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Abstract 

A data abfotl~ioJl tnbduces 11:data type,widl • hlddt1n·•~~•uen. Specifications 
of data abstractions are required to allow the data to be described and used without reference to 
the underlying representation. There are two main approaches to specifying data abstractions. 
the abstract model approach and the axiomatic approach. 

This thesis is concerned with the problems of formalizing and extending the abstract 
model approach. A formally defined language for writing abstract model specifications is 
presented. The correctness of an implementation with respect ~ an abstract model specification 
ts defined, and a method for proving the correctness of impfementatjons is proposed. 

Our formulation treats data abstr~~s with operations that can dynamically create 
new data objects, modify the propmies of ~isling· a~ objects. and raise exception conditions 
when presented with unusual input values. 
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1. Introduction 

Specifications play an important part in the programming process, especially in the 

design and construction of large programs. It is generally accepted that large programs should 

be designed as systems of loosely coupled independent modules, so that each module can be 

designed and understood withou_t reference to the other modules. A precise specification of the 

behavior of a module decouples the programs that use a module from the programs that 

implement the module, since programs that use the module depend on the specification of the 

module rather than on the implementation. The hope is that the specifications of a module will 

usually be simpler and more stable than the implementation of the module, so that the use of 

the specifications will make It easier to design, implement, and maintain the modules that make 

up a program. Specifications are also needed for program verification. 

The research reported here is primarily concerned with specifications for data 

abstractions. A data abstraction consists of a set of data objects and a set of primitive 

operations on those objects. The objects of a data abstraction are treated as abstract indivisible 

entities, which do not have any directly accessible substructure. The objects of a data 

abstraction can be manipulated only by means of the primitive operations provided by the data 

abstraction.1 The behavior of a data abstraction is completely characterized by the behavior of 

its primitive operations, and the observable properties of the abstraction are precisely those 

computable in terms of the primitive operations. Since the behavior of a data abstraction is 

I. The only exception to this rule is the boolean abstraction. The host programming language 
may provide statements, such as the conditional, which make the flow of control depend directly 
on a boolean value. These statements are not primitive operations of the boolean abstraction, 
and they cannot be defined using only the primitive operations. 
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independent of the way in which the associated data objects are represented in any partacular 

hnplemt'ntation, introducing data abstractions ts one way of decomposing a program into 
,·-

Independent modules [39, 40, 19, of, 291 The concept of representa_t,ion Jndependmce 1s made 
• C ~• • • 0 ~- > 

more precise by the definition of behavioral equivalence of data ~el$ developed in. Ch~pter 3. 
- " ··:, ,. -- , '•-•• 0 • "· - ,, , 

and it is the basis for the usual data type induction rule [531 
' r • • ' . . •. -; .,-

To specify the behavior of a d!ta abstraction, it i! sufficient to sp.ecify the beha,ior .of 

each operation, since the only way to interact With the ob~ _of a dat~ abstraction is by mea.m. 

of the primitive operations. The problem of specifying _the c;,perationS of a data abstraction 

differs from the problftn of specifying procedures because~Jte speciflc~ti9n of a data abttracUon 

must be independent of the way the associated da~ objects are ,..,~ted in ;iny particular 

tmplmwntation of the abstraction. There are ,wo _ ~~ approac~ to $p«ifying data 

abstractioos, the abstract model approach and the axiomatic approach. 

In the abstract model appr~ch, an abstract rq,~t~,Jor the data objects is 

deft~. and the operations are specified tn terms of the abstract repmet1ta.tlon. Tbe 

representation Is abstract because it is constructed fl'Of1l mathematically defined domam,s. rather 

than the built in data types of some programming language. The abstract. representation 

should be chosen so that the operations can be defined as simply as possible. The 

representation used in the implementation of a data abstraction. must often be chosen to 

optimize space or time eff1eiency, and may be quite different from the abstract representation. 

To prove the correctness of an implementation with respect to an abstract model specification. it 

Is. nec~ry to define the correspondence between the repl'elffllMtan used in the tmplementatlon 

and the abstract representation. 

In the axiornatk approach. the set of data objects is defined impltcitly, by giving a set 
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of axioms relating the primitive operations. The axioms specify the relcltionships that must 

hold between the operations of a data abstraction, and any structure satisfying the axioms ts 

taken to be an acceptable model for the abstraction. If the axioms are consistent, then there will 

be at least one structure satisfying the axioms. It is possible for many different structures to 

satisfy the same set of axioms. To establish the correctness of an implementation with respect to 

an axiomatic specification, it is necessary to show that the operations of the tmplementation 

satisfy the axioms. An excellent treatment of correctness proofs based on axiomatic 

specifications can be found in (37]. 

The work reported here is concerned mainly with formalizing and extending the 

abstract model specification technique. We present a formally defined language for writing 

abstract model specifications. A criterion for judging the correctness of an implementation of a 

data abstraction with respect to an abstract model specification ts developed, along with a 

method for proving that particular implementations are correct with respect to specifications in 

our specification language. Both the specification language and the proof technique apply to 

situations where mutable data can be shared. Previous work on specifications has largely 

avoided the Issues associated with shared mutable data. Our formulation provides an 

integrated treatment of data abstractions with operations that can dynamically create new data 

objects, modify existing data objects, or raise exception conditions when presented with unusual 

Input values. 



' - 10 -

Most high level pr_ogramtpi" ~~,~~~; ~~~,:A ;s,el _of .built$ cnata awtradions. 

Languages that support user defined data a~~actipn$, bav~,,beeJ,l .4uekiped. mdudtng 
• • • - • :; .- ,, -_ ~- • • + • • ._, • • • 

implemt"ntation structure can be c~~nged ~~- lfl«wtl,.a,IJ ~\the applimioM, p,egrams 

using the abstraction. 

Surveys of specification tec~ntques fqr: $1J"', abst.-.ctions ~,:• f°'8ad in (31) a_nd In 

(281 

The abstract model approach is dir~ irt Jhe .sen,e t,llaLthc ~ of data objects 

associated with a data abstract!~ is ex.pficii_lf ,e:on,r,u,qed. Ref"'°"' .tQ .-rly- work. -on Jtbsttact 
, j; ' s r ' ; • • 

model specifications can be found in ,l31l ,;r'1t. -er~ JJC.proviqg,•t~- cerrectnell d ·11n 

implementation of a data ab~traction With r,s.pe.ct _to an. aburact ~ .sp,cilicalkla "-s been 

treated by Hoare in [181 and the 11r~- of ,prcr,Jrig,.Jhe Q)[J'.,._ of prqgraas-usiftg die 

objects and operations of a data abstraction _has bttn trtated "' Shaw in [i7). Ins both'·-,::aMS, 

the specification language has been introduced iQf°""'UJ, and ~ed data. ha, ~-eftluded . 
. , ' '· 

The problem of Spt'Cifying the behavior of data shared bJ concurre,pt prOCf$5H.has been treated 

in the conteoxt of the actor formalism by Yonezawa in (551 

The abstract model approach is related to the denotational definition method for 

programming langm1,ges developed at Oxford by Scott and Strachey [,t9, 461 in whkh a · 

mathematical modei is· defined for nch of the constructs of a programming language, including 

the data domains. The major· emphasis of the work at O~ford has bttn directed at issues other 
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than data abstractions. A formal treatment of a language with the potential for sharing 

mutable data can be found in (50), although the model makes little attempt to abstract from the 

storage representation of the data. A denotational definition of CLU, a fanguage with facilities 

for constructing mer defined data abstractions, can be found in [i5]. 

The axiomatic approach is indirect in the sense that the set of data objects associated 

with a data abstraction is defined implicitly. There are several different axiomatic specification 

techniques, which are distinguished by the kind of logic in which the axioms are embedded. 

Axiomatizations of data abstractions in first order logic can be found in [19). A first 

order logical approach has also been used in the iota system (37) for constructing and verifying 

programs that use data abstractions. 

A restricted form of axiomatic specification using only conditionals and equations has 

come to be known as the algebraic approach [56, 10, 7, 13, 9). The name stems from a uniform 

method for constructing a canonical model for axiomatizations expressed in this form. The 

canonical model is a many sorted algebra which is unique up to isomorphism, and which ts 

called the initial algebra. A system for verifying programs using data abstractions specified by 

algebraic specifications has been developed at ISi (35, II, 36]. 

The problem of proving properties of programs that manipulate potentially shared 

mutable list structures has been treated by Burstall in [2]. Burstall follows a hybrid approach, 

by explicitly introducing a model and defining its behavior axiomatically. Proofs about 

programs that manipulate pointers have been treated by Suzuki and Luck.ham (51, 32]. 

An approach to defining programming languages combining aspects of the direct and 

indirect approaches is being d.eveloped by Schaffert [ii]. Schaffert treats shared mutable data 

abstractly, and considers the problem of proving properties of programs using mutable data 
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~bstractions. 

t.a Motivlations for this Work .-. . ,. }.. .. 

The original aim of this r~rch was t«tdevdop toob a~ 't~hniques for' incrnsing 
••• \ ~--~ I ,'-,i"•q ; ri''.<--:~-:c-~:·-r ·;:_,,: -~~."-;; -}d: 

the leveJ of conrtdmcl that a formal spedfication'tor a "data abstraction does indeed capture the 

behavior intended by the'a~sign~. Wef stari~ with t,e'~lgebi~ic spectfka~ technique, as 

described by the work of lilies (56] and..Odttag 001 
After some prdimanary inv~ation: lt became ciea'r that there were a n_umber of 

, ·-:, : - -· :, - . ,.. .:'"'· ~ !.-:if, -"f:J~ ·;· c-·· ·ir:;i- - '~-.. , •~ -, • 

phenomena associated with· the data types actually used by programmers that could not be 

. ·,_:;J~<1·1_-~j-;: r .. ~-:b ·-·L · .-~ a'.!1 • ~ 

adequately described by this sp«ification technique as It stood, notably the dynamic crnUon ot 
• • _ :. • , • ~ • , ", _ • - , , ·: -i<. • _ ·: , ir,: _,f_ .1 ·t · . ··~ ; c..; t ! _ , 

data objects~ changes of state of potentially shared data, and exception handHng . 
. ,. . • :_ • - ; . . f , ~ -~ • I ::t_, ": ':-, . f_ _. : ·, :', ~\{;; , ~ . . .. 

lt also appearec:fto be"difTkult to produce a welfformed algebraic specification for a 
. . : ~ ~ . . . ,:~. -·· .-:_,,. £ ,.. .. ~-~··:.·! 

new data abstraction, especially if the exact behavior required was not yet completely designed. 
_ . : , .... ~-,- ~ ,, __ --~_.-.:: .. ~_,,. ._t~· .. l · _'.--:f-,,._,-~.:: 

In our experience, a typical attempt to design a data abstraction using axiomatk specifications 

tuns as follows. 'After analyzing the probffm, 't~ ~ttons of, t~ data abstraction are 

determined, and the inputs and outputs of ~ch operation ~re iderttified .. When the in.tended 
, .-f ~- • 

behavior of each operation on a typidl -~ of input values is f~iriy ~~II understood, a 

preliminary , axiomatization is constructed. th~ process of ·,,~~Ing ttie pr~liminary 

axiomatization helps to pinpoint special cases and. bound~ry values for the input domain, a,;d 

the problem is analyzed further to determine appropriate'behavior fot the ·operation on unusual 
, , 

or UI formed input values. The axioms are examined in'hght or the.new design decisions and 
·,, 

are adjusted to conform. After a few iterations each or the axioms looks plausible when 

considered in isolation. At this point the axkJfflatiiatton ts examined for consistency and 
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completeness. often at the cost of considerable effort. Fairly often we have found such an 

axiomatization to be inconsistent, and less often to be incomplete. It was disturbing to find that 

plausible axiomatizations could be ill formed, and that the effort of producing a precis~ 

description of a seeming simple design decision could be quite large. 

We also designed some data abstractions using abstract model specifications, and 

found that the process was much easier. One point was that inconsistencies in the design would 

usually surface immediately, because ii would not be possible to define some operation so that it 

satisfied all of the informal constraints, while the usual result of trying to axiomatize an 

inconsistent set of design decisions was a inconsistent axiomatization, which was often difficult 

to recognize as inconsistent. Another point was that minor perturbations in the behavior of an 

operation were easier to describe for an abstract model specification than for an axiomatic 

specification. As long as the meaning of the abstract representation is not changed, a 

modification in the definition of one operation cannot affect the other operations, since in an 

abstract model each operation is defined in terms of its effect on the abstract representation. In 

an axiomatic specification the meanings of the operations are defined in terms of the relations 

between them, so that a change in an axiom can affect many operations. 

While the above is a very subjective judgment, based on our personal experience with 

a fairly small set of examples, we found that other people trying to use axiomatic specifications 

in the design process had similar complaints. This motivated a more extensive Investigation of 

abstract model specifications. 

We found that previous work on abstract model specifications was largely Informal, 

and that abstract model specifications were used without saying what the specification language 

was or what the specifications meant. Since abstract model specifications appeared to have 



advantages from the point of vn"of design, estabflsl\lrig a precise mathematica'I formulation of 

'lM Sf)'Ctftcatlon t~ arOSl' a1 a nituraf sut,goat: ''ltd~ process::ot pursuing this g~f it 
bemne apparent thatdynamk tteatton of'data -~\tai cM~'arici ,xcepiioo c~ •• ·~ • 

. could be r~dily tncorporateit' into ihe .. friWnortC 'Xt iftia{t~ distfr,g work on ·a~at'k 

:spectfbtfofts dkf not addms these tssues; ihittr\tpt '~ :uji ht t~ de5'gn'\ ~ programs. 

. -._. , . -,,,o;-· -:.::~ ... ·,1·' .. ,;',t >·~:-: .·".. !, ~ - t~·•_·! 
As a fesuft, th, direction of 'tflb r~rch'shiftea to ctnelapirig· and extfflding the abstract 

modd specification techn~. and~ original•p~·~i_fset:a~ as'a· subject for.future 

tnvesttga:Uon': 

. - ... ~ - . ' . ,·' -. .' i . . . ;.. . . . 

M the intttests bf (feffnlng' I problem thaf cari be 'treated in depth an a reasonable 

amount :o, ttme, we have nfade ~; rtstrrd_; oh t11e'·scope or·ofJ;r,n~~igat~: ·,'T~ 

restrictions are exptkttlf statfll W~~ ;f snott'~iid if~•f«it t~ restriction~· and .the 

reasons ·ror inttooudrig limn ta~ tie'fbund tn A~i~ "(' . 

w, have not' conskle~ed ca~·;w~ ~tabl{d~~ tS shared by concurrent processes. 

~ _- ,.,~--- .. ~".',,"-; 'l , -. :'.; '~-·,_. :; f~;·, ::~: ~'_;.n.;:r-' ~ i-, '. ·-... _· , ,: ~ [ 
so that a model of a computation as . i linear. sequence ot opentions ts sufficient for our 

purposes; We hav'e auumed 'that' each opm~ is dtterminist~ so that ~very c~tatlon · 

produces . a Unlqlle result. . ~· assumpt~s ~d to a 's1mp1et ' characterization of the 

obsffvatile ~havkW or a data absttattion than -wou1cfotfier~ise be possible: 

We have adopted a model of exception handling in whkh operations are terminated 

If they· raise an exception condition. This restriction· allows the Mhavior ~ an operation to be 

described fndepffldffltfy of the behavior oi eicepifon hand~. and, 
1;xceptton handling 

m«hanisms, and·teads to a clean model ofcfata behavior. 
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We have assumed that each operation depends only on the properties of the data 

' 
objects passed to the operation as arguments. Operations that depend on global data or on own 

·' 

data (i.e., operations with internal state) are excluded by this assumption. Without such a 

~ ~ , 'l 

restriction on the operat1ons,_systems must be trnted where the behavior of a data object may 

be affected without applying any of the primitive operations associated with the data 

abstraction, and the concept of behavioral equi~alence (see Chapter 3) must be reformulated. 

Since the behavior of such structures is not. completely characterized by the bmavior of the 

primitive operations, we do not accept them as welt formed data abstractions. 

1.4 Results of this Work 

We have invttstigated the structure of mathematical models of data abstractions, 

developed a general framework for proving the correctness of implementations, and proposed a 
. ~~<-- ~ . \1 

prototype specificat~ language based on these results. 

A specification can be viewed as a method for singling out the structures (or modeb) 

that exhibit the desired behavior from those that d0:-~~Jht:.:~~l.!$pJl-atitn qn 
~ ~::r 

be identified with the class of models consistent with the specification. This gtves us a basis for 

judging whether or not two specifications in two different formalisms have the same meaning. 

The set of structures consistent with a given axiomatic spectftcation contains precisely. those 
-, ,_ q ;,: :.!h.'.: ,,. -' 

structures in which all of the axioms are true. An abstract model specification defines a 

particular model exhibiting the desired behavior, and the class of all models consistent wath the 

specification contains just those structures with the same externally observable behavior as the 
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standard model. In this work, we have formaHy characterized the aspects of the behavior of a 
i1l ~; 'I'\ - ;'\ ., ] ~· -

data abstraction that are detectable by an external observer. 
. , 

-:,"" ;; 

We have described two classes or algebraic structum, exuption algebras and state 
.-- : ::_. , . :.· - ,-i 1,:'.C!:', ·•J:" ·!"''}j~ ~· -c/ l~ . -- - . 

machines, which can be used as models for data abstractions with exception conditions and with 

state changes. Thts worlt wiH be or interest to people wtsh .... to extend the axiomatic techn~ 

to include exceptions and state changes, since it explores the kinds of, ~res that ",ID have to 
; ~: ; , : { \ / - , ~ - . -~ : ~ ~ .. ; . ( . , 

be defined axiomatically. 

1.4.2 Proof Techniques 

In treating a range of behavior including object creat6on, mutation of data. and 
..... ~ .- ':! ': ~ .:._/ _; ~ ~ -- !,-. ,:.,: • • • 

exceptions, we have found it n«asary to refonnulale the crtterta for the correctness _of a 
-fL ~ ·-r-~ ..,;-1(_\Vjf•-~ -1i ', - 7 -

' 
proposed implementation or a data abstraction, and to develop new techniques for proving the 

.:;._~ ·· '.;-.:·: ·";-=.~ !;-:._..: ~d:_: ·'-:,,t -~ ;f!;,, ; ~' -• ;t ~-_, , 

correctness of an implementation with respect to the new criteria. These techniques are or 

Interest also to people who wish to verify mutable ifiiai .... ~W tlfta'al,\tr~tons -41td 

respect to axiomatic sp«ifications. 

We have developed a specification language for defining data_ abstractions based _on 
·:v,:~ ;~I ~-'.·:~';_3i:: ..,,_i:; .~11 ···1 .::. • 

abstract models. This language has been given a mathematical definition that Is sufficiently 
~ ·,...-1·. ·, 1. } .. :1:'h -/~~ . ,. . ,, 

formal to support mathematical proofs or propttties or the specification, and of the corrKtnns 
• > • • • ' • ! . • ('~ ~ ·;- - - •. '. ' • • 

of implementations. We have made an effort to incorporate aH or the features necessary for a 
, '·..: :: .~i >~ :-; ; ! . . . . ' ·- '. , 

practical specification language, rather than to define a language designed to facilitate proofs of 
. - : ; . . t ! ·~ ~ _t : ' } . : ;. : ~. ~-- : • --- • 

meta-theorems about the specification language. We have intended this language to serve as a 
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prototype, which can be used as a guide for people designing practical specification languages. 

The language presented here has been designed primarily to be read and written by humans, 

rather than to be mechanically processed (e.g., by a program verification system). In some 

applications it may be desirable to use a more restricted language, in order to facilitate 

automatic theorem proving at the expense of making the specifications harder to construct. 

1.5 Overview of Remaining Chapters 

In Chapter 2 we expl;iin the novel aspects of data behavior associated with exc~ption 

conditions, dynamic alloution, and mutation of potentially shared data, and describe algebraic 

structures suitable for modeling that behavior. 

In Chapter 3 we formally define the externally observable behavior of a data 

abstraction. The meaning of a data abstraction is associated with the class of all structures 

exhibiting the same externally observable behavior. The concept of a reduced model for a data 

abstraction is developed and explored. 

In Chapter 1 we present a specification language for constructing models, along with a 

mathematical definition for the semantics of the language. Each well formed expression of the 

language denotes an alg.ebraic model. The construction of the model ls explained, and the 

requirements an expression must satisfy in order to be a well formed specification are 

established. 

In Chapter 5 we state our basic definition of the correctness of an implementation, and 

develop a methodology for proving the correctness of an implementation with respect to a 

standard model for the data abstraction to be implemented. The methodology is illustrated by 

examples of correctness proofs. The basic definition depends on the material in Chapter 3, 
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while the ex;imples use the language developed in Chapter 4. 

Chapter 6 contains our conclusmns, a comparison of the abstract model specification 

technique to the algebraic technique, and indications of directions for future res(•arch. 
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2. Modeli~g Data Behavior 
~ ' . ,-, . , 

We will ddine the behavior of a data abaraction by constructing a standard model 

~h1bittng that behavior:·· A ~~ is' ~ ·fuath~~t~t st~'.;';~-i~~,.'g ~nt;;p,;tatlons · for 

the objects and operations of the data abstraction: The· ~xternally observable behavior of a 

data abstraction consists of the results of all finite COfflf>~rions ~ from the primitive 

operations of th~ d~ta · abstraction and ytekting' objects ~--~ types.1 · An abstract model is 

JC • _ ,· • • , ~ • , • ',-. ~ , t l... ~- ; •. • t , ' 

used to specify 'the externaffy observable behavior of a data abstraction. All properties of a 

model that are not externally observable are irrelevant, in the sense that they do n~ influence 

whether or not a proposed implementatiOfl of a dtta.2;~~
1
qarTett "'-it-::.i~ to,ttie 

standard model. We will say that two models are 6tJ,aworq.ll7 19uivalmt if and only if they 

have the same externally observable behavior. ·tlf t~o stn'..ctum ar~ behaviorally equivalent 

then~ they ate models of the iame data,~bstiaction. · Behav~I equivalence is treated in depth 

fh Chapter 3.· 

' The standard model is ·intended to be a· •~phk: image or the data abstraction as 

- 1 • _ • ,", ':\ • • • ~ , , '.; t--J -, .·· j ~-I . : 

conceived by the designer: every object of the da'ta abstraction imagined by the designer should 

correspond to ·a unique object .. i,n th; sta~ard model. and th{~re~dence should preserve 

the operations. The stancJard ~el or· an abstract~' an be identified with the structure 

ctmceited by the designer; thus bridging the gap between the inaccessible pattern in the 

I. Except for the boolean abstraction, the only way to interact with the objects of a data 
abstraction :n by means or the prtm1tin operiftehs:10 that the only way to export anr 
information from an abstract type is by means of the primitive operations yielding results _of 
sonte other type. The intere5ttd- ri!adH may :wtsh to·atrnpa~ this idea with the' treatment of 
sufficient completeness in [IO). 
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dt>Signer's ht'ad and a publicly accessible mathematical strucbl~e:· A ~elf designed st11nda-rd 

mod<'I should be reduud: U should not be ~ib~ t~ ~!~~,,a., ~"fitft~1,0>e._~el.or to 
- - ~ . " 

coalesce two., distinct objects without a,ff~t~g}~;;~t~lft1~~'.rab.,,.~~iof ~ ,~.~; . 

The concept of a reduced ~I is discussed further Jn ~ft' 3. _ r, ._ 

In this chapter we. wi_N consider var~s .-speas qf, t!'~ ~yiqr of .a d~ta ab$b:~ctt~. 

and show how they can be ~.eled using a,~.~ ~!~.r~, -~,U, f~rsL~,tia .. ve ~.~~ 

examine the internal structure of a. data abstrl(t~ ,nc1 !"F W~J! t,,.wt,~h a_ set qf data 
; - r . < - \-·-- i . ' _._ _,. 

abstractions can be related to tach other. 

9.1 Types atnd Subordinate' ·a.1,straollona 

We wtn call a set of data objects subject to the $a~ ~•ioll:$.~,IJ/lt'. Tt,e definition 
. . . :•'., ._,-.,- ' ' . ·, 

of a new data abstraction ~~rod~ a ~ t~ the_if'!~~ .W'!,i~k~heJ_b,.~~' , : ~~ 

operation of the abstraction involves objects of the principal type, and often also f?b~ of 

other types, which we will call the subordinate t111ts ~ tf.tt. data ~f!~· l:or ep.mple, the 
., ~: :i:~- , .. ",~--- :-.:_ ,--;~).:~_; · 1 [n ,; 1c.·~--. j : ,-. : ' 

set of integers is the principal type of the integer d~ta -~~ractionr and,, t.~e set pf ~ns Js ~ 
, ; • > • - • . • ~ ' - ... • • 

subordinatl' type, because the integer abstra~ion has the ~!~tions • ,nd ,<. !,hkh map ,pai~s of 
, " - . . -, ·- ' . . . .,, ' 

integers into boolean$. Every type is the principal type of.~ un~ d_ata.abstra,ttion., knowa 
. . '. \_ ;.:. ·i- ,: - 4, . •. ' 

as the dtjlntng abstractton of the type. The primitive oper~~ on •~ ~ject.s of a Jype are 

just the operations of tts defining abstraction. 

A modeJ for a data abstraction must contain Interpretations for the principal type and 

~rations, and also for the. subotdinate l"'5,: .-ytt.,tft, ppentten• _.,.~ -,jects :of the 

subordinate types as welt as of the principal type. Eadf. of _,;....,_..e types of a data 

abstraction d b the principal type of its defining abstraction d'. Thus we are usually dealing 
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with a set of related data abstractions, and with a set or related models for those abstractions. 

We will assume that systems of data abstractions are defined incrementally, where the definition 

of a model for a new data abstraction explicitly introduces an interpretation for its principal 

type, and where the interpretations for the subordinate types are taken from the models for the 

. 
defining abstractions for those types. This construction guarantees that a type is not given two 

different interpretations in a single system or models. However, a bit or caution is required, 

because It may not always be possible to define the data abstractions in a system in an order 

such that the defining abstractions of the subordinate types of each data abstraction are defined 

before the data abstraction itself. For example, suppose that the fixed point number abstraction 

has an operation for converting fixed point numbers to noating p9int, and that the floating 

point abstraction has an operation for converting floating point numbers to fixed point, say by 

rounding. In such a case, floating point numbers are a subordinate type for the fixed point 

number abstraction, and vice versa, so that it is not possible to define both types in an order 

such that their subordinate types have been previously defined. 

In order to make the idea or a hierarchically ordered set of type definitions more 

precise, we define the direct subordinate and subordinate relations as follows. 

Definition 1 Direct subordinate relation. 
If d 1 and d 2 are data abstractions, then d 1 is a direct subordinate of d 2 if and 
only if the principal type of d1 is a subordinate type or d2. 

Definition 2 Subordinate relation 
The subordinate rnlation is the transitive closure of the direct subordinate 
relation. 

We would like the subordinate relation to be a well founded partial order, but this need not 

always be the case, because two data abstractions can be subordinate to each other, as in the 
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above example. However, if we group together. an of the data abstractions that are mutually 

subordinate (i.e .• take the quotient with respect to the largest equivalence relation contained In 

: ,._ ,:.. . ·. ;,; (' ~ .- ·'. ·.- !'"'i. . ,,_ ·.;:q.•-'; ,: ..... - J ;: , -

subordinate), then the subordinate relation does in fact induce a partial order on the groups 

(equiva 1ence' clasm). 

W~ will treat each group oi mutually sul»ordlnate data abstractions as a single 

module. A model fot such a module witl. have several principal types. one for each data 
. ·, .; 

abstraction. Modules ~respood t~ the equiv~lfflce eta~ introduced in the previous 

paragraph. The subordinate relation for modules ts alwap a partial ordering. This ordering 

is· also w~lf founded, bec~~se the set of data abstractions in any ~I system is· finite. Since the 

ordering is well founded, we can use structural induction wtih raped to the· subordinate 
,~ .• . . :-~, ,:;;,!",-·:::-• .-,,-:: n~~ 

relation on:modules wh~ provtng'ph:,pe'.rttes' of systems of da~ ·abstractions (i.e .. to establish a 

·!'_ . ._-._ l'r"> ;.! _: - . , \·~· t ~• .. ,.,, - :~i;:. j:"'!r{J~~ iL·--•~ . ) i •, i 

property for the data abstractions in the module-. we can assume the property holds for aU 

:·. ·~ ; ,; - ~-:. :~~· : 

abstractions subbrdlnate to m). 

-~ - . .._ ( 

It wm usually be tht' cast that each module ddlna a single data abstraction, with a 

single principal type. In the following discussion we wift often tadtty assume that each model 
, ·~;.-~~';:.;~ ;. ,__ --t~ 0:Lv j ..... ,1·Ht, .-~i·f 

has only a single principal type, although the formal definitions wiH be formulated to deal with 

any number of principal types per model. 

2.2 Simple Abstractions 

The purpose of a standard model specwcat~ ~:IO-ero~.an inwpr$tion wceach 

type and for each operation of the data abstraction it spedfies. A well chosen standard model 

should provide interpretations that are clean and simple. ·,The most witab~ modeling structures 

depend on the kinds of behavior · that must be de~ribed.' The simplest case is a data 
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abstraction without any exception conditions or any time dependent behavior, because in such a 

case the types can be interpreted as fixed sets of constant values, and the operations can be 

interpreted as functions on those sets. We will refer to this kind of abstraction as a simple data 

abstraction. The early work on algebraic specifications for data abstractions [56, 10, 7] dealt 

primarily with simple abstractions. Following their lead, we will model simple abstractions as 

heterogeneous algebras [I]. 

A heterogeneous algebra, also known as a many sorted algebra, is a pair (P, F), where 

P • { Pa I a c A } is an indexed set of phyla (also called carriers), and where 
\ 

F == { F {3 I f3 c B } is an indexed set of operations. The index sets A and B contain the names 

of the types and operations, respectively. Each phylum in P is a set of data objects. Each 

operation in F is a function F {3 : P a({3, I) x ... x P a({3, n(8)) ~ P r({J~ where n : B ~ N, 

a: B x N ~ A, and r: B-+- A are functions such that 11(/J) ~ 0 is the number of arguments 

for F fj, a(f3, k.) is the type index for the k.-th argument of F fj• and r({J) is the type index for the 

return value of F /3· and where N is the set of all natural numbers. The principal and 

subordinate types of a constant data abstraction are interpreted as the phyla of the algebra, and 

the operations of the data abstraction are interpreted as the operations of the algebra. 

