addition, error mel&fl•• of ar~ilrlf)( lenath can be 
constructed from a sequence of error records; the error mesup editor automatically breaks Iona output 
lines so that all output lines fit within a fixed p• width. 

An error record is a structure containing seven inteiers: an error nyfftber, a line number, and five 
arguments. The error number selects a basic error messaae strins which contains the fixed text of the 
error message and optional indic;ators far includina verilQle. d.Jta. An . i~ftQr is. a two-char;~ter 
sequence beginning with a T; the character folfowina the. "r dlfJ,_ th, ...-~~ of the variable 
chlta which will replace the indicator when the strint is printed. The variable data is specified by one or 
more of the arguments in the err~r r4KOf'4 The ara~s. •• .., ..... ,~ -. ~--'-' f,-.~t to 
ri1ht; arguments are used u nuded accordina to the interpretatkffll specified by the indicators. The 
various indicators are listed t,e1ow with their lnterpre;tations: 

Id print the next ar1ument as• decimal integer 

'¥m print the . strina in the inter~ compiler table CSTORE which ~ at th, inct,x 
specified by the next ar.,...nt 

In print a string representinc a node (operator) of the internal representation produced by 
the syntax anajysis pbete, as spac:iti,d by tbe ,wxt ..,,.nt , 

lq print a strina repreuetina l.he t.,atif1al or nonte~minal s)ffllbol. usodattd with the 
parser state specified by the next •aument 

it print the source representation of the toun whose TYPE .- lNlEX •• s,edfitd by 
the next two arcunients 

II print a T 

Only the ar1uments which are referenced by the basic error MefflP stri• .are ~ied when an -,ror 
1'9COrd is written; the values of the remaintna e,auments in tbe r«or,d •• undefined. 

The line number field in the error record associates a line in the IOU(.» ,p,roaram with the error whioh 
produced a particular error record. If a line number is &iwn (Lff€lt«) > 0).:i:t .fl:F4nled .out Gil• newJine, 
followed by a colon, followed l>Y the text .~fled ,by .the error ~~ _..,wi• :(J.;JNB,IO .~ 0). ·U. t.Kt 
specified by the error recqrd .iJ p,:inted on the .current Hne. Thµs -, .,,ore ..-,-. ~• of ..-.. iltit~ 
error rec~rd containina a line nUllber foQowed by zero or more ,rrOf'. ,:-... w~ ,liae ~,.. In 

. this nM1nner, an error messtp of •8".bitrary i.,.t), c.an "~!~- .For .• ~ U..,,,..'-W ,aivu,a 
the current st•t• of thf parse when. a s.yn'-x error has. been ~- ,t-o..,ect., 2) JJ . ...,.t,~ 
from the folfowing basic error n,ess,p strinas: · 

•SYNTAX ERROR. PARSE SO FAR: , • 
• Xq• (for each state on the parser stack) 
• • (represents the input cursor) 
" Xt" (for each of the next ·5 input tokens) 

The syntax analysis phase can produce these error messages .about co.untir)s the symbols in the 
messqtf'or knowlna their lenathl because the error mess,ae fditor takes ~• of br•kin& .IGl:II output 
lines. · 

In addition to selecting a basic error message strina, an error number represents the wverity level of 
the correspondina error: 



error,unber 

1000. - 1999 
2000 -3999 
4000 -5999 
6000-59t9 

NYeri~ 

error 
.. rio\AI- error 
f tf tl 111or .. · 
~ error 
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A fatal error or a compiler error will terminate the c:urrent phae; and ;.no retilalnlfll phase (except . the 
error "'.'", s•e ~tor, J will .be. i~ Jn ~tion, •~,..,~ . ..-,· .... Js,.W~k:,tly."~··. i by the stri . . . . · .. ' . .,.. . ... , < • . • : • . ' 

. "' . ' . ,,c: ,, • 

-a>MPILER ERRQR. • 

A •~rious Jrror •llQW~~ th!IP.,currel'lt~ 1(- conti,.. •~Jo,), bu(~ti~ ~.-· ~xce,pt , .. : ~'1»' 
mess,1e {t~) ar, .slupped. . . · , : -,, . ·. , .. ··• . · · 

[!8m::i0rn :-~r:::r~: :;!\:mi~r 
0:r:: :::t~helns~':'!~~.~"::~!:pr.:r;: 

submitted as a batch job by a time-sharinc user, this output Is redirected onto an error llstina file. This 
is accomplished by passina the ar1ument ">>tel• to the error ...... editot which indicates th1t output 
to the standard output unit Is to be appended onto fifecode El (the error ffstina file).· Redirection of 
standard input and output Is a (not necessarily portable) feature of the C run-time system, rather than of 
the compiler itself. 

