- MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

(formerly Project MAC)

7z —\

MIT/LCS/TR-186

A STRUCTURE MEMORY FOR DATA FLOW COMPUTERS

William B. Ackerman

This research was supported by the Advanced Research

Projects Agency of the Department of Defense and was

- “'ménitored by the OFfice of Naval Reseafch under
Contract No. N00014-75-C-0661

\- —/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-186

A BSTRUCTURE MEMORY FOR DATA FLOW COMPUTERS

by
VILLIAM. B. ACKERMAN
August 1977

Massachusetts Iastitute of Technology

Laboratory for Computer Science
(formerly Project MAC) ~~ .

Cambridge ' Massachusetts 02139

2

by

Submitted to the Deperisaet of Blectricsl Enginssring and Compater Scionce on August 26,
1977 n partiel Hiiwont 2f the resuirenasits for e dagres of Wasler of ‘Science.

A data Hiew computer iz one witich athileves enormous concurrency of
instruction snssulisn Thraugh « machine archillesture That achs directly on 2 dels dspendency
graph-of the program. To heufie srrays snd dsle stnutures afiertively, 2 deta flow computer
must have access to & memory sysiem which con hendis lerge numbers of concurrent
transactions. This Wanis presents a decign for suth o mamery. A “tache™ mechenism is
dosign wees the “pectat sommmmicalion” concept, in whith #w sonperanis of the sysiem
communicste euly ‘twough tis trenenission of Aund siae “pachets” of dalte.

THESIS SUPERVISOR: Jeck B, Deneis
TITLE: mummum

3
ACKNOWLEDGMENTS

I wish to thank Professor Jeck Dennis for his encoursgement and support
through this research and for providing an intellectually stimuisting environment in the
Computation Structures Group. | would like to thank Glen Miranker and Lynn Mentz for their

holpmeommnhonpaﬂso”mm Thouhordwth&mmwmd
hcmtbﬂorthmdhnoﬂmm

This research was supported by the Advenced Ressarch Projects Agency of the Department

of Defense and was monitored by the Office of Neval Resserch under contract no. NOOO14-
75-C-0661.

m“ mﬂ% Lpr i

Adwibuiplippaety < sitamiy Gla

AL W A

Toblwot ool - * o e Sl ST W asll e

R S ER BT T
1.0 Dule Mow Congellers
1.1 Dets Straiums
1.2 - The Svuchwe Oovintier

24 m

23 mwm _,‘.' o
30 Tow Senic Womary Suie

3.1 mmm

o) v,g;%; «éfy;:»gggﬁgm prL 1 Pt A

PR T et gew® Wl B by f 4
Sasddt skl e wolls s

#4544

o il Gl veselOnB Anail 1 SRR
e s gotvorg 191 bag hieesn g

§E§§ Efasyrg=ay

,:W*’ 2E% 5*" 33 ’.ﬁf '? ® ’% ¢ksi}" i -
T W3 Qimﬁ

g Bl

otegh eV 6 »@W %;M adf i bl oqEue 2hw DT =
% beichoam e Be Beost

0.0 INTRODUCTION

A data flow computer is & machine with architecture radically different from
that of existing computers. It con perform compulalions:simyitanedisly on many different
parts of a progrem. Awmmmmmﬂm&mgmm
utilize all of them simuitaneously, sach Olocuﬂu a ditferent instruction. o

To handie arrays and other deta siructures, a dets flow computer must have a
data structure processing faciiity- and memory thet: has e similer: facility to perform many
operations concurrently. Such s dete structure memery. is the subject of this thesis.

A data flow computer owes its great speed to its ability to perform many
operations at once, even though each individual operation is no faster than:.on & conventional
computer. The same is true of the memory. The mamery to be presented here hes a
retrieval delay just as groat as conventional memorias, slmee no new circuit- technology will be
Proposed. However, it has sn enormous data tranefer. rate beceuss of its sblity. 1o handie -
concurrent transactions. This concurrency is made. possible:by sn unusual -type of interface
celled packet communication. '

Section 1 of this thesis is an overview of data flow computers and the type of
memory that such & computer requirss for structure processing. Sestion 2 is & treatment of
packet communication systems, shaowing how their behevior is defined. In section 3 the basic
memory unit is described, siong with a "cache”™ mechanism and an “interiesving” method to
improve its performance. In section 4 an implementation of the memory using shift registers
or magnetic disks will be given, showing how the.dissdvanteges of such devices can be
overcome through the use of packst communication. Sactign:5 examines some sspects of the
processing unit that uses the memory, snd section 6 exemines the: “desdiock” problem and the
cost of overcoming it. Section 7 presents suggestions fer. future:-resesrch..

1.0 DATA FLOW COMPUTERS

As the need increases for ever fasier compulers, one technique for improving
performance thel has drawn considerable. interast i the fest fow years is o radically new
design known as » dpia tlow sempuler [6] {73 [11}118]. A comentionel computer has only
one lacus of cenirel, thet is, ene peint in the prugrem at sny given instant at which
instructions are execules. Ability te execvle meve han dub instruction st » time can improve
performancs significantly, snd some computers use an instruction loohshead to schieve this [3]
[9]. Howsves, the benalite of lookshbad methede: are Nimiled, snd such computers are
enormously compien. Olher stiompis to m‘ﬂmﬁﬁ mmy include " arny
processors” {16] , but sush machines are inflwibis evel entromely o

A dels fHlow computer achieves sxscvtionsl concurrency by using a different
internal representstion of the seurce pregrom. . WdMi&MﬂubM
of inetructions t6 be eveculed in & perticuler order, the proagrem i represented ae » date flow
schems, A deia tiow scheme is 5 drected graph whose Hsdes represent insiructions snd
© whose arcs shew the date dependence smiong insiructions. The eriler of instruction execution
is determined salely by the dets dependence - dn indiriction is esicuied when ol of it dets
sources have produced results and all of ils destinations are resdy 10 réceive dets. This
sliows meny instructions throughout the program lo be execuled simultansously.

The dals in s dels Hlow progrom can be medeled by “Yokene® that reside on the
arcs of the graph. Esch erc mey conlein of mosl vne Tohon. mmm for most
instruclions is s follows:

An insiruction (ether then o merys or geis) e resdy for exention whenever sl
of ils input arcs contain tohens and sl of its oulput arce aré emply. When an
inelruction is exscutad; the tokens on The input srce are sbsorbed. The
function dencted by the instruction is compuied, uiing the values in the
absorbed tokens as input dets. A foken conteining the function velus is pleced
on each oulput erc. | | |

7

There are a numb-f of ways of handling decisions and iteration control.
Perhaps the simplest is the use of special instructions M, T, and F. These receive a boolean
value on one input (the “control” lnptﬁ)mduulnoeomolthopmmofdnhfrom another
Iuput Their exscution rules ere s follows:

The M (merge) has a control input and two deta inputs labelled T and °F". To
'be ready for execution, thers must be a boolesn token on the arc leading to its
control input. Furthermors, the src leading to whichever of Hs: T or F input
matches thet boobmlobnmudhwcatohmmddtmm arcs must be
ompty. wmnn.mm-d.mmtommmmumnm-w
indicated by the control token are absorbed. Copies of the !onn at the
selected data input are placed on sach output arc. Input tokens ere not
required st the non-selected dats input, end if any sre prasent they are not

The T (true gate) and F (false ;ah) imtructbns have a controi input md a dats
input. Thoy are rndy for omuﬂon whonovcr both input qrcs conhm tokens
and ali output arcs are .mp!y Whon thoy uowo‘x.cutod. tho inputs sre
lboorbod. lfthmmmmthmﬁmwrwtmmof
thdotalnpﬂmﬂmdonﬂnodpﬂm !fmt.mhhﬂnmplmd on

the output arcs.

Constants can be generated through the use cf hm)qm of ne lrgumms. An
instruction to perform such a function has no inpm arcs, 80, in sccordence with the execution
rule, it pleces tokens on‘lh output src as fast uthoynro romovod. fos

Mere is an example of & deta flow schems to compute the fectorial function:

Boolesn inputs fo M, T, and F instructions are drawn ss open arrows. Tokens existing in the
initial configuration of the pregram are drawn ss fifled-in circles.

mmwamnm-emmm-munmmm has a very
important property - ~Wis gm This means !hat tho output of tho program is
dnhmkudonlybylhm mhwuhmumm.mmm Al
rmdumh.mrnﬂhhmﬁtwmm'mwm Mmimyfollows
1romth.flch!hd

(I)EachMrudbnwe@mom&vﬂehho!mﬂmoﬂyﬂhovﬂmof
mmmmmmmummum

(2) The vaiue of a token doss not change in any way while it resides on an src.

(3) The execution rules, and fact (2) sbove, quelify the schema as a valid
interconnection of autonomous communicating systems.

,.'9

It is an established result that such an tnhrconmlicn of. dotomimte syshms is determinate
(1] [14]

1.0.1 DATA n.ow COMPUTER ARCHITECTURE

The memory systom and’ structuu pwcusor that nro the cubjoct of this thesis
are intended to be part of » computer of the type ducrlbod by Donnh and Mlsunn [6] [73.
Such a computer is composod of units which use ggg___ gmmynicatio [8] for trmfor ofk
.data. Tho only means of data transmission m thou unih k th. tnmmiuion o' ﬂxcd sizo
mosugu catled go_g_g_ "There is no clock o synchronim informﬂon.

The four main pam of tho data flov compuw ”e tho imtrgﬂon mamory,
arbitration ne tworg, Q u_ntj_, and tribgg notwk. Fer :tmclm procusm;. the
struc trol!g md strggtgg x are oddod. ‘

distribution arbitration

instruction
memory .

‘functionsl
Cunits |

To oxocuh"a dah flow\ program, its schema is oncodod into the instruction
memory. Each cell of the memory contains one instruction of the schema. At the time the
program is loaded, each cell is filled with the operation code (srithmetic operastion, mergs,

10

structure cperation, etc) and the address of ils mm The letter are the celis to
which outgeing srcs poimt. The instruction colis also have receiver registers to contain
incoming “tokens”. When slt necessary recelver registers become full, an instruction cell emits
an operation peckat, conslsling of its operstion case, the dats frem the receiver registers, and
the destination addresese. |

Any given program has lmﬂ number of imlmihﬁ celis, oach sending
mdmmww Mdmdmﬂmbvthvgﬂrﬂ
mmm.mmuwm mmmm«mmnm
mmemuMMﬁnmhmmmmts
AlnmmdmmmuwmnﬂhhMcgkdbr
mcmwm«mmmummwmmwmh
mm-mmm«mmmw-mammua
resuit. mrnwmpbmmmmmmwwddrm
snd sent to the sppropriste receiver ragister of the sparepriste instruction cell. (The
mmmmummm.) Hh%hgtﬁu&mwnmﬂ.
Mokmmmmeume_hhmywrum
result packets back during the course of its computation.

The procading description doss net auite implament the ewecution rule: An
instruction coll should wait until s “output ercs”, thet-ia, the-receivers of its destinations, are
emply before issuing an operstion packel. There is no way fur se instruction cell to “see” its
destinetions’ receivers. The problem is romedied by using, where nacessary, acknowledgment
tokens sent from o cel"s destinetions 10 the coll llew, The schnowisdges are troated like
invisible arguments, axcept thet they contain no date. When a call is executed, it may send
result packets 1o some destinations and scknowiedges to bthers. A cell is not ready to be
oxecuted until it has received all necessary resl arguments and all necessery acknowledges.
Acknowledges sre placed in the program where nesessary io ensure that, when a cell has
recelved all srguments and acknowledges, its deslinetions’ receiver registers will be empty.
These acknowledges should not be confused with the packet acknowledges to be developed
Nater.

i1

A constant need not be implemented as a separste node of the dats flow
schema. It can simply be loaded into the receiver register of the instruction cell that uses it,
and marked in such & way thet the inetruction ceil knows that thet register is always full,

An additional part of the data flow computer, not.shown in the preceding
cic!rm is the host computer. This is a computer of conventional design, which has access. to
the memory units. and control tunctions of the data flow computer.. It is used for diagnostic
testing and for initisl loading of the instruction memory end strusture memory. It does not
participate in the actual data flow computation.

1.1 DATA STRUCTURES

In ordor 10 handie arveys ond dats shruchures i & data flow computer, it Is in
most cases necessery 10 sliow single tehans {0 heve witirs structares as their values. (Some
programe which use srrays of fixed size, such as Fourier irensforme and other signal
processing sigorithme, con male @ with srreys of fnsiructions with one token on each arc.
However, this- approach s inpracticel for vary Wrge arfays o¢ for dynawic structures.) For
The simpiost typs of siructurs thet pernits fult gomersity i the Bingry tree, which is
recursively defined: & binery tree lo en clomsitary “Sjitl" from some sef, or is a
concelenation of twe binary tress. Such trese form the basis for the programming lengusge
LISP. [4] [13] For definitenses, the structures uwed in & dele flow compuler will be assumed
to be binery trees.

The “clementary objects® ars sll dets vaiues other then structures thet the
computer can handie, plue the speciel object nil. mmmmimm
integers, beolesn veluse, resls, stc,

The principsl operstien on o dets struchurs is selection. A simple selection
takes & structure and & single Bit. 1f the structure is slementary snd net ni, the result of the
selection is undefined. If the structure is i, the result is il Otherwies, the structure is the
concatenation of twe ctructures, snd the result of the selectien is the first o second of these
if the bit is zero or ome respectively. A compound seigction takes a structure and a siring of
bits, and gives the result of spplying simple ssieciions repestedly, using the bits in sequence.
The bit string is calied the selsctor. Let $ be the following structure:

.....

13

1 4 ml 314

SELECT[S, '1'] =5 (a simple selection)
SELECT[S, '001") = SELECT[SELECT[SELECT[S, '0"] 0’} *1'] = 4 (a compound selection)
The true “meening” or “velue” of s structurs can be defined to be the set of

ordered pairs of selectors that yield elementary values other then nil, along with those values.
Thus the structure S denotes the set |

{ <000', 1>, <001’, 4>, <011, 3.18>, <1 5»)
Nil simply denotes a substructure with no elementary items at all.
Using this definition of the mesning of a structure, there is a structure
corresponding to any finite set of ordered pairs of selectors and @lenisntery valuss (excluding

nil) such that no selector in the set is an initisl substring of snother. The structure nil
denotes the empty set.

SELECT[struc, sel] =
The elementary vaiue v if struc conteine. the-peir <eel, v>

Undefined if <s, v> & struc where ¢ is-a propee initial- subsiring of sel
The siructure { <s, v».| <sslea,.v> € steuc) otherwive: -

14

Structures cen be built with the append operetion. APPEND places # given abject (structure
or elementsry velue) enlo & given struclure wilh o given selactor, remaving whatever
substructure previously euinted thare. In the sal-thaorelic medsi,

Ammwd}-

[(struc - { <s, v> | oo of sl or o is sn intis subeiring of the other)) U { <asi, new-vai> }
if new-vat is elemontery. S

| (strue - { <, v> [ane of as) o 3 in an initist subelving of the olherD U

{ <eple, v | %5, v> @ naw-val] it now-val is & slrusture, insluding nil.

Latting S be the sivucture defined previausly, APPEND[S, 7, 01"} is

The substructure containing nil and 314 diseppears.
1.1.} REPRESENTATION IN MEMORY

Strueture can be implomantad on o dale flow compuler in the same way that
they are commonly implemeniad on ordinery computers - as linked lisls of “celis® in & memory.
An elomentary object is representod by the object ilssi. A concalenstion is reprasented by
the address in mamery of & cali conteining the repressniations of the twe substructures. In
either cese, & struciure is reprecenied by & emtll snaunlt of inferination. The huge amount of
information thet constitules the siructyse Heslt lies ineide thi memory, snd the representation
is merely a pointer ie this. The eperetion of sslection is quits simple. Cells are reed from

15

memory and the sppropriste halves of the data used, under control of the selection bits.
1.1.2 SHARING

Such an implementation leads to the possibility of & tinglo structure in memory
being shared (or partly oharod) by several pom of the computation. In a data flow computer,
Notobmmmmthompoint«nthﬂrvm mchofeouruvuydwnblo for
economical memory use, but it mekes the. APPEND. aperation diffioults ' Te-problem ‘i that
mqmcati_on&of pointers inside the memory cen.change:ibewelus of siructires other than the
intended one, if structures have parts in common. In. meny .prograsming: lrgueges, this is
considered a reasonable and even desirable effect. For example, the LISP language has
imtr_uctiom to modify existing structures. In a data flow computer, however, this cannot be
permitted for reasons of determinacy. In order for a data flow computer to be determinate,
the meaning (in the set-theoretic sense given previously) of a token besring a structure value
must not change while that token roiidos on an arc. Since other instructions, including
APPENJ':,:mbomcuhdwaatokmnﬁdnonmquPPﬂbmtmwrchmo any
substructures that are shared with other structures.

In the proposed structure proéoain(fecility, each cell has a reference count
which makes it easy to tell whet substructures sre shered. Whenever the APPEND processor
is tempted to modify a cell that is shered with another structure, it mekes a copy of the cell
and modifies the copy insteed. For example, if S is a pointer to the following structure in
memory:

where the number in each node is the reference count, APPEND(S, 7, '01°] yields

16

1 4 nl 314

The node that originally had a reference count of two may not be modified, so a copy is made,
and its reference count is therefore reduced to one. The structure controlier to be described

in the next section will perform these tasks.

17

1.2 THE STRUCTURE CONTROLLER

In this section we will outline the behavior of a processing mechanism that uses
the structure memory to provide a structure facility for the dets flow computer. The basic
behavior of the structurs controller is that it receives oponﬂon packets from the arbitration
network and delivers result packets to the distribution network. It hoids the state information
for structure operations in projnu. snd performs memory operstions by sending packets to
the memory and recelving packets in return.

_ The purpose of this section is to show how the structure controlier will use the

memory, réther than to give a detailed specification for the structure controller. Therefore, a
number of design decisions will be made arbitrarily; For the most pert, the requirements of
the structure memory are independent of thess decisions. For example, the memory design
would not change if ternary trees were used instead of binary ones.

Some aspects of the design of the structure controller will be considered in
more detall in section 5. ' '

~ 1.2.1 DATA FORMAT

The memory space is divided into “words™ or “celis”, esch of which hoids one
‘node of a structure. Since the memory is used for the storage of binary trees, the words
representing nonterminel nodes contain twa. painters to olhar noges. The convention will be
made that sl words of the memory will be divided into haives, called the left haif and the right
half. Each half has an “elem" bit bit indicates whether it contains an siementary item (terminal
node) or a pointer to another word in the mamory. If the hit.is-1, the heif word contains an
elementary velue. The intarpretation of that half word.is thew.the exclusive responsibility of
the rest of the computer, uniess it is nil. The strusture conirelier treets any slementary valve
other than nil simply as a collection of bits. Any type informetion (integer; flasting: point
number, character, etc.) must be encoded into the helf word slong with the data.

The structure graphicelly represented as follows:

might be reslized by sddrass 102 in the following memary cenfiguration:

T B NN ﬁ};

A diffaren convantion: snuid-ba veed, in whisk cach-slsmentary value takes an
ontire: word insluad of halh s woek The twoconventions sre equily pewerful, and differ only

A worde: o mewmry thet are: not pirt:ob & itructore ere kept in & collection of
frae slovagy lipls. (Thove sow sovassd such Uols, raltinr- et oney i Uedie N meintain & high
rote:.of. procsssing. This: peint wit be discussed: in- section S85) Wenever the structure
controlisr nesds & word: in- order - cvualy 3-n0de, it tiles: it frow: ofie of the fists. Whenever
a node le destreyed; that is, st peiters to: it dappedr; the werd comsining It is returned to o
free storage list. o ‘

19

Each node of a structure has a ratersace cpunt, which is the number of
pointers to that node that exist, whether in other mduor in the rest of the.computer. (The
latter includes operands waiting in instruction celis-and pachels in transit through the
arbitration and distribution networks) The siructure controlier incresses or decreeses the
reference count of each node as pointers to it are created and destroyed. When the
reference count is decreased to 2ero, the node disappeers,#e:it is:returned to ¢ free storage
Fst. thmwmmmmmm and 50 the
reference counts of the nodes pointed to must be decreased.

