
AUTOMATIC TEST, CONFIGURATION, AND REPAIR

OF CELLULAR ARRAYS

Frank B. Manning

June 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substih,ted for a
blank page in the original document.

AUTOMATIC TEST, CONFIGURATION, AND REPAIR
OF CELLULAR ARRAYS

by
Frank Blase MaMing

PAGE 2

Submitted to the Department of Electrical Engineering on May 22, 1975, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT
A cellular array is an iterative array of identical information processing

machines, cells. The arrays discussed are rectan1ular array~. :of procrammable
logic; in which information stored in a working cell tells the cell how to behave. No
signal line connects more than a few cells. A loadi('I mechanism in each cell allows
a computer directly connected to one cen to load any good cell that is not walled
off by flawed cells. A loading arm is grown by pr.ograrnmin1 cells to form a path
that carries loading information. Cell mechanisms allow a computer to monitor the
growth of a loading arm, and to change the arm's rout&\ to avoid faulty cells.
Properly programmed cells carry test signals between a tested cell and a testin1
computer directly connected to only a few cells. The computer may ~scover the
faulty cells in an array; and repair the array by loading the array's good cells to
embed a desired machine. '

Terminology and network models are developed to describe the
characteristics of a machine that are irnporhu;ll to the \•Jt and repair of an array
embedding that machine. Important machine classes are defined, and their test and
repair requirements are compared. Computer simulations of repair aid this
comparison. ·

Each machine class is represented by a particular ceUular machine
design. Arrays are presented for realizing hiahly-intearated, computer-maintained
memories, such as variabla-len1th shift-registere, r~-.pua memories, and
track-addressed sequential-access memories. One flawed array of simple cells
may perform like any digital machine, within Umits set by the size of the array, its
number of input-output leads, and ·the speed of its components. One such machine
can test, configure, and repair its cellular environment. Applications for. these
cellular arrays are discussed.

The thesis' approach is oriented toward the realities and trend• in
large-scale integrated circuit production; and has potential integration level,
reliability, maintainability, and flexibility advantages.

THESIS SUPERVISOR: Edward Fredkin
TITLE: Professor of Electrical Engineering and Computer Science

PAGES

Profe"or Edward Fredkin heJped me ttr~ my ..,-.,~. ect-.-etns
·, . :r

he suqeatecfi Uiil·u.t• topic· anct plld my wCM1L ·.Prof._.. Peter Elf• w• my

chief advisor ln the writina of tNt thellt document. t)r. £. ._.., Banks and I
. ~ . '

engaged in prodW:tlve ~- about cihulari.,_,._.,.~ U. r•••·•ch.

Ropr and ProttlllOr Jack DeMit reed the flilNfa ,- .,.vkflid tions.

M-,·,..._. ttMIT and in ,,..., halped r,late my work ~to lnt~ted

circuit con-'deratlOM. Mfrs John it lilld 'W~ Dr~ •. ~ tliU were . . - - .·. ; -•- -.,. . ·-"- ._,. ··: :· ·- ., . .' .. .'

p•tieulaiy·MlpM· hi· Ills reprd.

Brt.a, Kremer and Mery Jo ~efler ~'.wap to develep my
' . '1_' ;· ~ ·' '

previously tltlukNct~ ~

My w1,-. Lynn Nina. ad' my pwenlt, TiloMII Patrlcl -,d .Mirr Anne

'Botdwt Mlnnina ancl encourapd ... in ..,., ~

Mart,· peopte. lhd Ndftlee· at' Ptt~f MAC, ... tt/d 8-.wOl'k..

Thit, re••~ Wit ...,_. in pwart by a .._. ,..,_, F.-Uon

Fellowship; 8l'ld: ht part by ·ttte· Advanced R....,cl\ ProJ9't• At.•ncy of the
1 • . - •

Departffltlftt of .,.._ Uflde, ARPA No. 2095 wNch. w•. htOnitO".'-' bJ. ONR

Contract No. NOOQl4-70-A-e812-ooo&.

TABLE OF CONTENTS
(1st of z .,agee)

ABS.TRACT • •••••••••••••••••••••••• , • 2
,-";/ . .

ACKNOWL~OGEtENTS • ••••••••••••••••••••••••••••••••••• - .• ••••• , • • • • 3

TABLE OF CONTENTS ••••••••••••••••••• ·,, ••••••••••••••••••• ,~...... 4

LIST OF TABLES ••••••••••••••••••••••• , •••••• ·., - ••••••• ~.,....... 6

LI ST OF ILLUSTRATIONS ••••••••••••••••••••••••••••••••••• , •• , , • • • 7

1. OVERVI EU •• ••••.••••••••••••••••.•••••••••••••••• ', • • • • • • • • • • • • 10

1, 0 In troduc t ion ,", .••......• , · ..• , ••.•• , • • . • • • 10

1.1 Ar.rays And Embedded ·Mach Ines ••••••••••••••••••• -~........ • • 13

1. 2 The Loader And Re I ated Concepts ..• '-. •••••••••• ~ •••••• ,..... 21

1.3 Basic.Fault Assumptions ••••••••••••••••••••• ·•••••••••••••• 28

1.4 Processing-layer Machines ••••••••••••••••••••••••• · •••••••• 38

1,5 Array Repai·r.-••••••••••••••••••••• · ••••••••••• ~.j••••••••••• 39

2. CONTEXT • ••••••.••••••••••••••••••••••••••••••••• ~-. • • • • • • • • • • • 44

2.0 Introduction ••••••.•••••••••••••••••••••••••••••••••••• ~ •• 44

2.1 Ce 11 u I ar Arrays ..• .. · •.•..•.•••••• · •.•••••••••• '• •• , • ~ . • • • • • • 45
A Introduction
i3 Array Interconnection

,, C Customi:zatlon techniques
~, D Size ·

E Function
F Current state

2.2 Array Fabrication ..•.••.••.••••••••••.•••••••••••••••••••• S5

2.3 Evolutionary Tr-ends•••....•.• ••••••••'•••• ••••• 63
A Rapidly increasing capability of integrated circuit•
8 Increased reliance on efecfronic machines .
C Mass production of a few high-volume c011ponents
D Increasing regularity

PAGE 4

PAGES

2.4 Trends.And- Arraw••••••••••••••·••••••••••-•••••;••••••••••~•- 73

2.5 Te•ting.AnctRepair •••••••.• ~•·••••••••••••••••••••,•·,~•t•·••••• 71
A Non-eenuhr ' ·
B Cellular

3. ARRAV-Ef13EllED ARMS ••.••••..••.••••. ••••••••••••••••••••••••• 87

3 .• 8 Introduction· •••••••••••••••••••••••••••••• •~·~·•~ •• ._ ,~,• •• ~•-•- 87

3.-1 The LOlltder ~ ••••••••••.•••••••••••••••.•••••.•••••••• 98

3. 2 A Perfect Array. Of Shi ft-t'eglater Cella •.• ••••• 118

3.3 Teating And Repair _•••••-•· .. ••.~•_t•~•••••-••••123

3.4 Production And Marketing Conaicleratlona • 148
, " . ~ ~

4. HI Gli-RELCCJ4 11Aai-J tES ... 154

4. 8 I ntrom.ac-ti•-011-••••••••••••••••••••••••••••.. • ••••••••• •-• •••••• 154

4.1 The Genwa:I Cel l, •••••••••••••.•••••••••••••••••• _• .•-: 157

4.2 Introduction To Te•ting. COMtruction, And Repair 169

4. 3 T •• t i ng.: •••••••.•••••••••••••••••••••••••••••••••••. • ••.••••• , 173.

4, 4 R·epa i r ••••••••••••••••••••••• , •••••••••.••••••••••• _ •••••••.• 188

4. S Construct •••••••••••••••••••••••• , ••••••••••• ~·~·~-.: •.• ••·• ••• ,21S

4.6 Other Coneideratlons In Real izlng tflgh-r.-tcon ~lft.n 218

4.7 Hlgh-refcon Machi'ne Applications •••••••••••••••••••••••••• 221
I i :', ~ . "

S. TREE MACHI IES _ •••.•••• ~ •••••••.• '22.7

6. COOCLUS I 00 , .•••••••••••••••••••••• , • , ••••• •~ •• , , •• • •••••• • •••• , 233..

BIBLIOGRAPHY ••••••• , ••••••••••••••• , , •• , c~ • _·. , • ,· ••••••••• • ••••••.• ~ •••• '237
\ . ,.,

BIOGRAPHY ••••••••••••• , , •••••••••••••••••••••• , •• ~ ••.• ~ ; ·• ·• ~: ~ ••••• 243

LIST OF TABLES

TABLE PAGE

2.1 Chip Yield And Manufacturing Costs .•..•....•.•••••.•••••••• 60

2.2 IC Evolution .•.........•...•.••.•••...•••••••••••..•••••••• 64

2.3 Relative Cost Of IC Reliability Efforts .••••••••••••••••••• 66

2.4 Cost For Failure At Various System Development Stages •••••• 66

3.1 Results Of Arm-gro~th Experiments ••.....••••••••••••••••••• 134

4.1 Results Of T~ist-repair Grid-embedding Experimente ••••••••• 190

4.2 Experiments With Three Different Blockoff Goals •••••••••••• 202

PAGE 6

FIGURE

UST OF llUJSTRATIONS
(let of 3 pagee)

1. 1 Layout Of A Checkerboaf"d Array Connected

eg

To Two E>etra-array Machine•·· ••••••••••••••••••• ••• 14

1.2 Interconnection Network FOi" Cbeekerbolrd
Array Q;f ·Figure 1.1..................................... 14

1. 3 Machi ne 'E111bedded ln A Processing Layer. • 18

1.4 Relcon Network For The Elllbedded Machine oi ~lour• 1.3 •••••• 18

1. 5 Re I con Network For Two Ellbecided Ar••• ..•.•... · •• · ... r..... 23

1.6 Re rat ion BetMeen Eteential ~etNOt"k And
Assoc i atecl Ae I con Netwo,-k1.............................. 23

1.7 Essential Networks For Two High-relcon rlachine••••••••••••• 36

1.8 Relcon Networks For Two Equivalent Tree Machine, ••••••••••• 36

1.9 Relation Between Grids, Trees, And Ar••••·•·••••·•••••••••. 41

1.10 Repair Of Arrav• Mith The Sa11111 Flaw Pattern •••••••••••••••• 42

2.1 Two CustoMization Techniqu•••·······•··•····•••·•··•••••••• 49

2.2 Progr8fllllad Array-repair •••••••••••••••••••••••••••••••••••• 85

3.1 Two Co11111on Programaable Logic Loading Machani•••••••••••••• 91

3.2 A Loading Ar• Grown By Array ProgrMaar Signata •••.•••••••• 93

3.3 Input-output Lines Of A Cell•• Loading MechanlH ••••• .-. •••• 98

3. 4 The Loading Mechani a•~ s Pu I eer............................. 98

3.5 Loading Mechanlsa With Option•••••·•••••••••••••••••••••••• 99

PAGE 7

FIGUB~

3.6 Symbol

L.JSJ OF l WJSTBA TI ONS
(c~nd ~f. ··~ ~g•·•) .

3. 7 CI ock i ng Out The Load Ing Sequenc.1 8, 8, 8, .1, 8.,. 8 • . ~ ••••••• 186
, , _' ·: t' " . .•:··1::.::·· . . , ~·· ;: 0

:~.• ., f'I ·

3.8 A Loading Arm For■ed By Touchli,g Cell••••••••••••••••••••••l86
:,. ' ;;· . .·· /· ' . .,,_ . ,,

3.9 Loading Arm With Tip At u~ 0) ••••• ~······••.t!••~···· .. ·····186

3.10_A Complete Shift-register Cell •• ~•••••••••••~••••••••••••••111
• ' : - "¥ ·: '\. ,j" . • '·; . '·. ~ . , ·t. ~ .. ' .

3.11 Abbreviating A Shift-register Cell's Function $We.. 112
,.-, ·.·,. •·.·: - \·. ~-;f::,, ··: ":,, r'i,_,.,' - '•·.

3.12 Sh If t-regi ster c,11 • ., Func:tl on· ttate, . . \: ~ ~.: 113

3.13 Load Ing Two Shi ft-reg I st ere Into f'erfe~t ·«rray;~ ~ ..••.. 115

3.14 Shi ft-reg+st■r' 1 Rate.:.nlfi"Hng Oe{a\i,~: •••• • : /.· •••• · •••••••• ·• 119

3.15'Pu1sauidtfl Rliigulator Uitti ·Data'Tra'tl-.i'tter Opttbn ~ .. 128

3.16 Grb1.ith'Of Perfect Shift-'r-Jister In·io Fl·d·A~ray ~· ..• 128

3.17 Aeautt Of Arf'Arlll-grdwth Experl ■erit ~~ .. ;~ : .. 132

3.18 Reau It Of ·An Ar■-grbwth E~t-l•ent •••• ~- ~ •••• ;. ~ •• ~-•••••••• ':'133

3.19 Graphs For EKperiments Embedding Balanced Ar•••••••••••••••l36

3.20 Gro1o4th Of A Branch Arm ••••••••••••.••••••••••••••••••••••••• 141

3.21 Branch Ar■ Touching Intended Ar••••••••••••••••••••••••••••141

3.22 Location Of A Branch Cell •••••••••••••••••••••••••••••••••• 145

3.23 Possible Layout Of Power Lines And Circuitry ••••••••••••••• 151

PAGE 8

FIGURE

LIST·.· OF lU.U$TM'tlONS
(3d of 3 pages)

4.1 Gener-at' ll Function S•tat.s ~ ••••• : .168

4.3 Map Of Minipr-ocee,eor-Teater-Repairer •••• : ••• ~ •••••••••••••• 166

4.4 Test Links To Pl"'ocee•ing Lines Of T"ted Celt 174

4.5 Re Icon Network For One AUJ/Regiater IH-eHce ••••••••.•••••• 183

4.6 Flawed 1S.a Array !uiat-Repaired
I:nto A Perfect 181d:4. ,Array., •.•• •:•·• •. , ••••·•• •• • ••••• • 187

4. 7 Graphs For Twiat-f\epa,ir ~iMnta. "' •••••.•••• , •.••.••• 192

4.& Blocko,H"·e Repair Of 28,c2I Arr~ Ul~ al~·--- C.elJ~ 283

4. S 81 oc;koH.'·• ~u-- Of. A 4'tK4a Arr'V lili "9 Sl fl •.. C.t\•,.• ... zes
4.18 BI ockift9 0.0 A Higt:,:-reJc;Qr\ ilantJ~.1 N,a.wc,rl\.,,.., ""'" ,., .212 . , . ' . . . ~ ~ . , .. . ,. '

4.1.l Reaul t Of An E,cperiunt Shc&lln& ~t~:t.'• ~I Ut~.•·•:•·.,Zli

5.1 Re Icon NetWQl"ka For fWla, ln ldanli~t Ft..- Arr-,-.~.• n.• •. 229
f'• . ' '"'' •.,.,···, ' ,-. . •

PAGE 9

PAGE 10

CHAPTER 1: OVERVIEW

Section 1.0: Introduction

A cellular array is an iterative array of identical information proceasina

machines, cells. Test of an array discovers its flawed cells. Confipation of an

array programs it to behave like some machine. Repair of an array procrama it to

behave like a desired machine in spite of faulty array ceUs. This thesis develops •

practical systems approach to hi1hly inte1rated, computer-maintained cellular

machines. The structural simplicity of cellular machines 1ives them many

advanta1es, especially now when larce-scale inte1rated circuits (LSI) are

proliferating. We specify cell mechanisms and ouUine associated support programs

for an arbitrarily large, two-dimensional, rectancular array. While we focus on

two-dimensional rectangular arrays, our approach has obvious extension• to •rays

with different interconnection geometries and more dimensions. This approach

allows a digital machine to electronically test, confi1ure, and repair an array by

direct communication with only a few cells in the array. The fact that a computer

can test and repair an array implies that the array need not be perfecl All the

cells of the array may be simultaneously produced as a very large, integrated

array device. Such a device usually has faulty cells. After the array is first

fabricated, a computer can find the defective cells in the array and load a perfect

machine, which incorporates only 100d cells, into the flawed array. Thus the same

mass-produced device may be program-customized by a mass-produced device,

PAGE 11

the computer, to behave like a desired machine. If thi•,~ 'machine

develops a new flew durinc it, operation, and if this flaw ceu••• • noticed

performance clecradlUon. the .,.., may be partly or ~· re-t•t.t and re

custo.nd by •-.. n.. • fffll/' etl'.t..,_. ...,_._, be electf'onk:ally

tested, Ind r111lirecl to.•~ltettty·-.,aaa..- ·n. •1n1Nt tt..·_,,,, ,nay

be Mlint ... by ffllCNtle. ft@......., ._, lllrllY ffll1 be rHUitonbed

at any· tbM. 'Tin -eppreecft i•· ltallored le the ~-Md &..-.i. 1n· ctnlan,

menufacture,''~ aild'·~·o,·---· .--·~ -~

We .._. ..,.YI ·of ~, loakft .,__ W.il'tatlon toect.ct

Into meMay •••nl• 1ft a·workifWc,l·tih'tlidlt'hlwto bllhltve. ·No..., line

eennecl• IMftY ·Nh. A,._ft'.~ Ndt ail1 ln an lrray;

tNt altowt 8 COi..,, COlllicted tlJ'Offy ft; eeitt;;ifo fold any pod cell

that i• ftOt wllld off1t,y 1fllnd ·can.. lht _., Wot,..._ wlllfll·:h cotftputer

8ends to the .,,,, fMY ftle'Ct . ._ of •· let of pijillie ·,-thl for· • 1oaclnl

arm·that;C8l"l'Mll toadina Worrnlltlonto •·•: ·w. __,.,_.:..,_..,.. that

affow the eom,,uter tb ,_..Jtot the trowth of • , to and to dlana•
-

the route .of the -emt to. 8¥eid fadty ·~ ·· A mithod la dNctlbed tor t..un, ·~

in an array by ..,. • tett lllaCNne drdy;-~ to· otly a few cell• In the

array. ProPllf1:, ,,,..,. .. ,d cellt .'Cfrlt/ felt --•·1Nttwelri ..,. MWly t•ted

cell and the t.et·.....,.._ A Joadlnl n··-,'• UNd1o vt1ry·h llate of the

l•ted ceU.

PAGE 12

emb~nc that machine. When a ~.NJI.~ .-~ .-,.array, it should not
' ' ' ' '· • ;. - ~ . ' "' -! . <. • •

allow faulty cells to affect Its behavior. Therefore an •~added m~ne I•

programm,d to i1nore sianals sent. f,:-o"' faytly c,ell,, We find that the

communication paths required betw11n U-,.e"81iiJL cell• of an ~ machine
' • . -. ~ - ' ' J -,t:;_ ; _,. ,: . ' . ,- .: .•

affect test and repair of .. an 11rr,y for ~• .that mtdliCl8- .. ~velopment of
1 ~ • :- , . ~ . - ; ~ . ' ' ,_ ' . - •

terrninolol)' and network models allOWt "f¼.lo.~~ macbme• more

precisely. Important ~ ~ne d_.. •• .4'fined, -,xt their aMOCJated
. ' ' . ~ . . . '• f· .. ;1__- ' ; ' •• - • ' -- .; .;;,/·,/ • • •• ' • • •

test and repair requirements are detail-. CcnAut.-: .. ,.,....1tione. of ra,palr

facilitate this comparison.

For each cl•" of machine, tb,t',, -.~ ,,:J,r~tr• PtwaUalty

useful representative of that t.t,ss ls ~•• ~ _,., .celJJ contatl!,.Ol,,IF;.,1-na

mechanism. Arrays are prasen~ tor r.-Qt&.)i;i)';,;Wffr•lei4,.~er

maintained me~ries. These include errar• tor ~ ¥ .. ••~••th ahlft

re1ister1, random-access metnorl••• .and tr,ck.~...--..MC:t ~i~~•••
, . . :: . - . . ' ., ,, '

memories. One array of simple. cells •Y • pe~; ~-- embe{t an •l:1Urary

digital machine, wit~n limits set by U.. size of..lh• -,r.-y. it• m,mber. of, JN,,ut-
• , < • • • - -,., ,,-.. ,,- •• -. • •

output leads, and the speed of it, componen_t~ ,.An .arr,;ay~ comput,r can
. ' . . . ' ' ,-,' ·: •:,. , .. ,.,,.. ·. •' '

test, confipe, and_ repair its cellular envir~t ~~t~qu4111 _w• ,de~op.

Indeed, two or more .,-ey ... ~ ~•~ ~•t~,_. o~.

PAGE 13

Sectitm 1.1: ~ AftdE~ II..._

A ,_. datllltld > , .· ' ,: ·o, u ~ , Introduction of

Nl'll4tkeytefflll.

A c..,_.,,., 41'• lll'fT/ of ~~ pt'Oefflina

machmel, ull1, ~lid 1ft an;·tt--va w-,~ ·Och CIR•. 4'f in ~onal

array OCCIJPHII '* tattlee poiftt 1ft afri-11•••••&1-,..· t.ah cell comnuicat•

cirectty-wtth·ott.r ,_.._ a Mtt Mtlf .i-,...- FillN i.1 ehowe

• pcmibte layout eta cetkl• tlffl. · .Eich CII 1t1i•jWift arrilylM • 'fbced ...,..

of,.. 11M 0,,._slf1, 1lllldl· ccwrep ... lo potiMtal· ht ~ with

another cell,. a_,,,,.,,, If llfl- of a ... eel ·~-.to a M1&hbor, all

........ of·the..., ..,_Net toht·1' ibcw}1r1'-~ , connect to

• nellhbor, ..,. or .a of Its.....,. •·••lldt ·to·•~ l'MChlne.

~eeted tftpala ad ••,ff they ah cCMMCttrd to a blriary OJ lhl• It •••HY
·Implemented. W• COlatltr•te otl tiitlffWr4 cjftular -.,.~~ two-dt onal

.,._,. tfkethet fn fl ·1.1, WIWl:fldi -,· fill tw --•ti, with input

and output ·w•i- ... id,..,.. to

...... t aft ,-,out· for _,. . .,.,.,With' .. -,~

for • ideftttcal Nil. Scne ·hav• piOpolN ...,_,. tH ·..,..a bus .. , run

throuatl ffl"'Y ~· ._ an array 1, ottern»cwtr~:~ when • •anal
bus :T 'ht ... be M 1fjw ~'1fl cheekerbolril 'i,ray15

at most, a • .,.. line corNClt a cell to It• four Mi...,._ a.ckW'bolrd .,.

are well-suited to the tle, __,.,,_ natan of OWNlftt_. clnut (IC)

PAGE 14

Fi1. 1.1 Layout Of A Checkerboard Array Comected
,, J•TIIO.,.._.~M•iNe• .. ,.,,,.,-.,

M

M

PAGE 15

production. r_.. err-,, .,.,...,,t....,~ and repair edvantaa ...

An _,,,,ea'Af'l,n ,.,,_.._ tq:b • tW of f P• 1.2, partially delcribN
'

an array's taytNt·1f•·.,...•"eicffcilfclr~Uf~ with It, cellul•
""""--~,-- - -·• \ -" ' . .fi;t----t~-···.

nei1hbor1 or --~•r~ In ._ I~ "' ,_twork, each nocl4t
. i . ' ·+· __ ..,, .. ~\" .. ~,- ~~ : .. <)!'-

represent. • c+a. l(fld eah •~ ,..,..,_, • ..,._,,.,ay ,aactine. A node I•

llmd t~;·,.;._.If~~ • .:..:;~.--~ cl~
' - . ~ : . . t

Unk the •~'I ~ ~.A.~ hll! ffPfl • if n ttnM...-.t to the node.
' i" :, ; { ;.: { ~ Ji

tt's ••• u.t..a • .._i:.,__. __,~-.....,.·•••...,.UY,

w, fQIUI ,n ,...,...,, ,.,,, . . . arr.-, ~ each cell

cont.int f1'ftd"11rft,,a,-un 11ot1 tu.r .tfectirW which of· •wrM the call .
performs. Eiotb ~• ll'ld arrl)'f •• viewed • hawinc two functional lay•• - •

, _ _ _ . ,•,. -~_,, _:'··,-:. :i ... {'· :,-. ~ --~,: ~··:·1·1..,,i

. loadt1Jf,l~1P: lfk.t.• ;J,usii.#1.J.~,,,' ~ ~- f;t•1-l)-•"'-.it,-..,.,._ll«Y
elem6ntefor ~,._)Of~ ... ~-~. may ~·~1-·1nttirtwlned.
At any aiven • inltant. only one of• cell!, lay.,.. is acti~ TM p-oceNNII

layer of ..,. ftll'i•--• ..,....._,u.l•·•.....,-~••• M•itety .

uteful to an errey', ...,. The proc...,_ layer's output and elate .-e a N'ICUon

of the pr...._._.,,, fflfNl Md 1t•te.,.f'@illit ("1fffllm stat, - the state of the

fuiction-'f)eclficetion -1• bib. The f\Ntion--,ecificltion state bite may enter •

particular h.llction ~• when an array i• pewerect .,. after thl-, they may only

be loaded throup _. of the array', leediq i,.._ The tole function of the

PAGE 16

loadins laxer 1, to a.. u,.. t;,~ .-4..,_..,._ 111~'611..,.onNd In the

proce11in1 layer of the arr•Y· Thu•». tw~w.._l'l~en".bi,t•:•t ••

intermedi.-i•• betwten tbeJ.-,. .. "'-·~•4,,.IP•.•'.•..,.. , 1- ,....on-
. specification bits •r• thtt- o~y ~I lllic ;@t,WS*lltab.,.#lr• eiU.:teyer.

Ty~c.al u1ae of ar1 array inv:01~., l~~,~•alion •We .bits,
,.. . . - . .

thereby apecif)'l"Ji;~".~Qrl.~~ "1t~•-·,..... -~ the
• ~ • > '

loader is q,Jacent wijl_•.~tlwl s:a,:4tC8Nit11JR ~ ~i ---· of the ,· ' ... ,..,_ ' - . .

loader -~ re-pr.-1111 the m::~}~.~~ ~~· ~ ·

For many ac_~ lff~-~~;•,,,.,,. ,._.,b~._._. ot·

an arr,_., to remain. f~ ~~-•v•,~I~,; f'Ml~••·..,.u,au,,n

'~i,~t .. di~!•.~· i~!.~~~.~+ttf ~•-•.~f .. .,,,,.._., t .. ,,_...

__ pr~~ inp.&t~~---~ ... ~.~ ,-~~·\ft•-IQ9J:,-..uld
. ~- ~

ju~tifiabl~ thin~ of hi, .. arr~,8' -",·eca~~~-,.,,-,i ,-d._l~,the
• '•." • ,, .• ;-; •, ~ .,. 'I:,·

proce~ti"' layer, ~ tilt\ fix!d ,-liq~. •,t:~~~M• ,UJ.t:~Mw1
. - . - - ' - . ~ ' , ' . . : - . ;., .

mach.in,. S.imil~I~, • u•r DIIJht -~ ~ .J,t«r.:~ ifwll•·-:iel an
',, ·. ' ·'••· .. ,, ·'' - -

interval devot~ to:~~• fl.l\Cl.l~-~~~W.v 1-MNJ~ Wolltdrthen

think of the array 11 "9 envir~ •. f~~~ ,...,._.,,_..;_,.,. ·

dur'.in1 thit il)ter,v~ fjpl)l1;e,...,-"·~~----.•:.,lt l11lllftlt1Ulffll

loadins i"l?"t'- aqt~~~ :prqQ.,10• ... ···•llPMht(-- a,t1 .. r+v.t.

The U!er, co_ul~ think . ~f an.,~ ~. ~~<tt,oll\,1 IMCl91i:.,tind
' - . . .

proce,stna J•Yt.r:• ckvjnc ~-1\f:j~val.. ~t,1M mllblu111-. .h· nalJnr:ef,,the
, ' -- .. ' . ~ ' ';.- - , ,

embedded machine profcudy affect. the_.. ,.,...,.

PAGE 17

Kft•edc• et the eOMtralnt• on 'an aitly clrint an int..,val affects

testtna and n, air • PNfotnly ht • deftlap a . .,._... to dil1c1ibe thNe

cwtralfts. ·W&, • .,.. · cteftilltioM rlftltM to Ulie~ttf .- irtay ~· • jven time

iftte,val. The ... IMil._ wtkh $file ..t .._. tN1, dtecUy

intere.t him oilinl 111·tftlrlal, hlee n·-w.··~ ~ The lnput

out,ut .._.. •l5M tfrtil1 tt\at cOflntttid to ·a· u,ir .. nil-cl1h1i·· 1111.-,t be the

int tina HnN fir M· USlr. Shit.tr, b1cM~~ifwt.· which wcud
affect th fUIICtton Mt ~ pert..,..., fir' 1, · 1Njit h ·111\.,.,..tfni" while

ftaneti~·ifts in a rtifflOte ·Mdltift .,. In irriJy Wp\ be winterMllnl,

Thul· iftt.,_ ta clldUld ift 1.,... of• UNr'• IM._:--~•- Tfie state of the

. array at the ~ of h 1ntrfaf, find h -.i.,.flf MSt,..tv. the

iftterval, afhk:t wtidtot"•ftt ,_. 'i llltlllhh ,_. ~• linet · •• · '"""'lltf that
is, which may effeet ·tnt•ewnt ~·.,.,. tM ~- AA MNlltl«l 111t1tllu

for • ·li•an .,.,. ,_;WNl1bld by • Bit of thNe rtl~ ~ 11 .. tt and

... Mt ·lflput ti- whNt ~- known .to be. ff>Ced ~ h int~ •• and

their a,..._: v••· The ·embectS,d mtidlt,.., •1nplit--~ · llnet are the

retevaftt ln,,ut-out,ut 1lflet of the wtfl'J that ire variat&' dll'fnl' Ute interval. A

proar ... allle .._. ,...,_ med'81ftftnMy •f~l,-iffcatlon atate blta, and

. thereby ~-...... ., .,,...., e.· ~ ffl "' ~ ...
tare, of an .,,_ .. ,,_.. t.3 etve. a· charadlir111tion ,,·, _,., auch •rilbeclded

machiM. trrllhtvlnt ~• Ind oatputs .,.. ·not IMWI\ ·.-. tt\it ~" alfec{the

Fi1. 1.3 Machine Embedded In A Processin1 Layer

t::L . .::;:I .

PAGE 18

PAGE 19

Diffr...rt embedded macN• may be equivalent If a flawed array i•

conflsured to.._. a~ tttet t, .ecpvllent to.• .P,41!'~ array'• embedded

machine, we Ny lM flawed array ._:.,._:,.,._-te _.,_.•,-feet mechlne.

Our array rep* i• ther•,_• an ••••• •·-• ltlta .tf cefl9, end
'' ·:

not a mechanical altwdon of an ·.my. ..

A rtlnaffl conntttton n,rwrl, OP; "''°" nltworl. ·I• a aubnetwork of the
;

-· ,;;., . .

interconnection network that ~ ~ trt ., : embedded machine

(aee fill"'• 1.4). Ae tn tht interc,NWICU. ~dots~ to celle, and

diamcmc:18 corr•.-a to extra-•rtJy maehifteL- ~ ancl anti.if ·ai.teast one relevant

connection directlyJinkl .a.caU.wUb lll'IOlMr di&,• .,.. .. .,,., fll8Chlne. a link

connect, h c:.u•, dot to the appropriate dot or ,1...,. m U. ,._ network. A

cell'• rllco.11 n11tM,,n,s ere the entltiet - eel._ or extr••..,.ay Mlehlne• - who••

repreaentativn•••r.aylnkld to a.-·ean c1of·1n Wft.W-.'~ ,·,c.u

with_ n ref con neitht,ors is a ceH of relton t1,1;r.11 n, called • rtlton-tt cell. An
. .;'

embedded machine•• retcon it the tiahest relt1111 ot _,, of lt1 cells.

A quaHflcation of ot.r definition of an embedded fllMlhlM mike, It more

consistent wi'th ow lntwtive understandina of a IIIIChine. We teqaJire that two

cells in the ,ame embedded machtrte be connected by ,ome path of relc:on

neilhbore; that i1t an ambedded ~-•• relcon network ...t hive IOfN path

between their ...,,.._.au.,. dott. Thua two or ,_. 1111diftet -, be enlbedlled

in the aame array.

An array ceMtrainl the r.-con network of ffllCHftel ..._..,d tn that

PAGE 20

array. Two cell• can be relcon ~-5 lf ~A~:~!~,••
"•s;,.~-nter~~~,~~i:,,t~ ~~~,,~ti,t*~l M-t.~"'~~"' may turu.

1 ···:~!1~1tf! .~~~~,•:!•~1,:r~~~-~t, ~~nl\'J~r:~,. tlf" ef.fol"1Y,

intere1tin1 _ ~f t~~~r~~r;~~~~JJb'ifl,_~ ~~~i~rf"J~ 1111

embedded machine don't CGIIIIIUlk:ata with ... •· :~{~~--.~:-~~;/.~~l~~;t / 0

,~-- ~f,~,-L~· ~.;J~.·

An array •~:.,~~~ .. ~!~,t' the relcoft network of It•

~ !~~~~\~~ ~~~!! :~~· _-,. ·1"'~.,, .. ~~.,,~ ~ "ffi""
~v•~(,~-~0:6~~ ,~~ ~B~~t~~"lac}''!;3~ ~~t

,ffe.1 -'-~~-~•~,-~\-~~4~,~!~~~~~ :;,-.~0,.,;att,~1ithe

~r:~.~~~ ~":::;~~; ,!!~-~-~~(~ ~' ~ ~ :fit'i"~'r~ ~

PAGE 21

Qk:tion 1.2:'11tfl6Wer Aiftj RetatictCW.pt~ ,:

trldill{jjJtn' ilitls are ~if fci Miny of,_, ·teefinl. confl..,atlon.
.~ ' , .'· - , , 'r "\ ,,~ ,. ·.•• .. ·:" . ~ . ,. " . . ' -'

and r•fi•h- •,etatfont. ln • irafttfflftitort' if1te,· •-
1

h,put, to ·• cell are

trantrnRtd'·'ll,""''· • ~ w·. ·-"".If.if ,~: h -··· act. like oM or

'tnor• wtr• c~-M\~ ~-eil autput':'th1.~i~r~ ... an ,-.,.·lftput•
, -~ outPIJli· CJ'Nt·cai\ 'We ctii,cnbed tj ·.,.;.c,.,_t~~.,ti.t.. :~ ··~· .-

tf~~ .. .1,,.r,n,..r.4;Q;~:C,) :, ,~' I •

tou.~.~ o...oa.~g , ... ~ i . ' '

'ffie firsf eub.c11pt - ·u. ~, 6, 1« l -~ &.. of:;• ~•• few ~. ~ Up,

Right, Down, ot Lift. 'tiift lide-•l of• j/,-. ~I ~-~1
... ~ of.loadinl

. ' .. '·· ~ h ··.,• .. ,

. inputs :iin\f ~ '1; ancf·tfwt •· ,..._,;~fproeeHtnf-C'.,:;.. ~ .N-M.
"-:For ilf I st(~ t(:W• tf'Oe ~t ~.-. lair, ~~i:~;'" ~-;.,.~t~ .;.~-.nodated,

output of each of a ·cell'• side-sett. In a lllitldmf trntlltlsJln 11111,, each ICNdftl line

of one side-s•t Is tranamitted to an adadited loadlit output at one other tide-,

set after a ditty not lon1er than about one 1att-detay. Thu• a loadin1

transrni98iori state buste1 the loadint input• of one ...,,et to ISIOdated loadina

outputs at another ade-set Proctsstng tr&nndsston statll effecUvely connect • bus

to every side-set'• procentnc outputs. Each but CGni'lldt the proce1tina output•

of • ade-.. t ta the --=teted procettlfte Input• of IFfl/ .,. of tM cell'• etde-Nh.

Trsnsffltsston ltnll are important to CU' testins and repair prOC89M9 '"

•ome array,. A tran.mJ11ion link I• a proc•••iftl l1yer'• c:Min of cell• In

PAGE 22

traneminion elates that acta'ia • ~~ b;~-'eath·pr~fll

input at one of it, end8 to an anociated "''f.)llffll owtput at· •t• oppoalte end. A
"' ""

. : :i~~• ? ~ ~""~~•I

tranamiuion link performt the earne bueelnt•Uon in• lfftJl/.lndependent of the
!.--.-1: '\ ~

link's path or l..,.th.

01.r loaclnc approach cell• in loadnl_.on ltltel to trllllffllt
,., •"· 'j. , - ,-) I •·•

IOldna iiaftll• tcfiltli; mput•·'of• ctlt~ to.aii :i1J.\M1 &iri'i.,:i_,. ,,~"I

some relCClll'\l-8• ,._,.41111iline-,;...,.JllillltillliilCMM.tW • ..,., frOIII •

te,t mechine. IUCh • a computer, to •_ ,..._ linke concurenUy

retlrn • t•ttd< aift'i<riNpor•{ back bt:,thf• IM~!~~ t•ted In this

way are repaired by linkina dutter1 of pcMtatlf'Via t,.,....,..llnke.
• ,,,, ., ,,ill)

, Al\-~ ,.:lune.~le-.a clwfl~ Mltt,lbor• (IN flpe

1.5). The••--,.w.-relcoR 1. ~4-.U.. Qlll1 in the--, have relcon-2. The
. - ~

relcon-2 cell••• tt- arm'• bocl,. 1 n. ~-u.·"n7i]•-cf,1rWO-t from th_e

~p in : the relcon n+twork'1 chainJ : A loacln4 •+·• 1~ ~ j-to-~ol•f the cell• in an
-,• ' . . . '; ,' ..•... . -~ --·+-- . ·~fl•-".! .. i

array; loadinc •anal• flow from i,. ,..,_ !ant• beN to il9i Up, where • cell I•

loedel!- wn111CUM ...,_ whlc:!' n .~ ~ •!"1-'~ln 1111 proclNlnc
. '·, ,,__

'"'-, 1

'

We dev•lop a loadi,w mechani,mi that can be! coupled with •ny
\, { •• ••" •-'- • t •,-,.• ,,~•,•••~•.• -• . .t,.-c•;_~ ,.-., ·---"•-'>• ~'.•

- '

proartnvnabi• loaic procesatns nMtcheniem in an;array of two pr more clmenlions.
t : ~ ;.

s" ; • : , • ,f

This IOedtn& 1'fteCMftffl• afflWt U\i'Toiilnf'oriiiycilfin"a pinect, arbitrarily tarp

array by •ianal• ihlM't• • ,c:eN ~ hi' tfiti lfflliy;'~'-1_.;ponible becw

• loadtng ar11 may be 1rown to th• lo~ .~!U· The loadln1 arm 1, an arm

PAGE 23

Fie. 1.5 Rak:onNetwork For Two E~ ~rms

Fie. 1.6 Relation S.tween Euential Network AndA~Relcctn Ntttworu

iili
.. - .. ·-~ . "

~ -,/
i--,, ·-"' ~-

V
" .

~

"'-· -v- -- ., ,. ...

-.,

D) Rekson network for the emDtdci,d llllChine in C

PAGE 24

~ in U.,-~.,t..-,:~ ~ -~-~--~~tfhtlle.11JP;.,. In

IOf#,._ .. tr~•ka~t•~~ ~,._ ftlM!ll•J~---~J,-, _.,,. :lt1 Its ·

tip:• !~.lqacti" ~~ -~·~· ""'•J•IJI ;-~:~ ... {PM

~;~t ••8'Jf~ .. ~.to alfMtR-~J ... ~dtfilswl;,. ~IWl•l

•~• .~1for ...t ~~~ ~~r,~ ~-•,_,..,~~tllltl.tld. •
:;, :ctU;. ~• ;W;-:eccW\.,:lfMltM .-,_.,ti!~ .~,,..IPMti,a·t._,~i:•ca.;;nto

the .~ t~ouap .. th,_",c;MYlr~Ji~fl'Mll~MWl:Auilt1:1-,q,~tion

. •tate._ If--~-•~t i~,.~~,,ct;adt't,ll!MtN; flp~ how the

~e.11'• 1-JtP•r eu-~~~-t•~ _~;l'~MJ-~~ ~~P••RN•elon

.· ,tat'1-¥1 wbid\Jt:,t,~-~•~M '8MhL..,_ ••~"-:~

.,t~ :·:,Ti)lt·:!i~ tt n,p. •~-~ !)f!~ -~~,--,,~

tip.,c;eU! .Jhu. ~ 4=.,ql ,..J,-~.Q?e• tfi ~rMi-,16~·•--· ~~' Its

. nei~ ;~t~.•-~ fl~P1"ti ~.M~lf'1l,h~?•1-ed

.~- :a,',f'. '""#f~t ii;..~,:~ let#~1 '1~~,Will-tAil.l, 'ell,.,,.. tftal_,,..

c:eu•~-~,.~,r i"~--~~ ~•-,.n~~.~;~---.... t Mtl&h •

J~ ~~~ff!P;&1~~~J~~ .. ,~f~1 ~.,~ ""-'~wli•~ In

v~iCNI f~~~ •~1~A.~ it;>-..~-;t1_..Mt ••·AIJlllllfwpr1:t.; the

loadin1 arm to be the new tip; the former tip'• •~- AIPMAlo1B :ilt~

:,:, .endJhe ,1-.di",r!QJ•,~~~l•JljMde._,._of ~ arm can

. ~•o. ~,~-~ ~~)~11:~b:f.CtJ,,~• 111J1t ..,..1.-.~.it~the
.. }C,~a#,r !~tlr~t ~Jh,eJ.I\~,~.~ u~s!•:tti~~of,• <jlffll

l ,',«.,,~••lb-., ~ Jt,~, .. :9' ·-~i-11& ,..,., .• '.np1,,tacly

PAGE 25

chenl• U1e ._ of the lll'ffil tip. ,OIVy 'll dt tip c:Wf· ·Clft ·flave

Ile 'function :s* -.-, a cetre tempcn,y·M, •:'irllrln' tip· t.· ·Mfldint to

·permaNfttfy • •fUftctten •!ft.. A"•htldlti .,_. ·rwt 2M t••1011Cf'nll• fn an . '

. array, in 'tt i~----,.,. •. : ... ~ ;,,.,·,..., or lff....,.,,,
shaped' .,,,,,,, .-. _,. 11,111y t• .,.. ~ aifill• ,_., W•- 'wromd
flewe 1111d ,__.,., • · .. ·',.-!a ,... · · ' ,:,·.-.,'41tltalt'the

...... ..,.._.._,. nw~,~~-
·u.e of·•, loaillr _,,,;~ -~ tfat• facltltat ..

nt8Chlne ilf• ftMlNd --,.· A ~:---,,in-...-... ktldt•

...,..,-derw .. • -.uv.,11,11.r,r ,...._ .. el._,..._~ .. ,._ ,.,..
· active ..,_ty _, ,.,llldli h..,._ lhat ·•__.~----~~ .

Md,_.._,;INitalfl·•-. _, ... of tlie'CIJII'•

......... ··ll,e ,._., Nlcftu ,, .•• , ~ - - be

uMd t• ~ a·MI .-_ loerrl·•th• dtlMtl ,-~ ~ at.i•,-
aub..,_tly ,. , • ...,.,ttnuaH .. ear·t• Aw~-...__.,, , • ..,
outpub, and-~- .. c.w. •,. ,_; ,.~~ ,
arm t, futNt tilt ... tMclftl ~"lo :ilf~Ul~-_.11\t :•· the

en#fs,ath,,.,.