Simple data abstractions are easy to describe, but they represent a very restricted class 

of abstractions, which almost never occur in practice. For example, the fixed point number 

abstraction, a common and relatively simple data abstraction, fails to qualify as a constant data 

abstraction on two counts. First, an attempt to divide by zero results in an exception condition. 

Second, fixed point numbers have a print operation, which modifies the state of an output 

stream. Exception conditions and state changes are discussed in detail below. 
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2.3 Exception Conditions 

.Many programming 1Mlgltagts havtJ t1ata abstractlOfts ·with operations that rilay signal 

errors or ni~ txal'(ton cP1tdill01u (we pmeriM' tatter tmn): · A coinnK,n 'example, ts the integer 

data abstraction, ,,...-e an atmnpr to 'fl•ndt"by tm,muks tn>afr~~iliit . fn''gerietal~ an 

operation should raise an exception whenner tt ts catled with an argoi'nfflt Olitside Us natural 

domain of definition, -Siluat.s,.fille thts· tre·cptit~IIOtt~ 10 ·tt.at tt b 'tmporiatit to Include 

e~s in our model of data abstm:tiofts; 

2.3.1 Termination vs. Resumption 

An exception causes a dqaruue from the ,oraaa1 Row or control, to execute a program 

frag~. mum<W. to NfttUtitbe'auptiGnah:andlfllir. 'hi cases-~ thi'M:eptlon ftandler 

tan f«oVff. from lM exceptia,,, ~ tvmpUlatWlft ma, conttfiue; ancf Gthfl'W1W it mllst .' 1,e· 

aborted. There is no univffsaUy a«eplld med" fo, thtS ptoa!SS. 

One viewpoint, whkh we :shall adopt, b thatu operaflon may have a number of 

return points. one for the normat case,, afld ene for 'adt e,..cepnon. We sftalt refer to this·; 

viewpoint as tht- termination model or extq,tten handting. Ac:tording kt the termination model, 

raismg an nuptton is jllst a special way of tttmtnattng an operation. 

An alt«nattve, v~wpoiftt. wftkh is commonl'(held, ts· that an exception causes the 

excq>tion handler to be invoked as a procedure, wtth lhe tmplkattan that the operation that 

raised the exet"ption wtH continue after the ha~ler returns. We'wiH reftr to this viewpoint as 

the resumption model of exception handling. 

Both ·alternatives have been imptemented. For example, in CLU an exception 
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conditions always terminates the operation that raised it, while in PL/I the operation ls resumed 

(for one class of exception conditions). A detailed analysis and comparison of the termination 

and resumption models can be found in [30), where it ls argued that the termination model has 

a much simpler behavior than the resumption model. 

2.3.2 Termination Conditions 

We will assume that an operation of a data abstraction may terminate in any of a 

number of termination conditions [cf. 13), one of which (the normal condition) corresponds to 

the normal behavior of the operation, while the others correspond to the exception conditions 

that may be raised by the operation. The effects of an operation and the number and types of 

return values will usually depend on the termination condition. For motivational purposes, we 

will assume that when an exception occurs, the data objects produced by the operation. if any, 

are passed to the appropriate exception handler as arguments.2 

A specification for a data abstraction with exceptions must therefore specify when each 

exception occurs, and what the results of the operation are for each termination condition. The 

definition of the host language must specify which error handler is associated with each 

occurrence of an exception, and what happens after the handler terminates. The only constraint 

we Impose on the host language is that whenever an operation raises an exception, the 

operatipn Is terminated before the handler is invoked, arid may not be restarted.3 

2. This corresponds closely to the exception mechanism ln CLU. In other languages, more 
roundabout methods may have to be used for passing information to an exception handler, 
such as assigning values to global variables. 
3. This constraint is implicit in [_10] and [8). 
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2.3.8 Bxoeptlen Algeltras 

exceptions, we have to extend the notion. of a_ ~' ,lg~ra;, lo J f)eterC?gert~J 
-~ , ' .· ., : . ' ' . -.. , . ., , . . - ' -

algebra as described in Cll each operation is a function whose range is some phylum of the 

algebra, but a typical ~ration of~ data abstractioff ffiay ·~ ~'lft~rj ~'a1~\,b,;Jt~ ~nd 

it may return objt'cts of different types in differmt termination ~ition5r . R,Jher than 
~ ,. • - s ·: •·:, : -~{. • -, ; t-' - • - - '~ ; ~. 

Introducing phyla with a complicated substructure, ~ .Prefer to relax th~ constra~nt .on .~~ 
• - - ,_>.; : , ' . -:-1 ' ,- . : ·. : ._' ~; -~ '_ . ., ':'" ;_· . .. ,·. ' ·-' 

allowable ranges of the operations, since wt would like to maintain a simple corr~ertce 
_.·,,;,,.: ... - -_--: ' . . . 

between the types of a data abstraction and the phfla of the mod~inJ ,5tnact~rf- ~n an 
- -· . - --- ~ :-:- --:t t ~-: _;-:r~: ~f! '. ~ • .. - ·. - . ~, 

e~ception. a~ebra, the range of a _typical ~at~,1~. t~~,~~e"',,~~y~ ~; ~·~m~, ~d~.ts~-~~-~

of which ·is a cartesian product of some number of phyla (possibly ffl'O,f ). 
-':.. : l _7' ; '~ 5 ·: ~-. 

We will also include tt,, index sets and- the functions describing the types of th_e 
_,·,~;: -• ' -~ •• ~ --~ _;_,;j.~ -.~-~? -. . -. ~~ ('. 

operations as explicit components of the exception afgebn, to prevm, confus~ tn _situations 
• ,-_° • J • 0 .< ~ -; ,K - C : 0 '."' • • •, > ~ 0 - : J - '--- : •• ~ , •'• ' • • ••• i ~ •• • > 

where we are dealing with several algebras in the same context. 

Definition 3 Exceptlott aftebra- · · 
An exception alg.t>ra is a tuple ( phyla : P, operatiCX:Ws: F, arglengt~.: n, argtype_: a, 
t<·: t, rlength: '"· ~': r, (1Pfttlmt!S:: 8; cipMM': B;·~•~',.;'pt: D ), 'where 
P .. {Perla< A J is antndexed St't of phyla, a~ where.~.~ I 1-'oJtJ < B) is an 
indexed' ·ser of ·operations, such it.at· ea·ch)i ~ati&rt "in F is a function 

F fJ : p a(fJ. I) X ... X p Q((J. n({j))-+ u ~ ~~,I J ~; WJ~!'~e.,v.~,~ ,the .dtsjoipt~ 

union operation, and where R,,. • P r((J, 'T, I) x ... x I' r(/J, 'r, r,s(/J, 'r)t n : B --+ N, 

a : B x N -+ A, t : B -+ P(T), m : B x T -+ N, r : B x T x I -+ A are functions 
such that n(/3) is the number of argufflfflU for F fJ• a(tf~ t)· is the type··ancte>c for the · 

k-th argument of F (J• t(tJ) is the set of. i1U ,~~ ~,may.,r~sult from 

'f. The empty carteslan product is a singleton set containing the empty sequence. 
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F {3, m((j, 'T) is the n~mber Qf object~ return_~ by Ffj,, i,"! t~ _termination COJ!~ition T, . 

a~d r({J, 'T, k) is the type index ·for the
0

·£-th return ~~lue or·FfJ. in the termination 

condition T. A it-the set of typt t1ames. :J..u dte;.sa.d .-.Cioffwames, Tis the set· · 
of termination condition names, and D ~ A contains the names of the distinguished 
principal types. N is the set of natural numbers. 

The cletails of this formal definition or an exception algebra will be used primarily in Chapter 

3, and in the .proofs of the ... t~~s,in A~i• :JII. iTheilollowing ·exampl~ mav ·llelp to 

clarify the meanjng of the_,vaJ;iow ~mts·~fc-a.,t;~Oh atptga~ ·Let )f·be an ~•ton 

a_lg:~bra ,model for~ tt,~ ~egcr data abstraction •.. :fbeft we:t.ve: 

A. typenames - { "int", "boolean"} 
~ . I " I " " . • "d·1·~ .. .. ~· 1 ~. op~;• ··P us '. -~tme5.,, l .erenq ft qqat-·. ho '1 ; 

A. tcnames = { "normar, "zero_divide"} 
A. pt • { "int".} 
A. phyla int = { 0, I, -1, 2, -2, ... } 

A.phJbbooteah •It, F J 
A. operationsptus = t (x, '1, z) I z • x +,} 

QJ.10tes have been used to emph,size that t~e first foyr ~ 'WfllainJ_ Ra.wes (strings) ,rather. than 
,-' - ,. -. t -· - . _; ·-

the sets they denote. Note that an algebra is a. la~~ .t~ple~ ~r,d ,that. we ~re using a d.qt 
' ' ' ;; ' \ I;;.; { .,..,; ~~ ' ,, • ,, ' ' 

notation similar to that used for the components of r~orcts .jll P~~CAL to refer to the 

components of the tuple. If A. arglength • n, A. argtype • a, A. tc • t, A. rlength • m, and 

A. rtype .. r, then: 

n(quotient) • 2, 
a(quotient, I) - a(quotitnt, 2) = "int", 
t(quotient) .. { normal, zero_divide }, 
m(quotitnt, normal) • I, 
m(quotitnt, zero_dlvide) • 0, and 
r(quotitnt, normal, I) = "int". 
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In the spedfic:ation language described in Chapter.•t '1ft wtn descr~,,the tp infor~!ton for 
'.: • • ". • " : • • • • ,- , a ;. - • ; ;: • ! ' .· '. .- e· : ·:-i.; ~ ;_ ~ ,_- - ~ . , . . : 

an optralion in a cempact syatu Jllullratecl .,.,_.,.,_....,.,aperatidn. 
,_. 

quotient: int x int -+ ( normal : int ) + ( zero_divide : ) 

The range of ~n •nation, which is a t:Hsjoint Ufllolr;'isiwnlft!ft ·as the Mn of the con,p:,nertts 

for each termination cOlldttilJn. :ff"- mRlp8MM,ttw,._dif-1i'N ' ·. · ·., · ·· "tond'ition 1' ts 

written as ( -r: R,, ), whtte the ftOl'lital~~-,w~ by'd~illg ttte·•·ng1e 

brackets, the colon, and the condition name. 

The reader should note that te~ -dfiiltlafti.:.ant·dna objlcts afe'trealed ln 
i 1Jd-: ~}-i':t.\:~ ~~'isrrr~ 11n } :-~iTtf .,-.. ·;., 

differfflt ways, and that the inputs to an opentton are always ordinary data objects~ whlch ate 
• ~ - r t ! , . 

. i 

never used to reprnmt exceptions. In previous work on spedf y .. data-~ ~hstrJ!~.tfGRSi with 
,., ;e_, :- \ C -/ I i _,;r-•, • • - ,;•, 

exceptions, exceptions were modeled as distifteuished' auf,UMt ti6j«ts, whk'h Wtte either 

elements of extra phyla [IO] or distinguished subsets of the ordinary phyla (81 We. have 

foffowed {43] In Introducing exptidt named t~at~- ~itlOns. ~i~taining a disttnctron 

between t~mination conditions and a'ata objects,: smce. we 'feel' that this approach pro•kl~; a 

more coherfflt and dfsd~iined vlew of the exceptions auoclated with a data abst~actlon. 

2.4 Time Dependent Behavior 

Many programming languages have data abstractions with data objects .. wb~ 

properties may be changed. Two common examples are ~ds ip rA~C:~L. and _,rays' in 

extfflded LISP. Since data abstractions with time dependent properties are in fad widdy used, 

it. is important to develop a formalism suitable for specifying their behavior. 

An operation Is non-functional if it is possible to tnvoke the operation with the same 
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arguments al two different times and get two distinguishable results. A data abstraction 

exhibits time dependent behavior if it has at least one non-functional operation. Data 

abstractions with time dependent behavior will be modeled as state macliines. A state machine 

is a special kind of exception algebra containing a distinguished phylum of .system .state 

functions. The progrC'ssion of time in a computation is represented by the sequence of system 

states of the state machine.5 

We distinguish two kinds of time dependent behavior. If an operation changes the 

properties of an existing data object, we will say that the operation mutates the data object. If a 

data abstraction has no operations that mutate any data objects, then the abstraction is 

immutable, and otherwise it is mutable. If every invocation of an operation returns a data object 

that is distinguishable from all data objects that have been computed previously, we say that 

the operation creates a new data object. If a data abstraction has no operations that create new 

data objects, then the abstraction is static, and otherwise it is dynamic. It is possible for a 

dynamic data abstraction to be immutable, as illustrated by the unique id abstraction described 

in Chapter 4. 

Mutable data abstractions are usually dynamic, since the possibility of sharing data 

objects goes hand in hand with the need to create new data objects. A change in the state of a 

mutable data object is visible in a 11 contexts in which the data object appears. If a II of the 

contexts in which a given data object is used are not known, as is often the case in a program, 

then the data object cannot be mutated without risk of violating the assumptions made about 

5. We are relying on our assumption that a computation is a single sequential process. The 
history of a parallel computation has been described· as a partially ordered set of local states in 
{55]. 
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the data object in some of the other contexts in which it may appear. A newly creat~ <;tata 
_ • , ~ ,4~•-•·i~ -'..•. :,,•>< ;~ •-~ ~~_::''-"_~_?.•, 0 ; ~•-•.,--__;. :...,_:~• ~ '~ ,;a::,~1~••-'.!., 

object is known to occur only in the context in whkh it was created, and can therefore be 
: ; !-:· .. :! '. ~--.; ., ~ t • 

mutated without risk of irit~rfering with other paru of the program. 

Data abstractions that are mutable or dynamic will be modeled as state machines~ since 

they exhibit time dependent behavior. Data abstractions that are::both static and immutable 
• 3'f4 H~ ;{ ' ; '·, .. ..,, ·,-: ;,' 

can be modeled as exception algebras without introducing states. The rest of this section is 

concerned wirh state machine models. 

2.4.l Data Objeota 1Vs.0 Vari.bles 

In the early work on abstract data types, abstract data objects were treated as 

immutable values, and all changes of state were identified with assignments of new abstract 
· .'f..t-1,. • , - . ,.,. 

values to program variables. This point of view is now widely ~• a~ is often taken for 
• __ ::.r_ ··,:; 

granted in work on specifications for data abstractions. However, as clearly stated in Hoare's 

pioneering paper (18l this approach is not suited for describing programs that manipulat, 

pointers, or more abstractly, for describing mutab~ data abstractions that allow sharing of 

mutable data objects. 

The distinction betwttn the assignmmt of new values to variables and mutation of 
r:.•r 

data b«omes important in cases where mutable data ts sMJrtd (several variables denote the 

same data object). Consider the example from LISP illustrated in Figure I. Suppose that 

initially the value of the variable xis the list (3) and the value of the variable, is the list (i 5). 

The assignment {sttq x 7) will change the value of x to ~ the list (i 5) which is identically the 
" , 

same list as the initial value of 1· This assiJiiMent has not influenc!d the properties of the l)$t
0
S 

(3) or (i 5), and therefore has not affected any other variables whose values happen to be the 
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Figure 1. Shared Mutable Lists 

Initial state 

After (setq >< yl 

After (rplaca >< 7) 

)( ---> 

y ---> 

X -+ 
t 
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3 I ni I I 

4 *==l====> 

I -------------

5 I n i I I 

y -+-> 4 *== J ====> I 5 I n i I 1 

)( -+ 
I 
I 
I -------------

y -+-> 7 5 I nil I 

same lists as the original values of x or ,. If we now modify the list x by executing the 

operation (rplaca x 7), we will have changed the first element of the list x to be 7. Both x and , 

continue to denote the sam.e list (the original value of "j}, but the first element of this Hst has 

changed, so that the value of either x or "j would print out as (7 5). Whenever a data object is 

modified, that change is visible in all variables that denote the data object, and in all other 

data objects that refer to (or "contain") the modified object. 

The classical approach of associating all changes with the variables does not work 

very well in cases where mutable data Is shared. If we were to insist that list values be modeled 
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as immutable sequences, and that an changes be_ described by assigning new values to the 

variables, then we would have a-sittlattort-where~rfllaa operation could change the values of 
·- -- :;, 

arbitnrily many varjables, depending-on how the-data was shared. By associating states, wit~ 
- • .• ; !" - '· , . . -

the data ebjtttHhe~lves rathft" than-with the variables. we can overcome this difficulty. since 
. - -· :t· ! ; 

changes can-~ locatiffd in an object centered dftcription. An example of a description or a 

mutable data structure wtth shared subcomponents can be found in Section 2.i.<t. 
'•. 

- ' . 
The treatment of potentiaHy shared mutable data has been one of the rnajo(' goals ,of 

~ '. - '. - : - -, ~ - -~ -:: :- ; 

thts wor_k· Our 'l'P~ch is ma,sr t~ matdttc? ~ abject oriented languages such as CLU 
; ,.- -:; .. ~;; - ·- - ; 

and· LISP, -amt- our -work is more ·or 1m appllcable to languages with pointers and heap 

. allocation, such as Euclid, Algol 68, and PUI. We tr~t dperations as functions that take a 

system state and some data objects, and produce a new s;,stem state and some£aafa ob~s.'·'T~ 
. - , 

variables of tile hou ptognf'ftmtng flmguage do oot &plltitij enter into our treatment, and we 

leave a discussion of the assignment of data objects to variables to the definition of the· host 

programming .language. Our treatment is direly applicable t4h-the programming -language

CLU. in wtttcb the invocation of an opmtbl or p~llfe fflily'dnuigilhe properties1df sMie 

data objects, but is gnarantt!ed: not to ctistum the usodatiotrbrtlilc!e\1·••nab"s and data objects. 

For host programmmg tatlpaps wt.ere the tR¥Oeafitiltof a proced11tt may: alter the assoc:tfflon 

betw~ variables and data objects, -as in (imptn'e} LISPi EucM. ~'1gol 68, aind· PLJJ; a~ 

corr"pondence has to:be.fMde between tM operlllom ohhe lhguap m<f •tfte operations of 

the abstract model for each data abstraction. 

Tht're are two ways of; incorporating abstractlens wtth · operatit>ns that assign to thetr 

input parameters tn our framework. OM'way is toa,nstcffftht absrraetions to be Immutable. 

with operations that return vectors of values to be assigned to the output variables of the 
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procedure. Another way to model such operations is to consider the L-values (cf. 50] of the 

variables to be, paTt of the datl object rather than the var~6le. ahel to treat the data abstraction 

as mutable .. 

The first approach is well suited m cases where there •~ no sharing of mutable data. 

Aliasing can ill fact introduce $haring •wettn the fermal:pa~ers of a ,caff-by-reference 

procedure, so that special care is required in cases where the sa~ variable is pa~ i~ more 
: . ,; ' 

than one tffgt,meht posttkm [l?J. 

In order to describe data objects w~ properties are sutiject to change, we will 

introduce a· system state "function~ whkh maps each· dahi ofiJ«t into its properties in the current 

state. Only· the permanent properties of a data object' ari reprtifflted by the interpretation of a 

data object m a state machine model, while the proptrties'of a data object that are subject to 
· change are represented by the image ofthe object uildtt thf iystem state function. F~r -~~ 

mutable data abstractions, the on1y permanent property' of data object is its identity. 

2.4.2 State Machines 

Mutable data abstractions are modeled as state machines, which are defined formally 

below. A state machine ts an exception' algebra with I distinguish~ phylum of system states. 

Definition 4 State Machine 
A state machin~ i1 a tuple ( phyla : P; operations : F, statefunctions : 1:, states : A, 
a_rgl~~gth : n, argtype : a~ tc :}, rle~g~h : m,, Xtype : r, JJp~ames :,_A,, <tpnames : B, 
tcnames: T, statenaines: S, ss: s, pt : fj >, where P - { Pa I a c A} as an jnc:Jexed set 

of phyla. and where F • l F 11,I (J c B I is an in(lexed set of operations, ,such that 

each operation in F is a function 
F (3 : p s _. ( p a(fJ, I) X •.• X p a({j, n(fj)) _. p s )( u { R,,. t,,. ( t({j)} ). 

where LI denotes the disjoint union operation, and 

R,,. .. P r(/3, 1', 1) x ... x P r((3, 'T, m((J, 'T))· t "' ( t 0 I a < S } 

wherl' 
and 
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ll - ( lier I (f ( s I are indexfd $ft$ such th~t -~ch . 0-a' ~ ta .• ~. a ~te function 

a(r P4 --+ Au· U :,ct,< P,,-u.e.:,ac-iUl•&,b.,_~,,J .. Jufar1: IOf1Wq0'0 :t' Ecr 
n : B -+ N, a : B x N -+ A, t : B -+ P(T), 111 : B x T -+ N. r : B x T x N --+ A are 
functions such that n(/J) is the number or arguments for F(lta) for any systemj~,., ;c 

er) _a(~. l) is ~-he t~~- iS,d!x, for_ t~,,,lt~,_irJf'fflf;,olrlaf'l ~~ ~:1~• an 
termination ·conditions that may result from F fl.ti), ""1. 1') is the number or data 

- ebjec;U MUmetl lay lli,(ai) 1rfl••1trmtna1Nit...._f.f', -.,e; 1,'l) tsi tfte 'typt 1
' 

:dt~o~t;:~-~~ i:)~~~:::t.zJ~l ~? ~i:::~ ;:,,;z~=' -
names, D '- A contains the names of the principal types. S %1f ~1Rf-,~~ rt, 

the types that have a corresponding set of state funcUons, afld s c (A'· S • DJ ts the 

dtsti~g,u~~'1ed P~f~.of.Ust~. ~t'¾ ff,jU!ler"-i!f.~~s., · ,.: ,, , . 

T~e phylpm.or systef!l Slates .f's-~ all.:~•~,--~J~ -~ of- "';hic;h 

r~~e5e!ltS !~ f;U.~rent ,~• ~ate~ _ . ~. ~y,stem , SJ:itt ~·•.ts,~ -~isjoj!Jt _ .,aten . 91,- a It, t~ 
. ~ - -;, - - " ,_ ' ' .;., ~ : 

,~d,iy.~~al st~te, functiPllS, :each of. w_hkh _J:~~i;~M 'ME~t,,~••Lof ~ .tp,ltf;Jb. ~~ 
- . ;. - . - - ~ : 

/ 1 : d1 --+ r1• )s , fu~i~, /: U (,df,U.c,_.1},~Ul.r, l!..t Jil,.:r~,,~t wheaev,~ 
. ~. . ~ . .. ' ) ' . ~ . 

x c Ur di I l ( I } and x • ( i, 1. >. j(x) • /~,>'. Informally, the elements of the domain or the 

•:- ·-~- .- : j: ri \ ii ·_:-i: ~' -1 --~ .: . '. ·• • _;_ .. 

system state function are taggfd with the name of the phylum they catM from, so that the same 

set can b~ used to repr~t many diff~t ehJ- wJ!~!. CJ~~:,,ffJr. i~tff~, NOORg the 

various components of the ,ystem, state functton. ~ .•s t .. a~ Ao,,~, !lie _d~ins artc.l 

ranges of the individual state functions, and hence are used ift the construction of the phylum 

:'':.{';Hi~,·.:~1 :;j:~•;f,::; ~ .: _.·, tz,..'1Cj 

or systetn states P 1, but they are not_ thernselves,.J>h{la ot,~e st,,1!~,m,c~•~,; {~~ti~g t~ fact 
. . ~ - ',. ~ . . . ! , • . .- ' . 

that none of the operations of'rhe state tilachine ~e'indlvi<h1aJ' stiifij~tjonJ ot).~ty.idual -.- ; . ,_., ' . .. 

data states n · arguments" The set of statenarMS S ·spedflts which -phyla repreettt cffldtable 

types. Individual state functionS ·. are. assoeiah!d _lfft)y -._ t,llh- ti• ~le -tj'ptl of a data 

abstraction. 
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The operations of the state machine are curried,6 so that formally an operation of a 

state machine is viewed as a family of operations parameterized by the current system state. 

This structure is introduced because the system state is qualitatively different from the other 

arguments of a typical operation, and because this structure makes corresponding notations for 

state machines and exception algebras more uniform. The operations of any immutable 

subordinate types are extended to take the system state as an extra argument, and to return the 

unchanged system state as an additional return value (the first component of t~e tuple of return 

values). 

Each operation of a state machine takes the current system state as its first argument, 

and_ when supplied with the rrst of its arguments the operation produces the new system state_ as 

its first return value. The reason for making the global state an argument to each operation of 

a data abstraction, rather than just the state function of the principal type, is that the operation 

may depend on or modify the state of some subordinate type. A common example of this kind 

of behavior is the print operation of a data abstraction, which modifies an output stream, but 

which usually does not affect•the state of any data object belonging to the principal type. 

If none of the principal types of a data abstraction has an associated phylum of state 

functions, then we will say that the abstraction introduces no mutabilit'1- An abstraction that 

introduces no mutability may still exhibit time dependent behavior, and hence require a state 

machine model, if it has some operations that depend on or modify the state of some 

subordinate type, or if it has some operations that take or return mutable data objects. 

6. The process of abstracting from a function with n arguments to a higher order function 
which takes one argument and returns a function of n-1 arguments is named after Haskell B. 
Curry (3). 
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8.4.3· Motatlori of Data ·()1,jeots 

In a. state machine, ,t,he propertk:s qf a d;ata ~,o.,aJ dpffli .ql},J~ ~rsffll,SYHOlll 
~. : ' i •. - . . ' ' - • - ' 

of each data object wtth that ®ject, sp thft, the _saP"1~j!l:.t ql!I 8,Vt, differ• ,,operues,.ilt 

different states. The set~ 1ara stat,s A4 ~-t~,,t,ee Cl.,.,.,_., G{eaPJ-indtvkhltl ltMe'. 

function <t c l:a for that type. The data state of a mutable abject is roughly analogous le lM 

r,re5e!'tatior1 ~n§I i~s i~g~ under.the,~~ f~~--

A ver.y simple e,ca•. of a_ ~tabk ~'. '"~-" lht •er cell. .. Ata. ~ 

cen ts a. unit of memory that can $tore. an }lltege,0 ,v.,._1_. ~. ~f• jntqer c•· .can be· 
• ~ > ~ - ; • -.~ ' ; ' • • • 

constructed by u~lng the natural ?~~~ _fQr ~ ..... aelt,~ .Ute;~~ fa,: '¾nffld~ 

since the only observable,property of ~.~,n that is spb;,ct to, d,lanp-M,tbe~tJ. d t"te integer 
. ,. . -

cunently contained in the cell. The, systec:r\ ~t~ fuqqJoo. ct raa~_,ever,y .,naturaJ· nutnNr 

representing a cell into the integer \hat is . the currmt ~ of,. that <:ell. Ther-e aie- three 

opera~ions on inteser cells: crtaU,Jttcla. and stor,'. The"""'. ~•tjon creates.a new,cell with a 

specified integer as its Initial contents. (The ~t~ of data Db~ is diSiCUssed in Section 

2.4.5.) The /etc/a operation applies the state function to the-cell to get ks- torrent cefitt'nts. and· 

the store operation produces a· MW system state that dtffen front die old one only in mapping 
,.. ' ~ ' 

the updated cell into its new contents. A language for specifying models is dt'fined in Chapter-
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4. and a number of complete examples of models for mutable data abstractions can be found 

there. 

2.4.4 Sharing of Mutable Data 

From the point of view of this work, the existence of sharing relationships among 

immutable data objects is not externally observable, since we are concerned only with the results 

of a computation, and not with the time and space requirements for performing the 

computation. A specification of an immutable data abstraction can therefore be constructed 

without considering potential sharing relationships. Sharing relationships among mutable data 

objects are often externally observable. so that they must be described in a state machine model, 

at least to the extent that they influenc~ the externally observable behavior of the abstraction. 

To reflect possible sharing relationships, the set of data states is al,owed to overlap 

with the phyla of a state machine, so that the data state of an object x may be or may contain 

another object y tbat lies in the domain of the system state function, and therefore has a data 

state of its own. This kind of modeling structure is indicated whenever the object x has a 

potentially shared subcomponent y, such that the state of "J is subject to change and such that 

the externally observable behavior of x depends on the state of"/· 

In the general case, the behavior of a data object x may depend on an indefinitely 

large set of data states, which are reachable from x by repeatedly applying the current system 

state to x and to components of other data states already in the set. We will call this set the 

reachability closure of the object x. For data abstractions where there ~re no e,cternally 

observable sharing relations, as in the integer cell example, the set of data states should be 

chosen to be disjoint from the domain of the system state function, so that all of the state 
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Information is· reacllable by means ·or a single appli~tion of the system state function. 

Mutable binary graphs are a classic example of' a data abstraction where sharing 

relationships are important. This abstraction has, ~u,ns .. ~ ~afir,,g t~ ~U~ graph, for · 

creating a composite graph with given left and right subgraphs, for extracting the left and 

right subgraphs ot · a c.ite graph, for modifying t~· left iand ·;tght ~~~~aphs or • 

CotnpOli~ graph, and p~edkates for testing if a graph ·.~, empty ~nd If two g~phsf are identical. 

One way to construct a state machine inodel for bi~~ry g~ph~ Is ~ take Pbina.ry graph to ~, 

the set of natura I numbers N, and abinary graph t.; be the di~jcdnt union nufl u (N X N). The 

. . " . : . ,. ' . ~ . -

data state of a graph is either nutl, indicating th•t the gnph Is empty,' or it is a pair of natural 

numbers representing the left and rigtit subgraphs. . An· :tllustration of a system state (t 

containing a number of
1

overlapping biitary graphs Is shown tniig~~'·2•:'Note that the graph 

represented by the number·i is' a subc~t•·~·the graphs'·, and i and :is therefo~e shared. 

Binary graphs ca~ also contain cycles, as shown 1by griph &, ~kh Is its own left subgraph. 