The choice of a refersnce count strategy for memory management instead of
the “mark and scan™ method commanly used in LISP sysiems was made for: thres ressons:

(1) The mark and scan method requires a garbage collection operation which
must find every reference to every struciure. Since references exist in
packets in transit, it would be necessacy: 1o siop the entire-computetion and
wait until all packets stop maving. m.mw cOMmmMences.

(2) The reference oounl is needed anyway in. m,&wh copying
rule efficiently. Whenaver the structura. controlier nesds: to:modity & node
ss part of an APPEND operation, it may do.s0 safaly. it the reference count

_is one. lfnot,thmdemtbooopbd

(3) The objoctions to the referance count method in many list processing
~ systems, that it is difficult to recover circular lists,.doss not apply here.
Bocm of thp copyruh. circular lists are naver created. -

1.2.3 THE STRUCTURE OPERATIONS

The structure controlier to be proposed implements the following program level
operations:

SELECT(atructure, salactor) - The selector ia & bil siring of definite length. The
strugture: is: trased: ynder contrel of the: bifs in the selactor, sterting with
the inftreset Bk A woee: bit snluntn e helt offgizing: ondl @ ene bit selects

the right: The en-ok the-salached paint i Mm ia returned,
whalther: it ia clementary or & subsiruchure. ‘

APPEND(steuchure;. aitjoct, solasior) ~ Aniurna o sirvehwe similar to the given
one, bub hawing: the object ob-the:place spacifias by the selector. Whotever
was ot thet placa: in the aviginel strusture: in sheent in the result. The

" object may be elementery or a siructure. Any pert of the originel structure
that -l sherech withe alher parts of the: comguistion ls not medified. The
conivolier coplas part or ait of the orighel siructire. &8 nacessary to be
sure thet this ia the case.

Tha shrusture: coniraliae secogninne the spacial cemstant nil which, while
clomentery, is aleo. the structure with-no telbctors. NI is used s s terminal node of 2
structure to indicele. Wt there ase: ne: objects hoyosd et point. Asy part of a structure
may be deleted simply by mummbmumggm » structure
may be cresbad: by eppanding something:te nik. MMMI& jonstant nil is explicitly
available: 10-the -peegrammen: for Hhane fiivptens The i epimizes ol structures,
replacing wgmmﬁmmmm&

Mntmcmmmmmwnmmmm If any
MMMQMWW*M“%“M‘MI
of the result must ba: sppreprisiely incrensed. mnwwm“memo
value, the refersnce count musk e decrétend: bmmumwm such
as trye and feise sclers must be enseuted by @ sirvelure centrolier if the objects being
switchad are structures. -

gifies CRLCATe

21

1.2.4 THE MEMORY OPERATIONS

The structure controlier communicstes with the memary by sending command
packoh and receiving result packets. These packots are given names describing the
operastion to be performed.

To read a word of memory, a FET (feich”) packet is sent, giving the sddress.
The memory returns a LOAD packet with the data, Betwsen the FET and the corresponding
LOAD, many othir packets might be unf snd received. This is a consequence of the
paralislism of the dsta flow computer: just a¢ with the other functionsl units, the rate at
which structure operations are performed cen be increased by allowing many operations to
be in progress simuitaneously. This concurrency is mede possible by the use of packet
communication at the memory inhrfm The FET packet thet begins. an operation and the
LOAD packet that snds it are distinct events and might be separated by » great number of '
other packet transmissions and roc'p!lom. Each LOAD packet is identified with.the FET
packet that caused it by means of the "tag", to be described later.

Each LOAD packet conteine the address of the word and its reference count, as
well as the dats. The address is probnbly not used by the structues. controlier, bua s included
as part of the spociﬁcaﬂon of the memory module because. it is needed by the cache
mechanism to be described in section 3.2. The structure controlier uses the reference count
in order to tell when a node may be written on without being copied (if count = 1) and when
a node should be destroyed (if count = 0).

To increase or decrease the reference count of a word, the FET* or FET™
packets, respectively, sre sent. These are similar to FET, except that the reference count is
first modified. The memory replies to-them with LOAD® or LOAD”™ packets which are similar to
LOAD packets. In some cases the structure controller doss not use the data in a LOAD® or
LOAD™ packet, but it does not reslly cost anything for the memory to send it,

To write on a word of memory, the structure controller sends an UPD
("updste”) packet giving the address, deta, and reference count. The reference count is

presumably one, bul ¥ spatiticetion ¥f the menory module sliows an arbitrery count to be
given. (In an actusl implomemtation of a structure controlior atel memory, unhecessary fields
would be omitied where peveitie, o0 Thet The cunirelier wudd ot Yendl & referente count in
UPO pernets oF ratulve W adiress i LOAD, LORD", 0 LOAD" piotals.) The memory sends no
reply to an UPD pethet. ‘

Thire i antther command that the mamory recsgnizes. The CLR packet waits
until s pending Gperetione on the FVen Word ere complels, end then returfs o DONE packet.
It is ot ued by 40 vivuciurs conirsiter 3t o, it ¥ rediired Tor opetution of the ceche.

1.25 THE TAG FIBLD

Every FET, FET*, or FET™ pachot e & Hold cotud the "tag” field thet
miWMNMMhMWQMh*mth
result of the Sparation muMﬁthhMWoﬁm
result packet.

Consider the cese of & sinpls JELECT ietraction. When the instruction cefl
 firws, an Spersiion SUsNIt §Us¢ 10 1D siructure comvelier cuntuining the operation code, the
strueturs, the SUueton; and tHS-S00revsne oF ThS 1he INGIreRtion oty whith are to receive the
rosult, MMW“MMMM%WWH&:M
WWMMmmmmmmamw mmndtoth-
m“lﬂﬂMMMMWMMMW in the cese of more
mkntdswwmwmmummm%m:umu
muﬂmmmmhmmmmmy transactions
that maks up the sirustors SpOrsion. h%“ﬁ%%!m&ﬂh
mwwummmnammmmwmm
nd & Tow phimters. mmmummmmumwwm

meMwmﬂmmmm One method is to include ol
of it in the teg fisld of commends to the memory, 50 the structure conlrolier dussn't need to
store any Information sbout the state of ongoing structure operations. When the result

a3

packet comes back from the memory, the structure controller looks st the entire packet
including the tag field, decides what to do. next, snsl produces a-new.sacket-to send back to
the momory mmmmn‘vmrym-twmm pliar”: methed) is efficient; bat it
requires sn oxtrmly wide data path. for il memory transpstions, snd.it gives.rise:d0 very -

A second method is to store all of the state information in the structure

controlier. This requires that the controlier have a memory wilh s capacity of 200 bits or

mofwmyctrudmomdbnﬂﬂmhhp@mdmﬂm In this case only the
address of the block of memory in which the stele informetion je.sleradimust-be-put in the tag

field. If 256 MM structyre opsrations are sliawed, wmmmmnu 8

bits.

In either case, commands to the memory contein o deg fisid. The memory
mth.tqmmmmmmummm :

1.2.6 THE DATA AND REFERENCE COUNT FIELDS

The contents of sach memory word consists. of .4 data field snd a reference
count field. The deta fisid is further divided into. two. poietar. fleldes lest -node iedicator 'bits, -
porhapsaMtoMcdoMthuﬂhmthﬁuMMmﬂMiynimm
fields for slementary values. All of these are significant only to the structure controlier, and
are irrelevant to the memory. The memory can simply consider the slals.te be:a hwwogeneous
fiekd. In practice, it might be sbout 40 o 80 bits long.

From the memory’s stmdpdhi. the referance. count is simply part of the data -

associsted with each word. mmummuummmmmwuu o

the memory mtom. dthou;h the structure controlier will npvar. spe & nagative relerence
count. In a typical reslizstion, the nfonm count field might.be sbout 8.30.15 bits long.

Incoming and outgoing packets that read or write s word of memory have data
and reference count tields that correspond precissly to the fieids in memory.

S

e g oenegr L BB
S S RS LR A

fr.;"% s ErvE gy VG aC’«‘r?* 3#‘ FELL

T T Y P 2
amty o) oph haeifesy booaons 0

sy adh gl e B

25
There is a partiel order on histories: X < Y if X is an initial subsequence of Y.
For exemple:
(133;0$(133;4;7)

but(1; 2; 4) and(1; 3; 4) do not satisty u;;. rm:ion.jn,;giﬂm order.

Since histories only grow Ionnr . ﬂm progresses. and synhnls already. in &
history never change, amyotnlnhrhhnthdumgrnhrthmoroqudtoa history
at an eorlier instent.

The length of port history X is denoted [X|. The individusl pechets of X are

XyoXg. « « Yoo

Tlnnlcnodnﬂmdﬂmordu mmm mlvolc Q;\.M ports, so it is
moloutonmn“h.muas&ndom Instead, & history srrey is used, which is a
edhctbnolmtorbc.omwwt The partiel ummmmmmto arrays:

AzannchmtoryofAbcnawﬂmorogmltothogo"MmMoryofa Like

histories, Notorybnrr.y. increase as time pr

- The description of how a system is expected to behave is quite simple. It is a
description, for every input history array, of what output hisiery-erray the system will
sventuslly produce. “Eventuslly® means in finite time for finite histories. For infinite
histories, it means that, for any K, the first K packats. will be prosuced in finite. time. This is
because a systom which ls oxpoctod to hlvo . infinite output. histocy cannot ever. transmit its
entire output in ﬂnlto time.

A description of tho dopomm of output history errsys on input arrays is
called a M ggo_gﬂcltbn. ll is & description of how a system is expecied lo behave.
The major problems in the field of pmt commmhﬂon systems are proving that o system
built in a certain way oboys] ccrhin functlonal _specitication, lud proving that the
lntorcomctiou of systems known to oboy certain functional specifications cbeys some other

functional specification.

It, Tor any Imput arvay, the Tunitions! wpecificition sistes that there is only one
possible Dutput wrray, the system is detorminate (somstimes atled functionsl, but that term
will not be used ere). In Tt Teee e ds 1 Funtliun, suy ¥, mappheg input arrays to output
srraye, such thet, if inpat X demd v wiere) s tisiiversd o ‘The wystem, X) will eventuslly be
produced. If turther inpdt i Shwn givon, The inpit Widtery s ¥ with Y > X, and output history
() will bo prasuced, S The system cemist Teivact any of #is ravious output, 1(Y) 2 10X)
mmmhwhumanmmm

X 2 Y » 506 2408

16 thve s 'more Than One sugal Tessores T a given apit arrey, the system is
nondeterminate. n thet ese a mtion i wieo st Te St Hise fandtionel specification, but
10X) is the ot of ai lagal outpat Metery wrraye. Fumctions dufinhg the specifications of

T e Powsitie Mot n Intercowwecion of wowlivterminute systems to be
determinete. wmammmamwmmmnm
network is not. #n intwmeneuciion of duieiiuly ayviona i dlways @¥terminate, end its
function can be Tomputed aupliciily from 2w Fundiions of e compaments 1] .

2.0.2 ‘DESCRIPTIVE ‘JRECIFIONTIONS

Binoe 2 major ek of H system designer i 1o demondivsie that e system built
in u cortein wey Swys vuriin Sonchiowms spusiticefiom, it i wevessery to describe in a
reasonebly formel way Wow 8 systum s Sull, A wiring Slugrem is we formalism, but it is far
100 rigie and implemaristion wopondert. A ghar lovel wethmd 4 Twetied. ‘When 8 system is
ssvemblud Yrom componenits, i iuaing e Bechet commonicbiion principle, it s of course easy
to descritse the iriterconmection, iling mmﬁﬁ-mw isre connected to
oach Uiwr. For wystons it Temut be nwﬁﬁ-w wpecification will be
given n m#mmm%mm mm«m mmp This

27

language is o subset of the Architecture Description Language [10] which is under
development. '

In the language we will use for giving descriptive specifications, packets will
look like dsts records with a title and one or mors, date fields, for example: "WRITE(3, 7)".
This format is purely cosmetic. In the actusl hardware impbmntdion. a packet is nothing but
a collection of bits. The fisids are simply. divisions of these bits into subsets thet the sender
and receiver both agree upon. The tities are just encodings of another field.

ZOQANEXMEGAWNATEW

A functionsl snd descriptive spociﬂéation of a system cdbd MEM will now be
given. MEM is a random sccess. memory. with an input port IN snd.an-output port OUT. Two
types of packats may be delivered to it:

WRITE(addr, dats) writes the data into the given address
READ(addr) fetches the data from the given address.

The “sddr™ and “data” fislds contain numbers that range over some finite and fixed spaces.
There is one outpd pachet type:

m“ [d’t.) -
(RTR stands for “retrieve™)

Every READ packet deliversd to MEM resulls in tranemission of & RTR packet
bearing the address and the current contents of the memory. Every WRITE packet stores its
dsta in the memory. and returns no result packet. The injtisl contents of sach address of the
memory is zero.

For a given input history, the contents of the memory may be easily
determined. The contents of each word is simply the data field of the last WRITE packet
having that address, or zero if there is no such packet. The function faen realized by this

memory ls:

fyen

M X « gt Mistory snd Y = sulpat history,
9] « e HOWRNT Bt DSCUMEHOS oF NERDI-) ta X
[RTRKa0dr, date) # the ™ READ(--) in X is REACLaddr)

o 0 Y00t WRIVERSNF <) 95 3 Silure Wt AEAD
¥, - s WRITEIaNEr, dats), ¥ Where is such & WRITE

1 Muumv‘m@%anm
uma.mm.semu

Netation: mmwmwmummmm“ fiold snd
anytiving ot alt In The Sete Hed: - |

A KRR opuNtation o MEN wivply oeniiels of staling thet MEM reslizes
fugw » that is, thet is the input Nistory X is presented te it, it will svarituslly transmit output

This wpeciiostion says nothing sxplivit sbout The slates of MEM This is a basic
property of the history function approach 1o system specification - even for a device whose
PuUrpese is 15 huve Stoien;, SUEN 9 3 MEWKry, he sputiicalion Jous #at mintion the stetes. Of
courne, the memory dees have stubes, sl the stule i & fenction of The input history. Since
the input Ristery Tevends:- il oF T Mensalion Mt has SVt §6e b the system, it contains
enough information 10 dulurmine the state.

We now show how the system MEM wey be bullt: The system uses a real
random Scouss Memory; with & Sisttity of 'one wird T sach possible velue of the “sddr”

field of incoming packets. We choose some obvious correspondence between the values of
the "addr” field and word addresses. Each word can contain any of the possible values of the
“deta” field of incoming WRITE packels. We choose some obvious correspormience here also.
The memory is initislized with sil words conteining zero.

The algorithm of the implementation of MEM is ss foliows: If a packet B
WRITE(addr, deta) is recsivad, the deta field is written.inle mempry st the word:address given
by the addr field. If packet READ(addr) is received, the.-word. el the:sppropriste address is
nondestructively read, and & packet RTR(addr, data) containing the data fetched from memory,
is rotumod.

msmtmmb.iwbmnhdbythprmmwﬂchmm "Memory” is
murqwuchnwmhmudm '

Process starts ot A
input port IN.

utput port OUT
var command, addr, date
array memory Init 0

| wait for input

A: until packst is available st IN do;
command := packst fromport INy

| anslyze input packet

if command = READ(--) then
l-tcommnd = READ(adde);
”ndmaddr.mmory(ddr»ntpmw

R]
inl command » WRITE(addr, delal
mamarylatdr) = deta; ‘

galoA
Noles:

(1) The stalemenis for receiving and transmitting peckets are sxcodsivaly primitive. Slightly
improved versions will be presenied inter. T

(2) The expression RTR(sddr.dela) mesns “s RTR packe! whoes flalde are filled with the
current valugs conleined in addr and dela”.

(3) The "~-" in conditionals hae its ususl mesning. "Jf pachat » WRITE(S,~~)" mesns "if packet
is & WRITE packat whose first field is 3"

(4) The "ot packet = petiern” sistement is on sssigrment sistement thet sels the variables
appearing in the pattern to heve the velues of the corrsaponding fisids of the packet. "let
thing = WRITE(addr,)" mesns "W the type of thing is not WRITE, i is an errer; otherwise
sot addr to the fiest field of thing and ignore the sacond field”. |

We now wthMWdhnMMhstMMW(u. ﬂm.m_mod to
show that the memary stale equais the system state (as defined by the input history) under
the following corraspondance:

For el X, the contents of memory address X for & given input history is

2ero if the input history contains no packets WRITE(X,--)
Y it the history does contein such pachets, and the lest is WRITE(X,Y)

Proof by induction on the length of the history at port IN. For length 2ero, sl cells contain
zero by initislizationzend the histery contsing no WRITE packats of sil. Otherwise sssume

3l

true for any history of length K and prove it for Kel.

It IN,,, = READ(--), nothing was written into memory between receipt of IN,

and lN“.so the mmystﬂodldnotchno. The existence of WRITE(-~,-=) packels did
not change either.

If IN,,, = WRITE(addr, data), no memory cell other than. addr changed, and the
existence of WRITE(X,-) plckch did not change for X ».addr. The contents af.memory cell
addr is now dats, and the last WR!TE(oddr.-) in the history_ is now obviously WRITE(eddr,
data).

Next, we prove correctness of the implementation. If the input history = X, we
will show that f,g,(X) will sppear st the output. This proof is also by induction. If [X| = O
fugu = ¢ But the implementation specifies no output except in response to input. Now
SUPPOSe X* = XXy . Xptp . . Lot X = x %y . x, . By induction, fyc,(X) sppeared at the
output when X was the input history. When x,, | arrived, the system transmitted no output if
X,y Was a WRITE, and transmitted RTR(addr, memory(addr)) if x) , wes READ(addr).
Therefore the response to X is

frgX) concatenated with
€ if xp,, = WRITE(--~)

RTR(sddr, memory(addr]) if x,,, = READ(addr), where the memory
state is that left by X

Now [0 00N = Mgy XN ¢ 1 if xy,, is READ(--), which is the length of the
response to X'.

Also, if L WRITE(--,--), fm‘(X‘) - fm‘()(), and if X ™ READ(addr), fqu(')
= fuen(X) concatensted with RTR(addr, 2), where z = the data field of the last WRITE(addr,--)

§
PR
£ ap

Mumutmshm hhnhmﬂmm‘ ‘
o st Nowegng bag B dlgael o wwioo

The respanee 10 I s Biasafase 0 STL

g 3 $on Db eintd yionem el 02 . M«

wage Fon

g tii

.
bt aman e o
£ et soani 0 sonen Y VHE BOTHR B
.
e e et
. & 5
RS
k21
et

2.1 NONDETERMINACY

Nondeterminate systems can teke a wide variety of forms, and the problem of
formalizing the behavior of all nondeterminate systems is.far. 100 camplex {0 be-trested in this
thesis. Only the types of nondeterminacy that arise.in connection with the structure facility
for the date flow machine will be trested. .

The principsl Mnof nondeterminacy. that will arise.in packet memory systems -
is the removal of the requirement that the RTR pnchhbnmturmdhtmm order as the
READ peckets thet gave rise to them. For exemple, the inpyt history ..