8. I11voklnc the Complier Phana 

The mechanisms for invokina a phaae of the cOfflpiler, pNtina qUMents to it, and returnins. a completion 
code are oper1tin1 system dependent. In 1eneral, the control proatM wm be rewritten for each system 
on which the . compiler runs; on some systems, the cont~ p,Oif lbl NY · be replaced by a set of job 
control cards (see Figure 1 on p .. e 31). The source of the compiler phases need not be chanced, 
however; the operatina system dependencies associated with the invocation of IC proanm are Isolated 
in two run-time routines, the startup routine and the exit routine. The ,t-,tup routine receives control 
from the openti"1 system, establishes the C run-titlle environment, and c.US the C routine named MAIN. 
It is the respanslbility of the startup routine to tn the chlr~ter •trina arauments, which may be 
provided by the operati"1 system or written on a temporary file, and arr-.e them as an array of 
character strings which is then passed as an ar1ument to MAIN. The exit routine EXIT is called upon • 
return from hAAIN; it may also be called directly by a C proarlffl. The exit routine closes all open files 
and returns control to the operatina system. EXIT has one optional argUfflent, a return code, which it 
communicates to the ~ontrol proaram as• completion or abort code or by writi"I It onto• temporary file. 

On UNIX, a phase of the compiler is invoked by calllna the system routine FORK, which creates • new 
process, followed by I call in the new process to the system routine EXECL, which overwrites the process 
with the desired phase of the compiler .and passes U a list of character strtnss as ar1uments. The old 
process waits for the execution of the compiler phase to finish by catlina the system routine WAIT, which 
waits for the process to die and returns its completion code. · 

On GCOS, two methods are used to invoke a phase of the compiler from the control pro1ram, which runs 
in time-sharing. The first method uses a routine SYSTEM, a C-callable lnterf ace to the system call. CALLSS 
which can invoke any time-sharing subsystem (program). The character strins ar1vments are passed in 
the system teletype buffer (usina the system call PSEUDO) so that to the invoked proaram it appears that 
it was invoked by a command typed 1t command leve~ with those arauments. The completion code is 
stored (using the system call CORFIL) in the .first word of the core file, a ten word buffer provided by the 
operatini system for communication betwun a user's subsystems. The diudvantqe of runnina the 
compiler phases in time-shari"1 is that the compiler phaMs, beina tarp proarams, can take a very lar1e 
elapsed time to run. Thus this method is used only for the error ........ editor which prints error 
messages on the user's terminal. 



- 74 -

The second method uses a routine TASK, a C-callable interface to the TASK system call, to submit • 
11rogram as a special, high-priority batch activity. The. elapsed ttme for I TASk activity is,, tyJticaUy much 
lower than for the same proaram run· in time-s.htrina. The character ~-· •~• •~: "{4ten ..,to • 
htmporary file which is rud by the ,tartup routine when in batch. "FM."~~ ~ 1- .~ n 
follows: if there is no ar1U1Mnt to EXIT or the ar....,.t is 0, EXIT m~-,~~ ..... T~ wiU · 
11eturn I status code of o. Otherwu, .EXIT aborts with 1M tfHWlplttiotl ce6flii ·h .,,t ~ thlt abort 
code is then returned in the status code by TASK. 

. r, 

The compiler phases can also be invoked as normtt GCOS batch activitits by the sequence of contr:e>I 
cards shown in Fi&ure 1. WMn these cards are submitted, IOENT and USERl0 cards are inserted at the 
beginning ot the deck and the characters ••• and T ere replaced by the UMl''s identif~ at:ld U. usic 
component of the source file name, respectively. Thus if the UNr ii ,r and Hw. soutce 'fh It 11/T[ST.C', 
the assembly-lquap outpUt will be written onto tht ... ,filf it~T-cr .-,c!Jhe.errqr ........ will ..... 
written onto the ffa. '9/TEST.£": ·n. ..,..,.atton of tM' citdMi carti W1Ht ~ ... tt:lie ~~ ~. 
is performed by a time-sharina PfOI'• (COllllltMMO. '- the t..,:n-.,... thl9 far • ,.,,... batch 'Job can 
t,e quite Ion&. ttu veriioft 4>f !he ~.it._ Oftly ,_._~-_...,.•.-.,to ~ 
usin_s tM other vet'sien of fflit.co_.,. · · . · 