· The t-,ift ~• i,.,._ to bdclte'• cettlNChanl_., flMCtl'Onal

symmetry Wlth ,., •• lti 'A '&ilf'I ;,.,. ... _,. •. -· be

balaneeid for • el of h ··eeft functien:•~'•·~· --·'tilctfoft' date

~.of.,tlle ,, -., fi111cililitt,y'·t·'aet

PAGE 26

of statements relr~ ~b ~lfdJP!~:~ - Ouca,.,,. · · · 0a.N -

~f .,ang ~~i pr~-M&~Jl~L~f ,~~ ~J~,,~,..~ie•;ttffect
,•~,~~.~· •t!n,.f~~~Jp'.'.~tl ~-
apliceble proceni .. '.,~. ~tift~~fi,!f ~-r~,JP-.Pti•

Mt of statement, - such •• the permutetlon interchanllnl L and U, but kNPi"I R

and D wher• they •• - yieldt • Nt of ..._. ht CONpletely dNcrtbel ...

allowed fLn:tlon state, the proceniftl mechllri• 11 ,,.._ far state ~ and the
\,

balanc1-rllat,d fLl'IC:tion atatM ..,...ated by the lld1. l1et ~ If • cell I•

balanced In every allowed fw,ction-atate, the .ull ._ Nlau,4. SomeUmN the

construction of a cell requires diaallowed fwlction. atatN. One nqht. far inltm,

uae four function-apecification state bite for ttirteN ellow-,t .· fll'ICtlon 1tatet.

Three function ,tales mi1ht be incldentalty 1eneratec4 ueea .. ., and therefor•

disallowed.

An example darifi• the ~I of a prOC9'1-,·Whlnitm'• balance.

Consider eome proc•Ninc mechanism with one proc••lffll input and OM proC11ll1'11

output at each of its. tow lide-aete. One lnNmialion flllction at.le FA of thi•

mechanism is deacribed by the set of statement, below.

An arrow indicate, an Input 11 transmitted to an output. Thia· procNlin1

rnechanimn la balanced in atate FA if and only if the cell hll fl.llctlon •tat• Fa and

F c such that the foUowins statement, are true.

For F8: {lo ➔~ IR ➔ 0o. IL ➔ 0.- It. ➔ O..}

PAGE 27

For Fe: {1 0 ➔ OL, IL ➔ 00, lu ➔ 01o IR ➔ Ou}

If the mechanism is balanced in state FA, it is obviously balanced in states F9 and

Fe, We then say that FA, F8, and Fe are balance-related. If the mechanism Is

balanced for every allowed function state, the cell is balanced.

PAGE 21

.· W•.i;t.yJ81(~Ptl,_.\ ~ ... , ~ •,.-... f,Oifd'Wlfl~,

,,, ::~•Y~ 'M"~;.,.-~:_i~ U,, f&•~f!.,.1pj'.-.MflllbMlll · . . MJt~,illow.
' . ' .·· ~-'~,r,t,,·;~,-~,,.,.~'- •. ,. ~f.,...

. , ~ted -~~~:·f8'H~• ffl·~·~:1~ "'°'"'1

.. ; •~JY ,~Y!~~-,.~~-~,,J~,-· ~;o,f rt!JlfMfJl\.i~~~!J•t

machine'• control, and not by tlpls Cff.lMtill ~--•~·~---~
allows appropriate ...,.a, into I finite Mt of ceh to affect kNldint of • cell, there

it some chance that faulty cell• will prowde thole ti.,.. to load • cell without •

teat machine'• control, and therefore c•tredlct ttli•_tlon. We detcrlbe

detian techniqun for ffllkina thi• arbitrarily ·U'lliMly; w. ilwolv• maldni the •t

of valid loadifll commands lffllHer thin the tel of p11tll,le kNtcllll commands, H

that f ault-1enerated command• ere likely to be ditobeyed. Another ba•lc

assumption ia that the behavior of a cell dap1nda on that cell'• state and lnput1,

and not on the atate of other celle. Our checkerboard arrays help •• ... • the

validity of this uunption, becaule no li&nal line connect. d.tant cells. A third

basic asaumption is that • faulty cell it IOfMWhet cenMtent In it, futy behavior:

if a cell is 1ood whenev• it or it, neipbors •• tested, the cell ,.,.t be pod In

the intervals between teats. If a 1ood cell becOffl8I flawed, It may not pretend to

be 1ooc:t whenever it is tested. The first and third ...,.UO,. •• met if • fadty

cell's outputs all remain stuck at aome value. Anotw.,Uon, which la made

to reduce test time, ,tale, independence of certain INChari.,.. In a_ cell. For

PAGE 29

instance. il'e ...,.._ ht the •tat• of a -~• 'ftlje·•dNI not affef; the

-.i f"Wf~ ltf·w··f•I••-- itt tfw itlft~:~1CWI' -~ array-dealp

techfticfliet>·wf\,-; ,,,_ ;ffiaN 'lfti ••lffffty~cW W iurJ1tiMptf~n•: \ii'ftf.se

........... il'·--t11•'1Mt11;···, .• , ••• ~/ ,,,.-~

. eon_.t,.,.,-1 , ... "••tw·'~:w•·~i-:'.,..... ~ver,

utt.-.·J~ tf UM ••-•-•f-■ ., • ...,1~MIA cliWty
·.··delllftM;.,..... .. ~ •. ~

PAGE•IO

fi~~~=;~Tit~tl~\~,- \P.~Jf ~ "°'11"1,.,,... '.~~:=~ ~:!,~~~~1,~!t~ ~; ~"~'J tfl}~and

repair. Proper communication of• dlcital IWhiH ~§S~~,!!k,t r-
~~~--~,f!tJ~:r ,~=~-~t~\ffl~~,b1Jl\'fflq~,.,. °' u. 
~~• ~ ,'~"'~:t!~\l~~~~~~~-t~~~~,,r'.' rlfl"/• 

~~~~;. ~ .~~ u.._J•~•~J:il~~¾'~:-~-:,3:~~.r,:ij=•~i:~or. 
"'·~,-~Pr,~~-~rnme':L~ -~~r~~"!8iri~-~ i~~~s;:"';.}'a~e~~ ~~• ~~: .. /![~ I•

G· • ~•~~~~ ~-f~Cm~~~~,:~~kl1P.:' .!,llJJ:'i U· ~ ~ i~~ of

·~¾; ~.~•,~.In'{~,.~-~~ ~l2~j..,f$-:t~~ SI, ='bft!°i:~t ... r
~ '~~~ '.u~.w=:~-~t~f ~~t ~tw'!'r! ~ e~s~rl~;j~r

L·~,!~ ;=~f~ =}~~~!t}~Tn1=11~0~iJ,~,;~
by the list (F11 F21 ••• Fn), F11 is the fwlctioft elate of ~t:t~~".~~~~= II

the first cell in the arm, and F,41 It the fwlction 9tlte of the Mh cell In the ..
::-.. :'t},; >';t·>~-.); tf:: :~~ ,''/.J;:{:r<}an,:1 r*(i~;t}~i' _!;j}J\~1$Q 0 ~i ~f~~i\l~'t:: ·J,-;/s1J½i;J,tll t;.,

Fy 1 la the function state of the arm', tip. B•-.. 1111 the ~UOII •~1- ••
~~} ':'" /<;t ('-:¥ ~''.-(? id}~:-t :~ : .. ;:yr- .. \ ~~1 be.af)fJ1\V'.~J· ~~~l~·l:\6:m t; 48 C~O~'t')ta:l :Z:i· -f~rij

''c bal~-~4~~~ ~j~,.~~~\~ ~~a~t~r.,~!3~~~,,~~~,.,rm
,, .~ne that~-;~ f~tion tlat~(f11_.~~/. :::,·.,,J~~,..~~'11'~~~ ~~~~

to F Ni for alt 1 s N s T.
--- ,,iJ.~> t ~ ~ :c A. .: ~ > · :· .-.:1 ;:_J.,j

:,fa.,~~~•~; ... ~~~~-~ fV::w'm•g,~~~tffl"fr1~•1t
sl~~~:i~:·•~abl• ~~l~f J!'~~~~~~••l;~Q ;~~~;~m i~, -~~-

throuah • pr•em u.t tinuatea .lhlll r...- <111 ..._ a.1-, P .. aia ~-~•
: .. ·!· ,,.~·-::;~~•-:Jj·~ (:t:··:~i~;-~~f-_.·_.{:::~ :~~r-: :·,:·••,., 0 ,-:t?i,;t: .. : .. -~'\:ii ~o-~t~~--,r-rffaq $U'ls ,\ . .r~JqJUO !;t.,:~-~1{~

PAGE 31

of a repaired fia,). In fflOll flawed ..,.,_ ~th 14·'~~(fl~ celle, 0 s N s

2~ tl\t1· prora,-..· an:aiffri ~;-~Ri;)trM~· ti"Ji::i~ of u.

total ewt,· irf N irly. · fllli ,,.,,,~ iii'~*;;•~·· \~hen N 1,

'sleatJ·tMA~-~~tc,liiJ-j•j.11~11:~•-._:~ 1n

8
~iarWcfila-;. ·15h~' . . '·"""'i,:;:; ,ttQ::,':

~' ; . ~»· :f; ... ~.._., Gttlil>i-; .. ~ i.',w~' NIJlzatioli of

arm rnadV~ , ft\ •~at;:·'ff pie~~nfi'•ij~1;~t,.r_.,t'' r~on of
' ' . '

~ormou, t~~it~r .. ,.t.. viiaiitf-~,..:,-~.; In. I sl;nat~ IC
. , , , ·: ,• •. ~ . • - , r .' . : :· · , .. i./ 1 ~ } ? 1, ¢;.,;:,It. t'i :r;..,/1 i~ : .. ~·.: - . ; ; '

packaae. ArM ~- r~· n ~\. to'"llllftJ ~ ~ are

realizect ••• ~ a,~..,,~ii;1,.~.r~u;a.=~! .;...; .it'.{ two
.; dtKw ~ ... :-., & . ~,~ ai'tt:'W-w£ &.a'i"ty' ~t..cl to

t~ rMdJne•,,·~• ·ii~ ·wi•t~7•=••t1•'••i=•\·t.v• w,
~ _ .. ~:- '«•'<a:.~:.;:.:.._:3 . . i:~i? .. , ,,. .. _ ··_ .::,,,.·~-; -,,-: J ~-., i·t!tt"t~:~.:;-:; 0~~1 _ _ "'" .. :,_ ··:r~:>~ .: ··-.
ch1raclaristic, lo they could be approprtetttr r■llll:ld • .,. IMlilirlN In a flawed

.. { '1 ~ J

. ~hecker~ant ..-ay. .:

An ,ssifftt~ •Atn, it a l)eri~ lllldllne i_.•;dl1d, Iii • •--ill layer .
. . : ;,:'t_ { ~.;.}·,: :~:.,. •~;--- .. : ... -- , .. :·.,.-1 . :.J, r/rn~~~ ;j~-~J t~i ·el!st tlcn!:;/t_u~ . . ·.,·

that ts describN 11 • ftlliitNne· compoied of 111lfttlll ctlt that N wired topther
•· , c" • :;:·~_., ,,. ; .) •"·' ',.{ ~.;;;r~,, a.~ ~;-,"'~_-.-~:i~S,JTI {}~:, f: ·:
in some way. The 11sntt1Gl tills of an ·-•r.tdld fllliltiifte .,. UIIN cell9 that ••

_ •• -_
0
·.;. •• l"'l ~ :,:~ ... ,. . ~ :<> ,•,. ·:~,~ ?~::;;-.:'.':.) ~~-?-,'1 :,~ ~:::~\~(#· i~,'

not in non..;brancNna traniMl..w.n ,tit.._'' The ,_ ~ 1ft the upper-left aqua-•
••.- c" '!' ~ ~ ,. ~

of fi1ure 1.3 are the .. .a,ltial cells of that.., • ...,~~- ,A.,,. ~arrte,

, relev~·iMormttloil~~ 8n ~1;~~ ~",'ih~ ,.,,,,.,, which ••
,- t ~- , •. , ·'·. 'c> !'(:, --~~5. :·',.2; ':-:i~~;,;-::~ ;,:-~·:\.\,;<;:_-~ ~;.. tl:ub·;: ·'/; iLc ir:·:)t.i_~;.;

anothftr eieential tell or extr.-arrey fnldllne. A wire la • clreeted •anal plU\

from an .,(put; lhi~',pall'ii 'Ju.- tftlct'.(~··~~~c~I) or

PAGE 32

Indirect (via cells in trantminion ,tat ..). The output of tt._~~ ~_,...

cell of. flp• L3 it, !Ji'~ ,dir.<1lt.j~.,.-~-~.,u,-,.~♦...it!Jd inclrectly to

... ~;~tra-errfl)' ~. , ,\ . ::,: .. , '::,)

An•,till,~.,, . .,,,..:_.,._. •~---.-"-•dad
,m~n~•· Tht.arm ~·•~~.:II_.,. :~ of

•lffnti..,c~eU .. ,:M, •t..-,tiel ~~-tr\n,_.Jt .. ~r•a•Mh:MII I• I

inf~tion •t~t•F,- t~~$ T,.t1Mtn4~-·-·' '.,..,. l Y ,,_ ·- ·-;, .. , . . ,, ,.. - . ~

~,~~ P~-:~ ~~-~-~JJ.l•w.,•J•..at• Mlwork

_tor ~•.·••~~i~,...~ri"!!i..-~A-~"~-~mJle~•••·•flr an

--.q~,?tt.• ~ ;ot."'-,..,..,..i-.1l;•t•-•htt. -H•nlfll·CIIIII In

t~ ~Yi~ wt)'~:-·~ .., f4r ;,,~ .. ., IM•fiu•4tM: .-.-~if~eMe

coqn.~t• ~-i•f.,tmli-1.,Q,a&'• ~~r• '4~ ~.,_ •---'-iM►.t.t. en

i. ••~J~ .. IJ~ ~•: in,~ .-,•n&4~~•wrlb.., .. ~..-w:tN•,way, · An

. '8Jl~i,~J~;1"~Y, r~.~•:~t,t &Mv ~• tha(•ltdtad

.}'!•~~.i")i~.~~ ~y~,- <w~f.!J,.A?,!'-"' in an

-•~MaJi,~~~,.~J•y,~,one,.•~•\""~~~ ••each
uaociated relcan network. If two cells •• 111antill MiahbfaJ:tftuM,.:.....,ual .

,-t~~~!-~r',f«;f:A1 ~•~·,._,._. ,~_,,._,..._. ·••entlal.
~~ ~tPf.'Pt~ ...• :,.-t~-•"6• ~

< ~~• qr l,,Ji".~f lltlkl.:~~~a"'f-~_,.._..,.,1;Wh1~

PAGE33

. .,.. or ,.,.. ·--►·

.""-- 4·d-.M 111'1Yt,...._.pr~-1ay.;i· machines called

Atgh-rtlcon ffldCMJus. AH embedclnp of a hi ;~n _.·:cell•

witti ,tht- ., :fw ,..,. i£'J'lllr"'IN"t,M·•~;~. only

t~ ••••_,..,._, .. 11cpvMer1ftt u.,•fiii'N Nj . ._ •ilnllif'~e,

8ftdctlf,_. MyM·hWflll·el wttwf~W tt,,W,tiMiffpdll~N Wput, of

tlleN ••etltilll ·c.Ut' Fer ..,_, fllFtetl irifjOl'Mi ~c:dn ·Mtiedded

machine, .,,.. -•': ·-•dNtt.Wt "if~'~l ;that

our· ~.,_,,..,,_._,,.::Ji--1tf·IMf ... nlliM. '~, for every

wire ift .,.'N_,;,1fe61t,....>fflllld-·1hft i,··• aiiid')iiy·w Wire ln an

equiWIIMVt ffltldltfte. ·Siftc• . NMnti.t: _. •• , 'Of Odf" 'V►t'Nft"' MIIC!Nttet are

----• cor,,.,.,.nt·•••n1t1t'ta•fflWf ·k"111·W .v..••fcJntti•· itate. Car,..,... -.... to ;,, •• 1111d .,,. ...

MTaylMittltnN ·fft',lll ... wtf/ .. ·twy the liflllh ·.t Wt .. ~• tMJj'clffir 1n

equt'Mtlflt .,._,., fMChi,_ cfilptM' 4·th.u••• tr.·liiM1 ~;11fthll

tactr'4)df ,.,.. ,.. • ..,.,, .. .,. W1i&l4iltlir1,..._MI, Wit

at dtffwertt es..uat·Nfh ~w.-: .._iaty-t:·aa« ·Tffilt·r~e. ~. a

detia,,et ljpically ·1,-dftea tM t ... tfll~',:ffiat wllf perform a

Our,.,., .t 'hith-Nftion ,.,...,.equtrfi1 thw'8Wl~~,i'that the

l.,..th of •--led._ ,_ dffwin,...,..IM ~ Whit•· we

fflflflticm ·· · ·. · i~w,·...-.-·-■8jUM'li - 1W. li,,ttot- the

PAGE 34

moat ,appropriate ~iah-relcon machine archltectur~ The ••a~llo,,:t t,..\ ,the
•, '.,+~ .~. ',· _c .tr:f,·••,.~c, · 's'.',. ,·> "":?!'_-·•: :i•-:::t f"5;. ·.~•.~ ~.':':·,~&\·J.;; ~f1f:~?"\~'•.':'J";~';-: ";j

.. ,_. '~!'1th of. a11oci~~ed _wire, may _diff~ ~~i~,~~f1 -~~)~'~~-~~-~~~_not ·

required for repair of array1 embedclr, the other rne,c:hi~. ~•- detail.
. : -:-': .:;~.-. J': ··~ -·,t. -~' :.~J·-.. ~5{J ' 't!..i.\>~- ,}t'> >~:- ::t~- 4 .., ;;5J ~ ... C';..,!·: { ,

Uk• chapter: 3, -~~ "'4 ~~~ ,.~, ~~f'~~ ~ ~rr,
;. ' ., .• , •• '«.., ~- ~~l' ,. '1-" ~- --~ "' - '

W~ !how that the~~"'!' that f>!'OvJ,,.,~J~i t~R~~ ~' -~~7 t~let,.,, to

comparable mechanieme . er••ented fo,:. chip.lei' 3'a ,rrna.. The lcaader• •• . -:~ :> . i ~ ·. /.:~-~ .. '~~- ;:;,-._;,~~-? ~ .. -.·t;;·;_•~~ ~.!l~ \~~:_.,·i f,"d~~;~- _:~; .,.'' ,,_. ;.· ;

_fu~tio~lly identt~~- T•~~i:~,J_i• ~~~v~~;~~~\~•f tr~~,.~:,Y!lk•
b~tween a te,t ~hine and • teated. cell. A. ,,,, lml it .ti . t_r_m,~•~~, ~Ink

t . . _: · ----,,:. /.'--'.){~ : ~-: -,:· · ::!.'.-~:•.:_;·,_.\!';~~·_.; 1/;~:"~·1-.:~~:0 1
:-. ',.,1 •. ·-~--;·~f' ,_ -~ !''}.,r::J.

-~tw8.8" a t~t. ~"!~-'~~~I~~:~~~ --~!~=M :!,,U.~~ ~t•

to ~ t~t ·-~~ ~ ~ ~~:-~f -~· li~J• ~~-'\~•--~ ~,~t~ -,d ,t~ .
teat link. Each cell in the test link conducta •anal• to and, ,fr~ the tip. 8!ld of. the

' , :·~ ,1 • 0c:' ·-,d t";,~ll'!(. ~ , "' .,'. -~; ···r !J~;~·;t_~::: ':·· ... :'1~}i,HL ~rt!Lr-· :· - .. ·:~; ;·~;r.

link, where• teated cell may be located. The t .. t ~.i",~~~ ~.+~.-~t •
• ,. ..: ., ' ~' ~ • • - ,'• ,<" ? ' ' ' '",,- ,..,. -~·

t11t arm, which 11 1 teal link terminated on • ceJI in ,~ i.J•llf',n• function 1tate.
! .. ~• ~ • •,', ; . .,· ' - .'. i -.- •.:,, r,. :; - . ,. i~~ •) ·f ~• ••:_: .. ~ . / '~'

. '.~~• from a teat~:~~ ~nto ~ ~~110,f ;~•,~~~1 ~,~~ -~ ,th•t,,f"''•

body to Its tip, turn, return to the ~ of the lffl\·-, lt'ld .at the t.-t machine.
. _. ·: ,~ . _, .. ., :.":·'\,.- .•,:.. , ."·; ;--:~~:" ... ·""· :·., ~:t-•-"/!t~•:·/· ~- 4-. ,~-h.;:~ ·-,-~;:""~

balanced state, of cell• in the arm allow U _to ~-~ lnlktt a:~ fl•~ ~- •
. -.- ,-:_ .. ., .. <,., -~- •- ... '.,' :; , t':$~; :)' 01·:.~.:._,p'"., ,·i_":<J,--: ~.,.~f'"., '..Ji:"-,'-"<', t

it a,owa from a test machine lo the aide-Nt of a tetted cell. Test 111'.'k• •• arown
,_ .. ,. • : -· ·:' •• -. _r ', ;i ·'·"-,.~~-;;,,~~,~-."'."'~ _ ' ·:~~n 1-::;-··' d~~:- ~·' · ·, . ~;~:.

to all the acceslible aide-Mt• of a teated cell. Thete llnkl allow a tflt machine to
, ·~: • ·:.,,_, - .:'·. . -~ ··:.:•;'~t.:"',; r-~_:/ .. " '\ · · ,: i~ •• >(.;11~ ~ /:i -·- -~- ,t· ·- - '1:,~

monitor the teated cell'• behavior in varioua hn:tion ttalet, which are set by the
-~ ,··. •, 1 •• -··. •• .---.,.~~~;t.i r :.?,:, ~~·ih:.•:_'-:\t~.t·-~ .. ~.:.\.,:·~ · :-~i~·:,· --

loader.

PAGE 35

?'• ~ ' . . ,· ~ "·; ,.._: ·-~ ·~ ~>,: .. . '~ .·. ·.,~_:.1 _,,;· '

· ·of trantmi11Jfl1t 1t1t•• to wire to1•ther ••••ti•I nelthbof'• which aren't

intercomedion Ntlahbo,t. ~. wlth I r ... -~- elfow '~ -to bqin
'. ·}\,' ·." _·•'. ··;:; :~ . .,, .. d> .-:"~ ?'V~'>';"·'·•~I :_;"''¥- --:1:·. ', :~ .•

to compare ti. ·r- colt• involved • iin.r.nt ••lifttial· fftidinel. The wt
.·._ ~:,:. _ ... < : .~ .. , .. J • ':· ." ~- ._ <1·: ,;4 -:\~J.q~·...;5 :~ .~" 0

!£-'t< t;ii"L) 5.n _;
dtfficwt ch-'t,_.d~'lrtay ,._,-i11vtiv•··_..I...., a htp-r.tcon IMChlne

whose wentia1 Mtwon:' is; arid (~•Jfi~• TJ:A): ·,~;.. ~ • ~ne •

ptd ~Atn,,-..,-CIII Rt ettential ~:i~•tiib:01
~--~(-• repii;'"~ •

'p • '.,

· .. :,,, ("· .- '.·"'· ,; '.:· ' .. ::-,< .!.~<J ~r~-- ~_,c :'.,; ~i'.-i'- : .. !-~·

checkerboard May ;that • pfcfwffl bl lfflblitrt1d 1ft Hie ·...-.y. Marr, tish-

retcori rnachinet Jlaqtla1 ·netwotke with .. ~-~JU..• ~ .. ,. (~ 'ii•;..
. .·· ., ~ :: ,-

1. 7.S). w.,. • Nt: 6-~ ; • ...r.YafJn ,~,-~,~ more .'~y

than Irids~-: 1h11 ..t··u.t•;~ of;.:-~-~~ rlfavant

-) - ' . . . ' ..,, >::t: ~ . ~-a;:""' - :~ ~: -. - :;'. ' .. , ~J \. . '·. '

Chapt.,. 4 al•• detail, an array of elnaple call• de•i1n•d for the
. -. ~. i; .:. ,·,- . ;~·:. ', •;,c ::_.-::;":, r:,/~~.:.'··~·-:·i.f;),"·!:;.;- t~ :r,. s :;':···: __ , •• •~

realization of erbftr..-y daflal rwhlnet. ·Ohn hlft cl1•arlbed iftftnite llfffYI thlt

may c~tain inittattY:Wte machiMt ·• -,;••~ -t~v~ ot
• . _. _: _ ._. _ ~ " .-~- .. , .. _ -,.J; £•. _ .• -_~;;.± 1""~ef;,~:-; ~?r- ,:\. -~-. .. ~'.: i ~-~.

constructini ottiet .- tnachifles that . Cin pwto;m "'ai,y ~-; Our array it the
, . · . ~-,,, ::· .·,. ~·;-,._. .: . _ .:;. -~ ~-;: .i--,<· .;~ -:; :.:~:) ·L·- -'.') ,: ~~ ~-.. ~:1 ·: ..

first one wi'v• Man capeble of embeddina I untverNI computer-con1tructor-

repairer. A compute', may be ~·hi·•· fhibt portion ~ the ,rocel;~~.layer
.

of the arr-,. A hnction at•t• that trwnit. proc111int lnput1 • toec1r11 output,
. - .•. - .,--_; .!.'·,- ~ . • • ·-! ~ . , Hf:' ;, . . ~ . ,

provides this comput.,. with a loaclhc arm. (Thit ii the My tlnt9 that cu pravfoul

description of proa,lfflffl8ble · toaic i• .Uptly incorrect, in that procenint le,pulj
· ;,,:,dL,;-.J~!~f:i' 'l~~·-~ ~~i ~t ·r ,_4t:~.,

~ affect loacinc ·output,.') lhfer thf1 embedded ~• control, the loedins

Fig. 1.7 Essential Networks For Two High-relcon Machines

A) Grid

8) Non-grid

Fig. 1.8 Relcon Networks For Two Equivalent Tree Machines

A) A tree with several branches

8) A tree that is also an arm

PAGE 36

/

PAGE 37

arm works with· four teat arms to teat, protram, and repair the computer'•

environment. The machine may conttruct more memory for iteelf · by · Ulifll it,

loadint and test arma. Furthermore, two.~~ embedded in an tnr/
.,, ,, ,~.

may test and repair each other. We brielJ..,.. an lllbedde(I twhlne we'v•
. -,- ~-· "-''

desiped •• the proc....,. of a urn ... COIIIPUW-conttructor-repalrer.

Chapter 4 also diacus, .. practlcal prlduc:Uon 11.wi tlld ...-1cation

areas relevant t-o hip-retcen machinet.

Chapter 5 ditcus"• proc ... lna-layer maichlne• called ,,,, ucAtus.

Random-ace••• and track-•ddr•••ed 1equentta1-acc .. • tNnaori•• may b•

efficiently realized • tr• machiw_ in. fl.wed arrays. Thie i• true ~ Jr•
;.', _,, ., .· ·:. ,:.\,,,,_•· .. -. '·, ~~- < -:~; ~ ··, . / ~- ' __ ;- : "!' ·.-. ,~'•:, : •

machine rNHzatient ... appropriate to ffllChiw which IIIIY be viewed - • lffllll

set of modulet with a.comn,on input bus end COlftfflDII output.,._ with the output

bus accessed by only one active module,-at ·• elven time. Each cell In • tree

machine I• • balanced, ettential cell whole fwlctlon ,tat. lndudet a ll'ique name.

All embedded tree machines have tree-Ilka iilWP tiilW,ki :.. ~- nitwork• In

which a tree trl.l'lk, which may or may not .._offthaot br....., e>d.,.. from
'·.'·J

the tree's bate cell (see fi1ure 1.8). A tree's bas, c,U Is the only cell that la

directly comected to the input-output lines of the tr• machine. Two embedded

tree machines are equivalent if and ~ if they hive the w tel of cell l'llfflN;

the particular shapes of their tree-like relcon networks•• Irrelevant Thul an

embedded tree machine whose relcon network is an arm may be eq&ivalent to an

embedd~ tree machine whose relcon netwerk hel .. verll brancM1. r, ..

PAGE 38

machines are embedded in flawed arrays more easily than arm or high-relcon

machines. If there is any path of good cells between two good cells in a tree

array, those good cells may be incorporated in the same tree machine. Interwoven

test and repair processes for tree machines are like those for arm machines.

PAGE 39

S.Ctt-, 1.4: Amy'Repair

CMiplfer, 2 rew.w•'1>artlClltaf11 teleVMt 'wbtk fhv.lved with cellular

arrays. MMJ Mvwpr ... t1Mt ~· ltriiy"l'~i'_~. 'p,-.nted

methodi fer ---'d'r.lftlw: ... liU-,i tlit--cjf~ UN

custom metallization, but IOIN UN prGII _,_. repair. Some have concentrated

on necenary and sufficient conditiON for t•tabllity or dlepoNll,ility of a

particular type of trrfll. We deeitn cell mocal• which .,. incorporated into an

array to __,,. te.tlflft loaclftlt and repair. We .. pr111nt the flrtt -,.twtlc

treatment we~ve seen of the affect en embeddtd wlli•'• COftlllUllcatlon

structure hat art U. ty and · .t • .,.., for --•ddlfts that

machine.

We dMcribe how conatrlinta • the wirifta betwNftUal cell• of •

machine affect tntina lfld repair of an ,nay u.t wbiM. Chapt.,.. 3-

4, and 5 conaider this queetion by focuainc on three related d•w of machine -

the arm. the arid, and the tree. Fl pre 1. 9 indicat .. how theN three cl•••••
relate. Given· a lawed ~ it te embed • aiva ty,,e ef_. we model. the

repair proc•• in the tonowina Wfll. The fl...t .,,,., I• viewed • a fl• /HJllnn

(see fiaure 1.10.A). with a dot corr8lp0ft&lne to a pod at and an><_,.....,.
to a flawed cell. The machine to be embedded in the proces1in1 layer la

associated with an e111fttial machine and I dais of ecpvalent_. IIIIChiw.

In conaiderine repair of an array, thl• d• is rntrlcted to 8ftlb«.lded machines

who•• dimenei~ .Uaw them to fit In.to the ft.wed.,,,,,. The nature of lhl•

PAGE 40

.. :~·,11 :: ... _. ·,,; :,,>.-~-~1• .. ;~,~ .'·~ ~~~.Cl:-:,: ·rt• ~.;;'fi r:;;18 !'!J .. t~·r'~.: :i;_~.f '.,~.:~~ ·· · 1; ;, ;, .:-:· ~~:l•,r ·

· that tht-,~~K~~·tnlA_.. .. .__..kW_. X.
· ":) ·~ ··~ ., ~ ·:•.r .: ,,-" -.:. ·_· C ·,.;y;. ~f:11};:;~,1

·-, (: t-:.·•~ rl::Jf;·~~ ~t: 1~-1~?"~ -~:- · _:i ·-2 ~,._,.; ·; •. "l

The 11ray i1 r~~,t!.~:~ ~·~v'5~ ~'~~• •.
desired arm machine with 1a· celles 111""''1'~~• _..,lld1d machine• are arms

containina 13 cells. Only aome of thNt ii•f,·~rfrt 111Cliw ~ • relcon network ·
. ~·~~-ti>

that fits into the flaw patte~n ~f. fi~:1/-J9·~f,~~c~~¼~•!ma,::one -.ch

relcon network 1uperposed over the fl•t11ttern. The ••IOCiated embedded
,;.--~ -~· ":~~ .

machine be embedded in the ft~~: ~, ffllY .,..NIGNG .,..'!'M,.111£.,.,~.,
rt::,~~~--~}· -

We noted that the. nature !~.,~~ ~fu~,:,;:~,~1:: ~ on the

fw,ction stat• anode~• with a aiven,. #• ---. belanc:ed ,..._ may
.. . ~-,~w ... /4.

e>epand the lize of an eql;ivllence d• ~·taciltete ,.,.. Anne end
! ~ j

$ 1' .; \

trw use balanced cells to facilitate t~~ ,.,,.,. The bllm of cells In
fi-• »1;:

trensmission link• facilitate, l'epair of •• .,....,. hlah-relcon whiw.
,'> ~•

Fl1ure 1.10.C show, • 3 x 2 arid mactt+~fflbedd•d In• flawed array. The

relcon-2 nodea In the networkJltlJJ•Hlt4• .,...,......, lo arid

cells. •In lf'id-embeddiftlt oellt UNd II Hicit.j'6verh1MI 111octeted with ,.,.,.

For every flaw pattern anct:~f •Nntiel mechine, there'• an
/- ~~ 'l j,

•••ociated o/1tt•x• ,,,,_,, ,fftcunc,. whld>-•,• hi&hMl attelnable ratio of the
~.,,..,4,,,,1

~/ ,, ··*- ,.,,,... 4

number of embedded,.tial nodes to· U,.,,,.,.. of dltl In the flaw pattern. In
i • ~

fiaur• 1.10 the optinun repair efficl~~w-1114· for..., 13/14 fw....., and

14/ 14 for tr.... Let OREa. OR£1, and ORE. be the aptlml• ,.,. efficHnciee for

PAGE 41

. Fia. 1.9 Relation a.tween. Grids, Tr..., And Arn11 .

If a grid's essential network has a certain number S of squares, ~• the 1rid'1
nsotiatafn.l6eft netwerls ts.v• ft .._ I · .. ,_,,>iaeh··.~ 11 srta· r .. con
network's .N node8, there •• one or more tr• ~ wftll N ,_._ t4 i•
.,..., . ._ o,; .. ttfS,O.;ir~r~1W.'tfilJ 'Wfe'...,. Nleon
network are .,.,. each MS n or fewer .,..._ At lwt,. hal S lllld11.

, ,,, - - · . l·•r··· · •1 -, i•- ·-·~r.z. •.".;.f ~:...~ ~·.-,.~·-~ -· ••· ·-

A),,_ nkonnetwork'ola·arid••W.•liif• Mtwork

B) Another r.tcon network for the··aame crid

C) Tree eubtMttworkt of A'• relcon network

D) Tree 1,Jbutwerb of S's reJcon MtwClrk

Fla. 1. 10 Repair Of A"aya With The Same Flaw Pattern
A) Flaw pattern

• • • • . -x~
• • • •
• •X•

S) 13-node arm 111, flawed array •. "

w x.-.·
The repair efficiency is 13/ 14.

C) 6-aquare arid in flawed array

PAGE 42

The law .pattem.;M:,._:,;,l'tlll 1n ll • 1III d;•• ne~;- 14
used nodes, but 6 of thete ••_ _.. _. 8 of theN ••
relcon-2 overhead nodet ~ wtth tranemlNion link.. The
repair efficiency is therefore 6/14. ·

0) 14-node trH in flawed array

~
The repair efficiency is 14/ 14.

PAGE 43

srids, treee, ano arm1 for a given flaw. pattern. Becw ~• U. relation between

srid, tree, and .-m machinet noted in fi&u'• 1.9, OREa s ~ s ORE, for llf/ flaw

pattern. Chaptet'I 3 and 4 explore repair. efftclency attained by proar.,.. that

simulate repair f• .arme, and for lridt end other bi..-,elcon macNne,. Chapter 4

compares the reeultt of these experi~+-. :_._...,.tit•• t•oretlcal

exploration of tettins and repair .,..,. for dllliw when -~., toward

Umited requ,__. • the ~_, • llllllhlM'• e111ntlal

cella.

Chapter 6 aummariz .. the lhetla, and hwtMr producUon

oriented and thNr.uat projects.

The next chapter provJd• ,c•lil•~l by explorin, other •Y•t•m•
approaches, COfflPlrins them to thi• orMt►. --~till evolutionary trendl wNch

PAGE 44

CHAPTER 2: CONTEXT

Section 2.0: Introduction

Thia chapt• puta .W. w• •--~-Mritll· '-AaGit to nlevant sy9tem
' • - :. >, •• ? 1 •. -.,, .- - ' -· ' ' ' ~- ~ ' ' . ·) .

appr,:°aqhet ~ evowtiq~ t,anca .l(ay ,-.,,a1w1 ... ,f00·G,Jk-a,.· arfWt, are

diacuaMd, and the r.e~ of our,._ p. ~ .,..,.._, I• deWed.

~w~ array, and rmv~U.,. JC ~.,..~-;'.f~on of cellular

arrays on a silicon alice ia_ ehown to ":~_to,,.~ ~ .. of IC

circ\Jl,t •chips• on a aUce~ Four evoly,tj~1 ~ .- •~II'-••· {-,idly

inc;r•••.illl cepabiJit~ of. inte,ra,tld ~~~~~,,.f .. ~-;;~• ,,-1,~-,,lc

machines, meas-production of a few hip-volw,.1.1'.~ _.,., J~in1

rell,llarity. Ou" approach is viewed as a ayst8ffll approach tailored to the reallties

Other effort• tow..-d very .hiah in~.-,An.;~, "4 rfPl!lir. • ,Q!ljkjar machines

are revint.d, .and they••~~~ N-~NdL .. · .. ,
• 7 ' _a • ,· • • ! .' ' !~~- . ,. ~. > • ' • • • • '

PAGE 45

Section 2.1: Celkllar Arrl>J•

2.1.A mtroduction

Thle •tlllft :locatee our celhnt approach in ·tfie · damain of .cellular

arrays. We facue on chtfnctions hr array r~on, cue~ . .,_· and

fwlction. Wewiely cenlider the CU'Nrit._ of ,.. .. ·,nay ty.ten..

Tht W\aww oft eetldar..,.... _,.. .<the bai:tkwill c:~ of

Its cells, 8ftd !Mfr tftten:onnectten. ~ efe&:--. 19 cutr1lr4lyt 'atitlld to

implentent•tiOII of I -ceft's function, we ct.scribe c•H• ueint correlf)Ondina

termiflOIOIY; 14ewft•. ffi• app,Olth· ·-~·-.... t 'array,

rNllna 1ft ou..-· .._ ... ~

2.1.B Array ln1-connectton

A-rrays with many dffer.ent types of imerconrMldion hav• been atucled,

but 1- and 2-dimenaional array1·•• ..i·•~ In• ~-•ray, a.cell

may -send si1nale to and from at most four nei&hbors. The cutpolnt array, and

other arrays with the same type of sianal flow, have been extensively studied.

These cutpotnt-con1i,ct1d arrays have the same interconnection network •• a

checkerboard array, but sicnals may only enter a cell from itt left and upper

nelahbors, and leave the cell to enter ill lower and riaht neilhbore. We choee a ·

·rtcher interconnection etructure, with it, eliat,tly •hiaher aHOCiated· coat, for NYeral

reasons.

PAGE 46

that an operatl~n on the -~~t• ,Ql ~ ~~,, c~pt be pwfor••
••i • / C ; ,' ,, •." • ._

above the low .. t of U.. ... ~ ... ~.lfft 9',~.rl&IJ~t,t U.. c;elle,

without ex~emel connecti°"'·- for .W,, ~ ~d eri.;ay•

don't have t"_I• limit•lltnt ,~~_,,..,.,, ~~,~c.,~ :qWP'll• in -1Lf.our
. . . ' ' . . --- .. \.. . ~

directions. Thia ~ for int,~JDN .. ~l~.~tiona of an
... ·~· .. , •• - ' > • • • ~ - '

embedded eequentiel ~--mlY -"- fw••t~ t,J~heQ..,._,d
• , • • • .. C • < • ' _ ••. ; ; : • ,'\ '. r ,,.. • ~ • •' •• ,,,

arr'1.

2) Sip, Jr!"' "' ~~ary' ~Jn !-~~~~vf#iJ-,8' .,ay
can cause I~"! of an ar~\r~ ,c:"~ In ~ ~~•Y.?piY,lf ~,:• JJ an

lntercoMectlon path fro"' the __ 1"1f#N cetl Jt tb,I_ ,t,~ -'· Thi•
·~ ·•: . .• ·'_•:' !~~:'." ·- "·, --~ -'::' ' .. ·• ·,•,.,_• .. -,., .• ~ .,_

important cepability is ther•tcar~. l~•t,Jn ~11-nt-connected .
• • •• ~ ' ' < \ _(• • • '

arrays.

3) Rtplir_i• mo,r, ti~• ~~~;~JM-U, U.,Jn•
set of polli~•· pr;~••,n, _tr~ ,t,t1,1c_.

_ The c¥erpoard,~a,•• int~~~ •~•)~-.fifNr ~••

wi.~h the two-di~onal, ,tep-~repNl _nature of ~pi,;-,;~;, f:'~u.,mpr-.

, thie 1tructur, le relatlv.,ty ••U, tR ~·•··••~·'.',~,-t,:!P.,•for
, - ' -' _,. • ,. < ~-· , • - ' • ,

PAGE 47

21,C Customization T echniquet

Another 11epeet of celful• arrays' la fi.r 'cuelomlzaUon technique. All
"i ~.._, .e:~, , ..

but the simptett array• have the property · thet · .-eel' can be cuetonized via

memory •--• to Ofte ef a .. t of f~tioh 'stat.a :corr~ftl to various

output functions. Thu• an array can be cu,to~tea to reaJfze • particular

.,nb6dded maetline ·by GM of Hvetii a.tonibtJon ~

Unelterabfe· cu.ton11zatfot1 late in ·IC ~on 'is • common, extreme

form of array catomlzltlon. A ·common technique·.-. 11et~.illefallization via a

mask, fusible metai links, 1...,.. or IMChm;cal ..._ Polycell, ·•Olllatri><, Reed

Only Memory (RCM)., &net Progr~-Loeic ~·c1Uf·provide well-known

examples of Un -oach. a.cw u:h ut r •. ·~, or

cuetomizatflft ..-rore can be pertiadarJy di_..t,.,._
Proararnrnab1e ROM• <PROM•l ichleve .,..a1er fle>dbnf ty by allowln1

customization that i• alterable, albeit a.rrently dfficull One IUCh technique usea

FAMOS trnistort, which can be put In I 'of 2 c~ •tat~ by appropriate

electric mana• (8M <Fane)' 72>~). Intel ... lrifMI ~ ·· tr_.tor to hold Ile

state for 10 years. H11h-enero ultraviolet liat,t or x-ray• can eraM the••

memory elements for subsequent te-proar•-nifta. . Dfffiaji.~ include the hip

voltages, lon1 write-time,, and diffic:ul(irastna 11iociatid\vilh t,; FAMOS

tranafstot. Mapptlj, 1tanley Mazor of mtef ~• u.t "'f61R..:Pf'~e. loalc
eraseable FAMOS transistors wtn be devel~ .~.._ lhie 'wouid provide the

Ireat advanta1e of a lo1ic-compatible, read-mostly, nonvolatile Mffliconductor

PAGE 48 ·

Pro1rammaA>f• Loslc (not to be confUNd with Proar~••• Lqic

Array,) providel the utlrlltelffl ~f le&f,;ldt ~.,..-,,_

volatility. The array, pr.-nted in t1i1 ~ ~•,:~r.rffl:!-.rf';-'~tJ, _· loak:

Re-cu,tomization of proerammabl• loaic it u · HIY • loedinl . lb function-
• . l

tpeeification ,tat~ b!!~~-o-W~ ~"-~ .ff'JIIUI! llilleh fdltetel t..t and repair
I ~..,-- .

of array, of pr►1rammable loslc. Buildi~~ r r~ mechllnl•• into •

proarammabl9. 8t-~·;·~-~~~J~J•~.:-~-~ COllt than thole
~ '. ,:;i:. .,. ; • (

•sociated with ~~fleMlbly ~ w,=-a,: .. ~ l .
Bec■I\H • pr■ct1Clr ~J..t--'& lqlc w■uld

probably be r-.lizetd via Nmicanductor technololY, Md ~- uniconductor
) ' ., . ,, " . .._..., ___,_.,,.,_~ .,..,.,. _ _,,...~~~"'"'~':'-, ':

: i i

memories are currently volatile, prosr.......Wet IOflc ft currently volatile •.
' ' l t

Development of lotic...;compatlbfi·nonvif.ur. ·~iiialer rnenaory, such .. •

moclfled form of FAMOS pte, Wtud offer bi&.~•ftlR'~~!leclc-

A fur~ ".~~-~~-~~~-~ . .!..~ incre111d cell.....,_
compared to metal-customized array1. TN• i~ trJ.. NC~ there are delaye ·

woci■ted wl~U,,,. Mlec&klful ;1i.rdiet, ,4~ ~-~~ llpe 2.1). While
. ; \ . ! t

there i• no ~ lhi• ~ty, two ,_ ~~JtMf lituetion. The first i•

that the d■layaj thrilulh 1ata~ ~,~Ji m.j\1111~~ 1 be mad■ Y■r/ _.,
: ' ; . "

because these ;'87"ll can be de~~--••~ f~ •ffunction-epedfi~Uon

state bit, will nqt chlnle •tat• dl.rifll nertnll ,...,.. •I-·....,..._ ffllChiM.