WRITE(1,11) ; WRITE(2,22) ; READ(1) ; READ(2) could resuit in
RTR(1,11) s RTR(2,22) orin RTR(2,.22) ; RTR(1,11)

The system MEM is too simple to display this sort of nondelerminacy. For example, MEM
would return RTR(1,11) as soon ss it received the first READ packet. It would not yet “know"
thet it was about to receive s second READ packet which would give it the option of
producing its output packets in either of two orders. Later, we will exhibit implementastions of
systems which can mesningfully take adventage of this nondelerminacy. For now, we will just
have to accept that such implementations (that is, descriptive specifications) exist, and
oxamine the form that the functional specification for such a system might take.

2.1.1 FUNCTIONAL SPECIFICATIONS OF NONDETERMINATE SYSTEMS

A nondeterminate systgm can give any of moral legal output histories in
response to a given input history. The “function® defining the cycﬁ!!'z!, behavior is therefore
“muitiple valued. One way to handie this situation is to treat the behevior of a system as being
defined by a relation instead of a function. The method to be used here, which is completely
equivalent, is to use functions whose values are sets of output histories. For example, in the

systom fyroey that we are developing,

K" 3

o PVRITECL, 1 1) ; WRETE(2,22) ; READ(1) § READI)) =
{ (RTIGLLE); RTR2,22)), (NTRC2.22) ; RTR(L,LD)))

The situstion: mey arise thet 100 is emply for seme X. This means that X is not a
valid input history, and s behevior of the system ls undsfined. This is different from the
situation in which an MﬁMMthGMW'VW (packet) from
the system. An “"error” whmmmmmmmmbm.mr is
undefined but seme- sitesiiens; such as receiving alhowidgae for pachets thet were not
mnwmmmwhm:ﬂbm ‘Furthermore, st some
levels of detell in the description of s system, it is comvenisnt 16 ignore error conditions if one
con prove that they won't occur when the systam is functiening preperty.

Ammmﬂnmmhmmamtm of

» function which maps input histeriss into sobs dm I\M'oﬂa. It is ususily most

m»mnutmmwMa‘mmm.mmm

MMWMMWW#:M**M»&. functional
%WM

¥iu in 100
r,:omu
P‘z&.ﬂuc. '

The rule for nmw.wmhnm A systom resliens f if, given input history
X with f(X) nonempty, it wilt oventusily preduce some outpul hislery 1 100.

mwmmwwmmmt obey a
monolonieity property as followe: '

35

NONDETERMINATE MONOTONICITY (ND-MONOTONICITY)

If Q and P are input histories snd Q 2 P, then for
any output history X.in #P), it HQ) is nonempty there
is ahistory Yin HQ) withY 2 X,

Roughly spesking, this means that receipt of a qu input symbo! will never
meke the system unsbie to proceed Jegally, The purpose of the qualification ®if Q) is
nomnpty bmmmtummmwmmmmmmtm
un-bl- to proceed.

NDMEM, which cen arbitrerily mix RTR packets for differsnt sddresses.

- foven
If X = input histery and Y = output history,
Y it In fupund)

1y eonshh only of packets RTR(-- =D and
(2) For ai m.mm«ammrnax-tm
number of RTR(addr,~Ys in Y, and »
(3) For il eddr and K, the K™ RTR(adde,=x) in ¥, if it exiels; is-RTR(sddr,val)
where lsst WRITE(addr,--) in X before K™ READ(addr) in X
is WRITE(addr,val) it such s WRITE(addr, <) exists, or val = 0
if no WRITE(addr,—) exists.betore. the K™ READ(dde) in X
The system NOMEM has the property that the dats returned. in a RTR pasket it -
the data in the memory (that is, the data in:the most racent WRITE command. addressing that
cell) at the instant of the BEAD commend correspanding to the HTR. - At.the instant the RTR
packet is sent out, another WRITE command might have_siready been received, but that WRITE
will have no effect on this RTR packet.

input: WRITEGAL) REATIA) WRITE(AR) READIA)
i 0
A2 She instert the first RN pashet wes +eturanil, & WRITE command changing

the dute from 1 40 2 el wiauly Sommwn ghvan, Suf e Laiien (g, Poquires that the velue
1 be returned.

Here is @ roughwiing wf an implsnmetution of 2 vywisn Tt sesiinss t,g, -

SYSTEM ol resiining {ugen)

{1) When 2 WIRETE oomemend comss in, wwilswue Sim aued of samery instently.
wm.mw“umummmm

MamMuﬂWMnmum‘ .
4@'%*“#&*“”“:;““:&&!7

tine analin any ardec, subjoct 49 dhe vasizictions Hwt:

£9) overy pasit in the tulter is avenhuilly seumovedl,

D) whenever apachét s rewsiaid, 1t awst b6 The ohluet in

the isutior smong Ahoun with ths word addvns that is,

The impismantstion given above il seiiives 'thet cpmrations on the memory be
Ww&hmmmmummmdmm between
o READ pecket wnd the TR pricket ‘et results. “Yher duts in the IR packst must be the
contemts of the:memony wend at the indtart the HEAYRTR titerval fyaging. W would like the
systom %o de mumhmﬁmmuuwmmmm
interval. Nere is an enamgle 0f 2 systom thet tehes Suth ibsity:

37

SYSTEM #2 (purported realization of funu)
(1) When a WRITE command comes in, write the word of memory instantly.
(2) When a READ command comes in, put the message. READ(addr) in the
Pending Resd Butfer (PRB). ,
(3) Take messages off the PRB at sny time and subject to
the same rnt_rkﬂ,omj‘n before, namely thet every
message is eventually removed and the butfer.is FIFO on
each address. When the message READ(addr) is. taken from the
Pending Read Buffer, fetch the dats from memory and form
Finished Raad Butter (FREL |

(4) Take mun.uo" the mlm any-time and in any order
subject to the sama restrictions ss befors, form a RTR
packat, and send it as output of the system.

This implementation doss not reslize fygyy,, . In the packst timing greph asfter
the definition of f\., ., , the first RTR packet might have value 1 or 2.if this implementation is
used. (The second RTR packet will always have data velue 2.)

W might like the system to take even morg liberty, by performing memory
writes, as well as reads, whenever it wishes. Such n implemantation.might be ss follows:

System o3 (purported realization of f, o .0
(1) When a WRITE packet comes in, put the message WRITE(addr,date)
on the Pending Write Buffer (PWB).
(2) Same as (2) in System #2. . , ‘
(3) Take messages off the PWB subject to the same restrictions
as before, and write the data into memory.
(4) Same as (3) in System #2, except that there is an additionsl

restriction thek ne. mossege may be: lale from the PRI &
wmwwmm
mm“mwmcz: K

This: 106 100 16 FORHED: fypugry, - HEWOVAr, bath Syslom o2 and System 3 do
nmvmnmmmnmmhhmmnqmmhmmm
" are in progress on that word: mumamim.mmmmt have
been received for every READ pecket sont addressing that word, ‘Fortunately, it is not
mmwwmmmmhmwumsm functionsl
Mmmmm&ww,m-.ﬂuuw

Definitions The yser of & system s that 1o wiich the

It would of coures be tofally’ ussiens 6 require thet, in order for a realization
Of Ty 10 WOrN, e usor must restize & dEiarwiinle Ausclionst specitication. In fact, the
user of & system should have ss few restristions on its Behiavior es possible. Such
restrictions con geverslity b specified by requiring that ihs user resiize some nondeterminate
funchien, just as-the:syston Nasl dies.. Thut is, tie diarencs: betwesn system specifications
ﬁwWhMMcdendWﬁm

The requirement thet NDMEM's user not send & WRITE command when any
mmtrmmmmmmhmwmnhmm followmg
mmmmfmz

o

If Y = input history of USER and X = output history,
(note the exchangs of input and output so that X and Y
refer {0 the same packel: sirsems I both the system and ite ueer)

then X is In fyguginmen(™ f
(1) X cansists.only-of packets READ(-+) and WRITE(-~,~) '

(2) For sl addr, for any WRITEisddr—) in K:the nusiber iof
READ{adde)'s. praceding it in X.is < the mumber:
 of RTR{addr,)'s in.Y :

Thofu\cﬂonfmkouaymntobom This is because the
restrictions on the user’s outpul X naver become more.siringsnt as-Y increases. As Y
increases, the proposition “the number of AEAD(edde)’s :preseding ik in¥-is < the number of
RTR(addr,-=)s in Y* never. goes-from trus to false; so-the:sat: of-legel srreys X‘don not
decrease. (If the 's'hndh.pnnplmdhv '-',umm:um

mcmwmmwmmwf&mmmfm if
eocmchdtoumorthdruﬂmfw To prove this, the important step is to show that each
READ(sddr) packst ganerstes o RIR. packat contsiningdele defined, by the most recent
WRITE(addr,~-) packet preceding the given me stream.

Let t = the instent vhon tummm comes-in. There mey be ~
Ptndiq WRITE(mr.--) pachets in Aha PWB at.t,. If there ars-nene; the-most recent
m—)mmmmammmm,mdmmmmm
memory unit, 50 its data is in memory word addr. If there are WRITE(addr,—) packets in the
PWB at t,, the most recently inserted packet there. is the mest-necent WRITE(addr,—) packet
in the input stresm. Therefors, letting

the damn the wm&wf-&mm the PWE at time t
D) = if there is such a packet e
| the contents of word addr in the memory unit if not,
we must show that the dats to be eventusily: returned in .a:RTR: packet s D, @) Let t, =
the instant when.the READ(eddr) pachel lesves the PRE: First, we- show that D, (1) does not
change from to to t,, Since the READ(adir) packet hes'sitored the system; it s left the user.
Since the corresponding RTR(addr,--) packet has not yet been generated by the system (and

&0

won't be untit after t.), it hes not been received by the weer. Thorelere, there is & READ/RTR
transaction pending on adgr, 30 the user is nol sending eny WHItE(eddr,~-~) packets.
Therefore, whichever WRITE(sdkir,~) pashet in tis PWE is yourgest wiff stay youngest as
long as it stays in the PWEL 05:0eieng a-thers- we ey WRETEledhir,--) packels in the PWB,
D,,,, does not chengs. As long as there are 1 WRITRLAF =) pachats i the PWB, D, = the
contents of memery, which dosen't change either, becotne anly removel of 3 WRITE(addr,—)
peckst from the PWE cen changs the contents of memary werd sddr. |

There con be: me: tramsitions: from ne WRITE(stdr',—) pachels in the PWB to one
or more pachele, hecauss-the weer is not sonding ang. The remiaiing case 15 consider is the
dissppesrance of the leat WRITE(sddr,~~)> pechet from the PWE' This pechet is clesrly the
youngesl, 50 D, (ust prier e dlssppmarance) = ihe duts in the patket. This data is written
into memory by rule 3 of the implementation. 0, (juet sher dissppearance) = dats written
into memory = dule in the pachel thet m W%‘.;u,)‘éﬁ“«,x

At time t,, when the READ(edir) packet m the PHB, there are no
WRITE(addr,~-) pachele in. the FWB, by rile & of the Inplimsntelion. Thersfore D, (1) =
D uat)) = contents of memory word addr ot t,. But when the READ(addr) packet is taken from
the PRS, the memory werd: i reed;.and W dete goos iifa s RTRL>-) packet in the FRB.
mmummaﬁmuuhmwwmmumm’
to the wser. :

This example demonsivales s generel principle:

Whether or not s given implementation of s system reslizes a
m»mmmmummm& ‘user
realizes some other specific funclion. :

There is no way to get sround this fect. There are systems that correctly
reslize useful functions (sven compietely determinale functions) whe# tonnected to systems
that obey certein ruiss, but beheve in o totelly patholegicil way etheiwise. Furthermore, the

S T e D DR
e R R T . .

a1

system often can't tell whether the user has broken the rules. In the case of system «3 |
above, the system would have been .able to tell whether: s WRITE(sddr,~~) packet came in
while a REAQ/RTR fransaction wes pending: on word: QWM‘W%&R the :ydom has
mwwﬁmwNMMmhM : :

The structure controlier and pachet mewory system for a date flow computer is
such a system. Perhaps the most important example of the structure controller and memory’s
dependence.on the behavior of their user is the:reference count ind garbege collection
problem. The rules thet the. user G.a. the dats flow compuler) must obey In-order to sssure
correct 'rofm accounting are as follows:

(1) No pointer to a structure may be duplicated without giving
- .. commend 10 increase the refesence coumt. -
(2) No comtom thnhmaﬁdmhgm
uniess & pointer is: discarded.

These rules guarantes that the reference count for a node is st least as grest
as the number of pointers to the node conteined snywhers in the computer. (Actusily, the
rules will be such that the.refarence count le.gyestly squel:to:the: manber of ointers to the
node. However, the penaity for too: high 3 refersnce. count:is simply that a useless structure
fails to bonddmdudwnh;wy space.) ' ' '

Now suppose tho con\putor (that is, the :structure controller’s snd memory’s
user) violohs the rule and. aliows the reference count to becoms too smsil. Eventually the
reference count may become zero while a poiater to thanode: stilt: sxisty- somewhere. When
the count goes to zere, the memory system recisims the nede-and:puts it on:the st of free

Two possibilities then arise. If on- immediate attempt is made to use the
“spurious” pointer to the cell, in a SELECT instruction for example, the structure controller will
soend a READ commend to the memory. The memory will know that this is an illegal command,
that is, that the user hes violated its specification. It can then signal an appropriste error

@

cmumm»mhmmmmwmm

K, on the other hand, the call is removed irom the free storage list and used by
the structure controlisr ie huild soeme new-sirusiure iy 100 dime-the spurious pointer is used,
there is no wey the memary can tell thet & vielslion hes ocosved 1t hes no choice but to
procsss the mmummmmmuhmmmm a structure
which is complelely diéterent frem what wes idended.

‘This ia 5ak 40 say thot the-duls flew covpuier has 10 way to check for errors
in the handiing of reference counts. Mulhods of deing ae will be Siacted in saction 5.0.6.

2.1.2 MUTUAL CONSISTENCY OF FUNCTIONAL REALIZATIONS

Suppose a sysiem realizes f,,, contingent on its user reslizing f .., , which the
user does i the originel.system casives- iy . Does I-fellew et e resiizations actuaily
occur when the two sysiems are connecled e ssalvolher?® Js &-potsible that they could both
MMW“MM&M HMWMI“T Esch is
the other's veer.

¥ any vislstian dees acowr, there must be & first instent of violation. That is,
there is an instant {, whanit first becomes trus thet one systom {asy S)hes an output history
which does not legally follow from its input history. Thare is & duley, however slight (even if
it is only the delsy caused by propagstion of eleciric currents through wires) in the behavior
of S. Therelore §'s oulput hislory et t, depends on T% oulpul history sightly betore t, , at a
time when T was not malfunclioning, 50 S connot blames s maltunction oh T. Even if Sand T
‘both malfunction et precisely the sams instent, nelther:S ner T knows #bbut the malfunction of
the other st thet inslent, and 50 neither malfunciion can be-excused. ¥ follows that, it both
systems conditionsity obey their functional specificetions, they will abey their specifications in
practice.

R f i M N

a

2.1.3 MONOTONICITY OF FUNCTIONAL SPECIFICAWWMM '

We now give: an exemple of how nol 40-define the functional specification of o
user. Suppose the system MEM has destructive readout, so thet it requires that the user
rewrite any data thet it reade.. Suppees further thet for some:rousern.the same dats must be
rewritten, and that it must be done immedistely, that is, no other transactions may take place
ot sy addiress between the. read and the rewrits. Hers is anzattempt st a functional
specification for USER, Since USER dosant know whwldste wmm#m the RTR
pnbt,uwiﬂroqdnthmﬂhtohammmoﬂhm

Y

fusen
Y = input to user, X = output from user

For all sddr and i, i the.I™ RTRIsddr) exiele.in'Y andis RFR(sddr date),

then the i™ READ(addr) in X is inwmedistely-followed i X by WRITE(addrdata)
Unfortunately, this doss not require. the user-te wait for the RTR packet after
might send

(READX1) ; READ(2))

~ Until the RTR(1,data) packet comes back, the user has not broken any rules.
When the RTR(1,dsta) doss coms back, the user will have retroactively broken the rules and
be unable to do anything about it. Since we would like to simplify as much as possible the
task of proving that systems obey functional specifications, we need to make the
specifications reflect the types of decisions thet systems meke in practice. It doesn’t make
sense for a system to pertorm some operstion or emit some result packet on the basis of an
input pmtﬁhwin;lrﬂvodmdmtbﬂuabouﬂomm,wfm.udm above, is
unreasonable.

mm(hmwmﬁ mm ﬁom:thh, refer to the

"M

notation mmmmmu pie e

Pwsk Q.M W]

={RBADGL) s REARE)) - WM

mezﬂPtht,dtP)mfmawmmmm~

WA mingit 40 uswr,

For «ll addr end i, the

X = oulput fromuser

tﬂmmx.mumn

{ immaditoly Tolowed in X dy WRIVE (it date)
f Ahwee s on P, ~) in ¥ ool i is RTR{addr dete)
{ demt dn X I Shaes-is me 4P KT ~) in Y

This iis wesily eoon 19 o AiB-monstonic.

Sl i L T TR LR R R

45

2.2 PACKET ACKMWLWNTS AND SAFETY

All of the systems considersd so fer heve had to respond to incoming packets
however fast they were sent by their user, end there was no limit to the rate at which the
user could send them. In the first implementation of MEM, the memory unit has to accept the
commands directly, and hence hes 10 operate st uniimited speed. System 3, implementing
NDMEM, seems a slight improvement in that it only has to put the commands into its buffers
infinitely quickly, until one realizes thet uniess the memory: unit itseif is infinitely fast the
buffers have to be infinitely lerge.

This is clearly unecceptable; no intercennection of speed-independent modules

csn make such assumptions. The problem is one of salsly. No packet may be sent until its
destination is ready to recsive it. The safety problem srises st several levels in data flow
computers. Here we are concerned with it only at its most microscopic level. The solution to
the problem is to acknowiedge each packet transmission. That is, for sach port transmitting
dats, there is another port tranemitting scknowledge packets in the opposite direction. Every
data packet must be acknowledged before the next data packet can be sent on the same port.
We will require il ports of all systems to have such sn acknowledge port.
(Even systems which would be safe without acknowledge ports will have them.
This is because of the manner in which packels are transmitled. A packet transmission is
indicsted by a zero to one transition of s "raquest” signal. An scknowiadge signal from the
receiver is needed to tell the transmitter to resst the request signet.)

The implementation of the system MEM may be modified to acknowledge input
commands only after the transaction on the actual memory unit is completed. This will make it
impossible for the user to send a command while the memory is busy. Of courss, the output
port must also have acknowledges, since the system to which the RTR packets are sent might
be siow and need to be protected agsinst overruns on its input. So the slgorithm for AMEM
(MEM with acknowledges) might be:

(1) If a WRITE packet is received, update the memory (take your time!)