The mutation of shared data is a ph~ ·that has been ~v~ed in most existing 

. . . . . " . : . . . · :-t•r,· -
work on· specifications for data abstractions. As the example in Figure 2 indicates. it ts not 

difficult to describe shared murab~ data once we adopt a point of view c~ter~ on data objects 

Figure 2. Shared Binary Graphs 
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rither than on variables. Some qf u,e issuainYOlvtd itt ,asontng abbut sflared mutable data 

~ifl be discµss~- in Chapter 5. 

2.4.6 Creation of Data Objects 

The principaJ type of a data abstnt,etioo .is a ,fixed,.set fer bottt stattc and'dJMmlc data 

abstractions. For a dynamic data abstra~~J~ ?ftnelipat type•il-',tt.:.tet'of •II ... ~ts-of 

operations of t~e data .ib$traction .. 

The populatum of. a.dynaQlic data ab..-,fL-i1t1 $Jllem ~e O' 1, the ,et of an 

objects of the princit>,~l type of d that exist in the ,_.e :O". The concept ef a pepulalion is 

,:neaningless_ Jpr static.: dafa ~bst,a~on~ ~~ ·'WJ!lt ·HIICI, tt:,.--ent 10 werk with total 
; 

yet is the special object .umlefmed. whidtis a,1J"1111teMf Verf phflum:,Of ttae..1tatf ma~tne. 

Al~ ~tatipns of .the state m~c"ine are im~Ucid1 ex1;411ded,to applflto tftis.,extri·-Objftt by the 

following strictness requirement: 

Vi [ I ~ i ~ n & x1 • undefined ~ .f(x1, ... , Xn) • ~ndefined J 

for any operation / taking n arguments. for any • ~ J. , We also adopt the contfntien -that 

o-(undef,lned) "" uqdeflneclfor every system state.a <-• I; 

· Definition 5 Population of a data abstraction. 
The _population,()( the"data abstr;u:tiall d itt the,,ystem state o- JS' defined ro be' the 
set { x c Pd I o-(x) ~ undefined}. 

We will assume that in the initial system state ev-ery mutable type has an empty 



.popui.ion. and that ~ are ad<h!d to the papolltRii as ·tt.ey· are· created .. We will also 

assume that every data obj«t must be computed (i.e., returned as" t~ nhie;bf some operation) 

before tt can be used as an argument to a subsequent operation. 

We would like any program we can write m terms of the primitive operations of a 

data abstraction to be guaranteec:1_10 returtl onty·dlta &j«ts with a weft definM state. and we 

wiU caU a data abstraction StCUr~;if it hu this propmr. 

Data abstractionS with;epenntDnrtftat nplielfty destroy 'data objeds can .be modeled 

rttadily in our framework, by having the operation change thi·mfi'ofthe data object it' is to 

destroy bad to the origtnat- value Uftde.tfMd, thUS-fffflOYfng it from the current population. 

Data abstractions witb operations that explicitly destroy. dlfa ob_Jeds·cannot, be ·settiJ'e, because a 

computation . that creates an object, cltstroJs·'it,-and then ippVes, .._nf flirt~ cfpen\iOh m It: wiU 

produc~ .--ffned as a-;vatue; The prebtem ohledtltng•-,.en it ts ~fe to-dptfcitly d~stroy a 

given data :Object must thus be addressm··•new fo; e1ttt·prdgr.1'muthaf uSes objects of an 

iruttUre:data. -abstraclien. This is known as fllf da11jfinf'refft'efte~'problem, and it i-s generally 

acknowledged to be difficult. 

We will concern ourselves mostly with secure data abstractions. The population of a 

secure data abstraction grows monotonically, and the reachability closure of any objeet in the 

population of a secure data abstr.actien will Rv.ercontaih tbedata abject undefined. 

Informally, we will say that a modet is rtdUt«l if U does not ccntain -any unn«ttssary 

data objects. (A more carl'ful definition of a reduced model can be foond in Section 3.3.) The 

standard model of a data abstraction should ~ red--.t-, sitK'e this generally -It-ads to a cleaner 

SpE'cification. In the context of a state machine model, this means that an operation should 

extend the population only when it creates a •new" abstract object. An abstract object is "new" 
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if it is distinguishable from every object in the old population by means of some finite sequence 

of operations. In practice the required sequence of operations is often very easy to find, since 

many dynamic data abstractions provide an equal operation which can be used to test if two 

abstract objects are identical. 

A very simple example of a dynamic data abstraction is the unique id abstraction. 

which has only two operations, create and equal. The create operation creates new unique ids; a 

newly created unique id is unique because it is guaranteed to be distinct from all previously 

created unique ids. The only way to create a unique id is by means of the create operation. 

The equpl operation is provided as a means of comparing unique ids, and it is guaranteed to 

distinguish a new_ly created unique id from any previously existing unique id. Unique ids are 

immutable (so that they cannot be forged or tampered with - one application for unique ids ls 

in implementing capability based data protection schemes). 

This example illustrates that there is a state change associated with the creation of a 

new data object, as reflected by the increased size of the population, even though the properties 

of all previously existing objects may be unchanged. Note that the create operation js not a 

function of Its arguments unless the state is explicitly included as an argument to the operation, 

because it will return different unique ids in different states, and it will never return the same 

one twice. 

Another example of a dynamic data abstraction is the impure list abstraction (as found 

in LISP), with the operations conJ, car, cdr, atom, equal, eq, rplaca, and rplacd. Each time it is 

called, the conJ operation constructs a new list, which is distinguishable from any previ?usly 

existing list by means of the eq operation. The impure list abstraction is also mutable, because 

the rplaca and rplacd operations can be used to modify the contents of existing lists. These 
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operations can also be used to distinguish a newly created list from a previously existin~ Hst 

. ' 

wtth thtt same contmts, by modifying one of thtt lists and looking to see if the other ts changed 
- - ,. 

p•-

also. If the lists are distinct, then one will be changed and the other will not be. Thus the 
,- ' ~ ' ~ 

impure list abstraction would be dynamic even without the ,q operation. In tM general case, 
- ·;., .. ' 

two abstract objttts are identical only If they have the same observable properties in the current 
' 

state, and if they are guaranteed to have the same p~ies in aH sub~uent states. 

Consider a restricted kind of ltst, whkh has the same operations as the impure lists of 

the previous example. exet"pt for tf, rf,laca, and rf,iacd. This list abstraction ts immutable, and 

also static, because there is no way to distinguish the list returned _by one invocation of c01ts 
'-,;::.! .--

from t~at returned by a later Invocation with the same arguments. This example demonstrates . . ~ . 

that whether or not a given operation rffllms a new abstract data object depends on the other 
I· . ' 

operations of the abmaction. It may require a bit of thought to decide if a gtven data 
; j ' ,. !: ~-~ ' . 

abstraction is in fact dynamic, and hence requires a state machine .modet or if Jt is static and 
' 

immutable. and hence should be specified by an exceptiOn algebra model. 
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3. Denotations for Data Abstractions 

The meaning (or denotation) of a data abstraction is the class of all models of the data 

abstraction. In the axiomatic approach to specifying data abstractions, this class is taken to be 

the class of all models satisfying a given set of axioms. In the abstract model approach, the 

class of all models of a data abstraction is taken to be the set of all models with the same 

observable behavior as a given model, which is explicitly constructed. 

In this work, we will assume that a model for a data abstraction is an exception 

algebra. We will say that a model is dynamic if it has a distinguished phylum of system states, 

and that it is static if it does not. 

3.1 Complete and Partial Models 

A model for a data abstraction d is complete If and only if d has interpretations for the 

types and operations of d and of every data abstraction subordinate to d. The externally 

observable beha v lor of d is cha racterlzed by the finite computations in terms of the operations 

of d and the abstractions subordinate to d, and any such computation can be interpreted in a 

complete model for d. A partial model for d may leave some of the abstractions subordinate 

to d uninterpreted. 

Since the identities of the objects in a model are not a priori observable, there may be 

no way to compare the results of a closed computation in two different models. This problem is 

resolved by insisting .on a unique standard model for the booleans, containing exactly two 

boolean values, so that the results of any computation producing a boolean value can be 

compared for any set of models. To reduce all comparisons of results to the problem of 



comparing book-an values, it is nttessary to ;tncltidt tlae optt~tiO~lS> of the 'subordinate 

abstractions in the computations. T.hus complete ~els are: ~•f~ Jo make, sure lhat evety 
- . . . . ~ .· ' . . ~ . -, 

computation of interest can be interpreted. 

In practice, a system of data abstractions b described incr~f-lJJ, ~Jglvis,g a J>ii'Tt#;al 
. ' . '. , : ..... : . ~ , . ~ . . . - . . 

description for ~ch abstraction (or set of ;~utuaHy -•~~'! ab5f!aft~~s) .d in the .syst"9. 
i . . ~ , • • . 

The partial descriptions give a prrscription for constructing _interpretation~ for. the princi_pa,I 
. -. '.,_ ''. ,, ··•; - . 

type and operations of d, assuming that complete models for the,~~~r.,_~ti~s aubqr~~n•te to d 
. ; ~ • 1 _; (e '~ - r: -~ ; 'j-'. w: - • _:.-, C; t \'I~· - '" 

are already defined. In particular, the interpretations of the, sµb!rcUn~~~ t~ Qf d are to btl:.. 
• ; - • ~ • . . . ~ ~ j ,-. "' '~c e • _.,_ - , • - • 

taken from the models for the defining abstractions of those .t~;,,The ~~rlKlioll .of a 

complete model for d is described more precisely below.1 

Let d be a data abstraction, let di, ... :,d~ ~\a.e·a&ct~ctlons subordinate i~ d, and 

let "'; be a complete model for di for each i in the range I ~ l S n. 51:'~ ,-,e. h~v~ a parti~I 

description D for d, which gives the signature or d, the name of~~ pr!nci~I type of d, and 

inttrpretalions for the principal type and operations of d. If D dacr~ ,~n ,x~q>t_ton alget,ta. 
... '. ~ . ~ ' . , 

then a complett model m for d is constructed as follows. 

111. phyla • D.;pttytaD. pt'U ( U 111,. phyla11 pt) 
.. ~ ISiS11 i" 

m. ops - D. ops u ( u "';• ops ) 
ISiSn 

m. arglength • 'f!.• arglength u (ts~n "'J";,ar.prwth} 

m. argtype, m. tc. m. rlength, and m. rtype are similarly defined as disjoint unions. 
"'• typenames • l>. typen•1nn• ( U "'i•~•·) · ' · · 

lSiSn 
m. opnames • D. opnafl'K'S U( U DJi• opn.-) 

· . tStSn 
m. tcnames • D. tcnames U ( U "'I" tcnames) 

. IStSR 

I. The details of this construction are not essential for an understanding of the rest of this 
work, and may be skipped on a first reading. 
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m. pt = D. pt 

where U denotes disjoint union and where U denotes ordinary set theoretic union. If D 

describes a state machine, then the above relations still apply, and we have to add the following: 

m. statefunctions = f D, statefunctionsv. pt l U { mi' statefunctionsm .• pt I mi is a state machine } . . ' 
m. states = { D. states 0. pt l U { mi. statesmi. pt I mi is a state machine} · 

m. statenames = D. statenames U ( U { mi. statenames I mi is a state machine } ) 

m. ss = D. ss 
m.·phylam. ss = { Li { 0-0 I a c S} I oa c }:0 for each a c S} 

where S = m. statenames and }; = m, statefunctions. 

In the rest of this Chapter, we will limit our discussion to complete models, and we will 

frequently leave out the qualifier "complete". 

3.2 Behavioral Equivalence 

Informally, two models are behaviorally equivalent if they have the same externally 

observable behavior. In this section we develop a precise mathematical definition of an 

equivalence relation that captures this informal notion. We define closed computations, and the 

interpretation of a closed computation in a model. Two models are behaviorally equivalent if 

they contain interpretations for the same types and operations, and if the value of any finite 

closed computation in one model is indi$tinguishable from the value of that computation in the 

other model. 

Behavioral equivalence is an important notion, because it is the basis for defining the 

correctness of an implementation of a data abstraction. An implementation defines a model for 

the abstraction it implements, and the implementation is correct if the model it defines js 
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behaviorally equivalt-nt to the model that specifies the abstraction. 

We can meaningfully compare two IIIOdels, •~ if !heJ,h~~' inter.(!reta~s fe>rJhe 
. '· . ~ • •. --:- ·~Jj•~ .• t'' j•;•~'.o>f "· •~.-.• · 

same types and operations. Two models.can be behaviorally 
1
.lv.alent .~ty if they ,~"e :the 

, • -s • • ,..;_, - . ; ' 

same signature. 

Def inltlon 6 Signature 

The signature ef at1 exception Mgebra a ts the tuple 
< arglength : a. arglength, argtype : •• argtype, 
tc: a. tc, rlenglh: a. rlengthi nype,1 ca.nype. . · · . 
typmames : a.\ypenames, opnames : a. Qpna..,_. "'1~tMS-: •• tcnames ). 

Jf two exception algebras have the same signature, then they have the same names for the 
.. , 

phyla, operations, and termination conditions, and corresponding operations have the same 
' '-,.~ t~ ;1 

numbers and types of arguments, the same set of possible termination conditions, and the same 

numbers and types of return values in each te~AD8d-lilatiAs .a .matts .. },bbtatlonal 

convenience, we require comparable models to be indexed by the same sets, so that 

corresponding types and ~a:tions have the same names, and we can talk about the 

Interpretations of the same operation name in several different models. 

In order to characterize the kinds of behavior a data abstraction may exhibit, we 

defme the set of closed computations. 

Definition 7_ Closed COffllHltatlott 

A closed computation with respect to a signature S is a finite sequence of pairs C 
such that 
C(i] "' <.op : /, argJ : s ) for each t in tM range I Si S length(G)~ 
where f ( S. opnaffll's, and s is a sequence of argument specifications such that 
length(s) • S. arglfflt"<f}. 
s[j] • (step: n, tc: T, result: l ), (the source of the fth argument to.fl 
I ~ n < i, (n is the indeK of a prevmus step ef the computation,) 
T c S. tc(C[n). op), (T is the required termination condition for step n) 
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I ~ k ~ S. rlength(C[n]. op, T), (the k-th object returned by step n must exist) 
and S. rtype(C[n]. op, T, k) .. S. argtype(f, j) (and it must have the right type) 
for each j in the range I ~ j ~ length(s). 

A dosed computation is a sequence of steps, ~here each step is the application of some 

operation of a data abstraction to data objects resulting from previous steps. Every 

computation starts from nothing, and computes data objects as it proceeds. A closed 

computation is analogous to an uninterpreted flowchart, since the sequence of the operations is 

given, but the oprration names are left uninterpreted. A step is a pair consisting of an 

operation name and a sequence of argument· specifications. An argument specification is a 

triple, which specifies a previous step, a required termination condition for that step, and the 

index of the desired result. The index is necessary because an operation will in general return 

more than one object, and we have to say which of the returned objects to use. Since the 

number and types of objects resulting from an operation can be different for· different 

termination conditions, an argument specification requires the step producing the argument 

object to terminate in a particular termination condition, so that we can be sure that the 

specified data obJect is or the proper type. A closed computation can fail to have an 

interpretation in a given model, if the termination conditions actually computed do not match 

the required terrnination conditions in the argument specifications of the closed computation. 

An example of a closed computation Cl over the list abstraction of pure LISP is shown 

below. 

Cl(I]"' (op: nil, args: ( ) ) 
Cl[2] • ( op : cons , args : ( ( step : I, tc: normal, result : I ), (step: I, tc: normal, result : I ) ) ) 
Cl[3] .. ( op : cons , a rgs : ( ( step : I, tc : normal, result : I ), ( step : 2, tc : normal, result : I ) ) ) 

This computation computes the value of the LISP expression "(cons nil (cons nil ntl))". 



A dosed compatat~ conststs of a fmtte ... ~te:of Cfmlions. with no cGQClioonals 

or other control structures, and can be thought or as a: trace'ot the eiecution of some program 

that uses the ...-tions of the ~ata abstfactions of~ m 'rinite prefixes ~r the history of 

affJ program can ~rty be · described bj a set .. or closed, ~tion~ a~ any finit~ closed 

computation can be destribed· by- a program ,in jUst about ;my programming la~ge. Note 

that a macltine"for executing ckJsed computations requb'es an'.unbounded amount of memory, 

because ft Is antlmed that'tlwiff'SUfts ofeadt step art sa•~• ~nd 'may be
0used In any number of' 

succttdtng S~pl-

We want to know whether or nGt there· Is SOffle" computation that yields observably 

dfffft'fflt,~u• whet iHmptftfd tri each of the two ~ whose behavior we are comparing. 

It ts suffkimt for thiss purpose to· considtr only the finite computations: given two infinite 

~ if we lnow that thffl- prefixff fif length • :,re (lie same for enry ~atural _number n, 

then the «igind iftfinftt wquences must be the same a{well. 

~. interpretation or a computation in a given model Js the sequence of results 

obtained by applying tbe tnterpMations of the spedfied sequence of opttations in the model to 

the specffled ~rgumenrs. Stnce the interpretation or an ·operation Is ·different for- static and 

dynamic ·models, wt" wifl give sq,arate definitions for the interpretation of a closed computation 

in each Und of model. 

Definition 8 Interpretation of a Computation In a Stattc Model 
Let M be an excq>tion algfbra model. let F • M. operations. let n • M. arglfflgth. let 
C be a c"-d computation with respect to tM signature of .M. and let I be a 
sequence. I ts the interpretation of the computatWlh C: in the model M_ if a.nd only if 
all of the foNowittg cendittons hold: · · · · 
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I. length(][) ., length(C), 

2. For each i in the range 1 ~ i ~ length(C), 

R[i] "' F o<x1 ' ... • Xn(/3) ). where C[i] .. < op : fJ. args : s >. 

3. For each j in the range I :S j :S n(tJ) 
x1 = obj(][[kJ) {w]. where s[j] .. (step: It, tc: T, result: w ), and 

4. tc(][[k]) "' 7". 

A computation is a sequence of operation names and argument specifications, and the 

interpretation of a computation in a model is the sequence of values obtained by applying the 

interpretations of the specified operations in the model to data objects specified by the argument 

specifications. The set of operations of a model Is indexed by a set of operation names, and the 

indexing function specifies the interpretation of each operation name in the model Since an 

operation may return more than one data object, the interpretation of a computation is a 

sequence of tuples of data objects, injected into the component of the disjoint union 

corresponding to the termination condition produced by the operation. Recall that the range of 

each operation of an exception algebra is a disjoint union of a set indexed by termination 

conditions. Each element of a disjoint union is a pair, containing a tag and a data object. If 7 

is the result of some operation of an exception algebra, then obj(y) denotes the object without 

the tag, and tc(y) denotes the tag, which is the name of a termination condition. 

The interpretation of the computation Cl (shown above} in the usual model of pure 

LISP is the following: 

RI [1] • ( normal, ( nil ) ) 
RI [2] • ( normal, ( ( nil ) ) ) 
RI [3] • ( normal, ( ( nil nil ) ) ) 

The pairs stemming from the disjoint union are shown explicitly. The first component of the 
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pair is the tag (termination condition), and thf' SfCOl1d component is tht' sequence of data objects 
', r-i -.._; ) .,,.. 

resulting from each operation. Since _all of-~ J>pn~hown k_l, U,Us exa~ t~ra·a single 

value, the resulting data objects are contained In ~.of lmgtluane. 
,_}'-: 

Note that the termination condition or each step must match the termination condition 
•':'" t 

required by every argument spedfacation that uses the results of that step. A closed 

computation may .or may not have an interpretation in a model. If an interpreta.tion exists. lt ts 
- - ;t: r·• 

unique, because the ~•tions or a exception algebra are functions, which necessarily have 
~ . ;~f 

unique values. A computation may fail to have an interpretation in a given model because the 

operation specified by some step of the computation may terminate in a different condition than 
~: -·:' 1' 

the one required by some later step that uses the results or the giv~ step. If several steps of a 

computation make conflicting requirements on the termination condition of a given step. then 
-,h-

that· computation will not h~ve an interpretation in on, mactel of the abstraction. If a 

computation has an interpretation in a model, we wiH say that the computation is feasible tn 

that model. A feasible computation can involve steps with exceptionai termination conditions, 

and it is possible for the termination condition of the fmal step to be normal even if the 

termination conditions of some intermediate steps are exceptional 

The interpretation of a closed computation in a dynamic model is similar, except that 

there is an t"xtra component containing tht" system state. RecaU that the first argument and the 

first return value of every operation of a state machine is a system state. 

Definition 9 Interpretation of a Computation In a Dynllffllc lllcMlel 
Let M be a state machine, let F .. M. operations, let 11 • M. arglength. le& C ht- a 
closed computation with n~spect to the signature of M, and let I be a sequence. I is 
the interpretation of the computation C in the model M if and only if all of tht> 
foflowiqg conditions hold: 
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I. length(JI) = length(C), 

2. For each i in the range I ~ i f ~ngth(C), 
lICi] = F t3(0) (x1 , ... , xn({j)), where 

C{i] = < op : (3, a rgs : s >. 
cri = ;>,. x • undefjned if i = I 

cri = obj(JI(i - I]} [I] if i > I 

3. For each j in the range I f j ~ n((j) 
x1 = obj(ll[k)) [w • I], where s[j] = ( step : k, tc : T, result : w >, and 

i. tc(l[[k]) -= T. 

The initial state for any computation sequence is the empty state, which maps every data object 

into the initial data state undefined and thus has an empty population (i.e., no data objects 

have been created in the initial state}. Each step of a computation except for the first step starts 

with the state produced by the previous step. The interpretation of a computation in a dynamic 

model is a sequence of tuples, whose first component is a system state, and whose remaining 

components are the tuples of data objects and the system states produced by the operations 

specified by the closed computation. Since the first return value of an operation of a state 

machine is always a system state, the w-th data object returned by an operation of the abstract 

type corresponds to the (w•l}-st component of the sequence of values returned by the 

interpretation of the operation in the state machine. 

If a computation has an interpretation in a given model, then th~ value of the 

computation in that model is the result of the last step of the computation. 

Definition 10 Value of a computation 
If the computation C has the interpretation l[ in the model M, then the value of C in 
M is obj(ll[length(Il)J) if M is a static model, and the value of C in M is 
( v[2] , ... , z,[length(v)] ) where v = obj(ll[length{ll)J) if M is a dynamic model. 

Note that the value of a computation can be a tuple containing more than one data object. The 
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final state of the interpretation of a computation in a state machine is not part of the value, 

since it is not directly externally observable. 

We art' now ready to define behavioral equtvaltnu. ,, 

Deftnl•ion 11 Behavioral Equivalence of Modef4 . 

Two models ~•, and M2 are: bettaviora.,: •~•~t.ir' a~ ona, ~1:f ~II ¢ ttte 
following cond1tft1ns hold: · · , · · 

I. Ml and M2 have tM same signature S. 

2. For any finite closed computation C' with respect to' the sfgriature S, C has an 
interpretation in Ml if and only if it has. an in~retat• tn M2. 

, 1 '7-::c ; -~ .. ~~.''_; ;<. :-•;,.: .-f'; • ~ 

3. For any _finite closed_ computa!~ C ~ith ~e~ t~ .t~ 
1
s~~tu{e -~· C has an 

intttpretaffon ·tn ·Mt -and the va1ue of C 'ifi "l,f f lttt.e ~ft :~••· t .rand only if 
C has an interprftation in M2 and the ~toe of C in M2 Is t~ same boolean 
valuer. ;, · _,,. '· · ·:,·. ''. -- :.: :-,· '. ··_ ·. · 

Two models are ~avioratty equinlent if they have the same signatufe, · interpretations for the· 

sa~ !ft of clofflt tomputattons, and if every computatioft. restiting ln 'a boolean value has the 

same •a·tue in both models. 

Theorem 1 : Behavioral equivalence is an equivalence r~lation. 

Proof : The thl'Ofem follows dqectly from the definition. 
End of Proof 

We intend two models to be bfflavioraffy erquivalent ff and only if they have the same • 

extttrnally observable behavior. In practice, what' wt can 'Jdby -.,v, is the output of a 

program, which is usually manifested as characters printed, on a_ piece of ~Pff,,9r displayed on 
a terminal. Although thl"re is a wtde variett of peripMrll devkes Cha,1 can be'·tonn«ted _to a 

computer, upable of producing a wide variety of obmvable effects, t~ can an be modttled by 

a (mutablfo) output stream data abstraction sufftdmtty 'wdf for our purposes, since we are not 
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concerned with the actual physical properties of the output, but only with whether or not two 

outputs are distinguishable. We model the data states of an output stream as finite sequences of 

integers (which can be interpreted as character codes in most cases). We assume output streams 

have an operation that returns the current state of the stream, represented as an immutable 

sequence of integers. This operation models the system user, who observes and compares the 

actual outputs of the system, and it need not actually be implemented. It is included because 

some data abstractions have properties which can affect the printed output, but which cannot 

be tested by another program. 

Integer sequences are defined to be a priori distinguishable because they are used to 

model physically observable outputs of the system. Note that the states of mutable data 

abstractions other than output streams are not a priori observable. We will further assume that 

integer sequences have an equal operation which allows us to reduce the problem of comparing 

sequences of integers, representing states of output streams, to the much simpler problem of 

comparing truth values. 

The domain of truth values is a priori distinguishable because of our assumption that 

the host programming language provides some means of altering the now of control depending 

on a truth value. For example, a conditional statement that prints a different message on each 

arm can be used to physically distinguish between the truth values. Because of this property of 

truth values, we insist that the boolean abstraction be given the standard interpretation in ali of 

the models that will enter our discussion. In the standard interpretation, there are exactly two 

truth v-alues, T and F, with the operations and, or, not, implies, and tquivalenct (see Section -t.2.1 

and Appendix I). 

Different termination conditions are also externally observable, because we c~n 



associatf!' handlers that print differmt messages with each exception. We do not have to 

introduce any extra machinery to trl'at this ca~. beau~ it Is already covered by our definition 

·• ... 

of the interpretation of a computation. If the final step or a computation C results in two 

dtfft>rent termination conditions in two differmt models, then by adding one more step that uses 

the results of the last step or C and that recprim it to tmninate in one of the two observed 

termination conditions, we will get a closed computation C' that is feasible in one model but not 

in the other. 

In our definition of behavioral equivalence, we have assumed that all of the aspects of 

the behavior or a data abstraction can be observed by means or the operations of the 
' > 

abstraction and its subordinate abstractions. If every operaUon or nery abstraction in the 

system computes results that depend only on the data objects explkitly passed in as arguments 

or on the data states in the rl"llchability closure of the arguments (see Section 1.3), then this 

assumption is justified. An example of a system that violates this assumption is the following. 

Suppost- that the abstraction NASTY has an operation count that returns a natural number 

representing the number of objects of type NASTY that have bem created so far, and that the 

only optration that creates new objects of type NASTY is the nuffary crtatt operation .. lri order 

to implmlent this behavior, the atalt and count operations must share some own data. If some 

other abstraction A in the system is implemented using a representation containing a object of 

ty~ NASTY, then the operations of A can have effects whkh are only ob56vable by means or 

the count Of)t'ration of NASTY, even though NASTY is not necessarily subordinate to A (t.e .. 

A need not have any operations that operate on or return any objects of type NASTY). In 

general, abstractions with state components that are associated with the type as a whole rather 

than wtth any individual data obj«t cannot ~ used to represent objects of other types without. 
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introducing hidden interactions of the sort described above •. Becamtn,e·want the behavror'ohr 

data abstraction to be •ndependeo,t of the re~tation•usecl 1fl•any particular implen'ient11Uon, 

we .exctu.d, .strll(:tures Jjk.f N ASTV flom. otl~•dtscllfStltn .. ; T,he 0 specific::at• •IMfgtlage' ptt~ 

in Chapter i has been designed so that abstractions violating this locality a.ssumptton canftOt· be 

defined. 

3.3 · Reduced Models 

Data abstractions are idl'fltified with equivalence classes of models with respect t«t the 

behavioral equivalence relation. In this section we will sllow how to construct a representative 

ttlement of such an ttquivalence class, known as a r,ductd mocltl, which can be used to spectfy 

the behavior common to all of the members of the class. Redulfed, moats ,re shown ro be 

unique up to isomorphism, and they are mini~HR:IMiNPserthat-tlteJ<Onta;m•lk> llnMfttsary 

elements. Models to be used as specifications for data abst~ctions should be ·redutedt Since 

irrelevant components serve no useful purpose and may lead to confusion. 

The concept of a reduced model has to be defiMd IMilewhat differently for static and 

for dynamic models. The two cases are discussed below. 

3.3.1 Reduced Static Models 

Before we can predsely define what we mean bf a r«luced model, we have to 

introduce some auxiliary concepts. A reduced model should be free,ef ~extra• obj@cts that 

cannot influence the externally observable behavior of the model. 
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DeflntUon I 2 Reacltallle- Olljecta. 
A data objl'Ct. x is rtachblt in a model M with a MgMture S if and only if there is 
some ,_..cto.t ...... ian{;Willt·...,.11rs ..., . .,_,~'IUWi!''+ataeotc1n M:· 

O_nly. the rf!ll4:haWe ob;Kts· tn the .phyla· et·•· fflldft. Utt .iftf1tleno! ;,~-~ observab~ 

· behavier of a model 

' 
We would also like a reduced model not to contain redundant copies of the satne 

ob~ct, tf there is no observable property that can disttaguish bet~J~e {~'P~~\"f~ ~}rve at_
0 

a definition for tht> external equivaleftce relation on data objects. w have to define open 

compvtattmts. 

Definition 13 Open Computation for a St•tic Model 

An open computation with respect to a signature S and a type a < S. typenames 
ff a finite srquence C sum ... . ., . , ' C , 

C(t) • ( op : /, args : s > for ach l in the range 2 $ t S length(C), 
wt,,eref-<:~ • .-■11e1.,aact"sits~ .. Mid ltfdftMl · 
length(s) • S. arglent"<f), 

· 4.jl~ (-. :-•. k:'1". r~·: t ·), w,,._ 
l:S11<i, 

if n • I then S. argtJIMV, ft e a, 1" .• , ....... ,and,l • \ . 
and tf 11 > I then 'f c S. tc(ClnJ. op) 

I i i ~ S. 2la4th(G(a}. ap, Y) ·· 

and S. rtype(ci11]. op. 'f', l) • S • argtype(f. fl 
.for each j in the range J ~ J :S length(.!}. 