Thi• m■w that if 1:1111...,_.bnlllllltW- ,-.,.4.. _.. lo lW IDaiC

~ig. 2.1

A) Met:al-cuatomized

B) programmable logic

PAQ.E; 50

low-load enviror.menl tf Josephson j1.11etion 1atea becOIN practlcal, the expected
• '.!, ;.,/f,~. C • • ~•:_s: ,:(..:~f, :li :>~ ;;':"

delay throulh a pte of about .1 nsec. f• the ..,.. delay • that throuah. 3 cm. et

wire.

A final problem with proar......ie Jo;c I• tta demend for extra IM•
, .,. , _:;/-t:.~ ~ :' ;-r·:2 ,.-. ::; 1

~(-- - ·,

for loadin1 function-specification ,tate bits and aalectina a particular output
<':': '•'< ;;-~ ' • _-: ~;; (h.:,; Ci ·',

function. These pte, consume an intearated circuit'• w• and power. The fact
· -~tr~ :t 1 ,~,:- .. • · ~ ,:_

that extra area i• required for these 1atee i• offtet IOffl8What by the fact · that
.,

proaramrnable lop: minimize, non-circuit proaranminl faciliU.., u:h • the· l'l,llftY
·• -~ ~ :.,:> ~-:~;~'t;~~ ;_~..::tl1L;(}- >.-t~:· -~-~- :G.::·r

area-conuninc bond pa required by ._. custom fNtalllntion techniCIIM, Thi•

become• more sianificant as ehrinklna tranei,tor ..,...... make bond pede and
-~;/, . .,.;~:·~ } ·e·\:;;~t·T'"·.1··• .-,)·:>. ·.:Si~t

other mechanical customization components occupy • relatively hi.... ..t• ••
"'.i• ·,,,,;;(·• .•· .. ··,;'.'',!; '•~i' -~-"•r ~.-:·,~-; ·,c;\-~'.-:,: ~·•~)- : <- ';~:.1

The power con,umption problem I• alleviated by the fact that function-
.. ~,. : --';(· ;-_ ···:·\ .. _ .·, <.;fd~-1

epecificatlon ,tat• bite chan1e atete infrequently; in tome t"hnolo,ie1, •
· · - .. , · ; · .: : ~ ;,. -:~ ··,. 31 ;) 1,~ {! H~: .~1 ;'<~ ~

element'• power dillipation 11 very low when the 11...t It ,-t chqifll •tat•
· . .. , .· ~; ._:;·J:> "· ,:. •,- ;c ,' ~ -0(~ ~ · "•··,· ,' '>'. • , ... , f ;_)

Becauae of the pin con,treint, on ICs, moet propoeal• for. lolldln1
- ,-~ . : ... :-,:., .. ~ '.: -.·:\(~--- " ... ' ~,,::' ,::, /:·.f,.i'

prosramrn-,1• loaic attempt loadina via electric •anal• ~ ,_. at the eds•
'., 1; ' .. '. ' •• \ ,: ';_i ;:._ .·-:'-'- ··.:·Hdf;:.~ l '·t\:': ,, .. 1 ' . '· "~}~-t~

of an array. Chapter 3 review, the moet attractive ~thodt that J\lv• been
, , ,. .~. : .J'·~t'· t •'·"j,;J \ :"'.~·- :;•· (,\ ~ ~-:, .. <·,·~,_.;-•-!;•~

au11eated for pro1rammable lolic loaders, and &iv•• • l~n1 approtte" with
. '., .·.. . ;_ :~ - ··.-- :·.- · --~ ::fi~/ -~: \.:-, 1 r·f.:',:1":~~~) '~::·1i;'1.:-'=r· .·,r, .. :" ./ ·-,.:::._.,;_\.fl

advanta1e• achieved by addina a small amcut of draitry to each cell in. the array.
,. " ., f :., •. :~·_:!;1::;: --:,~>?~-.:;• ·.)~- :::--'_.,,.i""--:,_'·:·;

2.1.D Size

Siz• is another distinal.iahinc attribute of cellul• arraya. ~. particular

measure of an IC ce1r, eize is the amount of •• It occupiet, but thl• wre I•
. .. . '<J 'i :-i:, , {,

· too dependent on technolorl~ c1eliper. delip UN. end deelart mdl to be ueeM tn
._. ·: · - /. ·.:. - · - c ·: , -~: · ' •. :· :'1 J:~i .i-f'.LJi-li";-i~-;:~"'.: a~•: ~.: r ~ ,\ ·~:

prell~nary eathwlatlon of the eiu of ceh. ~, U. nonMI MIIUe of
·. ;-; •,;'.- X ;,. ,' ::· '·'.• ;'t~J. {)~1,_,;,;_<;f: ,:;-• .. . -: ~,I'-;., "'.t:> . ·. ·' -~ .. I

1ize is 1ate-count of the cell. Thie IMIM• hat lbdted value beclUM of the

variable typea, fttnber of inputt, and c:lentity of plet, and NCW of the tredeoff
; . ,Jtt . \4, ,, ~ii.ri •

between Input-output g,_ end ... fer I celt ,......... I peirtkulr fwdion.

· Neverth~less,- eeveral a~thort ~v~ ~ 11t~·,,~=q ~- •:·~-for r~y
·~ ' ~ ' ' ' ... "\ ;,,;"f:;_,._, ~ ; ·.- .•)''.·'" ;•''<..: -~f-:,,..,,.::•~j'"' ti·(~.~ : ~--- ,j

claseifyine ..,.ay, < ... <Mimick 87> and ~ 71>). They cl~
,.';, ,·\· :)i, :.-: ·.-.:•,) /·,.•);,,,·~; -s•· }

1
:·,•

between microceff* arrayt, in which ttlCtt cell c:ontliftt only • few ,,, ...

rnacrocellulw arrays. in which each cell ~ • t~; _,~:,: -
"~ .

The ceff~ ,., .. ~ted In thit the.a; :
1

~ ,;~·-,~ el~nta and few
-> '"l."~~,.. ~ _:-,~.

function atetea. The loeclnt mechaftiam. the only ...,_. cemMlft to Ill the cell•

we diacuss, ia ·tttown in flpe as. It hal a mlnmun of about twenty plea and five
._, ·:\c·;";, .- ;j

, -_:.: ~\t \.".li.;) ~ [

rnech~em of any ~ze and complexity may be combiMc1 wtth the loader. The
' ,.., -•4 '. • J •. v,,,,~··, "•~'·, : ·~:j,.i.; ,;:~~···-•. '•

·.-"< ,.;, ' ;_-!· •• ;., .. ", ," ,-:, '··,, .,~:~;:!'~ ":;J,~,,i-.,;'.'~/'_~~.;,".~f', ..

actual compledty choMn fer • cell.,.,. on the •Yltl__. applicetlon, end on a
' , ... ".)'•·· ~~,;:-')[1 <· ·va !~);·:.:/:-;. ... -~~-·

tradeoff between yield and overhead circuitry. In the memory array9 we've

desiped, this tradeoff is the main consideration in del......._ how a memory

t• put in. wtt'Nl The univ.,.. oe1 ,,.,..., m .._.., 4_ '-..,.

PAGE 52

hundred gates and memory bits, and only fourteen function state-. This simplicity

increases cell yield and reduces test time.

<Mukhopadhyay 71>, <Kautz 71>, and <Minnick 67> have compared the

number of cells of different types required to perform various functions. We make

no such comparison here, for many of the functions we perform cannot be

performed in other proposed arrays. All our techniques are applicable to

arbitrarily large arrays.

21.E Function

Various functional categorizations of arrays have been made. These

include consideration of the functional capabilities and the time behavior of cellular

arrays.

The most common functional classification views an array according to

its ability to do combinational loaic, memory, or more 1eneral aequential machine

functions. <Shoup 70> discusses this in terms of "generality" of the array. Our

· testing and repair techniques work for any cell 1enerality. We discus• some

memory cells in chapters 3 and 5, and a sequential machine cell in chapter 4.

The chapter 4 array is able to realize an arbitrary dieital machine. In

particular, the array can support a finite-confi1uration universal computer

constructor-repairer. That is, a finite number of cells can be programmed out of

their initial quiescent states into an embedded machine able to perform any

computation, to create a new, disjoint embedded machine able to perform any

PAGE 53

computation, and to do these things in a faulty array. The embedded machine's use

of a loading arm and test arms allows it to test and prosram Its environment It

can, for instance, enlar1e its memory by proper loadin1 of cells. <Rowan 73>

describes a cellular array, of more compltcated c.Ut, thlt I• ccnputatlon-\l'llv....a,

but not capable of construction or repair.

In a synchronous cellular. array, all cell states are re-calculated

simultaneously.· Several synchronous array, capable of 1upportin1 univereel

computer-con,tructors have been presented. Von Neumann'• 1952 pioneerin,

work, r1a,or, of Sd(-11;,oduang Automata, presented such• 29-ttate automaton(...

<Von Neumann 66>). <Codd 68>, <Gardner 70>, and <Bank• 71> followed with

simpler cells. WhHe theoretically lntereetint, eynchronout array1 are peripheral to

this thesis because they are currently impractical. Since atate chqes muet be

synchronized, many technologies require Iona clock lines linkin1 all cell• to a

common clock. Signal transmission is severely limited by the dock frequency, since

a signal takes at least one clock interval to propagate from a C4tlt to its neist,t,or.

Thus the transmission delay throueh a cell in a synchronous array is at most the

reciprocal of the toate frequency of its memory elements, which it much llower

than the transmission delay of one 1ate-delay associated with our asynchronous

arrays. The overhead circuitry for all proposed synchronous array• i• hi&h.

Testing, loading, and repair appear to be more difficult for these arrays.

Asynchronous cellular arrays are far too numeroue for extensive

consideration here. <Minnick 6 7> provides an excellent early review. In a more

PAGE 14

recent presentation of • theory of IOF detip wlth.t.tl1',lt,, . .,~,~•~
,· .. - ., -

71> summarizes and analyies some of the major cellular arrays. <Kautz 71>

disc~sses various arrays for arbitrary lo1ic, lncl~in1 ~entlal machin.e• end

special-purpose arrays; many of the delip are hi• own.

2.1.F Current st.te

Cellular arrays are already_ WiQeJr,i• ;~~"IC·~•~"~.:no

cuatomizaUon (Random-Access Memories), ShJft-R,litlert), or only a sitnple
', ·- ,·,,

customization step (Read-0nly Memories, Prqr_ll'ftffl8bfe loak: Arrt18) (.- <Lu.ck•
. ,. ·" ,.. •. . . . ' " .

73>). There are also a few systems using many ICs, MJCh • the Hliac IV.

However, many proposed arrays remain p-,,er-,t~•s for various

rHsona, including current lrnpracticelity l!ld IC ~tr): ln,rti& Thi characlet;•tic:9

of ,orne of these array• have been discuaeed in thia aec:tton, " ~~ for CK.I' . ·. ,: - '.\- ... ,, ,-., . ·,

approach. Thie approach overcomes the difficultiea q,f many proposed cellular
j o" ' •, '•

arrays. Its loadinc, test, and repair circuits, and their_ utod-_l,ed P,Of"~ _ ••

compatible with rneny array, that have been prOJ)Otld.

PAGE 55

Section 2.2: Arr111 Fabrication

Fabrication Qf LSI checkerboard arrays Is similar to fabrication of

conventional Integrated circuits. In the conventional approach, hundred• of

identical ICs ara batch processed by selective dopfna and metallization of a wafer

that is usually 2• to a• in diameter. Typically, a key element in this complicated

process is use of maak, to selectively expo,e photoseneltive material on the

wafer to light Each mask Is formed by photocraphic reduction of a pattern. That

pattern is formed by use of a step-and-repeat process which iterates a baste sub

pattern throughout an array. Each tub-pattern eorrespondt to one of the Iterated

IC's masks.

Each of a wafer's identical circuits contains bondin1 pads, which are

used for probe-testinc and possible comection to the IC ped(a,e. After a wafer

has been batch-processed, each of the Identical IC •ctvps• Is tested via electric

communication with a lest machine coMeCled throuah probea to the chip. Those

chips that are defective are inked. The wafer is diced alq horizontal and vertical

scribe lines into component chips. Those chips that have been lnbd are diacarded.

The other chips are packqed and retested. Thoee that pen U.- final teat• are

ready for use.

For a checkerboard cellular array, a basic circuit is similarly atep-and

repeated to form an array of idenUcal circuits. However, the patterne of qe

sharlng neighbors overlap slightly to allow lines to Interconnect nei1hbor1.

Because most of the identical circuits, cells, communicate only with their eci1•

PAGE 58

er.ray c~catiO!'~~ ~-~;:;~ ~~,lMft~1t ••.,~•
, . ':; -,_ •, . ,p e • .~ •• ,J , e • -, • ·- • •

for t~. ~ray ~ "!,t be clced. _Scri~-.~-~,,~~~~~~~~tw.~.,,.~ of
~ e ' ' ' ~ • .f ' • ;• \ ~: • '. '.; • - ; ; , , e..,,' ' > ,.11,• • .,. ,,- ••< ' '' ' ' • •,; ., '

a wafer that are int'6'1ded to be part, of ,nerent arrava.
> . .>,/;,;.·; -~~'"~ ~-it~d":·.. ·---~:-~ '· ,,.-,_·;r::15~~)~ ~r·i1;.,_,t; l: ~i~-~fil .. ~;"; ·,{'>·''

M~t c~~-~~ IC ~1~•-~~ -~~ ~.ot..herll ,.;,.t•
pack9'8t. Thus a ;ven. !="iP'• li_f~~ ~ly ;~, ~~~~,~lf'lth

•. :(•;.,\ ~:,< ,;_'.,,'~ ,. '.V • l'I ~. ·,;i::"?•!2.~':~ •:_1':_•1 '-"f _,1!".(~~ ~:f:i,\f"rs•-s -,

We'll see that there are many advantas•• to,~ en,t~. ""'~~ . . ,hat ~•t
~ ~ · '.-~·. t/ ,·: ·· __ ·:- -.>'. -; _ '{~~~16, ;ft& ·.:;1.Jt1:-:~ ~~:dO t~J.t·,· . .-. ;·,./:. , ~-~ ... :~

r~~~"~•~• ~"' of_,~ ~L~~~~~}'!Yf ~~ ~Jwo
pri~iple r~ F.~~-~~.~~~~ ~.!~\~~=r}!d~:~,?~
component, are faulty; thi• necenitat .. naakit11.• • ... , ~.1.0 .~t

,. ·-,~.~-·.H":ii·'= · .. · -.,,.--.-. ~ ._ ,.: ;;_, '. -~.";.,:.-h_J;;: .. Qc; /1SO: ~!P.<~.~~~ ,,<:--·:,, __ :-'..;il:~-. ;-· ·· · ·

th~•'•.~.~,~~.~• it:~•.~. e~,:~i~ir~t~ '~~~ ~:,~P9

requr• a variety of ctipa; • tlice containl orJy .,. .. .,.,. of cNp.
,,_ , :; {.' ~ .,.,.•:H•\·:'/~-.-·1. . .·./';;; :;t .; _: •':; ·_.::£r:; (';i;··:: r: "~~1 l>:~~n;\ ·.U ~~~~-1 ·::r!

This thetis' celknr approach .u.natee the,.. for ..,...uon of .chlP9
··,,:·~.ft: 1 ~ ; - ,- · -, · -· ~r~ -~.;.: · , .

.. in ✓ ~s. A tlictl i•,~~,;r~-,~v~t~Twith • claltal

machine allow, t•tinc end reptir of the .UC.. ,_. •- of ~ lltc. Call. be
. ,:-, ~ . ; . : ·, ~! t:•~~f ,~. . .':.1 ·,.. ~ .. T ,·/j ·~,; ". ~ '. - ~~ t :- -i • :~~~ ;'/ ~ t-~-r,~: F- ·~r~-~,..fl \~ 21 nch->d-0 ··~{~ '.< y-~ ·r'! i2 :, ·>- ·•:,~-: "'~ .·

. tolerated. .f~t..,. ~ ~~• ~, ~ ,~~,~;,~~:)~~~ ~~.E~ IO

. flexi~I• ~t a •~~~.~,.arr~~'~?~~,,,.. ,~,;~t,and
repair it, cellu,I• environment

Thi• the1i1 focu•~· 0~ ch~~~~~ arrar.• .. •,!~. :l.P J•l!r~t•
· .•.':· '.' . · ib½'" :~.,;;· :.· "" .. ,,:;, '· ~,;_t,.,r,,,;.:;,1 ;ill i":~1,1,:n'1l.9,••• ,~·i,s,,, ,<• ... ""

defective cell,. ~~II• are pr~cr~~~ 101~ .• ,~ff <}~J~~ 'Y~~~~nl.:.~•11,
,' ·,, :i· _,,·'\, ""' \ ~ ;·.· .i: ~~lr1-,\~•::!.,i.,.:: .. ~~1 ·! .. :1-ff;-!t .. -... ·. {1.1.~ .. ,·~_,(ft ·, "·-!: ;i, -,

pr~~~ f~~.on-~ficati~ c~ bi~ ·=~0~.~ ~~t~t~, t,"! ~ I•
' ' ,... -, . . . _., .. ', '

PAGE 57

to perform. Oke ah array has been for~ elac{~ic ·c~cation of·. a test
, ..).. . ' .~·t:'> .. ""-".-~~ .. -:·i ;"_"'·>ii/"~ -;~fl;._;·;·,:·',,:- .;'·,:

. machine with a •man nurnl>er of cell, ~• ·1n the array teat, the entire,
'· ~ '

' . - .. "':. . ' :·~· .. :' .. •' ~.~,,.-· ·':;;··~-- ·:'-:. ;;\; ;:'f'.. \. ;. - :

arbitrarily 1.,.... array. · ffit testina mlchlM uw the ... COIIIIMl'lk:aUon Hnb to

pro'lf'am t~ arrfJf1 to .._, a perlect ~ by ~~ ., of ~tion

. speci'ffcation st-. bit1. The nme end/~' ~ ··•~.Uon .. , then provide

the inputs Md output, of an arr.,.:~· ~;~.~~·:celh,:lrt proper
· function stat..: · fle-cuetonizina the q lt •; -~ .. ··~•••~ ·•t~ 'kft:tion
~fication .tat• blt1. Should an ,nay·mactifte··-.'~~~, ~ ;, •

, :· . '.. ~• . -, . ·. '.'.-' .. ·. , ~-L--,:~-- }J"_:· \·-·: :: .. /"~f, : . i:_:

malfunction of •ta. circuitry, it need no(ie dltcardeil ·th· link• can a. UHd for
.... , ~ -\, .['

te,tln, and repilifllnl' tM· lffaY, ·a.c.... W. ,..;.;~ ~ -- •tricllly lrt •
dl&ital machiM, r_. an be automatic,•~~:-··,,·.,;. can even

occur throush cotnmunication ~ween an .,,., end • r..ote te.t machine. lnd••d,
• -~ 1 ~'. t,t ,,:Fa, - -- ~

the universal array of chapter 4 can a~pt embedded l'MChlw that tnt and

repair each otlw.
-·

The twray can be viewed as a bin of apere parta, cell& For a larp bin,
03 ,.

·· there is a hiah probability that a certain pereenlace of parts will be 1ood. Thul an
'

array is fabricat«J to ·have more than enouch parts for a particular envisioned

application. The availability of spare part, which can be. -~trlc:llly switched into
~-. . . ,, ,, ;

. .,,..,,_ ..

active status allows the realization of IC pack11• with more fl.llctlonel power.
. . . ~ .

That is, hilher intee,ation ia attainable throup autornatic repair. F&rihennore, this

spare-part capebHity facilitates re-cuet~tk,n, relitlbfflty, and maintainability.

For many type, of circuit failure, an array,can be·, .. ,.;__,...._. to re~

PAGE58

,rF-,, I

performance like • perfect arrr,. Thi• altowa a,aceM d..,..uon 9f an ,nay.

Simplification of eyttlffl production 11111' Iii ilMtitici ;_.,.~ Yi1

, ; •••-!PN_..•~•IMlw'w....-.iMt~~,~-£, All circuitry that

;;; ;,-t..,__,...,_,. .. 1s111wtea-..~~~aif;ww1F1r•1n'•~•tiifa.rc1,

:·':·,,~,,flil!l,-J1CP1ldti1•d ,,-t,tJtt.~~t,r::ttl~~,'..tt!~y

JNJ•Mallle: -•111,, a ;111·,: ;_,, .W'~ ~ tci~'daua1

array t•tln,. cuatomi.uon, and repair Yi• electric,_ 4ii,ti'tillular
array. The standard, modulair ,...,. bf w ln., .,. th Ams, ,,.,,...,, impll•

~l(~,.iNlielt'l!~r.......,dl...., ~1 ,,: L './" ;- '

',(;'!I :;,tFlJft,,~·aall.,_W 1Mil4•· " , ,.,,,,:.._ ...
' ·, ;.,...._H11-lii~ , ••• ,..1 ... ,..... ' * .lff ..

prodQB.~.,--p•i'••---'••· ... ,.-•• rif1lt,iCW~'l~ of

~,.-,..;. ~.,.,..._ ,....,_..,_111.-:~ 9"<:';;.·~~ ~;,,,wl'J :.,,<'

,,., ,, .. ~-... :••-.. ----~~;:..i:,tfi:W'.,...,
' ~.._,,.. .. ~...,_-,,~,..iw!Md ,~ ~-~that

::,·•;,~ 1,.;,,,.I\MN, ~ .. '.-Whey

,,, .. ,1 • ...,. •• ,, ;' , ; .,,,, ;<:;n1~ ;,,. I f'.' ' '' ';,,.

,?' ,- -•~ .• sp-. . .,.t~"...., ~ . .,,-iw:,w•,,~·or·W..1traw.
throu1hout the wafe,t,, ,.,. ffllit•;1wflfllfMt~aihtJ illlWlit.YlrlWTfNi ,~- ""'";•"'1

, Aww&.,~~--w:tlil--'tM .. \'8 1~1til~;fl>). They can

;"tH1,._ lrna,,; ftw7'1111, • ..,., ·---~---iiri1if't-ilcf l Wtf' ca,,..

PAGE 59

If• wafer ~,,«IW1•·_,.,__..,, 11ilt.~t.•,-,1Mnt1a1

deer•••• c,f Chip .. ~elfl,.,a,t.,~ at,;Jlll#lfl'llllnfftoOf.- . ---·•• • . '· . . ;. . .,.. , - - ,

' f\lnCtiOn of ~t,~, ("_.,..v.CGlltllnN} ,,IN1it121 fllli"1tA111:11111 the

Y!elct rnode\;.pr~fJ,4 ... a..1tjt ----•n111tr.,rlllfl I 11 d-, ,.
y • (l + OeAJl)i

Y is yield, the ratio of'"' ~-;itbi:.._:,,l;-fa:.._...;,_. lllifeole' per

1quaret~ ot,.~ ••~--dve1.,_•,~--~--- In 1972,.

Hod&et said.that ~ •. ~,VM at;2tQ,,,,_ ... u11•adt~•-tj;i-N'~
• ~ a • ,< • • • " . •'\{ ... ' " • . • •

,;QPer•~ by ~f1'~-Wltcbi~. tlUIP.lllbct,~·,, ,•,

Becau,e there are :.tW)f._ .. •--••Ill•-... -•f•r

. fabr~caUon, ~ ••··•""'~-14 -••~•;,._1:tllll111 "1i •n•■IIIIMI IC .,._,

Wafer~ are-·~ 8ftd wo•·-,M;ty~~.-,,.Hllf:l•·•-~-,.. ·tttes.

Perf4Kt c;hipe ••-PllkN•-~·•••~~1~1'al,~•••11M .Wns

macbi~• fail,. -~--•r•nNf't:fN~•-""'kklf C•, ·•:ttffeklfjet ;•r•
millabelled. (One et'llineer told U8 of I P9Ck•li"l-'11itit ·•-ir••-· ... ,-

', llllith_ di,ffer.ent coa~,j~.U-..,.c:ttW•• .. -,.,,.. ... ,.,., . ._, were all

~~"'6Y ~~- , ICI .. ., iJ:' '
~. ', •• •• • • - • -4

(ireat ._..-~•• ,-. ~din ~Unttke•--••!)lleld ,

< ~~(~~urer•J,e~~•- tttpc:,..,...y,Nnel,(,ttM1P•~•a ..a.1,.~.,_,.,, efftdent

flc,w of meterielt. Clrcute are·....,_. Uflder ,.. .._. __.,... A prlllle

PAGE 60

one is the need to minimize pins leadina from the chip to the extra-IC world. Thi•

allows lower packa1in1 and lead-bondina costs. We recolftlzed the need to

minimize pins when we developed a loader that reqLired only a few pins. Thia i•

also a major reason why cu testin1 and repair prOC88HS require acce11 to only a

few pins. Because yield and cost depend on many vlriablea, incluclnc time, thne

figures can only be expected to point to IOffl8 relevant considerations in IC

production. More detailed analysis than Is appropriate here can be fOLlld in

<Hocl1es 72>, <Murphy 64>, or <Seeds 67>.

Table 2.1 Chip Yield And Manufacturin1 Coste

(a88urnin1120 slice fabrication cost and 200 defect, per eq. in.)

SSJ MSJ LSI
Active area (Mila) 38 ,c 38 68 ,c 68 128 x 128
Chip • i ze (11 i I a) 58 >< 58 88 ,c 88 148 x 148
Probe y I• Id (percent) 88 se 1S
Chips per 2 in. dia. al Ice 1288 488 158
Good chips 969 288 22
Cost per chip 18.82 18.18 18.98
Package (DIP) 8.83 8.84 1.88
Assembly 0.85 8.85 8.58
Final teat 8.82 8.82 t.28
Accumulated cost 0.12 8.21 2.68
7ft yield at final teat xl.4 xl.4 ,cl.4
Factory cost 18.17 18.38 13.68

In a March 1975 letter to us, Hod1es made the followln1 polnlJ: Dte cost h••

declined sli1htly; and inexpensive plastic pack&line Is now widely used for LSI.

Factory cost of LSI components is now in the rana• of 11 to 14. The overall

picture reflected in the table above haan't chanced much.

PAGE 61

Key points from the Hodges paper relevant to this work include:

1) Packaging~ assembly, and test costs dominate wafer fabrication

costs for all types of tCs, even thou1h Hod1es' fi,ure, nealect pre

dlcint test costs. However, wafer yield become• Jncreaaln&ly Important

as inte1ration level increases.

2) The absolute cost of packa1in1, assembly, and te1tin1 become,

much higher as one moves to LSI.

3) Packa1ing accounts for a substantial yield loss. (Hod1•• le

probably overaimplifyine In a1surnin1 the aame package test yteld for SSI

and LSI (see <Carnenzlnd 72>). LSI tendt to use packas• with more

pins, resultin& in more packa1ina errors. However, improved naembly

methods for LSI relative to SSI would tend to offset ttlia.)

Hodges makes the important point that "enaineerina and merketins coats

are probably the dominant factors in the overall cost of LSI today; this will

probably continue to be true as long as the market life of products continues to be

short due to rapid innovation." This factor is particularly important for custom LSI,

where the interface between the IC house and the IC user can be very durney

(see <Camenzind 72>). <Moatek 73> notes that Mostek't char1e1 for cuetom

tooling of an IC ranee from 120,000 to 155,000. The exact amount depends on the

manpower and testing demands made on Mostek. Delivery time for a smell number

of prototype units ranges from 6 to 9 months after the start of the customer'•

interface with Mostek.

PAGE 62

We present a strategy for realization of lar1e, hich-Yi•ld, low-pin IC•

via automated, electronics-oriented means. Because customization and repair are

electric processes acting on a standard IC array whoae cell• are desi1ned for

testability and repairability, costs can ,be low, system production can be quick, and

the inevitable errors resulting from a plethora of components - ICa, testera, test

programs, etc .. - can be minimized.

PAGE 63

Section 2.3: Evolutionary Trends

Evolutionary trends in digital systems reflect shifting realities and

priorities important to digital systems planning. These motivate an interest in

electronically testable, programmable, and repairable cellular arrays. Those trends
.

most important to this thesis are summarized below.

2.3.A Trend 1: Rapidly Increasing capability of integrated circuits

Table 2.2 indicates the skyrocketing performance and complexity of

integrated circuits (see <Altman 74>. The table assumes a rectangular chip, and a

"device" is a transistor. Prices have dropped with the rise in IC performance.

<Moore 74> states: "One thing that Shockley was interested in doing was m1kin1

the 5-cent transistor. At the time, it seemed like a goal so distant it might never

be achieved. Many people thought the dollar transistor wasn't in the cards. And

now we sell transistors as parts of an IC at a very small fraction of a cent -

probably 1/100 of a cent." This development comes from introduction and

refinement of various IC technologies - for instance, bipolar, MOS, magnetic

bubbles, and Josephson technologies. Each technology has inherent physical

characteristics that develop as it competes with other technologies. Function per

unit area increases as function per circuit element and circuit element per area

increase. Furthermore, reduced defect densities allow the packaging of larger

circuit areas. In a 1973 MIT talk, Bob Noyce of Intel observed that the trends

toward lower defect densities and higher device densities - each changin1 by a

PAGE 64

factor of 2 every 3 years - had helped cause the doublln1 of the number of

transistors in the most complex commercially available chip every year since 1959,

when there was a sincle transistor per chip.

This rapid increase in IC capability ie a fll'ldamental C8UH for • rapid

increase In digital system perfortnance (eee <Turn 72> and <Koay 72>).

Table 2.2 IC Evolution

Typical Industry capabi llty 1966 1973 1980
Ma><illtUIII clockrate (Mhz) 25 380 2088
Transmission bandwidth (Ghz) .3 1 6
Speed-power product (pJ) 188 3-18 .1-1

Complexity
Maxi.,. chip edge length (mil) 188 2S8 see
Device density (■ 11 2/device) 20-58 2-5 .1-.3
Maxi ■um translators per chip 58 5888 288888

2.ae Trend 2: Increased relience on electronic machines

Rapid improvements in IC capability, combined with other factors such n

rentalism (see <Toffler 70> and <Vtschi 72>) heve fostered hl1hty volatile,

competitive IC and diaital systems Industries, marked by rapid product

obsoleecence and burgeonini mark.eta. Thete factors hive alto shifted system

desian priorities toward reduction of mechanical and human labor by use of

electronic devices. IC• are increasingly used to reduce other costs of electronic

systems, such as interconnection costa.

The replacement of mechanical rnachinet by ~ · enet it petvlll:v•

(see <Fo11 70>, <Toffler 70>, and<~ 64>). The cafcdator, cath r•ai•ter,

and watch markets provide conspicuous examplet. Mieratectronk:e provide aPNd.

PAGE 65

size, weight, reliability, and cost advantages In these information-oriented, low

energy applications.

Increasing dominance of human labor costs in total digital system costs,

coupled with a need for shorter design and maintenance times, have spurred use

of microelectronics to reduce labor. This is part of the society's overall move

toward automation. <Bell 72> observes that: "In contrast to technology, system

· design costs have risen; this shift is demonstrated by, for Instance, the decreased

emphasis on minimization in logic design, but on the other hand, reliability, mass

producibility, and maintainability are now the important design criteria." <Franson

74> notes that the shortage of IC designers is forcing system designers to use

automated help. <Hodges 72> marks the dominance of engineering and marketing

costs in the overall cost of LSI. Labor-intensive software costs increasingly

dominate hardware costs in digital systems. Bob Lloyd of Advanced Memory

Systems told us of the trend in the IC industry toward silicon-intensive, computer

intensive production. <Vischi 72> lists rentalism and "shortage of technical

manpower and the increasing expense of salaries and training" as pressures for

higher system reliability.

Of course, the relative advantage of ICs in reducing other costs depends

on the particular application. For example, the merits of reliability via extremely

reliable components built into a redundancy-oriented system are much clearer in

an aerospace application than in a commercial one. Table 2.3 gives the relative

costs of efforts to insure various levels of IC reliability (see <Peattie 74>). The

PAGE 66

categories, which fan1e from commercial to captive line, represent a spectrum

where "the basic factors producing considerably different failure rates are several:

the device design, the number of inline process-control inspections used, their

level of rejection, and the degree of reliability screening."

Table 2.3 Relative Cost Of IC Reliability Efforts

Part CI ass comm. c b a capt. I i ne
Failure Rate (X/1000 hrs.) .1 .05 .006 .003 .001
Cost 1.0 1.3 1.8 2.8 4-6

<Peattie 74> also gives Table 2.4, which demonstrates the wide ranee

of reliability expenses which various applications demand. It's a table showing the

cost of detecting and removing defective semiconductor devices at four stages In

four types of system markets.

Table 2.4 Cost For Failure At Various System Development Stages (S)

Market Incoming Board Mount System Test Field Use
consumer 2 5 5 50
industrial 4 25 45 215
mi Ii tary 7 50 120 1000
space 15 75 300 200M

Demand for higher integration level is consistent with the increased

importance of ICs in the total system. Higher system integration results in fewer

ICs to handle, test, and store. Decreased system size and weight have obvious

storage and transportation benefits. (For instance, many IC houses ship IC slices

PAGE 67

overseas for raw-cost pacbgin1.) A less expensive printed-Cfflmt or wire-wrap

board is requind Us* Interconnect cottt, which may run II htah as 50 cents per

TTL gate, are· nsduced (aee <Noyce 71>). •Since bond failll'" account for up to

55i of all IC fhltd· faiklres, a wgrfflcant reltabiltty improvMlent cm· be made.• (See

<Colbourne 71p,,) Higher integration also reduces peck...-related failure, (Ibid).

Improvement• m device matchin1, noise immunity, driver drcuitry, power

requirements, Md tranemistion d.iay alto reeult from hiper· ffttearaUon, f•wer

packa1ea, and ,.._. lntercOMeets.

T~ •• atso disadvantages to hlch int .. ration tevela. A hlsf\er

number of clrd' elements per input tead makes a eystem mwtt· cifflcult to teal

<Vaccaro 74> nolet· "the major difemna facing the UNr of LSt bNtay fa simply that

. we can build ~ ate buildin1 microcircuits today that are mor• comple>c then we

can adequately test, functionally or parametrically.• <Vinson 74i>· notes the same

difficulty with the mcreatina complexity of circuit boerdl. Hi.,.. ifttearatlon a.vet,
have implied htaf\er investments in IC chips. For instance, estimates of the total

development ~-of Intel's 8080 microproceuor are in the mltNon dollar ranae.

This high investment ptaces high demands on the device's desian and reliability.

One poorly specified• component can result in lar1e losses. High carryover from

one IC systetn- de1qn to its successor is necessary to reduce the 1t111erin1

development Cfftst For a 1iven technofoa at a 1iven time, hiaher intelfatlon

implies lower yield, because of the higher probability that one of the many

components will be c.14tfective.

PAGE 68

2.3.C Trend 3: Mass production of a few high-volume components

The realities of LSI design, production, delivery, and maintenance arcue

for the mass-production of a few powerful, high-volume components. <Franson

74> notes that Fairchild and National are emphasizing standard ICs over custom

ones because "they get a better payoff for the engineering time and capital

expenditure." He observes that "the big IC producers aren't after the business

unless the volumes are high - 100,000 per year and up." Each time cumulated

production of an IC doubles, its unit price tends to drop 30X (see <Luecke 73>).

For high-volume devices, this is chiefly due to a learning curve. This learning

curve, resulting from detective work into ways to improve production, argues for

high-volume devices. <Vaccaro 74> cites availability and product data-base

reasons for his conclusion that "it is clear that considerably more attention must be

paid to selection and standardization of fewer proven device types within the

Department of Defense." <Vinson 74> observes the maintenance difficulties

associated with a plethora of ICs, circuit boards, and testers. He discusses

designing for testability and maintainability, and suggests standardization of system

components, test procedures, and equipment

In his 1973 MIT talk, Bob Noyce compared the production of high

volume ICs to the printing of money. In a 1974 MIT Project Mac talk, Rick Dill

agreed; and compared the production of low-volume custom ICs to choosing

engraving over money-production.

<Noyce 71> observes that design of standard components with

PAGE 69

capability in exeess of many application needs allows the economies of mass

production to operate.

In hi« 1973 MIT talk, Noyce also demonstated the thirst of the IC

industry for ~ume markets. He noted that the annual shipping. rate of micro

computers wa twice that of all other computer,. He observed that whereas the

computer ma~ was 2 x 101 gates per year, the calculator market was 5 x 101

gates per yff/1' end doublin1 every year. He estimated the watch market at 101

200-gate units,.,.,.year, and the smart-phone market at 1011 ptes (2 x 101 500-

gate units) pw- year. Microrna, a watch company, ia now ownad l,y Intel. Several

Intel people have totd us of Intel's eagerness to enter thet-phone markel

The 10/2/74· so.ton Globe states that "National Semiconductor said it's entering

the electronics: ttmepiece market with a full ttne of quartz dlptal watch•• and

solid-state alarm clock•.•

Various options. are currently open to designers of systems with

volumes too low or design times too short (20 weeks average for custom - EON)

to justify a ct.l9tem IC approach. Use of standard SSI and Ma· components, with

customization via choice of interconnection of the components, is· often used for

low-volume ard/,• high-speed applications. High speed comes from customization

of the system to. the task, parallelism, and high-speed operators. Disadvantages ·

include the large number of parts required, interconnection costs, and, in many

cases, the problems of nonstandard systems we've discussed. Another approach

uses customization of a general-purpose computer via a memory-stored program.

PAGE 70

This provides lower speeds than a hard-wired device. However, it allows use of a

small number of high-volume components. Microprocessors are increasingly

dominating this approach. Chapter 4 pres~nts a cellular array that promises to be

between microprocessor and custom-interconnect systems in performance and coat

for many applications.

Rick Dill and others have asked a key question: "What should we mass

produce in LSI?" MSI and SSI have readily identifiable functions suitable for them,

such as adders, gates, flip-flops, and shift-registers. LSI is very suited to memory,

with its regularity, low ratio of pins to area, and high volume. Bigger, faster

memories are evolving. They may even have added power, such as associative

memories. <Moore 73> indirectly observes the need for embodying low-volume

systems in a high-volume IC: "We expect LSI to give us some very large building

blocks, such as high-performance processors. Once that point is reached, we could

go on to self-contained systems, but I question whether systems will be

economical except in specific, high-volume applications." <Noyce 71> predicts that

in 1980 a 100,000 gate "superstar computer's needs could be satisfied with about

10 bipolar LSI chips. However, even if the capability exists to put all of a

computer's logic on a few chips, ,this doesn't mean we'll be able to find a practical

design philosophy that will permit us to do it - and that brings us back to the

whole interconnection problem again." That is, interconnects between IC

components can consume large amounts of design time and chip area (SOl is a

good guess of percentage of chip area devoted to interconnects for current

PAGE 71

systems - <Luecke 73>). Furthermore, the fact that several layers of metallization

are normally associated with a higher level of integration ie a prime contributor to

low yield and reliability. These consfderatione lead us naturally Into the next

evolutionary trend.

2.atl' Trend 4: Increasing Regularity

Tiw · trend toward component and system re~arity is evidenl Dilital

systems use f• more memory bits, which are orpnized in a reaut• fashion, than

less regular combinational logic elements (tee <Luecke 73>). Function•

traditionally pe,f4tnned by "random loaic" are incr89linllY performed by arrays.

For instance, micropr,01ram• embedded In memory have taken over many

computers' control functions, which were formerly done by random lo1ic.

Programmable LOlic Arrays, extensions of read-only memoriee that allow use of a

regular array to realize complex combinational loaic functione, also evidence this

trend. Increased interest in array architectures evidence thie trend on a 1..,.,
system level.

There are many advanta11s to regularity. Iteration of a simple

component, or cell, is consisent with mass-production. It allow• concentration of

system efforts on • component that can be optimized, rather than distributed effort

over a collection of equally important, different components. Simplicity of a cell's

environment allows concentration of effort on design of the cell for that

environment A rell,llar. environment is easier to understand and test, both for men

PAGE 72

and computers. "Repetitive layout contributes to the realization of high circuit

density per chip." (See Carr 72>.). Regularity implies constraints on metallization

paths, which usually implies less crossover and crosstalk problems. As a

technology improves, a more thorough carryover of investment is possible between

designs for a regular machine. (<Lathrop 70> makes many of these points.)

These generalities are supported by the rapid evolution of memories.

Their regularity allows concentration on optimization of the memory cell (RAM,

ROM, shift-register, etc.). This optimization is helped by the identical environment

of all memory cells internal to a memory array. For instance, the impedance a

circuit drives can be standardized and well-controlled. Once one understands how

one cell works, it is easy to understand the entire array. Production of the array

can be performed by replication of one of its cells. A memory array is relatively

easy to test. Memories are so common and fundamental that every designer

knows their important parameters. Should technology improve (by, for instance,

improvements in yield and reduction in cell size), a basic memory cell design is

easily adapted to a larger, denser chip. The transition from one memory array to a

larger one is relatively easy compared to, for instance, the transition from one

microprocessor to a larger one.

PAGE 73

Section 2.4: Trends And Arrays

~' advantages that mike cellular arrays interestlnc derive from their

nature as an iteration of functionally, and usually physically, Identical components.

We've already explored the motivation f.or the trend• toward mesa-produced

standard part• and regularity. These reasons, applicable to celldar arrays, ere

summarized bcltow.

Advent..- of mass-production of a standard part include:
1) Hist, enaineerin1 and mark.tine efforts

expended on a hilf\-volwne part
2) Higher uniformity in production processes
S> Maher 8\Cailability
4) Reduced inventories
st ·t1ore .thorOUlfiy characterized device, which irnpHes

•> Jeaminc-curve-related improvements In
-.tan and rnanufictur-, and · ·

b) expended data ba$e for reliability and faUur.-mode predk:tlone

Advanta,a. of regularity include:
I) Al1 advantagts of a mass-produced standard part
2) Simplified comection•

a) easier to design and produce
b) higher component density via reduced interconnect areaa

3) Controlled, simplified environment
a) iterated element can be optimized for this environment
It> easier system to understand, test, and ,...

4) Performance increase via numerical· ~t increase,
· implying the ability to· incrementally add performance

5) Greater carryover between desip

When c:elllllar arrays are used for realization of combinational lolic or

sequential machines, they have added benefits. Controlled customization of •

flexible, regular, mass-produced device implies more staces of rna19-production

and a faster product development time than for custom realization of an irreaular

PAGE 74

special-purpose machine. Furthermore, arrays can provide higher parallelism than

single-sequence computers used for the same function.

The highly structured nature of cellular arrays also has Inherent

disadvantages. When an array Is customized to behave like a particular machine,

more components are involved than for a custom-built machine. At any time, the

cellular array has a lower density of active components than the custom machine.

Furthermore, the array has more parts that can fail. Of course, component costs

are decreasingly important in digital systems. If the cellular array can be easily

re-customized (if it's programmable, as ours is), this added capability cannot be

considered as useless overhead. The enormous overhead of a general-purpose

computer processing one instruction at a time is acceptable because of its

flexibility, generality, and computational power. Use of the simple structure of a

regular array to facilitate test and repair ameliorates the increased probability of a

component failure.