: . end then send en achnowledge ow the inpul achnewiedge port.
(2) It & READ pechat is receiver, fotol dete from 1 wimry vl sond
= TR pachet out.
3 u wmwmmmmmm

Frowmission: of sstinowiotpe pachels iv: Bekavioriily switer 1 treremission of
normal peckets, s cuns be hendied in:the seme: way i he-apssiiontion of & system. Thet is,
wmwmvf m“ wW«ﬂ POI'¥ and the input
schnowledge port L, . '

foa
input poris = X, Y, output ports = ¥, X,

(1) ¥} = number of READS in X

(2) Y, = RTRtoddrbotel wivivw W ™ READ in X
15 READIONIr) anifthe fast WRITELMtEY,<<) betory It, If there is
mvaN&*ﬂM%nm
before the ™ AEAD

(3) Pyl = [Y,] + numbser of WRITEs in X

(4) (X,), = “ex"

BN ISl

) P~ 1 < Pik< P

nnmwmmmmm&mmmmmmm
(8) Of frppy - (It is very similer to MEM) Parts (4), (5), snd (6} conetitute the “Standerd

Acknowiedge Restriction” that we will require all systems and sii users to obey.

a7

Standard Acknowledge Restriction (S.AR) - wesk form

If X is an input port and X, is its acknowledge port, .
(1) X, coneigts only of "ack® |
2) lxhl <

It Y is an output port and Y, Is its acknowiedge pert
(G)MSIY.IN ‘ TN : B

Given that a system and its user both obey the wesk form of the S.AR, we cen
easily show that they obey the following: ‘ :

Standerd Acknowiedge Restriction (SAR) - strong form

If Zis an input or output port ond 2, i its seknowiedga port,
(1) Z, coneists only of “ack”
AR EQARS

Proof: If Z is an input port of the system and an output port of the user, (1) and |Z,| < 1Z}
follow from the SAR. on the system (letting Z = X) and Z} S4ZJ.#:1 feliows from the SAR.
on the user (letting Z = Y). If Z is an output port of the system and an input port of the user,
just exchange “system”™ and "uur" ' :

specification. oL e

In any proof that a system reslizes a function, it suffices to show that it obeys
the weak form of the S.AR. contingent on its user obeying the strong form.

We can now prove that AMEM realizes parts (5) and (6) of f,,.., , that is, the
S.AR in strong form. '

Lot Y « ouipt of AMEM snd input to user, X = input o AMEM smd output of user.

First, numbes of WRITES in X
= number of sehe sent en X, In conesquunce of (17 of AMEM's implementation
= Ply] - rumber of schs sent on X, i conescuence oF (3) of AMENFY implementstion
- Pyl - Ve ’

Now [Y] = number of READS in X (y (29 of ANEPs implesientation)
© » [X| - number of WIRETES In X (by well-behevadness of tser)
=X~ Ko W] (dorived sbove)
SPIsTPMie Nt vom AR for user)
SIS+t

Also [X,| = number of WRITES i X IV} (devived shows)
< number of WRITEs in X + Y] (lrom SAR. for weer)
« rumber of WIRETEs in X' number of NEADS in % Wy (2) of ANEM's inplewentation)

This proves the weeh form of the SAR, from which the streng form fuliows.

2.2.1 CANONICAL PACHEY COMMMICATION

Since the Standerd Acknowiedge Restriction narrewly fimits the way
acknowledgs ports are hendied in the functionst specificetion of # system, it is not uncommon
for the hendiing of The schnewiodigs pevts 10 Do sinltarly Pwiied i the impléwentation of the
system. Wherever possitle, sysiom implementations will recoive snd tranemit peckets in the

following way:

49

Canonicel Packet Reception (RCVPKT)

(1) Wait until a packet has arrived on the input port (it might have siready errived by the
time this step is executed); take its data
(2) Send an acknowledge for it

Canonical Packet Transmission (XMTPKT):

(1) Send the packet
(2) Wait for an acknowledge

These operations will sppesr in. the system implementation langusge as
“functions” that take port names as arguments and appear in-sssignwaent-stitements. The data
conveyed by the := is the contents of the packet. Assignment statements comtsining these
operations are like input/output operations in ordinary computer programs in that they “hang
up” the program until the packet communication has taken place. "Var := RCVPKT(port)” waits
until an incoming packet hes arrived (and then acknowledges same). "XMTPKT(port) :=
expression” waits until the transmitted packet hes besn acknowledged. Programs may use
multiprocessing as long as no RCVPKT or XMTPKT operations can be simultsneously executed
by two processes on the same port.

It is easy to see that any implementation using the RCVPKT and XMTPKT
operations obeys the Standerd Acknowiedge Restriction.

* Systems need not use these canonical operations in order to be correct. For
example, the implementation of AMEM given previously did nol. That is why the proof that it
obeyed the Standard Acknowledge Restriction was so complicated.

Here is an implementstion of CMEM, a system whose behavior is similar (but not
identical) to AMEM:

50

process starts at A
input port X
output port Y
array memory init 0

var command, addr, data

A: command := RCVPKT(X);

if command = READ(--) then
let command = READ(addr);
data := memory{addr);
XMTPKT(Y) := RTR(addr,data)

else
let command = WRITE(eddr,data)
memory(addr) := dats;

goto A

51

- 23 LATENCY

CMEM and AMEM behave diffsrently in a subtls way. Suppose the user
transmits a READ packet and then refuses to acknowledge the RTR packet that resuits. AMEM
refuses to acknowledge the originel READ, and the entire system comes to & hait, since the -
user can't send snother command packst until the previous one was acknowledged. CMEM
acknowlsdges the READ packet snyway (it happens aytomsticeliy.as pert of the RCVPKT
operation). It then refuses to scknowledge sny further command. pachets untit- the: RTR is
scknowledged, because it gets hung up in the statement "XMTPKT(Y) := RTR(addr,data)”.

CMEM behaves as though it has. an input butfer capable-of-storing one peckst. -

4 Thiammshomwlnﬂnm% UmZ.4.5.ond6ﬂ
the specification of f,,., (eection 2.2] spply to CMEM sisa. Lines 1 and 3 arw ditferent:

ren
(1) V] = number of READs in X
(3) Pyl = ¥pl + X| - number of READs.in X
fomen

[rwember of READs in X it | =0 or 1 .
M= o (Xl 22 and [} 2 number of READS in (X - last packet))
hmmttm'ofREA&M()(-I»!nl::,hot)f;pﬂ\pmi« B

(it) =0or 1
@ Rl= or(mzzmlv,,lzm«ofmm(x-umm
| I - 1 otherwise

This illustrates the fact that correct analysis of the latency of a syshm can be
quito complicated and requires careful snalysis of the sigorithm. ' :

52
The ‘only ‘Biftevence ‘Setween ANMEM -awtl OKIEM erises if the user fails to

acknowledge il RTR petiuts, thet i, i Pl » M. X .mal == ¥, ome ‘con -wesily show that, for

Pgb=2|

(To-provethis for DNEN, sHow W“ﬂ‘w P72, thecem 3*mJ < mvatm 'of READs
in (X - tastspacket) contauwur:)

The iatercy ‘of 0 apstem is The by -of Cowmeids thet 1t can sccept and
acknowledge whose vesiiis fevs -not besn echnowledged by the weer; that is, the number of
pﬁquﬂ&ww mmmuwwm behavior,
the concept of-istency:is Not-esey 45 deliwepwuciesly S

Owe ‘systom for which it cen be Uslinad is ‘the FIFD, or first-in-first-out butfer.
A FIFO of length ‘N Gl having detency ‘N) ds a-ayshem with one it port and one output
port, which:reslines #w ddentity MWW¢%MMM‘R$ user

(1) V)= min { X}, f¥0+ 1)
@Y, =K
@) Pl =i e NY

Am«whwzlmumnmm.mutmumm
following :program:

procesevs start st A, B
output port Y

var m
varp init 0 | queuve populstion

A: untilp #Ndo
k := RCVPKT(X)
store k at end of queue;
pr=p+l
goto A

B: until p # 0 doy
m := em taken from front of queuss
XMTPKT(Y) := 1y
p=p-1
goto B

For N = 1 this becomes:

process sterts st A
input port X
oytput port ¥

ver P

A: P := RCVPKT(X)
XMTPKT(Y) := P
goto A

A FIFO of latency zero cannot be implemented by any system using the RCVPKT
and XMTPKT operations, though it can be implemented with'a few pleces of wire.

Appendix | contains a proof that a series connection of FIFO'’s of lengths M and
N yields a FIFO of length MeN.

Whon systems ditfer only in their Istency, it is sometimes possible to make them
squivalent by adding FIFO's 1o various purts. For example, it can be shown that CMEM is
identical to ANMEM with a FIFO of Tongih-one on-As iwput. 11 it could be shbwn that every
system X is squivelomt, swcopt fer intenty, o » syvtem X, dulined & having letency zero, then
the lstency of the sysiem X csull be cheracteriued by the ungthe ol the FIROS that would
heve to be added 1o e various ports o X, to meke & ieniicsl 10 K & system of latency zero
would have 1o e one which never scknowledges any it paciat Ui ¥ resulting output
packats have been sent sl schnowisdged. AMEM s such & systom, 30 GHEM codld be said to
have lstoncy 1 on its #ts input pert end 2ero on its euipat port. It is not cledr whether such
an anslysis con be applied 10 semisierminele systoms of vigmiicant complexity.

2.3.1 ARBITRATORS, DISTRIBUTORS, AND ALLOCKYORS

Three basic systoms ere very important in e design of the structure
cortrolier and momory, as well as 9ther places in dets Aow tompulers.

The eriitrgier s o nondueterminate systom with N inguls and one Butpat, which

transmits sach incoming peshet #5 T outpul. The srder of The pasiuts from sach input must

be preserved in e culput siroum. The order in the Sulput Sireem of PEbNUN Srom’ Bitferent

ports is arbitrary, hmmmamwnmmmt

errived first. Mmmmmmhmmmamm
by a superscript insiosd of » subecript:

busic (zore letency) arbitrster f,,,

1 X', %%, ... X" are inpuls ond ¥ is outpet,
o X3, .. x"nn,,.«x’ x"v‘w
mm-mc}:pﬂ I
LR B
. (2 Vi € (1] G| = number of packets from X' in Tirst {Y,] packets of Y
| mmm«m-mququ 4Ny
is s subsoguance of Y.

55
Each incoming packet is tagged with its port number so that its source can be

identified in the output. This identification feature is used in a faw, but not #ll, spplications of
the arbitrator.

Arbitrators are the m}or eommd 91 the nhltmm Mmh of the data
flow computer. The princlpd use of the nrbitutpr in np Mructurn memory is to allow the
address space to be deod lnto small pieces, with a separate memory module handling
transactions on each piece. The LOAD ppckch unl hack from the several modules are
merged in an arbitrator, so that the entire interconnection of modules behaves as if it were

one memory system.

Arbitrators of nonzero latency may be defined as zero latency srbitrators with
various FIFO butfers on the ports. Such srbitralors are ussful in yarious places throughout
the data flow computer, but there is one plael where the orbotmor mud have latency zero.
This is in the transmission of packets from the structure controfler Mh- hemory. When the
structure controller receives an acknowledge for o plcm it.has sent o the. memory, it must
know thet that packet is shead of any other pachh M might subsequently be sent to other
input ports of the arbitrstor on thet memory unit, This problem. will be explained in section
5.0.4.

An arbitrator of zero latency may be reslized by the following program:

process starts at A
input ports X, ... X,
eputportY
var p, input

A: wait until a poclwt is available on any input port.
lot p := thet port;
| this is nondeterminste!
input = the packet on port pr | do nat scknowledge yat
XMTPKT(Y) 1= <p , input>y "

sond scknowiodge on port o
goto A |

A distributor is o determinete system with one input and N outputs, which
transmits incoming packets fo the cutput port selected by @ deta fleld in the packel. Incoming
pachets ore Seeumsd 1o Dy of the form <port, dete. mmmmmw field
in the finel result. mmmma-mm

1 X is input ond Y', Y2, ... Y¥ are outputs,

O ¥ Y X) € oy, Y YR .. YR M

(4] vunm w-"méfmdl,-ahx
@ b= 31 |

isi
) VIV Y= dota wheis [* packet 4> in X is 4, date>

process sterts of A
input pert X
oulpports ¥, ... Y,
A: weit until & packet is avaliable on port Xi
z = the packet on port X; | do not acknowledge yet
Mz-w date>;
’..):-Mq
WMMMX‘; |
goto A

mmmmmmummmgbmmtrMm.m
FIFO butfers. S

Distributors are the principal component of the distribution network of the data
fiow computer. ' '

An allocator is a nondeterminate. vmahon of 8 dl(lﬁhuhf which transmits
incoming packsts to one of several output ports. Eaeh packet k sent to, any output port that
is ready to receive it, that is, any port that has acknowledged all previous packets sent to it.
An sllocator is normally used to und pnchm to 8 group | of identicyl .units, always selecting
any unit which is not busy. Tho structuro controllqr of . dah flow compuhr will typically be

_roaliud in the form of seversl identical units in ordor to mcrgm tproqghput Operatidn
packets from the instruction celis will' be sent erough sliacators to the structure control units.
(In fact, the other functional units of a data flow eowutnr will bq M the same way.) An
N-output sllocator realizes the following function:

‘basic (minimal lstency) sllocator fm

I Xis inpul and Y, v’ Y are outputs,
oYXy um(x, Yo Y. Y

N
M M=K

fel}
N
(2) Pyl =min {IX|,N-1+ > i¥kI}
kel
3) Y%, ¥3,... YN are disjoint subsequences of X

It may be implemented by the following program:

processes start at A, B

input port X
output ports Y' ... YN

 queus qsize Ninit (1,2,... N)
ver pop init N

A: wait until a packet is available on port X;

2 = the packet en port % | do mat acknowledgs yet
K 1= Hom ot hoed of 5

pop = pop - 1;

sond pactat 2 on port ¥*; { sowt walt for acknewiedge
until pop # 0 gy

sond scivowiodgs on port X g

aote A;

B wait unti achnowiedge is avellsbie on sy part Y},
jot p = thet pord;
| nondsterminetel
toke the acknowiedge from port Y3,
ptpstenioly
pop = pop + |3
goto B

mwmwmmmmmmmmmam
mewmmmumm-mh an
srrangsment would defest the siiecsler’s purpsse. mmmmmmm
minimum lsiency thet mekes sense.

3.0 THE BASIC MEMORY MODULE

In this section a farmal specification of the memory. madule “MM™ will be given.
MM is the fundementsl building block of the packet memory system. Each MM system-is a
‘memory, somewhat like the system NOMEM described earlier, which.handies. » spesific set. of
addresses. To incresase total mformtlon tnmfor rate, the address space of the entire packet
memory system may. be divided nto_smaller pieces, with gne. munu haadling each piece.
The MM units ars connected through srbitrators and. digiributons lnd form.a system which Is
itself an MM. This is ma’mﬂmmhmw 19 the interieaviag found in
conventionsl memory systeme. To increase: the speed on individuel irsnesstions an MM unit
may have a cache module "CM".conneciad to it. MM with CM conpected 1o it ls-itself an MM. -
This is “vertical® composition, snd s quite similer to the cache memories found in high
performance conventional computers. '

MM has one input, port CMDI ("comwsand in") teking commend paskets from its
M,MWMMMWMM"N‘WM'MSN(M user. The memory
space is divided into words or_calls (e farme wili be. used. interchangably), sach of which
corresponds to one node of a structure. Every memery lranssction refers to one word, and
every incoming or outgoing packet bears the sddress of that word in its address field. The
memory space is the same size as the address. space, and: the sige is known to the user, so
there can be no “nonexistent memory word™ error. In most implementations, the memory size
would be 2" where the addrags. fisid of every packet.is. N bits.

Notation: FET‘*) meens any of FET, FET™, or FET*. LOAD'® gimilerly.

Each word in the memory contsins a data field and a refersnce count field,
which sre used by the structure conjrolier se described.in.section 1.2. LOAD'® end UPD
packets have corresponding fields. Furthermors, FET‘®) packets have a teg fisid, which is
returned unchanged in the corresponding LOAD'®) packet.

3.0.1 LATENCY AND INITIAL MEMORY CONTENTS

The specification of MM to be given below does not say anything about latency.
This is becsuse MIWF's user is required to scknowledge svery result packet. When this
happens, MM will scknowledgs every commend packst, regerdisss of whet its actusl latency is.
Hence, n socurste description of Mifs fatency s unnecossary. ‘

Initisl memory contents witl slse be lstt unspecified. In the functional
specification of » memory, the definition of initisl contents srises in the specification of the
systom’s respenee 10 & READ command thet was net preceded by s WRITE. The spacification
of MM will sosump thist this dees not eccur. In an sctusl dété flow computer, o free storsge
list witl be genersted when the system starts, which requires writing on every cell.

3.0.2 INFORMAL BEHAVIOR OF MM

There ers § types of inpit perkats to MM, and & types of output packets:

LOAD(eddr, dets, rof, tag) ‘
["ref® is the refsrence court]
FET*(addr, teg) increases the referonce count by one end returns
' LOAD*(adde, dets, ref, teg)

* ["ref" is the reference count sfter the increment]

FET (addr, teg) decresses the reference count by one end returns
LOAD "(addr, dsta, ref, tag) '
CLR(addr) ("clear™) waits until st FET/LOAD, FET*/LOAD?, and

FET"/LOAD™ transactions on the indicated word have

61

completed, and then returns DONE(addr)

UPD(addr, data, ref) ("updats”) writes the data-and reference count
into the addressed word. It returns no result,
and hence uses no tag.

MM is nondeterminate as was the example memory NDMEM, in that result
packets referring to different celis are not consirained to. appear.in the same order as the
commands that gave rise to them. MM is further nondelerminate in that it may rearrange
LOAD'®! packets referring to the seme cell. Such nondeterminecy would .not heve made sense.
for NDMEM, since RTR packets with the same data end same address were indistinguishable,
but, in the case of MM, LOAD'® packets may have different tags.

Since LOAD'® packets involve a change of reference count and may be
reordered arbitrarily, the question arises: What hagpens. ta the reference counts sppearing in -
such pachets if they are reordered? The answer is that the result packets have reference
counts consistent with their own order, not the order of the original command packets.
Example: Suppose the reference count of cell A is 1, and the command sequence

FET*(A, T1) ; FETY(A, T2) ; FET™(A, T3) ; FET (A, T4)

is sent. Some of the possible resuits are

LOAD*(A, D, 2, T1); LOAD*(A, D, 3, T2) ; LOAD(A, D, 2, T3); LOAD™(A, D, 1, T4)
. or :
LOAD™(A, D, 0, T3) ; LOAD™(A, D, -1, T4) ; LOAD*(A, D, 0, T1) ; LOAD*(A, D, 1, T2)

The refersnce count temporarily becomes negative!

The reference count sppearing in any LOAD* packet is one more than the count
in the preceding LOAD'®) packet. Similarly, the count in a LOAD™ is one less than, and the

count in & LOAD is squat to, the. count in the: preceding LOAD'Y). Some implementations of MM
will never reorder LOAD'®? pechsts referring t6: e sty stiliwss, stthough they may reorder
those for different sddvessus. I this is the: cae; lhw suference count will never become
negative, which removes: e nuwd for & sigr it W 1 referencs count fleld.

When the user gives & CLR commund, it must not send any further commands of
any type for Ihe indiostud col, Ut the: correpomiing DONE pucket hés returned. (The
memm»ummmm wmmmwm
tomﬂmWM)

Like: NDMEM, MK roguires: thut no UMD commend be given while any
transactions are pending on: the indicated cell.

3.0.4 FORMAL DEFINITION-OF M AND NUSER

Tiwee: dufintions. do: not show Tatency o waw any reference 1o acknowledges.
The user is required 1o schnowiedgs svery result pecket snd Mk is consequently required to
scknowiedge every comeend: Both systems of coursy: sbey the: Standerd Acknowledge
Restriction. The defwitions do ot coneider the possitifity of illeget packet types or invalid
fieids in packets. Al uiverssl quanfifiers ars intendud 1o rngs dver & set that is in each
case obvious from context,

Note: in rules 2, 3, and 4 the zeroth DONE in Y meens the beginning of Y. The
N+1%' DONE in Y, where N « the: number of DONEs in ¥; means the end of Y. Similarly for CLRs
in X. The intention is to let the DONE snd CLR puckets bresk up X end Y into intervals, which
makes it convemsent tu- think.of the entire Tietories as being precedisd snd foflowed by DONE
or CLR pachkets.