An open computation is just like a closed computation, except_ that an. initial d~ta ob.Jee~ ts 
,:,> " ~ ~,;,:;_·",;,_.] :_~.:'-;. ~-~---if-';"-~: .:_-

specified, which can be uSfd in any subsequent step of the computation, in addition to the data 

objects product"d by,the pr«eding steps. The initiit data' objitt it a-:piitametff to the open 

computation. and the vatue1»fan open~ is afenction.,llisparameter. 

Deftnltton 14 Interpretation of an Open C0ntputatlon tn a Static Model 
Let M be an exception algebra model, let F • M.opffations, let n • M.arglength, let 
C be a closed computation with re5p«t to the typename a and the signature of M, let 
x f Pa• and lt't I be a sequence. I is the interpretation of the computation C 
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applied to the object x in the model M if and only if all of the following conditions 
hold: 

I. length(R) = 1ength(C) 

2. 1(1] = ( normal, ( X ) ) 

3. For e<1ch i in the range 2 ~ i ~ length(C), 
l{i] = F 13(x1 • ... • xn(/3) ), . where C[i] = ( op : 13, args : s }, and 

i. For each j in the range I ~ j ~ n(tJ) 

x j = ob j(R[k]) {w ]. where s[j] = ( step : k, tc : 'T, result : w ), and 

5. tc(li[k.]) ., T. 

The interpretation of an open computation is like the interpretation of a closed 

computation, except that the interpret<1tion of the first step of the computation is a sequence of 

length I, containing the specified initial data object x, and with a normal termination condition. 

We have injected the initial data object x into the normal component of a disjoint union for 

the sake of uniformity. The ( tag, object ) pair is shown explicitly in condition 2. 

Definition 15 Value of an Open Computation In a Static Model 
If C is an open computation with respect to the type a and the signature S, M is a 
model with signature S, x c M. phyla

0
, and If I is the interpretation of C in M with 

respect to a, then the value of C applied to x in M is C(x) = obj(]I[length(ll)J). 

The value of an open computation is the tuple of data objects resulting from the last step of the 

computation when interpreted in the given model. 

Definition 16 External Equivalence of Objects In a Static Model 
Let M be a model, a ( M. typenames, and xi, x2 c M. phylaa. The the data objects 

xi and x2 are extern,1lly equiv,1lent if and only if for every open computation C with 
respect to a all of the following conditions hold: 

I. C hits "" interpretation in M with re~pect to the d,1ta object xi if and only if C 
has ,1n interpret<1tion in M with respect to the data object x2. 
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2. C, has an interpretation in M with respect t~ xi and t~ value of C applied to xJ 
in M is the boolean value t if and only tf C has an interpretation in M with 
respect to xi and the value of C applied to x2 in M is the ..,. ~" ;!~~ :L.i , 

Two objects of a given model are externally equivalent i( and only if ~ Wffi~q:JIIJplM,•Uon 

applied to one of the objects yields a result that is ind,lstif'l"ilhable (ram, the result of applying 

the same open computation to tfte od,eafobject This· means ~t the two dbjects share aU 

externaDy observable ~roperties. and tf;,eref~ repr• th~ ~' a~ract ~ even if theJ 

are two distinct objects in the model The point is that the ldentlties of the-Ob;rcts-1~. a model 

are not externally observable unless. the ~a.t,a ab$l,:actioq, prolJdes ~ Qf>UMION:.that make 

Now we are ready to define rec:luced sta~-'1'Qd~ . 
. . ; ; · .. ' . : ", , ' 

Deft11ftloft 17 Reduced Static Model 
A statk model M is r~tJ,Uftd if .and only if ~ QI' the. followinJ ~ilions hof,d: 

I. For each a c M. typenames and for each x ( M. phyla0 , x ts reachable. 

2. For each a c M.typenames arid. for eatfi 1

il,x2< M•.phJla01. if xi and x2 are 
exte1na1,y equivaaen,. tlwn xi • x2. 

A rrduced static model has no exrra objects, since every,object is the resuk of some finite closed , 

computation, and hence externally observable, and every distinct pair of objects in the model 

differs in some externally observable propmy. 

Theorem 2 : Every equivalence .class of mode1s with respect to the behavioral ,equiv~lenc~ 
relation contains a reduced model. 

Proof : Take the reachable subset, and divlde by the external ·eqc.at'¥alfflte refation. De(aits tn 
Appendix Ill. 
End of Proof 



Theorem 3 : H two reduced models art> behaviorally equjv~lent. t~ tJwy,ar:,e isomorphi(. 

Proof : The isomorphism maps the valqe qf,~very,~ c<¥npU~iCID in O{le model into the 
value of the same computation in the other mocfel. Details 'm Appendix Ill. 
End of Proof 

Thus rvery constant data abstracUoo h~~~ r~1Jced mpdeJ thati~M,ffi~ uerto ~J:l~-
; '• . ,_ 

Theorem 4 : If M is behavjoni11y NJUiva1ent to M• and M is reduced, then there is a 
homomorphism from a subset of M' onto M. 

Proof : The construction of theorem 2 yields a reduc~ mO<ltl ,"w~~h ~~ a h8fflOIOOfphk j~g~ 
of M. Compose that homomor,phism with the Isomorphism guaranteed by theorem 3. Derails 

in Appendix IIL. , :f;t:' 
End of Proof 

We c~n always fmd a homomorphism from an arbitrart static model to a ~haviorally 

equivalent reduced model This result is intetesti'ng because the classical way to pr~v~ the 

correctness of an implementation of a data abstr~ction wtth respect to an abstract model 

specification is to construct such a homomorphism from the irnpiementatlon to the defintng 

model. The theorem says that the required homomorphism' exists· for any correct static 

implementation model,. provided that the defining model is reduced. While there is no 

guarantee that the homomorphism is· computable or even finitely describable, the 

homomorphisms corresponding to most implementations are quite tractable. As we shall see in 

the next subsection, the ~orrespondfog theorem for dynamic ~els is false. 

3.3.2 Reduced Dynamic Model1;, 

Informally, a model is reduced if it has no unnecessary objects. We have to take a 

different approach to formalizing 'this concept for dynamic models, because the existence of a 

data object and the properties of a data object are not completely determined by the identity of 
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the object, since they will in general depend on the systffll state~ Theorem i fails for dynamk 

models for this ffrY msdn. . A homomorphts11'f on: , ~ny .· 'sort,t.id ' ~ lgebra is a. f amtly of 

mappings, ont' for each phyh.am. In a dynamic model, the elements of an.y phylum 

corresponcfmg to the pmtctpaf. lYf>e of a dynamic data' abstraction have no -distinguishing 

properties except for their identity. A~. of the int~~~ii~ of an ot.ljt'Ct belonging .lv 
' '. . ' . ' -..- . ~ 

such a phylum come from the image of that object '~nder the system state function, and any 

parttcutar object does not have ~ny interesting p.ies Ul)til_ it b created (i.e., until ~ 
. ' ._, i ' . - ~ - ~ ~ ; .- ' . -

operation gives the object a data state other than undefined). Depending on hpw · an objes;t 

gets created in t"ach particular computation, an object in ~he m.c,del qi,~ ~. Jo repre1mt. any or 

a number of different abstract objects. ConSf'Clllmtly. Jhere Alaf be no correspond.ence be,tween 
-.. . -. " - , . 

t,he objects of one model and those of another which is f>oth COflststept with the;operations and 

independent of the computation history. The ca~ where tJ1e ~respolldfflce is. independent of 
,"... . 

the computation history are rare. 

The rest of this sectiot1 consists of a characteriµt~ of a reduced dynamic mode~_and 

an example of two ~havioralty equivalent models such t~t, one is reduced but is not a 

homomorphic image of the other. 

There are two requirements a dynamic model. ff!USl meet if. tt is t~,be .reduced: the 

phyla must contain no unnecessary objects, and for every state, the population must contain no 

unnecessary objects. If we insist that every element or ev~ phylum must be reachable, the· first 

requirement is met. Reachability can ~ defined for dynamic models in a way. rntirely 

analogous to the definition for static models, and presents no essential difficulty. For mQSt 

dynamic models a countable infinity of data objects are reachable, and each data object has no 

directly observable properties except for its identity, so that the first requirement is not very 



interesting. The second requirement requires a fundamentaHy new approach,. beca~~ the-re is 
' . : -· . - ' ' ' 

no way to meaningfully define the behavior of an abs!r.•ct c,b~ independently of the system 

state. 

We will assume that an operation of a da~ abstraction ~n creat~ at most finitely 
·- ~ 0·\ ·~;_: ;~ <5 ::~ -· :-. . ,.~ <~ -:.,· '.,~ ·-..: ~--.:•·, ._ ·_- ' ; 

many new data objects {cf. 151. Since we require aU c:,perations to term~nate in_ a finite a,mo,unt of 
:; ' 2 • • • •, A .. • ~ 

time, and since all real machines compute at a finite rate, thi~ 3:5su!','Pti~t isJ'.l~tjJied~. ':-. 
-::, ·:.r. .,;_:·:.. 1c·.:~]~. >· ; ~•;,-,-ti:.:;~-.:/)'.'·- ;· -,-,, · · , 

consequence of this assumption is that the population of every reachable stafe ts finite. where a 

state is reachable if and only if there is some finite closed computa.tion that produce,. that state. 
) ~,, ,' "J' . • . 

We can define reduced models for dynamic models as follows. 

Definition 18 Reduced Dynamic Model . 
A dynamic model M is rtduced if and only .if there is no pther (lk,del M" such that . 
M' i$ beMvtortlY,·~ui¥a4ent to ·NI, 'Wtd1 w~1ne j~:;:~u01i" c. the 
cardinality-ef thf,opdlatk>n of•fhe O~htitt ~ fiyit '1r'f~ ·tiurktfy smaller 
than the cardinality of the population of the final state produced by C in M. 

An example of a case where we have a red\fted' dyntmlc" model, Ml. and a 

behaviorally equivalent model M2 such that there•~ no h~phiw from any subset of M2 

onto Ml is described below. 
' C "• 

Consider a version of mutable lists, which have nll as the only atom, and for which 

the rpl.aca and rplacd operations .return the list thal .war'IIIO&Wifli1'athethan°tht old value, or 

the componeni that was replaced, as is the case in Ll$ll. , The1ihodtt' Ml iw'Plist • N, -and 

61ist - { .nil } U (N x N). In Aff, the only operation that ex_. .me poputatton of the fist 

domain is cons. The tq operation serves to ma~e the ~tJ relation on, 'objects' kt the mocte1 

externa.Uy observable, $Q that enry ~wty created object tulittinpisldiblt from any- prtvtouslJ 

existing object, and hence M~ is .red~d. 
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The model M2 has Plist .. N and dust• cetic{ntl} LI (N x N)l In M2, rplaca and 
" l • •,.'. ,j • 

rfrlacd as welt as cons ntend the population 'ci P~. We have introduced an extra level of 
·_,, E 

indirection, so that the identities of the abstract objects correspond to the identities of the cells 
.. ~ f:: - .:'. ;4. 1; . ~' f ~' . y . ,-._, 

that are. the data states ·or the elements of Plist> rather than to the etements of Plist directly, as 
. [ , ... ' . 

, . f- '\'·: i-2' .,_'_ 

would be the case for any reduced model. M2 ts bet1Hioraly equivalent to Ml, but M2 Is not 
,..<tHF--~: ~ ::;""~ :·:~,:. ·1 ,. 

reduced, because the rplaca. and rf,lacd operations create redundant list objects. 
~; . f~ ",... . ; ', - : .• ,_ ., ! > • • 

·There can bt- no ~hism.from M~ to Ml ~~·the correspondence between 
~. ·,d ;; ~ 

objects in M2 and objects tn' Ml depends on the system state. For example. the computation 

shown in Cl below 

Cl(I) • <ap: nU, ar~s: ()~ : _ _ . · - . 
Cl(2) •_(op: ~ons, JJJS ~ <~ ~ 1.-tc: nonu,a. r~ :,.Q, ~w.J.:IC •;.,,.al.,resulu I))) ,,, 
Cl(3) •(op: co,u, at~~ {Site,; l,tc ~,,a,-""~;»,, '-lt3 "'~~~~IIINIUlt: J))) 

has the followtng lnterpr~tion In Ml: 

lft(lJ - < ct o • o > 
111(2) • (<ta, I ) 

111(3) • ( ct 2 • 2 ) 

where a cJ.O) • nU 
where O'~O) • nil, and O'~I) • ( 0, 0) ·' ~•· 

where a,J.O) • ml. ct,j.1) • ( O. 0 ), and a«J.2) - ( 0. 0 ) 
' • --f. ~' ' ';- .. • :~ ➔ 

Cl evaluates the expmsian •<a,aJ. all wll'f'- twice. resulting in two capid or the list (JrU);' · [ach 

element of the <interpretation IU Is a patr cantaiftinr thf mulfl' flilUrned by the operation 

spedfied by the correspondmg step d dle·c~Cl The mst;element df each pair is a 

system state f1111aton, and-thesecend mnponenrof-ndl pait'ts a Mttin.tnumber representing 

a mutable list. Note that the SJstem state, .ts_ tonsldered to be result 0, and that result I ts the 

first data objt'ct returned by thtt operation, corrtsponding to tlie'-tecond· n!nlent of each pair. 

The computation Cl has the following interpretation in M2: 
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where o-cf..O) = cell-0, 

a-0(cell-0) ., nil 

where O-iO) = cell-0, a-1(1) • cell-I, 

o-1{cell-O) = nil, o-1{ce1H) .. ( 0, O ) 

where o-2(0) = cell-0, o-2(0 • cell-I, 0-2(2) ., ceU-2 

0-2(cell-O) = nil, a-2(cell-l) = ( 0, 0 ), 0-2(ce11-2) ., ( 0, 0 ) 

In model M2 we have an extra level of ind.irection. If the state tt Ml of Ml corresponds to the 

state 0- M2 of M2, then we have the relation O' Ml(n) "'0-M2(o-M2'n)) for any n c N (a natural 

number representing a mutable list). The correspondence between the elements of Pust for the 

final state produced by Cl in M2 and the elements of the population of Pust in the final state 

produced by the interpretation of Cl in Ml is 

M2 Ml 
0 ~ 0 
I ~ I 
2 -+ 2 

Now consider the computation C2 shown below. 

C2[1] .. (op: nil, args: 0) 
C2(2] .. (op : cons , args: «step : I, tc: normal, result: I), (step: I, tc: normal, result : I))) 
C2[3] • (op : rplaca , args: ((step : 2, tc: normal, result: I), (step: I, tc: normal, result : I))) 

C2 computes the expression "(rplaca (cons nil nil) nil)". The interpretation of C2 in Ml is 

n21m. < o-0 , o > 
ll21C2] • ( o-,, I ) 

121(3] - < 0-1 . 2 ) 

where o-0(0) = nil. 

where o-1(0) = nil, and o-1(1)"' ( 0, 0 ). 

where 0-2(0) "' nil, and 0-20) .. ( 0, 0 ). • 

The interpretation of C2 in M2 is 



122(1) • < o-o , 0 ) 

122(2] • ( o-I , I ) 

where U rf.O) "' cell-0, and· · 

<t o(cell-0) • nil. 

where o-~o)·~·mt-o. o.<J) • c~J. 
o-1(cell·O) • Jtil, and ai~) ~ ( 0, 0 ). . 

· : wttete«2'0) ;.L-c:en-o, d~tf.:.~1.11~~-~·an-1 
· ct~~ nu, ancrtrtf.:1)". < b, O ,: ... 

Thus tt. correspondence betWftft ·t1e elenifflfs or the fk>1M11ation of Pfist in M2 and the 

eh!ments of·l'rist in Ml requwd· fn the final stateptudlktd 6y C2 is 

M2 Ml 
0 -+ 0 
I -+ I 
2-+I 

A homomorphism must be a function, and hmce single valued. Since the computatiom CJ and 

' ' C2 introduce conflicting requirements for the image of the element 2 < Plist• there can - ne> 

homomorphism from M2 to Ml. 

This example demonstrates that there 'art! ·some correct. imp~tations. whose 

· correctness cannot be established by exhibiting a homomorphism from the implemen~tion ,to 
. ', '~ 

the defining model.· nen tf the defihing model 'is ~- Thereto,e other ~hods of proof 
~- " < ~ 

relying more directly on the underlying concept of behavioral equivalence are needed. Proofs 

of correctness of Jmplemencatton. are dtscussed in Chapter 5. 
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4. Specification Language 

In Chapter 3 we saw how a data abstraction could be identified with an equivalence 

class of models with respect to the behavioral equivalence relation. It is our thesis that an 

effective and useful technique for specifying a data abstraction is to explicitly construct a 

(reduced) model of the abstraction. The data abstraction denoted by such a specification is the 

class of all models behaviorally equivalent to the model that was constructed, which will be 

referred to as t.he standard model. In order to define a standard model for a data abstraction, 

we must specify the signature of the data abstraction, and give interpretations for its phyla and 

operations. In this chapter we present a number of methods for doing this, along with a 

language for describing particular models defined using these methods. Chapter 5 is concerned 

with proving that a proposed implementation is correct with respect to a given standard model. 

Since we are primarily interested in using our specification language for defining 

particular models, rather than for proving meta-theorems about the specification language, we 

have made no effort to keep the language minimal. Our Intent was to make it easy for people 

to read and write specifications in our language. Such a goal has no objective measure, and the 

reader is urged to consider our examples and to construct additional ones in order to judge the 

merits of the formalism. The syntax and abbreviations we have chosen are meant to ease the 

task of the human reader. For applications where mechanical processing of the specifications is 

to play a dominant role, a more restricted syntactic form may be appropriate. 

As mentioned in Section 3.1, we will construct models for data abstractions 

incrementally, assuming at each stage that models for all of the subordinate abstractions have 

already been defined. We will explicitly construct the interpretation of the principal type, and 
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implicitly specify that the interpretation of each subordinate-~ ·is the principal type of the 

standard model for its defining abstraction. 

In this Chapter we wiU assume that a moclel for a statk data a~stract,l(Jn ts a" 
• .~ ! . C I.~ • 

exception a~ebra, and that a model for a data abstraQiQII with t~ d~t be•vior is & 

stat• machine. (Recan that a state machine is an ex~ _a,lg.,_ }¥.ilh a dist,in&uishecl 

phylum of system states.) 

4.l' Components of a Speclficatlon 

The important part of; the specification, ~nguag~jsJtt ~ucqar~ ~nd :Wffllntic', which. 
" ;, •. ; ; ,_ . "' "~ -,,,. • • : 

are explained informally below. ,1:,. pr~definidon.o{ Of.lt,.pw~t ,rbtt~i,tly .c:~ synt~x. 

can. be found in A~pentUx IV. 

The basic components of a model. spedfkat-.care, i ... rai~ lly, th( ex,_l"f,)le sJK,wn in 
c • •• ,• c; ••• • , -• ' ... •• , 

terms of sequences, where the top element of tt.e stack Js the last e~t Gt the sequence 

r~esenting the stack. This example has been · trQted ~l ~ in the Jit,rature c:,n 
• • - • • < 

specifications for data abstractions, •nd wiR p!Ohably .~ farnilia.r: tot.~ r~der. 4ter we wiff. 
. ' ~: ·. . 

see a specification or mutable stacks. The form or a specifica~ioll and ,th, meaning of ~

components are explained briefly below. with occasional reference t~ t"' stack example. 

The name of the abstraction, which is the same as the ,name of t~e ,prjncipal ty~. is 

introduced by the keyword type. An optional abbrev,iatiop for the name of ,tJte principal type 

is introduced by the keyword as. The name of the type is followed by ~n optional list of 

paranwters, enclosed in square brackets. If there is a parameter list, then the specification is not 

a single definition, but rather a definition schema, which tan be instantiated by substituting a 



Figure 3. Stack 

type stack[E] 
requires 

with 

representation: 
restrictions: 
Identity: 

operations: 

end stack 

as S 
E: type 

empty: 
push: 
pop: 
top: 
null: 

sequence[[] 

~s 
ExS-+S 
S -+ S + ( stack_undernow : ) 
S -+ E + ( stack_underftow : ) 
S-+ boolean 

none 
sequence[E]fequa I 

empty() = sequence[E]Sempty() 
push(e, s) = addlast(s, e) 
pop(s) = if •s = 0 then ( _stack_underflow : ) 

else s[ I .. < •s)-J ] 
top(s) = sequence[EJtlast(s) 
null(s) = if •s=O then true else false 

i the empty stack 

I is s empty? 

i • is length 
'l s[ a .. b J is subrange 

suitable expression for the occurrences of each parameter in the body of the deflnitlon. If there 

is a parameter list, there must also be a requires clause which specifies the restrictions on the 

expressions that may be substituted for each parameter. In the stack example, the parameter E 

is restricted to range over the names of types (E ts the name of the type of the elements on the 

stack). 

The keyword with introduces a specification of the signature, in the notation 

Introduced in Section 2.3.3. The signature gives the name and type of each externally available 

operation, including the number and types of arguments and the number and types of return 

values for each possible termination condition. The set of subordinate types Is also Implicitly 

specified, since it contains precisely those types, other than the principal type, that are used as a 



component or the rfomatn or rang" of sornr. opt'falion in the signature. F..a~·h opP.ration may 

also havr. an alt,.rnarc syntactic form, which is introduced by the kff'90fP as. Wf~, ~•· 
... 1·:. 

dt'finition of an akf.'rnat" syntactic form. th" expression ~arg n• stands f<>r tile n-th argurnen\ IQ 
,. !-:· . .- , . -~ -

the operation, and all of the other symbols (!-fp fu 'ttwe :en<f-:of the line) ar~' sr.parators (prt>fix. 
' . i - ~ • -__ ·~ • ., - • ! 

infix. postfix, etc.). which ar" to~ tilttt~. ~ty~ i,,- an opffat~(.t.e., thP name of its 
' ~ ~ . i; _.-.,. "'--I'·.• 

defining abstraction) should bt obvious from its context_ In ca~. ~~~e .!'., is ~- ob,vt~ ..,,-
- .••;? .. c_1,,- ~ 

where we want to emphasize the type. we wift use the stand~!'(l Ju,~,~\ JJOtation, wher~ t~ 
~- . . ' - ~ -

munt> of tht> ~ration is prefixrd by the name of its ~f'f~ing ~bstr~~ follo~ by ~ ,-,l~~ 
'1· - ::- ,_;. 

TM parameters of the type wiff be includ~ in ca~ }~~tr th~ ,is· ~.lpittl to the (human) 
~ •.•. , . .( 4. c<f • - ~•• •• - , • • • ' ~ ~ 

reader., 

.. . -~ . ' - ~ •. { ' 

The interprt'tation of the principal type is specified by the next three comp;iinients. ; 

~ underlying repre5mtation algt'bra is specified bf an expression introduced by the keyword . 
-+ ,- •-- ,- • 

representation.- Tm- allowable t'Xp_renions ~nd t~r meaa;,nu,.,~ rt-~~~ t,l,Sectica 
- , ·, ·, '._- : '· -, -_i ~ t' -~- - , - . 

i.3 ~tow. The restt'Jctions component ~ifies ~-~ .of I~ pr~~ type d-.t~ 
~ • '- : , ·. ·-i .-;:. • • ' 

representation algebra. and the Identity ~ion ~if~
0 
af!, .... ,,,~ .relatpt on that st$Sel 

Tht> intnpretation of the primipal lypt" is tht' quotient of t~,spttj{jed sn~ of rbe pdncipal 

type of . the rrpr~n,ation algebra with rt>~t to the specifkd equivalmce rt'btion. The .. , 

identity relation in effect drttrmines the identity.of the a~stract pf>,ieUl,,C ~.p;ria,cipa-ttype of 

the abstraction being defined, and serves as the log~, ~a~tr ~ f91: t""_prirJQpal lfp!! or 

the mocftat. Logical equality is not exter~Hy ava~b~ .• ~ QM, . .of,._t.,,~ of the 

abstraction h::appem. 10 coincide with it In a red~ ~d. \qgiQI. C"quaµty .\hou.~ '

extemaffy observabk- in tmns of the operations, allhoup not,ftlll(:'55Clr.ily in t,erms oft~ same- • 

finilf' comput::ation for alJ objects in its domain. 
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The operations are defined in a section introduc!CMty the :keyword o,,erattons. The 

forms and meanings of the operation d,finitions are described in Section 4.2 below. 

Comments can appear at any point in a specification. They are introduced by the 

symbol "'%" and extend to the end of the line. 

Auxiliary functions or abbreviations may be used in the definition of the operations. 

The types of any auxiliary functions must be given In the internal section, and the definitions 

of any auxiliary functions or abbreviations must be given in the definition section, In the same 

form as the types and definitions of the operations. Auxiliary functions are introduced solely 

for clarity and expressive power, and they are not externally available (for use by programs) or 

even part of the model, which contains only the functions acting as the interpretations for the 

externally available operations. Amciliary functions may be used in assertions and in proofs of 

properties of the data abstraction. 

A specification is terminated by the keyword end, optionally followed by the name of 

the abstraction that" was defined. In cases where several data abstractions are subordinate to 

each other it is necessary to define a group of related abstractions by a single model with 

several principal types. In the specification language, a module defining a model with several 

principa I types consists of the keyword module, followed by any number of type definitions, 

followed by end module. The representation and•,tbe•intff1181' flinctieris of, ac-11 type are 

accessible throughout the module. Modules may not be nested. 
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4.2 Deflalag Operations 

The principal type of a model is the quotient of the subset or the principal type of the 
'1 ·",.!"' • -. ' 

representation algebra satisfying the constraints specified in the restrictions sect~ with 
' ' : i .,_ ,) . ':;": -~. -· ._\ . :-- ~ • ,. . ~ ,·., - :·. ' 

respect to the equivalence relation specifaed in the Identity section. If there ls no restriction• 
,· 

section, the ffltire principal type is used. If thett is no lclentfty s«tion, then the logical equality 
. • t : '. ; -, ' ~ .: ~ :: ~ - ·1 

of the principal type of the representation algebra is used, and the quotient structure is trivial, 
-·,;,,· ,, 

since all of the equivalence cla55'S are singletons in this case. 

. The definitions of the operations in a type definition In our specifkation language 
~... ... ., 

explicitly define functions that operate on the elements or the prindpal type of the 

representation algebra. These functions are imp1kit1y extended to operate on the ~•valence 
... -: ; ~~ ~ :_i· !~!-~ ::-·,- ·~. _, :·· 

classes that make up the principal type of the quotient structure in the usual way, described in 
. . . - ~ 

more detail In Section 1.f.-f. 

The following subsections describe the means for defining functions provided in th~ 
: - -, ' -~-._;_ <~- -- ,s..;i, ;~ <;;··- .· - <'; ' .. -~ ., ! 

specification language, and then examine the constraints a function definition has to satisfy in 

order for it to denote a well formed t,peration for the exception •~~ or state machine being 

dfflned. 

4'-2.l CoadltilNUlil Jbpresslona 

We will use a language for defining functions similar to that introduced by McCarthy 

in (331 extended by the iota expressions dncribed in the next subsection. 

A function ddinition consists of a function name, a list of variables, an equals sign. 

and an expression. Valid expressions are variables. iota expressions, functions applied to 
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expressions, and conditionals applied to expressions. Conditionals are written with the usual 

if-then-else syntax, and they have the usual meaning: 

b ~ ((if 6 thffi ~ else ,> • x) 
.., b => {(jf b then x else 'J) = 7). 

The variables that may appear consist of the variables ~ppearing in the li~t ofJo~mal 
",, .- . • r· -:~ . • . . . ~ 

arguments on the left side of the equals sign, and any local varia.bles defined immediately after 

the funcfion definition. A local ·variable is 'deflned by writtng Its riaine/an equals 'stgn, and an 

expression. Circular definitions a-r!'not allowffl: U must be poss& to elitntnate aft of the·Jocal 

V,u'ribles from the right fiarid sid~'bf a funrtit>n definition bf a finite- number of substltuttons, 

each of which replaces an occurrence of a' local vtirlable &y! the ex·;:tr~sloft -definihg it. . 'Local 

variables are a notational conv-enience, it1 the sein~ that ~11J~ftnition inlng local variables has 

an ·equivalent definition without b:af ;~artabfes:·· ·'\'f~ 'abbrevlatiffls introduced by local 

variables can be a very important a'id m making·the structt\re' of i fundiort' deflnitioo ritore 

apparent to the human reader, and th~y an ilftimes dramatiftj: sfiol"tffl the text of a fuhctlon 

definition. 

The functions that may appear on the left hand side of an PP,e~~t~n definition are the 

primitive operations of the representation algebra and of its subordinate abstractions, and the 

operations and auxiliary functions defined in tht•~:s~fkatm or-.M01dule m-;\vfiich the 

defining expression appars; Recursive deftnitions' are tH1,wed; Amtitiarf T-t.Hidioris must be 

defined tn the deffnitknt sectioR', Amtiliaty func~' cail iftcrea~ the _expressive power of the 

language, as proved for equational axiomatic definitteftt in· Ml' •TfUs :re,ult'·lhoukt' not be 

surprising, since auxiliary functions may be defined recursively, so that the process or 
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substituting the body of the function definitions for each invocatioo (attempting to eliminate the 
. , i j . > f ',, 'i 

auxiliary functioos from the main definition) may fall to terminate. 

Since the operations of a data abstraction are sup~ tQ be twal JUACtiqm. it ta 

necessary to show that all recursive definitions used are well founded. 