A second general disadvantage of cellular arrays is "an increase In the

length of wire through which a signal must propagate in comparison with

conventional logic not possessing stringent interconnect pattern limitations." (See

<Spandorfer 68> and <Hu 73>.) Again, the enormous inter-operation delays

associated with single-sequence computer makes this problem seem less severe

for programmable cellular arrays.

<Mukhopadhyay 71 > mentions another problem associated with cellular

arrays:

PAGE 75

"Anether major problem in cellular logic is standardization. We now

have at hand a technology which can produce arraye of cells of very

larp complexity, but we do not yet know how to use these devices

' effideritly in practical fJetilftl. This is becw of the rapid arowth of

the fflffltber of logic functions of a cell with the number of

inpt.b/outputs, ao that when a cell has more than 4 or 5 inpute, one

si~does not k-now what to put into the cell fn order to obtain a cell

that fllllY · be widely used in diaital circuits.•

This point is .Wenced by the plethora of ceH-desian• proposed.

Tht• lbests addresses this problem by identifyin1 and satl1fyin1

important reqwi,wnents on a cellular array. We develop m_et;hariitm8 for automatic

test, loading, and· repair of cellular arrays. Various celtular ar,ay, · incorporatin1

this machinery are presented. These Include memory array-, and an array capable

of supporting universal computer-constructor-repairer,. We thow practical

advantages of these cell desi&ns, relative to other deliana, which arp for their

realization. One IUCh advantage is that these standard arrays can be electrically

customized to a wide range of customer needs. Realization of and experimentation

with a good cell design would clarify many of the issues involved with cellular

arrays; a better understanding of the most important parameters would reeull

<Mukhopadhyay 71> mentions another•difflculty that he sees.

•A difficult problem arises when one has ta locate and correct a faulty

cell in an array. Since the number of t•t points or the Input/output

PAGE 76

pins available is very small compared to what can be expected of a

circuit of similar complexity built with lumped components, the

difficulties in diagnosis problems have just been compounded. It seems

unlikely that good and practically manageable algorithmic solutions to

this problem will be developed in the near future because of what

seems to be an inherent contradiction in the objective: programmability

and flexibility which can be achieved by increasing the cell complexity.

This implies an exponential growth of fault types and correspondin1ty

astronomical growth of the number of tests to be applied to a very

limited number of test points. The logic designer of cellular arrays will

have to accept a certain amount of failure in the circuit and will have to

invent synthesis procedures for fault-tolerant circuits:

We believe that this thesis refutes this argument. We present simple mechanisms

which enable test and repair of an array. Particular machines which incorporate

these mechanisms are developed. Furthermore, many existing array designs may

be modified to incorporate our test, configuration, and repair mechanisms.

Mukhopadhyay's argument seems to argue, by implication, that large random-access

memories are untestable. We assume that a cell's behavior depends only on its

state and inputs, and not on the state of another cell. We try to justify this

assumption by constraining our design; for instance, our design has no signal

busses connecting distant cells. Our independence assumption is analogous to

testing assumptions made for current integrated circuits, includin1 random-access

PAGE 77

memories. This independence assumption enable, epecification of simple function

states to aHow individual test of an array's cells via leads attached to a few cell•

anywhere in the array. Leads to one side of one cell are sufficient to allow the

repair of mo.t ·arrays. Our techniques affow the verification of our independence

assumption by testing a complete embedded machine. Complete arm and tree

machines may N easify tested via their inputs and output•. Teat link• may

connect Internal 'f)Oints In a hilh-relcon machine to cells at the edge of an array.

Finafly, many have observed that truly powerful arr-ays need ~ny cells.

Current realities of IC fabrication therefore auu..t .repairabl• cellular arrays as a

means for ·ac:hhwiftr large arrays. As densities and yield• improve, bulldina a little

circuitry Into• cellular array to help testing and repair becomea more appropriate.
\

We focus on ~ electronic repair because of lts increa1in1 ettraictlveneea.

I

PAGE 78

Section 2.5: Testing And Repair

2.5.A Non-cellular

The increasing difficulty of testing digital systems was noted above.

Reasons include the plethora of digital systems and testers, their increasing

complexity, and the decreasing ratio of test points to circuitry. At one time di1ltal

ICs could be tested by monitoring their output for each possible combination of

input and internal state; Ed Fredkin recalls when many engineers insisted ICs

required at least this much testing. This is currently impossible for most ICs, due

to the astronomical time for such a test (2101 tests for a serial-in, serial-out 100-

bit shift-register). Consequently, less ambitious approaches are now used.

Common test sequences assume one logic element's performance is independent of

the performance of other elements in the circuit A gate may then be tested by

putting its IC into a state in which that gate's output, a function of its varied

inputs, affects the output of the IC. This approach is especially useful in go - no

go testing of ICs, where one only wants to know whether a circuit meets its

specifications, and not the causes of faulty performance. Most procedures that

must locate faults, such as maintenance procedures, assume a single fault (see

<Marinos 71>). Because of feedback paths, sequential machines are particularly

difficult to test.

Development of a new testing program for each new IC or digital system

is increasingly distressing. This has caused many to ask for a system-oriented

PAGE 79

testing approach· designed into digital systems (see <Vaccaro 74> and <Kautz 68>).

Fault-handling techniques typically use systems composed of a lar1e

number of components, some of which are defective. Two major fut-handlir11

techniques a,,e,;,epair and fault-tolerance.

R8J111Hr techniques are characterized by fault-detection, followed by

some form of oypuain1 of faulty component.; · eo the aystem'• output then

depends omy,·., the output of its 10od components. The best-known repair

technique for0.dlltal systems involves detection of I faulty cemponent in a eyatem

designed to -iMfude. only goad component1; a human .lhen . ..,stitutee a 1ood

component far ,.the faulty compcmenl We focus here on 8PflNIChes which, like

ours, allow deMetive components to be associated with I worWnc eystem.

Fat-tolerant hardware techniques aim at proper haiclware performance

in spite of fautt•• which occur during ·the hardware's operation. Standby

redundancy "emptoys several functionally identical modules, some bein1 used

actively to perform th• function, the remainder waltiftl' ·to be switd,ed in • ',ould

one of the adiff.,r'IJOdutes f11il." (See <Carter 70>.) MnWas: redundancy •1,

applied to techniques which Involve encoding function, active .performance by ell

parts of the sy--, and irnpttcit recognition of error.• (Ibid)

. While •w approach is fundlmentally a repair approach, It ls compatible

with realizaUon of faun-tolerant machines. Celle can act either as active

components or as standby parts in a standby redundancy system. The mechanism

for switching cellul• standby parts into active status it built into the cell, of· an

PAGE 80

array. Machines using masking redundancy can be embedded in an array. Chapter

4 presents a cellular array consistent with such a hybrid, fault-tolerant system.

Two machines in such an array can monitor each other. If one machine fails, the

other can test the failed machine's subarray; and embed a new, perfect machine in

that array.

<Spandorfer 68> describes discretionary wiring as one repair technique

designed to provide large, high-yield ICs:

"The number of basic components fabricated on a large semiconductor

chip is larger than that needed for the desired final circuit. Each

component has associated bond pads, which are probed during testing.

The location of good components is used by a computer to generate

patterns which wire only the good components into the final circuil

. Arrays make use of two metal and two insulation masks.•

The fact that the considerable difficulties inherent in this approach were

even attempted points up the desirability of high-yielding high-integration ICs.

<Foss 70 mentions some of discretionary wiring's difficulties:

"The layout of a discretionary wiring cell array is made very inefficient

by redundancy and the need to allow probe testing of the individual

cells. Although the 'yield problem' of the logic cells is eased, the

approach still requires '100% yield' on the subsequent dielectric

deposition and metallization processes. (These are normally the lowest

yield steps in wafer fabrication using two metallization steps. - FM) As

PAGE 81

these 'lffl.lSt be faullfe98 over a much areater area than needed for non

~ cell interconnection, it may well be found that the yield

prcmtems of the two approaches· (chcretionary wirinl ,and conventional)

·are'Mt ,diMimller."

<Spandorfer 68> remarks that "the key problem is the critical clependence on data

processing for 1R88k layout, albeit off-line, and a hott of other ·production control

routines per copy. Further, use of a unique mask implies • relatively slow

production process for • given capital investment." "In addition. each product has

unique interCCftlBCtion and dynamic characteristics." (See <Marvin 67>.) These

reasons indicate why discretionary wirin& is now generatty cOftlidered a bad way

to achieve hip Integration.

Othw :custom wirin1 techniques for usina faulty components have been

proposed. <Tammaro 67> describes use of customized board wirin1 to allow use

of faulty ICs.

<Sander1J 72> des-cribes a method that invo1ved color-code

categorization ef partly-eood memory components and their ~t inttallation

in a standard color-keyed circuit board. These boards used lo&ic that transformed

incomin1 addre to address•• of 100d memory words. Te><•• Instrument,

expects to use a simi-lar metlu>d in late 1975 for realization of perfect bubble

memories from imperfect components. The major difficulties with these two

techniques are the handling of multiple part types and the need for defect

statistics that are fairly consistent as time passes.

PAGE 82

Unlike our approach, those above require perfect Inter-component

wiring. Furthermore, human and mechanical intervention are necessary to repair a

system that develops a fault after the system is initially fabricated

2.5.8 Cellular Arrays

Cellular arrays have several potential testing and repair · advantages.

<Kautz 6 7> notes:

"One would naturally expect that the iterative structure and the short

internal connections of a cellular logic array would allow it to be tested

from its edge terminals much more easily than a relatively disorganized

interconnection of the same number of gates. If test signals are able to

pierce the first one or two cells at the ed1e of the array, they can

. probably be arranged to pierce arbitrarily deeply. Similarly, if an error

due to a fault can be made to pass through one cell toward the output

terminals, there is a good chance it can pass the entire route. In

addition, the regularity and shortness of connections in the array tend to

support the convenient assumption that the array as a whole is fault

free if each individual cell can be shown to be fault-free.•

One might also expect iterative array to be amenable to simple, iterative test

procedures (see <Thurber 69>).

<Kautz 67>, <Menon 71>, <Tammaru 69>, and <Seth 69> study cutpolnt

connected combinational arrays in which the output of each cell is a fixed function

PAGE 83

of only that cerre inputs. These paper• concentrate on array testability and

diagnosabHily: h capability, method, and time to teat for, and· preferably locate,

faults of an auumed nature, via Inputs and outputs at the edt• of an erray. A

common assum.,tten is that all input combinatiOM to a cell must be included in

testing of that ceU (Kautz. Seth), or at teaat that eecft• aate in a cetl must be t•ted

(Menon).

Our approach is quite different We treat arrays of more complicated

cells - checkutM• d arrays of pragranneble tc,aic. Since we don't care about a

cell's response· to atate-mput combinations it won't encounter durint It, operation,

testing and repw are fadlltated. Att edce cell with floatkis inputs or outputs need

not have thne Hftet con.-.tecl to a tut machine. lnetead of •lkinl for necesaary

and sufficient ecmdttions on array testabffity or dia~, we con1truct

modules that convert .a given array to one that i• eeetly teeted and repaired by

provams we deacribe.

<Yau 70> also treats 2-dimensional cutpoint-connected combinational

logic arrays. 1'he paper presents efficient rnethode for edclnt -.c and terminals

to each cell of an array to make the resultant, rnoclfied trrey diaaflosable, and for

derivin1 test schedules for it. The logic and termtnal• added depend on the

original desian; they are not standard. Teat tipel1 are routed to and from the

edges of the array. Repair Is accomplished by 8horttn1 or openln1 metal

interconnections.

<Spandorfer 65> describes repair of two-dlmenelonal celhJar arrayt by

PAGE 84

use of computer-determined wiring patterns which preserve the two-dimensional

topology of the array. Custom metallization, which may pass over flawed cells, is

used to convert a flawed array into a smaller, perfect array by proper connection

of perfect cells. This approach assumes the interconnection network of a perfect

array must be preserved; it does not consider the class of a machine embedded in

the flawed array.

<Minnick 66> describes use of custom metallization for repair of various

arrays. He also discusses the efficiency of associated repair strategies for

cutpoint arrays.

The closest precursor of our testing and repair approach seems to be

<Kukreja 73>. Testing a cell in a particular state involves including each of its

inputs and outputs in a signal path to an edge input or output. Test signals to and

from a tested cell are carried by cells in transmission states. Repair comes from

programming cells in a row or column containing a faulty cell to behave like wires

linking good cells (see figure 2.2).

Our test and repair of arrays embedding high-relcon machines similarly

involves use of cells in transmission states. However, there are key differences

between our arrays and Kukreja's. Kukreja's 2-dimensional array is a cutpoint

connected array of simpler cells, in which each cell receives control variables on

lines from a third dimension. Cells are not programmable logic cells, so there is no

loader. Sequential machines are realized by a 3-dimensional stack of 2-

dimensional arrays. Testing requires direct connection between a test machine and

PAGE 85

Fig. 2.2 ftogrammed Array-Repair

Flawed 3 x 3 array

Perfect 2 x 2 array

G G

X

G G

X indicates a flawed cell
G indicates a good cell in an arbitrary state

PAGE 86

all the edge cells of an array. Kukreja's approach requires far more cells and

extra-array connections for testing of arrays, and for realization of most machine,.

Kukreja's repair approach is what we call "simple repair"; our repair procedure Is

more complicated, but also more efficient for most checkerboard arrays. Kukreja's

emphasis is quite different. He does not address many of the design, testing, and

repair issues we address.

In sum, our approach is the first one we've seen that details LSI

oriented circuit modules and describes associated software for low-cost,

automated, electrical testing, repair, and customization of cellular arrays. It is a

systems approach whose advantages will become clearer as its description

becomes more specific in the following chapters.

PAGE 87

CHAPTER 3: AffRAY-EMBEOOED ARMS

Section 3.0: Introduction

Thi• et\apter presents several examples of machinet' that •e embedded

as arms. Since any one of a lar1e set of loadinc arms may be arown and retracted

by loading si.-,. input to one side-set of one arm base cell, fkudble loaclna can

occur in a flawed· array. Processinc-tayer arm machines, which are composed of

balanced cell~ 'CM be gradually grown and tested, and enaked around flaws in an

array. We foctJI: on·the celt mechanisms and support proarMM that provide these

capabilities. For specificity and practicality, we CGneentrate on the realization of

highly inte1ratac1. lenath-proarammable, computer-repaireWe 1hift-re1i•ter1.

However, our technique, apply to other arm machinn. Theae technique, are

easily generalized to tree and high-relcon machines.

We present a mono-active, balanced loedin1 mechanism for arowth of

loading arms. The loadin1 inputs of any side-set S of a cell are sufficient to load

that cell's lo...,., Md function-specification state bits. After the; cell is loaded, it•

loader state bits: may specify which of the cell's neilhbors. If any, receives loadins

Information funneled thrOI.Jlh the cell from side-set S. The loader's balance allows

an arm to funnel, the same command to a cell independent of the path the arm

takes in reachin1 the cell. Optional cell modules extend the loader's capability.

The loader state may specify that an arm's tip be re-loaded, or than an arm

incrementally retract A brief si&nal to the base of an arm can cause the arm to

PAGE 88

totally retract. We use this same loading mechanism throughout our work. A

mechanism with its capabilities is easily incorporated In arrays of two or more

dimensions.

The most interesting machines that can be embedded in the processing

layer of this chapter's arrays are arm machines. Embedding It particularly easy for

these machines. Typically, the loading and processing arms grow together through

the same cells. The Array Programmer adds one cell at a time to these arms; and

tests the new, extended arms after each extension. The Array Pro1rammer only

communicates directly with the processing Inputs and outputs of one side-set of an

arm's base cell. When the arms encounter a flawed cell, they may be partially or

completely retracted, and grown through different cells in the array. An arm may

be grown in any direction, avoiding flawed cells, because of the loading arm's

flexibility and the fact that an arm of balanced cells is grown in the processing

layer. Our description of the testing and repair processes depends on a model of

flawed cells' behavior, which we state and analyze. We study repair efficiency

through a program that simulates repair, and suggest techniques to improve

efficiency. We consider other issues relevant to the practical implementation of

our arrays.

Repair through the interwoven processes of arm growth and testing

contrasts to repair of high-relcon arrays. Since the requirements on the

communication paths between essential cells of a high-relcon embedded machine

are more stringent, repair efficiency is enhanced by the location of all the flaws in

PAGE 89

an array befON 11 global determination of a 1ood way to repair the array. Repair

efficiency therefore dictates that a test procedure Is limited In Ila ability to

predict the rote a given cell will play in an embedded machine. No matter how

large an arm fMChine grows, its inputs and outputs are always at one side-set of

its base cell. 1nterwoven .processes of machine vowth and tettine are hampered ·

when a mac""1ws growth implies ·a sometimes-growin1 number of inputs and

outputs: the_, of connections between a test machine and a partially vown

embedded madw11e is variable, and may be 1ar1e. These considerations encourage

us to test alt the ce1ts in a high-relcon array before repairil'II that array. However,

the test and repair processes for hlgh-relcon machines use the same loader

described in this chapter, and balanced processing transmission states 1imilar to

the balanced states in this chapter. Many practical implementation issues are

similar. Thus this chapter is useful in itself, and a, a bride• to the next chapter.

Since • tree machine may be embedded as an arm, u~, not 8\.l'priain1

that the approach described for arm machines ie readily adapted to tree machines.

Because a tree machine may be realized by an embedded machiM with any tree

like relcon network, including an arm network, an array embedding a tree machine

Is particularly ••IY to test and repair. Embeddln1 a tree or arm machine le

considerably easier than embedding a hip-relcon machine.

PAGE 90

Section 3.1: The Loader

In programmable logic, a loading mechanism is used to load the function

specification state bits in a cell. Others have proposed loading mechanisms

incorporating long, fixed, irredundant signal paths routing loading information to a

given cell. These loading mechanism have major limitations, including susceptibility

to catastrophic failure due to destruction of a long, critical loadin1 line. We

propose a method which incorporates extra logic elements In each cell to allow the

flexible growth of a loading arm in an array. A loading arm is composed of cells in

proper loading states, and not long lines. Since an arm may be grown from any

cell, an entire array can be loaded via inputs to one cell In the array.

Figure 3.1 illustrates two common methods for loading the function

specification state bits contained in a shift-register in each cell. Figure 3.6

describes a shift-register's operation. Snake and Crisscross use parallel-out shift

registers, with each output acting as a function-specification state bit connected to

the processing layer. The shift-registers in Snake and Crisscross are parallel-out

shift-registers, with each output acting as a function-specification state bit

connected to the processing layer. These connections are not shown in figure 3.1.

In Snake, each shift-register is part of a long shift-register that snakes through all

the cells of the array (see <Spandorfer 65>). (If each function register is

associated with one cell, cells in different rows have different loading inputs and

outputs; the array is strictly cellular only if we conceptually group mini •cells" into

a macro cell.). In Crisscross, one of Wahlstrom's methods, each cell is associated

PAGE 91

Fig. 3.1 i"wo Common Programmable Logic Loading Mechanisms

(The function registers are shown without their
outputs to the processing layer.)

A) snake ...

Data
D

C

Clo ck

Q

C

B} Crisscross

Clockl

I
D

C

Oat al ~ I'll.

- D

C

Dat a~ .

S-R

S-R

S-R

S-R

Q D Q

S-R
C

D ·Q D
S-R

C

Clock2

.-- D

S-R
C

--

,-- D
S-R

C

I

PAGE 92

with a unique clockline, dateline pair (see <Shoup 70> and <Wahlstrom 69>). Each

clockline extends through a column of cells, and each dateline extends through a

row of cells. Co-column cells must therefore be loaded simultaneously.

Note that these methods could operate on a more general type of array.

For instance, function shift-registers in different cells could have different lengths,

drive different circuitry, etc. That is, the key idea is that a loading mechanism is

iterated through the array. The loading techniques we describe are also useful in

this type of array, if it has two or more dimensions.

Like the loading methods of figure 3.1, our loading method loads

function-specification state bits into a shift-register. However, our loading method

uses logic elements in each cell to allow loading information input to any cell to be

routed to any other array cell that is not walled off by faulty cells. Loading inputs

set a cell's function-specification state bits and loader bits. The loader bits

specify how subsequent loading information input to the cell is to be handled.

They may, for instance, specify that it is to be routed to some neighbor-cell.

Consequently, loading information to a cell may be routed to any cell in the array

by a loading path, or arm, of cells in appropriate loader states (see figure 3.2).

Loading signals input to the base of the arm can load the tip of the arm, extend

the arm from its tip, or retract the arm. Proper use of a perfect array's loadin1

mechanism only allows the embedding of arms in the loader layer of the array.

Our flexible loading arm has several advantages compared to the

loaders of Figure 3.1:

PAGE 9:3

Fig. :3.2 A Loading Arm Grown By Array Programmer Signals

arm's base
.i--1.

'V
Array ..
Programmer

... -
+

.I'! . arm's tip

PAGE 94

1) The methods of Figure 3.1 depend on long, inflexible signal paths.

Each cell can be loaded in only one way, so the cell is useless if that

way doesn't work. A sienal path connecting many cells is a weak link In

terms of repairability; its destruction severely limits the usefulness of

the array. Furthermore load impedance, noise, and delay considerations

make long lines undesirable. Our loading method does not require any

long signal lines. In some technologies, such as magnetic bubbles, all

lone lines, includine power supply lines, can be eliminated from the

array.

2) The other methods require that many cells be loaded

simultaneously, even if one only wants to load one. For Snake, this

requires the reloading of an entire array even when one wants to

change the state of just one shift-register In the array. For Crisscross,

this requires the reloading of an entire column. In our approach, loading

cell A from cell 8 requires a loading arm from A to 8. If no arm already

exists, only the cells on some path between A and B need reloading.

Once a loading arm is formed, its tip can be easily moved around. This

is particularly attractive because two successively loaded cells are

usually close to each other.

3) Crisscross requires a loader input to the array for each row and

each column of the array. Large arrays consequently require a large

number of input pins and associated connections. Recognizing this

PAGE 95

deficiency, <Wahlstrom 69> describes an extension of Crisscroas. In

this extension, a cell can enter a state in which a proceasing input is

transmitted to a dataline above it or a clockline to its right This allows

loading of an arbitrary cell in an array via processing and loader inputs

to a cell in the lower-left corner of the array. Wahlstrom admits that

such toading is indirect and slow. Its utility is severely restricted if the

lower-left corner of the array is faulty. Our method allows speedy

loadtng of an arbitrary cell with the three loader inputs of a side-set of

any one cell in the array. This implies that connecting the loading

outputs of some cell in one array to the loading inputs of some cell in

another array allows a loading arm to be extended from the first array

into the second array. This minimizes the number of pins required for
. ~'-...
testing, loading, and repair in systems composed of several ICs.

4) For all the loading methods, one can envision a function. state in

which a cell's processing inputs control loading lines near the cell. (A

machtne in Chapter 4 uses such a state to allow a machine embedded in

an array to test its environment, and to construct and repair machines In

that environment.) For the other methods, there are harsh limits on the

position and number of cells that can be loaded from such a cell, even in

a perfect array. With our method, any cell can be loaded from any

other cell that is not walled off by flawed cells.

5) A loading arm's flexibility allows It to avoid flaws in a faulty array.

PAGE 96

6) Our method allows use of several loading arms simultaneously

loading unrelated cells. Because the other methods involve loading lines

extending through many cells, they do not allow this.

Our loader demands a small number of additional logic elements in each

cell to achieve its advantages, but the cost of logic elements is declining rapidly

compared to other system costs.

A cell's loading mechanism allows the loading of function-specification

state bits in the cell. This mechanism consists of a Basic Loader, which is usually

combined with one or more loader options. The site of loading activity In an array

is the tip of a loading arm. The Basic Loader allows the extension of an arm to

include any of the tip's neighbors which aren't already in a loading arm. A Total

Retractor option allows the rapid destruction of an arm by a single sianal to the

base of the arm. An Incremental Retractor option causes a tip's relcon neighbor in

a loadin1 arm to be the new tip; the loading arm is then incrementally retracted.

The Tip Changer option allows a tip cell to be repetitively loaded. The loader

options demand extra logic elements, but extend the power of the loading arm.

Each cell in a checkerboard array has Select, Clock, and Data loader

inputs and outputs at each of the cell's four side-sets. When an array's power is

turned on, its working cells are inititalized so that all their Select output lines are

low. Raising a side-set SS1's Select input activates 551: Data and Clock inputs at

SS 1 may load the cell's register containing its function-specification and loader

state bits. The newly Selected cell is the tip of some loading arm. A counter in

PAGE 97

this tip cell counts the number of bits shifted Into the cell's register after

activation; so the cell knows when its register has been loaded. The loader state

then specifies the new arm tip. With the Basic Loader, one of the loaded cell's

interconnection neithbors that isn't in an arm may have its Select input at side-set

SS2 raised. Then Clock and Data information from the base of the loading arm flow

through the arm, through the former tip, to the new tip. This process may iterate.

Loader options extend an Array Programmer's ability to control a loading arm.

Figures 3.3 through 3.5 give an embodiment of our loading mechanism in

a checkerboard cellular array. Most discussion of the loading mechanism is on a

functional level. The loader can therefore be understood without reference to

these diagrams, but they are included for specificity. Figure 3.3 shows the

mnemonically-initialized names of the loading inputs and outputs of a cell. The

loader lines are Select, Clock, and Data. Up, Right, Down, and Left refer to the

cell's four side-sets. Figure 3.4 shows one possible realization for the Pulser in

the lower-left corner of figure 3.5. After power is supplied to an array, the

pulser's OUT Une in each working cell remains low long enough to assure that all

appropriate memory elements are simultaneously reset. Intel's microprocessors

have a circuit with this effect. The other elements in figure 3.5 - a complete

functional diagram of the loader for one cell - are familiar standard logic elements

like those in a Texas Instruments TTL catalog. The function of each logic element

is summarized in the symbol table in figure 3.6. These elements could be realized

in many forms and technologies.

PAGE 98

Fig. 3.3 Input-output Lines Of A Cell's Loading Mechanism

" h H

s C D s C r:

~, ,,
~

s - .U.IN .U.OUT s -
~ -
'

...

- ,, .L.OUT . R. IN , r"

' - -

, D ,, T"I
.... ...

s . s .
7 ,,

C . .L.IN . R.OUT C . -,, - ,

D - D -
7 ,,

.D.OUT • D. IN - -
I~ "

,,

s C D s C D
,, ,11 •II

Fig. 3.4 The Loading Mechanism's Pulser

Behavior Possible circuit

)
vcc (+ powex:)

vc~
J_

:~ (>
OUT

~

OUT

PAGE 99

Fig. 3.5 Loading Mechanism With Options

S .U .IN
D.U.IN
S .R.IN
D.R.IN

S.D.IN
D.D.IN
S.L.IN
D • L. IN __ -.. __

S.U.IN
C.U.IN
S.R.IN
C • R • IN-----.:-_,

S.D.IN
C.D.IN
S.L.IN
C.L.IN

---,...-_-_-:_ __

INCREMENTAL RETRACTOR
S.U.IN

S .R.IN

S.D.IN

S.L.IN

TOTAL RETRACTOR

FUNCTION-SPEC. LOADER .TIE_
STATE BITS BITS CHANGER

D .OUT INO INl OUTO OUTl LOO LO~ LSTA

QO Ql Q2 Q3 Q4 QS Q6
>----'-----t D

C (P) S-R FL

ector
OUT

BO Bl B2
QO Ql Q2

--=C

I

Pulser

L.

Q

.----LOO
.------LOl

..J

Options are marked by - - - boxes, Not using an option implies
elimination of associated elements. If the resultant circuit
has an AND gate with only 1 input, that gate is replaced by a
wire connecting that input and the output.

PAGE 100
Fig. 3.6 Symbol Table

(1 st of 2 pages)

A) Combinational logic elements

A

B)
c

-- OUT

A

D :13
C

--OUT

A

E)
B

OUT

A 0 OUT

---i[)o-- OUT

8) Pulse-maker

AND GA TE: OUT = A ANO B ANO C.
OUT is a logical high, or 1, if and only if
A and B and C are all 1.

OR GATE: OUT= A ORB OR C.

EQUAL GATE: OUT= (A= 8).

CIRCLE: OUT = ,.,A, OUT is the
complement of A.

INVERTER: OUT = ""A,

Although combinational logic elements ideally act instantaneously, actual
devices involve a slight delay before a change in the inputs is reflected at the
outputs. This delay is used in the pulse-maker.

--n-----.:,-

IN_,___. OUT PULSE-MAKER symbol.

IN

OUT _ ___.,- D _....._, __

PULSE-MAKER behavior. We always
use the Pulse-maker for inputs that
remain high or low at least O time-units.

PAGE 101

Fig. 3.6 Symbol Table

C) Memory ••ernents

(2nd of 2 pages)

D

C

D

C

D

C

C

O aways indicates a DATA input.
C always indicates a CLOCK input for a. memory element. The memory

· element responds to a.·posttive-1oini transition.on·C'• input
R alw~ indicllet a RESET input; all output, of the ftlefflOr)' element
are O if R • 1.
Q elways indicates .an OUTPUT of a memory-element.

D Q

C

• • •
QO Ql Q(m-)

S-R (m)

Q Q(m-

D Q Q
•••

C

Q{m-1)

5-R (m)

•••
QO Ql Q(m-1)

CTR {m)

)

0 FLIP-FLOP. Q takes the value of D
·when·. a potltl•••tolffl C transition
occurs.

SHIFT-REGISTER (m-bit, serial-in,
·par•Uel-out). Output• are QO throuah
Q(m-1).

_Thia is equiv.tent to the lhift-reeister
above.

SHIFT -REGISTER (m-bit, serial-in, serial-
.out). Only Q(m-~he last bit of the
ahift-reaister, ia l

COUNTER (m-bit). This counts in binary,
chan~ing state on positive-going
transi ions of C. If m =- 2, th• counter
has the staltt--tr,ansitions for (QO Ql) of:
(0 0) to (1 0) to (0 1) to (1 1) to (0 0).

PAGE 102

We first detail" the Basic Loader, with none of the loader options. S-R

FL is the shift-register containing the function-specification and loader state bite.

LOO and LOl are the loader state bits that specify the loader's output side-sel

LST A is only included when the Tip Changer is used; this loader state bit specifies

whether a tip cell is to be re-loaded. S-r FL may have any number of function

specification state bits. Here we assume four such bits - INO, INl, OUTO, and

OUTl. CTR, a counter, counts the number of bits shifted into FL after a cell is

activated. Since CTR must be able to count to P, the number of bits in FL, CTR is.

log2P bits. The P-detector outputs a 1 when CTR's count is P. For P ... 61 the P

detector performs the function OUT = B2 AND Bl AND NOT BO = 61 in binary.

TCH, the "touch" flip-flop, signals that a cell has been loaded.

The Basic Loader is used to load a perfect array in the following way.

When power is supplied to the array, the Pulser resets CTR and TCH to 0. The

CTR, the P-detector, and the TCH flip-flop are used to determine when a cell's

_shift-register FL has been loaded. S-r FL is in an indeterminate state (although

some processing layers require it to be pulser-resettable; this forces all cells into

the same function state when power is turned on). All extra-array inputs to the

array are 0. Assume that S.L.IN for some cell A goes from O to 1. Cell A has been

TOUCHED from the left, and now its left loading inputs are ACTIVATED. C.LIN and

D.L.IN may now affect the cell's function-specification and loader state bits and its

loader outputs. This prepares shift-register FL of cell A to be loaded via D.LIN

and C.L.IN. Since all other S.INs are O, all other side-set's loader inputs are not

PAGE 103

activated. D.L.lN is relayed to D.OUT and C.l.lN is relayed to C.OUT. Besides being

the D outputs of the cell, D.OUT is the D input to shift-register FL Since TCH•O,

C.OUT is the C mput to shift-register FL and CTR The first positive transition of

C.LIN causes

1) D.LIN to be shifted into shift-register FL, and

2) CTR to be incremented to (BO Bl B2)=(1 0 0).

During loading of the cell, CTR functions to count the number of positive C.IN

transitions since the cell was touched. That is, it counts the number of bits shifted

into shift-register FL Succeeding C.L.IN positive-transitions will · similarly shift

information into shift-register FL and increment CTR. The •p"th such transition

(6th in this example) causes

1) the 6th D.L.IN bit to be shifted into shift-register FL, so that all the

information in shift-register FL has been loaded from D.LIN since S.LIN

went high; and

2) CTR=(O 1 l); this causes the output of the P-detector to go high.

Thus shift-register FL has been loaded with function-specification and loader state

bits; the P-detector signals this fact by sending a high signal to the input to the D

flip-flop. When C.L.IN next goes from high to low, TCH goes high. This causes

1) the C inputs of shift-register FL and CTR to remain low; C.OUT la no

I anger transferred to them; and

2) one and only one S.OUT to go high, thereby activatln1 inputs at the

side-set of some "touched• neighbor cell. The one selected ls

PAGE 104

determined by LOO and LOl.

The loading arm is a loading-signal path starting with some base cell

with a high S.IN, and possibly extending from that cell to other cells, with the arm's

path marked by high S lines linking neighboring cells. Figure 3.2 showed one such

loading arm. With the Basic Loader we restrict a cell from touching a cell that is in

a loading arm. In this case, this means cell A should not touch left, the source of

loading information. It may touch cells that are up, right, or down nei1hbore.

Assume cell A touches cell B above cell A. We then say that the loading arm's TIP

has been moved up from A to B. This is caused by loading cell A with LOO=LOl=O;

when cell A's TCH goes high, its S.U.OUT goes high. That is, cell B is then touched

by cell A. Because S.L.IN is still cell A's only high S.IN, it's still true for cell A that

C.OUT =C.L.IN, and O.OUT =D.L.IN. Because cell 8 is the only cell that A Is touchin1,

cell B is the only neighbor of cell A to accept C and O information from A. B can

now be loaded in the same way that A was. B may then touch some new neighbor

FL, funnel loading information to this new tip, etc. That Is, this process of a cell's

being loaded, touching a neighbor, and funneling loading information to that nel1hbor

may iterate. In this way a loading arm may be snaked through an array, with its

length only limited by the size of the perfect array. This growth of a loading arm

to any cell from any other is facilitated by the loading mechanism's mono-active,

balanced nature.

A brief example will illustrate loading via growth of a flexible loading

arm. Assume a perfect array was to be loaded with function states (INO INl OUTO

PAGE 105

OUTl) equal (0 0 1 0) for cell (0 0), (1 1 1 0) for cell (0 1), (0 1 0 1) for cell (1

0), and (1 0 1 0) for cell (1 1). The Array Programmer may connect to cell (0 0)

in the manner 11hown in figure 3.8. After the array is turned on, all cells have

CTR=TCH=O. The Array Programmer raises S.L.IN of cell (0 0), the base of the

loading arm. The Array Programmer uses the C and D lines to clock out the

sequence {0;0,0,1,0,0} in the manner indicated in figure 3.7. This loads shift

register FL _with (INO INl OUTO OUTl LOO LOl)=(O O 1 0 0 0). That is, the

function-specification state bits have been properly loaded and the loader bits LOO

and LOl tell cell (0 0) to touch up. At TO, the first downward transition of C.LIN

after the loading vf shift-register FL, S.ROUT of cell (0 0) is r.aised Cell (0 1) is

now ready to receive C and D information from the Array Programmer, routed

through cell (0 0).

The subsequent sequence clocked out of the Array Programmer via the

C and D lines is {0,l,0,1,1,1}, {1,0,0,1,0,1}, {l,0,1,0}. Thus all the cells of the array

have been loaded by a loading arm snaking through the array in the manner

indicated in Figure 3.8. A different-shaped loading arm could have been used to

accomplish an equivalent loading of function-specification state bits.

We now consider the various options available to enhance the capability

of the Basic Loader. The Total Retractor allows a loading arm to be grown and

later totally retracted by a signal to the base of the loading arm. This allows, for

Instance, reloading of cells and rerouting of a loading arm to new cells from the

same arm base. With the Total Retractor, a perfect array is loaded Just as

PAGE 106

Fig. 3.7 Clocking out The Loading Sequence 0, 0, 0, 1, 0, 0

C.L.IN___r-u-L

D.L.IN

Fig. 3.8 A Loading Arm Formed By Touching cells

(S=l} 1

C-,
Array s - 1 / 0
Programmer ,

D - r , y
0 1 X➔

Fig. 3.9 Loading Arm With Tip At (100 0)

Array -
Programmer , j 0

0 1-98 99 100

PAGE 107

described above. Assume the loading arm of figure 3.8 exists. If the Array

Programmer lowers its S line, no S.IN of cell (0 0) is high; the Total Retractor of

cell (0 0) causes that cell to be reset to CTR=TCH=O. When TCH goes low, all

S.OUTs of cell (0 0) go low. This resets (1 0), which resets (1 1), which resets (0

1). The function-specification state bits of these cells are unaffected. The Total

Retractor thus allows the resetting of all the cells in a loading arm by lowering the

S input to the base of the arm. These reset cells are then ready to be re-loaded

by some new loader arm.

The Incremental Retractor allows a loading arm to be shortened cell-by

cell, instead of all-at-once as with the Total Retractor. The Incremental Retractor

shown in figure 3.5 includes the Total Retractor circuit, so this Incremental

Retractor is always used with the Total Retractor. The Incremental Retractor can

save time when, for instance, one wants to change the state of a cell that is near

the tip of a long loading arm. Consider the long loading arm of figure 3.9. If the

Array Programmer wanted to reload cell (99 0), as it might on the basis of some

test on cell (100 0), cell { 100 0) could be loaded with information telling it to

touch left. When S.L.IN of cell (99 0) went high, the incremental retractor of cell

(99 0) would create a reset pulse. This would reset cell (99 0) for subsequent

loading from (98 0). Resetting of (99 0) would lower S.Rln of (100 0), thereby

causing (100 O)'s Total Retractor to remove (100 0) from the loading arm while

leaving (100 O)'s function state the same. This incremental retraction is much

faster than the equivalent action of total retraction and subsequent growth of the

PAGE 108

loader arm from (0 0) to (99 0).

In loader realizations in which the Incremental Retractor does not include

Total Retractor circuitry, the Incremental Retractor may be used for a type of total

retraction. If all the other S inputs of a cell are low, lowering its S line and then

raisin& it prepares the cell to be loaded from that S line's aide-set. Assume an

Array Programmer wanted to grow a new loading arm from the base of an existing,

unnecessary arm. By lowering the cell's high S line, then raising it, the Array

Programmer would prepare the cell to be loaded, forcing ~II the cell's S.Out lines

low. The cell could re-touch the cell it last touched, or touch some other neighbor,

and a new arm could be grown from the old base. Of course, part of the old arm

might remain in the array. Under certain conditions this is intolerable; loading a

cell in an old arm from some new side-set involves special considerations, as we'll

see. Nevertheless, many applications make fast retraction feasible through

exclusive use of the Incremental Retractor. When fast retraction is unfeasible, an

arm may be totally retracted cell-by-cell via the Incremental Retractor, as we've

discussed. If even this is impossible, due to a growth failure at the loading arm's

tip, the Incremental Retractor allows a new arm to grow through the working cells

of an old arm; subsequent incremental retraction frees these working cells from

the loading arm.

The Tip Changer allows a tip cell to be repetitively loaded by the same

loading arm. This is another time-saving device, particularly helpful when one

wants to test the same cell in various states. It involves adding an extra bit to

PAGE 109

shift-register Fl, and consequently requires one more clock pulse for the loadins

of a cell. If a tip cell is loaded with LSTA=l, the downward C.IN transition at TO

(directly after the P-d•tector 1oes hip) causes resetting of CTR and TCH to

CTR• TCH-0. The ·faet that LST A is hiah alto prevent, the cell from touchina any

other cell. Thus · the cell is loaded with • function state, remains the loadina tip.

and is therefore ready to be immediately reloaded. If the cell is loaded with

LSTA=O, it ma.y touch another cel1 as if no Tip Chanpr existed.

Thue the Basic loader can combine with a combination of Total

Retractor, Incremental Retractor, and Tip Chan1er. The particular combination used

in an array deplnda on the specific objectives for that array. In arrays delisr,ed

for infrequent foadin,, minimization of circuitry by exdusive UN of one Retractor

option might be appropriate. The rest of this chapter detail• growth of shift

register arms. t.f program-variable shift-register leftllh was important to an array,

variation-speed considerations might encoura1e use of all loader options.

In summery, the fundamental loadin1 mechanl,m aUowa loadin1 input,

from one of severet sides to control loading of a cell. The ceU may learn that, and

how, subsequent information input from its active loadin1 side-set· should be
\

passed to loading output, of some other side-sel If the eef of loading mechanism

neighbors is properly chosen, Inputs to any cell may cause the loading of a cell

anywhere in a perfect array, and loading of most cells in a flawed array. The

loading mechanism may be Incorporated into arrays with diveree procenina layer1.

PAGE 110

Section 3.2: A Perfect Array Of Shift-register Cells

We now examine one realization of a complete shift-register cell, shown

in Figure 3.10. We'll eventually show how an array of such cells can provide lar1e1

highly integrated, variable-length, automaticaUy testable and repairable memories.

For clarity, we begin by considering an array of such cells which contains no

flawed cells. The shift-register cell's loading mechanism is almost identical to the

loader of Figure 3.5. For simplicity, we assume that all the loader's options are

included in the shift-register cell. In fact, the approach we describe can be

adjusted to work with just a retractor option.

Each side-set has Select, Clock, and Data loader inputs and ouptuts,

whose function has been described. In addition, each side-set has distinct Klock,

iNput, and Return processing input-output lines; there is one set of K.IN, K.OUT,

N.IN, N.OUT, R.IN, and R.0UT lines in each side-set. The shift-register cell could

have been realized by disjoint loading and processing mechanisms. However, the

cell shown in Figure 3.10 reduces circuitry and loading time by using bits in shift ..

register FL in a dual role as function-specification and loader bits. The loader of

Figure 3.10 corresponds to that of figure 3.5 with the following mapping:

Figure 3.5: IN0 INl 0UT0 0UTl LOO L0l LSTA

Figure 3.10: IN0 INl 0UT0 0UTl 0UT0 0UTl STA

S-R FL is reset when power is turned on to limit processing layer complications of

certain faulty cells.

Figures 3.11 and 3.12 give alternate functional descriptions for the

,Fig. 3.10 A complete Shift-register Cell

S.U.IN .
D.U.IN

S .R. IN · D.OUT
D.R.IN

S .D.IN
D.D.IN
S .L. IN-
D.L. IN
S .U .IN
C.U.IN

S .R.IN
C.R.IN

S.D.IN
C.D.IN

S.L.IN
C.L.IN Pulser

N.OUT

Total
Ret,.-

Iner.
Ret.

PAGE 111

R.OUT

. Q n
D
C

S-RB
(n)

··STA

D Q

CR

.-----OUTO
.----OUTl

PAGE 112

Fig. 3.11 Abbreviating A Shift-register Cell's Function State

Function state Abbreviation

K. U. IN N.U.IN

---;. D

- C
S-R A -

L...-+ D

C
S-R B

~

R.U.OUT

J\

Q --

-., -
I

Q

N.R.OUT

K.R.OUT

R.R.IN

"~

The FUNCTION STATE diagram indicates the important
processing inputs and outputs for a particular function
state.

The short arrow in the ABBREVIATION diagram indicates
the active Klock input. Its side-set is nearest the base
of a shift-register ann.