63
tom
If X is input oninsoutM,chw(X)if

(l)ror-uw.tmmum)mumv-mmumm)
packets in X

(2) For all addr, K, and tag, the number of LOAD{sddr,--,~-tag) packets between the K'*
and K+1™ DONEladdr) in Y = mmammmmmmx“
and K+1*! CLR(addr) in X

(3) For all addr, K, and teg, the number of LOAD (addr,-—~-}ag) packets.between the
K™ and K+1*™ DONE(addr) in Y = the number of FET (addr,tag) packets between the
K™ and K+1® CLR(eddr) in X

(4) For all addr, K, and tag, the number of LOAD*(sddr,~~~~tag) pachels between the
K™ and K+1*™ DONE{(addr) in Y = the number of FET*(addr,tag) packets between the
K™ and K+1* CLR(eddr) in X

(5) For sll addr, J, and K, the J'* LOAD'*)(addr,-~,~=,==) in Y is
LOAD*X(addr,date,ref+D,--), where the last UPD(addr,~~;--) before the J*
FET(*)(addr,~-) in X is UPD(eddr,datasref) and is precednd by I FET'*)(addr,--)
packets, snd D = {number of LOAD*(addr,~-,~-,—) packets} - {number of LOAD"
(addr,~-,--,~) packats) among the 1+1* to J® LOAD'®)(addr,~,~~,~) packets in V.

tuanner
1 te lnput 40 uamr aee X dn:awApl, X € {yppupu®

(1) For all addr, elther the number of CLiliiatidr) pachets in X = the aumber of
DONEGadelr) gnshate in Y, or sies thens is Se-sne ChRl) in X thin DONE(sddr)
in Y, ond Ahene are a9 FETNgddr) or 4MDGadiir,) packels sfter the last
ClR(addr) in X,

(2) For sl addr, for any UP(adde,~~,~-) in X, the nusher of FET*addr--) packets
proceding it is < the number of LOAD M adir,we, o<} pachats in Y.

3.0.5 INPLEWENTATIONOF M- LISING A RANDDM ACTESS SINIOE

Implomentation of Nl with o rendom access devios is quile eacy. Assume the
procsas sipris ot A
input port MBI
var command, sddr, sate, vef, tag

A command = REVRICTIOMDIS

if command = FET(--,~-) then |-FET - roturn LOAD
igt command = FET(eddr, tag) |
XMTPKT(RESO) 1= LOAD adidr, mom-delaleddr), mem-~ref{adir), tag)

olse if command = FET (~-,--) then | FET™ -.decrement ref and return LOAD™
t commend = FET (addr, teg)

mem-ref(addr) ;= mem-ref(eddr) - 1;
XMTPKT(RESO) := LOAD (addr, mem-data(addr), mem-ref(addr), tag)

else if commend = FET*(----) then | FET* - increment ref and return LOAD*
let command = FET‘*)(eddr, tegh v
mem-ref{addr) := mem-ref(addr) + 1;
XMTPKT(RESO) = LOAD*(addr, mem-data(addr), mem-ref(addr), tag)

eise it command = UPD(-~,--,--) then | UPD - update memory
command = UPD(addr, data, ref);
mem-data(addr) := dats;
mem-raf(addr) := ref

& | CLR - return DONE
let command = CLR(addr)
XMTPKT(RESQ) := DONE(addr)

Koo A

86

3.1 HORIZONTAL INTERODNNECTIONG OF “MM" SYSTEMS
The functionsl spacificetions of M and is user have the usefid properties that:

(1) Ty ond fopnrn o0 inverisnt under reordering of commend packets
roterring o ditforent words. That is, suzh » reordering will not sffect the

(Z)fwuimmMMMMdmmm:
refsrring io ditferant words. ’

(3) typy 08 fipygey 270 irvariant under resrdaring of LOAD'® packsts for the
mmmwwammmummm
MmMmmm

(4) the behaviorsl properties of MM and ils user sre completely independent
for different words.

Property (4) mekes it possible to comnect MM systems and their users through
distributors and arbitraiers, end still have an MM system. The following connections are
possible: '

67

Muitiple memory connection

i

VU P |

e - o - e e — e Em e m e m—m- . m————— ol

- - —n - > - - ————

If each of tho small boxes reslizes fw (contln;ont on its user realizing
fm),thlu;odalpdboxndimfmforolnwaddrmm lfthouurof the
lmoduhﬂdboxruﬁm fm,onhmnﬂbox'amrodimfm

"For this to vork the d&strlbutw md .rmmor mt hmn. sddress fields ‘
longer than thet of the units. The distributor picks out N bits of all incoming address ﬂ.us‘"
ond uses them as the output port numbers. (For interleaving purposes, it might be most
effective to pick out the lesst significent bits.) Thoss bits do not appeasr in the address fields
of the packets that are sent to the MM units. The arbitrator inserts the input port number of
each incoming packet into the address fisld in the same positions as the bits that were
removed by the distributor.

This connection is one of the methods by which the transaction rate can be
incressed. Random access memory devices have the property that every read or write
transaction ceuses the device to become busy for some period of time, during which it cannot
handie any other transactions. For example, 8 MOS RAM might be busy for 500 nanoseconds
during every transaction, and therefore be able to handie 2 million transactions per second.
Putting a FIFO buffer on it will increass its lstency (ss the term was defined previously), but
its transaction rate stays the same. The only way to incresse the dita rate is to use many
memory units. If a distributor can handie 64 million packets per second on its input port, and
an arbitrator can handie 64 miilion packets per second on its output port, it might be
reasonsble to use 32 MOS RAM's, each in a separate MM unit. These sre connected to a 32

port distributor end s 32 pert erbitretor. The sverage rate st which packets come out of
sach port of the distribator is 2 sillien per secensl, whish is S rale ot which individual units
can hendle them. mmm;-mmmmm.sm.
tmmu“uanm The reirioval delay for
each item will stifl Se S5O nenossconds, but That is an wneveiduble consequence of the

mmmummhwuu-mdvmw
w&;«mmmuhmmnhdumwmmm. 1f
mwmmmmumMmmmmum:o
m.mummtymmmwhmmm
compietely processsd by Hhe Wik wmt. mmmumdmmmw;
xnwmmmmhMmmmhmhmaumw
rete nesr the masimum in the presence of senunlisom siulighodl Seammncy of commends for
each unit, uﬁ-mmmwmaummmmwm

Multiple user connection

This is just like the multiple memory connection, but with the roles of MM snd the user
exchanged. If the solid box realizes fun » 92ch of the interfaces at the tbp of the diagram
realizes f o, for a smaller address space. If sach of the users of this interconnection realizes
fraausen » then the coliaction of il of them slong with the arbitretor and.distributor realizes
fraanen O the large address space.

As in the previous case, the arbitrator must map the input port number into a
lerger address field, and and distributor must remove. the. corresponding part of the address
field and uee it as the output port number. Each of the interfaces st the top of the diagram
rodhsmqiv*m-ﬁmmm.uhmummbatoﬂh memory space
contained in the actusl MM unit.

This connection would be used if there were several users, each presenting
commands at such a siow rate thet one memory module could hendie all of them. Such a
situstion could srise if several cache modules are used which have a sufficiently high "hit®
rates thet the rate of memory requests arising from cache misses is low.

0

3.2 VERTICAL COMPOSITION AND THE CACHE MODULE

In the section we describe the cache module “CM™ which connects to an MM
system and, s0 connected, resiizes an MM system wilh the aems athiress space.

N e B Y R R

.k k- > - i e e koo o

o

11 the emall bex tebotied MM rodises £, , the Terge deshed box reaslizes f,, .
If the user of the large dashed bex reskons f ouuy o the USEr OF The smul box reslizes
fvmamen - |

Verticel and horizontel intorcomections may S8 sixad as in the following
oxamplos, since ™ oach 0see S wyviem bolng Inplomeniod is WL |

71

~ The purpose of a cache is to retain the data of a small subset of the main
memory's address spacs, and return roquuh for data in that subui directly without reading
it from main memory. Stmth-cmhnmhbudmthmthmdnmmy.itcmbo
built out of faster circuits end devices without being prdibitinly expensive. Hence any
roqustforaddmlhnthhtlnucho(a coant')kMondvoryqdckly If the cache
is sufficiently well designed that ithalhi(hhﬂ rlto the overslt poriormomof the momory
will be nearly as good as that of the cache itself.

A cache must be designed to maximize the hit rate by hoiding those memory
itoms that are likely to be addressed. This is usually done by sssuming that the addresses
being used vary siowly with time, and so, when an item is referred to once, it is likely to be
referred to agein ‘soon, and should be piaced in the cache. Therefore, when an item is
addressed which is not in the cache (a "cache miss”), the datum is fetched from main memory,
placed in the cache, and aiso returned to the user. Subsequent requests for that dstum will
be cache hits.

The size of the “items” that the cache contains affect its performance. A cache
for the main memory of a conventional computer may ‘se rather large items consisting of, for
example, 8 corsecutive words. This is sffective becsuse refersnces to memory, especially
instruction fetches, tend to' be localized In space. ‘When & cache miss occurs on sny word,
block of 8 consscutive words Is read from main memory and fosded into the cache. Since
references in the immediste future are likely to be in this Slock, the hit rate is increased.

72

The structure memory for a dats flow computer has no such locality of
reference. Theretfors, the unit of cache organizetion will be Yhe individus! word.

Placing an ttem in the cache usually requires removing some other item. The

most populer strategy, and the one that will be used here, s the “Neest recently used” (LRU) -

strategy. Esch reference t0 8 coche item is noted in some wort of reference table. When
space must be made in the cache for & new detum, the ttem that s been used lsast recently,
that F...de:-?-%»?ig a raferince, is choeen.

. When a write a.aanr.izl.gizi ache is updated
appropriately. ?ioﬂ?ﬁ«%?f!iit%& updated also.
;w.oo%g’ifg (a_«!u_-i; Instoad, the item in the
3...0&: 3!«&.3%37!\:;% zswgz‘.:’gi&&
g.giigztg«‘ai%sgg This method has a
g%&iuﬂig?g#;;??{% through®
method.

1t is crucial that the it?&t?gsgzxiif r or not it
contains » ni!.iﬁa. .ﬁ:ﬁ?:ﬂsﬂwgw;;gs‘g&&: space, it
must .3.3:&%&?-8:?? a!it%zt cache. must be

32«:&,9533135-?&3? ati‘ic"lo:v.ooiﬁ~a _

quickly.

A popular method of orgenizing the cache for rapid searching is the “set

associative” memory {12] . q?oi‘tin%cl!gigaiet The full
address space Is %.«%i:zti%igi presumably
much grester number of rows. . Each item in the cache is conirsined to correspond to the
same 2:3:33!3.%%8?3:%3«3;. Theretfore, to searc h
for a given mggg-&qoawsagal;tiiio row and column.
If it is in the cache, it must be in the same column es its column address in the real memory,
$0 only thet column of the cache need te be searched. Furthermers, snly row addresses need

n

to be stored in the ceche slong with the items. The column addresses are implicit from the
position in the cache. : -

This organizetion works well for a suprisingly small number of rows in the
cache. For example, the mesin memery cache on the 1BM 370/168 computer has only four
rows. (The number of rows is relerred {0 as "cache depth”.) To determine whether a given
item is in the cache, only mmmmmwum These can essily be
done simuitsnecusly,

The column number of a word in the full address space is typically taken from
the low bits of its address. The rew number comes from the:lemsining bits. This allows
consecutively addressed items to reside in the cache in-adjecent columne of ong row.

Example: Suppose the full address: space:contains 4096 addresses, and
mmummaw«. Ttmoansmmﬂhobwdhﬂofthooddrns
is the column number.. The cache depth is three. '

column number

row sddrass 551 560 543 504 444 425 A5 425
dsta A B C D E F G H

row address 412 417 447 313 314 315 270 241
data | J K L M N O P

row address 242 242 242 242 246 271 365 413
data Q R S T U v W X

The cache holds the item with address 4472, with data “K". When a command is
received requesting the contents of location 4472, the address is divided into the row (447)

7%

and the column: (2). Coelumny: 2 of the: cache: is. then:seerched.: for- 447, It conteins 543, 447,
and 242, 447 is.comparasliwitly: these-threw: nusiiuve: simultiveuily: I metthies the second of
them, so the: dete: sssacisted!with it: (K)-is: refurmed:te: the: user.

When: & new: iles: is: to: b put: Inlo: tha: chthes. it ovlumms: numbier is known in
used item. For sxemple;.if: on ontry:for: 2104: vt nieruulind; coliswr: & is-searched. If the
least recently used: itom:is: 314y it: is:romoved:. Hiite: "wenlipPbit: i owy. an:UPD packet is sent
to main memory,. contuining: the: address: (31448): snd: the: deta: (M) The- row adéress is then
chenged to 212.

The: deteremination: of- whicly: ilem in: s« column: was. lewst! recetitly used can be
Whenever any Mmi&m&; thet item’s: counter is.set'to-20va: and sll others in its column

Because sach operstion in the cache: ivolines:euaminalien of: an: entire: column,
the cache memory: itssi: should: be: organized: 5o that sssh: culumm: is: 8- “word®, thet is, the
ontire: columnie: resd:or written ot oncs:.

3.2.1 DESIGN.OF CW:

The: fumtionel: specification: of Clitiis: vary: shpler it: must: reulize fun: through
its “top” m:wmtmwm “Buttom™ ports.

75

fou

If (CMDI1, MEMI) = input ports, and (RESO, MEMO) = output ports,
(RESO, MEMO) & oy (CMDI, MEMD)

(1) RESO € f,,{CMDI)
(2) MEMO € fyp cenlMEMI)

An implementation of a system realizing fey will now be given. Each word of
the full address space is in one of eight states dencted N, P, P, Q, Q" R, R, and T.

N - The word is not in the cache at all. (Since the ceche is much smaller than
the full address space, most words are in this state st any instant.) There
sre no pending commands from the user to the system. There are no
pending commands from the cache to the mein. memory. ‘

P - Space has been reserved in the cache for the word, and st least one FET®)
has been sent to main memory, but no LOAD'®) has come back. One or more
FET(®)1.0AD'®) transactions are pending to the cache. Exactly the ssme
transactions are pending to the main memory.

P - Same as P, but a CLR packet hss besn received from the user. One or

more FET'®)/L0AD'® transactions, plus & CLR, are pending to the ceche.
The same transactions without the CLR are pending to the main memory.

Q - The first LOAD™” has come back from main memory. A CLR packet wHi be
sent as soon as main memory is able to accept it. Zero or more
FET®/L0AD'® transactions are pending to the cache. Exactly the same
transactions e pending to tha main memory.

76

Q - Same as Q; Dut » CLR pechet hes busn recsived from the user. Zero or
more FET'PA000'Y ramactions, plus & CLR, sre pending 1o the cache.
ﬂﬂiwgizﬂglﬁi‘:;g

R - The word is fﬂ?l.sa%;i&s!

No CLR us.!x..g%:osfg g more
FET!® Loapte) trangsactions sre ‘3&:;331;? same

transastions,. plus. & gg}trii

R - Sems su R, bt & CLIF paciel N oaw reioiond fPow the user. Zsv0 or
33%%&:;};&,%;1?;.

T = The werd is truly in the cache. ;l_ﬁ_ﬂiﬂ;??
cathe o from ihe canlve Yo this el eMeVy.: R

word to undergs Iransitions: thet overtuslly Fesult In: e luing W stils T, I¥ the commend is
FET'®, the word must be resd from mein memery, !sat;%lg:iz.i
intermudiste stules. ;fiiﬂﬂ?ititgmi? in state
zsiglfi!is:!fqttili;g 3%. N, If the
"modify” fiag. fov 1Hat wavdier o, v LIPS pachist I sowt 1/ Mslé muveds’y. ,

 The spusificutions of MW and its oesr requie INWt the user sccept all result
pachets from-Wit M is orfly reuired io detept sonwandy whew the resulls of previous
commends heve basw: stvapled By the user (SWNaUgh oW oot INglementation of M might

sliow meny commends io: e in: prograss ot o) Terefeve, i Skillv 16 avoid & deadiack, CM .

must sccept pechets from: mein memery, st MEMS, over: witen mein memory refuses to accept
ony further commends threugh MEMO. CM sometimes must wait for memory to accept a

77

.command. While it is waiting, it mey refuse to accept furthnreomnds at CMOI, but it must
always be willing to sccept packets st MEMI. CM msy sssume that any packet sent through
RESO will be accepted. ' |

Tha reason why CM allocates a cache cell for on item and putk it into state P ss
soon as the first FET® command comes from the user, is to avoid o dndlock. thet is, o
situation from which th. system cennot procud. If it simply sent the pockct out through
MEMO and did not eliocate the cache cell until the first LOAD' packat.comp beck, it would
use its own space more sificiently, but would be in denger of deadiock. (P cells are useless,
since they do not contein dsta) This wil be expisined in saction 60.

In the following ducripﬂon of tho cache *oﬁlhm. the manipuiation of the
counters to determine the ieast recently used Itom is not shown.

STATEN

FET‘*’(oddr, tag) at CMDI - Creats space in the appropriste cache column.
Either use an emply space (this situation can only srise when the system is
first started) or remove the least recently used item in state T. If no item
is in state T, ‘wau',t;gvt)ilr one onters stale T, not accapling. any packets on
CMOI while waiting. (Items in other states will progress to state T.) When
the item 1o be. removed i§ found, write it out if its “modify” fiag s on, by
sending an UPD packet. ot .WW' If main memory is not .accepting packets
at MEMO, wait until it dou. Then creste a new .item in the ceche with the
given address, "modify” = 0, stale = P. Leave the data and reference count’
fieids unspecified. Also, send a FET'®) packet, identicel to the incoming one,
out through MEMO, to fetch the data. |

CLR(addr) at CMOI - send DONE(addr) at RESQ.

UPD(sddr, data, ref) st CMOI - Create space in the ceche as far FET'X), perhaps
sending an UPD packet to memory. Then creste a new item in the cache

78

with: the given: sddress, “modify” = l,.MpdeomM from the
: ol ihite = T, ; e

LOAD'® or DONE st MEME - can't occur because no transactions sre pending in
mein momery.

STATE P
FET<*\uddr, tag) ot CMDL - Send the same pachet at MEMO.
CLR(addr) st CMOI - Changs to state P,

UPDtwdeir, duts, ref) ot OMEX - mmmmmmn; in
the cache.

LOAD *Xaddr, dets, ref, teg) ot MEML - Dapesit the dale s reference count
inte the eache word, and send the same pecket eut ot RESQ. 1f the main
mummm.mmmwemnm
mmmt mm.mtomua h

mum«mmmmmmmwhmm
STATE P

FET(®), mwmum-mwwm.etmmhuamzm
trmacﬁonm

LOAD'*Xaddr, date, ref, tag) at MEMI - Daposit the dats and reference count
into the cache word, and send the same packet out st RESO. If the main
memory is accepting commands, send o CLIiidd]-8t WENIO and change this
cache item to state R". If not, change to state Q.

79
DONE ot MEMI - can'’t happen, since no CLR has been given to main memory.
STATEQ
Note: CM does not accept any command at CMDI whenever any item is in state
Q. Q is simply a temporary state that is waiting to send a CLR(addr) out through

MEMO and go into state R,

FET(®), UPD, or CLR at CMDI - can’t happen, since cache is not accepting

commands.
LOAD'®) ot MEMI - same as state R.
DONE at MEMI - can't happen, since CLR has not been sent to main memory.

Main memory becomes able to accept a command - Send CLR(addr) through
MEMO, change to state R

STATE Q°
Note: CM does not accept any command at CMDI whenever any item is in state
Q. Q' is simply a temporary state that is waiting to send a CLR(addr) out

through MEMO and go into state R".

FET (*’, UPD, or CLR at CMDI - can't happen, since cache is not accepting
commands.