4.2.2 Iota Expressions 

Iota expressions are named. for the ~ operator in. locik·: -~n ~• e1tpr~ssion bas .the 

form x: /1(x~ where xis t~onlyJree var,..b~ in tht;,pr"R.ti ~)., l(xis qf.tJpe,T, aod tr t~ 

set Ix ( Tl /l(x)} b a stpgleton $et, then :the value of t\M . .._ ~.~ ~-ll<x> ls tilt,~ 

element of that set, iind otherwise the ioca e,cprfllkl:n .i&i~ 

. Iota expressions are ..-serul in cases where it ta ~ ,_. ;to spec:ify a pr•s;tJ the 

resuk of a ruooion ~ satisfy-aJ'l(l lec-proye t~t U.. P~:~ly determineS t~e result 

than it is to prov4(k a.recumv.e _dd'inJtion or the f\lllC,ti9'~ J4P.:~!$sjpns are the equ1¥alent 

of Hoare style input/~ predicates for a languw .. Vf#h ~s a,w.. w.-thOllt side ,:ffec:tJ. 

An examptes of a definition where an iota expression definition is appropriate is 

whtch defines the-intqer square root runcoon. 

It is necessary.to show that uch iota.~,....-.l-,in a-.~~ is wcll.dtofaned, 

given the (»flte~t in which it appean. Mere_pr'ftiMIJd.•-folJQwjag ~,r-.utr~ must be 

satisfied for eac-11 iOCa e.-e5Sion- x : /'(¥}: 



- 73 -

I. q(x) => 3x { pl.x) ] 

2. Vx,1 [ q(x) & pl.x) & q(7) & pl.1) => x = 7] 

where = is thl' equivalence rt>lation defined in the Identity section, or the logical equality 

. . , . . .· . -, . .. ' . ! >-4· . . . • . 
relation if there is no identity section, x ranges over the principal type, and where q(x) is the 

path predicate describing the conditiot~-s u~der whkh th;~ expression ~an get evaluated. Let 

a be an occurrence of an iota expression in the ei<pre~sion' ,, and let path(a, t) denote the path 

=:, .·:l 

predicate for a in t. Then path(a, t) is defined as follo~s: 

path(a, a) .. true , 
if t is 'l(x1, ... , xnr and a occurs in x; then path(a, t) • path(a, x,) 
if , is )f b then x else , .. and q occ,v,, ke-b ,, ;,,~ea~~-,} "p;ltl,(tr, ij ,. 
if t is "if b then x else •y" and a occurs in x then path(a, t) • b & path(a, x) 
if_, is ·;r bJheo. x ,else 7," arld a OCCIJ~ '1 , -Jben path(~4111,7 ~,,-<~.-,) 

4.3 · Constructing 'Alge1,~as 

Our app,r:oach,~iH~ ~-define-a staoda.,d mpc:lel .-,J ••-a~jft, .... ,of;a 

given representation algebra. The prinqpaL tJF_of-tbc.,,-o,laf4,-~,w™ lf'ig~,il~ lhe 

a specified equiv~len_c~ re.latfQll .. T~e. op~ratiops _pf~.~~ ~! "1jff J;,•1~Qaed Jn .t,mlS 

of tti~:op~r;Jt,iOOJ of the rq>r~Jfr).tation algebra .. "' tl,esg:ibed·-tn tbe.p-~~s,~ The.rtfst of 

Jtpts ~e~tion)s d~·u,ttd, to deORipg a i,ich ~LoC~~-~·•a1,11;aa-~a..,..-l a, .. , ' . - . .;, ' ,. . - ., . , ' 

building, _bip$:ksJpr ddiqing lll9,(lels. 

Si~ce it is. not ~IT aim: in the present, "lQr.k. to ~~♦ga1' the ,fou,ndaUons of 

mathematics. we will assume that _log~. tr,uth:valueJ.. lets.,,"1:t,sian ,t"'~u<cts. natural oumber• 

and integ·ers are primitive. An excellent formalization of these structuru.caf) l>i, f:olmcl in Ci8l 
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We will use the notations summarized below. 

T and F denote the truth values tnu and falst respectively. These are the only truth 

values, and they are distinct. &, v~:--• ==--. ~mt,s d~t t~,,,. .. or ... ~. im>J.l,ls .. lnd tqulNlmc, 
, • r ' • I - · , .c"O < .- - • 1. , . . , · • - · -

operations on the truth values, respecttnly,.and °! a~ ~,denoe,,J~,,~ivers.J.a,~:~Xist~I 

quantifters. c. U, n, and - dmote set membel'Jhtp, unton, intersect~ •. and .«"difference. F_,,Ue 
' '. _, ,, ' .' -

sets are written { x1 , ... , x11 } and finite cartnian p~~-~ n~~ are, written ( x1 •... , Xn ). 

The t-th component of an ntuple X is writte(I .x l t, so that ~?I,·;-~ xn ) • x1. The .set of 

natural numbers is denoted by N. 0, CJ, •· •• <. and • d•e zero. successor, plus. times, ~ 

than, and logical equality on .~,r~•!~- The _set of:,~~-
0
is.~411!l··.by Z. an,d ••(I,-, 

quotitnt, rtmatndn, ah, i¢i•ancl • deliate1pluS.'tfmes. lunaty}lftfflUl'at (btn11rJ) subt~ctton, the 
~ , t ,~. - : - .• /cl:. . "; 

relation, and the equals relation, resptctivety. We rely on \he QJlltnt tq differ~tiate. betw~ 
_.- •. :,--; . ; ."':·., ;1 ·-: ').') -~- -.: ·:· -! - - (-' . 

operations on the integers and operations on the natural numbers with the same name. The 

usuat~mahwtatieitWil- IIM!d fortnteger~ -,.tdi t'tidna.Mrellf,ro b'e an infinite 

dass .of naffary operatkiM fronuhe'formll point of~. · ·" 

We wttr defln~ a mrmbtt of ways for dftilig afg~ras, namely finite enumerations. 

finite tartmatfproducts. ftmte dts)OiM umans,'ftnie ,.., sets, finite ·sequences; •nd r«ursave 

dttftntttons (flitpoll'lt ~iaM). The set'af 1'pf'esentatlait algebra1 is deflned to be the set 

generated by the- standml model for -~ booleiit ...... ~ ~ wldi respect ~to ttte 

constructions listed above (i.e., the smallest set of algebras 1Ml it d:ised Wttfi'Mp«f to ~ 

conltrutticM for 'genttattftg new algebras); . &ch of the'' toniiuctiOns supp~ a set of 

operations as wt'U as a 5't .of data objects; 10 that'we att g_,..tlng a set of algebras rather 

than fflft'efy a set of sets. · 



- 75 -

We also define two special purpose algebras, token and state[D], for us~ in_ defin_tng 
. ; ~ ~ t'"'? . .. • ~ 

the phylum of system states in a state machine model. Toktns and states have interdependent 

meanings, and are defined by a single module with two principal types. These two abstractions 

codify the ways in which the operations of a state rnachtnt can depend on the system state . . 
4.3.1 Booleans 

We want to have an image of the domain of truth values as one of our representation 

algebras. Since everything else depends on the boolean domain fpredicate operations ret?rn 
. . . . 

values of type boolean), we cannot use the methods described ·beloW to define it without 
~ ; 1-- ~-i l : t . ; ~ - . 

introducing a circularity. We will define boi>lbtU in' tetins df the truth values in the 

underlying mathematics. _A necessarily informal deffdmon in a, ndeatton similar to our 

specification language is shown in Figure 4. Because the meaning of a data abstfactiori"ts 

defined in terms of booleans (cf. behavioral e<JUivaleMe, Chapter 3), we-ins-ist that t~booleans 

underlying domain of truth values, which in turn is the same as the logical eqoiltty on· the 

boolean domain. In kttpmg with our pofity that th~ only externany observable properties of a 

data: abstraction- are those, that ·can be calculated in terms or the ~aUons, we wtn always 

interpret "•" as the ffl',dl ~-atieft of tM'deffntng abstraction of'th,'ty'pe';bf the iftt~ objects 

beittg rompaffii. Thus it k proper t<t~ffl~ ",." in the cttftnittori of an·operation 0nfy lfth~ 

repruentation, t~- bas an tqmtl"<lperatton. Car~ fmtst,&e tiUH t~t the iqual openttan of'an 
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Figure 4. Boolean Abstraction 

type boolean 

with 

representation 

operations 

as B 

true: -.n 
false: -+n, 
not: B_. B 
and: BxB~B 
or: BxB_.B 
implies: BxB---.8 
equal: BxB...,..B 

B .. truth values 

true()'"' T 
false()• F 
not(x) • if x then F else T 

and(x, y~ • if-.x ·""~ y" ~be f. 
or(x. y) • if x then T else y 
implies(,c, y) • (..,") y J. 
equal(x. y) • (x => y) Be (y => x) 

as ... argl 
as arg I & arg 2 
as,ar9t V·atg 2 . 
as arg I ~ arg 2 
•• erg I• erg 2 

the algebras defined is in fact an ident#.J relatio1L1 Lqckal ~ ls .-aumed to be defiaed 

for the. ~,w:tures that have ~ importeil., f,;om the;.,._,.,_ mathematics, such as tM 

natural numbers. 

The boolean.type is isomorphic to,the dontaiR of trulh .yalufi;t1t0tht underlytng-klgtc. 

as indicated by the int~pretations of tht o,erations tru, alld JalH m the standard model far 

the booleans. The operations of the repn;snttat• ~ c:qr.rapGAd to1 those of: tM 

proposU~al cakulus int~ unde,rlying logic. Q.u~if~ .. .,,~ QfflfM!d only in tlae ftlllderl,-g' 

logk. and. have no counwpart in. the r.epHMntation ~~ We wiH tnake hea-vy and itaplic:tt 

I. An identity relation equal must be reflexive, symmetric, transitin, and must satisfy the 
substitution property ,qual(x. 1) => P(x) E P(1), for any predicate P. 
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use of the isomorphism between the booleans and the underlying domain <If truth vatuei, so 

that the primitive predicates of.any representation algebra., which return values of type boolean. 

can be combined with quantifiers, and used in if-then---el~ expressions, both of whidi · are 

defined in terms of the underlyi~g logic. The booleans are the only type for which we will talk 

about properties of the interpretations of the objects wectly. For all .Qlher types, we wiH· talk 

only about the results of applying the primitive operations. The only direct connection to the 

underlying mathematics is by lllt'aQs of the. bQoleans, wh&ch is wa.l U,at type b given a 

distinguished status. 

4.3.2 Natural Numbers a'-d: ln~eger~ 

We import the systems of integers and' natural numbe;s directly from the underlying 

. - ., , ';, '.' ,'(;t ?. i ' 

mathematics. Definitions of these types are given in Appendix II. Th~ definitions serve to 

pin down the syntax, and have nothing surprising in them. 

4.3.3 Enur-.e~~\Jons 
. : ' , ..... 

Enumerations are useful for defining small finite sets, such as charaicters. Larger finite 

sets, such as Weed length integers, are most conveniently described in terms of the infinite sets 

they are intended to approximate, as will be illb;t~ted latedn this chapter. 

' An enumeration { xj ' .. : • Xn } defines an algebra who~~ principal type is a set with n 

, . . '' :- ' ~; : ) ' .. : . .. ~ . ~ ' 

elements, and whose only subordinate type is booltan. 'The algebra has 'ii nullary operations, the 

constants xi for I ~ i ~ n, and ohe binary ~ration, tqual, ~hich'aHo~s the elements of the 

principal type to be distinguished from each other. We want equal(x;,'~l to be triJe,if a"nd ooly 

if i = j. The indices range over the set of natural numbers N. There a're many models that 



Flgur• 5. Enufflffation Types 

wltlt 

•T 

_.T 

-18 -

"f 
equal: T X T -+ boolean 

representation: natural numbers 
. Natrlcttau: f '.such-that'll s i ~ JI 

Identity: = 

operations: x~) • i 

.,l(a, b) • ifa • b then true ·e1se falle 
end 

exhibit the behavior described above: {Our ~fktJrt rnottet~ s11Mi' in Figdre ~.· uses. n~ural 

numbers to reprnent the elE'ments of the enu~ation. T~ • •: operat~ .u~ in. ,1,fining the 
-: • • - ,- - , _ , •• ~ _ C • ~· ,, • : .~ ! 't •; .: • . i ' " 

rqu.al operation of the enumerat~. t~ denotes the ~litJ ~l,~ ~ !~ ~tural n_u~r~ 
- ;_ , : .. .,, ' . . .. :.• -,. 

4.3.4 Tuples 

for the set of n-tuples such that the i-th _c~ent is _a ~-of the~ _s, and bears the 
. . ' . -/ '; - " .. J - -. ',· ' ', ~ : -_' . ... . ' ' . 

. labef wi. for each i in the range I ~ i ~- n. w,e_ •~~ w,rtte: ( •t=-~t- ·:r:' ~ .. :1~n) fe>r_ t.~~ t,.pJe 
. . . ·- . . . { 

containing the elements x1, ... , xn. The ero~iOfl,.function ~pein, a '-~~ _to .i!S t-Jh 
c>• -~ •-, • ~~-~-••1.~-';: • 

componttnt is denote by p[w;l and if t is a t~p~. th,m pC•tXt> ta!)~ ,~brevi_at~ is t • "';· If 
. ' : ' -.. . ' ~ . . . ~: . . ' . 

t • < "'1: xi,._ .. / 11111 : x11 > •. Jhen ,t-;~~
1
~ f; ~or ~ch. ~.i~. t,he ~',Ip ,I ~J,.~ n. , Twq u~p)es ~e 

equal if and only if correspQ11ding components are equal.. ~altty of tuples Js define<I, fqr t,he . . ~ .. J. . .- . • : _- . - -,. -. . . . -.-

type tupte[~I: s,, ... , wn: Sn]ff and only if t~ d!~i;~,i~.$~ra,,ofJ1,has in tqual operaUon 

for each i in the range I ~ I ~ n wh~h is an idffltity relation. If some of th~ compqnent _types 
' . . 
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tuplef1111 : SJ, ... ' llln: Sn] 

Si: type 

construct: 

p{wf}. 
t"(JUal: 

s1 x ... x Sn---+ T 
·p-. s, 
T x T ---+ boolean 

representation T = s1 x ... x Sn 
restrtctlons · none 
Identity equal 

operations construct(x1, .. '.., xn) "' ( xi , .... x11 ) 

p[wi](x) .. x J. i 

asT 
for I :S I :S n 

as ( ru1 : x1 , ... , run : xri ) 

as:~• i; w, ' for I :S l ~ n 

.equal(x.. 1) = if V;, { I S i ·~ n ~-x. uti "''I• fll; J then-true else false 
end tuple 

do not have equality operations, then the tuple type does not have an equal operation etth!r, 

although the type and all of the other operations on it are w~II defi~~-2 . 

This description is summarized in Figure 6 in an informal notation; Retatt that 

cartesian products are primitive, and that if x is an . 01¥,p~ J.th!n· x J. J denotes the. i:tth 

component ofthe n-tuple. 

2. An equal operation will be defined for every representation algebra in our basic set. It ts 
also possible to construct tuples with components from user defined types, which need not have 
an equal operation (e;g. stacks). · · 
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4.3.6 Oneofs 

Oneofs are finite labt'led disjoint unions. A oneof ts the dual of a tuple, in the ~se 
l : >~ i '..( . _;':: . * , . ~._. 

that the projection f~~~Mo in the other directioo. '4'W~wttl wrtte __..[.,I : Sa, ... , "'n : s,.J 

Our standard model for 

oneof(a,I: s1 .... , rvn: Snl shown in Ftgure 7, uses the s~t 
1
~~< '·{ifJ_ x ~i• to 'ree,:~t U1e _,_,. 

principal type, which coincides with the standard interpretation for 
1 

cU~joint unions u~ in 

• . :::·•1:;.·'.; :":C ·, , - "';r 
classical mathematics. Each element of a ctisjOint union it, rq,r~_,as a pair containing ari 

element of one of tbe c:~~ types. ancl·a lallel inibfing··•d 1t\Wtiponent the element 

came from. If an element occurs in more than one of the s,. it wiU occur in several distinct 

elements of the disjoint union, ·distinguished by different values for the label component of the 
.. ; L 

pair .. 

type·Gteofblrt ;.S1, •.. ·, •n: SnJ • O · 

requires Si : type 
with in[1111} 

to[wi! 

ishu;l: 
equal: 

s,~o 
0 ~ s1 + ( wrong_type:) 

S1 ~ booltan 

O x O _.,. boolean 

representation O • U { 'lllt } x S; 
l:Si:Sn 

restrictions none 
Identity • 

operations in[t11iXx) .. ( fll;, x ) 

-for I :S.t Sa 

u arg I in .,, for I S I S n 

u aro I to •t for I :S t s n 
•• aro I is •, for I :S i S n 

toCmiXo) .. if o J, I .. o,i then o l 2 else ( wrong.Jyp,t : ) 
ls[r11iXo) • if o ! I "' w1 then true else false 
equal(ol, o2) • if ( ol ! I • o2 l I & ol l 2 • o2 l 2) then true ehe false 

end oneof 



- 8J -

A oneof type has n injections from the component types into the <ijsj9int union,-n 

predicates indicating whether or not an element of the disjoint union came. ffQfYl,,a gtve,n 
. - • . , - ·- -~ --~ Ja ¾ , . ~ .• ,~... ... l . , '.' . 

component, and 1l · projt'ctions, which return tlte element, wlttiout the la~I if the label 

. ~· ',' ; . ·, '+-""·i 
corresponds to the component of the projectionr and '¥hkh termirii.t.e in the 11Jrong_t,fH 

• • "' ,. <. 

exception with no return value otherwise. The ~ type has an ,q~~loperation if and only if 
, ,. ~ ~ · F :• ·: ,~ ,,. , 

each component type has an ,,ua/ operation. 

As wi shall see below, one of the m,ain u~s for disjdinf ~"'i90s Is in constructing 
,., .. -,,, ' ·. 

recursively def~ned ty~. such as trees. 

4.3.8 Sets 

We will write set([] for the doMild or ·trlt~r"su~ '/,{r~jype E. An ~-qfP;t~ 

definition of set[E] is shown in Figure 8. This construction t,5 1 v_ali~. f?flly if t~ .~1\?lOJ 
i', : ., '. /,P 

abstraction of the type E has an equal operation that ~t~. ab idet:1tity relation, because 
~ ~ ...,. • -· - ·, i-• ·;_·:-,v~ ,, •. 

<1'.~ J • , ,_ {(i" ~- ,. ;:' ' ; - • 

equality Is necessary for deciding set membership. ,T~erf is ~e
1
riu!"rf~r~tion which returns 

,'' .' < ,. ';"', !--. ' 