,~

-
... -

PAGE 113

Fig. 3.12 Shift-register Cell's Function States

(Shown for all values of (INO INl OU'l'O OUTl))

(0 0 0 0) (0 0 1 0) (0 0 0 1) (0 0 1 1}

" . t
... ,

(l 0 0 0) (1 0 1 0) (1 0 0 l) (1 0 1 l}

(0 1 0 0} (0 1 1 0} (0 1 0 1} {O 1 1 l}

(1 1 0 0} {1 1 1 0} (1 1 0 1} (1 1 1 1)

~

PAGE 114

processing outputs in various function states. It's apparent that the proceHing

outputs depend only on the function-specification state bits, the processing state

(shift-register A and shift-re1ister 8), and the processing inputs. Shift-registers A

and 8 are of arbitrary length, with the particular practical length chosen by

integration-level considerations discussed later. A cell has one relcon neiahbor

when STA=l; a Klock input from a side-set E clocks N.E.IN information through

shift-register A, then through shift-register 8, and finally out N.E.OUT. A cell has

two relcon neighbors when ST A=O; while K.E.IN clocks shift-register A and shift

register 8, N.E.IN flows through shift-register A and then out some side-set F, and

N.F.IN flows through S.R B and then out N.E.OUT.

Cells are used to form shift-register arms. Information in an arm flow•

from the base of the arm via K and N lines to the arm's tip, turns, and flows back

to the base via the R lines. The cell at the tip of the arm has STA=l. This cell

acts as a loop; it forms shift-register A and shift-register 8 into one shift

register, with the same relcon neighbor providing K and N inputs to this shift

register, and receiving the Return output of this shift-register. All non-tip cells in

the arm have STA=O. Each of these cells receives K.IN and N.IN information from a

relcon neighbor nearer the arm base, and transmits ROUT information to that cell.

Each of these cells also outputs N.OUT and K.OUT to a relcon neighbor nearer the

arm tip, and receives R.IN information from that cell.

A simple example illustrates how the Basic Loader and Total Retractor

allow the loading of more than one shift-register into a perfect array by use of the

PAGE 115

Pig. 3. 13 . Loading Two Shift-registers Into Perfect Array

(Bxtr-array processing line.a are not shown.)

Power on; cells reset

Array
Programmer

First shift-register canplete

Array
Programmer

Both shift-registers complete

Array
Programmer

PAGE 116

loader inputs to one cell. Consider the perfect array of Figure 3.13.A, with all

cells reset because power has just been turned on. The array's only connections

with the outside world, other than power lines, are

1) (0 O)'s loader inputs, which connect to the Array Programmer; and

2) (0 O)'s and (0 l)'s N.L.IN, K.L.IN, and RLOUT lines (not shown in the

figure), which will provide the inputs and outputs of two shift-registers

embedded in the array.

After the Array Programmer raises S, the sequence {0,0,1,1}, {0,1,1,1},

{0,1,1,l,}, {1,1,1,l} is clocked via C and O inputs into cell (0 0). When S is

lowered, the loading arm totally retracts. This leaves the array in the processing

state shown in Figure 3.13.B. S is again raised, and the sequence {0,1,1,l},

{0,1,1,1 }, {l,1,1,1} is clocked out. S Is lowered, and the array is left in the

processing state of Figure 3.13.C. The processing lines shown are made available

th_rough some type of wire. Loader lines may also be made available; so that the

array may be repaired if it develops a flaw, or an embedded shift-register's lenath

may be varied.

In estimating the time to load a cell's p-bit shift-register FL, we

consider two extremes:

1) If the cell being loaded is the base of the arm, the minimum delay

between C.IN transitions is tmin = 1/fmax, where fmax is the maximum

clock-frequency of a shift-register.

PAGE 117

2) 1f the cell being loaded is many cell• away from the arm'• baee,

tmin ie determined by 2 factors:

a) After a new O.IN bit has been sent to the loaded cell,

C.tN cannot 10 high until we're eure the D.IN ·bit will arrive et the

loaded cell before C.IN'1 new transition.

b) After this C.IN transition, O.IN cannot be chanced until

we're sure. the C.IN transition wlU deflritely arrive at the leaded

cell before the new O.IN.

Thus the time to 1oad a cell n cells from the bale of lta · laadn& arm is the ereater

of 2 numbers.

Uoad = p x max (1/fmax, n x (dmax + cmax - dmin - -cmin))

Here dmax i• the maximum delay of a D signal throup a cell, and the other d and c

symbols above are similarly defined. Recall that a Ioele 1ate can have a very smelt

delay if it's known that only one of its inputs chanan frequently. Noting that the

C and D delays come solely from an AND-OR function, where the ANOs have only

one input that chan1es fast, we observe that dmax for a cell le approximately

equal to dmax far a locic 1ate with a load of four lnput-loede.

In estimatinc the maximum frequency at which an embedded shift

register may be clocked, we make two assumptions:

1) An bits of shift-resisters A and B of a particular cell are docked

simultaneously.

PAGE 118

2) A clockpulse remains a pulse as it travels down an arm.

The rate-limiting delay then comes from the delay path schematized In Figure 3.14.

tmin = andmax + 2 x andormax + s-rmax + s-rsetup

Andmax is the maximum delay through an AND gate, where only one input to the

gate changes often. Andormax is the maximum delay through an ANO-OR gate,

where only one input to an AND gate changes often. S-rmax is the maximum time

between a clock transition to a shift-register and the subsequent stabilization of

its output at its proper value. S-rsetup is the time the O Input to a shift-regieter

must be stable before a clock transition. The Klock input to a shift-register arm

must have a low enough frequency that, for the longest possible arm, a pulse

remains a pulse as it travels down the arm; and two pulses are never less than

tmin apart.

The method we've shown for relaying clock signals down loader and

shift-register arms has two major disadvantages:

1) A clockpulse may expand or contract indefinitely if it's passed

down a long enough arm. This limits the clock's frequency.

2) The frequency at which Data can be sent down the loading arm is

limited by the uncertain delay involved in sending a Clock or Data signal

down a long arm. Ideally a Clockpulse and its associated Data bit flow

through an arm at the same speed.

Figure 3.15 shows a simple circuit which eliminates these difficulties. The circuit

Fig. 3.14 Shift-register's Rate-limiting Delay

D

C

S-R B
(n)

Return

Klock

C

Q (n-1)

S-R B
(n)

PAGE 119

PAGE 120

Fig. 3.15 Pulsewidth Regulator With Data Transmitter Option

Data
Transmitter

Clock
output

- -{>-+ if option
p-element delay

Pulsewidth
--+--

Regulator

Clock input

m-element tapped delay n-element delay

Clock
output
if no
option

The combination of the n-element delay with gate 2 constitutes a pulser
responsible for outputting a pulse long enough to trigger a neighboring cell's flip
flops. The m-element tapped delay in combination with gate 1 lengthens a clock
input pulse enough to assure that the pulser acts properly.

Assume that the delay of a signal-transition through any gate is O plus or
minus t. Assume that the clock input to the Pulsewidth Regulator has been O long
enough so that the outputs of all gates are 0. First consider the Pulsewidth
Regulator with no option. Clock input receives a positive pulse ~f minimum length
P sufficient to trigger any of a cell's attached memory elements. The m-element
tapped delay is tapped at enough places that a clockpulse P long causes one
longer pulse out gate 1. This longer pulse has a minimum width W such that

W ~ [P + C n1 + 1) (□ - t l - CO + t) l = [P + mO - (m + 2) t l •
If W ~ n (0 - t) , the clock output is a pulse X with

X ~ nD - (n + 2) t.
Assume that the pulse at the clock output is reduced by at most R as it travels
through gates to the clock input of a neighboring cell. Then the following
conditions assure that the neighboring cell receives a pulse of minimum width P.

n□ - (n + 2)t ~ P ANO P + m□ - (m + 2)t ~ n(O - t).
Longer clock input pulses obviously work fine.

A similar analysis calculates the maximum clock frequency.
If the Data Transmitter option is used, the clock output pulse must be

delayed the right amount to assure that a Data bit and its associated clockpulse
flow together from one cell to the next.

PAGE 121

assures that a 'Clockpulse of minimum width P which is input to a loading arm will

travel down the arm with a tightly-bounded width. The Data Transmitter option

assures that a Uata bit and its associated clockpulse flow together at the same

speed down a ·toading arm. Placement of the Pulsewidth Regulator before the

broadcast Klock output of a shift-register cell would increase the maximum

clocking frequency of a long shift-register arm. The loader's use of the Pulaewldth

Regulator and ,Gata Transmitter option would speed loading for long loading arms at

the cost of slower loading for short arms and increased cell overhead.

Richard Shoup's method for forming an embedded shift-register is quite

different from ours. In Shoup's method, a cell contains only 1 processing layer

shift-register.; 'function state bits control which iNput goes to the shift-register,

and the output of the shift-register is broadcast to all its neighbors. Clocks to the

shift-register cells come down the Data control lines, the same lines used for

loading function-specification state bits. This of course means that all co-column

cells must be clocked simultaneously; they can't, for Instance, be used for

different regittter1a with different clock frequencies. Shoup's arrays are relatively

hard to test, especially for large arrays. Testing requires "building up shift

register paths of increasing length between opposite edges of the array." (See

<Shoup 73>.) Every cell is tested in all 4 directions; we'll see that this is an

unnecessarily large amount of tesUng. The tester accesses the processing inputs

and outputs of all edge cells; this requires excessive use of probes and bonding

pads. Our loading method gives our shift-register arrays many advantages. We'll

PAGE 122

see that the fact that all communication with an embedded shift-register arm is

through its base also facilitates testing. The major drawback of this bi-directional

capability of our shift-register cell is that it slightly reduces a shift-register's

maximum clock frequency.

PAGE 123

Section 3.3: T nttn1 And Repair

In H,t-s: section we consider the concurrent processes of testln1 and

repair involved'ifl ernbeddint a shift-register arm machine ln a flawed array. The

ahift-relistar cet. is the one we've been· contideri"ft that of fillft a 1 O. We focut

on growth of Oft8 arm from a bue cell with loadina · and proceseina connections to

an Array Prolf'9l'lll'Mlf', but the techniques diecU988d are easily· aeneralized. The

Array Program,aer uses a toadln1 arm to ,row loncer and longer shift-re1ister

arms, like the· two- in Figure 3.1 a The growina ehift-realster arm extend• throuah

the same cells • the loading arm. The arm is tested as It a,owe. Failure to pass

a test indicates that the arm must twist throuah the array in a •liahtly clfferent·

way, so that ;t. mcfudu only good cetls. If an attempt is made to produce an arm

of a certain lena"t in a elven flawed array with inputs and outputa. at a liven side

set, several thinp. may happen. Such an arm · may be realized, the array may be

found incapable· of producin1 such an arm, or 'lestina may take too·IOftl.

Embedding an arm of balanced cells is particularly easy. The arm is

extended cell--,....cell into an array. When an arm is In a liven ,-.ition, the arm is

tested under the ·temporary assumption that its non-tip cells. will remain in their

current function• states. The relcon nel1hbors of each body cell are therefore

known, and information flowing in the arm to and from its base tests the cell's

communication with ib relcon nei1hbors. As lon1 as a cell's intercomec.tion, non

relcon nei1hbora aren't loaded, it's auumed that their input, to an arm cell don't

chan1e. Consequently, it's sufficient to test an embedded arm via .the input• and

PAGE 124

outputs at the base of the arm. The cells' balance allows an arm to move in any

direction as it snakes through good cells in an array. Sometimes extension of an

arm in an intended direction is prevented by a flawed cell. Then the arm is

retracted, and the arm's growth proceeds in some new direction from some stump

of the unsuccessfully extended arm. Since the cells in the stump of the arm stay

in the same function state, they need not be re-tested. A cell is only tested in its

role in an embedded shift-register arm. Thus growth of an arm through balanced

cells facilitates the interwoven processes of testing and repair.

Description of the testing process is much clearer if we use an example

simplified by some assumptions:

1) Good cells are only loaded under the Array Programmer's control, and

not by signals caused by faulty cells. This assumption is satisfied if no

faulty cell outputs a high S at the same side-set where it outputs an

alternating C, since this is the only way a faulty cell can load a good cell.

This assumption is also satisfied if any cell that is not loaded under the

Array Programmer's control is defined as a bad cell, even if it is not the

cell's fault that it is improperly loaded. Since we'd like properly formed

cells to be used as good cells, we specify cell mechanisms that help

guarantee that a good cell is not falsely loaded. This involves making the

set of valid loading commands smaller than the set of possible loading

commands, so that fault-generated commands are likely to be disobeyed.

2) A cell's performance depends only on that cell's mechanism, state, and

PAGE 125

input •ianala. It does not directly depend, for Instance, on the state of some

other cefl ln the array. Like the fourth ueumptlon. this saves testins time;

it's used 1n moat IC testing prc,va,ns. The nsurnption I• rutonable because

the only 1mes connecting different ceHs ·are the side-set titles and the power

lines. Thls assumption account, for side-set lines. In •ome technolopts,

such as tnqnetic bubbles, couptin1 could not OCCU" throwst, cetl-connectin1

power .fiMa because there ere no such tines. With other ·technololies, such

as conventional semiconductor technology, it's true that such coupling could

occur. However, the re1ut1rity of an ar~y it useful ln rninirnizin1 thi1

possibility. Each ceH could contain a timple reautator circuit optimized for

the highly predictable (:haracteriatict of a workin1 cell.

3) Celts that are faulty durine array testina muat be somewhat consl1tent

in their faulty behavior; that is,

A) a ·1ucce&1fuUy tested cell doeen't develop new faults dt.riftl array

testing; and

B) 11 ,m,ceasin& input that doesn't alternate durin'I the testing of a cell

may not alternate during other array te1tin1, uni••• the Array

Programmer commands i't to alternate.

AssumptiOA 3 makes it easier to localize the cause of a teat failure.

Assumption 3A is reasonable because the time to teat a realizable array is

very short compared to its mean-time-between-failure. A89umption 3B

allow, a cell in an embedded arm to be te,ted •ol•ly for proper

PAGE 126

communication with its relcon neighbors; it allows the Array Programmer to

assume that a cell passing its tests won't misbehave durin1 further array

testing due to a previously unencountered input signal. (Most cells wouldn't

misbehave anyway, since they're programmed to ignore irrelevant inputs.) A

cell may have side-sets which are inaccessible to an Array Programmer, due

to the cell's position near a flawed cell or at an array's edge. All the cells

of figure 3.16 have at least one inaccessible side-eel Assumption 3 allows

such a cell to be embedded in an arm in spite of the inaccessibility of its

irrelevant side-sets. Like assumption 1, assumption 3 is valid if all the

inputs and outputs of faulty cells are assumped to be stuck at some value.

If assumption 3 is invalid for a particular array, the Array Programmer may

become confused during testing. In this case the Array Programmer can

start testing the array again. Repeated confusion indicates that faults are

forming at a pathologically high rate; then the Array Programmer signals that

the array should be rejected.

4) The behavior of certain mechanisms in a cell is independent of the

state of other mechanisms. We assume that a shift-register bit works if it

successfully accepts new information when the bit and its 2 neighboring bits

are in any of their 23 = 8 states. This assumption implies that a shift

register bit's function is independent of the state of non-adjacent bits in an

array. This allows the testing of a length-n shift-register by testing its

ability to shift a (10 + n)-bit sequence (0 0 0 1 0 1 1 1 0 0 ---), in which

PAGE 127

the n bit. are used to push the first ten bits through the shift-re&ister.

Thie common, reaaonable astumption it necenary to •ave te1tln1 time;

testing a 40-blt shift-register in every state would take a sequence of

appro><imttety 1,000,000,000,000 bita, and we e,cpect • cell'• lhift-re.-ter

to be considerably longer than 40 bib. The unspecified bits in the

sequence above could be selected to drain maximum current from the

power eupply. SlmHarJy, we lflume that the proce11in1 mechaniam'•

behavior it independent of the loadifl state. Thi• ..unptiotl eav• tat

time.

The vatldity of these assumptions, which are like thole made in te1tin1

conventional digit.al systems, can be made very likely by proper array desip and

layout The ultimate test of the validity of these atsumptlons for a particular

array is experimentation with that array.

We now consider a testine process operatina under these aS1umptions.

Consider the .amay of FiPJre 3.16, shown in successive etqes of \estins- The only

extra-array connections are the Array Programmer's proces1in1 and loader

connections to cell (0 1), which aren't shown In the fill,W'e. Here we assume the

shift-register arm is to be 5 cells long; m • 5. When a new cell B is to be tested

for possible addition to a shift-register arm currently extendin1 to Its tip at cell A,

several things happen. Cell A Is put in a state 10 that shlft-re1i1ter arm

information is routed to and from B. B is put Into a loop state - (0 0 0 0), (0 1 0

PAGE 128

Fig. 3.16 Growth Of Perfect Shift-register Into Flawed Array

1 2 3

X X X

X X X

4 5 6

X X X
~

~ ~'
~ '+

X X X

7 8 9

X X X

The connections of the Array Programmer to cell (0 1) 's
left loading and processing lines are not shown.

Unmarked cells are good cells in the (O O O O) state.

PAGE 129

1), (1 0 1 0), or (1 1 1 1) -with the loop starting and ending at A's side-set

shared with 8. Assume N is the number of bits shifted completely through the

processing shift-registers of cell 8 and passed down the arm for monitoring. Also

assume the Array Programmer knows the contents of all the A shift-registers In

the arm up through cell A. (The Array Programmer should know this; it's loaded

these registers.) Testing cell 8 in an arm of length m then requires (N + alength +

m x blength) Klock inputs to the arm, where alenglh and blength are the lengths of

shift-register A and shift-register 8. Passing the test means that the shift-register

arm works properly; a new tip has been properly added. If cell 8 is the last,

"m"th cell of the arm, the Array Programmer is then satisfied that a shift-register

arm has been properly formed in the array. (See stages 8 and 9 in the figure.)

The Array Programmer doesn't care whether the cells of the arm could have been

loaded from other directions, or would have worked in other function states. It

doesn't care if some cells of the array haven't been tested at all. (See cell (0 2)

in the figure.) The Array Programmer simply cares that Ile objective . has been

realized. This pragmatic approach allows substantial reduction of testing time.

If cell 8 is meant to be part of a longer arm, it must be connected to an

interconnection neighbor cell, other than A, just as A was connected to 8. The

testing of this new, longer arm then proceeds as above. Growth is a recursive

procedure.

Failure of the arm after its extension from cell A to cell 8 indicates that

growth from cell A to cell 8 is impossible. A may be loading 8 Incorrectly, 8 may

PAGE 130

be flawed, A or B may be outputting Klock information to a neighbor elsewhere in

the arm, etc. The Array Programmer doesn't worry about the specific nature of

the problem. It simply uses one of two reasonable flaw-models. Cell B may be

judged as a flawed cell never to be tested again, as in the example. This

simplification might be appropriate if the area of shift-registers A and B dominated

the area of a cell; failure was probably due to a failure in this area. A second

alternative is to just consider the boundary between cells A and B impassable in

the attempted direction. Cell B might be approached later from one of its other

neighbors.

If cell B can't be approached from cell A, some new arm-path is tried if

there is still. one to be tried. Cell A considers touching its neighbor cells in some

established order. When a neighbor is considered for touching, the touch is

attempted if the cell exists (isn't out-of bounds), isn't known to be unloadable from

A, and isn't already part of an arm. Furthermore, extension of the arm through

that cell must, at least potentially, eventually yield an arm of the desired length.

This last provision explains why no attempt is made to include cell (2 0) in the arm

in the example; at best a length-4 arm would result.

If all A's neighbors have been rejected, the arm is forced to try some

new path that includes all arm cells up to A. In the example, (0 0) of stage 3 is

cell A. Since there's no cell compatible with the existing arm that can be loaded

from (0 0), the arm is retracted to cell (0 1), where new paths are considered.

A program simulates the method described above for loading a shift-

PAGE 131

register arm Into a flawed, rectangular array. The simplest fault model ts used; a

cell is either perfect or hopelessly flawed. A proararn forms • flaw pattern of

specified dimensions with randomly sprinkled flews. Another pro1ram tries to

realize the lcmpst arm po88lble in the flawed array, wowin& from a specifie4 1ood

base cell. A time 1lrnlt is used ~ the prOlf'am would e~entuelly conaider all

possible arm paths extendin1 from the base cell.

The repair program Is short and simple. When an arm has arown to a

certain· tip, it ttiet· to extend itself toward the neareit array qe. Thus an •m

spirals toward the canter of an array in a perfect array. If no improvement in the

maximum discovered arm is made in one-fourth of the time limit, the proaram look•

at. adjacent celfs · that are not included In this longest arm and are not known to be

flawed. The program tries simple joggin1 of the arm to include these cells. The

program returns with • picture of the reaultina arm in the flawed array, and some

statistics concemtn1 the arm lf'OWlh.

Figures 3.17 and 3.18 show arms snaking throuah two different 25 x 25

arrays. Statitfic:t for these and other, similar experimentt, appear in table 3. 1.

Figure 3.19 shows graphs derived from table 3.1.

· The experiments su11est several conclusions:

1) For %flawed under about 25, %oftotal drops about 2.2X when

I flawed increases 1 %. This is nearly Independent of the aize of the

array, with lar1er arrays doing sli1htly better. Repair effldency also

drops steadily. For Instance, for the unetarred 400-ceH array in table

PAGE 132

Fig. 3.17 Result Of An Arm-growth Experiment

The relcon network above shows the path of an arm after an arm-growth
experiment. One can follow the arm's path from its base, at (2 1), to its tip, at
(15 18). There are 625 cells, 100 flawed cells, and 463 arm cells. We were able
to repair the array to embed an arm with 495 cells. This suggests that our
program's repair efficiency can be improved.

PAGE 133

Fig. 3.18 Result Of An Arm-growth Experiment

Th6 base cell is (1 l). There are 625 cells, 225 flawed cells, and 216 arm cells.

Table 3.1 Results Of Arm-growth Experiments
Ust of 2 pages)

Key:
Xflawed - flawed cells as percent of all cells
Cel Is - total cells in square array
#flaws - total flawed cells in array
max-arm - the longest arm our program grew
Xoftotal - cells in longest ar■ as percent of all cetle
timel im - the time limit, in seconds
Time - the time the program ran
Xoftirnel illl - time as percent of ti11el i•
* - For two starred (or unstarred) arrays of the sau size,

one set of flaw coordinates is a subset of the other.

Table:

Xf lawed
0
0
0
0
4

* 4
4.44

* 4.44
5

*5
5

* 5
8

* 8
8.89

* 8.89
10

*10
10

*10
12

*12
13.33

*13.33
15

*15
15

*15

Cel Is #flaw, max-arm Xoftotal
100° 0 108 188

225 0 225 108
400 0 400 100
625 0 625 100
625 25 590 94
625 25 586 94
225 10 208 92
225 10 211 94
100 S 93 93
100 5 92 92
400 20 367 92
400 20 370 93,
625 50 551 88
625 50 548 88
225 20 187 83
225 20 199 89
100 10 85 85
100 10 81 81
400 40 335 84
400 40 344 86
625 75 505 81
625 75 506 81
225 30 168 75
225 30 182 81
100 15 72 72
100 15 74 14
400 60 301 75
400 60 304 76

tlmeli ■
1Q
225
408
625
625
625
225
225
100
108
408
408
626
625
225
225
100
100
400
408
625
625
225
226
108
100
480
408

l!!!.
1
3
s
8

206
186
60
74
27
27

141
106
216
175
63
65
26
27

109
136
265
189
73
72
27
29

112
168

lofti•el iM
1
1
1
1

33
38
27
33
27
27
35
27
35
28
28
29
26
27
27
34
42
30
33
32
27
29
28
48

PAGE 134

Table 3,1 Results Of Arm-growth Experiments
(2nd of 2 pages)

%f I awed Cel Is #flaws max-arm %oftotal timelim Time %oftimelim
16 625 100 463 74 625 241 3S

*16 625 100 476 76 625 181 2S
17.78 225 40 152 68 225 GS 31

*17.78 225 40 163 72 225 69 31
20 100 20 60 60 100 27 27

*20 100 20 61 61 100 27 27
20 400 80 265 63 400 292 73

*20 400 80 287 72 400 114 28
20 625 125 440 70 625 220 35

*20 625 125 434 69 625 187 30
22.22 225 50 144 64 225 64 29

*22,22 225 50 140 62 225 106 47
24 625 150 366 59 625 264 42

*24 625 150 374 60 625 341 55
25 100 25 53 53 100 27 27

*25 100 25 4 4 100
25 400 100 225 56 400 119 30

*25 400 100 233 58 400 158 39
26.67 225 60 125 56 225 73 32

*26.67 225 60 113 50 225 114 51
28 625 175 346 55 625 332 53

*28 625 175 300 48 625 317 51
30 100 30 11 11 100
30 400 120 158 40 400 130 33

*30 400 120 150 38 400 355 89
31.11 225 70 115 51 225 181 80

*31.11 225 70 87 39 225 117 52
32 625 200 194 31 625 344 55

*32 625 200 246 39 625 429 69
35 400 140 108 27 400 235 59

*35 400 140 79 20 400 154 39
35.56 225 80 93 41 225 101 45

*35.56 225 80 2 1 225
36 625 225 7 1 625

*36 625 225 216 35 625 483 77
40 225 90 7 3 225
40 400 160 78 20 400 115 29

*40 400 160 4 1 400
*40 625 250 32 5 625 165 26

45 400 180 58 15 400 275 69
50 400 200 3 1 400

PAGE 135

PAGE 136

Fig. 3.19 Graphs For Experiments Embedding Balanced Arms

o/oOftotal is averaged for a given value
of Cells and %flawed.

10

Key: X Cells=lOO

90 A •225

□ =400
0 =625

80 • =ALL

70

slope= -2.2

60

50

40

30
)(

20

10 i
o/oOftotal)(

0
%flawed~ 10 20 30 40

PAGE 137

3.1, t,he repair efficiency drops from .98 at %flawed • 5 to .415 at

1flawed = 35.

2) As 1flawed increases, a cutoff point is reached where loftotal

drops precipitously. In our experiments, this occured for %flawed

between 25 and 45. Thia cutoff occurs when an array i• 10 ~awed that

the arm is trapped. Very small arrays, such as the 100-ce11 arraya in

our experiments, tend to have lower repair effldencl• and lower cutoff

points; because a higher percentage of cells are edp cells. An qe ia

a barrier that restricts the lf'OWth of an arm.

3) The time taken to embed an arm varies widely for a fixed lflawed.

It is roughly proportional to the nunber of cells in an array, and tenda to

increase as %flawed increases. When the cutoff point is reached, the

time to embed an arm plummets. This is an example where testin1 and

repai.r time is far from growing astronomically with an array'saize, even

thourh very few input leads connect the Array ProaramMer and the

array.

4) If the active area of a cell is fixed, statistical considerations state

that 1flawed varies len as slice size (and number of cells) increases.

This fact, the near-independence of 'loftotal on the number of cells in an

array, the proportionality of the time to test and repair an array to its

number of cells, and the desirability of large memories in one intevated

circuit package all arp for fabrication of the lar1est possible slices.

PAGE 138

5) How large should cells on a. lar1e slice be? Assume that the

dominant consideration is the number of bits in the lar1est embedded

shift-register arm. The total number of bits in an arm embedded on a

slice is proportional to the product of two factors:

a) The fraction YE of total cells embedded in the arm. Our

experiments show that for a 1iven cell yield Ye > 3/4, YE is

approximately 1 - 2.2(1 - Ye). Ye is a technoloay-dependent

function of defect density and cell area.

b) The fraction of a cell's area containing processin& shift

registers. If a cell has P area devoted to processin1 shift

registers and V area devoted to other circuitry, this fraction is

P/(P + V).

We can express this product as a function of P and technology-related

parameters. Finding the maximum of this function via differentiation

tells us the value of P that yields the highest expected number of bits

in a shift-register• arm. At one extreme, a large slice has nothin1 but

overhead circuitry. At the other extreme, It has one lar1e, flawed cell.

Note that a minimum condition is that a cell be small enouah to make

%flawed below the cutoff point. This condition is now met in most

technologies.

Though the repair simulation program is simple, its performance is

PAGE 139

encouraging. There are several ways It can be improved. In a production line

using large stices, the program would know an expected, minimum size of an

embedded arm for a slice of a 11v•n size. To sav:e computer time, it could be

satisfied when it attained that minimun-sized arm, or one elilf\tly tarIer. At this

point, use of much more computer time to maximize the arm would probably not be

worth the cotl Our simulation ran ih compiled Usp, and no effort was made to

improve speed. A r,roduction-oriented repair proaram would be carefully written

in assembly ,.,,.,.... More computw time could be UMd to improve repeir

efficiency.

We9Ve repaired fi1ure 3.17's array to realize an arm 495 cells lon1.

• Our ability to improve the repair efficiency from an to 941 suuasta our repair

program's performance can also improve. A more complicated and/or .,_..i,tic

program could improve repair efficiency. A simple extension of our proeram would

be more sophisticated about jogginc an arm to include unused, 1ood cells. Even

the current joaf ng procedure could be called several times, in1tead of only once

at the end of the main arm-growth procedure.

Now consider our assumption that no faulty cell outputs a hist, S at the

same side-set· where it outputs an alternating C. If a faulty cell outputs only

constant sicnals, this anumption is obviously valid. However, this 888'.lllption is

not valid if our assumptions are relaxed to say that all FAULTY outputs of I cell

are stuck outputs. In particular, it is not valid if a cell A's only fault is a hi1h

S.OUT - say S.LOUT. In this case incoming loading lianal• may be routed to the

PAGE 140

falsely-touched neighbor B at the same time they are routed to the appropriate

Array Programmer-intended cell. In this case we call cell A a branch c,ll, and cell B

the branch arm's bast. This branching is particularly vexing bocause its effects ml1ht

not be felt until much later in the testing. Consider the array of figure 3.20,

whose only fault is a high S.R.ln to cell (2 2). That is, (1 2) is a branch cell. In

such an array the indicated state could occur. The Array Programmer would only

know of the existence of the intended arm. When the intended arm tried to touch

(0 0), the branch arm would touch (1 0), causing the subse~uent test failure of the

extended version of the intended arm that included (0 0). This failure could be

caused by a faulty (0 0) cell, but in this case it wouldn't have been. Even if the

Array Programmer knew the failure was due to a loading branch, it wouldn't know

where the branch occurred; here cells (1 0), (1 1), (1 2), or (1 3) could have

been branch cells. The problem is heightened by the fact that total retraction of

the intended arm via lowering (1 3)'s S.U.ln does not affect the branch arm. Indeed

it may grow further if more loading information is clocked into (1 2). Happily, a

working cell's Incremental and Total Retractor circuitry implies that attempting to

load a good cell in a branch arm results in the freeing of all the cells from the

loaded cell to the tip cell in the branch arm.

There is a wide range of possible approachea to the loading branch. On

one extreme, the Array Programmer could assume that this branching problem does

not exist. If this assumption is invalid for a particular array, the Array Programmer

may find itself hopelessly confused. Then it quits its testing attempts~ and signals

Fig. 3.20 Growth Of A Branch Arm

branch
cell

intended arm~se

0 1 2

PAGE 141

3

branch arm's base
.J

1

0

Fig. 3.21 Branch Arm Touching Intended Arm

Intend this Get this

B A C B A C

PAGE 142

that the total array should be discarded. This is a fast approach that mi1ht be

reasonable if the probability of a branch cell was low; for instance, if cells had

many elements or arrays had few cells.

An array can be successfully loaded even if it has a branch cell, if one Is

willing to accept the extra testing involved. By our assumption that all faulty

outputs are stuck at some value, a branch cell can only transmit loading information

to a branch base if the branch cell's C output to the branch base works. Then D

of that side-set is either:

1) an alternating signal transferred by the branch cell, •• in the

example above; or

2) a fixed D signal, which causes the branch base to be continually

reset due to its being programmed into the STA=l state.

(2) is no problem; it's (1) we're considering.

The Array Programmer can use several facts to generate a list of

possible branch cells. When (1) holds, some of the tip end of the branch arm Is a

translated version of the intended arm. This is true because the branch base

receives the same C and D information that the branch cell receives. The Array

Programmer can use this information, and its knowledge of the position of the

intended arm, to generate a list of possible branch cells. Knowledge of which cell

of the intended arm failed helps reduce the size of this list. This knowledge may

come from noting that all cells of an intended arm from its base through some cell

C properly transmitted their shift-register B; the cell touched by the branch arm

PAGE 143

touched cell C cwthe cell to the tlp·side of cell C.

Assume· cell A tried to touch celt B, and the subsequent test failed. The

Array Programmer might suspect a branch cell if not even shift-rqister B of cell A

((1 3) above) outputs. properly durin1 the test A nelpborina cell C, pert of •

branch arm, may have touched cell A immediately after the simulllf'.INUS loadina of

cells A and C, thereby displacing arm A's tip to cell A. Cell A would then a,._ I~

with information intended for cell B (see figure 3.21).

Whett the Array Programmer suspects a test failure occurred because

of a branch ceU, it· retracts the·intended arm The Array Proaranrner then rearowa

the arm through cell A, and tries to terminate the arm with a· loop at cell C, the

possible branch ceH cl0$8St to the former intended arm'• tip. Thia new arm is

tested. An unsuccessful tMt suggests that the potential branch arm's base, cell C,

was the branch arm's base; cell A, the branch cell, Is marked as totally flawed. If

the test is slJCCe9ffl:il, and there are other potential branch cells doser to the base

of the intended arm, these cells are tested in the same way cell A wa Thal is,

arm A is retracted, and then hooked into a potential branch base cell. This process

repeats untU all potential branch cells are tested, or a branch cell Is fou,d. If all

tests are succeHful, there was no branch cell. Testin, and repair continue •• If

cell A was merely unable to include cell B in the shtft-rqlater arm. In any event,

this process assures that no branch arm remains to clutter up the array. (If such

an arm never affects int-.ided arm arowth, we don't care about It anyway.)

Note how the Incremental Retractor circuitry helps in the e,cample

PAGE 144

above. It allows the intended arm to touch and load a cell that's been part of a

branch arm. (Of course, loading must be slow enough to make negligible the

slightly different delays of C and O information traveling through arms A and B.)

Furthermore, it allows quick incremental retraction of arm A when a potential

branch cell is found to be good.

These branch location steps are illustrated in figure 3.22 for the array

of figure 3.20. Incremental retraction is used between all the stages shown.

In another type of possible branching, a branch cell transmits high

S.OUTs to more than one cell AFTER the branch cell has been loaded. This type of

branching, which is much less likely than the other, can be handled in a very similar

way.

Of course, various steps can be taken to reduce the probability of a

branch cell. Instead of one S line for selection, a cell could have a larger set of

such lines. Only the proper combination of inputs to these lines would cause a cell

to accept loading information. This approach could make chance selection, and

consequent branching, arbitrarily unlikely by sufficiently increasing the number of

selection lines.

The Array Programmer could send to a cell loading information stating

loading-input-direction, which the cell would compare to its Select inputs to decide

whether to accept a command. This technique would also help reduce the effects

of a branch cell by reducing the ratio of valid loading commands to total loading

commands. These techniques, and others like them, would only be employed after

PAGE 145

Fig. 3.22 LOctttion Of A Branch Cell

1 2

test test
·. >

passed passed

3 4

test X J,~

failed

Ann growth proceeds through cell (1 3).

PAGE 146

a more thorough analysis of the probability of a branch cell for a specific cell

implemented in a specific technology.

In loading more than one shift-register arm into an array, one must

worry that a branch arm will destroy a shift-register arm that has already been

formed and tested. If this possibility is sufficiently probable, it's a good idea to

continue testing a completed shift-register arm while a new arm Is being formed.

Effects of a branch arm can then be detected and countered before extensive

damage to the completed arm machine occurs. Besides monitoring the integrity of

the completed arm, this approach helps limit the confusion caused by a branch arm.

In limiting our consideration of possible failure modes to those above,

we are encouraged by a quote from <Von Neumann 66>:

"The axiomatization of automata for the completely defined situation is a

very nice exercise for one who faces the problem for the first time, but

everybody who has had experience with it knows that it's only a very

preliminary stage of the problem." ...

"There can be no question of eliminating failures or of completely

paralyzing the effects of failures. All we can do Is to try to arrange an

automaton so that in the vast majority of failures it can continue to

operate."

PAGE 147

Our discussion of testing and repair shows we can achieve Von

Neumann'~ goal simply and efficiently by incorporatine our loadina, testin,, and

repair mechanisms into a cellular array. The major limitation of our dilCU8aion -

the uncertainty of en appropriate flaw model - will be reduced when a particular

technolol)' and .QU Jayout are considered for the shift-resider array.

PAGE 148

Section 3.4: Production And Marketing Considerations

In previous sections we've considered the basic question of array

architecture, testing, and arm growth. In this section we consider less fundamental,

but important, points relating to specifics of production and marketing.

Once an arm is extended slightly into an array, the arm has many

alternate paths; the curves of figure 3.19 then apply. However, it's critical that

the Array Programmer be able to penetrate the array via an arm base cell. If the

Array Programmer can only access one such cell in a flawed array, there's a

probability pflaw that that cell will be flawed, and the array will consequently be

unloadable. One way to ameliorate this situation is to fabricate an array with

Array Programmer-accessible bond pads to more than one cell - each a potential

arm base. If there are m such cells, the probability that no arm can be extended

into the array diminishes to about pflawm. Quick tests would establish which base

cells worked. The Array Programmer would then use one or all of these cells as

base cells for testing and arm growth. The base cells should probably be away

from the edge of the array. One reason is that the edge is more subject to flaws.

A second reason is that there are more directions for arm growth away from the

edge. Another ameliorating solution would put a circuit on a slice that accepted

extra-array inputs which told it which of several cell edges to logically connect to

the slice's leads. For instance, one "cell" would replace shift-registers A and B of

a cell by wires. This non-cellular part of a slice would be less likely to be flawed

than a cell.

PAGE 149

Another important question relates to array size. How bit should an

array be? We know that all the procedures described so far work for arbitrarily

large arrays. We've also seen many arau,nents for lar1e arrays. One constraint on

the size of arrays is manufacturinc ·capebiuty, which is ceared toward dicin1 a

wafer of maximum 3" diameter into much smaller chips. The current lOOl yield

approach has limited development of support mactinery and lecmiques for the

realization of very tarp ICs. However, Texas lnttruments did un a 3/'Z- diameter

slice for di~tionary wiring (see <Spandorfer 68>). We've also heard that

Hughes developed 3 50-watt package for a s• slice as part of the Navy•, All

Applications Di11tat Computer protram; unfortunately, we haven"\ learned any

details about this yel While many of Tl's. and Huahes' techniques for mountinl,

packaging, coolinc. etc. can probably be carried over to tare• cellular arraya, • that

process may demand considerable investment. However, that process will

inevitably occur, spurred by improvement, in IC yie1dl. We are not even clON to

a fundamental limit here.

F01" technologies that require power lines connectinc many cells,

increases In array size increase the probability of array-de1troyin1 power

problems. The probability of a power but beins open-circuited can be made very

small by making the bus wide. Layout care can lower the chance of shorts

between a power bus and a signal line; most such ahorts would probably not be

catastrophic anyway. Nevertheless very large arrays should perhaps include

protection devices in each cell or block of cells. This drcuitry could cut a shorted,

PAGE 150

or even overheated, cell off from its power source, before the malfunction blew

the power line's fuse or sucked down the power. line. The protection devices

could be a fuse, or could be semiconductor circuitry, such as common transistor

SCR protection circuitry.

In any case, the well-defined nature of the protection circuitry's

expected load would enable it to be very simple. Figure 3.23 schematizes a

possible layout for power lines and protection circuits.

Another power-handling approach would make a cell's supply of power

controllable by the cell's neighbors. For Instance, any of a cell's nel1hbore could

command that the cell's power supply be switched on or off. This could save

power in an array, and reduce the danger of faulty cells, by channeling power only

to the cells in an embedded machine. Indeed a •power arm" could be •grown• in

parallel with a processing arm into an initially quiescent array of cells.

Another question relates to the size of shift-registers A and B. Havin1

shift-register 8 longer than 1 bit helps in the monitoring of arm growth; if each

shift-register 8 in an arm contains a known pattern of Os and ls, the Array

Programmer can monitor the position of a faulty cell by noting the location of faulty

shift-register 8 output. On the other hand, a longer shift-register 8 demands a

corresponding longer time to test an arm. Consequently a good length for shift

register 8 is 2 bits. Shift-register A should probably be a length consistent with

maximum expected number of bits in a shift-register arm.

An array yielding a maximum shift-register arm of a certain len&th can

PAGE 151

Fig. 3.23 Possible Layout Of POWer Lihes And Circuitry

Protection Protection
Circuitry Circuitn

''

~·
Cell or Cell Cell or cell

:;roup -Qit:ccud:tey Group Circuitry

Protection Protection
Circuitry Circuitry

Cell or Cell cell or eell
Group Circuitry Group-circuitry

0 -vcc

Communication lines between cell groups are not shown.

PAGE 152

be used to provide arms shorter than that length. This means an IC producer could

customize the same array to various customer needs. An unusually flawed array

could provide a small shift-register, and its package could be marked accordingly.

Customers could even be given an IC with a variable-length shift-register whose

length was controlled via a side-set's loader inputs.

If function-specification state bits are nonvolatile, a shift-register arm

can be loaded into an array before it's shipped to a customer. The customer has

the option of access to loading lines, which allow him to re-program or repair an

array.

If the function-specification state bits are volatile, there are several

customer-manufacturer interface options:

1) If a customer has a computer or other appropriate digital machine,

he has the capability for testing and programming an array. He can use

these capabilities, and a manufacturer-supplied program, on untested or

slightly tested (e.g., for functioning arm base cells) arrays.

2) The customer can receive a pre-tested array and a description of

the loading sequence required to form a specified arm in the array.

This description could be in tome non-volatile form, such as read-only

memory, paper-tape, or paper. Loading an already-tested array is as

easy as loading a shift-register. Power is turned on, an S line is raised,

and [4 x (number of cells to be loaded)] bits are clocked via C and D

lines into the array.

J --

PAGE 153

3) A communication link, terminated by lo1ic-interface machines on

each end, could coMect the manufacturer and customer. (The link miaht

be a phona line or cable.) This link could be used for loading, and even

teath,a and repairina, of a customer'• machine by • manufacbrer'1 or

system house's computer.

4) An array requiring very low power (such as a CMOS array) could

be shipped around with • battery-supply.

In any event, a volatile array must be backed up, either by a machine

capable of re-loading or by a power-supply insurina preservation of the function

state of the array.

It's obvious that the techniques we've described for fhe ehift-relister

arm machine apply to any arm machine. Arm machine realizatione are appropriate

to many machines which are realized as a chain of modules, with each module

communicating with at most two other modules, and only the modules at the end of

the chain directly connected to the machine's inputs and outputs. Many one

dimensional cethJlar arrays have this characteristic, so they could be appropriately

realized as arm machines in a flawed checkerboard array. The techniques for arm

machines easily reneraUze to the high-relcon and tree machines discussed In the

next two chapters.

PAGE 154

CHAPTER 4: HIGH-RELCON MACHINES

Section 4.0: Introduction

This chapter discusses arrays embedding hi1h-relcon machines. Hlgh

relcon machines have fewer restrictions on communication between their essential

cells than arm and tree machines. In an arm machine, no cell may have more than

two essential neighbors. In a tree machine, only one cell may actively output

information at a given time. All the essential cells in a high-relcon machine may

have four neighbors, and all essential cells may be actively communicating different

information at the same time. High-relcon machines may therefore have speed and

flexibility advantages. However, high-relcon machines are harder to test and

repair because a cell may have up to four essential nei1hbors, and because

essential neighbors in one high-relcon machine must be essential neighbors in all

equivalent embedded machines. Powerful mechanisms - the loader, and balanced

processing transmission states - allow test and repair of arrays embedding high

relcon machines. The description of a machine as an essential network facilitates

repair by abstractly describing the machine in a repair-oriented way.