LOAD™®? at MEMI - same as state R.
m at MEMI - cen’t happen, since CLR has not been sent to main memory.

Main memory becomes able to accept a command - Send CLR(addr) through

MEMD, chongs to stute .
STATE R

FET{%Xaddr, teg) st CMOI - Update the reference count in the ceche, and set
the “modify” mwmmmm’um‘ mwm‘”«m dats,
m,tmmmma;mmmwmmam
the cache. Note: ct the instent this happens, there may still be
rzr‘*’n.omwtrmmmmmm it se, thoss FET®
packets were eerfier then this one, but the corresponding LOAD™ packets
won't be returned until later. This is the circumetence which causes the
genersl system MM to occasionsity return LOAD'S? packets in an order
Offorant from thet of the FET'® pechets,.

UPD(addr, data, ref) st CMOI - Updste the cache, set the “medify” bit. Note: if
mwmmrmmmtmn.nmmmfmm
mwnm'“mm“'m“mmmm

CLR(addr) st CMDI - Changs to state R,

LOAD *Xeddr, dets, ref, teg) st MEME - Ignore the vef* field in the packet.
zmwmmmmmmmutmmmn
LOAD™ or LOAD®. Do not set the “modity® mmmmym
knows sbout the reference count changs. Send LOADSXagdr, dats, newref,
teg) through RESO, where newrs! = the updeted reference count in the
cache.

DONE(addr) st MEMI - Chenge to state T.

81

STATER

FET{®) UPD, or CLR st CMDI - can't happen, since user has s CLR/DONE
transaction pending.

LOAD'®? at MEMI - same as state R
DONE(eddr) at MEMI - send DONE(addr) through RESO, change to state T.
STATET

FET‘*’(lddr. h.) at CMD] - Update the reference count in the cache, and set
the “modify” bit if the packet was FET™ or FET*. Send LOAD'*)addr, data,
newref, teg) through RESO, where data and newref are current contents of
cache.

UPD(adidr, dats, ref) st CMOI - Update the cache, set the "modify" bit.
CLR(addr) at CMDI - Send DONE(addr) through RESO.

LOAD‘®) or DONE at MEMI - can't happen, since thers are no pending
transactions in main memory.

3.2.2 PROOF OF CORRECTNESS OF CM

A proof of CM’s correctness is generally similar to that of the system MEM
given in section 2.0.3. The memory state required in the specification is the contents of the:
last UPD packet in the input history. One must show that, for a cell in stetes Q, Q" R, R, or T,
the data in the cache itself is the same as that in the fast UPD packet st CMDI, and, if the
modify bit is off, this data is in main memory also. For states N, P, and P, the correct data is
in main memory, that is, the last UPD at CMD! has the same data as the last UPD at MEMO.
These properties must be shown to be preserved for all state transitions, and it must be

82

shown that all legal FET® commands will get the correct data. Furthermore, the effect of
reference count modifications resulting from FET* and FET™ commends must be taken into

account.

83
4.0 IMPLEMENTATION OF MM USING A "ROTATING" DEVICE

“"Rotating™ memories such as charge coupled device (CCD) or "megnetic bubble”
shift registers, or magnetic disks, are rightly considered to be. sssentislly unussbie for the

main memory of a computer because of their excessive retrisval. delay. In e.dats flow

computer, totel trensaction rate is ss important a criterion s relrieval: delsy, and so the
disadvantages of these devices largely disappears, making.them perhaps economicel as a mass
stors. On the other hand, further improvements in RAM. ischnology: mey render these shift
registers obsolete for most epplications. This section. is- predicated on the assumption thst
CCD's or bubble memories will be economical and useful.in the packst memory system.

In » rotating memory, the data is structured.in a ring which “rotates” pest a

“resd/write head". Equivalently, one may think of it as a fixed ring and a pointer rotating

sround the ring, with memory transactions permitted only on the cell currently pointed to. If

the addresses of words correspand o fixed places on the ring, it is possible to predict when

any given cell will be pointed to. Commands from the user cen be stored in s memory

somewhat like a queus, sorted by position, so that the pending transaction at the head of the

‘queue is always (or nearly siways) the one that the pointer will reach next. This will make

optimal use of the availsbilily of data from.the CCD.

There are a number of CCD architectures currently in use. In the “line
addressed random access memory” (LARAM), only s small part of the device shifts et full
speed st any one time. The rest shifts and recirculates ot o much lower speed in order to
conserve power. The intent is to make the device bshave somewhat like o rendom sccess
memory. To retrieve any one item, one finds the section in which that item is stored, and
directs the CCD to shift that section at high speed until the desired:item is found. While this
is happening, the other sections are shifting much more slowly, so this- architecture is not
efficient when many items sre being sought st one time. It is Wwrelore not suitsble for the
type of packet memory system being considered here, |

Two other types of CCD's are the "serpentine”, which is simply a long shift
register (it "snakes” back and forth on the IC chip), and the “serial-parsliel-serial”, which is

84

simply a collection of interleaved shift registers. These two types differ only in engineering
specificstions such as dets rete snd pewer comsempiion. They Both beheve like long shift
registers, and hence are suilable for the type of memery under discussion.

Thevs are & rumber of impiementation conslderstions thet must be taken into
sccount in designing & rotuting pechet memory. Por exemle, & number of shift registers, one
hMWﬁthmh“wthdemMcmmnon
each clock pules. mmmm.mmwmhmﬁmmhmd
stored serisity, or avy errengement betwesrt 1fisse two itremés can be used. One might also
mmMWM»““ﬂWMM AN of these
considerations are irvelovant 1o the structure belng considored, oo we witl sssume the memory
is & ring of full words, ordered by sddress, with sddress 2ur0 foliowing the highest address,
mmmmmrummamm mmmm«ionu
oquiveient te this.

hmmmehm&th nurdmof
what type of device it actuslly is.

Punding transactions (thet is, peckets recuived st CMDT) ore stored in the
transsction list (TL), which is presumebly much.omilior: then the mimory Rtsstf. The TL is
presumably reslized with & random sccess memory devics. In order to svoid moving data in
the TL unnucessarily, it hes & ring structure: just ke fhe Momory. Tranéetltions sre placed in
tmnaumummmanmhmyuﬁ»wdwm
they refer. simuunnm;ummmmﬂmdnmm
to many consscutive addresess of memery. S ‘

Lot €XP be the function mepping sddresses in the entire address space into
the correspending sddress in the TL. This is colled the hesht frction 1or ressons that will be
oxpleined Ister. €X3 is just e integer pert of the quetiont of X divided by the ratio of
memory size to TL size. In a resiization in which s skees are powers of two, €X> is just the
sppropriate number of high order bits of X. '

85
When & command is received for ldduu X, the commnd packet h plncod in
the TL at address €X», or the first free sddress thereafter if €X> is full, Auuming [
uniform distribution of addresses oppufinc in commends, the TL chould be uniformly: filled.

As the memory pointer rotetes Through the memory, anothor pomr mnlntdnin; sbout the
same angular positior, rotates tmu.h the m pscung oiﬁ th. mt tnmction to porform.

The TL is organized much like the ordnrod hnh hblo dovmd by Amblo and
Kruth [2] ; with modifications to aliow for ih circuhrity and for thc he! thol itom are being
removed from it. In an ordered hash table, each item has a hash address. It is placed in.the
table st its hash address or in the contiguous blocko! itoms sfter the hash address. This
block is in increasing order of data valus. This ordering mekes It possible to determine
whether an item is in the table much more quickly than in a conventional.hash table.

Although ordered hash tables are intended for entirely different applications
than the transaction list of a packet memory, the concept is well suited to this application,
The “vealue®” of.nilomhlhnhbhhthowdoddrthIhopnut. Lot o(P)
‘denote this sddress for packet P, and call it the "CCD sddress”. The "hash address”
corresponding to CCO address X is just €XD, doﬂnod earlier. (Hash functions are usually
dtﬂgmd to be random, but that property is not desirsble here.) The hesh address of pachet
P is therefore <a(P)>. ’

Because the' TL is a ring instead of a linear list, a different definition of order is
needed. The concepls of "graater than™ and "less then” are replaced by "clockwise from” and
"counterclockwi;o from". Since any item is ‘both clochwise snd counterciockwise from any
other item, the order of two items must be defined relative to o third. This is done through
the use of intervals denoted in ordinery, methematical notablon. -{X, Y] is the interval from X
clockwise to Y. If X < Y,.it hes its. customary. mnin; XD YK, Y] is the sst of numbers
from X up to the highest address, and then from zero up to V. "Opon and *half open”
intervais have their customary meaning, that is, (X, Y) means [X, Y] oxclwvo of Y,etc. [X, YV}
and[Y.X)auclurlymmofmhcﬂnrﬁhv ’

Th. ordering of hash addresses and word addresses is expressed in terms of

whether Or not en stement is in an interval. Z € [K, Y) wasne that if one sterts st X snd
moves clockwiss, one resthes I before Y.

mmmmmwwnnhm,amwamm.cm
an item’s hash sddress to the Hem iteekt, wﬂmmumeﬂe“ﬁlmﬁy
“smallor™ toms, that is, iows whose hash addressss ey coumtercisckwise from this one. This
is best ilustraled with ¢ diagram. Lot OCDL sdirensnss b g wndnt digite:emd-hosh sddresses
be one digit. mmmmnmmat T trauwestion list has: 8 colis and is
drawn ss @ circle.

Colls O and 6 are emply. Coll 2 contabw & pachet with eddress 16, whose hash
address is 1 but was dispisced because coll 1 is full,

“bh-m‘fw the transactionHet 10:contein » , o © the
same CCD address. Spacificelly, the following configuraiitng sre possible: ’ . |

One or more FET'S) gackete. Whan the COD: putwter reaches the sppropriate
mmmwummmm»mwm.mu
LOAD'®) packets. :

One or more FET') packets, follewed by & CLR. When the 000 pointer reaches
the appropriste address, the LOAD'S) pachets witl be sent out, followed by

87

A single UPD packet. The date will bo. written into the.CCD when the
. appropriate address is reached. '

Noothtrsldu aramlbh. mhmwuvmmwmww
mmpnhtwmthnnnrﬁ‘*’wmmmﬁymmh;ww on
UPD is siready peading, the new. one. simply rapiaces. the gl one. J1.« FET%is given when
on UPD Is pending, thq deta is tahen direclly from-the pending: UPR pecket end returned in &
Lom‘*’p-em

Intuitively, the rule for a well formed transaction list is that the lines
mmmmm-mwcm_mmmmwcmmmmt never
cross each other or pass over an emply cell. If an item with CCD address 43 were placed
into cell 6, this rule would be violated, since the line from 4 to 43 would cross the line from 5
to 85. The insertion sigorithm must instead put the 43 into cell 5 end move the 55 to cell 6.
Furthermore, all items with the same hash sddress must be ordered by CCO address. In the
exemple, 16 is clockwies from 11.

To insert an item, start ot its hash address end sserch clockwise until an empty
coll or a cell containing an item with higher (more clockwise) CCD address is found. In the
former case, insert the new item. In the latter cass, insert the new item after meking space
for it by pushing the old item, and all those contiguously following i, one space clockwise. In
the example, insertion of item 10 would require pushing 11, 16, 25, 32, and 55 clockwise.
Insartion of 42 would require pushing only the 55.

Whilo incoming command packets are being placed in the TL by the above
procedure, packels sre being removed and sent to the CCD memory. This is accomplished
through the use of a transaction list pointer (TLP) which rotates clockwise roughly in
synchronization with the CCD address pointer. When the the CCO pointer points to CCD cell
10, the TLP points to TL address 1. Since a packet for address 11 is found thers, it waits until
the CCD pointer = 11, removes the packet from the TL, snd performs the indicated operation

on the contents of CCD address 11. The TLP is then immedistely advanced to the next
position, 2. Since the packel thers specifies address 18, it wails untd the CCD pointer = 16
-dthonrmﬂnmwwfumﬂnmwm The TLP the moves to 3

The removal of ilems from TL mekes it necessery 10 modify the rules for a
woli-formed transaction Nel. If 16 is removed frem the wxewpl ist, the line from cell 2 to
ftlom 25 pesses through an emply ooll, whith weld violele the éendition given previously.
Therstors, the regien frem whish peckels are remeved s diiiored 1o be the “removal region”,
uuummmmm-nmu-ﬁmmmﬁmmummn_
the removal regien. Mrmdmkmummwmmdbylm
'rmumr'u.uunmmmbym mmuwu the exsmple
lowhs e this:

removsl region

- =[RR

Whenever an item is removed, RP. is st to the hash. eddress of that item. In
the example, after 25 is removed, RP will be set to 2 (25 MMMTLP will be
sdvanced to 4. : :

The rules for & well-formed transaction list cen now be given formally:

(1) V),k € TL address spece, if j # k and TL(j) »# emply » TL(K),
[€TLGNP,)] ¢ [€oTLID k]
(Thet is, the interval from the hesh address of an item to the item itselif is never
contained within the corresponding interval for another item, i. 8. the lines never cross.)

@QVjec[RP,TLP), TW()) =empty
(That is, cells in the removal region are considered to be empty.)

(3) V j, k € TL address space, if TL() memply » TL(K) and | ¢ [RP,TLP),
j [€(TL(K))D , Kk] ;
(That is, the interval from the hash address of an item to the item itsslf does
not contain any emply cells not in the removal region.)

(3) V j, k € TL address space, if €CHTL()D = €(TLK)> and €[€{TL(ND, k]
then &(TL(K)) 2 o(TL(}))

(That is, if two items have the same hash eddress, the more clockwise one has the higher
CCD sddress, i.e. ol the peckets having one hesh:adidress sre ordered by CCD address.)

(B) Vj,k € TL address space, ifj €[€o(TL(ND , k) and oTL(j)) = a(TL(K)),
thenVme[j,k]} oTLim) = oTL(j):
thhmw{th»mxchMthMhmwytoboswﬂmt.
whon & sequence of adjacent FET') packets snd .« CLR are found, it is possible to
return the M”m followed by a DONE, mmm there are unseen
packets elsswhere referring to the same CCD aderess.)

(6) V), k € TL address space, if j € [€Co(TL(HD , k) end o(TL(})) = o(TL(K)),
then TU(j) wes plecedtin the teble balere TN -~ = = = =
(That iy the Hems- Wit the same CCD sdéress ere ottiersd by age, the youngest being
most clockwise.) This property makes it possible to return @ DONE packet as soon as
a CLR is encountered in the removal scan, since the packets are encountered in the

The insertion sigerithm requires some cers when-passing through: the removal
region. If the scan sterts outside of the region and then enlurs:the:region, the Hem-is placed
in the first cell, and the region is shortened: Iy :oni-e0-thut-thet celils no ionger part of the
region. If the sten bogine inthe region it not-inits Siret:osl;#he seen skips over the region
and starts after its end. If the scan begins in the first cell of the region, it skips to the end if
its CCD address is greater than or equal to that of the itam just past the end. Otherwise, it is
inserted in the first ceil andthe region is shortened.-

91

removal region
To ineert: Do this:
22-27 . putat3,setRP =4
03 . . putst3,eetRPm4
#B\ . ut ot 6, push the 35 and 43.
42 put ot 7, push the 43
43-77, 00-07 _putato

The algorithm for inserting an item into the TL is given in appendix III A. If the
TL siready conteins an UPD pachet for the same address, it instead performs the indicated
action, perhaps modifying the UPD pachet and perhsns.irapsmitting.s.pachet et RESO.

The removal sigorithm is somewhat simpler. The_ T itam: pointed to-by TLP is
next to be removed. The CCO pointer indicates the cuerent itam avalisbie ot the CCO output.
From the standpoint of the sigorithms for bandiing the Ti, the CCD poinler must be considered
to be inexorably advencing under control of an.gxternsl agancy.: The.external agency is the
clock controlling the shifting of the CCD shift regisler, or, in the: cese of - magnetic disk
memory, it is the information being read from the disk's timing trechks. -

The fact that the CCD pointer is synchronized to externsl events means that it

. cannot be integrated .ﬁtiaoi!:ll the pachet communication principls. It must be

be used in the inderface. The deeign of euch.an interinte is # common problem of digital
system design, and is beyond the scope of this thasis. We:wil_sasume that the interface
between the synchronows memery davics and the: peskel :eystessiganelels of ports CCDI and
CCDO. Every time the CCD advances 10 8 new address, an ADDR packet containing that cell’s
sddress and dats are sent 10 the system thraugh port CCOL If the system fails to
scknowledge the ADDR pashals fest encugh, 50 thet the CCD is.pravented from sending one, it
may either drop the packet or weit until the CCD i shifled sl the way around to the same
sddress again. After the system receives an ADDR pechet ot CCDI sanguncing that sn address
has been reached, it may transmit o §§‘§§f§!&.‘(g
to write. If this packet is not iransmitied seon snaugh, it might be {00 late to write the dats
into the CCD. In this cass, the CCD ehifts ol the way sround, net emitting eny ADOR packets,
until the address Is reached agsin, and then witles the deta.

Wasting an entire Szgcigcs%viizt system
can’t keep u tt.?zlga.swio«g%%gsggg ory often
gtii!%;i;;%;!?g clock,
there is the possibility that it mey be iste. gsti%. o design the system
such that the probebiiity of this heppening is vanishingly smeli It Hés is dome, it is possible
to prescribe drastic remedies when it does occur, without significantly degreding system

?ggiiiiﬁf?gsgg!i
minded. Many memory devices require that the write commend, and the deta _ovo(..z.!..vo
given before the previcus date from the sams sidriéas is avelleble. This means that the
protecol whereby: the system issuss & §§3-¥§5>§va~
bearing the deta might net be spgropriste. “In #hé ciise of » CC or Other shift Fegister, the
Problem cen be soived by having tws “Maps” on the ‘regiétir: ‘oris fer reading, snd ancther,
one or two bits later, for writing. In the cesé of a'disk memory, th’ Broblem Is more serious,
snd may require that the disk announce: esth dddress éiightiy balore the data becomes
available. :..g%?,?%vi!zi system will not be

PRl QI R o g

treated here.

The rotating memory module then looks like this:

The removal algorithm waits for an ADDR packet st CCDl matching the address
contained in the packet in the transaction list pointed to by TLP. When found, it performs the
indicated transaction, perhaps sending a packet out st RESO. It then seis RP to the hash -
address of the item which was just processed, which may shorten the removasl region. The
item is then erased from the trensaction list, and TLP is advanced to the next position. If TLP
now points to an item having the same CCD address, that item is processed also, using the
same data. All transactions giving the same address are handled in this way. Any reference
count changes sre noted, and the modified reference count is written back into memory with a
WRITE pecket at CCDO.

When TLP reaches a cell which does not contain a transaction for the same
address, either it is for a different address or it is empty. In the former case, the system

94

waits for the CCD to reach the new address. In the latter case, it sets RP = TLP, destroying
the removal region, and then advances both RP and TLP, in step with the ADDR packets that
give the CCD address, until it finds a transaction to perform.

The algorithm for the rotating memory is given in appendix III B.

5.0 STRUCTURE CONTROLLER DESIGN CONSIDERATIONS

In this section we will exsmine a few of the considerations thst must go into
the design of sn efficient structure controlier. : '

5.0.1 CHECKING THAT THE CONTROLLER OBEYS Fyppen

The structure controlier never issues mll’ﬁmmdm the reference
count is known to be one. Since this is 50, there can.be no iransactions pending on that cell,
¢ the requirements of fuu e ore mel. This ia contingsnt, of-course, on the rest of the
computer correctly reshzing fooumousmmen - A reference. count vislation. by the computer
could lead to an UPD packet being sent while there are transactions.pending.