the empty set of the given type, and ther~ •-~~
1 
~~~~! ~;~d~~:'~-?.~ removing elements, 

and for forming unions, intersections,·~~ dlffer~; ~ml mtrict~s. 't,~r~'. are also operations 
, '~ f. ·· w ~> -:. 1 , ·"'·f'c' .? :- ··:- ! ; · '•: _,"j; • t · · ': : 

for testing to stt ifan ~,~lf>nJttc>'a,Ji!~:~)r~~ is •s~b~ ·~,another, If two sets 
. ' ;, . . . . • . . :.;o • . .<. -• .';:!:- ~-; • - • 

have the same members, and for finding the Sile of a set,<~hktfA ahii~ys defined because we 
"i , 'i j ! l{v •-· /~ 1·,. ·_;::,c,,: •:-.:11~Jj-f•-:. •::_;.;'~, 

are dealing only with finite sets. Set restrlctlon is'ttea't~ as aQ. hl(leftnltely large parameterized 
. ,.'· - / • ~ ... ~~- ,.· . '{ >~ V 

family of operations, where tlte patam~~rs ~~e :~, ~rid,)t!iiable and the body of a lambda 
.,·-.. \.•,· . ' •~ .;';: 'fJ' l 

expression defining a predicate (i.e., a function from E to boolean). The Sile of a set ls~defin~ 

to be an integer rather than a natural number, so· that·snes-catr be subtracted ~and divided. 

T-tte naturat numbers and tftt integers:are defined in Appendix II. 



Flgllf'e a. Set 

type set(EJ u S 
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requtr47s E: type with ae..•~ Ex E ~ ~~ ~,,~t.~li 

with 

representation 
restrictions 
~tty cl,~ 

eperatlons 

definition 

end set 

null: 
add:· 
remove: 
union: 

-.5 
E xs-+s 
ExS-+.S 

. ··.1• .. 

SxS-+S 
intersection: S x S -+ S 
difference: S x S-+ S 
restr~x. p(x)} S -+. S 
empty: · s -+ ~n 
member: E x S -+ boolean 
subset: S x S -+ boolean 
equa I: S x S -+ bool!an 
size: S -+ int 

S • mathffllaticat sets 
s sucf\_t ... t .s .~ J: anctcar4¥"1iJJ,{~ c .,ft equal . . .. . . . 

null() - {} 
add(e, s) • s. U I e 1 
remove{e, sf- ,: -l e l 
union(st •. s~t- ~ U si. ,· 
'initts«Oon(sl, s2) ~ sf i\ s2 
differ~$~ s2) • sl ~ s~ . . 
resfricttx, p(x)ls) = r ,i'< s~t p(x) J 
emp!J<s> • if}?' 1 x .( s 1Jmv,~,~ ffl'.~ 
mffllber(e, s} - If e { s then true • false 

as argJU arg2 
, ¥<.•ttHlMA,2, 

aaargl-arg2 
~ f X~: •• 1, p(x) J 

>: J•: ":«' l 1~ )'Jr• 2. •••v•~•g2 
as •1 I• .,..2 
•• I argJJ,,: 

subset(sl, s2) ~ .if 3 .x l x J .st.& .. : ( ~. f 12 >.t•~ elst ts:ue 
equal{st: s2) ',. if( it , ·:2 t s2' ~ s1 > lhm true • ·raise .. 
size{s):".' cardt~J.tty(5) .,,. . .... , . , 

ident_op(O -~ V~ C f(x, x) JI(, .. • .. 
. . . Vx,y [ f(x, y)=> f(y~· x) J & . 

Vx,y;,. [J(~s y) & Ky. i) ~,;{(x. d J,Ac 
VP Vx,y ( itx. y) ~ ( P(x) E P(y) ) J 

In Figure 8, a definition of finite sub~ of a._ type £.~gi.-.,m teras or onMna11y 11e1 
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theory. The nott1tion in the figure is ambiguous, because we wish to use the standard notatio.ns 

for the usual set operations as abbreviations for the operations of the representation algebra as 
. r ~"".i 

well as for the set operations of the underlying mathematks. The ambiguity ls 'resot'Ved as 

follows: withUl . the definitions of the operati<JOS, the statldard set iinotations refer to the 

operations of the unde,lying mathematics, while the ,s daUJes in thf' 1igftature section redefine 

those notations. as- ~brevfations for the operaUQfts o(::.rfw trpresentattdn algebra, for external 

use (i.e .. when _using_ re.presentation algebrasJrom the Mt ftlnily to d4flfle;standard models for 

other data abstractions). 

4.3.7 Sequ•ne•s 

We will write se.quence[E] for the doma1n of ftn:ite sequencesc,feleaenu of'type E. 
(; ·-

An informal definition of sequences in terms of cartesian prpduc~s,'is 'shown ·in 'F_igure 9. 
i ,:, ... 1; - ·- -~ , . 

.J, • ~,... • ~ ~' 

Another definition, using a fixpoint construction, will be sketched ttt:tlt~_'(l~xt section.'' ·' •., ·' 
' '. . . ·. ~: : } '~ i '.: . 

Sequences have an exception.ti termination-co(idtt1~
1
~~s~ :~hic:J, b associated with 

• ~/',~ ":.. jf-:, ~ -;.f_ .' •!' - . 

attempts to use elements or the sequence that do not l!Jifsf. ~entes tati "be decomposed into 
, ·v, . ' \. ,"'.",;!(': 

the first element and the sequence c90taiftln.g·an,t,µt'the't~st element, and also into the last 
·, . {. ' . . - (-,'!- •_,..,, .... , ' ·i,_!-~ 

' .:.·· . . ' -

element and tht sequence;td atl·b\Jt the fa~t elfmtrit, so_ th'a.trt~lther encl of the sequence ·ts 

preferred with respect t~ ease of actesJ. Subfa"gei 'ate'_-~n~ by.Jiving the first and last 

r l 

elements of the subrange in the original sequence. . iii~ ,lt!ngth. ~( a·)ubrange s[ a .. b ] is 
• .~ , t . . :; , • ~ " . 

I + b - a. Subranges with strictly negative lengths ire not defined,,_ and an attempt to construct . ' ~ ;} '. ' : 

one will result in a bounds exception, with no return value. 



Figure 9. Sequence 
,· 

type sequence(E} 
.rec:pruE:t,ee 

asQ. 

with ernptyseq: -+ Q. -() 
~fiot: -.Q.>< £-+Q:. ' • -.-2 •I 1iiW t 
addlast: Q.. X [ -+ Q. ••all+ arg2 
butfint: • (t--+, (l C 

butlast: Q.-+ Q. 
. append: :Q.. x-<t,~ (t. - u .,.+I ••1r2 
subrange: Q. x int x int -+ Q. • ( bounds : ) a •1 I [ arg 2 .. .,.. 3 l 
prefk: Q. x • -+ Q.• ,t'"'8flds: •· ailreff .. .,..; 2 l 
suffix: Q.x Int-+ Q.• {bounds:) • .,.1 [.arg 2 .. ] 
elemmt: Q.x int-+ E • (bounds:) a-arwtt-.. '!J· 
first: Q.-+ E • ( bounds : ) 
last: Q.-+ E • ( bounds: ) 
length: Q.-+ int 
empty: Q.-+ boolean 
equal: Q. x Q.-+ boolean 

••P'9ahtatielt <t- u ( ' I X E' . 
t ~ 0 

as arg I • arg 2 
;Jf t thtae length . 

restrictJon• 
Identity 
operatlofta 

end sequence 

none 
· ae.q11Mceiequa1 
IPflVlhl--t\ • ( 0 ) , . . . 
;JJi~~t e) ~ < l+(tq). e , q(ll ... , q(~ ) 
ad~fasc(q. e) ':' (M~ q[ll .'." ,, qlaql , ) 
butfirst(q)·• </.2 .. ectJ 
bu.\Jf"'q) • q(J>. <~U 
appenci(q, r) • if~ • 0 then r 

• if .•r - o~ ,. ·•. . •-•· . 
C else ( (eqM•rl qlil .... q(eql rm: .... rl•rl) 

subra1'1,'(41,J.j) • if (i.~;,ll,'<,U ?t,-,ql~ U,i~•,U,~(~s it> 
else if j • i-1 then ( 0 ) 

· . ~;q~tk.U.- ,qUJ_> 
prefix(q, 0 • q0 · .. 0 · · · ·, 
suffix(q. i) • q[, .. .qJ , . . . . . . 
elementlq. i) • if (i < I) v (i > ttq) then ( bounds : ) 

first(q) ~- q(I] 
last(q) • q(eq] 

else q J. (t.0 

_ length(q) • q l I 
empty(q) • tf -q • 0 then true else false 
equal(q. r) • if eq • •r & Vi [ I ~ i ~ eq .,. q(i] • r[i] J then true else false 
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4.3.8 Fixpolnts 

It is convenient at times to Introduce algebras whose principal types have a "recursive" 

structure. such as the algebra of binary trees. While it is possible to define isomorphic Images 
,\ 

of such algebras using just the machinery introduced so far, by introducing appropriate 

encodings into the natural numbers, such a strategy does not contribute to the clarity of the 

resulting specifications. Instead, we will introduce explicit recursive (circular) domain 

definitions, which are considered as fixpoint equations over the domain of all algebraic 

structures. 

The representation component of a specification will always be a domain equation. 

In cases where the name of the algebra bring defined does not appear on. both sides of the 

equation, there is always a unique solution, since we are essentially solving for the fixpoint of a 

constant transformation. In cases where the representation algebra ls defined in terms or itself. 

there may be many different solutions to the equation. Following Scott(,f6l we will introduce an 
. . 

ordering, and say that a fixpoint equation denotes the minimal solution with respect to that 
~ . ; •·? \ .~ ~:: ~ ' "~ . ; } •' ·- -, ., 

ordering. We will use the pointwlse containment ordering on algebras, denoted by i;;;, and 
._ <•;~-- ·:~ \·:.d~ ·~_'.-' .-. ,,.. , ·~ '. ··. "• 

defined below. 

Defmttton 19 Polntwtse Contalnment 
Let a and b be algebras. Then a ~ b if and only If all or the following conditions 
hold: 

a. typenames s;, b. typenames, 
Va c a. typenames [ a. phylaa ~ b. phylaa ], 

a·.opnames '-b•opnames, 
Vfj c a. opnames ( a. operationstJ s;. b. operationstJ l 
a. tcnamts ~ b.tcnames, ,. . .· 

a. arglength ~ b. arglength, 
a. argtype ~ b. argtype, 



a. tc s;. t,. tc. 
a. rlength ~ I,. rlmglh. and 
••rtn,e,.- .. 14,r.: 
ca.pt kb.pt 
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If a c;; b, we wUI say that a is contained In 6. This means that for every phylum of a, b has a 

phylum of the same name, and for every operation of a, 6 has an operation with the same name 
• .J ' ; ~ - ; : ::-, ;-; • l • ,,- \ 

and type. Every phylum of a is a subset of the correll)Ollding phylum of 6, and every operation 

of a ts a restriction of the corresponding operation of 6. The larger algebra 6 may have types 
;_ t-r.-)~.~.' {_.'.-if•- ' ' .. ' l ~-<·" 

and operations not present in a. The set of principal types for a must be a subset of the set of 
·, 

prtndpa 1 types of b. 

Note that C is reflexive, transitive, and antisymmetric. and hence is a partial orderin' 
, ,•~ •""- 0 c,•,. ➔ <; •~ - ); ; j'.'-

relation. Because C is antisymmetric. if a minimal solution to a fixpoint equation exists, it must 

be unique. If we restrict ourselves to expressions built from continuous (with respect to I;} 
,,~~ --::·r ~.,.~.--.·,,. !,;~-.,,.,., .;•,r~i,,. ,>t,.-~:.1 

transformations on algebras, then the existence of a sollltion ts guaranteed by K leene's first 
_, .. , ,·:r:_. .;I:-,~; --:.~ ,.r:c:·" .. \::_,/ ,,~q~::-·;:~~~ -' . 

recursion theorem (231 which also gtves us an explicit formula for the solution. 

. .. 
Klttne's first recunion theorem states that if the tnnsformation F is continuous wtth 

c, _: :, ~ _ \, •·• -~1•: .;,. - .;~ ,,: ~~:;~~;; (, c· •.. • 

respect to ~. then F(YF) • YF, and YF t; A whenntt F(A). A, where YF • U F1(1), U 
t <.:I.I: . ' 

denotes the lt-ast upptt bound with respect to C, AA)• A, ,-i•\.4) • F(F(A)). and where l. 

· denotes the least element with respect to I;. In othert~4ftttxat,•.JfF,is tfM:lent •nx,ot,it 

of the transformation F. In order to show that YF exists, it is suffKifflt to show that there ts an 

algebra .l such that .l CA for every algebra A. and that everr~-••• r~ to ~ has a 
.- ~ i . 1 , - -, i 

least upper bound in. tM the domain of all exception algebras. IU1-.my .. tfY. s,e that l -extsts: It 

is the algebra with all components equ~I to 
1

~he ~ set.·~~-~,._ .no pt.Jla ,and no 

Of)E'rations. 
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Theort!m 5 : Every chain with respect to!:; has a least upper bound. 

Proof : Take pointw1se unions, details in Appendix Ill. 
End of Proof 

In order to use this rE'sult, we need a means of defining continuous transformations. 

This is also easy, because all of the methods for constructing atgebras introduced earlier in this 

chapter are in fact continuous. The reasoning required to establish continuity is illustrated for 

the tuple transformatioR. 

Theorem 6 : The tuple transformation is continuous with respect to !;. 

Proof : tuple preserves pointwise unions for chains of algebras. Details in Appendix III. 
End of Proof 

Since all constant transformations are continuous, and since the composition of two continuous 

transformations is continuous, it follows by an easy induction on the depth of the nesting that 

any expression composed from the constructors for enumerations, tuples, oneofs, sets and 

sequences defines a continuous transformation. Thus a minimal solution is guaranteed to exist 

for any domain equation expressible in our specification language. 

In order to make sure that the transformations defined earlier in this section are 

monotonic with respect to ~. we have to be a bit more precise about what the transformations 

are. (If a transformation is continuous with respect to f;, then it must also be monotonic with 

respect to {;_) 

We will add an implicit parameter to each of the transformations, which specifies the 

name of the principal type of the algebra resulting from the transformation. The construction 

of the principal type and of the operations on the principal type has been described above. 

The subordinate types of each input algebra are included as subordinate types of the output 



algebra If ancl only if they have a distinct namt' from that given by the tmplidt parameter .. 

TM namt"s of the e>pl'rattons on the principal type are taken from the definWens ·or the 

transformations. and prefaxed ~y the namt oftlae praKipaHJPf to IUb sure·they are distinct 

frcxn the names of the opera~ on &he SlliJieidinate sr,e.s. 

For any composttiolJ of tuple, oneof, Mt. and -.•nee CGRStructtons. the lmplklt 

name parameters are to be chOSffl so that enry occurrence or each constracter tn the expttssiort 

is given a distinct name paramecer, and so that the name parameten are distinct from any of 

the names of any constant algebras occurring in the expression. With this proviso, any 

expression that can be formed from the tuple, oneof, nt, and sequence transformations and 

any algebra, const;ants will be ,monotonic; with respect a, t;. It js atso easy to see that the new 

phylum defined by a fixpoint c005truction will have,. the same nMM as tts ~ under the 

defining traruformatiqn,. so t~l the pritKipal t~ .Js built up: bf ~ approxtmattons. as 
. 

usual for a S,QluUQn to. a {fxpoitlL eqttatiolt. .Also.,.,._ that as .,._d above, nth of our 

transformations maps complete models intct~lnelll8dffl. 

An intuitive ;c,stificauon,for ct,oosing the minimal sohltion to a domain equation is 

t~at . we would ,ilr.e .our: sta~rd model to be rtduced (t.e ... free of uan«tUary, :data objeds). 

The explicit solution to the fixpotnt equation can also lilt uMJct to argue that lM minimal 

solution is exactly the solution we would like to obtain, because it contains all of the object, d.at 

are finitely constructible using t~e operations of the representation algebra, and no others. To 

see this, note that any operaUQn can produce a.d-GbjecNn a dotnain l'~J.) with an ind~x I at 

most one J~rger than the index of sornr domain Q>RtJmffll-M ~ of that operatton-(or 

one U there are no arg.uDlfflts). Therefore the resuks GI-some fiftite'compu1atien 6n tfffflS of the 

primitive operations can produce elements of F1(1) for fin•te natural numbers t, and all of those 
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doma Ins are contained in the principal type or Y F. ~versely, if our. tr,Jnsrc;armati9n F is ,such 

that every element of the principal type or F(,f) is (ioiteJy «MJ$,rY,ctible wh~.ver all of the 
\•' ' , ' ,', . /. :- . 

elements of the phyla of A are, then so are aHof the .. e~ts of the p.hyla of Y F, i~ the 

principal type of Y F is ~st the union, .of ~he ,,£~i~I, tJ~ ¢.an!»· t~e algetJras Jn,the chain 

Fi(.l). 

~ 

To illustrate the use of recursively defi~. rq>r~tioP,,,atg~ras.. ~qJt4er the 

definition of immut~ble bi,n~~y trees sh<>wn In .f,iJure. ~~- ,. &i~ai:yJree,i~ a faJDiJJ of data 
' '••-• C • - •· • • ; 

abstractions, parameterized by the type of the le~f n~ 9f th,Jree. ,, The.leaf op~ation «:r~es. 
<, . ' ' - t ,. ; 

a leaf contai~ing a given element ~f ~,Y~ E,! ~hl'J'.!,,. ~f is a ~ind,~ ~inJ,rJ_tree .. ];'tie ,,,, 

operation constructs a composite, tree w~~~ ~iveri ~.ft~t~if~ ~~t~$\,,;r.he lef(~O(i ;DIM 

operations return the left andnght sub!rees o{ a c~t~ .tf~•-'~ J~!"i~~JejQ}he no~~rte, 
C, ~• ,' , ;,, < •,: '-;:' • - ' • • ,'' C - • •'•- • •• • ' 

Figure 10. 

type binary_tree[E] 
r..,lr .. I :,type 

asT 

with leaf:. 
tree: 
right: 
left: 
value: 
leaf?: 

TxT-+T 
T-+T+(no~:,· 
T-+ T + ( noJUbtree:) 
T -+ E + ( not_leaf : ) _ 
T-+ boolean 

representation T ., oneof[ lear: E, tuple[ left: T, right: T J 1. 

operations 

end binary _tree 

leaf(e) .. e in leaf 

tree(x~. y) · ... ( Wr: "· r1ght : y > m tree-· 
right(x) • if is(leaf](x) then ( no_subtree : ~ else td:tree)(x). ri,ght 
left~) .. if:t${~f)(k}thett+no.::,'Slltiiftlei: > else ~trttXx-l.1eft 
value(x) = if is[leafKx) then to[leaf](x) else ( not_leaf : ) 
leafW,t) -... tf'is(teat)'.x)'ttien rt~et~ fa~-i 



exception with no return vak1es if applied to a leaf. The predicate ltafl tests a tree to 

dftermine whether or not ft Is a leaf. · The oalut operafion extracts' the element contained In a 

Inf node of the tree, and it results in a not-1,a.j exception ifapplied to a composite node. 

There ts no qualttative difference between defining the operati~s or a model whose 

representation algebra is defined by a fixpoint construction and defining the operations of a 
... 

. / . ~ 

model wht>se rq,resentatton algebra is defined by some ·ranite composition of tuples, oneofs, sets, 

and sequentes. The domain equation specifies the structure.of the representation algebra. and 

tmpffcttty aho the C>pf'rations available· on ·the representation '~lgebra, since each of the 

transformations'· mentioned above introduces some 'operations. For example, since the 
_, •,: " , __ , _- _:, ;!,~- .: ~~ ,-·-~,,---· ,'. 

representation of a 'binary:_tree is ct oneof, the proje'ctions, Injections. and domain test predkates 

of the given oneof type are available for use in ddi~ing the .. oi,eration~ of binary_tree. This 

uniformity is a consequence of the fact that the representation algebra is an exact solution to the 

domain equation. 

The fixpoint construction can also be used to construct the natural numbers, Mld~llte · 

parameterized ·family sequence[El A convenient r~tation algebra, for defining ,the 

natural numbers is the solution to the equation 

nat ., oneof{zero : ( 0 }, noniero : natl 

This equation is based on the fact that each natural number is either tero, or it is the successor 

of some other natural number. Thus zeroJs r.,,esentectas the eletnmt of the arbitrarily chOSffl 

singleton enumeration type { 0 }, and any .. ~hei naturalflMINf •.i•ea,resmMcliby its predecessor 

injl'cted into the non:zero component or the disjoint ua;on. Tlris· ,worb.fH!cause each injection 

adds a tag to keep the elements of a disjoint union distinct. Thus zero is represented by the 
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pair ( zero, 0 ), one is represented by the pair ( nonzero, ( zero, 0 ) ), two by .the pair 

( nonzero, ( nonzero, ( zero, 0 ) ) ), and so on, where the nat~{al n1Jmbff 1l has ,n tags equal to 
.} ,· ' ,.'. 

nonurtt and one tag equal to zero. A representation algebra suitable .for def.ining sequ,ence[E) 
. ' ~ ~ , :· 

is defined by the following equation. 

seq • oneof{empty : { A }; nonempty : tupfefflrst : E; test ':''leql] 

The reader is invited to fill in the details of the last two examples, to get some experience in 
; . 

working with recursively defined representation algebras. 

Another treatment of recursively defined domains can be found in (26, 25]. We prefer 
r- '.r -,'t· z., t { : · ' ~- , - } ' , ~ : , 

to avoid a category theoretic formulation, on the grounds that the subject can be treated 

satisfactorily in terms of a more widely known mathematical setting. 

4.8.9 87s.tem States 

In a state machine model, the current system state function is the disjoint union of the 
•-· ; . ~ , :, , , : '. ( . .. ·: f · 1 i• S' ' ,_ ~ ~ : ' ' .• 

current individual state functions for each mutable type. When defining a state machin~ model 
~ ~ ,::::. , .... ·' , 

in our specification language, we will explicitly construct only the individual state function for 
f. , ,--, :tt·; :_: fV·- j ·-: •· 

the principal type. The individual state functions for the-subordinate types are taken from the 
~ . 

standard models for the defining abstractions of the subordinate types, and the disjoint u"ions 
~ - ; . ~ .· .\. 1 .·",: - ~-i.:. • 

of the individual state functions required to get a system state function are left implicit. 
~ -: , ., • ·-:; -~ ., -~ -·' ~ ~! ( . ~. -' '. : ~ ,. . ' 

We provide two abstractions, tokens and states, for use in constructing the· principal 
... . /. ;. ' 

type and the individual state functions of a state machine model The Interpretation of t~e 
' ' 

principal type of a state machine wiHalways be the principal ,type of the token abstraction, and 

the set of individual state functions for the principal type of the state machine will always be 
.·, 
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state[D), where l> is the set of data statn for the state rnachme. 

The token and state[D) abstractions are defined by the standard model shown tn. 

Figure II. These abstracti~s have bffli defined so th~t the only property of a token that Is 

externally observable Is its identity, by means of the tokenhqual operation. The only way to 

create a token o_r to extend the•~'-Uon-of lhe-,pr#Kipu tJpeAs lly: me.am of the stace 

extension operation. 

The only way to extract any information from an Individual state function is to apply 
\ •1 ) j,,,; ~•j~,;;;-; 'i)! ' 

it to a token to get the current data state of that token. If ail accesses to the state of a type are 

limited to the operations provided by the state abstraction, then we can be assured that the 

only state information in a state machin/ is that associated with "the tndtvidual data objects, 

thus enforcing the assumption discussed in Section 3.2 and in Appendix I. 

New states can be created by the init, txt1nd, or 11.r'at1 ... tbiis. ,rTie;f1llt-OfM"ildell 

creates an empty state. This operation has been included for completeness, since it is required 

to define the initial state of the state machine. The statelextend operation creates a new state 
. . 

. ,~ , _, : ::.~;~· ~:~ I~,; ,.. ~:;)t· __ .~ ~';,::_, ' ?~ 

in which the data states of alt previously existing data objects are unaffected, and in which • 
{· ':1 ~.~> . . 

new da.ta object has ~ creatftJ, with a given value IS its initial data state. This ope;auon Is 
• {_:if ii t t ·' 

used to describe the dynamic creation of a data object. The statelupdate operation constructs 

a new state -differing from the old one only at a single point in its domain, and it is used to 

model operations that change the properties of some Histing data objects. 
~ - ~ .-·. j ·,, ,· . ,,~: <. 1< ..... , .. 

In addition, there is an internal function atatelused, which ·tests whether a given 

token has ever bttn created in a given state. This function may not be used In defining the 

. . 
operations of a standard model, but it is useful in assertions and proofs about dynamic data 

abstractions (see Section 5.f). Note that the ustd operatkJn wiH-say that an object that has been 
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Figure 11. Tokens and States 

module 
1"Je• token .as T 

with , equal: : TxT-+booleM't 

repres•ntatton int 
restrictions 
klentity 

operations 

-c,nct token 

t¥Pe ,state[O) 
requires 

with 

re.,...seqtatiOn 
restrictions 
•4..-tity-·, 

Internal 
definition 

end state 
end module 

x such that x ~ I 
equal 

equal(i, j) .. if intkqmt(i, j) then true else fa"" -

ass 
O: type 

init: 
extend: 
update: 
apply: 

--+ s 
S x D ~ S x tokrn 
S x token x D-. S + ( undefinect .. object: ) 
S ><token ..•.➔.D_,. -- c·•,, ". -·as,at-9·1( erg 2) 

S, ... 'SequenceID) 
none 

s•ql,jenoele.qual 

initO. ... <) 
extend(s, d) = ( s I• d, I + (as) ) 

update(s, t, d) .. if I S t s •s then s( .. (t--1)) I• d •I s[ (t+I) .. 1 
else ( undefined_object : ) 

apply(s..t) • if 1 ~. t S •s thffl skhlse UftdtlflnMt 

used: - token x S -+ boolean 
used(t, s) .. if I S t S •s then true else false 

created and then destro)'ff (by changing its \\lasa state back,te ad9fhted·dstng stMeliJpdate) 

hal 0been used, so that in general the_ ased operation does not' sa, wltether :a given -objttt exists 
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int~ currmt state. (For secure data abstractions, the two notions coincide.) 

The reason for defining tokens and states in the same modute:1s-1e limit atftll·tolhf 

operations on tokens. Note that_ the deflnitianulf the -.--0perations ute'Jhe representatioW of 

tokens, which is available throughout the module, but not outside it. If tokens wdt th!fihed In 

a separate module, then the representation would not be accessible, and adltitional operaltafiS elf 

tokens would han to be provided,scnmtihe: state c,pcaetlrM mu._ bedcfln«I. Hwe'fft"", we 

do not want modules other than the definition of the state abstraction to have acc•to itfty 

operations on tokens other than tqual. We frttlJ admit that this ts an ad '1oc sohatlalt; Mid·• 

refer the r~ader to (21] for a description of a general access control mechaniSm for data 

abstractions. 

· Ai, .-,~ivid11al state function is restrkttd•1•,talt: on the ~• value undefined 

except at a finite number of tokens. This restriction assurei••dmttdleaenitainlllfifiR!M IWtftl 

is countable, even though it is a function space on an infinitt ,,51-.r,·C..:tonsequen«"of!ftm' 

is that we have no need of limit constructions or transfinite ~=tn reaSOlt"'f1Hellt' 

system states. 

A state machine mOMM~,uhe uotque.._id abstraction iis sWw,rm1.-tgure 12. Since the 

Sf)t'Cification has a data states componeotnthff tllan arepreHntatto,uomponent, ,_.,tnow 

that a state machine is being defined, rather than an exception atgebra, and that the . 
representation of the principal type is implicitly defined to be the token abstractiOl'J'!deftlffd In

Figure II. In this case the set of d,lta stat~ ~ J stng~on eoumerationJype. At. isll me proper 

been (and have tilt' data-,st~e llftdetined►, ~,are,m~,(mc:e a,untque_td 'Ml 

been created, its properties are fixed forever), so that one proper data state is all that Is needed. 
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Figure 1 2. Standard Model for Unique~ld 

type unique_id as U 

with 

data states 

operations 

where 

end unique_id 

cr~ate: 
equal: 

D = { null l 

-+U 
u )( u -+ boo1eaQ 

create(s)() = extend(s, nuD) 
equal(sXx, y) = ( s, v } 
v = if tokenlequal(x, y) then true else false 

..•• ir . • 

its purest form. The unique_id abstraction is secure, since there are no operations that 'deslro) 

unique:Jds. 

A state madltne rriod~fror a memory teH con~Ihtnt ia: stngi bb~ of type E ts sho,m 

in Figure 13. Cefff are a~ -the simplest 'rttutatife 1clatr"-.~fars.1;'fiiec;,~~f/~tion 

returns a new ce11 witli a ·sp«ffied lnitiaf ·c&\teht'S. ,.N ... thiit"~' atit.te~terttf' ~ration 
;--~· .. ; ' ', :- " -.:.,·.',·,,; ,~.;:'.')':-;,_ ---'t" ,,.¾...;.•~ -.~ ··:·:·... ·: . '~- :',•: .,,-i: •. -~-i.~J ~· 

returns a pair or values, containing the n~w st'ite arkt"a ~loken tepraentft,g rtie new1y treat~ 

object. The new stare· is' the firsr returrr'htue'bf ~eij•·~tbf~i it'ir~~ Madlitti ~dkxle1. and 

tt'i'e okfstate is the firit itgdmerit. ri. an 'imp~fatrJ;n, the' stite"is J,assecfarourid. implicitly, 

while it is explidtly represt'hted"in a st-ate'rnadaine"~e'l;;'·~/~rtf~r~ in the signature, 

whith has no men·uon of the state, ana-,6~strities1'6ti,Y'~ ty~· ~flktbre '~isible externally. t'he 

ufxlate operau&i returtis ho ctata objeet( but it' ptt>Cluces" a new state (it whkll t~ given cetf'has 

a n'ew value for its contents .. The con(tnli operltion retutnis1
(he 'ciirierit conr~'ts of a. cen, and 

the equal operation tests to see if two cells are identical. Seth of these opetations do not·modtty 



Figure 13. 

type cell[E] 
requires 

with 

data states 

operations 

where 

~nd cen 

asC 
E: type 

create: 
update: 
contents: 
equal: 
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£-+c·· 
CxE-+ 
C-+E 
CxC-+~11 

create(sXe) .. extend(s, e) 
update(s)(c, e) • state(DJlupdate(s. c, e) 
contents(s)(c) • ( s. s(c) ) 
equat(s)(tt, c2) • ( s, 9 ) 

. v • 1r •~~-~~~2) then t.~ .. e• fal$e . 

the system $~ate. If we vte;~, c;ells ,s. thf J,.-va~ of the ~,r~~0~ ~-J~r~~I language 

[er: 50], thtn :the ttplal :~ration can be u~ ,o .detgrmne,.w~h~ Qf n~ , .. ere ts ,aliasing 

between two_ variables: an .assignmem,to OIJ1 ,Yariabk' (a ~~t, ~a~) ~ill affe<:t d)e 

value of the other U_an(P?l!.J if ,the '(ariab;f!!s ha.ve tglltl( L-~alves. 

Not.e thaJ there is no, s~h.~~ing, .as an _,ininitialiud cefl. Jf -~ ~anted t(>,defiqr. a, 

differ~nt cell abstracti~, in whit,h cefls could be ~r~tt',d. Wf~~LWi~, .~iUalized, then ,,e 
' ' ' ' ' '. ' ' 1 " . 

would have to introduce an additional data stak toJn~iul! t~at ~ cell_ w~s Ufltnitlaliz~. si,llc:~ a, 

tole.en with the data state und~flned rq:,re~nts a c~l.,t"'t h~,s not been creat~ ~- Since we 

require the.operations or.a ~ata ab~traction to t;,e d~trn,,i~lc, an J,ttempt to fjnd the contents 

of al) uninitiali.zed cell _would eitl:,er have toJeJult _in an except~. ~d,~tion, or in some 

comtant default value. 
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4.4 Well Formed Specifications 

A specification is well formed tf k ~ 'Sdnfe e'lcd!lptttin' ~lgeb~a or stat~ machirie. 

This wot ~ dte ,. ,if the requir~ distribtcl' tn 'the'"f61owinf-sublfflkJfts !a're mt>t. In 

addiliolJ, a, reaSORalty defffltd, ,ata abstrmm11 sho4ilf'dtisf'ft~1¥'oli.wmg~twb, cen!traints 

{cf. il,101 

Every operation of the abstraction d should either ~ake a~ least one argu~t frQJQ t~~ 
~--:J.,~ ... :::\fi-c)_;,. ""tn~~;'. ,- ,·: ... -~.:t::"~ .. · · :. -.,,-, 

principal type of d, or it should produce at least onP. return value (in the normal termination 

c;ondi\iQn) Jrom the pr,mcip.at:tJpeeh~4o,- fNf'N(kfW~qf th~' is'mdre than one). 

Tf1e p•~rpose QI' ttiis·•C80Slraint is to rult out .functidm'lttal hlW '~hmg to do with die 

beha.\lfor of.the primipal-tJfW . 

. T~re &hOP,id ,~ at lea-st ,one opttat'flft ,twat ~-; 12 ~aloe ~g;ng ·10 'Ht~ 

principal type which does not take any arguments from t~f'l'tnc:-¥iil·type.1•·1r- this tonffrllilit ls 

not l'Tlt'l, then there is no way to compute any ~val~,es, of .the .~in~ip,al ,.tyt>e, an~ t~.us .th~ 
._ .. ~:: ;_,.· 4 ,,~' - -, .i •• • .,,. ,,,_\' • . '" 

interpretation or the principal type in a reduced model is the empty set. 

Note that both or the above cynstntinas t'C'1 'bf .....,'t~ed gftffl just the ·signature 

of the data abstractiQn. They on :.M 1'iewal las unstrttna a:o....-e•mosf ia'ttsff In otdtir'10 to 

~lif' ,as a meaniqgf:uhlata! at,»lracti8B. 

4.4.1 Type Correctness 

All of the expressions in the specification must satisfy the type constraints contained In 

the signatures of the abstraction being defined, the signature of the representation algebra, and 