High-relcon machines are conducive to a sequence in which the array is

tested, a plan for repairing the array is developed, and the array is repaired

through proper loading of good cells. This contrasts to the interwoven processes

of testing and repair appropriate to. arm and tree machines. However, this

chapter's methods still use a loading arm for loading cells durin1 testin1 and

PAGE 155

subsequent repair of an array. Transminion link• form tett links for te,tins en

array. These same transmission Unka may wire toaether ntial neilf,bor, in •

machine embedded in a flawed array. We detail the te1t and repair. procedur•

that use · these fll'ICti·on stat•. Experiments with r..,...: procedures we've written

help us compare repair difficulties for arm Md 'hi~eleon madi,..., and t

ways to improve our repair procedures.

Appt'lcaUon area• most appropriate to hi1h-relcon machine, are

considered. We ''present a simp1e cell, Gnural, which enables realization of the

benefits of hi~ machinet. Gener• fMY be \Md to rn112• hljhly. parallel,

arbitrary eequential machines, within ttmlte ..t only by the size of a General erray,

i ta number of input.;.'Output leads, and the' spt;id of lb coinponent,. General

embodies the medN!lni$ffll we use to test,· 1oac:t, anet repaft' h1p-refcon mecNnes. A

General array may .embed a· ·triveraal eotnptlter-twlructor-reptlirer that UHs the

test and rep11r procedures we describe. General'• loading mechani•m may be

controlled by en extra-array Atray Proarmn,ner. ~er, a machine ernbfMided

in a General . .,.,., may be an Array Pro1rarnmer; it can control the foadin1

mechanism, of ceh in tt, environment via a fl.rdlon elate th1f trwnit, proce1lin1

inputs to one 1tda'• loader outputs. This enable, a mlthine embedded in •

General array to tett, manipulate, and repair I ts ctilular· Mvi,;Offlient

For specificity, we belin by detlftlnt the General cell. Then we

consider. a 1eneral testins and repair approach for ernbedclnc hlah-relcon machines,

and compare .thl• approach to the one ueed for arm machine,. We diecu11

PAGE 156

realization issues peculiar to high-relcon machines. A comparison of the properties

of high-relcon machines to the properties of arm, tree, and non-array machines

reveals applications most suited to high-relcon arrays.

PAGE 157

Section 4.1 Th& General Cell

The General cell is amenable to realization of hiat,ly parallel nquentlal

machines. Thia cell incorporates the mechanismt essentl8' to our testin1 and repair

approaches for hiat,-relcon machines. Function states for proce1sinc, transrniffion,

and memorization of information allow realization of an arbitrary sequential machine

in the processing layer of an arbitrarily lar1e checkerboard array. A Control

function state that tranemlts proce88lng inputs as loadln1 outputs enables an

embedded high-re1con machine to load cells in Its anvirorvnenl Such • machine

may control a Jeadin1 arm and four teat links lo test, program, and repair its

cellular environmeAl Two or more such machines may mcritor and repair each

other.

Figure 4.1 gives symbols for the General cell's function states. Like the

cells of the last chapter, each General cell only communicates directly with its

neighbors or the extra-array world. There are no sicnal busses extendins throup

a General array. We've discussed the testin1 and repair advantaae• of this type

of cellular desip. The loaders of the Shift-re1ister and General calls are identical,

except that proces,,ng inputs can control loading outputs when a General cell is in

the Control function state. Each of a cell's four sides has S, L, and D loader inputs

and outputs (as in figure 3.5), and a Processing input and outpul Like the Shift

register cell, the General cell incorporates all the loader'• options. The shift

register loaded by a loadh,g arm has four function-specification state bits - FM, FO,

Fl, and F2 - and three loader state bits - LOO, LOl, and LSTA. This 1hift-re1ister

PAGE 158
Fig. 4.1 General's Function States

Function states are shown for all values of (FM FO Fl F2).

cross
(O O O 0) .~

'_J ...
' r

II

L-turn
0 0 1

(O O O 1)

(O O 1 1)

Control
(1 0 0 O)

R-turn
1 0 1 0

(1 0 0 1)

(1 0 1 1)

' .

. ,

Memory
(- 0 0 O)

Not used

(O 1 0 1) (1 1 0 1)

0 1 1 1) (1 1 1 1)

Note: An unshown processing output connects to the
opposite side's processing input. Loader outputs are
only affected by processing inputs in the Control state.

PAGE 159

is reset when power is turned on. In all but one function state, only loader inputs

affect loader outputs. However, in the Control state each Processina input from

one of three sides affects a different loader output at the ri&ht elde: P.U.IN •

S.R.OUT, P.L.IN = C.R.OUT, and P.D.IN • D.R.OUT. Thi• state allow, a machine,

embedded in an array as a collection of function states, to re-proeram it• cellular

environment by appropriate processin1 sips traneferred to some cell'• loader

outputs.

The Crosr,, L-tum, R-turn, and U-turn atate, are types of balanced, non

branching transmission states. Cross is a cronover; the other, are bends. We'll

see that. Cross, L-turn, and R-turn are very u•eful for testing and fault-avoidance;

note their similarity to the shift-register cell's non-tip 1tate1 (eee fi1ure 3.12).

Cross, L-turn, and R-turn may combine to form a tranemlnlon link arm that enakes

through an array. Such a link may act as a two-way wire bus, or simply as a wire

carrying information in one direction. U-turn is useful in teetina; note lta similarity

to the shift-regist&r cell's tip states.

State (- 1 0 0) is a memory state. In this state, FM is not used in its

customary function-specification state bit role; instead It's a processing layer

P.R.IN-selectable O fUp-flop. A Reset input for this flip-flop is not provided, but

this function is easily simulated by proper manipulation of P.R.IN and P.D.IN. This

memory state is very convenient for realization of r..-tere, addr•eebl• read

write memories, and other common memory modules.

The states associated with F2 • l allow convenient realization of •

PAGE 160

Fig. 4.2 A Function Performed In Different Orientations
(first of 2 pages)

Function F: out= (a + c) (a + b) {b + c)
Some busses between opposite sides are not shown.

A) Array A has inputs and output at its left.

B) Array A has its inputs and output at its right.

a

b
Array A

C

out

PAGE 161

Fig. 4.2 A FUnction Performed In Different Orientations
(second of 2 pages)

Function F: out=(a + c) (a+ D) (D + c)

C) A rotated version of Array A, aided by u-turns,
performs F with its inputs and outputs above.

C b a out

D) A rotated version of Array A, aided by u-turns,
performs F with its inputs and outputs below.

.,___..,.
This 4x3 array is the array of largest
cells above. It is a rotated version
of Array A.

C b a out

PAGE 162

combinational logic function expressed, for instance, as a minimum product of sums

or sum of products. Figure 4.2 shows that these states function and combine very

much like the states in programmable logic arrays. These General states, coupled

with U-turn, were designed to eliminate the severe waste of cells that often

results from cell designs that only operate on signals coming from a given,

preferred direction. Those designs demand the use of many cells to turn an input

signal into an appropriate orientation. Figure 4.2 presents sample realizations of a

logic function, and indicates the ease with which General arrays operate on signals

to or from various directions. This is particularly important for functions with many

input-output lines.

The fact that digital machines usually require extensive signal-routing

explains the cell's emphasis on bussing signals from one side to an opposite side.

This allows a cell to perform bussing operations at some output while

simultaneously performing a branch, combinational logic, or memory function at

another output.

It's easy to see that arbitrarily large, properly programmed General

arrays can perform any time-independent, effectively computable computation. It's

been demonstrated that today's general-purpose computers can perform such a

computation if their memory capacity is unlimited (see <Min~ky 67>). Like <Banks

71>, we therefore need only show the ability to realize an extensible general

purpose computer in the General array. The ability to realize a general-purpose

computer comes from the availability of its basic components - Nand r1ates, wires,

PAGE 163

and memory etements. El<tensibitity comet from the Control state and loadin1

mechanism. Aft array-embedded computer can bt constructed to control the

processing fnptlh, and cOnHqUently h rilht tide'• loader outputs, of a · Control

cell on a right ·•-tide of the computer', periphery. We've seen that appropriate

loader st1nala 1o an ..-bitrertfy cell atlow the srowtff of a loadin1 arm to an

arbitrary cell in a perfect array. The array~·COfflPUter can consequently

send signals to mer ltt memory at needed.

Stnce suet• a machine hn a moveable conetruction arm, it can construct

arbitrary digital machiMs in an arbitrarny latce array. For instance, lt can

construct a copy of itself. It it therefore also a Lriveraal constructor.

We'ff see that. for array faults· of a c.artaln ·~ nattn, an Array

Prouammer can 'test an array and ernbed a perfect machine in a flawed array.

Since the Array Prosrammer can be realized·tn a 'flawed .,...,, the General cell

allows universal tepair for faults of an neurned nature.

Thus the. General array can support a univereal compuler-constructor

repairer.

General is universal, but simple. A processin& mechanism's complexity

results in advantqe,e and ditadvantqet whose iinportMCe depends on the cell's

use. The need for a low proportion of flawed cellt in an array emb-.ddins hilh

relcon machines currently requires ·that only simple celts be fabricated on a slice

containing many cells. Basic, univer$81 cells illow an embedded rnachiM'• deliener

to exploit the paraltetiem in a liven al1orithm Teetina. repair, and lip-routlna

PAGE 164

require cells to assume transmission states; usin1 a very complicated cell in such

a simple state wastes most of its complicated mechanism. On the other hand, a

simpler cell has a smaller ratio of processing circuitry to loading circuitry; the

simpler cell suffers from a higher associated overhead when the loading circuitry is

quiescent. When a cell's simplicity requires more cells for a 1iven machine, the

function-selection in each cell slows the machine.

One component of a cell's complexity is its number of processin1 lines.

If a cell has many processing lines in a side-set, routing each of the lines to or

from a different part of an array requires many cells to break the lines from the

side-set's bundle of lines. Furthermore, unless independence of different parts of

a cell's processing mechanism is assumed, test time per cell rises exponentially

with its number of processing inputs.

An array designer considers these general considerations and specific

design goals when designing a high-relcon array.

General's processing mechanism is one consistent with efficient

. implementation of our testing, repair, and computation goals. The Cross, L-turn, R

turn, and U-turn states are important components of test arms and transmission

links in testing and repair. Although General cells perform wirin1 operations in

many states, signal-routing is so important that expanding General's sisnal-routin1

capabilities might be worthwhile. Some variation of the Control state is necessary

for realization of our goal of array-embedded array manipulatora. The sequential

machines we envision for General would use enough memor)' to support a memory

PAGE 165

state; construction of memory elements from 1ates would require a 1reater

proportion of eelts in an array than Is justified by the resultant simplification of a

cell. Indeed, actual applications micht arcue for more memory elements in a cell

and/or more memory-oriented function states. 1ra true that cells with (Fl F2) •

(0 1) are rotated versions of cells with (Fl F'2) • (1 1), and that cell states can be

eliminated by clever use of the (0 1 0 1) cell. A1ein, these cell sirnplificationt

would probably resutt in disproportionate numbers of cells for most applications.

We briefly digress to give a little information about a familiar machine, a

miniprocessor, unique only because we designed it as a machine embedded in a

General array, end because a special feature allows It to test and repair It•

cellular environment This rniniprocessor could be the processor of a univereal

computer-constructor-repairer. This digre88ion fa Intended to aive some specific

information about our cel.lular realization of a machine like one many readers are

familiar with; those who aren't will not lose continuity by jurnpina to the next

section. We don't think the General cell is particularly suited to realization of

conventional processors, because processors are already m•s-produced ICs.

However, we do want to demonstrate the Generei cell's power. Furthermore, this

desi1n 1ivas some insi1ht into the number of cell• of various type, needed to

implement a somewhat familiar machine.

The miniprocessor we designed is a 16-bit parallel, synchronous, single

sequence machine with conventional A-B-C bus structure. Ficure 4.3 gives a map

of the miniprocessor. The machine has 66 extra-array lines: 1 clock, 1 interrupt,

PAGE 166

Fig. 4.3 Map Of Miniprocessor-Tester-Repairer

8 Data 8 2-way transmission
inputs &~~~1----------....;:;links

I

loading a:nn•s base

) 4 test-link
~➔ .. -,-. bases

outputs ~,-tt-----------

Interrupt

Clock

i
I I
I I .. ,. I 3

ALU/REGISTERS SECTION

.. ...
12._,..__.I ,

I I
I I

TIMING &
CONTROL
SECTION

111'

I I
4 __ , ,

~ _ _,___isl
' I I

I I

31

16

MEMORY
INTERFACE

SECTION

... , _ _i,
16 Inputs"Frotn Memory

4

I
I
✓

•.,.._ _4
'

I
I

f1s

I ,

Write
Memory 15 Outputs For Memory Address

16 outputs For Memory Data

PAGE 167

8 data inputs, 8 data outputs, 15 memory address, 1 "write memory", 16 memory

data inputs, and, 16 memory date output lines. The machine also haa four teat

links, and one loader arm for testma and repatr, we dt1CU11 use of thete eallly

implemented feature, in later sections. The machine'• main sections are a Timina

and Control section, a Memory Interface section, and an Arithmetic-Lo1ic

Unit/Re1ister1 section. Both the Memory Interface and ALU/Re&iatera sections

have 16 · similar modules, one for each bit-tlic.e. The Memory Interface Section

contains the 1'4-bit instruction register, and many transmission links. The

AW/Reeisters secti'ln contains six larce U 5 or 16-bit) registers; lhete are the

Accumulator, Program Counter, Instruction, Subroutine Reb.rn, Interrupt Return, and

Input-Output/Test & Load registers. . Thit ,action's 16 block• are identical, except

that the block interfacing with the Ttming and Control Section is sli1hUy clfferenl

The miniprocessor has fairly conventional arittvnetic, IQlical, subroutine, interrupt,

and input-output capabilities. Instructions are procened,in a conventional, einale

sequence way.

We 'tpeCified this machine as one embedded in a perlect, rectanaular

General array with ab9ut 9,000 cells. Its non-writing indirect memory reference

instruction takes three cycles, with about 700 cell-delays for each cycle. Since

most cells introdwce about one gate-delay, a cycle takes about seven microseconds

for a technology with a gate-delay of 10 nanoseconds. Each rectan1ular

ALU/Register slice gives an example of a mix of cell types; each has 18 unused

cells, 147 transmission cells, 53 combinational locic cells, and 6 memory cells. Each

PAGE 168

bit-slice has 88 essential cells: 53 combinational loaie cello, 6 memory cells, 16 U

turns, and 13 branches. There are 118 non-brenchina trlMn)itsion cells used as

wires. Other parts of our processor-tester~repejrer had an even hi&her ratio of

wire cells to essential cells. This emphasizes the importance of good sip-routine

capabilities in high-relcon arrays.

Testing and repair techniques using. the Qeneral cell depend only on the

loader and processing transmission states, so the testina and repair approach for

General can be applied to other hi1h-relcon array, wHh loader and proce,,in1

transmiHion capabilities analo1ous to General's.

PAGE 169

Section 4.2: Introduction To Testing, Construction, And Repair

Testing, configuration, and repair for hlgh-relcon machines is similar to

those processes for balanced arm machines, althou1h there are important

differences. The chief difference, are that hip-releon mechinn are not conducive

to the interwoven processes of test and repair; and test and repair are more

difficult and le.as efficient for high-retcon machines. We consider an approach

applicable to any htgh-relcon checkerboard array with · our loadin1 arm and

transmiHion link facilities. We menUon how a Control state· like General'• may be

tested, but this stale is not essential to cu testin, and repair approach.

In considering embedding an arm in an array, we made certain

reasonable a'Ssumptions concernin1 failure modes of the array. Then the

interwoven processes of testing and repair were considered. These processes

occurred by the aradual snakin1 of an arm into an array. A cell was tested only

insofar as necessary to establish its successful incorporation into a desired arm;

this usually meant a cell wasn~t tested in all of its states. T eating of a new arm

tip cell required using a partially tested cell, but this presented no difficulty.

In considering ernbeddini high-relcon machines, we make assumptions

very close to those made in the last chapter. However, most hiah-relcon machines

are poorly suited to cradual growth and testing for two main reasons:

1) In growinc an arm, the number of relevant extra-array proce1sin1

inputs ai'\d outputs remains fixed. However, hi1h-relcon machines

usually have a variable, sometimes large number of relevant side-sets

PAGE 170

as they're l"OWn. Most 1eneraHy, this reqLifet t•t ·. •ms linkina . • tett

machine to the relevant aide-sets et .a partially crown machine'•

periphery. This requires an Array Procrammer to have a variable and

often lar1e number of test .armt end lllqCieted linke. We'd much prefer

to have a low, fixed number of auch liaka. Conaequentty, we test cell•

individually, relyinc on i~ ~ons ~t cells' behavior.

2) Embeddinc an arm in a flawed array can be ,done efficiently by

gradual 1rowth of the arm, followed. by loc,1 jo11ioc of the arm to

include clumps of good cells. HiJh--r.tcon mec:hines t.nefit creatly from

a 1lobel repair approach that beam- with a deacrip~on of all the flaws

in an array. This means that repair -.ffldenq is. i,nproved by sepm'1ation

of the test and repair procedwes.

These ccmeideration, explain why.~. te,t ..,_ r~•lr procetMt for

hlat,-relcon machines are ee1mented into a 1erle1 of Mveral cliatinct proc:edurea.

First the Array Proerammer's T,st procedure teat. an array, noti111 the

location of faulty cells. This testin& is independea,t of the enential machine that i1

eventually embedded in the array, so Test's re•ul~ are valid until. an array

develops a new flaw.

A Ripa.tr procedure determines how. le ..,_ • ,..,f4!C,l machilMt in the

faulty array. Repair accepts a flaw pattern dNcription of a .flawed array from

Tesl Repair also accepts an essential network model of the, desired enential

PAGE 171

machine. Repair's output is a description of the repaired arrr, that places each of

an array's cells into one of the fotrowina four cal61Wies:

1) The cffff is flawed.

2) The cell is an eeaential cell.

3) The cell may assume an arbitrary non-control function state. None of

its outputs i1·retevant to the·~· machine's output

4) The cell is in a Cross, L-turn, or U-tarrftrensni88ion state. The cell

is 11»art of one or more wires a11oclated with relevant inputs and

outputs of 811ential cells.

The Construtt procedure constructs a perfect machine in a flawed array.

Construct modifi·es Repair's output by mappina each of an easential machine's

essential cell states into a properly tocated essential cell. Repair has arran1ed

that essential ceUs be wired together in the proper way. Construct accepts from

Test a model of the· flawed array statina which tide-ttti may definitely be used

for loading. Te•t devetops this mode1 as it test• an atray. Every cell that Test

finds to be lffd has some side-set that can be used for loadin1 the cell.

Construct only activates the side-seta specified by Test as It extends a loading

arm into an array~ Construct's loading arm may touch any aood cell, but it always

touches and loads eijsential cells (cate1ory 2) and wire cells (cate1ory 4). When

Construct completes its loading task, a perfect machine is embedded in the array.

The embedded machine is ready for further test or use.

Our high•relcon repair procedure Hsumes that the len1th of wires
t

PAGE 172

between essential cells is irrelevant to the proper functioning of an embedded

machine. Possible techniques for assuring the validity of this assumption are

suggested at the end of this chapter.

PAGE 173

Section 4.3: Testing

Testin1 an array embedding a high-relcon machine involves the one-by

one testing of the cells in that array via teat links between the tested ceU and an

Array Programmer. This procedure is relatively difficult, compared to testina of an

array embedding an arm, because Test doesn't know how Repair will map a perfect

machine into the faulty array. This implies that most cells must be tested in all

their function states. Because all of a cell's acce88ible proce11in1 lnputa and

outputs may affect an embedded machine's output, Test must vary the accessible

processin1 inpubJ to the cell, and monitor the acce1Sible processin1 outputs.

Consequently testing a cell usually involves linkin1 each accessible side-aet with

the Array Pro1rammer via a test link. Figure 4.4 ehowa that the processin1

transmission states are ideally suited for this task.

Test makes the assumptions listed below. Each aasumption i• analo1oua

to the corresponding assumption made for shift-reciater cells.

1) Good cell's are only loaded under Test's control, or because of a

branch: cell, and not by signals caused by faulty cells.

2) A cell's performance depends only on that cell's mechanism, state,

and input signals.

3) A aucceufully tested cell doea not develop a fault before the

Construct process is over.

4) A cell's processing outputs don't depend on its loader state; and,

unlese the function state is the Control elate, loader performance
I

,,

PAGE 174

Fig. 4.4 Test Links To Proc~ssing Linea Of Tested Cell ,.

~

....

I ~,
...
r

TESTED
~ CELL ~

ARRAY '
~

PROGRAMMER

t
~

'

~

'

PAGE 175

doesn't depend on the function state. This non-e88ential, reasonable

independence assumption allows a reduction in testin1 time. Teet need

not, for instance, test a fll'lCtion state for all loader states.

In considerina testing, we first focus on the test stages that occur when

all tests are passed. We then address implications of test failures, and possible

flaw models. The Madet11na question ls pursued in the IUbtequent delcription of

Repair.

T estin& a cell requires explicit tests of its permiHible nn:tion states,

and concurrent implicit tests of its loader. Testa of a typical cell involve two

types of communication between the Array Programmer and the cells at the test

site. Test Unk• connect the Array Pro1rammer to the proce1sln1 input• and

outputs at the test site, as In figure 4.4. The test links are composed only of cells

in the Cross, L-turn, or R-turn transmission states. The Array Programmer

requires one test link to each acce11ible side-aet. The Array Pro1rammer

communicates to a lasted cell through si1nals to and from the base of each test

link. Besides the test links, a loading arm extendln1 to the tested reaion link• the

Array Programmer with loader inputs. This arm may pass through cells that are

also in a test link, or even through the tested cell. (However, the Array

Programmer should not relay hl1h processing signal, down a test link connected to

the up, left, or down side-set of a cell being loaded, and temporarily in the Control

function state.) The Array Programmer may change the state of cells, auch •• the

PAGE 176

tested cell, either by sending signals into the base of the loading arm, or by

sending processing signals down three test links that converge on a Control cell.

Testing a cell's non-Control function states involves cycling it through

those function states the cell may assume in an embedd~d machine. For each such

state, appropriate stimulus signals, and responses to these signals, flow through

the test links. We'll see that Repair always specifies that a good cell adjacent to

a hopelessly flawed cell assume a Cross, L-turn, or R-turn state; this is an

example of the tested function states being a subset of the set of all non-Control

function states. In this case, only some of the tested cell's side-sets are

accessible. A functional test of a non-Control, non-Memory function state involves

at most 24 = 16 input combinations. Fewer input combinations may be appropriate

if some side-sets are inaccessible, or if independence of certain outputs and

certain inputs is validly assumed. For instance, the left Processing input might be

experimentally found to never affect the right Processin& output in the U-turn

state, even for a faulty cell; this would allow simplified testing of the U-turn

state.

Testing a cell's response time in a given state is possible, if the Array

Programmer can accurately time a test link's output response to an input.

Differential techniques then allow the calculation of the delay associated with each

test link. Additional delay comes from delay through the tested cell.

Unfortunately, accurate timing requires time resolution of less than one gate-delay,

which is difficult to achieve.

PAGE 177

If th& Array Programmer knows the delay thrOUlh each test link, test

time for a given function state depende on how quickty the Array Pro.,...11• can

change the input to· a test link. This Is United by the Array Proaramrner'• speed or

the bandwidth of a cell Any inaccuracy in the estimate of the delay throup a link

may also limit test. speed by effectively reduci"I the Nfldwidth of the Hnk.

In testin1 a Control function state, test links connect the Array

Programmer to all four of the side-sets of the cell in the Control state. First the

Array Program,ner. verifiee that the riat,t side-set'• test Hnk la not a test arm, by

ascertaining that a aitnaf into the bate of the teet link ctoeanyt return to the base

after an appropriate delay. Then silfl&I• into the up, left, and down proceasin1

inputs command, the tested ceU to load the ceU to its riaht into a U-tt1m state.

The Array Programmer again tests the right test link. If it'• now a test arm, the

Control state is pod; otherwise the Control state·is bad.

T estint a ceU's loading mechanism is implicit in the teeta of the cell's

permissible function states. If a cell faits its fu,ctlon tests, Construct doesn't try

to load it. If a cell passes its function tests, a loadinc arm has SUQCNsf&Aly loaded

the ceH and retracted from the cell. Theref«e Conatruct'• IOldin1 arm can alao

load the cell from•~ side-set Test keeps a map of which side-Ntl the loader

uses to succesefuHy activate and de-activate wortdna celle. Conetruct UNI thl1

map to determine. the path of its loading arm.

After a cell hu been tested, test links mutt be moved to a new test ·

site, if there is any remainin&, The new test site ia usually a cell adjacent to the

PAGE 178

last tested cell. Thus only the tip ends of the loading arm and test links need be

moved. This is fairly simple, since a loading tip is at the test site. Each test link

is gradually extended as part of a test arm, just as arms were extended in chapter

3. After each incremental extension, all links are tested to assure growth is

proceeding satisfactorally. Since a test arm only incorporates cells in transmission
l

states, faulty cells are discovered and avoided as in chapter 3. This gradual

extension is particularly appropriate in an array with a high fault density. In an

array with a very low fault density, the speedup from non-gradual growth could

offset the slowdown from a faulty cell's confusion factor.

The process of moving the test site terminates with each of the new

test cell's accessible side-sets connected to a test link. The new test cell, in the

LI-turn state, is the tip of one or more test arms. The test process is repeated

for this eel I.

In the last chapter we noted that failure after an incremental arm

extension could mean several things. For instance, the new tip cell might be

hopelessly flawed, or it might just be incapable of receiving information from the

indicated direction. We noted that various flaw models might be appropriate,

depending on the cell lay.out and the sophistication of the Array Programmer.

This modelling difficulty again rises with the high-relcon array. Growth

of test links is analogous to growth of shift-register arms, so the same comments

apply. A similar difficulty arises when a cell is in the process of being fully tested.

The cell may produce nonsense in all states; modelling that cell as hopelessly

PAGE 179

flawed i, theft afinitely epproprlate. How..,.,, ft ,_ auo happen that arr output

Value is only . .,,.,.. ·When ft't I fu,ctfon 'of Ji ~1,Jnput C .. fll frOM Ii cell

otherwlu ~··pm Madettlrt •~t.'or even a ptril~i, 1ftrJut or

output, n unueeati• tNahl be valid. Ctial9· •f·~tk,n leiel itl' the Repair

prt,eedur••·· tre•tment of ·snatttfy , .. ~.d Clllt; ,.,,,lidi•·.,n: whethet th•

•~•Ucatton i1 worth U.. computatiONI ·cost hf aci,• cltcUllfon of Repair, we

888Uffle an tl1ft)' ffllly iMt ffttlditftd W, a ,. ,. fft ~-.+try c:ell 1,

rep~ted b)t,wrx ·

PAGE 180

Section 4.4: R~r

The Rep,air pr~• ~•~~, bow ,t~, ,~a,~w.f~ t)Jth-relcon

machi~• in a flaw.t •r~Y•. T••t~"~,W1 a fJ• ~\~ ~~plim,.,caf the

flawed array. Most generally, Repair may embed the l•1est &rid machi~.}t can.

Construct may t~n co~truct in. thfa. tlaw,d. f(T.,Y,,.,,,,~• 'Mith an •-ntial
• f • t _. .~ 0 ,)'.° •..._, '.,,) • • .:,,(r• .. ,"·,:- t,' u: a("'.:;.,,; ,·' '•t,. ' .

netw~rk .that fit, into .this l~
1
"'st.·:'rid. W•·~;;W°Jc:4-~ fjral Most

actual embedded ~"ft.. ha't'e .. ea.-tit,A .~t,~wUP:JtrtfeY.n.t. ~..tli, .. their , , ,. > .- --.·. - ~, ~-·: .:•¾'Y'~ .·.·:,>r··"'·'·:~.., .. ~ ~ . ·~-•'' ' .

. ~•senti.~ ~twc,rk~, are ,ri~• wj'.~~\.'~'-~. ~ ,,U,tf~;M~. ,Jhe ,,.,~t,;~al

. R•e~r methQd is th!" less eHici'9t. tba,n ., .. l'l!~r~'i,~~,, ."1 i,nc.°",P•l•
~rid. We eventucalf)' ~~~er such 1a ~·:~~!~~~.,mg~;'R~r Ar~•·

It~ ~n ~•w~ ~~! .~~ a ~ ~~ dff.t~ ~ J,i,,"'9,.}lawed

arra,~.. ~f. the ~ ~hi~'• eaten~ •~~ ~'~,! ~~, of \be., A.Wlsinal

.. essent~al network, new r.,a,pair of the array is ,_."Fr!• ~r .. ~ hf?w · to
• \ ' ; j ,; ' • •• • • 'o' •~.,<•_,· ; 0 .,L •>. • • ',,,,-,; - •" •

l~ate.tlnd wire. toa,t~.Jipd •••tilll .. ~'111,,~~~l.,Mc,U,.~n tr~••on

atates as wlr••• Jo tmbtd • pert~.t ~hip~ Jo ~·)~ e,;r.91 .. Thia. -,1ow1

,.~Qnstr~t ta ass~l• thitproper. f~ . .u,~,with .. ,.~1,e~tial cell, and to

wire t9gether •·••ential cellt with.~nai~oOtN~~.91 Repair.

The Rep,air.procedures that w,,,h,ye. w~~ t~ aimpl8' •. fault
> • - ' • ', • ' ,-• • • • ,. • ;, ,,._,.., .,. -~· ,, •

. mod,I; a cell is either .1~ or hopeles9b' fl~• ~i~,,,aijx~ •~on is

most queptio~le, t>~•• of it, her:~ .. ~~,,~;•~ ~.- cells

. A ai,d .Bi~ imp"ss~e. .. This co,:dtjon can--~ ~~.;~,'ftiN; Ulateither

~ell A or cell B ha t}opelessly flaw.._ ~.k~ y,.t. ~Wl~ed ~l Jhould

PAGE 181

not allow a faulty cell'• ouput to affect an embedded rnec:H••• output· Thus no

output•affectinf..,., wilt be tr..,...\techtcton N flLfly·'ttcltL rn Ill other CaN1

where· a ·c• chplayt ,.~ •• tf• ,......,;. ,. -··••iv; flawed

Conaider. two '·checktrtioard. array, With the . Nine dttribJlion of 1ood

and bad cell•, and con•~ntly the ···•tnQ patt~:H The fi~,t ~rray' 1·. for

embeddlna a arid machi~ and ffie -~ 1,·
1(cif ;~ -· arm ffllleht. Since

there ·are Many•• an h can wfnl' thr~ alf thi ~- nodes :of .,,, of the

arid'• retcon netwotti;· the fGr11ett en.t,e'dd•f .,_ 111· h second ~ contain. et

least 81 Many eitentfarce11, •• the lar1~•f1rid -~ rn the•''tirs\
1

iarray.

Embeddinc • aitct· m • flawec, ;,,ray kwotva' ~ 1 _.,.,at~--~:,, ~i ttnk•
. ·. ~ , . . ' ;~• ,",,. . t•~.-· ·••-'·';"•·:, ll". ~--~ ~"• _,," ~•,; .,._;,,

between et•entlll 'nlil}6or1. ·c.tts' In lhe'corr~ poaltion in the MCOl'ld

' array CM be UNd .. ahif cefls; b&c8UN ceh in link• Kave relcori •;Np ii' cell•

In arms. Thu• opUriun iepe1r·effldency iot M ~ -~ 1• at le._t ._·:fil~ •
optimum repair effldency for the a,id -tniic:hirie, ,v1.·~111e ~ 111W pattern: ,

Kow:1.aa the o,stimum efffdanciet' c:Offlplre? Alitierln1 't11i1 ~•lion

from a non-~Mwfttill~ purely~ m1themdcal ,,,..-,.ctive:•----• v1ry· cffficull

An analytic, tractatn .,,,_estlon tor optimum . .,-, "6f~, elven a particular

flaw pattern, ap,,..,., impossible kw motf ca'te-.. ·· An' txpre•elon for·· av·•r•1•

eftldeftcy, · averarat owr Ill fraw chtrtbutldnt for • ·IIVWI ~, of tlewed cell•

in ~ array of a cert.Ir. iin, ·alto · appears impottfble"tor both arm• and 1rid1.

Althouth one miaht fmd .,_ ·tower bcultt···tor ~"1lellne:y, 1h My 'tMt the

PAGE 182

bounds would not be close enough to the optimum to be practically interesting.

Furthermore, one would still have little knowledge of the difficulty of attaining or

surpassing a lower bound in an actual Repair procedure.

Consequently, our approach has been to write promising repair

procedures, observe their behavior, and use our observations to suggest

Improvements in the procedures. Some of these suggestions are implemented, and

the process repeats.

Many actual essential machines contain a mixture of low-relcon and

high-relcon essential cells. Figure 4.5 gives the relcon network for our embedding

of one bit-slice of the ALU/register section of our processor-tester-repairer in a

perfect array. The upper-right region of the bit-slice has many high-relcon

essential cells, and has few links to nodes outside the region. On the other hand,

the bit-slice has many relcon-2 chains, balanced arms, and even relcon-0 cell,.

Many relcon-2 and relcon-4 cells are used as a wire or crosso~er.

In embedding the bit-slice in a flawed array, we could approximate its

essential network by a grid. Adding constraints to Repair in this way would have

three major effects:

1) It would simplify the description of the slice's essential network.

2) It would make Repair's results valid for any machine that fit into a

perfect 7 x 32 array.

4) It would diminish Repair's efficiency.

In this section, we first consider grid-embedding - the most difficult, general repair

PAGE 183

In the rectaniutar bit-slice there are 224 total cells: 18 refcon-0 cell1, 16
relcon-1 cells, 78 relcon-2 cells, 28 relcon-3 cells, and :M✓st,lc~, ..U.. The
bit-slice's relcon network represents a compact embedcln, of a whine with 88
ess•ntial ~~1,: 53_ ~qatip~. , .. _,ctlf~:~ ~,.-~1t~ U-tum cell1, and
t-3 twanch ·c.ti.. l'tl ··bt a-•· .,,.i;i,1t~2 ·111,r·relcon-~ ce11, are non-branchina
transmission celfa, which ar• used as ~r..__ ~-Rld,.~tt ~~,proce...,....tetter-

. repawer· Hird lft''ivii\ ~•-a-aUo''W.Mfe 'tetli.to....,vwta..-•·

-- --- --•--~-~--------
•' ' . ,_.,-

PAGE 184

in a checker~~l(~_..-r.ay. W.t c~•t~,te .~embeddins. We

then suggest an approach which improves embeddin, •f~y1~~' noticin1 rni•lin1

link• .. between noq~, in a hi&f\-r~,Qn ;~~'! ••~«•tw~ This type of

approach.is the.most t,.-t>Je .for motl .. ~,naadaiM'-
- '. . - • '· ~C,• - . '. 'i:.,· ",; ,.. ~- "'- '.-. -_.,;,t }; ,';.- "..::•'· ""' .•

array has .. very. few . fin,,, G1!4; Ri/Jt#r i• .-r .:bw;-..:theF•; --•~ .-.w. re..,.,ie

wa~~ to interc~t I~ cells ~Q .forql.,~ .t,rp 1fic:L A• U;le ~r of ftltw• In

the. array i"'r.ftases, tt~ .~er of r~•-w• t,1.f«m4,}.arp crid ~•

Repair cannot .consider aU poasible ... ~npj,,i:lt,il _.._,t,.t lek•.: too . .-much

computation. The obvi°"8, ain)ple. r~r -~~•'1!•~ wtleci. ~ ~-._...ray,

c.io.n't work well. Event"1ally th-,e ar, ao ma~y:f~•f-M'l:~ ♦rray ~l the

empeddil)I problersLis _..y,,becNf,,ij', -.,viouf lhlt•~.Fid-,CIIR bie ~ in
~ . , ' .,.' :,. tit,, -~ , . , < ' " "' • ~- • •• .. •

the arrai,

We f~ on the most.difflQllt ~$.Mdifll~~~·W.JWesent

a reasonable approad,', ,,whi~ .·~ conai"-"''-. ~ •. ,..,...ti~1",, lhaa, the only

simUar, appr9ach w,'v~""n. wqi~h i• ~•ja'.J r..;r.o(,~point-connected

arrays.

The nuc:l.•':'8 otGrid Repair le •,:r:~~~>P!~~- :T~•We.tt;;tlldure,

which we'll detail, is very efficient -.t,_c,r$"'4iAf;slrj~ jn, moderat,ly lar1e

'
rectangular arrays of fl.wed cells. Anotb4N' pr~ JJt~,.,o;epts as inputa:

1) an essential network for • machine, .~ .in a, perfect .. array .
. ' . '. • : . ' . . , '· .. \ ,.; . ·, ~~ ,; " .,,_.t• - -· - . . . ,

This network is described• jnwcotaafCted.~taul¥ aridl.

PAGE 185

2) ·• flaw patlwn;for 1:flli#ld trrt,,'~'laeh'c:ttl it .itrw perfect

or1l...._

We~.--~ Repa1r·lltecf··~t C6ntlder.'the locallon of a

flawed array', mput.-outpot •• we·_. NWcih 1.t~ att..,· an wray is

repaired.· W.'R ._ ihlt lltioff ts -, ffludlffliitt'1o'· 'toi...,_ the location of

lftpUt-outf,ut •fiw. 9ttlekoff ~l)ltffllOhl ·'lie· 'fllwld ·-fltttiy ·1rito · ~ Mocks

· separated· by lftterconftiactiOA :•ttlJit; •ah: blodk·f• llt.ndw to Word··•· crid.

etockoff·tMM1 ._. T1'ld R..,_r tc,,~ ~'1o ~ a ~-ltid l1fd into

each ot the~- ff TwNr._., caritM'jerfri llt t_.f'ior•w ·of ttMw':blocks,

· -· Blott(eff ftil& · OU.Wlttf'lhcklff tkic1dh Miltttei'tf cwdri'tMcor.-ef U. 'proper

arid links· e>ctenclnt· •fNn each block. If· ft31Cd11•t11,· 'llbdkoff 1>•6n ht ~~Una

da9oriptlori of' the tepel,_. lmly ·to Canttrid ·· lfa&loff e-,, tnt.,..Mct the

irids, it asks Twist Repair for en alternate embedcint for at lwt one btock. In

re-repairifll-., tock. -T-Mtl _,. eonttnu.. lfi r1p11r:.._tt ftom the point of

It• latt_, · Tfw. proeffl itwat-,·tffltf ltockWH.---·or'liltt.

Reptiir f• Oriented tOMltd i'tc\llftld•: 1,1\iA' flt· nvent r1MOn1. First,

this is the mo,t nab.rel, tractable structure in • checkerboard .-ray. Ucoftd, the

General cell I• 'IUitld ·to f'ld.,.,,.,. macNna Ftnaffy, Mt 'dMM:ftlrbolrd machine

can be viewed u • ~t• of-rectql• of variotia ..._ ..

We first detail Twt,t ltepatr, ancfthen hkofl. We e><arnine their

response to actuiil •~ probt..., ~• their pw.tor'tnaftce to Arm Repair,

and note their llfflltetiOftl. Wt alto ..-t· ,.,,......, '*lentlona of the Repair

PAGE 186

procedures we've written.

The simplest, most obvious way to embed a grid in a flawed array only

uses a cell as an essential node in the grid if the cell's row and column contain no

flawed cells. A good cell in a flawed ltne - a row or column - enters the Cross

state, so it interconnects essential neighbors. We'll call this repair technique

Stmple Repatr. Simple repair of checkerboard arrays Is analogous to Kukreja'•

repair of cutpoint-connected arrays.

Note that Simple Repair is the best possible grid-embedding repair

when an array has few flawed cells. If an array has onl~ one flawed cell, an

embedded grid must have at least one less row and one less column than the

flawed array; the flawed cell's row and column are bottlenecks.

Unfortunately, this Simple Repair is very inefficient as the number of

flaws in an array increases. For such an array, we'd like an approach that is able

to twist a grid's lines through an array, so that some cells ;n flawed lines can still

be used as essential cells. The L-turn and R-turn, cooperating with the Cross, are

ideal for this purpose. Because of the way repaired blocks must interface, we

assume a grid's lines must extend from one side of a block to its opposite side.

The Twist Repair approach, which includes Simple Repair, uses

horizontal and vertical adfustment ltnes extending completely through a flawed array

(see figure 4.6). Any flaw on an adjustment line must be at the junction of a

horizontal and vertical adjustment line. Adjustment lines break the array into boxes

- rectangular regions of cells. At most one flawed cell is allowed in each box. If a

PAGE 187

Fig. 4.6 Flawed 15x20 Array Twist-Repaired Into A Perfect 10xl4 Array

-
• X •
• • X

X •
• • X •/•X • •

• X;, - • 7 X • •
X • -

• • X• • • •X• •

+- Adjustment Line

-

-

• X1/• X• +- Adjustment Line
-

• X '} -
'.'!{ ., ,·)5

X
_.;.,

·, •

Explanation:
The retcon network above indicates the states of good cells and flawed

cells in a grid-repaired array. Flawed cells ere indicat~,- by an X. Good, unused
celts in an arbitrary ttate •• indicltecH,y • ~ Coad ceW tftlt are enential cells in
the arid are indicated by +. Other cell• are used to intercomect essential arid
cells. The L-turn rtate it Indicated by -t, ~, or #; .,.ndinj on the context.
Similarly, the R-turn state is indicated by /~, .,. , or ~ and the Crots state is
indicated by - or i. Note that Jollffll • wire r...,.. h'Ute of at INtt two L
turn or R-turn states.

PAGE 188

line of boxes is free of faults, adjacent boxes in the line interconnect across

adjustment lines via Cross cells. If a box is in a row (or column) of boxes, some of

which contain flawed cells, one row of the box is not used for essential cells. If

the box contains a flaw, the flaw's row is the row with no essential cells; all

unflawed cells in that row of the box assume the Cross state. If a box is in a row

of boxes with flaws, and the box contains no flaw, an arbitrary row may be put

into the Cross state. Thus all the boxes in a row have the same number R of rows

useable as rows of essential cells. Cross, L-turn, and R-turn states are used in

adjustment lines between boxes in a row to yield R embeddMI grid rows extending

through all the row's boxes.

Several considerations make the Twist Repair approach a reasonable

one. Because exhaustive consideration of all repair possibilities is computationally

excesssive, a reasonable, heuristic approach is necessary. Simple Repair is

inadequate for most arrays with more than a few flaws. Twist Repair reco1nize1

the equivalence of many specific embeddings. For instance, an adjustment line that

doesn't include any flawed cell may occupy any line of cells between two flawed

cells; all such lines are equivalent. Recognition of equivalence limits computational

difficulty. Furthermore, this allows Blockoff more flexibility in interconnectin1

blocks repaired by Twist Repair. We found that forcin1 L-turn and R-turn links

onto adjustment lines results in far less repair confusion ancl inefficiency than less

restrained use of these states. Consider snaking an embedded grid's row throu1h

a flawed array of unbalanced cells, such as a General array. The only possible

PAGE 189

essential cells in the snaking path through the flawed array are those cells which

the path links to cells on the same row in the flawed array. This sua1ests that

jogging of the line and movement of the line in the vertical dir-«:tion should be

limited. Twist Repair often uses alt the side-sett of cell• in the L-turn and R-turn

states; this efficiency helps rninimtmize the number of cells used as repair links.

Twist Repair also attempts to place e88ential neilhbof's close to each other in a

flawed array. This is helpful for two reatons. Flrtt, since wires between ••ential

neighbors are utele88 as e88ential cells, it's important to minimize the number of

ceils in each wire. Second, an embedded machine's maximum speed la limited by

delays through wires; intended processing is only done at e88ential cells. 0&M"

ultimate jU$tification for Twist Repair is that it is better than any other method$

we've considered for repairing small rectanltJlar arrays to embed srlds.