5.0.2 PRECISE REFERENCE ACCOUNTING WITH IMPRECISE, REFERENCE COUNTS

In chcking that f,,, satisties the needs of the structurs controlier, there is a
point of possible danger that needs to be checked. Since LOAD'® packets may be returned
from the memory in an order ditferent from thet of the FET'®) packals, it was shown in
section 3.0.2 that the reference counts returned from the memory may be unususi, perhaps
even negative. Is it possible for this to interfere. with.the cell mensgament mechanism? The
mworism,abn;nth‘folbwiurdohoboyod:

After incressing a reference count (with a FET"), do not pass the result to any
destination until the corresponding LOAD* has returned.

For example, if an instruction cell indicates two destinations for its result, the
reference count of the result must be incressed. with a FET* before the.result is sent fo the
destination cells. If one of those cels ix a SELECT that issuss & FET" fa-reduce the reference
count, the FET* must act first. Furthermors, it is not enough to.rely.on the zero lstency
srbitrator to be sure the FET* gots to the memory before the FET™. . The FET™ must not be
sent untit the LOAD* arising from the FET* has returned. This is eccomplished by not sending
the result to the destination cells until the LOAD* hes been received.

It is eesy to ses that no coll wili falt to be recisimed thet should be reclaimed.
At the time the last "owner® of a cell issuss & FET™ to discard it, there are no other
operstions peruding on the col, so the LOAD™ packit thet Ts retimed will have the correct
reference count, which is zero. ' o o o

To see thet no cell will be sceidontelty rectiimed that shouldn't be, consider a
cell with reference count 2, ownad by instruction celis X and Y. Supposs X performs »
structure operstion thet discards s copy, e0 thet'a FET™ is issued. We must show that if ¥
does not discerd its copy, the LOAD” thet arises frem X's operstion will not have reference
count zero. The only wey the reference count could péesibly 9940 2ero is if Y also causes »
FET". Since Y doss not itend to- discard s copy of-the eofl; ¢ FET® must heve been issued
first. (Thet is, the refersnce count should actuslly g6 up 93, the dewn fo 2 and then 1)

The memory receives the following sequence st CMOI:
FET (oddr, X) | W.Y) i FET(addr, V)
mmuuwnwhvm&mnfmutowwm.w.}mrm
LOAD (addr,—, 1,X) ; LOAD"(sdir,~,0,Y) ; LOAD’(W,—-. LY

This cen't happen, because the FET (addr,) is not sent untit the LOAD*(addr,—,--,Y) has boen
returned. o ' ‘ -

5.0.3 MEMORY LATENCY

MM's lstency wes left unspecified only for the purpose of proving correctness
of MM and its user. When actusily implementing » practicel packet memory, it may be
necesssry to build a high degree of istency into some moduhc in order to obtain good
performance. For exemple, 8 -"roteling” implementatidn of WW o charge coupled shift
register mey be designed 1o heve hundreds or thausands of commands pending at one time,

NITITIIT R Bl e e W e O LA

9

sithough its correctness does not depend on this.
5.0.4 THROUGHPUT AND DlSTRlﬁUTED PROCESSING

" One of the fundamental principles of dats flow computors is that, if onoulh
paralislism exists in the program, a computor be obb Qo run arbitrmly fut for a given logic
speed. To do this, it must distribute tho compmmon and be frn of bomomcks If a dete
flow computer could only have one mlﬂply unit, thet would be o boltlomck, since it would
limit the rate at which muitiplies could be porfomed. The date flow concept must not place
any restrictions at sl on the number of mumpliors that & computer can have (llthough ony
given computer of course has s fixed number). There muﬁ not.sven bo bottienecks in ports
through which packets must pass. If every multiply operation pochot.tud to pass through one
input port of an allocator on its way to the muitipliers, that would bo.‘ unacceplable, since the
logic speed places a limit on tha rate at which packets can pass Ihrou;h a port. For "?’""""'
if a port could handie packets 100 times faster then & muitiplier could process them and il
packets had to pass through one port, it would mesn that no more then 100 multipliers could
be usefully employed. | |

In the case of simple functional units such es multipliers, it is not difficult to
svoid bottlenecks. Muitiple functiensl units may be uud. and the lfb“f_ltiﬂh snd distribution
networks that connect them to the instruction celis may be designed to be fres of bottienecks
ond thus maintein any desired throughput rate (5] . For the same reason, muitiple structure
controliers are used, each with its own ports connected to the srbitration and distribution
networks of the data flow computer, Also, multiple mamory units sre wd,(bocm the total
memory transaction rate is ;iutcr than can pass through a single: pair of CMDI/RESO ports.

It is not bocsibh to compartmentalize the structure operation facilities ss can
be done with simple functional units. (bnnoctim sach structuu controll.r to one memory
module is not correct, because nch structure con!rollor must hIVl access to the entire
memory address space. The otructuro controuors must be comdod to the momorios through
an interconnection m_t_vgg;_ consisting of arbitrators and distributors for poclsoh going in each
direction. Command pechets from the structure controllers have pert of the address field

R - MR G

Y

removed and used to select the output pwtﬂtMMrm,j’uﬁqswu‘dom for the
multiple memory connection in section 3.1. In this way, sach structure controlier “sees” the
IMCMMMMWMMWG“MMMMUMns
space. The commend pachets from the ditfersmt structure controllers sre merged in
mm-,mwunmmmhhmmulmmmmuum
will be returned to the correct controlisr. mmmamnssoportsof the
mmymmwmtmwm&lmmtﬁMtqfhw,lnd
mmmm.tuunmmwumwmmm

IMM

A2 inserts

input port

D2 removes and
uses part of
tag to select
output port.

The treatment of address fields and tag fields is symmetrical. One could think
of all pending structure operations as occupying @ “tag space”. Just #s each memory module
supports s small part of the total Mmmuehstmmn controfler supports a small
part of the totsl tag space. Thojobofﬁnmmneﬂm\mtwwthbmmontwo

99 .

address space availsble to each structure controlier, and to make the entire tag space
available to sach memory- unit.: ‘ :

It is not necessary for the network to:place the distributors before the
arbitrators. Such a network would have s size proportionel to the-product of the number of
structure controliers and the number of memory units, which may be excessive. It is possible
to mix arbitrators and distributors in a network in such s way MWMhrmmbb but
bottienecks are avoided.

: mwmmmm:mmunmmmtomm
mt..tmunmummmmmmmn from
the structure controliers. o the memory modules {those ishelied Al -and D1 in the preceding
diagram) have latency zero. This is 90 that, when s structure controlier receives an
ascknowledge for an UPD packet, it will be guaranteed thet the packet has passed through the
arbitrator and.is thersfore: shead: of sny paciist thet mey subssquently be introduced into
write on s cell, thecteby compisting the crestion of a siructurs.. When it receives an
acknowledge for that UPD command, it sssumes that the structure is complete, and so it
returns it to the rest of the compuler. An instruction cell:in the:compuler; heving received
this structure, may fire, causing s SELECT operstion to be genersied. The silocator may send
the SELECT operation packet to snother structure controlier, which then sends out a FET
packet with the same address. If there is buffering before the arbitrator that merges packets
from the two structure controliers, the originel UPD packet might still be in such a buffer, so
the FET packet passes through the arbitrator first. If this happens, the old data will be read,
nﬂur than the new data supplied by the UPD packet. By making sure that the distributor
and srbitrator have istency zero, the UPD packet cannot get stuck in a buffer. When the first
structure controller recsives an scknowledge for the UPD packet, that packet is known to
have been accepted by the arbitrator, snd hence it will precede any subsequent FET packet.

If it is not feasible for the interconnection network to use distributors and
- arbitrators that have no memory, it is necessary to put tag fields in all UPD specification
passing through the network. An “"adspter unit® is placed between the netwark and each

100
"memory moduls. The adapter passes sl pachels threugh sxcept UPD packets. When it
receives LIPD{addr, sinte, vof, tag), it sonds 11PDiaddr, dute, suf) A0 the mamory and UACK(tag)
back to the intercannection network. The siructune controlier dnes gt retwrn 8 structure to
the rest of the compuler until it hes received LMOK saglias fer all LIPD commands that it has

sent. mmmmmwmﬂmmﬁmkm routing
networks and is heyaag the soope of divs Ahesia.

To maintain just one free storage lisl would creste a bottieneck, so each
structure coniralier ihas ane. Mikenewsr & sinuchure sswivalier asads » werd in order to
cresie & node, it dakes ils addracs from the pachet gusaaiied of ingt port WEDL. (UID stends
supplied in an mMaﬂuMﬁfm s

The sources of the stnasns ot AlDE are sley the sieycture controiers, each of
UIBO pards are connesied e the 401 ports thwangh ¢ oalinction o siSssitre and arbitrstors
calied the LD pabpprk. The puspens of dhis metuwek is 40 malnisin & supply of fres cells to
all controlians, oven if apme conlralions’ MMMMMM.

UNI UNO
(from UIDO) (to LIDD)

UNI UNO
(from UIDO) (to UIDD)

Each structure controller, in. addition to performing structure operations,
maintains a free storaga list. Whenever an acknowledge is recelved on UIDO, it tekes a cell
from the list end tranemits it in a UID packet through LI, Since:s refersnce count scheme is
used for recovering unused cells, the controlier waiches for. woeds whese reference counts go
to zero. Every time it reduces a refersnce count by issuing 8 FET™ command, it:exemines the
LOAD™ packst that is returned. If it shows a reference count of zero, the word is reclaimed.
This involves placing the word in the free storage list and, since whatever pointers it
contained ere destroyed, reducing their reference counts if their glem bils-ere off. If either
or both of the lstter reference counts go to zero, thase words are retlaimed by the same
process. '

The procedure is recursive, and is an unpleasant type of recursion because the
completion of each operstion cen produce two more operstions to perform. Although the
recursion always terminates, a huge smount of storage may be required to hoid the list of
words that need to have their reference counts reduced. The preblem at its worst can be
obsomd in the case of a large tree, no subtres of which is shered with anything else, whose
root node is discarded. All nodes have an initisl reference count of 1, so, when each node has
its count reduced, it goes to zero, meking it necessary to reduce the counts of both of that
node's offspring.

To implement this procedure by simply issuing two FET™ packets whenever a

102

word’s reference count goes to zero (that is, whenever a LOAD™ is recsived bearing a count
of zero), would creets an intractable deadiock préblem because of the proliferation of packets.
Instead, the procedure thet should be used is thet only the right offspring of & word should
be trested at the time the word is pleced on the fres storage list. The pointer to the left
Offspring will remein in the word wivie it is On the free siorage list. The recursion in this
procedure is under control, since only one new operation is crested for every operation that
is completed. When a word is teken from the free shorage list, the reference count of its left
offspring is reduced, which may cause one or more wards 10 be reclaimed, hefore the word is
used.

The memory management sigorithm is ss foliows:

(1) Whenever s word®s reference count is reduced; sxamine the LOAD™ packet
thet is returnad. - it shows: o count-of 2ero, Bt the Word on the free
storage list and, if the:slam bit in e right hif-is 20r0, reducs the reference
count of the ward peinted: to by thet Welt. This ey caoss this step 10 be

od I ~.

(2) Whenever an: acknowiedge is recsived from port LRDO, gst a word from the
free eloregs Hist and send the pecket TRD(Iddr, e 490t Nalf) through UTDO.
(The contents of the left i1if sre sent simply to avaid ‘en sxirs memory
reference.)

@)Wﬂuﬂ»ﬂkwﬂhwﬂmﬁn%mﬂgtﬁ the
pocket UID(addr; Obj) ot port UIDT and scknowledie same. Mis the
eddrese of the new coll. 1¥-the-slem bit of gb] Is ‘o, rediace the reference
count of the sdivessed word. This may calsss step {1} 16 be invohed.

103

5.0.6 MAINTAINING INTEGRITY OF THE REFERENCE ACCOUNTING MECHANISM

The possibility of an error in the reference accounting end cell management
mechanism is a troublesome problem, becauss, as. axplained in section 2,14, i is impossible
for the memory to detect a reference accounting error by its user. Furthermore, the effects
of such an error are unpredictable, and may show up in-completely unrelated parts of the
computation. However, there are.a few mmthdmbodouhm the probaebility of
such an error being undetected. ‘

'First, ail colls on the free siocage list can be marked.in some wey, perhaps by #
bit reserved for this purpgse. Any reference 10 a merked. seli-olher than for the purpose of
removing it from the free storage list is a.detectsble srror. Also; the:free storage fist can be
orgenized in such a way that celis are sdded et one end snd remeved frem the-other, thereby
maximizing the time that 8 coll stays on the list once it is put there.. If & celi is erroneously
reclasimed while a “spurious™ pointer fo it exists, it will then probably still be-on the free
storage list when the spurious pointer is used, 50 the.srror can be delected.

Another way of checking integrity. of reference counts is to conduct an "audit®
of the entire computer. This canbodom.tt the end of the computation, and st any point
during the computstion. The host computer must disable all instruction celis and wait for all -
pending operations to clesr out of the structure controilers. and.the-routing networks. Al
reference counts can then be checked sgainst the contents of the input registers of the
instruction cels.

104

6.0 THE DEADLOCK PROBLEM

The structure controlier and cache module that were described previously were
both required to have alarge capacity for stete information which would be unnecessary if
one could siways be sure that the device lower in the Herarchy would accept a command.

In the case of the structure controlier, the general behavior upon receiving a
result packet from the memory is to perform some transformation oh the data in its state
memory and then send a new command packet. _?.30..:-,.&&-%%&.&3@3&
with, and the state information placed directly into the tag fiekds of the packets. When a
result packet is received from the memory, s “membtyless™ controligr’s functions would then
be simply to perform a transtormation-on the packet teelt, forming o new packet which is sent
to the memory. The resson this feils is that one cint be sure the memory won't decide to

return severst rasult packsts (perhaps off pending ohes) before it sccepts sny more ¢ ommand
packets. Suppese this happened fo o meworyless structore coniroller. It wouid have no
place t0 put the result packsts if the mamory unit:isn't’ accepting ety ‘more commands, s
deadiock would occur. The problem is that the ‘controlier has vickited the rule that it must
slways be prepered to accept the resulls of all pending operstions. A structure controller
gi3*§§;§3§§§3§?35~ of oll
pending operstions. .

A similar problem erises in the cache module. If @ word is not in the cache and
8 FET'®) packet is received, o coll is immedistely slocated for it end placed in state P. A
FET(®) packst is also sent to main memory to fetch the deta. Until the deta returns from the
memory, the cell in the cache does not have dats in it, s0 it serves no useful purpose. It
might seem o meke more sense to aliocate the cache cell only when the first LOAD'®) packet
is received from the memory rather than when the first FET'®) packet is received from the
user - that is, to bypass stete P altogether. The probiem is thet the creation of a cell in the
cache may require writing out the celli’s former contents. If the cell is created in consequence
of the LOAD'®) packet coming from memory, the cache msy hevs to send a packet to memory -

_ in response to a pecket from memory. If the memory sends such LOAD'® packets but does

not accept any replies, the cache would have no place to put the dats, so a deadlock would

108

occur. The cache implementation given in saction 3.2 avoids this problem by reserving space
for the LOAD'Y packet in advance. If an UPD packet must be sant to the memory, it is done
in response to input from the yser rather then from the mempey.- This way, if the memory
temporarily refuses to accept the UPD, the cache can simply refuse to accept input from its
User.

In both the structure controller and the cache, the cost incurred as a resuit of
this problem is an smount of memory equal to all the pachels that can be simuitaneously
pending in all lower levels. In the.controller, this is ﬂnthbmmton?or alf concurrently
executing structure operations. In the cache, a cell might be in-state P for every '
FET')/LOAD'®) cycle that is panding st that.instent, Since s deliin stete P is ussiess, the
cache must be that much larger than it otherwise would be, for s given level of performance.

In the case of the structure controlier, the memory space is needed somewhere
in sny case. If a grest number of memory transactions: can-be:pending simuitsneously,
“rotating® memory, such as was described in section 40, is presumebly being used. If a
memoryless structure controller is used;.the stete information for pending operations is stored
in the tag fieids instead of the controlier. But the tags of pending memery dperations must be
stored in the transaction list of the rotating memory, so- whetever space was saved in the
controller is used up in the transaction lst.

Why, then, would a memoryless structure controlier be more desirsble? The
reason is that memory space inside the controlier is much more expensive than in the
transaction list. The controlier must be able to process information s fast as ‘the highest
level of the memory hisrarchy. If that highest level is a cache using high speed (and
expensive) devices, the controller must be equelly fest. The rotating memory is at the bottom
of the hierarchy, 5o its transaction fist can use « siowsr and less expensive logic family.

In order to use s memoryless structure controller or & cache which does not
use "P" cells, the memory system below the controller or the cache must obey the foﬂo\ving
“fixed latency law™:

106

Whenever a result packet is tramemitied st RESO, the device must accept a
packet st CWOL 1t thet pecket Js sn URD, t must stcept yot ansther, imtil it
has takon one thet is vt PO, amuauumﬁwwmw lccopt '
snything further #t RESO. '

The reason UPD pechets sre a specisl cese is thet they do net generste any result, so the
system should be sble to sbeord them in unlimited nuwbers.

Some memory sysiews obey this lsw, A remiom eccess Insiementation of MM
cloarly does. A rotating: implementelion can aisb, shwe B travasction Wist hes fixed size.
Whenever an item is tahen out of the TL, erctinr- can by inserted. mnmm.m of the
mammymhmuaummmmwuw.ﬂy be
modified to do 20.) '

The systems thet do net chey e fhed 1ntency tew sre the horizontal
composition of MM wnits and-the cachs. The Fermer itiuies ¥ intercdhnection network
between the structurs cunisoliers sndl the Wombry WHs. In-the tass of the horizontal
interconnection of units euch of which sbuys The- el TWlenty Hw; 'Wien one uUnit transmits o
result packet, it will sccapl & new commund. Thut Tosuit pathiet pesses through the arbitrator
and becomes s rewlt of the interconnaction; vs The iercannechion most accept another
commend. If the command is sddressed 1o a differsnt WV W Whan tAb e that transmitted
the result, that unit might not be able to acoept . thhavayhrﬂnmih to
mmwammmnm '

In the case of the cache, meintsining & conetent vumber of pending transactions
in the cache and memery combined roquives Walmeiing ¢ constant Tumber of pending
transactioms in the memery slone. For overy Tewdlt Packt Wramivitted by main memory,
ancther command must ge from the coshe 10 maln mewmery. MOwewsr, suth commands only
occur when there sre cache misses. If the ceche rume into ummuslly good luck end gets a
continuous string of cache hits, it would not sund Commends %6 memvy. In brder to maintsin
constant latency, it would have o refuse swy result pethaty from wemory. This could resuit
in some transactions remaining pending indefinitely. Whils this prebebly won't céuse a data

prraize 4 in sae et ey ameidow ledinbig st 0 enls

& G e]
YR e gl oteag g

inds malrve 2t Remgpievad

Jakey KB sl o0 Bewnens

eemasing X5 e wﬁaw thow

nisong alggde oo t%i%ﬁs X e ewaun rzﬁf Rt

s sl Rpwignrd gectend

LAY

&g isnnd

ot sty aote W smnses b o et grindeseay wttond

b aReie tw}uwﬁm welt 50 oot
sfiage vodfw? el sesdasy
A1 arlte goome babeen & (v 2

-%fﬁ;;’: %oy

5 e oy
R T

iy

kL2

sl Hiw

2% shean "@ﬁméﬂ@* mmﬁmﬁa Inaisi¥s Ad

e S ges 5 wiulergs hewamses sl o BSeent ﬁ@ﬁﬁﬁ?"ﬂ Aoty adft
Ssaligteng ewilrore asetinenent 8 Bl

s ab 2»&:‘»’5?% s ?mﬁ seAn e T ehees it

oy

108

7.0 SUGGESTIONS FOR FURTHER RESEARCH

One of the princips problems remeining in the sres of the design of systems
using the pecket communication principle is thw develdpient of ‘& priacticel and systematic
procedure for construsting inoUules that can Be proven 18 Wet givin functionsl specifications.
An importent teoh fov tis tevk: is the develspment-of u rigirook and concise Architecture
Description Langusge (ADL). With the heip of the ADL, the task can b divided into two parts:

(1) Deveiopment of a proof methodology so thet systems expressed in the ADL
can be proven to meet functional specificetions.