the signatures of the algebras subordinate to either. This means that every operation must be 



supplied with the correct numbft' of arguments, and that t~ definition of each operation must 

termin.ue In OJJly these terminatioD- Ullleht ... lf!fQflld•tM apa•re;;Nd ,,odua the right 

numbfr and type.s. of retufn v~Jer •h., , TMs a lNJt, a1 ,ure1r ·syatac:tic ct.eel.~ because 'tt 

Olaf requite prqYl!lg that :tt,e expN!Uien INftniag.•;an·capeauun te,itliwatu: hi t given 

termination condition (usually the normal conditionl 

4.4.2 Representation Consistenoy 

The represenratioQ. ~nul~•,J>,,* ~-•tlllll sec:t.ton,must either•~ a 

fllffll~r. of the~- of atgebra.s gaeraled:bf-eheaJ111111Ktiln1gM11ttufier,m tMs chaptff. or it 

must have a previously defined standard model If the rep~ion · ~, Is d~flne.Fht 

termi of,~. para~fiJ'ld d~ tWt·t----•spedfild ,in ttw~r....-•"section of the 

para~eriZed ~inkion_ ~ be -,..·. , 

4.4.8 Representation Invariant 

restrlctk;,as section .. then. tJte ¥iflge f1{ eacb operat.....,ined1mast,'Sitisfy tM restrktton. This 

condition ca-n be established by an inductive argument:.a■ .... ttaltftdt,argoment fl'Offl:rlw 

principal type satisfies the restriction, show that each return value of each operation satisfies_the 

restriction. 
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4.4.4 Congruenpe 

"',,,-t 

If a nonttlvial·~uiva"tence relation is given in the tdentlty section, then it is necessary 
., ·, ! ;; 

to show that each operation is consistent with the equivalence relation, in the sense that it maps 
'' :·l~. Hf' 

·equivalent arguments into equivalent outp~ts. This requirement is a necessary condition for the . ,. .. 
' 

, • .... • • ' ~· , 1: ~ - ~ "~ ~; ~ : • ~'· ./ 

impfidt extension of the operations from the representation algebra to the quotient structure to 
.. 

be we11 defined, as described below. 

The opera.tions are e>.plicitlJ cjef~ as f\mctiOns that operate on_·the elffllents of the 

principal type of the representation algebra. The model denoted by a specification is in general 

a. quotient structure, and the interpretations or the operations or the data abstraction in that 

model operate on equivalence classes of elements from the principal.ty~:of-the:'t"epresentarion 

algebra. The operations can be extended to operate on equivalence classes in the usual fashion. 
i •· ,.-t,· ·- i/ 

If the operation/ takes a single argument from the principal type' and returns a single value in 

the principa I type, then the corresponding operatk>rp pq_ iq8iva---r9'$!l$ / J {4' deftne<I' ~Y 

where [xl denotes the equivalence class containing the element x. For:~ x,l~tilpll tlefifttd · bf 

the. above equation' to' lie 'siftgle falti~:, ;a~d ( h~~i~ -.~ fu~;~~\on eq~ivalence classes, the 

function/ must satisfy the following requirement: 

Note that~ if ;:; b the same as the logical equality relation on the principal type of the 

.... . . , .• . • ? ·, . • :~ l - ; ~ , -.. , ~• . , , . 

representation algebra, the11 this requircmentis automatically satisfied. An equivalence relation 
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that satisfies the above constraint is known as a congnunct r,ltJtibW ~ith··respect to J. A 

definition of'= andof the congruence requ~t ~~,a ~~··•;''ff,ra~.~ of an exc~tion 
• : ,- < ~ ";. ' • • ' ' ~ " • • 

algebra or a state machine is given below. 

Let / be an operation of the a~.~ A, J: •t x ·- x a11 ~ .• ~ R,.. ~ where 

R-, • r1 x ... x r m(T~ and let d be the principal type of ,.f, . L~ = ~e the relation defined by 
' .~ ' ' - \ . ~ : (~ . • . . ; f' :;-• • 

the fdenttty section of the specification. Defme the ecpnvalentt r~lation If ,by 
. -, ' ~. , . ' - _, " : 

and define the •equivalence class• ec by 

and/ must satisfy the requiremmt 

Vt : t<tsn ~( ffl/..",; 1;> :t-> 
tc(/{x1, ...• xn)) • tc<l{,a ..... 1,J) & VJ: ISfllll{T) ( ~~~-,. •,•;:e;~11)),tJ.::ob~ . .:., 1.»,1-J) l 

4.4.5 Termination 

Every operation must be shown to terminate in one of the termination ~onditions 

5pecififfl in the signature for any set of argu,ffift!ts of the proper type,. givf(l thJt any. argumem . ~ . . " . - ' ' 

from the principal type satis~y the restriction given in the restrtct.loJu J«tiol:I of t~ 

specification. 
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5. Correctness of Implementation 

Every well formed implementation of a data abstntction defines an impltmnitation 
,; !' ,~ ,' ;._ ;, ) ~._ ·- •' 

model for the data abstraction. The construction of the implementation model is discussed in 

Section !°l.J t>elow. Our basic definition of correctness ts tftat the implerrientation model must be 

behaviDMlly equivalent to ttle standard tnooel of the abstra'l!tlon to be implementec[ This 

definition corresponds to·the- ifttuiUon that there -sfioutd w tio observable difference -between 

the behavior of the_ impwnlti\ttation and tht- behavior' of 'the 'standard tnodef.'cast Into the 

framework iof deterministic- ,equen<iaf l'Omputations. 

The ctassical way &o ptoYe the 'COITectnftS if·a1flmplet'nehtatton with respect to an 
~bslfa(t m<dl'bspeciijcaoon is ro exhibit a hdnllomm,,tdsm "th Section 5.2, we show that-'the 

~ssical app,ea~7 is.doand-:ifl ~- Uandard"modef' mct• ... ·-fttn ... 11ef1tl'tioh model are both 

e~ceptioo: algebras, by,e.hawingcthat t~ distae> ... , ~fram-ftorh 'thltriip~menlitfon 

model t~-:the standard moRf imprte,, that'1he tw-inedefs' fre ~aV'torilly equivalent. ·'ti was 

shown in Section· 3.3.1 that thre dassiuf •~h ts atso t'bmpleie 'tot'·'the static t~se:•i~ ;the 

foUowing sense: if the standard mmttn,rtctDffll~ tlietiffheret'Xffd;•a··h~phism: ~rom any 

beha vlorally equiva'1ent impte,nenta:tion modef te the Jtahdartl model. 

Section 6.3 discusws tt.e c:ue: ,where the· stiftda'td c:rnodet ·· is a·n exception algebrt and 

the implementation model ,is a state machine. Ir ts ~·that a correspondence foncfion 

afl8togous tQ, a,- homomorphism can be vsied :co demoristra~'tiebatlbtarequftijlence. 

Section !i.i dis,tmes the casec wlter-e the· standarchnodeJ and· the impfementauon· model 

are both state machines. In this case there is no useful analog to thf'homomorpl\'t'sm·ttieorelh 

of Section 5.2, and proofs of correctntss rest directly on th,definition or behavioral equivalence. 
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The proof methodology is Illustrated by examples. 

6.1 Implementation Models 

type. aqd a.n alg()ffthm for ~- aclJ CJf •~--. . k,ilt lWladwly asy to:COIIStnlet a 

model of the ab~rac.tion from an ~tjen.iif.the ~ · . ·lftd al of'.tfle 

subordinate abstractions ,iia,e _. defJIM!cU,y abstrad medel •;tlqtmnl. 

The principa t type of the implmlfmtatian ,tnadei. 11 -tile , fflldlal,k; subset ,.or:' the 

principal type :t# the 5tan,,\~r4 -modd. fer dae. . ..,..J!I--.alNlwtioll. ',,TI9e rnct.ible subset 

contair,F just t~ elements of Ute pdncipal t)llle.,tl\ltnllht~ t,;,~ftntte -~ 

comput,tlon in, terms of ~-~ioaJ.of 4 aftd.the..,..llt!ICNls,1...,......~lt> ti., TIie 

t~teq>r~at~_,of_ an .Qpff'~,pf-,~ ,r_.,.i_,.cit:ilw,_. • ..,....,.,,1ae, aJMddaft 
'- : • ~ ' ' ' ' t - , . , ' ~ • ' • 

allbo,rdt"'~e to ~: ar~ lak,cn {ro.,Jhe ~rd~,,C .............. atistraCltkln. 

, -tll~Jmp~tion ..W ii<e,....bf _. ... iiln il;contams inlttpretalWII 

for all subordinate abstra~. T~Jmp _ _ · . madtl-,•-.,,..,IK ral9Hd. TM 

rnchabfr. T~re. ts no. explkit•mtna ctass~ alkialph1t:U1tlltDlf lROM\••fllwat 

several distinct Jroplemen~U•. -Gb~ · ,Rlaf f'fVWM ,,the- ... ;Dstna ··object. "PM 

in the_ irnp~tatioo P'IGdel. 
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5.2 Static Specification, Static lmpiementation 

The classical method for dernomtfftinf tM dfflet'tness of an 'ttnplementatiM -With 

respect to a standard model specification is to establish a t.onf0idbrphi1m from the 

implementation model to the standard mod1!1. ,.,,-;fMs -iort' Wt' pttsfflt -a tfteorem that 

demonstrates that the classical method is ~nd for cases where both the standard model and 

the implemffllarton ·~ ilfe enepff0tf .!31gettra,. ·. :1 

6.2.1 Homomorphism Theorem 

Since 11n exc♦ption 'ifgebra +.as a dlsjotm :tl111'Gl'I structure not present in the 

ht'tt!rogeneou, alg~s of m, 'W~ have' to exrttid'tfledefinUiort ot a homOfftorphisrn 's1ighrty: A 

homomorphism betwttn two ~X(tiption. atgeb#as jmust 1 praerv~ tach; operation, ,whtch -means 

that me termmanon confitlons of ~pbri8tng•~tion irtvoatlonfnmst be 'die same, and 

that tor~sponding teMm va h.it,$1
• mus'f' . t,el huMOH.mpffk' 'lmtges, · when~er cortespottd1ng 

arguments a~ "8inbmorphic imaps: More·prtctsety; if'Ji'l'ndi~s ale two exception algebral' 

with the ·samt> signature', ~ a -ltolRtimorp'htsihl A from A''\b' ft tS a family' of 'functions 

Let P = A. phyla, F = A. operations, fJ c A. opnames, n • A. arglength({j), 
let«;• A-argtype(tJ; t) and xi< J'4 . for each I itttle ranget~·, $,r, • ·. 

i . 

let ( 7:, < 7J, ... , :,111 >) "'Fffxt, ... , x11). 

where 'r c A. tc(O), m = A. rtength('T, fj), 
and wh~re 'p•· A. rtype(:r, fJ.J) and1j < P,J ror eachij HI thf range Ii J !r.m. 

Let O .. B. operations. 
< :- ' 
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The • • .. in the conclusion refers to the equality relation on abstract objects. For models defined 

. using the sp~ification ,language ~ iftr,Cltapllll. f.-thit>relatian :is gmn in the Identity 

section of the specifatioA. 

Now we can, state the homemwfhillm ,.._em. 

Theorem 7 : Let Ml and M2 be complete exception algebra models with a common signature. 
If there is a homomorphism from Ml to M2 !lt~:;I .... ~.- ......_,.fffllppinf,,n, the 
subordinate ty~. then Ml and M2 are behaviorally equtntent. 

Proof : By induction on the length of the computM'elt.;-, Dtintls.•'.••pldiJtiHlu . 
End of Proof 

The exi5,tence or a homo,norphilm :J~i~ ~ Jlae JQJt11preuUon of any closed 

compu,tation C _to Ml 1s a step bJ. step-,,~, ef. '".,itfttrptelaliall· oLC in Ma. 

Correspondirig resuks (data ~jects) may ~ave cliffe""t ,r~iofts :ill tM· two, models .. but 

they must ha¥.e the same propert~. Sifq.&ht,~Uffl.;k..,..f'td.lQ,N the Wmt.itf 

maP.Ping Ql1 _the b_oolea.ns, the. ~i ~J•. -.Jl,ipa~ • any. pdmtave 

predicat~ ~jJl,~jve the sa•twth •allrefos:(C)l'r~ ~._,m.Mlaad M2.· · 

.. Note tbat we are ~Jjng wjth-COlllf)ld•~·•wt,icll--ta-.llle~ ofievery 

type subordln~t• to tbe pr•if>al type hi ~ to ttt. ..,_tons of-the l"'in<.,_1< tfpe. If 

homomorphism must preserve alt of the operations of an exception algtbra, including those 

associated with the subordinate types .. It I~ suff~tte,fllllicit:IJ <~kier only, tlMlotJirratiens ef1 

. the principal type wht'll proving the correctness of a lt'atic fMpleinentatton, because the 
. . 

component of the ~ptlistn for ft(h;of.rhe ~· rJpft· (s,thf· klfflttty 'fffl'ttttali, 

which trivially preserves all of the operations or the defining abstraction~ ~~ch'su~in~~e-

• <; ~ ; - , ( , \ ; ':· '' 

type. The rt"quirement that the homomorpllism must reduce to tM'' identity mapping on the 

subordinate types is no restriction in practice, because of ·the way in which· the standard model 
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and the implementation model are constructed. In both cases the interpretations of the objects 

and operations of the subordinate types are taken from the standard models of the defining 

abstractions of the subordinate types. Consequently, the subordinate types have identical 

interpretations in both models, and the natural correspondence between the two is the identity 

mapping . • 

6.3 Static Specification, Dynamic Implementation 

In the ca~e where the implementation algebra is a state machine and the standard 

model is an exception algebra, a correspondence function can be used to establish the 

behavioral equivalence of the two models in a way entirely analogous to the homomorphisms 

used in the case where both models are exception algebras. In the rest of this section we present 

a theorem justifying the use of correspondence functions, and an example to illustrate the 

procedure for establishing the correctness of a dynamic implementation for a static data 

abstraction. 

The correspondence function that Is used to demonstrate the behavioral equivalence of 

.. 
a dynamic model and a static model is not a homomorphism on algebras, even though it must 

have similar properties. Some of the differences between homomorphisms and correspondence 

functions are outlined below. 

Recall that a homomorphism is a family of mappings, one for each phylum. Each 

mapping is a function from a phylum of one algebra to the corresponding phylum of the other 

algebra. The ab~trnct objrct represented by some implementation object mui:t be completely 

determined by the identity of the implementation object, since the mapping takes no other 

arguments. This works well in the static case. In a state machine model, the properties of a 
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data objt"ct will depend not only on the identity of the object, but also on the current systttn 

state. Consequffltly a correspondence function must differ from a homomorphism by taking the 

system state as·an extra argument. 

Recall that the principal type o( a state machine contains tokens representing all of the 

data objects that can ev.er be created. In each system state the population of objects that have 

been created so far is the s~bStt of the principal type.-~h ~~ ~•'---- w,l,tle lfHt objids 

that have not been created yet are all mapped into the (improper) data state undefined by the 

system state function. In system states wfm'e a givm toltffl has the data state undefined, the 

token does not represmt any abstract data object, and after an ~ration Is performed that 

assigns a propt'r_ data state to the token, the token represents the newly crnted data object. To 

make the corre~dence a totalfunction we adopt the; following convention. A correspondence 
r. . i 

function must map a·token into the special ~ject unclefkled f~ any system state for whkh the 

tokm Iles outside the current population. 

The proprrtits of the newly created object are determined at the time the object ts 

crl'ated; and h:ive no particular. relation to the ·id~tity of ,ti~ tok~ representing the object. 

Different computations can tead to states in which a gi~en token has different properties, and ln 

such a case the corfespondmce function must map the t~en into different abstract objects in 

the two states. 

The correspondence between the tokens of the implementation model and the abstract 

objects of the standard model ts established by a series of approxima~ions, corresponding to the 

steps in the computation· that create new objects of the principal type. Initially, the population 

of the implementation model is empty, and the initial correspondenceb empty (i.e., in the initial 

state the correspondence maps every token into the improper object undefined). As new 
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objects are created, the image of the token representing t~~-_newly created CJ~ject chang-;s, ,fr~ 
.. - ,,:_, .,, ~- ?~ :: ,.:;: ·;>:: .":: ,.- ....... tl , :~. , 

undefined in the state just before the object was created, to the abstract object represented by 

the newly created implmtentatton t1bject in the:sflitt Just after it' wa! d·eated. 'For abstractions 

that do nm a-ttow the ex,p1idnfestructmn of data ~ts, the cortesporitience fun<lffons for the 

O'i represents the state produced. by, the Hfi 'step'bc,f' son,e•-'tlosed computation, t ts; a 

correspondence funttiOn, and l < f, then ir must·be the ·case t'hat 

c(x, o-,> 'If undefined => c(x,o-i) • c(x, "} 

We will refer to this as the wwn•tcitf /l'Df>trtf Yor ~tespondflki furic.tions. Once an 

implementation object has been created, and it has. C9ffle tQ repretmt a proper abstract objeGt, 
·•.,. . -" 

the monotonicity property says that the imp~ltoWobject ~ continue to represent the t 

same abstract object in all subsequent states. This Is just what we would ~xpect; jf _w~ crea,te .ilfl 

implementation object and assign it to a va.ri.ab.~. we wpuld Uke to assert tha~ tb.e varia,ble ,1'Vtll 

continue to denote the same (1mmutableh"5tract abjll:t as long as: we. do not aUign a new value 

to the variable. Spontaneous changes in the abstract identity of the value are not acceptable. 

A correspondence function mu,t reduce.to ti\e identity mapping 01'.' ihc ,...-bordinate 

typesdust as for a homon)Q~Rbism. Nqte,that for the $Ubor~~-types tbe-px-respolld~ 

functlon is independent of tfie system state .. The abstractions we J.re considering in this section 
. ' . . . 

have static standard mod~ls. so that a.U of.the 1ubor.d,i11a~. types~ be s~lk. and alt of the 
. . . . 

objects of the subordinate types must therefore ex4$l i~ . all,. ~le w~ stJtCJ, in the 

implementation model a~ well a$ in t~e staQdard ~L 
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5.3.1 Oorrespondenoe Theorem 

thec,rem suppqrtin' ~r U$dulness .. J..et A be• ._,,.....,w •· IClt I c'1e: an·~Kcepdm 

. alg,..bra . suc;b that the Jtpa.ture q( 1'LJA (GAia._..., in: tf9' ~ Alf, A . . ·A cormpol~ 

machine A. A correspondence , must saUsf y the following property. 

Let P •A.phyla, F •A.operations, tJ ( B. opnames, 11 • A. arglength(8), 
let a, • A. argtypc(d Q:.~:ft ~' P"'l (qr A'b J •:.'¥ ~ !~ I,$; 11•: -· 

let O' ( PS. 

let ( 'f', (tr',,, •... • 1m)) • Fj.ci, x1, -·, x11),' 

where 't < A. rc<D>.,17',c P1,,• "';A.rleqgf~'f,,IJ~ , 
and whf-re 'J • ,4. rtype(-r, fJ •. fl and ,1 < Pr for ea'ch Jin the range I :SJ :S 111. 

Let G •·B.operatiOns. . . J .. . ·-' .. , . : ,, . 

Then C fj(c0 (tr. x1), ... , c4 (O', xn)) • ( 'T, ( ,, (O'', ,.)~ ... , ,,· (tr\ ,.>"> ).' 
I n I 11 

x < Pa le a<· ~-statenamft I: x,o,~).._ •~ 14•~ at,· 
and x < Pa & ... a < A. statenamn ~ c(a, x) • c(cr', x). _ 

The correspondence property says that the correspond•t lffllSt preserve all or the operations or 
' . 

. _. - _ •. : ~ .~•.' ~,: -i~c.,,• ... ,,,·;~,'.~- ' · ,;. ·_ t' 

the target a1gt4,1a,. · Nott-that t1tto·new state 0--protfuct'd by the't,pera1ton or the state Machine ts 

USffl to detenmntr the corresponden~ between 'the mdlts'c,f' tfte ~tion In t~ state machine 

·and ·tn the·~ceptton algtbra. A ~-fllftdton'must l1so satisfy the rnonotonfdty 

'r~utremfflt~·as stated ih"tfilt-bst two·t1abses. 

A correspondence function is dntiftgliisftecffrom a ~p~iSm" since it takes the 

system state as an extra argument, and since It satisfies the monotonicity property specified by 
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the second clause of the conclusion. Since the range of the mapping is an exception algebra, 

there is no component of the correspondence function for the phylum of system states. 

The correspondence theorem assures us that two models are behaviorally equivalent 
,,, 

whenever there is a correspondence function from OM: t• t~ other. 

Theorem 8 : Let Ml be a state machine model[ a,1\d;~t M2,bffUJ!'4,cmption a~ra ,moch!f; If 
there is a correspondence function from Ml to M2 which reduces to the,identity tMfJ1)lng en 
the subordinate types, tht>n Ml and M2 are behaviorally equiva~;r11 · , ; r1 

' 

Proof : By induction on the length of the c~tioo. :~tails in,Appmdix Ill. 
End of Proof r,. ;,. 

The proof is very similar to the proof of the homomorphism theorem, except that ".the 

monotonicity property is rectuired to transfer pn:,pert~s.ofa dati.Qbje(t from the state in .which 

it_ was_ ~reated tot.be stat~_.m, wl}ich it;~ used ~a,t •ment,•• 111Mcps11.ratkM. 

6.3.2 Simpl~ Example 

impJem~n,ta.t-ioo pf ,a ~tich-tar:~b-st~iil,defflapNi iethiS:lllblediott; i We wilt tonftftt an 
- • J ·-

imp,e111enta tion of ~e, int/)4il ,abstract•. io,le~d' Mra,aa-.g•1t' . /MfHJi.ts are- 'fMmutable 

pairs of integers, S';(Ch as m-,tit be 1.•~~<Lto.J·-.,._t ~ wnlh,•ff Ol\lptlutaR integers. 

prov_ic\ed.;. The"intpatr abst,;Jction i~ very lim••,;-- 0.....Cnght :,mt, Wt ':'Intl An exception 

a lg,br~ ~9'. for tile fntj,qjr abstr~atiofljf .,.r\fft_,E~ tt .. 

a variable size. . It is _nQt pquible to <:Feate ap Mf&J_c:Widt unmit; .. bzed eJemefflS. The a trays' 



Figure 14. Pairs of Integers 

type intpair as P 

wtth 

y-epresentatloa 
r-tistdcllona 
Identity 

operations 

end intpair 

create: 
left: 

int x int --+ P 
, .... int 

right: P --+ int 

P • tuple(ttft: int, right~ Int} 
·nont" 

tupleltquat 

create(~; y) • ( right : x, teft-! y) 
lefl(X) • X • left 
right(x) • x. right 

Figure 17. The derivation · of the implementation model from th~ t,w~tattpn:., •~ 
. ,-'; : ~ ~ : ·~ :~. :, :'r .S -? .1 i :_ fl- ·'. ,;; ·~," ~ 

straightforward. The operations of the implementation model are described In the same 

notation as the operiltionJ of,tbe standa,.. model to:a-void lnltcfdoanf•;host 'programming 

language.. We claim that it is usefut to~ the 1Mp1"nffltattew mcklel •tit this ~ 'In doing, 

practical proofs as well, thus noparating tht issues lnvofftd · 1n estabffihln{ the' correspondence 

between two dtff'f!ttnt represemattons for a data abskactm ftam tw problem of proving that a 

procedure: writtffl in a pa rtiwlar programming llnguagr tmplemenu ·• panicular function. 

To prove the correctness or tha·tmp1effiei1&auen: • hue to'ex''hibtt a mapping C and 

demonstrate that it is indeed a correspotidffltf flffldibn. - The-bthavioral-equtvalerice of tfte' 

standard model and the implementation ,l'nCJldet :wi11 then fohow from the correspondence 

theorem. In order to distinguish tM' optndioni of the irriplementatfon model from the 

operations of the standard model tn tie -proof, we. will prefiX the· tniplementation operattons 
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Figure 15. Arrays 

type array[E] as A 
requires E : type 

with 

data states 
restrictions 
Identity 

operations 

end array 

cn~ate: int~ A 
addh: Ax int~ A 
addl: Ax int~ A 
remh: A ~ + ( bounds : ) 
reml: A ~ + ( bounds : ) 
store: A x int x E ~ + ( bounds : ) 
fetch: A x int ~ E + ( bounds : .) 
equal: A x A ~ boolean 
low: A~ int 
high: A~int 
length: A~ int 

D = tuple[low: int, e: sequence[[}) 
none 
tuplelequa I 

create(sXi) = state{D]fextend(s, (low: i, e: () )) 

as arg I [ arg 2 J :• arg 3 
as arg 1 ( arg 2 1 
as arg I • arg 2 

addh(sXa, x) = (state{D)lupdate(s, a, (low: s(a). low, e: s(a). e I• x)), a) 
addl(sXa, x) = (state[D]lupdate(s, a, (low: s(a). low - I, e: x +I s(a). e)), a) 
remh(sXa) = if •(s(a). e) = 0 then ( bounds : s ) 

else (state[D)lupdate(s, a, (low: s(a). low, e: butlast(s(a). e)), a) 
reml(s)(a) = if •(s(a). e) .. 0 then ( bounds : s ) 

else (state[D]tupdate(s, a, (low: s(a). low + I, e: butfirst(s(a). e)), a) 
store(sXa, i, x)., if s(a). low ~ i .S s(a). low + •(s(a). e) - I 
then state[Dltupdate(s, 11, (low: s(a). low, e: s(a). e[.. M] I• x •I s(a). e[i+J . .])) 
else ( bounds : s ) 
fetch(sXa, i) ,. if s(a). low ~ i ~ s(a). low + •(s(a). e) - I 

then ( s , s(a). e[I - low + i] ) 
else ( bounds : s ) 

equal(sXal, a2) .. (s, tokenlequal(al, a2)) 
low(sXa) = (s, s(a), low) 
high(sXa) = (s, s(a), low + •(s(a). e) - I) 
length(sXa) ., (s, •(s(a). e)) 

with a "! ". T9 help the reader distinguish elements of the standard model from elements of the 

implementation model, variables ranging over implementation objects will also be prefixed with 



Figure 18. Implementation 

representatfon array{int] 
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operations create(x, y) • addh(addh(arra~I). x). J) 
left(p) .. fetch(p, I) 
right(p) • fetch(p, 2) 

Figure 17. nple"""'at,ion Model 

representation array[intl 

operations 
where 

create(s)(x, y) • addh(s2)(p2.y) 
(s2. p2) • addh(sl)(pl, x) 
(sl, pl)• arraylcreate(a)D). .p 

~ft(s)(p) • ft'tch(s)(p. l) 
right(s)(p) • fetch(s)(p, 2) 

We have shown only the component of the c~r~J91' the principal type int/xlir. The 

correspondences for all other types are,tden\¥J f-.mqtops. 

The proofs for the operations."'"'• .~'-1d left •Rl:~h9Wn t~. ,. The proof for the . . ' . ' . 

-;~ "- ! l ·~ •c ; ;-, ~-: 

operation right is similar to the proof for lift, and ts ~ as an exercise for the rea~., Tk 

proof relies on the implemmtation invariant I shown bmw, which i.5 a restriction on the data 

state of every object rtp:~ an int/10t,. 
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Let x, y be integers, 

!a, !p be tintpairs, 

ls, h0 be system states for !intpairs, 

Let JI = !s(!p). low = 1 & •Os(Jp). e) = 2 

create 

Let (!s, l-a) = lcreate(!sOXx, y). 

We have to show that c(!s, Ja) = create(x, y). 
From the definition of create, create(x, y) = <left: x, right: y). 
From the definition of c, c(ls, la)= (left: ls(!a). e[I], right: .l.s(la). e[2]). 

Using the definition of tuplclt>qual, we have to show that 
ls(la). e[IJ = x and J.s(J.i). e[2] = y. 
From the definition of the array operations create and addh, 
!s(!a) = (low: I, e: (x, y)) and Js(Jp) = JsO(!p) for .l.p -;t la, 
so ls(!a). e[I] = x and !s(la). e[2] = y. 

So c(ls, .I.a)= creatc(x, y). 

Since la is newly created and h( lp) .. lsO(lp) for all .l.p "' h, 
the monotonicity property holds. 
Since the array operations create and addh can only terminate in the normal condition, 

c preserves the termination condition of the create operation. 
So c preserves the cre.1te operation. 

Also !s(!a). low = I & •Os(!a). e) = 2 and ls(J.p) .. bO(lp) for !p"' h, 

so that the implementation invariant holds in state h if it holds in !sO. 

left 
Let (1s. x) = 11eft(I s0, la). 
Let a ,,, c(Js, !a). 
We must show that x = left(a). 
By the definition of c, a = (left: !s(1a). e[I]. right: ls(J.a). e[2]). 

By the definition of left, left(a) = h(Ja). e[JJ. 
From the invariant, 1sO(la). low = I & •Os0(1a). e) .. 2 
so lsO(J.a). low ~ I ~ tsO(Ja). low + •(!sO(h}. e} - I, 
and by the definition of !left and arraylfetch, Js = lsO and 
x .. !sO(la). e[I - I + I] "' !sO(h). e[IJ. 
So x .. left(a). 
left and Heft always terminates in the normal condition. 
So the correspondence c preserves the left operation. 
Since 1s = !sO the monotonicity requirement is trivially satisfied. 
The implementation invariant holds since 1s .. hO. 

right 
Proof left to the reader. 
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For the purpoSt's of comparison, if immutable sequences had been used as the 

represmtation of intpair instead of arrays, the homomorphism would have been the following 

for the analogous rtprestntation: 

lt(x) • ( left: x[ll right: x[2] ). 

The proof would have been similar for the ifnnlutable Cllle, tKCefK that tftere would have been 

no need to show the monotonicity preperty, and. no: need- -to arg• .that,the,data slat.es or 

previously existing data objects satisfy the implementation in._r:iaftt. ,as we did fQr the """' 

operation. For a mutable implementauon. it 0 is,jfl1portant to;indulk"thil ,part .of the .argument, 

bec.1use t~ impkfflf!fl~tioR :irwar,ia,111 i5 a cautfilfflt •-the entire s.ystenutat~. rather than just 

on the images under the new system state of the data objects 1etumed, A ,corr«:tly, ~. 

operation must preserve the invariant, wltiql rnea"5. that the iay~t fflUSl .held ~ith restJ'd 

to all data objects after the operation is performed. This includes the objects. returned by the 

operation, as well as any others whose state may have changed as a rnu, of the -pPeralion. 

Note that the proof methodology presented here ha$ no difficulttes handffng 

implementations with benevolent side effects. If t"'_'cor~ f~. iJ.-~J to, one. 

then an operation may change the state of' an- i.mplem.entatiQn .~ · wUhOUl .affecting the 

correctness argument, as long as the image of the imp~OOll object under the 

correspondence function dOl's not change. Such'5ifk,.eff«ts QA ~ w$elul in,i~~• :~e an 

operation rearranges a data strU<ture ro make future op,r~s on ,t~t struttwe more .effi~kmt. 

without changing the externally observable behavior of the structure. 
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5.4 Dynamic Specification, Dynamic Implementation 

The correctness of a dynamic implrmentation of a dynamic data abstraction can be 

proved by constructing a simulation rdation, and by showing that the simulation relation holds 

for all closed computations. The method of simulation relations is a general solution to the 

problem of proving the behavioral equivalence of two models, since it can be applied to both 

static and dynamic models. If the standard model is static, then some simplifications are 

possible, as illustrated by the homomorphism theorem and the correspondence theorem 

presented in the previous sections. In this section we consider the fully dynamic case, where the 

full power of simulation relations is needed. 

Recall that each object of a dynamic type is modeled by a token. Tokens have no 

distinguishing features other than their identities. The properties of a data object represented 

by a token are modeled by the images of the token under the current system state function. To 

establish the behavioral equivalence of two models, we must specify the correspondence between 

the tokens of the two models, and also the relations that must hold between the states of 

corresponding tokens. The first of the two correspondences is the correspondence relation .,. 

described below, and the second is described by the simulation relation. For a pair of state 

machine models, the simulation relation is typically defined in terms of the correspondence 

relation. 

Since tokens do not have any distinguishing properties other than their identities, it is 

generally not possible to describe the correspondence between the tokens of the implementation 

model and the tokens of the standard model without reference to the computation that produced 

the current state. The correspondence relation for tokens is easy to describe in terms of the 



computation, since the results of corresponding steps of the computation. in the two models must 

correspond to each other. T~ C91"r~~ ~Sion is,~~ mere~ilelyas.leltows. 