The Twist Repair program's inputs are a flaw pattern and a request for

a minimum acceptable number of grid rows and columns. As in the arm

experiments, a square array's flaws are randomly generated. Startin& with a eood

gueis of wher• to draw adjustment lines, Twist Repair consider• arternative

adjustment line placements exhaustively - ignoring equivalent placements - until it

succeeds. Table 4.1 is analogous to a table given for balanced arms, showi"I the

best square grid Twist Repair embedded in experiments varyina the number and

distribution of flaws in the square array.

Figure 4. 7 shows curves based on the information In the table. The

curves show the avuap of Xoftotal for a liven Xftawed, for various array sizes.

PAGE 198

Table 4.1 Resulte Of Twist-Repair Grld..-e11bedding J:xp•r••ante
Ust of 2 pages) .

Key: lflawed - flawed cells as percent of all cell•
cells - total cells in square array
flaws - total flawed cell• ln array
max-grid - the largest square grld our progr• ••bedded
loftotal - max~grid as percent of c:ells
timelim - time limit, in seconds.
time - the time the progru ran
loftimel im - time aa percent of ti ■el im
* - For two starred (or unstarred) arrays of the aMe size,

one set of flaw coordinates 11 a subaet·of the other.

Table:

If lawed £!.ll! flaws max-arid %oftotal ti.met I ■ tile loft i ■el la -
0 100 0 100 100 100 .005 0
0 225 0 225 100 225 .005 e
8 · 400 0 400 100 400 .ees e
0 625 0 625 180 625 .885 8
1.6 625 10 324 52 625 26 4

* 1.6 625 10 324 52 625 S5 15
2 100 2 64 64 188 .u .e

* 2 180 2 64 64 188 .es 8
2 480 8 225 56 400 2.6 1

* 2 400 8 225 56 400 ~ 1
2.22 225 5 121 54 225 .17 0

* 2.22 225 5 144 64 225 .16 0
3.2 625 20 196 31 625 117 .lS

* 3.2 625 20 Answer not found In tl .. 11•
4 100 4 49 49 100 .07 8

* 4 100 4 36 36 100 .03 e
4 400 16 81 20 400 263 66

* 4 400 16 100 25 400 231 58
4.44 225 10 64 28 225 7.1 3

* 4.44 225 10 64 28 225 2.4 1
4.8 625 30 36 6 625 198 32

* 4.8 625 30 Answer not found in tiaeliM
6 100 6 25 25 100 .88 1

* 6 100 6 25 25 100 .85 1
6 400 24 Answer not found in tl ■ellM

* 6 400 24 64 16 400 24 6
6.4 625 40 Answer not found in tlull•

* 6.4 625 40 16 3 625 233 37

Table 4.1 Reeutte Of Twiet-Repair Grid-embedd1ng EKperlMente
(2nd of 2 pages)

If lawed eel Is ll!!:!! maK-grid loftotal timel ip !l!!. %oft i 11e t i •

6.67 225 15 36 16 22S 76 33

* 6.67 225 15 36 16 225 8.7 4
8 100 8 9 9 108 2.2 2

* 8 100 8 9 9 108 3.5 4
8 400 32 Answer not found in tlaeliM

* 8 400 32 4 1 400 308 77
8 625 50 9 1 625 406 65

* 8 625 50 Answer not found in tlnlim
8.89 225 28 9 4 225 ss 44

* 8.89 225 20 16 7 225 58 26
9.6 625 60 4 1 625 129 21

* 9.6 625 60 1 0 . 625 136 22
10 100 10 9 9 100 .62 1

* 10 100 10 9 9 108 4.9 s
10 . 400 40 4 1 408 307 77

* 10 400 40 1 0 400 148 37
11.11 225 2S 4 2 225 96 43

* 11.11 225 25 9 4 225 57 25
11.2 625 70 1 0 625 64 10

* 11.2 625 70 0 0 625 7 l
12 100 12 1 1 100 2.2 2

* 12 100 12 1 1 100 7.0 7
12 400 48 0 0 400 84 21

* 12 400 48 0 0 400 138 35
12.8 625 80 0 0 625 64 10
13.34 225 30 0 0 225 81 36

* 13.34 225 30 1 0 225 32 14
14 100 14 1 1 100 2.6 3

* 14 100 14 1 1 100 4.2 4
* 15.56 225 35 1 0 225 21 9

16 100 16 0 0 100 3.0 3
* 16 100 16 0 0 100 4.0 4 * 17.78 225 40 0 0 225 26 12

PAGE 191

Fig. 4.7 Graphs For Twist Repair Experiments

%oftotal is averaged for a given value

100
of Cells and %flawed.

Key:)(Cells=l00
~ =225

90 □ =400
0 =625 • -ALL

80

70

60

50

40

30

20

10 i
%oftotal

0
%flawed)o 5 10

PA~E 192

PAGE 193

The smooth, coneistent nature of these curves •uac•t• the, conclusion• lieted

below:

1) For a given array size, Xoftotal drops with increases in %flawed.

This drop tends to be 1reatest for small lflawed, milder •• lflawed

increases, and non-existent after Xoftotal reaches 0.

Consider the curve of Xoftotal II a function of %flawed, for a

given square array. Let E be the number of cells in a line of the array.

The first flaw introduced into the array forces Xoftotal to drop from

100 to <JOO(E-1)2>/E2, while %flawed increases from Oto 100/E2• Thus

the slope of the curve is l-2E for %flawed near 0. This explains why

%oftotal drops faster for larger arrays in thie reaton.

Consider an array with several flaws. Introduction of a new

flaw may not cause a decrease in %oftotal. For Instance, the flaw may

fall at the intersection of two adjustment lines, or in a box where a flaw

had been assumed (to allow the box to int..-face with adjacent flawed

boxes, as discussed earlier). Over the set of all flaw dietributions for

an array, the probability that a neyt flaw will not cause a deer ... • in

ioftotal tends to increase with the number of flaws in the array. At

worst, a new flaw will eliminate one row and one column of the former

repaired array. If the former repaired array is smaller than the oriainal

array, i.e., if the repaired array hat any flawa, at worat the new flaw

decreases %oftotal less than previous "worst possible" flaws. These

PAGE 194

considerations help explain the fact that loftotal drops le88 rapidly ••

%flawed increases.

2) Xoftotal drops faster with %flawed for lar1er array,, because a

given %flawed implies a hilher percenta1e of flawed lines for a lar1er

array.

We've already analyzed this eituatlon for %fl11wed near 0. We

found the negative slope of %oftotal versus %flawed wa, directly

proportional to a square array's tide lqlh, E. A• %flawed increaaea,

the particular distribution of flaw• infl~ J.oftotal. However, It'•

easy to see why Xoftotal tends to be smaller for lercer arraye, for a

1iven %flawed.

Given a fixed %flawed, lar1~ array, tend to have a hi1her

percentage of flawed lines: the nµmber of Haws It proportional to the

area, but the number of lines ia proportional to the aquere root of the

area. Consider two arrays, one with E•lO an~ one with E•lOO, at

Xflawed = 1. For E=lO, the one flaw implies Xoftotal=Sl. For E•lOO,

the best poasible distribution of 100 flaws puts eC11Ch at one of the 100

nodes associated with 10 horizont~ and 10 vertical adjustment linet.

Xoftotal is then 81. Most other distribl,ltions require the Jo1&in1 of erid

lines, and %of total is then usually si,nificantly smaller than 81. One

extreme occurs in the unlikely event that all 100 flaws occupy the same

row or column. The array is effectively cut, so Xoftotal•O.

•

PAGE 195

A more 1eneral perspective provides I stronc arcurnent that

moves in the direction of a proof. The flaw dittributione in two array,

are ,qutval,nt if there'• a one-to-one mapplnc between the flaws in the

two arrays such that the following is true. If an arbitrary flaw in one

array has a certain relative position with respect to the other flaw, in

that arra~, the corresponding flaw in the second array has the same

relative position with respect to correspondin1 flaws In the second

array. If one of a flaw's coordinates is X, then the relative position,

with respect to that coordinate, of a flaw whose correspondin1

coordinate is Y depends on which of the five followin1, mutually

exclusiv.-, collectively exhaustive statements I• true:· X+l<Y, X+l•Y,

X=Y, X=V+l, X>Y+l.

Now consider two square arrays with different sizes, but

equivalent flaw distributions. The first array has E rowa, n flaws, and

E-F grid rows in an optimally embedded square grid A• %flawed has

climbed from 0 to 100n/E2, loftotal has dropped from 100 to 100(E

F)2 /E2• The second, larger array has K.E rows. Since Twist Repair

notices its equivalent flaw distribution, the second array's optimum

square arid has K.E-F grid row,. Here loftotal has climbed from O to

(K.F\2 as Xoftotal has dropped from 100 to 100(K.E-F)2/(K.E)2• The ratio

of the change in Xoftotal to the change in %flawed is (2£.f ... f2)/n for the

first array, and (2K.E.F ... F2)/n for the second array; an equivalent flaw

PAGE 196

distribution is more costly in the larpr array. Any flaw distribution in

an array hu a correepondins. equivaJent diltrlbution in • lar1er array.

However, the fact that not all flaw dlatributloM in an array have an

equivalent dittributlon in a amaUer array predudet limply extension of

our reasonln1 to a proof that, far larpr arrays. Xoftotll drops faster ••

Xflawed increases. It miaht be po.,ible to make such a proof by

defining some sort of loosely equi,valent flaw di•tributions.

3) For a 1iven array size, Xoftotal drops frc,m 100 to O fairly smoothly

as %flawed increases from Oto a number N dependent on array size and

specific flaw distribution. (For°" experimente, 11.2 s Ni 17.7&) Thie

contrast, with 1rowth of arms, where lflawed deer • aradually and

smoothly a.mtil it reaches a point where it pknmeta, """811y for %flawed

approxirn.teJy equal to 28.

4) Repair efficiency is much smaller for &rids than for arrr,a.

5) For arrays with more than a few (approximately five) flaws, Twist

Repair is far superior to Simple Repair. For instance, in the unatarred

array with 625 total cells and 20 fl•ed cells, Twi.i Repair embec:lded a

14 X 14 square &rid. Simple Repair embedded a 4 X 4 square vid for

the eame array.

6) The time to repair an array varie• wktely, even for a constant

array-size and %flawed. The ratio of the time to repair an array to the

number of cells in the array tends to be hisher for lar1er arrays. For a

PAGE 197

particular array, the time for repair it relatively low when there are

very few flaws. As flaws are introduced, repair time tends to climb

graduatty. reach a peak, and then descend rapidly. Thi• is because

repair time it roughly proportionat to the number of non-equivalent

adjustment line placements. If an array has very few flaws, there are

few non-equivalent adjustment fines. As flaws are introduced, the

number of non-equivalent adju1tment line, incre11e1. Eventually an

array becomes so crowded with flaws that Ira difficult to find an

adjustment line that doesn't include a flaw. If an adjustment line

contains more than one flaw, several associated lines are required to

satisfy the constraint that every flaw on an adjustment line be at the

intertection of a horizontal and vertical adjUltment line. Thi• reduces

the number of non-equivalent adjustment linn for very flawed arrays.

Experiments with Twist Repair su11nt a new &rid-embecldin1 atrate1Y.

We notice that for a liven Xffawed, Xoftotal tendt to be 'SUbatlfttially hiat,er and

Xoftimelim significantly lower for smaller arrays. Thi• difference become• more

significant as Xflawed increases, until Xflawed ts so larp that all arid-ernbeddina

attempts are futile. This sugeests that embeddin1 a crid in a tar1e array should be

done by bre~k · ... ~ the array into block• of optimum size, separated by

interconnection strips. Each block Is repaired via Twist Repair, and its 1rid

outputs are connected across the Interconnection a_tripa to the pid output, of it•

PAGE 198

neighboring blocks. In fact, experiments show that such a procedure is superior to

Twist Repair for large arrays with many flaws.

A block's optimum size is determined by a tradeoff. Decreasing block

size tends to increase %ototal within each block, but it also decreases the total

area devoted to blocks by increasing the number of interconnection strips. If

%flawed is 0, it's pointless to waste any cells on intercoMection strips; there

should be one maximum-sized block. As %flawed increases, the optimum block-size

decreases. Assume that the overriding factor in embedding success is %oftotal in

each block. For large enough arrays, the fraction of cells used in blocks, given

each block has E cells in a line, is about (E/E+1)2• This number is 100/121 for

E=l0, and 400/441 for E=20. Using the curves of figure 4.7, this indicates that

E= 10 is superior to E=20 for %flawed greater than about 1.5, given our

assumption. This indicates how the curves and the value of (E/E+l)2 may be used

to suggest an optimum block-size for a given %flawed. Experiments with Blockoff

have confirmed that there is a fairly predictable, optimum block-size for a given

flaw density. This fact of an optimum block-size suggests improved grid

embedding can come from breaking an array into blocks whose approximately equal

size is determined by the array's flaw density. Then the simplest approach assigns

identical sub-grids to all blocks of the same size. This approach is limited when

some blocks have a disproportionately high number of flaws. This situation often

arises with current IC slices, where flaws tend to cluster. Since a very flawed

block can only contain a small grid, that block is unable to link up with all the grid

PAGE 199

outputs of its neilhborina, le11 ftawed blocks. Thi, Hmlh the: number of lrid-row•

in its row of blocks.

Before cOASiderina how Grid Repair should handle blocking off an array

containing. flaw clusters, it's useful to examine the repair problem more pnerally.

It's quite clear that a heuristic approach is nec.....-y if Repair la to effictently

repair arrays with many flaws. Twist Repair is time-consuming, especially when

one wants to place a near-tarcest grid into a flawed array. We'd therefore like to

be able to determine a priori the feasibility of I certain repair, in term, of

computational difficulty and probability of succeH. This i• particularly true if

Blockoff is used to interconnect many blocks. AHume Blockoff operates on m

blocks, and there are 1111 satisfactory, non-equivalent sub-grids that can be

embedded in block m. Let P be the product of Int as n varies from 1 to m. There

are P combinations of sub-grids which Blockoff may try to interconnect to form an

embedded grid. If a high percentage of these P combinations are consistent with

the destred grid, Blockoff may quickty succeed. At the other extreme, Btockoff

would spend • time proportional to P in vainly considerin1 each of the

combinations.

Happily, Repair may use a rather simple heuristic approach tO' reduce
,~It'

repair time. Let F be a success function which estimates the grid-size that Repair

can reasonably expect to embed in a given array. Moat simply, F it a function of a
.. \.

square array's size and its flaw density. F can be refinecfTn various ways we'll

consider. For instance, an input to F could atat• the probability F'• •timate la not

PAGE 200

an over-estimate. If non-square grids and blocks are considered, F can depend on

their specified shapes. It's reasonable to obtain F experimentally, because of the

monotonic nature of F. For instance, we've observed that ~-,s output decreases as

an array's dimension or flaw density increases. This monotonicity enables us to

estimate F by experimentally determining some of its key values, and interpolating

to find its other values. F is Repair's heuristic guide.

Now consider the following procedure adapted to embedding a grid

containing R rows and C columns in an array that may contain flaw-clusters. Repair

uses F to break the flawed array into approximately equal blocks whose size

depends on the array's dimensions and average flaw density. F suggests the block

size that is expected to yield the maximum embedded grid. Repair then considers

each line of blocks, associating with each line a number equal to the number of

lines F associates with the most flawed block in the line. Thus Repair reco1nizes

the difficulty of snaking a grid's rows or columns through a cluster of faulty cells.

Repair finds the sum S of all the numbers associated with the row lines. If S < R,

embedding the specified grid will be difficult or Impossible; Repair's action

depends on whether it's willing to spend a lot of computation on what is probably

a vain effort. (This decision can be made implicit if a success-probability

parameter, like the one we've· discussed, is passed to F.) If S =· K.R, where K is

greater than or equal to 1, Repair multiplies each row number by about 1/K; so

that all the row numbers sum to R. An analogous procedure is applied to the

columns of blocks. If Repair decides to call Blockoff, Repair has heuristically

PAGE 201

determined them ·Of-the ltlbwarid ~·to ·Ndt·black. .. ·Thul F flcilitat .. •

heurtstic··for :~·-WU\er •·atva -~ft,.....,...-...,:,,,..,. ar.::...t..,...,.t

· .Wen to etockoff. ·

Wm 'ftOtlcl ffiat .,a.~. Jt · the.:motf dlrtrtat repair problem In

a chetkerboarc! arriiy~ The m1Jor ,rtctle1t ·finpcttta,itif • tjpjt," ~~edur• ·

1eared toward trld-emNdcln1 ff fff ,...,~ if rti,et, ,._te,(Conat;uct a

· ttawed··~ -apedffaf ... ,., ... amt.~~ -, --~- tn . ._ flawed ,,,.,

any machine whoN •••enti:et rietwort is a tub~netwoifof itie a,td', NHntlal

network. How'ever, thil . ..,_.u1y·~- t11e etffci~c/ wltK whk:h a ~

machine i,: :embeddlcf in a flawecf lft"IY. ·•w.~. Nlll_:·iN;, for the·.., ... ,~ of

ar~
""~., .:·: '.,

The lliekoff' procedure we've written i•··..,.,a1· ...,.\ to eccept an

erienlial network contaiflin, recbrnjlar ,' tub-arldt ·'with ~--~ .. between
adjacent sub~lridi. tt-1 easy tc, see why~ notk:lffl Hfflit•ed coinriluriicatfon paths

between a ~•, 1f~retctn .,.._.~-~,-• ..,·••lee
under ·fewer~ ..

Table· C2' Ind flpes 4.1 and 4.t IURlfflln~ a Nriea of experiments

that begins to e,cptore howbfodt~tize ·w, diNihl pkt'·lid. affect hlah

rercon machinn Table 4.2 tummariat h •t• 'from tM ~ anc1· ffaw•

4.8 anct·4.9 atv• Bfdoff•prodtbd~--- , -. ..

The expwbanh al1 uted itfawed ~.; 5, ··-~ flpe· 4. 7'1 curve•
eu1pst is a r..-'~ btcrck~ita or·io,mf it Wier' thlh- btoek•lize of ~20.

PAGE 202

Table 4.2 Experiments With Three JJLC«er.,t ~,,

Array E><peri111ent Best EHockoff· ftetul t · Ti ■e (seconds)
--$

10><10 10-conneet 1 6><6 grid 2.3
20><20 10-conneet 4 4><4 grids• $,c& 47.8
20><20 10-nocQtlnect 4 4><~ 'gr ids . 9.2
20><20 20-connec;:t t S><a ,~ig , ; 63.1

+ 40><40 10-conne~t- 16 W grida -• .12,cll. " 58.7
40><40 10-n~omect 16 4k4 grlde · 32.2
40><40 20-connect 4 S><5 grids• 18><18 832.

* 80,c80 10-connect 64 2><2 grids• 16><16 963.
80><80 10-noconnect 64 3><3 grids 188.

I 88><88 28-comect ;

+ When a~ed to. put l6.4~4 1rid1 inJblit::.VrBlockoff was still thinkinc
after 45 rmnutes. .. Then: .. we,Jntem.rple4.arld · . ,_Dlockoff.

* When ~ad to put &4,3K3 ~ in :tW•, flewtd ~.L Sl~off was still thinkins
after 27 rmnutes. Theni we interruptei.n ~ 1:110CKoff.

·~ ·::: .. .,, •,; 4. ,,

! When asked to pu. t 16 3x. 3 or 4x~ ..tdt ~ ..__.. array, Blockoff was ttlll
thinkin1 after 22 tninut .. '.' a,icl 9.5 (nifw{~: r' " ' · .. it(y. Then we interrupted and
terminated Bteckoff. · · · .. . ·

Fi1. 4.8 BlockoW.~'Of 20x20''A1rray With Sl'flawed c.t•
(ht of 2 paaea)

· A), lCrconnect 'embedl f..,. 4M4 ~;,piclt ·
e - • • ~ • •, •

• • • • • •

B) l 0-noconnect embeds four 4x4 unconnacted·lridt ____ ..._. ____ _.._.__ ____ ..._ _____ ..,.,..._...,, ___ ..,.
■, II

• • • • • . . :~: ;:: x.

•X• • •
• • • • •
I I I •X

-

• • • • •
• • • •X I

I

I

I I

I

X
•

•X••••
••••X•

■ I I I I I

I XI •. I • _
..... +--4_

•

PAGE 203

Fig. 4.8 Blockotrs Repair Of 20x20 Array Wi,th 5X Flewed Celle
(2nd of 2 pages)

C) 20-connect embeds one 8x8 1rid

• • • • • •
• • X•X

• • • • X

•

• • • • •

• • • • • •
• • • • •
•X• •

• • •
• • • X• •
• • • • • • • X• • •
• • • • • • • • •
• • • X• • • • • • • X

PAGE 204 .

PAGE 205

Fig. 4.9 Blockotrs Repair Of A 40x40 Array With 5% Flawed Cella
(l st of 4 pages)

A) 10-connect embeds sixteen 3x3 interconnected grids
I I • • • • • • • I, • • • · ·0 • • • • • • • X • • • • • •
i. ,. •
i i. • • • • • • • • X • • • • • • • • • • • ,x • • • •X• •
I ii • • • : : : k'ft •X• • • X•X • • • • •/• • • • • • •
ii ii I ■ • • • • • • • • • • i • • .,, • • •X•

. • • • • • • - •
• • • • •X• v-/. •X • • e/ v• • • • X• •

I • • • • • • • • • • • • • • •• i X• • • I -~ • • • • • - - • ,x • •X• • • - - • • • • • •
- - • :Q. • - - - -

• • • • • • • • • •/• .. • • • ■ i .,.....,.. • • • • • • • •X•
• I • • • • • • i 1 •••• • •X • ••••X• • • • • • • •
• • • • • • • •X• • • • • • • ·*···· ;a•X• ~ • •
X • • • • • • II • • • • • • • • • • • • • • -
• • • • • • • • • - - - • • ••••X• ·1 x ■ XJ • •

- - • - - - • - • • • • •/• .. - - •fx • • • • • ■ I • • • • i • • • • • X•X• •X•
• •V• • • • • • • •X• •

- - - • - - - - . ,,
• • •X• • •· • • • •X• • • •X• • • • •

• • • • • • • • • • •X • • • • • • • • • • • • - ... • • •
X • • • • • • • • • •X• • • • • • • • • • • • •X• •
• •X • • • • •X • • • • • • • • • • • • • • • • • •

• • X• • • • • • • • • •X • • • • • • • • • • • • •X
• • • • •••••X••X••
• • X Ii ••••

. ... • • • • • • • • • • ,. • • ~

X ···~ X• - - - • - - . - - ~ . ~ • ~ -
• X• • • • •X• • • • • • • • •X • • • ■ i •

• •X • • • • • -

··lit • • • • • • • • • • • • • • • • • •XXy•X• •X • • • • • !' • • • • X· • • •X • • • • • . . ~ ... X
• X • • • • • • • • • • • • • • • • • • • :).~ ... • • • • • • • • •X • • • • • • • • • •

I • •X• • • • • - • • • • • • X •
• • • • • • • • • • • • •X•X• • • -X•. -

• • • • • • • • . • • • • ■· • • -
- - - • • • • • • • • •X• • • •

- - • • • •X • • • • • • •
• • • • • •X• t • • • • • •X• •X• • ••••X• • • • • •

PAGE 206

Fig. 4.9 Blockoff's Repair Of 40x40 Array With si Flawed Cells
(2nd of 4 pages)

8) 10-noconnect embeds sixteen 4x4 unconnected grids
- •

-- •
- • • - • •

• • • ■ II I •
• • • • I I • •
• • • • X • •X•
• • • • • • • •
• • • • I • • • •
• • • • • •
•

- -- -

•X•X•
• • • • •
• • • • • •
• • • • X
• • • • •
• • • • •
• • • • • •

I

I ,,
I

I

I

•

•• X •••
■ I I ■ ■

• • • X •
•
•

. -----• .. -1--........... , ________ _.
• • • •
• --------................. -<! ... • _________ _. --1 ...

• •• • X • •

•
•X

X•
• • •. • •X• • • •X•

• • • •
• X •• • ,i

•
• • • • •

• • • • • •X· • •
• • • •
• • • • • •
• • • • • • • • •

I

•
•

• •
• •

•
•
•

• •
• •

I •

''-' -- .. 1'-I~-- I ■
''"' -- • -e--<1..-.......................... -<I ,_ __________ ... -<1..-------..... --<I ...

• • • •
• • • • • • • • • • • • •X· •

•
•

X

• • •
•X• •

X •
---. --<I ...

• ----...... ➔---x
X• •X• • ----------·--....

,,..■-... ➔----- •

•
•
•
• • • • • • • • X

---►-------►--- • • • X • • • • •
•
•

- -

• • • • •
• • • • •
• I • • •
• • • • •
• • • I •

ii • --------+_._,.,._,._ X X
• • • •
• • • •

. ---------............... . x---------·
I ----------•♦-<!>- I, ___ .,._ _ _._,.,.. __________ """ ...

... _,.,_ ___ .,._ _ _._,.,._ ... I ■■■■ I

• • • • • • •
• • • • • • • •

•
I

- - - -
• • X•X
• • • • •
I • • I •
I • • • •
• • X• •

• • • • • •
• • • • • •
• • • • • •
•
•
•
• • • • • •
• •X• • ... --t,_ _____ ,_ --1 ...

•>O<• •X• •X• • •

I

I

II

I

•
• •
• • ~-• •
•
•
• • •
•••

•X
•X• -~---...............
• •X• x_......, ___ ...,._..,. ..

• •X • • • •

PAGE 207

Fig. 4.9 Blockoff's Repair Of 40x40 Array With Sl Flawed Celle
(3rd of 4 pages)

C) 20-cc.nnect embeds four 5x5 interconnected grids
II • • • • • • r • • • • • -~ • • • • • •X• • • • • • • •
I • • • • • • • • • • • • • • -- -

II • • • • • • • •X• • • • • • • • • • • •X• • • •X• •
I • • • • • • • • • • •X • • X X• • I • • • • • • • • • • • " •X• • • • • • • • • I • • • • • • • •

•X• • • • - - - - -
• • • • X. - - - - • •X• • • • ■ I • • • •X• • • • • •
• • • • • • • • • • • • • • • ■ I • I • •X • • • • • • • • • • •
• • • • • • • •X• • •X • • - - - -
• • • • • • • • • • • • • • I ■ I • • • • • • -~· • • • • •
• •X• - • • •X • • • • X • • • • • • • • • •

• • • • • • • • • • • • •X• • • • • • • :~ • • ·;r.-.•x•. • •
X •

I • • • • • • • • • • • • • • • • • • • X • • • •X•X• • •
I • • • • • • • • • • • • • • • • -
II I • • • • • •X• • • • • • • • • • • • • •X•X• • •X•

• • • • • • • • • •X· • • • • • • • • • • •
• • -

II I I • • •X • • • X• • • • • • • I ■ • •X• • • • • •
I • • • • • • • •X• • • • • • • • - • • • • • • • .. • • • • •
X • • • • • • • • • • ·X• • • • • • • • • • • • • •X• •
• • X. • • •X•

• • •X • • • • • • • • • •X • • • • I • • • • • • • • .. •X
• • • • • • • • X • • X• • • • • • • • • • I • • • • • • • • • • • - •X• • 'I • • • - - - - - - -
X • • • • X• • - - - -
- • • • - - - - -
- - ■ I •X • • •X• • • • • ■ I • •X• • • • • • • •
• Y· • • ■ I • • • • •X• • • • • • - - - - -

• I • • • • XX• •X• •X• • •

~ • • • • • • • • •X • • •X I I • • • • • • • • • • • • • •X
• • • • • • • • • • • • • • I I • • • • • • . ::<x • •

• • • • • •X•
• • •X • X • • •
• • • • • • • • • • • • • • • •X·X • • • • •X• •• ■· •

• • • • • • • • • • • • • • • - - - - - -
• •X• • • •
• • • • • • • • • • - - • • • • • X• • • • • • • • • •

• X• • • •X• •X• • • •X• • • • • • • •

PAGE 208

Fig. 4.9 Blockoff's Repair of 40x40 Array With 5l Flawed Cells
(4th of 4 pages)

0) Only one link between adjacent 4x4 grids

- - -
• • • •
• • • •
• • • •
• • • • I

• • • •
• • • •

•
- • X•

• • •X• • • •
X • • • ■ I • - • •
• • • • • • • • • • • • •
• • • • • • •
• • • • • • X • • • •

• •
• • • • • • • • • • •

• I ••• •X•...... • •X• --------· •• • X • • • • • •
• • • • • • • •
•• • • • X • •
• • • • • • • • ••••••• X

•. • •••••• • •. •X • •••••
• X • • • • • • • • -~ • • • X • • _ .. ____ _. • •
• II • X • • ■ • • • X ■1'"--♦---<1--+- . - • .
• • • • X • • • • •, __ .. _.,_.,_ _ _.,_X • • • • •
•••••••••X·•X••• • • •••••

• X • ~ - • • • • • • • • • • • • I t ---j~-... --.. --..... -...............

~ ../y-.. • X .,.... ... _ ... __ ,._ ... -........ ,,. • • • • • • • • • • • • ~\ •
• ,...._,.__ ,,.,.....,___ __ ,._ ■ ■ ■ ■ ■ I ■,,.....,_ .. __ ■--◄-►•◄-►+-

.... _____ _,,■ X • ... ~ • • • X • .,.__.....,_...,. ____ ~..,,. X
◄-►•---•----- • • • X • • • • • • - _ • _ __ .,...,.

• • • • • • • • • • • • • • I xx. y~ X I I X • I •

-, x•-~ ,,-·.-.-.. :-·.-~ : .. · --·-~-x_ ... · __ .. _._· · ... ~::=:::-:=:-::-:=::::=:::: • f x • : : • ~ ~ x
I • • • • • • x --... ------...... : . ' .. X • • • ~\-

0 ••• X. • • • • • • • • • • • • I ,_ - - • X. • • • • • • • • X • X I • • • X _ __ .. __ _

• •

• -----◄------◄--J .. J __ _

• • • • • • •

• •

■ ■ I ■ ■

........... ___________
• • • • • • • • • • • • • • • • •••• ■ .,.,... __ =•---►•---►-......... ----~HH __ ._._ ______ ..,_ ... ___ ..,_..,_ .. _______ ..,_...,,. ~')' I . X • •

... _.. -■ --...... • I .. -... -------+-+ . . ---. . I X-+---~.-----◄--♦--+-
X • •••• X• ••X• xJ:: ... • • • •

PAGE 209

Indeed, 20-connect always took substantially longer to repair an array than did

10-connect. Furthermore, 20-connect never embedded a larger machine than 10-

connect, and sometimes embedded a smaller machine. 10-noconnect always

embedded at least ~s many essential nodes as the others, because 10-noconnect

works on a grid with links missing. We commanded Blockoff to place the same

square grid in each of an array's blocks, because we didn't want to help Blockoff

by implicitly telling it the location of flaw clusters. This constraint on Blockoff

limited its performance; this explains why we can see ways to snake extra grid

rows and columns through the flawed arrays. Figure 4.8.A indicates that the

lower-right block of the 20 x 20 flawed array limited the performance of 10-

connect and 10-noconnect. Similarly, figure 4.9.B shows that certain very flawed

blocks limited Blockoff's performance. This argues for use of the success heuristic

suggested earlier. Figure 4.9 indicates that Blockoff's performance diminished as

more links were introduced between sub-grids.

Comparing the graphs for Twist Repair experiments with table 4.2

shows Blockoff's superiority to Twist Repair as a flawed array's size increases.

For %flawed equal 5, Twist Repair achieved a %oftotal of 6 for a 25 x 25 array.

This indicates that for 40 x 40 and 80 x 80 arrays, Twist Repair would have

achieved %oftotal si..bstantially under 6. For %flawed equal 5, Blockoff used 10-

connect to achieve & %oftotal of 9 for a 40 x 40 array, and %oftotal greater than

or equal to 4 for a 80 x 80 array. This and other comparisons we've made of

Blockoff and Twist Repair indicate Blockoff is superior when %flawed remains

PAGE 210

constant as an a,:ray'1,llinJncr~9"1.
,, ' -~ -

We wish w~. co&Jld p~f•r ,mo~• •~p,rim~~l~~••ult1. fro"' ~•pair.

Howev~r, Repair'• lerp.QOmPU\a,tiQll"'.tilM .._.,h,q.fflPJwU., ~t•
"- . · · . ;, ,•K;, .-. ·; ·,• - < ,~~•, ,r;1_.., •• ,•·- .J , , . , _, , . , .,, , ... ,.r

unfeasible.

YI• now rt·c~der tt.},n~ov.C.,~R~i~'1?~ .. , W• •~ :P.t It

is oriented to~g, ernbeddiJw • m.chin,e ebtlt~Uy 1~ . .a•. t,t~ted

rectan1ular ~b-1ri4t. Repair ,nay""~ ~~~~~b}o dedck,~~~wt of

a flawed arr,y sho11ld.acc•~ eac:h 1ub•.frlct.,:.~~W° ~•~en ••••nt,
Repair calla Blockoff. f:Jlockoff JIIIY ,~. :1. t.,t,* .~· ,_.., to ~-hcpw to

'. ~ .·"' - , , . " • ,·, . , • .,, , , ,: ~- r , . '.f .,, " ~ ~

__ embed ,.ach sub'."'.&rid. If the su~·crh;t,: it •~(~IR,""ltY,7, ... 11. Twist Repair 11

·•appropriate. .. OtherwlM ~'-' may br~ ~ ~~Jtltf ~'1- . ..t .. p:,-nt

R,~r with each~-.,;~ TMt ja, ~r.,. be~~- IA,q ~••n•ray

is eventually .brokcm ir,to.blacka ,....,ed by twiti.~,-~J~t,d by
" -. -, , ' s ' :,, ' "

Blockoff.

We've .purposttlY i1nqrttd:·:~J•-~~••i04~14lri,,·i,~d~.-d, J!'•~l)Jne'• ·

interqonoectiODJ to olber machh,e.._ eitbw in or, out of ,it,.,,rr-..,"' lr:-.offJ rtl,latlna
~: '"·,,;. , . ~, - .-·. ·, , .. , .,...,.\,~-..:~: ~-.

adapted to accepting inputs desc:ribin.c)Yhtc;II of the cefl• ataJ1111Gbine'• ~ry
• > • ••: ' • ' •, •" :-• ,. •, • n • > • •• •• • 0 [' • '• ~ ' ,~

carry the machine's inputs ~ ~.. ~nc.~•~,i, ~jk-,, ~lnJ .. the ipt,,'face

between li~ls~ •µb-sr:,cn. In each cas., •Par:~• ~kUOfi-Jnatanae, one.with •

lead to ~he extra-•r•y wcarld) ~:~tt~~;~.-,.tl~celL

One can envltion furtt..., laYeJ., Q'~ ~,.: ~Pl),, pal l•

PAGE 211

increased embedding efficiency. ,Choice 'Of ·$0plij,trcatton level depend,· on the

character of e,c;p«ted repafr probf•rn•.~·, F"or·intibriee, ~.,y lar1e arrays mi1ht

.. benefit by intere~eetlon strips: wider,.t11art:;S~ lin~.\~f~•en lari~ bloi:ks. If

substantial sections of an essential machine were likely to have etNhtlal celli with

•, few eteentla1 net1hbor•··.(a1··u,.·c.naraf''si'toceiso?ltelt'er-repairer did),

&fftciencies wO-..d ttsult from special hihdling :,rif' theie 'si:tl~ Indeed.' perfect

tnaehin6tf'should probably· btf deilMCfjik admoc:U,V failoi\, \viih relativity few

contmunlcatfon f)att\i' b1twe1i\ 'tnodul••· 'ni·'·neW to nmtf inter~module

communication pti i, alfready taco~ lrft~ -~ of t°"~ .. tfonal syjt.
We briefly skftctr, promi11nt·repatr tecftW~'f«'alkh hi~ielcon

machines. · Al1 asattnti.t·'network Is c•teadrti~ · 1n''ffi~sfaliowin1 way. Each

essential node with"thre• or four :.:.1ntta1· nti~ •• ·asfociated wlth some
• • -. • ' ,.,.. _J • • _,;., .. ,.»1- .· . . '

rectangular ntflntkon btocl in a compiet Btocto1Fi-.ttlb'Ht way thars been.

discussed. Those wires and essential cells with one or two essentiaf nelpbora

that are not in a ·N~refcon··blt,ck ar• aeaociated·waih-li.-r,icon l,,loc1s (aee fipe
\ ,. . . "'

4.10). ·, A strqfit Mrltontaf or V6rticlf flnt'Uwoflh -~,,~ ne~·~·
thtou,tl at I east one htlh-refeon or low-releon 1/Sfocl ;, That block which the

Succeas Heurlatic F' ettimatea ae leat' effitl•nllf re,,~lred, 1lven the ff awed

array's averac- ffaw deWaity, defitminef'1f6w . miny' ltawed ~ray. Une~ should be

allocated tor an •entia1 netwetk line. f'or ins~:, ffi&t ~ed arnt>eddinc

efficiency tor th•·,tarp hitf\-retton·t,lodt·dlctat•t;tt\l' riuriiber offllw.a' array

®l'l.1mns devotw'tif:pertect arrjy'c1"ufflha•o ~ 1·,,w. relatively hi1h

PAGE 212

Fi1. 4.11 Blockin1 Off A Hiah-relcon Essential Network

PAGE 213

embedding efficiency of transmission links dictates a lower multiple of flawed erray

columns devoted to column 6. Thus ft_, O.S · the succeSI heuristic to estimate
··-·: ;-- ,;; ,

whether a repair will succeed, and, to .-t·,• rou&h estimate of how to allocate

flawed array space. Repair may then adjijit1iilnitiel •timet• by considerina the

actual number of flaw• in each allocated brook.~ Repair then 1.1888 Blockoff to repair

the hiah-relcon blocks. Given a tucce" here, Repair call•• procedure devoted to

· aH the tow--relcott· '~et ce1tl ,and .,,,_ ·N ~,1~ •li~'t~ block. The
.· ·,. . ~•-1,:: _-,<,:::,;' ': ' '.'' 1· '. :.·\· . :.. ·.:;t.: ' ,, .-\ .. -1· . -·~

mai~ point ,'Of thtt .. ~oath· is · to ~~· ;-~~,~~Yajr,cill11: ;~th flawed

arra .. -r~ona: .n-.. (. ·. l.,of .• , -·.AlvCMf_• ... • ;,~ .G_til:~tiy''~ ··~ :;.·· ,,.:: ·.:..~ --'net
... '1 .._. . . . , . . -.·· ~ .. , -~• .. -··· ... JIii '~"'° W1l.....,.. ... ••-

'·· • • • , , . • .J :: :. id ,t;·, ,,, ··.',

vai.f\ 81Ch$11Uv~MNUl1tton~-.-t1••·1'JILr..,.4" FINkeff'.,lo repair an

array blocked off in 1n unrepairable: way.

If Repair uses details of a machine's enential network to increaH

embedding effidency, Repair neede a detcrlptlon of that network. In the leHt

sophisticated case, a designer .could apecify that network to Repair; we've done

this in our experiments with -Blockoff. However, it .la fairly euy to write a

procedure which ab$tracts a machine's essential network from its description as an

embedded machine. The procedure •works beck• from the embedded machine'•

outputs to find the essential cells and wires of the machine. The re1ultin1

essential network could be blocked off by analysis of the location of hi&h-relcon

regions. Straiant lines throuah the network that yielded a low denlity of link•

would indicate reasonable boundaries between hip-relcon resions.

We've c:hcueted an effective Repelr proce(U'e, and actually written

PAGE 214

and analyzed fundamental components of this procedure. Neverthelees, repair of

high-relcon machines remains a largely unexplored area. Some programs we've

sketched remain to be implemented. Perhaps better melhods of repair can be

found. More experiments would enable a better understanding of the heuristic

success-function's nature. Interesting theoretical questions remain. Consider the

curve of the expected width of a square embedded grid versus the width of a

square flawed array, for some low, non-zero flaw density. Is there a repair

procedure such that this curve is monotonically increasing? Is there a repair

procedure such that the curve is above some positive-sloped straight line for very

large arrays? Can you produce such a procedure, or prove there isn't one? This
,,,,,.

is an important question; because its answer tells us the expected size limits on

grid machines embedded in arrays of a given flaw density. This helps us determine

the expected size limits of high-relcon machines that aren't grids.