(2) Development of a system construction methodology so that systems
expressed in the ADL cen be constructed with confidence that the physical
device will reslize the ADL expression.

For this purpose, the ADL must be simple encugh t0 correspond neatly to the
hardwere devices invelved, but powerful enough to mehe proofs involving history errays
tractable.

Arcther remaining problem is, of course, to develop functional specifications for
sll parts of the data flow computer system, including the structure controller, and give proofs
of their correctness. The functionsl specificstion of the computer itself (thet is, the structure
controfier’s user) is needed, among other things, to shiow thet no reference count violations
will occur.

An efficient structure controlier needs 16 be designed, with special attention to
the needs of programs that sre likely to arise.

The deadiock problem needs to bs exemined cerefully, to see if it is worthwhile
to bulld a memoryless structure controller.

109

REFERENCES

- Ackerman, W. B. Interconnections of Determinate Systems. Computation Structures Group
Note 31, Laboratory for Computer Science, MIT, July 1977,

Amble, 0., D. E. Knuth. Ordered Hash Tables. The Computer Journal 17, (May 1974), pp
135-142.

Anderson, D. W, F. J, Sparacio, R. M. Tomssulo. The lBM(Sy;WGO Model 81: Machine
Phibﬂwhy and Instruction Hendling. Mémmg‘v‘ 1.1,.'1 (Jan. 1867), pp 8-24

. Berkeley, E. C,, D. G. Bobrow. The Programming Language LISP, its Operation and
Applications. MIT Press, 1966, '

Boughton, G. A, Routing Networks in Packet. Communication Systems. S. M. Thesis in
Preparation. Department of _E_loctrlcn(Engineering end Computer Science, MIT,

. Dennis, J. B, D. P. Misunas. A Preliminary Architecture for a Basic Data Flow Processor.
Computation Structures Group Memo 102, Laboratory for Computer Science, MIT, Aug.
1974,

. Dennis, J. 8, D. P. Misum_s, C. K. Leung. A Highly Paraliel Processor Based on the Dsts
Fliow Concept. Computation Structures Group Memo 134, Laboratory for Computer
Sciencs, MIT, Jan,. 1977.

Dennis, .. B. Packet Communication Architecture. Procesdings af the 1975 Sagamore
Computer Conference on Parsiiel Processing, IEEE, New York, Aug. 1975,

. Keller, R M. Look-Ahead Processors. ACM Compyting $urveys 7, 4, (Dec. 1975), pp
177-198.

110

10. Leung, C. K. Architecture Description Language. Computation Structures Group Memo in
preparation, Laboratory for Computer Scisnics, MIT, Aug. 1977.

11. Leung, C. K. Formal Praperties of Well-Formed Dats Flow Schemas. MAC TM66,
Department of Blecirical Enginsering and Computer Science, MIT, June 1978,

12. Madnick, S. E, J. J Donovan. Operating Systems. McGraw Hill, 1974,

13. McCarthy, J. otf. al. LISP L5 Programmer’s Menusl. MIT Press, 1966.

14. Patil, S. S. Closure Prqmﬂts of Interconnections of Determinele’ symm Rocord of
the Project MAE Conference on w&mammm New

York, 1970, pp 107-116.

15. Rumbsugh, J. E. A Paraliel Asynchronous Computof Architectuve for Dnh Flow Programs.
MAC TR150, Dlpartm-n! of Electrical Endnowk‘ and Cu\pubf Schm MIT May 1975.

16. Thurber, K. J, L. 0. Wald. Assoclative snd Puraliet Processors. ACM Computing Suyrveys
7, n,mn.un).ppzts-m

111

_ APPENDIX |
Proof that the concatenation of twe FIFO buffers is a FIFO buffer, and lengths are additive.

This proof is given not becsuse the ststement is of fundamental interest, but ss an example of
the method of proving theorsme abiout the behevior of systems, showing acknowisdgments in
detail.

Let & FIFO of size M have input port X and output port Z.
Let another FIFO of size N have input port Z and owtput port Y,
and let the ports Z and the scknowledge ports Z, be.linked.

From the definition of the first FIFO,

(D) T =min {], 120+1)

@7=X
(@) Xy) = e { X1, [Z)] + M }

From the definition of the second FIFO,

@)= min (12,0 + 1)
® Y, =2,
(6) 12, = min { 121, IV, + N}

112

Cese I: Suppose X| S [V,| +N

By the strong torm of the Standerd Acknowledge: Reslrichion, .-
oither |l = M o Y= [Z.ltl

If [Z] = |Z) « 1, them.. -
tz,,u.m«.u . me -
4 < X (from 1)

ARy
= [Yl + N < |, which is s contrediction, 0 wa ushhave:Z] = {Z,}

- a1y whon (i Mg 4 4):
S ¥l = min { Ne.&’,h 1)} o o romA s @ oEn e
Xl = min { X|, X| +M } (trom 3)

N ARS (e M 2 0)

KIS+ MeN MW‘#MMMIW
2 Pyl =i { R, Yyl + Mo) fo

Case 11: Suppose [X| > [Y,| + N
If 2] = IZ,] , then

izl = i {from 1, since [2] » |Z,] + 1)
ISV +N (from6)

o P S IV, + N, which is o contradiction, 50 we must-hame: iTj:={Z,] + 1
CARS AR «mﬂmm:m}

A Ri=NpleNeL

S AR R Mmuzm

VR ARD (from)

1z < Xl (from 1)

IR ARSRY
oY) = min (0, Myl + 1)
Byl =min { X1, IVl MoN] (trom Bondybm Mpl+ N0

In either case,

""m‘"[“th"‘l}

113

Y, =X (from 2 and 5)
kal"Min{IXLIYAI*M*N}

which are the conditions for the interconnection being a FIFO of length M + N.

114

APPENDIX 11
Algorithm for the cache.

Actual lockup in the cache is not shown. Inslesd, the special fun;tiom
cache-data(addr), cache-ref(addr), ceche-staleleddr);: end ceche-modieddr) sre used. These
sre trested as though they were arrays, and sre sssumed to be defined whenever the given
dddress exists in the cache. In-cache(addr) returns trye if the given address exists in the
cache.

Can-create(eddr), where addr does not exist in the cache, telis whether it can
be created, that is, whother some cell in its column is unused or is in stale 7.

If can-create(addr) is true, creation-celi-is-empty(eddr) tells whether the
former case hoids, and, if 30, cpohe-createladdr) performs the insertion into an unused cell.

Otherwise, cell-to-displace(addr) returns the address of a coli in state T, selecting the least
recently used item. Cache-rename(oid, new) performs the replacement.

' processes start ot Q, A

input ports CMDI, MEMI

output ports RESO, MEMO

ver cmd, item, addr, data, ref, oid-addr, p

var m init faise | tolls whether to wait for input from MEMI

var memofiag init trus | true when last packet sent at MEMO has besn acknowledged
var memowait init felse | true when need to send something on MEMO

var wait-pkt | the thing to send
var creato-flag init faise | true when need to create a new cache cell
var create-pkt | command that led to creation

var new-addr | address field of creste-pkt

115

Q: .

wait for acknowledge on port MEMO,
take the acknowledge; -

memofiag := trus;

Kot Q

A:

until memofiag or packet is availsble on port MEMI dog

m := false; | becomes true if should teke packet at-MEMI |
if memofiag then | is memory ready for command?.

if some-cell-is-in-state-Q-or-Q’ then | see if need to send & CLR
addr := address-of-a-cell-in-state-Q-or-Qy
memofiag := faise; ’
send CLR(addr) on port MEMOy . .
if cache-state(sddr) = "Q"then | chengs Qo R, Q'to R*
cache-state(eddr) :» "R* '

else
cache-state(addr) == "R* *

sise if memowsit then | see if nesd to send FETE) sfter creating a ceil
memowait := {alse;
memofiag := false; ;
send wait-pkt on port MEMO

eise if create-flag then | see if trying to creste a cell
if can-creste(new-addr) then | is some cell in its column empty or in state T?
creste-flag := faise | yos, will create th.iuli '
if creation-cell-is-ampty(new-addr) then
ceacho-creste(new-eddr) | old cell emply, just put in new address

116

okd-addr 1= coli-lo-displaceinew-sddr) | find coll to displace
if cache-mod(olid-addr) then

memofiag := {aise | write Out previcus contents ¥ necessery

sond UPDiold-eddr, cache-delaieid-addr), cachu-ref(oid-addv)) n port MEMO;
cache-renampfoid-addr, new-addr)y | crests the new celt

| the new cache cell now exists

if create-pkt = UPD(--,--,--) then | what command caused the creation?
lat creste-pkt = UPD(<-, date, reth - - PG 1l W0 new éolt apprepristely
cache-data(new-adidr) := dite;
cache-ref(new-addr) := ref;
cache-stetelnow-addr) = " : o
olse | commend wes FETI® -
cache-mod(new-addr) = talse;
coche-state(new-eaddr) = "P"; :
wait-pht 1= crosts-phty | quous sommend far Irsnemission e memery
memowsit := trus e
else .
m := true | can't create new cache coll, must walt
ol | ‘
wait for pachet en MEMI or OMDL, ot P « thet puarly -
if p = ‘CMOP then

| #++++ process packet from CMDI +++4+

cmd := RCVPKT(CMDI)
it cmd = FET®Yer,—) then
It cmd = FET *Naddr; tagh
if in-cache{addr) then
if coche-sistaaddr) = "P” then

117

memofisg := false; | state P, just:send it onward
send cmd on port MEMO "
olse jstate isRor T
if cmd = FET*(~-,--) then | need to updste reference count?
cache-ref(addr) := cachoerafiaddr) + 13- -
cache-mod(addr) := true;
XMTPKT(RESO) := LOAD*(addr; cache-dataladdr); cache-ref(addr), tag)
olse if cmd = FET (--,~) then
cache-ref(addr) := cache-ref(addr) - 1;
ceche-modaddr) :-,m' :
XMTPKT(RESO) t= LOAD (addr, cache-data{addr), cache-ref(addr), tag)
olss .
XMTPKT(RESQ) s» LOAD(adidr, cacherdeta(addr), cache-ref(addr), tag)
else | state N
new-addr := addr; | set flags so cell will be crested

create-pkt := cmd;
create-flag := true
eise if cmd = UPD(-=,~-,~-) then
let cmd = UPD(addr, data, ref)
if in—coche(addr) then | must be state Ror 7
cache-data(addr) == date;
cache-ref{addr) = ref;
coche-mod(addr) := true
olse | state N
new-addr := addr; | set flags s0 cell will be-created
create-pkt := cmd;
create-flag := true
oise | must be CLR
let cmd = CLR(addr); :
if in-cache(addr) | state P,Ror T
if cache-stete{addr) = "R" then

cache-state(addr) = R *

118

olse if cache-state(addr) « "P* then
cache-steleldde) .= P
olse lotate T
XMTPKT(RESO) :» DONE(stidr)
olge | steteN S
XMTPKT(RESO) 1= DONEmiir)

| #4444+ ond of CMD] processing ++sess

else
m = true | pachet wos from MEME

eise
m = trues | mumotiag: was: off, must Hawile MEME inpol

if m then
| #++++ process packet from MEMI ++¢ee

item := RCVPKT(MEMI)
if itom = LOAD X - o-—-) then
lot item = LOAD X addr, dets, ref, tag)
it cache-state(addr) = "P* then | kiow It i in cotw
cache-date{addr) := daty :
cache-ref(adidr) := ref;
if memofiag then | con send pachet at MEKO?
memofisg = fplag fyes
send CLA(addr) on port MEWO;
cache-stete({addr) 1« "R”
) |
cache-state{addr) :« "Q" | no

119

eige if cache-state(addr) = "P" * then

cache-data(addr) := date;

cache-ref(addr) := ref;

XMTPKT(RESO) := item;

{f memofisg then | can send packet at MEMO?
memofleg = folse; | yes
send CLR(addr) on port MEMOy
cache-state{addr) := “R* *

else
cache-state(addr) := Q" * | no

olse | must be state Q, Q", R, or R’ »
if item = LOAD*(-~~-,-,~) then | updete ref and send LOAD
cache-ref(addr) := cache-ref{addr) + 1;
cache-mod(addr) := trus;
XMTPKT(RESO) := LOAD*(addr, dats, cache-ref(addr), tag)
oise if item = LOAD™(~~,-~,~-~) then
cache-ref(addr) := cache-ref(addr) - 1;
cache-mod(addr) := true;
XMTPKT(RESO) := LOAD (addr, dats, cache-ref(addr), tag)
olse
XMTPKT(RESO) = LOAD(ackr, dets, cache-ref(addr), teg)
slse | must be DONE
lot item = DONE(addr); ,
if cache-state(addr) = "R" then | know it is in cache
cache-state(addr) := *T"
else | must be state "R* ©
cache-state(addr) := "%

XMTPKT(RESO) := DONE(eddr);

| #+++4+ ond of MEMI processing ++4444+

120

goto A

121
APPENDIX I A
The insertion algoritihm for the rotating memory.

flag = false Ihc‘mchulfndrudy‘hnmpmtfortmwdrm

P = €a(X)>» | scon pointer = hash sddress initially
it RP » TLP and P = RP and | hash addr = stert of removal region?
(€00> » CATL(TLP)D or ofX) <-olTLITLM)) then

TUP) = X; | ineart iom ot P -
RP:=RP+1modM |shorten the removal region
pop =pop + 1 | update TL population -
olse .
if RP # TLP and P « [RP, TLP) then | hash address in removal region

P:=TLP | advance to end of remeval region
| repeat until find empty cell or enter removal region

until (P =RP and RP # TLP) or TLP(P)=empty or flag=frve do

| see if TL slrsady hes UPD with seme CCD address

if o(X) = o(TL(P)) and TL(P) = UPD(~~,~~,--) then - -
flog := 1;
else

it (€(TLP)D = €alX)> ang 8(X) < ATLPM)
or €00 ¢ [€oTLPND ,P] |is X "smalier” then the current item?

then
Y := TP} | save item from TL
TUP) = X | insart X here
X 1= ¥ | ineert saved item in next cell

(which pushes everything past here)

122

P:=P+lmodM |advance P to next cell

| find out whether to insert X or process it directly

if not fleg then | insert it

UP=RPand RP s TP | anlorad roweoval segion? -
TUP) = X; o et am®. .
RPmRP+1medM | shorten the remevel region
TUP) := X | insert item ot P

pOp := pop+l | updste TL population

slse | prosess it directly

lot TL(P) = UPD(addr, data, ref)
if X = UPD(—,—=) then e ,
TUP) == X lmmmmmdﬂ
olse if X = FET(=,~) then '
lot X = FET(~~tegk | FET, gut the dets
XMTPKT(RESO) w LOAD(addr, dets, ref, tag)
else if X = FET*(—,--) then : :
lot X = FET*(--teg) | FET", wth-u.mmm
TU(P) := UPD(addr, deta, ref+1); ' '
XMTPKT(RESO) = LOAD *(addr, deta, ref+1, tag)
else if X = FET™(~-,~) then
lot X = FET(—-tegk | FET", got the dets snd-updete ref
TLP) :=APOladdy, date, raf-1%
XMTPKT(RESO) = LOAD (addr, dets, ref-1, teg)
else ‘ | must be CLR .
XMTPKT(RESO) := DONE(addr)

123

APPENDIX 111 8

The rotsting memory algorithm,

process storts st A

input ports CMDI, CCOI

output ports RESO, CCDO

var P, X, Z, eddr, data, ref, tag, CCO-addr, popmno.n-emd.

array TLsize M

A:

CCO-data, CCD-ref, CCO-newref, TLP, RP

if TL(TLP) = ompty then

RP = TLPR} | destroy the removai region
while TU(TLP) = empty and TLP » €CCD-addr®» do
TLP=TLP+1modM | advance unth-catch up to CCD-addr
RP := TLP | kesp removsl region destroyed

| look for input packats

itpop 2M-1

then | TU nearly full, can't take packets st OMDI
Z := RCVPKT(CCDI) |mmuﬂmtp.cu“hzm
lot Z = ADDR(CCD-addr, CCO-dits, CCO-ref)

CCD-newref := CCD-rof ,

olse | can accept packat on sither port
wait for packet st CMDI or CCOL, set P t= that pod | nondeterminate!
if P = CCOI" then :

Z 1= RCVPKT(CCDL) | .ee'o‘at'pieu‘t at CCOI
let Z = ADDR(CCD-addr, CCO-dats, CCO-ref)
CCO-newref := CCD-rof

slse

124

X = RCVPKT(CMDI) | take packet st CMDI

R e L T T
| + insert or otherwise dispose-of X
[+ (from eppendix 11 A)

' S444 0444450444803 0 44000004444

| perform ail transactions matching CCO-addr

(

while TU(TLP) # pugiy snd aTLCTLPY. » OO o,

TL-cmd := TL(TLP) | remove trensaction from list .

TUTLP) 1= smpty;

pop = pop-1; IWQTme \

RP = Co(TL-cmd)¥; lmmmmmdy-

MP=TPeimdM

if TL-cmd = CLR(CCD-oddr) then
XMTPKTORESO) t» DONE(OCD-oddr) ..

&_‘!_ TL-cmd = FET{(~~,~) M
XMYPKT(RESO) :» LOAD(addr, CCD-dala, OCP-newref, lag)

sise it TL-cmd = FET*(~-,—) then
lot TL-cond » FET "(adidr, tegk
m«wnwm
MMM»MMMMM)

oloe if Tl-emd FET () then
lat TL-cmd = FET (addr, tegh
u:o-ﬂmof z-ch-mwnf l;
XMTPKIW = LOAD” (nddr, m«..mm. teg)

125

else | must be UPD
lot TL-cmd = UPD(addr, data, ref);
XMTPKT(CCDO) := WRITE(addr, data, ref)

| rewrite reference count if it has changed

if CCO-ref » CCD-newref then
XMTPKT(CCDO) := WRITE(CCD-addr, CCD-data, CCO-newref);

goto A

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project .
Document Control Form Date: /73 795

Report # L<-5TR-)¢

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
ﬂ_ Laboratory for Computer Science (LCS)

Document Type:

JX(Technical Report (TR) [Technical Memo (TM)
O Other:

Document Information Number of pages: ¢ (130 -fmacs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided A Double-sided
Print type:
O Typewriter [(] offsetPress [] Laser Print
(] InkJet Printer \ﬁ Unknown [J other:

Check each if included with document:

O poD Form O Funding Agent Form E\ Cover Page
K Spine [J Printers Notes [OJ Photo negatives
O Other:
Page Data:

Blank Pagesy page numbes:

Photographs/Tonal Material wypage numben:

Other (note description/page number) .
Description : Page Number:

Tnnce mae2 (|- J13L) v T TLE TAC{J&” 19@ %N‘H’BLANK
(123-132) Scance JXRoL]COUERJ ‘T(P.’/\»&J TRELS0)

Scanning Agent Signoff: ,
Date Received: _) / 3 /95 Date Scanned: /’/ 3 1 4S Date Returned: /’ 1 195

/|
Scanning Agent Signature: O‘MA/V\&\/\ '/{/\/u Qﬂ{gw

Rev 9/84 DSALCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