PAGE 215

Section 4.5: Constrijet

Constrijet accepts three Information inpute which dictate how Conltruct

loads cells in a flawed array. Th .. e inputs are:

1) a dncription of an enential machine 1tati111 essential states and

associated wiring;

2) a d.!scriptlon of a repaired array, In which each cell's proceesin1

I ayer function is in one of the four cate1orie1 we've mentioned -

flawed, e11ential cell, particular non-brlb:hinl trlMffliaion 1tate, or

unused good cell in arbitrary state; and

3) a description of the repaired array 1tatin1 the aide-set•

9UCC811fuily activated andct..activaterfby,T..ra; loader.·

We've noted that Construct's precise nature depends on Repair's

1enerality. In any case, Construct is very eimple. Firat Construct "mentally" map,

a machine's essential cells into a repaired array's essential nodes. Then Construct

extends a loadina arm into the flawed array, po88ibly touchina all 1ood cells and at

least toijehing and properly settin1 all the cells acting as essential cells or wires

between essential cells. The loading arm's base may be any cell with access to

the cells that must .be set. For instance, any of the cells of an embedded machine

would be an acceptable base. Setting the proper ceHs is even easier than growin1

a long arm into an array. Constrijet knows the location of flawed cell'9 and may

extend, retract, or n,ove its arrn throuch si~seta Te1t auccetafully activated in


~~~·-

'SMBIJ 05 :.tl!M .<eJJe 5€ x 5? S!41 .101 spuo:>es 59 U! pe4s!U!J 1:>nJ1suo:, 
·wJa )84) 10 1Jed Ja3uo1 ou a.1e 1nq 1w.1e au,peo1 s,pn.11suo:, ,(q pa4:>no1 ueeq 
eAa4 )84) sne:> eJe sue:> , IIV ·spuo:,as 59 .1eue 1~se1 Sl! pa1a1dwo:> 1:>nJ1suo:, 
ue4M WJB S,)~J)SUO:) jO e1e1s a41 SM04S 8JO):>!d 841 '(t l) 18 aseq s11 4l!M WJB 
Ju1pe01 e1q1xe11 a au,sn 'sue:> paMei,un 11e 4:,n01 01 pa~se seM 1:>nJ1su0:, 

91l 3~Vd 

-J ' x, ,x 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ''''xx'''''''''' ' ' ' ' ' ' ' ' ' ' ' ' ' ''' '' ''' ,x,' ''' ......... . ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '' ''' ',x,' ',., '' '' '''''' '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ',x,' ''''' '' ''' '''''''''' ,x,'' '' '''''''''''''''''' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' T TXT TT TT TT T TXT TT TT TT TT TT T 

'' ''' '' ''' ''''' ,x,' '''''' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
.<111qedeo s,1:>n.11suoo 3U!M04S 1uaw,.1edx3 uv m 11nse~ O 1 ·t, ·.3!.:f 



PAGE 217 

any way consistent with touching all the proper cells. Figure 4.11 shows the 

result of a simulation demonstratine Construct'• ability to perform its task. The 

simulating procedure moved its arm in a flawed array. All cells were initially in 

either the X (flawed) or G (good) state. For simplicity, it was assumed that all 

accessible side-sets of 1ood cells could be succeHfully activated and de

activated. The arrr. moved around in the array until all touchable cells were 

touched. (This i1 doing more than is necessary.) The fipe shows the state of the 

loading arm when Construct suc_ceeded. Of course, Construct could completely plan 

its loading strate1Yvia such a eimulation before actually extendina its arm Into an 

array. 



PAGE 218 

Section 4.6: Other Considerations In Realizing High-relcon Machines 

We've considered the basic issues of testing, construction, and repair 

for high-relcon machines in previous sectons. Now we turn to less fundamental, 

but important, aspects of high-relcon machines. We considered production and 

marketing issues for arm machines in section 3.4. We suggested ways to satisfy 

constraints imposed by the need for adequate array-access ports (chapter 3 called 

them "arm bases"), the need for proper handling of shared power lines, and 

volatility. These constraints have obvious analogs in high-relcon machines. 

Because satisfaction of these constraints is also obviously l.nalogous, we need not 

consider these constraints further. Instead we concentrate on considerations 

peculiar to high-relcon machines. 

All the testing procedures we've discussed assume independence of cell 

behavior. Gradual growth of an arm machine involves concurrent tests of an 

individual cell and its associated machine. As soon as the •ast cell of an arm has 

been tested, the arm is complete and tested. On the other hand, high-relcon cells 

are independently tested before they're included in an embedded machine. Testing 

an embedded machine, or its modules, checks our independence assumptions. An 

embedded machine may be tested like any digital machine, via its inputs and 

outputs. Furthermore, test-link capability provides testability to high-relcon array 

machines that's not available in ordinary digital machines. Test links may connect 

an embedded machine's module with a test machine, to allow independent testing 

of that module. A test link, terminated by a transmission-branch cell, may be used 



PAGE 219 

as a probe which, at a given time, monitors the signals on a wire in an embedded 

machine. After test links are used for module testing or probing, they can be 

withdrawn. Of course, this assumes that the test arms do not effect the operation 

of the eventually embedded machine; this is a safer assumption than a elmple cell

independence assumption. 

The use of cells as wires in high-relcon machines necessitates special 

considerations. In most hard-wired machines, it's safe to disregard the delay 

through wires; but this assumption is usually not valid in high-essential machines 

because the delay through a wire cell is close to the delay through some other 

cell. A pair of essential neighbors may be linked by different-length wires in 

different flawed arrays. Wire delays consequently decrease an embedded 

machine's maximum operation speed. Furthermore, they compound the •critical 

race" problem, thereby making array machine designs more constrained than non

array designs. A synchronous high-relcon machine must be clocked slowly enough 

to allow for the delay through embedded wires. Other conventional techniques for 

solving timing problems, such as ready-acknowledge signalling, may be employed 

where needed for communication between modules in embedded machines. 

Array machines compensate for inherent limitations by providing added 

capabilities, includirg automation-compatibility. We've seen that a simple array 

facilitates testing and repair by its iterative nature, and by the fact that test and 

repair facilities are built into a cell. An array's simple structure also facilitates 

computer-aided design. A designer could specify a machine as a perfect 



PAGE 220 

embedded machine with timin& constr~~ ,on)t,, ~' ~,:11,npl, pro1tarn "~d 

check that an •nvisioned embeddi1lJ- .~U•.f~~d t~8,'!; c;Oll8'lr,ainta. A more 

sophistjcated procr~ could "compile" ,a maci,in.-'•>h.'~J,evel-l&QJUllle ~fication 

into an acceptable array-embC!dded machi,ne; this ;, difU~ult1 but easier than 
' - ' ,-<.-,:,. ,; 

analoeoue comput,ar-aid-.1 dtfian in ,a leet rqul,r ..iyjr~n,t 



PAGE 221 

Section 4.7: Hiif\-refcon Maclihe Application, 

Wl'ff diteutted our approltch to the rMt clfftcdt t..tfnr and repair 

proce89es for a checkwboerd array i treahMnt';of 1ft1J,-reftcin nwachlnft Abltract 

description of an es,erltial machine as ·an ••••ntW' 'netwottffocu.ft on the 

properties of I machfne that ar• ·l,nportant to t.t\~:.,_,,rtp.f~.1.,;;W.•ve·lhown that 

high-relcon machine, have higher te1tin1 and repair coat, than arm machine,. 

We've also shown, that, even for hict,-relcon machines, OW' cellular approach offer• 

major integraUon, test, and maintenance advantaae• relative to other methodl for 

. 1ystem implementation. In this section we conslder applications merits · of hiah

relcon machines, relative to arm machinet and non-array ~net. We cltCUM the 

General cell •• one which enabte, realization of the befteftb of hip-relcon 

machines. 

Chapter 2 discussed the 1eneral advanta1•• of cellular arrays, and 

argued for our array approach. This approach attempt• to meet syatem. delisn, 

production, and maintenance . needs throuch etandard, hi1h-volume, fleKibla, 

automation-oriented modules .. ceHs and aseodated pr..,._ We compared our 

approach to other, let• constrained approachet. Chapter 3 chcusaecl balanced arm 

machines usin1 our approach. Earlier sections of thi• chapter· compared l•tina and 

repair procesaes for arm and high-relcon machlnet. Thi• eectlon hiahlitht• 

· pert ormance features that haven't been sufficienUy covered. 

Because foe communication pathe between cell• in a hip-relcon mechihe 

are I••• con,treined thin thole in an arm mechme, a hlp-relcon machine providN 



PAGE 222 

speed ancj flexibility adyanteps in ~~taiA ,MPJj~aijqn• •. J•~•.uitability of·• 

part,icular type, of. neentiel ~ .. -~ 04\~i utili\y of:• :sLven ..,_ .of 

direct, simultaneous inter-cell com(nt.ff)i~ti,f,11.;for ~~• . ~, 11e,ial"111; •-'•-
. ' ,~, -: ' ' - " 

out shift-re1i1ter is well;,uited to ~ro-.lm~•••· tl~••,,,-ch 1t11e of the 

register com,:nunicates ~r~tly1 with at ~t ,tw9:p,ther,-!,t.,,.,_ , tri;•~ · are 

well-suited to machi~ ~hi~. t.,ve 9nly .,~ .... ~.-~'4. :•1 ,~ liven•· tic,e; 
~ ' . . 

therefore random-accets .m:td •~ Qtiw,, ~ •• -,..M#td· ~o r9izetion 

as tree machin!JS, _ In an ar.m mactv.,_,. et-.nliatt •~• :.,'9;,~W81• m· #iMCent 

cells. In a ,rid embedded in a flaw~·.,.,.,y,,~i1'i ftti~• .,.,.•t ~...,ify 
~ <: i , •, '. .-., • · .· • , , , ,, l • ' ' - .. , 

in adjacent cells; this diminlshe, _tll~,~P'~ ~y~t"~ "~ ,.,.,._..'41¥id 
r 

machine. Hi1h-relcon machine, r,aliz,,.tton is.: p.,.tu;ul,rly_ f\Jiied to .._hiAN 

composed.· of module• which con'H.JIUni(;•t• ,_ff••rJt ~ •· thr~ ,r ... 

other modules at the same time. St.Id,, mac~•, Qli&l)t r:~•f~ ,cell• to 
.. . • • ,,', ,. ' •.·. .i •• • ' -

even awkwardly •hare the_ com~c•tion e~ ;~•ii~ • lr'N .,- «m' ~ 
•• ' • • ,,___ , • + 

For 'instance, buildin1 a proce,,or 11 _.JI\ lfJ1l.orJ~if'lacpift•,would p,._ly 
, _; . . ' ;, : .,. ' ,_ .. ' . '• 

require complex cells, aryd suffer from Jow ,paralleli~ .J:or~fMl-•ll • maohiM'• 
• ' ~ • ' • •' ' 'J •• 

extra-array leads to._connect tp one cell.~••.r~UonoJ.ce,rkfn1"'8ChiM• vtQ 
" • ,t • .. ~~ 

difficult. Thus hich-rel,con arrays provide: .~tionl'tJn.~pr~paU., ~.require 

higher testina and repoir costs when. they a,;e ,i.ud for, ~relcort machines- · A 
< • ' " ,. • • • ', • ' - ., • • • 

high-relcon array is _most suJlod ~ ~,,_ t¥4hi~-~ \he.1•ray'a: availllbte 
' . . . ' '., , 

information paths, such as the processor-tester-repairer built of General c•lls. -

High-relcon ~r•~e., s,µch, &$ <.ener•t errays, of(er maj« 0adventaa•• as 



PAGE 223 

peripheral equipment in 111 computer system. ··'Ffie co,nput,r··•y•t•m offers the 

array a non--votatile Arrw, Program,-,.. TI\e •ray off-. '1 reliw»t-, inexpensive, 

pro1ramm1ble, hf&h-sp• ,rocessm1 • capab11tty. 

For many ffl8Chine tasks, fhe Oenarlf array· la a co,;rect. compromiae 

between a single-sequence computwr and a spkiaf fuird:.'.~rjd ~hine. A typical 

co'n.putery-s performance advantares;'iflclude "l:-taUonal. power, flexibility, and 

. ·••Y. programrriabiti Jy. '· its major di•advanta11·l, •low 'piiforma~. relative 'to 

hard,.wired machines. The ·sinfle••eque,,di"'compuf~r ·proc;e~~ea on.ly one 

instruction at a tim·e, wf-th aach 1natrticllbrflaiint many gate-delays. The 

ametiorating paralletlsm in tbme initroctions ;f~lten w~s\ed .. For in,tance, an 

atgorithm that' onty operates orr;l~bit w•d••:·•tilftis~s an AND that' ope~ates on •. 

larger words; "ffie e°"ventional compotet ti p.-ftcutarly in-suifed to ·irreautar or 

high-frequency reaf:..ttme aPl!»fieations; b~iht incoriiing'·~-, •• t'~ through interrupts 
I 

is- particularly time--tonsuning''ind 7bicky .. Cbrrlp\Jt~f lie so'"ct~y at real-time 

applications that,fhey'ctftlffl·rety on i harct-~i.rid·>•achi~":to buffer incomin1 

signals; tt,;. machine contim.iotlsfy monitors,".(:olJ4Cts. arid. pre-proceues· incoming 

data. 'M~ny· apptkt'Lions·are'more •offed to • '.·~;kial~~~ipoaei.,rriacftine, which 

·~ • • ', "' • ; • • > :,\ .' - • { f~,. i ~ ' ' ' 

offers higher speed. Dlsadvantage,a of"iµch a rnachme include. hiih setup times and 

hich setup costs, espedelfy if lht,te ~colts·-.,.~ ·rtbt· dftttibutid"'ovir a ·tar1e number 

of ffl8GmA8S •. Tasttnr and repair df 'thne ,~;bih"be" ~i-t1cularly' difficult and 

costly: 

A peripheral .,.ay, suth as the'Geiter:at lliniy, is a c~Dmiae between 



PAGE 224 

the performances of these two most common machine approaches. The array may 

be quickly and easily programmed to one of a large set of embedded machines. 

For instance, a processing-intensive problem could be solved in an array which 

interrupted the computer's processor when it had solved the problem. Alternately, 

a General array could be used as a processor compunent tailored to the 

requirements of a particular processing task. The array provides a high degree of 

potential parallelism. Basic cell operations, those that occur in the cell's function 

states, are faster than basic computer operations, but slower than the basic 

operations of a special-purpose hard-wired machine. Like a hard-wired machine, a 

General machine can continuously monitor and procAss incoming signals. 

Furthermore, our arrays have the added advantages ot low cost and easy, 

automatic maintenance. 

Of course, an array's suitability depends on its intended application area. 

The General array is oriented toward narrow data words; there is only one 

processing input in each of a cell's side-sets. Parallel algorithms, especially those 

amenable to two-dimensional array solution, are particularlJ appropriate for the 

General array. Many physical problems, such as temperature distribution on a 

plate, are consistent with such an array solution. Such an array might benefit from 

larger processing side-sets to accomodate numbers representing one of a wide 

range of temperatures. However, such a macro cell with large side-sets could be 

built of General cells. The General array is good at logic simulation. Real-time 

applications which would otherwise require an expensive, low-volume special 



PAGE 225 

machine are often suited to a high-relcon array. 

An array's utility depends on its size. This partially explains our 

interest in array repair. One way to increase an array's size is to interconnect 

arrays. If one's objective is a large array with a checkerboard array's 

interconnection network, one must currently make many interconnections between 

neighboring arrays. This is fairly costly, even if one uses a special interconnect

array circuit board, because of the many IC leads involved. Our approach reduces 

the need for many leads between sub-arrays by relying on testing and loading 

arms, and by Repc1ir's block orientation. This block orientation recognizes that 

most machines are composed of modules, and have few communication paths 

between the modules. 

A high-relcon array may also replace special-purpose machines in a 

computer system. Here the array is most appropriate when computer

maintainability is important. 

· The ability of an array-embedded machine to test, program, and repair 

its cellular environment is particularly attractive. Such a machine can form its 

cellular environment into machines appropriate to a given application at a given 

time. Two or more machines like the one we've designed can achieve high 

relibability by monitoring and repairing each other. Each machine is embedded in a 

sea of spare parts, cells, with enough cells to support many cell failures. When 

one machine notices that the other has failed, it re-tests the other's environment 

before embedding a new, perfect machine. With three array-embedded machines, 



PAGE 226 

a first good machine may continue normal operation while the second good one 

repairs the faulty machine. 

It's amusing to consider the unlikely event of a form of •array cancer•, in 

which a faulty machine attempted to wipe out a properly working machine. Each 

embedded machine could guard against inappropriate attack with test arms for 

noticing attack, and a loader arm for fighting the attack. A machine could be 

programmed so that both its defense and attack programs required proper use of 

all the machine's processor sections. With the right attack and defense programs, 

a perfect machine should then be able to dominate a malicious, faulty machine. 

If the General array is non-volatile or easily backed up by a power 

supply or loading source, it may be mass-produced and program-customized to 

provide inexpensive, low-volume machines inappropriate to microprocessor 

realization. Sometimes added advantages come from the machine's nature as a 

standard part that can be tested, programmed, and repaired through limited 

communication with a standard machine. Our arrays can even be repaired by a 

remote machine connected to an array via communication links. 



PAGE 227 

CHAPTER 5: TREE MACHINES 

This chapter discusses embedded machines with a particularly simple 

nature. All cells of a tree machine are effectively linked to a common input bus 

and common output bus. Each cell is a balanced, essential cell whose function 

state includes a unique name. At any given time, only one cell may transmit Its 

information out of the embedded machine. Examples of such a machine are paged 

random-access and track-addressed sequential-access memories, with one cell per • 

page or track. The embedded machine's simplicity means that a cell's processin1 

layer can be designed so that all tree-like relcon networks with a given number of 

nodes may correspond to equivalent embedded machines. This allows efficient use 

of good cells in a flawed array, because an embedded machine can incorporate any 

good cell linked to its input-output (tree base) cell by some path of good cells. 

Because one form of tree is an arm, a flawed array embedding a tree machine can 

be repaired at least as efficiently as a corresponding array embedding an arm 

machine. Furthermore most large, flawed arrays may be repaired to embed 

random-access memories or other tree machines with average access time 

proportional to the square-root of the number of cells in the array. 

For specificity, we consider a paged random-access memory 

implementation with the following characteristics. The RAM has 2P pages, or cells, 

with 2w words of length Lin a RAM on each page. Command and output words are 

handled serially. The RAM has two input lines called Klock and Command, and one 

output line called Return. When the RAM is ready to receive a command 



PAGE 228 

specifying a "Read" or "Write" operation, the Command stream Klocked into the 

RAM specifies the following: 

1) a p-bit page address which selects the one cell of the embedded 

machine with the identical name stored as p function-specification state 

bits; 

2) a w-bit address selecting a particular word within the page; 

3) a Read/write bit specifying either a "Read" or "Write" operation; 

and 

4) if the command is a "Write", the L-bit word to be written. 

If the command is "Read", the L Klock pulses after the commt:1nd Klock the selected 

word out of the embedded machine. 

Since the paged-RAM cell's loader is the same loader detailed 

previously, we focus on a balanced processing mechanism and ·associated function

specification state bits for cells in a checkerboard array. Each of a cell's side-sets 

has one lnsel input line specifiying whether that side-set is relected to send Klock 

and Command information directly into the cell. A cell in a working embedded 

machine has only one of its lnsel inputs high. The lnsel-selected Klock and 

Command information is broadcast to the cell's neighbors via the cell's Klock and 

Command Outputs. A cell's broadcast Return output is that cell's RAM Output line 

if the cell has been addressed; otherwise the Return output is the OR of from 

zero to three Return inputs selected by four Retsel function-specification state 

bits. Each Retsel state bit corresponds to one of a cell's side-sets. Besides 



PAGE 229 

Fig. 5.1 Relcon Networks For RAMs In Identical Flawed Arrays 

A) Relcon network for one embedded RAM 

·111~ 
B) An· embedded RAM with better acce88 time than A 

·11tBJ 
Commands input to a tree's base flow to the tips of the tree. Every link 
that carries an input command in one direction carries a Return in the 
opposite ~irection. An addressed cell's Output information successfully 
reaches the embedded machine's output because the Output is ORed 
with Os as it flows to the embedded machine's output. Maximum access 
time is minimized by minimizin1 the loncest path between a tree-tip and 
the tree's base. Machine B's access time is better than A's because A 
has a circuitous path to node (3 0). The b.-t expected access time 
results from placement of a tree's bate at the carter of Its astociated 
array. 



PAGE 230 

determining whether a cell's left Return input is selected to be ORed, the "left" 

Retsel state bit is also the cell's left lnsel output. A corresponding statement is 

true for a cell's "right", "up", and "down" Retsel state bits. Thus an embedded 

machine is organized so that cell A accepts a Return input fr:,m cell B if and only if 

cell B accepts Klock and Command inputs from cell A. Input command information 

enters a cell from one of its neighbors, and is accepted by up to three of its other 

neighbors. Hence a given RAM with c cells can be realized by any tree-like relcon 

network of c good cells consistent with the limits imposed by an array's 

interconnection network. Figure 5.1 shows relcon networks for two equivalent 

machines in identical flawed arrays. The machines differ only In their acce88 time. 

In a checkerboard array, access time is minimized by placing a tree's 

base cell at the center of a square region of cells; one diagonal of the square is a 

row, the other is a column, and the diagonals cross at the tree base cell. When 

such a strategy is used, the expected time required to senc.: information to or from 

the tip of a tree embedded in a flawed array is proportional to the square-root of 

the number of tree cells. Expected access time is therefore proportional to the 

square-root of the number of cells in large tree machines. In an n-dimensional 

array, this expected access time is proportional to the "n"t~ root of the number of 

tree cells when the tree's base is at the center of a cube O" hyper-cube. 

Since the cell we've discussed handles information serially, it needs a 

counter and associated circuitry to coordinate activity. This counter is initialized 

by the loader. 



PAGE 231 

Techniques used for improving performance of conventional RAMs, such 

as use of parity bits, are applicable to this approach. The RAM in each cell Is 

identical to conventional RAMs. The fact that a loadin1 arm can rapidly shuffle the 

names of cells in a machine without disturbing their RAM contents may be useful 

for some systems' memory management If a simple pagina system is willing to 

effectively construct a Paa• table by shuffling the namN of memory cells, • apeclal 

page table and lte a89C>Clated delays are not required. 

Test and repair of flawed array• embedding tree machines is similar to 

test and repair for arm machines. A tree machine Is grown cell-by-cell Into the 

area around its base, and each extension is monitored by communication between 

the tree's base and the Array Proirammer. A cell in an embedded machine is 

always linked to the base cell by the shortest poseibte relcon path, and 1iven a 

unique name. A working cell in an embedded machine i&nores inputs from flawed 

cells and dangling array inputs. 

Packaged memorias are easily formed into larpr memories by provldin1 

a few links between packages to allow growth of the tree through all the 

packages. The number of ceHs in the tree is only constrained by the required 

access time and the number p of page-address bits·in each.ceff. 

Overhead circuitry could be reduced by usm1 trianaular array, instead 

of checkerboard array,, if this was compatible with the production process. 

It's obvious that this approach is applicable to any machine which may 

be realized as a tree machine. Inputs and outputs to such a machine could be 



PAGE 232 

parallel rather than serial. One could Implement a ~ny""tracked sequential-access 

memory, with one cell for each track. Associative memories and even some multi

processor systems (similar to the ETHER system) are compatible with thl• 

approach. 

These tree machines further evidence the fact that relaxin1 the 

requirements on the communication paths between enential cells in an embedded 

machine facilitates repair efficiency. 



PAGE 233 

CHAPTER 6: CONCLUSION 

This thesis has presented an LSI-oriented systems approach to test, 

configuration, and repair of cellular arrays. We've specified standard modules that 

are built into the cells of a machine to facilitate testing, loading, and repair. Thus 

the mechanisms for testing and customizing a flawed array are built into a simple, 

iterated part. A computer may access these mechanisms via a few direct 

connections to an array. Programs allow the computer to maintain or re-customize 

the array. We've been careful to note our assumptions, and to discuss design 

approaches that help insure the validity of these assumptions in actual arrays. 

Development of terminology and models for programmable logic machines 

has helped us analy2.e important machine classes; these are arm, high-relcon, grid, 

and tree machines. A particular class of machine is characterized by the 

requirements placed on the communication paths between essential cells of any 

embedded machine in the class. A particular embedded machine is associated with 

a set of equivalent embedded machines. The nature of this set affects the 

testability and repairability of an array. Properties of a cell, such as balance, 

affect an embedded machine's structure and associated equivalence class; and 

therefore affect the repairability of an array. 

There are reasonable practical and theoretical extensions of this work. 

We believe that tying further theoretical inquiry to actual machine realization goals 

will be most productive. 



·, .- ' -~.· -·_,'T • ./c· •• • • ., ~ 

PAGE 234 

Tree and arrr, rnachine•J•• p,r~~~ll1~~.~P,~'!'ffledi•t• array 

realization. These .machi!'9t are. rel~tively. •~J9."!f~t1Cfllty t~:t, {es>tir, and 

re-customize. Furthermore, their re.lativelr I~. ~~try ov~ . llflel hi&h 

repair-efficienq' · live them ~jor intear,tion-:lev,,at tdvat~ 
Arm or tr.ee ffll!Chines '!'8f. firet: .. ~~~",

1
1n:.•: ey•t~)·~o.,;¢,iinina 

many IC.s. Such • system . would enabltt ft.lot., ,~.-ti.OJI end d,lnontkt\iQn of 
• •, ' < , • ,' , " • -,J • . • ,':--:;. ', .:! ;:- !;~"1 : ••• •'. . I; . • \ 'i,'~. " .. ' ' : > 

the fea,ibiUty of our •PRroac~ Th~. major -~~~,r, of •. ".'~y-,tC •Y~t•m. 

compared to a system intqrated on one tlice, ar, it, ,low dev .. opment co.st and 
., • , .~ • ' ···•,."·;) °: '- .:) 'i('?\'f\_.,; '"'.'.'.'<)(<:·t~···, . ':_ - •I ' ••-,,~"• 

hiJh component accettibility. Such a 1yttM1 ~ ·~ -.. :to fl.llC:ijon. when ,ome 
;,.J• .,·· .•• <::.- :.':: 5 . • ; - ... ·p; :,,-.~·"-, ,· ·1<:· ~'-oi~• .. -· . : . . J .~ . __ ·. 

of I.ts IC, are !emoved CM' cteatr~y~ ~ ~ of ~t, ~.!"~ cut. The man,y-lC 
. ;_:, . ~· ,' . ;., ·: - :~; ·t'~ :· .... ' .... ~. ·, •. '!-'.,; "":; j, ,,'- ' " .• • 

system would enable us to refine CU' dellp and Mr ~ .!".Id ~r prOlferM. 
.'- ,s l ' ~.,·,: , ,· ., - <' •. 

The major liml.t~tion of a many'."'IC reaear~~ v~c{e 1,Ji.t It dpetn't precisely 
••' ! C -..;• ' ,,;..~ O ... e O < ,: .,c' ; ':,• ';• O • t ' • •: ~ 

model our ulti~t• 1oal,.1 cell~ar syet_,,. i~~"'""'~'~,~-•!ce-. ,, ,: ~ ' ·•' ' -- . ~.. ·- . . ' 

Besides its obvi0\11. value as • .,'1•~ .~~ a ;.l\i.,-eli~• tr,- or 

arm machine wolJld help answer import_,~~~ rtt,~.-t. to othfr arr.e'~ How 
' •,,' ·._ '. ··:}-~ : :·~:.. , .. o,!li~,_•' ·,-. -..: ,.,•,,~•-~•~•' .:r •. ·; ,, ' 

,i1nificant. i~ the branch cell problem? How d°' (M,er ~"..Plf, hf,t di,"tip~tlon, 

array size, and other practical consideration• affect ~r.r11y, i•"""~eUon? .... ,.;~ .... ,.,,. ·-'··' \, . ' 

Answers to .the9.• .. <11f8•tion1 will d~p,~ partfy ~
1
~.\~.•n1i~rin1 skill and 

production care of array dev~opert. Since a.rm and kee",..cNM~. •• .simpler to 
< • • • • C • •~ ,J '~ • • ; ', ' ~ ,. ,~. \, C • 

implement t,., ff.181')' other prosrammabl«., ,l~cici~"" ll>!lit~ \~ l~t .V--
, \. ·~ - . .· . . ,, .,. ;_, :, . -. '.. ·.· . ' 



PAGE 235 

Arrays like General are the most exciting, because of their use of 

simple cells acting in parallel to provide universal computation-construction-repair 

capabilities. These arrays offer speed, reliability, and flexibility advantages in a 

low-cost integrated circuit. Current IC densities and yields probably don't allow 
' 

practical realizatio, of these large arrays. However, densities and yields are 

improving so rapidly that these arrays should be feasible before 1980. By then, 

many questions pertinent to these arrays should have been solved for tree and 

arm arrays. Continued work on testing and repair, and development of computer

aided design facilities for these arrays, will be important to their commercial 

success. Consideration should be given to the machine organizations most suited 

to high-relcon machit1es. 

The first use of our approach to high-relcon machines may be in many

IC arrays of fairly complex machines, such as microprocessors. This is true 

because these arrays are closer to conventional digital systems. Unfortunately, 

the fact that such arrays have relatively low basic operation speed compared to 

General means they don't use high-relcon arrays to full advantage. Nevertheless 

we've seen the advantages of building simple test and repair mechanisms into an 

iterated component. 

Since our test, configuration, and repair techniques may be adapted to 

existing arrays, it would be useful to categorize these arrays according to their 

realizability as an arm, tree, high-relcon, or other class of embedded machine. 

Other inquiries may take numerous directions. A more rigorous 



PAGE 236 

treatment of our te1tin1 aesumptlOM- tnd approach would be useful. Many 

queations remain concemift& the repair el cblc,k~'.•• tut embed hilh

relcon machines. Thete questlont concern the bnt way to repair the• arrays, 
' ' 

and the limits of this repair. A better ~~, of ,repair will allt;»W :better 

estimate, of the reliability and maintainability of hip-relcon machines. The use of 
. . . 1: .. -. . -

• plurality of hiat,-relcon rnachinet in a •eH~r9.,.. ,'1'tem ~ -1?, e,cplored. 

The reliabilUy and Mtinlai,.iffty lev-.~ _;th:tt •'" ,icllleved by our various 
,, 

machine, should be compared to the levelt achieved by other machines. The 

network model, and terminoloay we've •v~ 1.,.~ .. .,t~,mechiclea c,n be 

refined, and new m.achine cl111e1 can 1,e. ~lfi• ••~ Qur tr~t of 

testin1 and repair for checkerboard array, c~ be ext.' to wraye with .other 

interconn,ction networks. 



PAGE 237 

BIBLIOGRAPHY 

<Altman 74>, L. Altman, "A new day for logic design", ELECTRONICS, vol. 7, •4, 
2/21/74 

<Banks 71>, E.R. Banks, INFORMATION PROCESSING AND TRANSMISSION IN 
CELLULAR AUTOMATA, Technical Report 81, MIT Project MAC, Cambridge, Mase. 
Jan. 1971 

<Bell 72>, C.G. Bell, "The effect of technology on near term computer structures•, 
COMPUTER, vol. 5, #3, pp. 29-38, March 1972 

<Camenzind 72>, H.R. Camenzind, ELECTRONIC INTEGRATED SYSTEMS DESIGN, Van 
Nostrand Reinhold Co., New York, 1972 

<Carr 72>, W. Carr and J. Mize, "The economics of MOS/LSI", MOS/LSI DESIGN AND 
APPLICATIONS, T exes Instruments, pp. 305-323, 1972 

<Carter 70>, W.C. Carter and W.G. Bouricius, "A survey of fault-tolerant 
architecture and its evaluation", Report #RC 3154, IBM Watson Research, Nov. 
1970 

<Carter 73>, W.C. Carter, "Fault-tolerant computing: an introduction and a 
viewpoint", IEEE TRANSACTIONS ON COMPUTERS, vol. C-22, #3, pp. 225-229, 
March 1973 

<Chien 73>, R.T. Chien, "Memory error control: beyond parity", IEEE SPECTRUM, 
vol. 10, # 7, pp. 18-23, July 1973 

<Codd 68>, E.F. Codd, CELLULAR AUTOMATA, Academic Press, New York and 
London, 1 968 

<Colbourne 74>, E.0. Colbourne, G.P. Coverley, and S.K Behera, "Reliability of MOS 
LSI circuits", PROCEEDINGS OF THE IEEE, vol. 62, #2, pp. 244-259, Feb. 1974 

<Feeney 72>, H.V. Feeney, "Micro computer applications of electrically alterable 
ROMs", WESCON TECHNICAL PAPERS, 4th session, p. 4/4.1, 1972 



PAGE238 

• ·J 

<Foss 70>, R.C. FoH, "Economic Considerations In l$1 h;St1n•, LARGE SCALE 
tNTEGJl4."J;~ INt~~ ~ .... ~.Jdf ll10'. , · 

. . . • . ·';) ..,. 'c ·._,., .• ,,' . i"I.{ ·., ·, '. .. . •; ' .. , .. ., . ' 

<Franson 74>, P. Franson, •Need custom delip? Do it y.....a~~CTBQNICS. 
vol. 47, •2, pp. 67-68, 1/24/74 

. > 

. <Funow,_73>, W. ffurlow, ,"T~~._~_,. : .. ..,_: -~'~' QAStom 
CMOS/LSr', EON, vol. 18, •11, pp. 42-47, 6/5/13 · 

, <Gar,.,.·70>,M!,:Gw.-.f, ".!h• f~~-9•~-.•~• ~•,,new 
solitaire came 'life'", SCJEN;lflC::~;~>~ ,t!4.119rr:·l~tta.;-Oct. 
1970 

<~1es 72>, D.A .... ,, ~PtY,-'d;~~~j,-~OR 
MEMORIES, IEEE Press, pap 175, 1972 . . 

:;.~~~~-£~~=,&£ 
~~ ~,:~~-:=,t:'.•fu~ l'\,~•;"~-s~kA~ ~S)•r1;~ ,,~,~--MM~ 
THEORY, pp. 161-174, Oct 1967 . ·. . 

. <Kautz 68>, W.H. Kautz, "F,ault testlna and•, ... ~,(,. ,~-~\ON,c;\tlwitat 
circuits•, IEEE TRANSACTIONS ON COMPUTERS, vol. c..:11, -~ pp. 352-366, April 
1968 . 

<Kautz 69>, W.H. Kautz, "Cellular loaic•I~ IITayt, IE£E TRANSACTIONS ON 
COMPUTERS, vol .. C-18, #8, pp. 719--727, Aua. 1969 . 

<Kauq 7-l>i, W.H. K~•Prcw~'.--~~.-r~ IN 
SWITCHING TI£0RY, Academic Pren, 1971 



PAGE 239 

<Koay 72>, llW. Ko-,-tlfld J.A. Farquhar, All F0RC£'~MAND AMlt~~ROL 
INFORMATION .PJO:ESSING IN ,ff -tteoa,•-M -· . , 
Report R-1012-PR, Rand Corp., Santa Monica, Ca., Oct 197.2 

• • > .\ e • • ,""r; ", ' ~ • ' 

<Land1raff 71>_, R._w. L_ .. _- raff,. __ S.S. Ye.u, "O,li_an_ of diqROffbl __ ,.,_. _•• __ -__ ,_iter~tive .,,.,..,,1m ,.,...,..:.~.~i~~-\ .. ,',:lff~," Aua-
1971 ' ' -- ,. ,, - ' 

<Lattwep 70>, J.¥r.L~t ...... , "E~'!ft·••-~-~,L€(~ IN 
MICROEL.tcTIINCS. AQARD,tc_....,.,-, aut1•1•0 -- ; -. . . " . . _- . . c: 

. ' 

<McLuhan 64>, M. McLuhan, UNOERSTANJNG MUIA: 11£ ~ OF MAN, 
· ·McGraw--HHf;'fiWI ~ 1914· · f · , . • • _ ', _ ,, " · •. · 

. - ' '. ~ •', . - ' 

<Menon 71>, P.R. t.4enon and A.O. Frl...,, "Fault deltction in iterativi :lo1ic 
arra)'a", IEEE TRANSACTIONS ON COMPUTERS, vol. C--~ ~$, pp. 514-~ May 
·1971 . - · . .. -~ · . :t.• '. - ;; ,·'\/'/ - , .:::·,.,_,_ 

<Minnick 66>, Minnick et.al, CELLULAR ARRAYS FOR LOGIC AND ST~GE. ~t 
#AF-cAl..~618,'bford~RettlNtt;;t~_...._f'-~f~i~~•f .. f'·,·· 

.. ' ' ·:~_.-~;.:~"',':: :~, ... ~-•1 ::. , ··.; .·· ~ ., 

<Minnick 67>, R.C -~ "A UVfl/ of microcelll.Ur reaen•, JOlRW- OF TI£ 
ASSOCIATION FOR-COMPUTING MAOHRV, vol. 14, •2, pp. .,._241, April 1967 



PAGE 240 

<Mir_is~y 67:>,< M.~. Mit4!k¥u~PUT~T~ ~-) MIQ. INFINITE'JMQtlNES, 
Prentice-Haff Inc., EnaJewood Cnffe. N.J.,.18&7 • - , '., ; . . , . · 

<Maor:! 73>, . ~~ ~e, .-~. tar .. ~ .• ,j,Jp ~r. UECTRENCI, vol. 
46, #22, p, 105~ 10/25/73 . . .•" · •. : > , . c ,'. ,. : .· : .. · ·• ' ; ' 

_<M9or~ ~~~, G.E .•. Moor1,.."t9.7.4 •~p'jl,~;9C~V,«11ent ... Gordon 1.loore•, 
'ELE~S,vol. 4?, •~;)>~~-1W:l7-/1¼: : · ·,_,., ·. :, · · · ·. · 

, ~ ''C" J _, - • - " ' 

<Mostek 73>, Mostek Corporation, THE MOSTEK LINE, Ocl 1973 
• ' • - ' • . ' ',- J:" _,' ._!.", . .,,., .-. . 

~~~~=~~ ,~1~~~~1:A2~.t~1~1g,_. J09c•• ,RECENT 

;=~ ~TTHE~·v;"°itrtz1r;,7~1t.~eddrQit•··
<Noyce_ 71>; ~- Noyce, •th~ mtecrateif~liil'i~q~.z~~ Sepi. 15,
1911; pp. 28;;.;'32 " . . ,. . . · . 1 : . :. .

<Peat~e . 74>~ C.~ P~ttie et ,.t, "(le,n.apt': .. tt:~tor -~~ .r.fN~Jty•,
· PAOCE£DfGS·OF rtE'~ F~r 1974,.ef>. •. l~J.U .,e;·• ··. -

:.~ - , • • , • " - . -· • '·•· ,r '

.<Row. ~n 73>, J.~.Ro~an and RS. K~.she 1, "A . .. ;~v.:rr.. ~. ~--~-... ·. ;e. • .. •·.'"""'.··.• .. •ray•, '· •·PROCEEDINGS OP''iTH! 6TH 'ANNU~~:H~~tf., .. •... ,,. . . ,1-~ ON
SYSTEMS SCIENCE, Jan. 1973, pp. '284-217"' ., , ... ',, · ,

'
<Sander· 72>, W.B. Sander, "Yfeld•erikancement t~quea in semiconductor
memQri•••• IEEE JOURNAL OF-SALJD,-$T.Ali-~S. '(ol. ,:·SC:,-7, •4, PA -298 ...
300; A'tig. 1.s12 · · .. ·• · ,H,, ,v. · , , -~' >'r'--- ·- n_'.· : •·· .. · : · ·. . .

<Seeds 67>, R.B. Seeds, •Yield and ce>sf anal~fi~ ~l' bipolar LSI", 1967
_lr:;NATIONAL ELEP1~-~lfE$:MEEJ~.~,~•~ ,t.w York,

- ¼.i.; ,' '

PAGE 241

<Seth 70>, S.C. Seth, FAUl!.T Tt$TING IN~~~~~ CEl+,UL~R ~RRAYS,
Report R-470, U; of UI., Urbana, Ht., Mi¥ l 97Cf , ,, ·:i r ,, • i ' · ·

1

<Sheup 70>, ftG. . .,_ flllfJGRAMMABl£' em~ ~ ARBAYS. Ph.f;l thnis,
Carnqie-Mellon University, Pltteburah, P&, March 1970:: ~. ··· · ·

=~· ~G~~~,-='lf~I~~~
28, Sept. 1971

<Spandorfer 65>, L~. Sp~fer, SYNTHESIS OF UXi1C FIACT{ONS.QN.AN ARRAY
OF INTEGRA ,m,af~Clffl,i'~~eict •AftJ--*1-$oi · llD,: . ··,, ..

~ , i - • '·, ,;. " • ' i ' '·~ - ,_ ,

<Tamm. aru 6 .. ?>, E. Tammar~.!I."~ J~lJ. A. n1,t.1 .• , ".'R,,d .. ;\!~A8"CY for .L$1.,rield
enhaneemenf',:IE£E JedNAt ;OP'~STA-TE'CIRCUTS, ·voa: ~ $¢-:Z ~pp.~ 172-
182, Dec. 1967 · "''· . . .

:~= t~~iJ:~=~~~~9"' ~-.,,.,.-,
<Thurber ~9>, ltJ~ ~. '1!'auft lqqftion io, cel(JAe!r _,_,.•, 19,9 FAU. JQINT '
COMPUTER'CC>Nf!RENCE, pp. 81 ~88;1,9-69'- . ' .· . ' . , ···· ·

<Toffler 70>, A. Tot.tier, FUTURE SHOGK, 8Mt'(n Boo~.a.w '(ork. \970
_,,: _ -_ - , , · . ; , . ·,. , l- · · .·, ,

<Turn 72>, R. Turn, AfR FORCE COMMrio :,ANO···coN~~I. .INfOBMATION
PROCESSING IN THE 1980S: TRENDS IN HARDWARE TECHNOLOGY, 'Report R-
1011-PR, Rand Corp., Sent, M~~ C.., Ocl 1912

' . • f"'c : ~ < ,_;. , • ' • • • r ••

<Vaccaro 74>, J. Vacclfo, "Semiconductor teliability within the Department of
Defense", PROCEEDtNGS OF THE lEEE, vol. 62, t:2, pp. 169-184, Feb. 1974

<Vinson, 74>, N. Vlft80I\ "On tc,dey't reel ,VIOtl(A. ~f t..uaf; £Pt4. vol.· 19, 4,: pp.
50-54, 2/&/74- · ; , · •, . .

PAGE 242

<Vischi 72>, M. Vischi, •state.of the .ad of reliability practice in the European
computer market•, PROCEEt11NGS OF THE 197a ANNUAL RELIABILITY AND
MAINTE~NCE_SYMPQSIUM, PP!· ~29-~i - .,. llla .

<von Neumann 66>, J. von.Nunann,,J~~ SALF~ AUTOMATA,
edited and completed by A.W. Burks, U of m. Pr88$, Urbana and London, 1966

<Wahlstrom 67>, S..E. Wahl•~~ "Pro.er~. Jpaio,\/8J'ffYI. ~ cheaper· by the
millions•, ELECTR()NIC$. vol •. 40, •~S.-w.,,.S0-1.5, 1,2,Jll/il:

<Wahlstrom 69>, S.E. Wahlstrom, "Electronically controlled nicroelectronic cellular
logic array•, US PATENT ~473,160,,P~tcl~~- 19'9.,,

=~.:.~tt~ ~~ :~•~~~~' =2,c:=
1970

PAGE 243

BtOGRAPHY

Frank Blase Manmn1 was born ·m Saint louti,••MidOOri, bh September 13,
1948. He is the eldest of five brothers and a sister. He,graduated from Saint
Lowia.urt-,,ityM)t\1Jchuot i;,4911f~-inltt•M"'U. ._,..,_.· ··

· ., _ ~ :. _ · t ~-l ' · · ·\

He received bachelor's and matter's •ar•••· Jomtly frotn the MIT
Electrical Enlineerina Department in 1 s1i Hi• theei• w~ ~ ,~ a ,technical
repori tlu.d Autt,ll1Mlos.2~ s,,d~ CdliiJt.,, c~~:Pf.:J.-K P~fnf!o;s. ·.

• • '· - ' '. • ~ "·· ~ , • " ~- ':- ·' ·' ., >

The author's vaduate research w11 at MIT Project MAC. He hal ffled •
patent relatin1 to detip11 presented in his doctoral thNil, end plant to continue
workin1 toward the 1011 of matt-production of IOIN form of the cellular .,nay,
described in that thetis.

He i• a member of Eta Kappa Nu and Silffll Xi honoraries, and hat been
nominated to Tau Beta Pl.

Frank h88 held numerous jobs in the short interval, between school
attendance. He has worked as a paperboy, fllllnc-1tation attendant, caddie,
fireworks-stand proprietor, shippirc derk, tectvidan, and diaital fflUlic machine
desianer. He ran a McGovern storefront in the 1972 Pretidentlll caRpeian, Md
worked in the Rhode Island primary that year.

Frank and his wife, Lym Nina, were married on May 5, 1974.

His chief deli1hts are his family, friends, and racquet sporb. Other
interests include imovation, politics, and other sames. He lik., deli hlrdw••·
and eoftware systems, and is Interested In COIIIIU'licetio •--

CS-TR Scanning Proiect
Document Control Form

Report # Le 5-T~- I S" I

Date : Jl.J 16 I '?S

Each of the following should be identified by a check.mark:
Originating Department:

~ Artificial lntellegence Laboratory (Al)
A Laboratory for Computer Science (LCS)

Document Type:

.-_ Technical Report (TR)

D Other:

D Technical Memo (TM)

Document Information Number of pages: ll/¥ (JH'3-· I ,nX?f'S)

Not to include DOD forms, printer intstructlons, etc ... original pages only.

Originals are:

□ Single-sided or

~ Double-sided

Print type:
0 Typewriter O Offset Prass

Intended to be printed as :

D Single-sided or

~ Double-sided

0 Laser Print

0 Ink.Jet Printer ~ Unknown □ other: ______ _

Check each if included with document:

□ DODForm

D Spine

D Funding Agent Form

D Printers Notes

D CoverPage

D Photo negatives

D Other: ------------
Page Data:

Blank Pages(by,.numbel): __________ _

PhotographsfTonal Material (by page number): ________ _

Other <- clw;riptio,,lpage number):
Description : Page Number:

~m A~f tnBe: (I -l.li~•h (,\ N t:1,-> Kb I~ TL.r rA c;:x J.-G LANk)

J, -~l(J

Scanning Agent Signoff:

Date Received: JL1},i_/iS Date Scanned: l:J..Jj.!f_J ~ 5 Date Returned: /.;)../do.I I 'f_r·

Scanning Agent Signature: __ ~_ - __ 1_\........,'Jv_ .. _c,A_ _________ _
\ ReY 111114 OS/l.CS Document Conlnll Form cstrform.vad

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-Jl029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 91')4