, D .. flnttton 20 Correspondence Relation 
If the computation C is feasib" iJ1 ~,b Ml and ~2.J x,is t~J.-th retll•· value or 
rhe fth step ofthe Interpretation of C in Ml, and if :, is the Mh return value of the 
J-th step of the inte,:pre(a~ion of C i~ M2. ~ ,,_ ,wilf rsaJ,.._-tX:,car_l"'Jfl macp,, to J · 
and we wl1I write x.,. ,. · ·- ·· · · 

The correspondence relation applies to system states as well as to data objects. The 
C • , I , • ·J{'· 

correspondmce relation Is syntactic in nature: it is· defined In terms of the structure of the 

computation, without any regard for the meanings of the operations. so that the same deflnitton 

applies to an data abstractions. 

The simulation relation describes the re.;_,~ that must hold betwttn the sta.tes or 

corresponding data objects in the two models for t~ objects to have the same externally 

obSt'rvablfo behavior. E'xamples of simulation relatio.:11 can be found m the proofs or correctness 

given· in' tile r ollowing sectaons. 

A typitaf proof of correctness proettds by induction~ the length or the computation. 

to show thit for any dosed computation, the. terminatioo condition oft~ last step is the same in 

both models, and that the simulation relatton°hokl/tn'ihe
0

final statn of the two models. The 
·_..,·;. 

. proof splits up'into cases on the type of the last operat,ion of the computation, With one case for 

each primitive operation. 

To establish behavioral equivalence, the simulation relation must imply that 

corresponding- ~an values are equal. ·iypi~iiy ltte simulation relation will be the 

conjtindton. or a number of clauses, where each ~la use is an implication. The hypothesis of the 

imptkation' says- that a number of pairs of objects have gi~en tJPft ~'are related by the. 
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correspondence relation H. The conclusion describes the relations that must hold between the 

identities and states of corresponding objects. The clause stating the standard requirement on 

boolean values is the following: 

b.,. lb~ b = !b, 

where we follow the convention that variables prefixed by a "!" refer to elements of the 

implementation model, while variables without such a prefix refer to elements of the standard 

model. Just as we required the homomorphism or correspondence function used in a proof of 

correctness of a static data abstraction to be the identity mapping on the subordinate types, we

will in general require a clause in the simulation relation for each subordinate type, stating that 

corresponding objects of the subordinate type must be equal. 

In order for the induction to go through, the simulation relation must be strong 

enough to enable the simulation relation to be proved in the final state, given that the 

simulation relation holds in all previous states. In working out sample proofs, we have found 

that the definition of the simulation relation usually evolves along with the proof, In the 

beginning. the simulation relation states just the required constraints on the boolean domain 

and on the other subordinate types. In considering each operation, it is often found that an 

additional hypothesis is required to show that the operation preserves the simulation relation 

defined so far. As clauses are added to the simulation relation, it is of course necessary to go 

back and show that the other operations preserve the new clause as well. If the implementation 

is in fact correct, then this process will eventually terminate in a proof that every operation 

preserves every clause of the simulation relation. 

The use of the correspondence function ++ is one difference between proofs of 
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correctness for dynamic abstractions and for static abstractions. Another phenomenon that 

occurs 'only f(!f dynamic abstral'fltlfij. is Uiar ~tmes''~'ts·nece~yy -t~ ·~onskler,.the. ~rations· 

."'::·'(/;_,: '. ,:,!., :r:~ 

of the subordinate ty~s in the .correctness proof, as well as the optrations of the principal type. 

The operations of any mutable subordinate type must be considered, since they can modlf,y , ... : 

system state, and since the simulation relation (usually) depends on the system state .. · The 

op!r~tlons·of ~taUc subordinate ty\,es ·~·nof~'CCNi~, r~~se they-·can~ cha~ge the 

. ' ·. . . - . . . ~ -. ' ' . -; ~-- ': >-.i ,· '. ;. '. -; : ,- .• .. ·_ : ~: ~. . -f ~ 'i .. '. . _, ... : =,. ; • - ' 'i- ~ ' . ~ 
systen'f state or r'etum objects of the principal type.· Since aA cl the subordinate types of a statie 

abstrattton are·static. rlte dpefations oft~ subord~ale(typa of ~,,,-;~tJ·~b";a~ion--need-~ 

· 1 . .- . :: ~ • -· -= • . • · ..._ , ; . ~ : · .- • l -, , ; , . : . -· ~ : i '. ,-. • 

Atiy irifefactions between the observable behavior of a mutable data abs~action and 

:, . _!f'J•-:. ,•;,. '.:", , . • 1; : . ~ ;;:~·:·-1'Jd;i,; : ' !-.. ~.L:·j-~ -·i1.> '. . -~. --~ 
the operations of its mutable subordinaii types depemi on the mutation of shared data objects. 

~ . · ~·· ~ ~- •. -, ,·..,.•c* ,,- -.-.• '; :;'l ~~ ·'! ,_.•}C:~l~'. .·,..!" ·::! •-.,·- ,'., ' • 

Since"thi ·,ubotttthale relation on 'models ts'a 'weft fotlnded pa~riial order, tt ts not possible for 
. . 

. '. . : ' - f 1 • •-· • •• ; ~ :."i '; '; •. : • \ . "'.'~ ·., e ; • • . • • • • • 

any of the oper•tions of a· subordinate· type' to operate ·directly on any object of the principal 
. - , .... . . ' ~ ~ r . : .~ / ; .. 

typt'. lt'is possibte'for an ob~dx of'a subori:Unate type to share some substructure with an 

object ' of ffif prrndpa1' fypf, :~•-o,a~ t& extriniffy ci,~'~ab~;~;~-~ of ,' can d~ on the 

state of X .. SPta'ring dt thts kind ca·n. occur 'tifcoriatuctibri~or i,y ·a~.~IOII.' In the rir~t ase, . 

some ptlmitiff aperatton tali~s x af'an ·at~t and- ~tes' 1{ i~tc{,: whtte either i is 

pt~sed- as l'ri argument to the OJ>l'f"tlcJn ot'creat~ tiy;the opera'uiMl·~nd returned. rn -the ~d. 

caw, some primitive ript-ration. tal~s 1·as an atg'~~i 'anc:f ~urn~ ~ ~t x. ' 

' For iln' ex~mple 'of a caslillhere ah tnterifticttw~"the c:ipft'ations of a wbordinate., 

typt" h ponible, coris'Mt-{tht" rriui ilb'stracrkin t'leitiw ii r~r\M~t~ a~~ mutable 'sets,· ~ith . 

:': : , i:i-r ,u·.:,; :-i i•i ·L, ·. _ • ._,_, ~;, , ' ; ·\., "-"i•; 

the usual set operations, and also an eltmtnts opetallon tliit returns an array containing the 

elements of the' iet: In ttie'saffltard ~el; "the it~ts•.~;ticJn returns a newly cr~ted array, 
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without affecting the state of any mset. Consequently, a subsequent assignment to some element 

of the array returned by the elements operation does not affect the contents of the rnsrt from 

which the array was derived. An implementation in which such an assignment did affect the 

contenrs of the mset would not be behaviorally equivalent to the standard model, but tht> only 

way to detect thr difference is to perform an arraylstore operation, which is an operation of a 

mutable type subordinate to mset. (Such an incorrect implementation of mset is plausible, 

since it would arise if the programmer chose to represent msets as arrays, and in implementing 

the elements operation forgot to return a. copy of the array representing the mset, rather than 

the representation itself.) For such an incorrect implementation, it would not be possible to 

prove that the arraylstore operation preserves the simulation relation, even though it could be 

possible to show that every operation of the principal type does preserve the simulation relation. 

6.4.1 Simple Example 

In this section we present a proof of correctness of an implementation of the untque_td 
·• 

_abstraction. This is just about the simplest possible data abstraction that requires a state 

machine model. Recall that unique_ids are immutable, but they can be dynamically created. 

The standard model for the unique_id abstraction is repeated for the reader's convenience in 

Figure 18. An implementation of unique_ids in terms of arrays is shown in Figure 19. In this 

implementation, we are taking advantage of the fact that arraylcreate always returns a new 

array (one that has not been used yet in the current computation). The Implementation 

depends only on the identity of the array, so that the contents of the array can be changed 

arbitrarily without affecting the correctness of the implementation. A newly created array has a 

length equal to zero, and a specified lower bound for the indices. The standard model for 
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Figure 18. Stanclard;Modeffor Untque_td 

type antque_id, n U 

wltlt 

data states 

operations 

where 

end uniqueJd 

neate: 
equal: 

D • I null J 

-+U 
U x U _. boolean 

crcate(sX) • extend(s, null) 
erqtta('S)<;(yf ~ l( S, Y ) , 

v ., if tokenhqual(x, y) then true me false 
. . - . . 

Figure 19. lmplementatton of Unlque_ld 

representation array[int) 
~ • ; I : 

operation• aeatf'() • array(intlkreate(I) 
equal(x, y) • array[int]lequal(x, y) 

arrays n shown fn Figor~ ffi-·. In Section ·s.3.2. ·-rt.e :proof or·~ ts ·shown below. As 

befbte; we wtH·prdfi~s.·objet'ts.and~~tfl bftitigi'ng ~-ifie 1mplemen~tton with a•,• 

te dhtinguisft fflffl1 from tfteirctiuntefparts th the sr~nda·nt~el 

To provtt that unique_id and lunique_id are behaviorally equivalent. 
J>Mof by tftdUdleft on tfre-length oNfie't'omputaUbn: ' . . . 
Assuming the simulation relation R hok;ls for,aH _c~tations C such that I S length(C) <.N, 
s..,_, that·R fioltts-ftJr,,aff1Ehtidt that'~gtMt1;,. N.- · ,· · · -

Let s; sO, sl b4! system'SN~ for'uniqiueJd, -. 
J.s, .1s0, hi be system states for .1unique_id, 

. X, Xi, y; t be tmkp!_iits ... 
J.x, .1xt, J.y, h be J.unique_ids 
b, J.b ~ boolnfts: . 

Let R ~- -x +-- h & s ... ls _=> used(x, s) = used(h, J.s) 
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& X H Jx & Y H !y ~ (X = y) = (lx = !y) 
& b H !b ~ b = !b 

Proof by cases on the name of the last operation in C. 

Case I: create 

Let sO H lsO. 
Let unique_idlcreate(sO)() = (s1, xi> and !unique_jdlcreate(lsOX) = (lsl, !xi>, 
so that s1 H Isl and xi ... lxl. 
By the defmition of unique_idlcrcate, statelextend, and statelused, 
used(xl, sl) & .., used(xt, sO) 
and med(z, sO) == med(z. sl) for z ;,t xi. 
By the definition of arraylkrcate, statelextend, and statelused, 
used(!xl, !sl) & --. used(Jxl, JsO) 
and used(lz, !sO) = used(Jz. !sl) for lz ;,t hi. 
So z H lz ~ used(z, sl) ~ used(!z, J.sl) for any z, h. 
So the first clause of R is established for sl, !sl. 

(lemma I) if z ;,t xi and z H lz then lz ;,t !xi: 
used(!xl. hi) & --. used(!xl, J.sO), 
but used(J z. !sl) = used(z. s1) = used(z, sO) = used(h, lsO), 
So J.z ;,t lxl. 

(lemma 2) if z = xi and z ... !z then !z "' lxl: 
Since z = xi, used(z, sl) & -. med(z, sO). 
By the first clause of R, used(!z, !sl) & .., used(lz, lsO). 
used(!z, lsO) = used(!z, lsl) for lz .t !xi. 
So !z = lxl. 

Let x H !x and y ,.. !y. 

Case I.I: x .t xi, y ;,t xi 

By lemma I, lx -;it lxl and !y -;it !yl. 
So x H !x and y ... ly in the prefix of the computation C. 
So the second clause of R holds by the induction hypothesis. 

Case 1.2: x = xi, y ;,t xi 

Then x ;,t y. 
By lemma I, !y -;it !xi. 
By lemma 2. lx = !xi. 
So J x ;,t Jy and the second clause of R holds. 



Case 1.3: x ~ xi, y = xi 

Similar to Case 1.2. 

Case l:f: x • xi, y • xi 

Then x • y. 
By lemma ~ !x • lxJ • ly, _ 
So the second clause of R holds. 
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The third clause of R;holds since create and !create do not ~many boplean vallles. 
So R holds. . -': 

Both create and Jcreate al~ays ter,ninJt~.ill ~ ..,... ~Won. 

Case 2: equa I 

Let sO.,. .a.so, xO.,. hO, and yO ff -lyO. . , .- .. · 
Let equal(sO)(xO, yO) .. (sl, b} and lequal(bO)(bO, lyO) • (-lsl, lb}. 
By the ddinition of equal, s• • sO and b = _(Jt().J'l r)l _ .. _., 
Sy the definition of !equal, lsl - -lsO and lb = (.lxO • ~,qi , 
Since R holds in sO, (xO • f()l = (bO_r, l,elso•b,.~}~ "4J ~Id~: 
Both equal and !equal always terminate in the nonnal condition. 

So ff preserves termination conditions and truth ~~ 
Therefore unique_id and lunique_id are behaviora_ly MUiY.alenl . . 

The most important property of a untqu.,_id- is that it is unique. T:~ts js ~ssed by 

the second clause of the simulation relation. R, whkh says that two ~¥+14'1 ~ye the_. same 

representation if and on.ly !f the abstract objects they represent are ~entkaPy the same. _ The 

third clause of R Is jmt the standard requirement on.~ltan.valu,eg,Srqmwh~a,,the btthavioral 

• ~' << ~ 

equivalence of the two models follows easily. The .only .,.tiQn-of.WUfUt.JdJltatproduces a 

boolean valut> is equal, and for that case the third clause of R follows easily from the second 

clause and the definition of tqual. Establishing the second clause is harder, requiring the 

addition of the first clause to the simulation relation, to strengdleo tJ,e. ind1M=1ion,,hypothesis . 
. n· 

The first clause Is based on that fact that corresponding objects in the implementation and in 
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the standard model are created at the same time, so that either both exist (in states after the 

abstract object has been created) or both do not exist (in states before the abstract object has 

been created}. Since the object returned by unique_idlcreate is always newly created (and hence 

distinct from previously existing objects), and since only one object at a time is created, the 

unique representation property is preserved. 

The proof shown above is a typical example of the argument used to establish a 

unique representc1tion property, treated in detail. Similar properties wiH be rt>qu~red in later 

examples, and we will ~ketch the proofs without filling in all of the details, assuming that the 

reader cc1n adapt the argument given in this section. 

6.4.2 Typical Example 

A simple example of a proof of correctness for a dynamic data abstraction is presented 

in this section. We have adapted the intset example from [18], without incorporating the bound 

on the size of a set.1 A standc1rd model for intsets is shown In Figure 20. lntsets are mutable 

sets of integers. The empty operation creates a new intset, which is initially empty. The insert 

operation inserts a given integer into a given intset, returning no values and changing the state 

of the intset. The remove operation removes a given integer from a given intset. The laas 

operation tests to see if a given integer is a member of a given intset. 

An implementation of intsets in terms of arrays is shown in Figure 21. This 

I. If sets with a bounded size ;ire desired, then an exception conditions should be associated 
with the insert operation to indicc1te when an attempt has been made to excet>d the size bound. 
This will add another case to the proof without further illuminating the methodology, and 
hence Is omitted. 
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Figure 20. Standard Model for tntset 

type intset as I 

with 

data states 
restrictions 
Identity 

operations 

end intset 

empty: 
insert: 
remove: 
has: 

D "'setlint] 
nont'· 
setlequal 

-+ I 
I x int-+ 
J X int-+ 
I x int -+ boolean 

empty(s)() ,. e,cten<,l(s, setlnull()) 
tnsert(sXx, I) • update(s, setladd{i, s(x))) 
remove(s)(x. I) • update(s, ,e .. ~ve(i, I(~))) 
has(sXx, i) • <s, setimembt,(r, l(x1)) - . 

Fl~ure 21. lntset Implementation 

representation intset • array(int] _ _ . . 
resfttcttona a such that low(a) - l& ( low(a) ~ j, k ~ htgh(a) & j III l ~ a(t) 111 a(k)) 
lctentlty arraylequal 

operatlonJ · empty() • array[intltqeate(I) . . . 
inst>rt(a~ i) = If ., ·has(a;. i) thm addh(a, i) 
remove(,. i) • !f t1as(a, ,i}, tf)~ ,( st91"e(a, Ji~, ~l~~i&J,Wl; remh(a) 1-
has(a, I}• if :ljUow(a) -~ j ~ high(a) Ii a{Jj.tl then true else false 

definition find(a. t) • ij 3j[ a[j] • i_) then j : ati) • i_ el$e 0 
- ~ '. '] ·, ,. - . - - . . 

im~lemffltation keeps at most one instance o(any gi~en integer_Jn_:in,a,~ray, ,but th, order of 

the elements is arbitrary. The standard model for arrays is shown in Figure IS in Section 5.3.2. 

The proof of correctness is shown below. An explanation follows the proof. 
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To show that intset and lintset are behaviorally equivalent. 
Proof by induction on the length of the computation: 
Assuming R & II for all computations C such that I ~ len~h(C) < N, 
show R & II for a II C such that length(C) = N. 

Let s, sO, sl be system states for intset 
Js, J.s0, J s1 be system states for lintset 
x, xt, z be mtsets 
J.x, J.xl, !z be lintsets 
i, ii, !i, lil, k, n be integers 
b, bl, lb, !bl be booleans 

Let R_ = ls H s & Jx ox & .J.i o i ~ ( i < s(x) = ]j[I ~ j ~ •(.J.s(lx). e) & li., ls{!x). e[jll) 
& .J.b H b ~ Jb = b 

Let I = Js(!x).low = I & ( I ~ j, k ~ •(ls(!x). e) & j ;,e k => ls(lx_). e[j] -1' ls(lx). e(k] )_ 

R is the simulation relation and I is the implementation if!variant. 

Proof by cases on the name of the last operation of C. 

Case I: create 

Let lsO H s0, lcreate(J.s0)() = (Jsl, !xt>, create(s0X) = (sl, xi) 

Then we have Jsl --+ sl and !xi--+ xi 
By the definition of create, sl(z) = s0(z) for z -1' xi 
By the definition of Jcreate, .J.sl(Jz) = .J.sO(J.z) for lz -1' lxl 
So R and Il hold for s ., sl, ls = hi, x ;,e xi, lx -1' lxl 
For x = xi and .J.x = !xi we have 
sl(xl) = setlnull(), so i c sl(xl) is false for all i. 
J.sl( !xi) == (low: I, e: 0 ), •Us(!x). e) = 0, and I ~ j ~ 0 is false for all i. 
So R holds for the pair of states sl, hi. 
lsl(J.xl). low = I and I $ j, k ~ 0 is false, so][ holds. 
H preserves termination conditions since both create and .I.create always 
terminate in the normal condition. 

Case 2: insert 

Let s0 +-- J.s0, xi o !xi, ii o Jil. 
Let insert(s0Xxl, ii)= sl, JinsertOs0X!xl, !ii)-= J.sl. 
Then st 4 1s1. 
We hc1ve s0(z) ,., sl(z) for z ;,e xi, and similarly for !s0, 
so we have to show R and II only for x = ,cl, J.x ,. J.xl, s • sl, ls,. J.sl. 
By the definition of insert, sl(xl) .. sO(xl) U f ii I. 
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Case 2.1: ii c sO(xl). 

Then. sl(xl) "' sO(xl), and. h~ce sl .. sO. _. ,, . . . 
Since R holds in sO, ]j[I S j S e(hO(lxl). e) & J.sO(lxt)~ elj] • J.ill 
So J.sl "' hO by the definition of linsert. · , 
So R and I hold by the induction hy .... $il.., 

Case 2.2: -, ii < sO(xl). 
(, ,! r 

From R in sO, .., 3j[I S j S e(J.sO(bl). e) & lsO(lxl).cfi}• .Utl 
From the definition of linsert, hl(lxl) • <tow: I, e: J.sO(bl). e I• J.i). 
~jU s j ~ e(J~l!'J)-,.e), "J$0(Jil),. ~,.,,lit) I~ : 

]j[I S j S .(lsl(ixl}. e) - I & J.sl(txl}. e(J] • J.tl] 
and hl(J.xl). eCj] • H for j • .(lst(lxl). e), 

. so R hold$ in .sl bl. 
Fnm1 the d~finitkNl of J.tnSttt, J.s(Jxl). low - I. 
I holds for I s j ,,k ~ tt(J.~~•!~~kl).•h U,y the tnductkJft hypothesis. 
and I holds for I S j < k • .(J.sl(bl). e>.' 
since-, ]j{I S j S e(JsO(lxl),e)&~ .. MQi, · 
So I holds. . 

++ preserves termination conditions since both insert and !insert 
always terminate in the nonnat condition. 

Case 3: remove 

Let sO ..,. J.sO, xi .. hi, ii ... lil 
Let rm,ovt'(sO)(xl, ii) • sl, J.remove(lsO)(J.xl, ,I.ii) • ,&.sl , 
Thm sl +-t Jsl. 
We have sO(z) • sl(z) for z .- xi, and similarly for~· , .. 
set we have to sho,, R..~fJChJ'.qrpl.J (of~• Nit~~;• ,ql.,,s •~,4s,• ht. 
By the definition· of remove, sl(xl) • sO(xl) • { ill. . ,1, 

Case 3.1: ii c sO(xO . 

Since R holds in sO, hO , ]j[l S j S e(lsO(lxl). e) & J.sO(lxl). eCj] • J.il] 
Choose n such that I S n S e(lsO(bl). e) & J.sO(J.xl). e(n) • ltl. 
I holds in sO son is unique and n • find(!.sO)(lxl, itt) . 

Case :Ul: n .. •(hO(hl). e) 

Then from the definition of :-1-rfflJOff., 
J sl(J.xO. • (low: I, e: bO{l.xQ. e{t..q-1]). 
From I with k • n and the previQus:Jine, 
-, ]j(I :s j ·s e(Jsl(hl). e) & lsl(!xl). e(j]. lUl 
so R holds for i • ii. 

. , ! ' 
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Case 3J.2: n iit •UsO(bl). e) 

Then from the definition:of l.rffllOv~; ".h 

,, J_s!(l;xO = <~:.'~,r/J~Ln-Jll• ,~l ~t~[~~t,~q-11>,1, 
Wnere q C 1-SvvX ,.-e. 
Fr~ I lAlith k = n. and th~ pre,vJQtJs Jjne.. " 
.... 1jfl s J s it(tst(lxl). e) & tsf{lxl). e{j] ·= lill .. 
so R holds for i = ii. . . 

· Sine~ l~tdxn. e{kJ .. lsO(lxl). ti1for 'i"~ l l n ~; 1 a.:,d'n · ♦ 1 s 1t s eq - I, 
and hl(Jx~). e[n]_ •, J.sO(!xO.e(-ql , . . . . 

· for i ri i(1j[I s· j S e(lsO(lxO. e)lt isO(ht). e{j] • 'J.j) = 
. , , ~IJ SJ S ,i.sl(lx,). e,) t ,~fxl)~ #iJ,

1
~-clll ., .: 

So R is establisftm in s1; bl. . . ..... · "' . ' 

I in hi foltows from I in .J.sO. 
- •..- '" .,, 

Case 3.2: ., U c sO(xt) 

Then sl(~I) _ .. sO(~I) - {i~ I~ sfl(x1~.so ~J • 59. . ,, , .. 1 ,
1 

, · _ .~ 

Slnce"lt holHs in sO, -<]jO Sj S it(ts((lxl). e) & lsO(lxl):efj) ~ till 
so J.sl .. lsO, by the definition of lremove and lhas. 
So R and I hold in sl, hi. 

.,. preserves termination condiUons since both remove and lremove 
always "terfuinate HI t"h~ riorfft~ ~dition. :· ; ; ,, .• '. . . i 

Case 4: ftai 

Let -aO ++ lsO. xi ... txl, jl ~ til. 
Let has(sO)(xl, ii) .. (sl, bl), lhas(J.sO)(bl, l-il) • (lsl, l-bl). 
Tften''sf~ J"slantf bt'~ tilt ·1' · ' · 

1
'' 

From the definitions of has and !has, s1 • sO and l-sl • l-sO. Sc,I hofds. • .. . . . . · . ', ,_, , .. , .. --.• 
We need to show that bl = lbl. 
By ttl~c,d~Hiticxtothis;·t,1 .:n c skxr). 
Sy the d~finltion of l_has, lbl .. ]j[I ~ j S -(lsO(h!)• ~) &-~~~-~0• eCjt • ti]. 
Bfthe ffrst clause·of''R; bt • 'tbt · ' ) "•' . •· ... ,,. . . 
.. preserves termination conditions since both has and ,I.has always 

- l 1' · • ;c_- -~- ''.-' ..- ~ ':-· ,- " l1 · .e'·i 1 

tel'mmate in the noriitaf tmdition. · . · . 

Since ..:. preserves termination conditions and the simulation rel~Hoo. 
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all computations are equifeasible in int~ and JnJ1auet. ,nc1 each ,." 
computation produdng a l>ooleJn ,~,;produc~ the acne valuc,kt both models. 
So intset and lintset are btifia-,Wwailj'ecpai'valfflt ... : ~ . . . ' .. 

The only primitln intstt operation that can moctu~. a boolean, va~ ~ Aa.r, and the 
: '.. ' ' 

relationship required for the MU operat~ ffl,gJ,e t"' Ul""J'~)n ~~~els is expressed 

by the first clause of the simulation relaliOfl, Jf ·The~ tt,~~nt I expresses a 
.. ,. ' {} .:: ,, --· 

restriction on the implementation. ,strudbreft~~ -.~sf·~.·~~~ j,., t~ operations of the 
• • ~ ••• -. • ·- > • • 

• • , • • ~ ; • C ~ < • , ff ; ; ' ,'. 
standard model, in contrast to .the simulation-~ which ls ~ed ,with the relations . . , . . ' . .. ... : . , . . ' ·<. . "' ·. . < ' 

"' 
between the two modttls. The tinp~talton · 1q•,a~~~~ -~,_,, ~~-✓•J~ ~, ~ elernfflts of the 

- ; r.~ lf . ' •\_-~'.;i·,,,- ?:- ; _; -~ 
array representing an intstt must be distinct, and thifthe low bound ofthe array must be 

always equal to I (recall that arrays can grow and shrink from both ~s). The 1,rapiementation 

invariant is needed. in.:~ :proof to.~-~·~ ·;~~•~~
1
,iW,lll;{~flae simulation 

relation. 

state machine, ~ have to reestablish that the properties required for our proof o( corr~ness 

are still true in the finill state. There can be no simple g~I ~~ fQI'. tra~er:ri. fnopffties . 

from one state to the next. b«ause lhttre is no s~~~ SYN.f~ nta~ ~~-the text 

specifying an operation and the ~, of data objects that at1 be iff~ect bJ t~.,~a~. In 

general, the t'ffects of an 0pt'ration are not lirnir~t, to ,~he ~aa:;ol?~- _that are" ~ssed as 

arguments to the •ration. because the data state of aa, pbjed, can,., ~r data,objects, 

which in turn can have data ·states containi~g sttA mm:e, 4~ - , ~n .i~voca,Uon of an 

operation can potentially ~ffec_t;rvery objt'ctin.tht reacbabiJ#J ~,e of t,be ~rgu~JS. ~hich 
, ,, • •-· .•< , •• 
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can vary from one state to the next. Consequently we must establish the invariance of 

properties of data objects with respect to state transitions on a case by case basis. 

As can be seen in the proof above, explicitly arguing that each property is transferred 

from one state to the next need not lead to unmanageable complexity. In a correctness proof we 

are typically trying to show that the simulation relation and the implementation invariant 

remain true in spite of any state transitions that may be caused by the operations of the data 

abstraction we are trying to verify. In the example above, the arguments are very simple, since 

there is no potential for data sharing between intsets. In the example shown in the next section, 

there is potential sharing among the objects of the principal type, so that the arguments 

required to show that the simulation relation is preserved by a state transition have more 

content. 

5.4.3 Sophisticated Example 

A sophisticated example, consisting of the nonstandard implementation for mutable 

lists discussed at the end of Chapter 3, is presented in this section. This example treats a 

mutable abstraction whose objects may share subcomponents. The implementation is not 

reduced, so that more than one object (token) in the implementation may represent the same 

abstract mutable list. The standard model for mutable lists is shown in Figure 22. The 

implementation model for mutable lists is shown in Figure 23. We have defined the 

implementation model in the same notation as the standard model in order to keep the example 

as simple as possible. Strictly speaking, this example shows a proof of the behavioral 

equivalence of two models. The proof of correctness is outlined below. The proof for the cdr 

operation is very similar to the proof of the car operation, and similarly for rplaca and rplacd, 
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Figure 22. Standard Model tor Mutable Lista 

type 11st •• L 

with 

data states 
reatricUona. 
Identity 

operations 

e11d list. 

nil: 
COIU: 

car: 
.cdr; 
rplaca 
rplacd:, 
eq: 

--. L 
L ><,L-+L 
t-+ L • ( no_car-:) 
L ~I..• (IIOJdr :,) 
L x L --. L + ( no_car : ) 
L- ,c L -fl- L • (: no.Jdr :) 
L x L -+ boolean · 

D • oneof[null: _{ ntf }, pair: tuple[I: L, r: LD 
none, 
to1tenlequa I 

nil(s)() • stateCDJlextffld(s, nil in nun) 
cOl;IS(,~, y► •, 1ja~tpld{$..,{J: .x.,. r: ,~ • pair) 
car(s)(x) • if isfpairXs(x)) t .. (s. tG[patrXs(x)). I) 

else (no_car : s) 
cdr(s)(x) • if is(pairXs(x)) thm <s, to(patrXs(x)). r) 

else <no_cdr : s) 
rplaca(s)(x, y) • if is(palr Xs(x)) (P' "..,.: ·:: d. · • J, ;; 1 c . -n 

thffl <state(DJlupdat!(s. x, (I: J, r: to(pairls(x)). r) in pair), x) 
else (no_car: s) 

rpJar..dWC., r},!':iUapairX.)), ., :, ·· .; · ·• · ,· 
' thm (stateCDllupdat!(s, x, (I: to(pairls(x)). I, r: y) in pair), x) 

!W ~Q.cdr;~., ' p -L~: 

eq(s)(x, y) • tokffllequal(x, y) 

An explanation is gi•e11 after the text of the:'"°'· 

To show that list and Uist are bt>haviorally equivalent. 
Proof by in4M(tton • the length of' the~ ._ 
Assuming R holds for all computations C such that I S lmgth(C) < N, 
show that R holds for aU,C such1hat~ah!C)• N. · 

Let s, s0, sl be system states for lbt, 
h, hO, hi btt systttm states for l.list, 
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Figure 23. Implementation Model for Mutable List, 

data states D • cell{oneof(null: l nil ), pair: tuptell: L, ri LDJ 
; ., > ~-~ -.;) : ,--;: '-, 

operations nil(s)() .. stateClist]textendfstatdte-~,;ij11 ih :11\ill))'. · ·. · · 
cons(s)(x, y) .. statelHst1texte.,d<. ~M~~ ~ x':J i? fn p~ir)l 
car(s)(x) • if is(pairXs(s(x)))'' ;;;,,_o " ' ' ·,: · ·. · ·· ,,.in. · 

tht'n (s, tolpairXs(s(x)}). I) 
else (no~car: s)' '. 

cdr(s)(x) • i[ is{pair Xsbf ~)}l · ·.. ,:··_•, · · 
r; > ,- ttiet'l' «. t((j>iwf~~)J;~,1 · · ' ... 

mel~.:.cdf:'~r! "·· ·, ,, -~ ., · ,. · 
rplaca(s)(x. y) = if is[pairXs(s(x)) 

then stateCtistllextend( 
srare(celfllupdate( . _ , 

.,,,, ~t~t~'i,J;.!~: f~ir~~~)~;J} •~ _J!,lir ): __ . 

else (no_car: s) 
rplacd(s)(x, y} • if is[pairX5S~x))

1 
• , • : •• ·--~.·; , , : ,: 

.· ' . ,t~en sts:,~~ir ,.-·.. . -
. . 's, s{~~tfflst~l; !, ~ ,> tn pairJ, 

s(x}) . ·" ., I. . • . 

"5e '(fif).:,cdr:' s) ·•·.' - ., 

eq(s)(x~ J) -toi~ts(x),J(f))1 
.- , ':. • 

: - \' j>- - ; ' - 1 > 

w, x, y, z, xO, yO be lists 
lw, lx, ly. h, .t.xO, lyO be !lists, 
b, lb be booleans. 
le be a cell. 

Proof by cases on the name of the last operation of C. 
' ,,. '"'; >' '. - ; f ~ 

Case I: nil 

Let s0.,. .1.$0. 
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Let nil(s.OX) • (sl, w) and lnil(lsO)() .. (lsl, ·lw):• · .. · .. 
Thm sl ._. hi and w +t J.w~ 

. sl(z) • sO(z) for z - w, and 'similarly for J.sl: 

So we need to.~ ff PR'l~ x ~ 1t.J1.• lw. 
By,~~ d.!fh,Jitt~ ~ f!~~M,J{w)t . . 
By tfti defirliUon of lnil, ls[nuQhl(lsl(w))). .·. 
So the first clause of R holds. 
The second clauSt' is trivially true for x • ·..;, ,, ". lw. . 
since the hypotMSis of the implication is fa~\;., ... , , ,~;,. . .... : , 
Since w and lsl(lw) are newly c~(~,1~tfft~ .. qtl, holds. 
Both nil and lnll always terminate in die ~~• 

Case 2: cons 

Let sO t,t l~! xO , .. ~~?•~~;f. lJO., -,,,: _ ; · .. ; . . . . . 
Let cons{sO)(,cO, yO) .. ul. w) and lcon~(lsO)(l~.,·.J.JO). (lsl, lw). 
Thm sl.,. hi and w ff lw. . , v, ·,, :· 

sl(z) • sO(z) for z - w, and similarly for, }JI. , , , ('. - . . • .· 
• ",..: '~- !i-?t. , ' i":,' i . ~ ~. . 

So we need to show R only for x;.'■, ~!J~,.;.;,~· , .; .,d . 
By the definition of cons, ls(pai(_\f 7>>.:,~wtJ :- xQ, and sl(w), r • yO. 
By the ~~rt2Cmno1il~--~~~~~~));'~lsl(J.w)), I - lxO, and lsl(bl(lw)), r - lyO. 
The first C St' 'rs trivially t . : it/ . 

Since x0 ff .a.xo and yO ... lyO, the second ctaus,r Qf-,R 11pkls. 
Since wand bl(lw) are newly created,!~ ~~"".Pf.l ~s.-. 
Both cons and J.cons always termtnate·HI tffe nanll.t a,nditian. 

Case 3: car 

Let sO" hO and xO" lxO. 

Case 11: is[pa ir ](sO(xO)) 
j 

Let car(s0Xx0) • (sl, w} an(l lar(UC,XlxO)'~ UJl,ff). 
Then sl .. lsl and w " lw. 
By the definition of an, sl ~ JP ~nd y • sO(xO).' I. 
By the definiUQn of ,lcar. lJJ i:r .~,aJl(I lw ~ lsO(lsO(bO)), I 

,' .. ' 

Since sl • sO and Ji(• JIOJ R~ ~s)1,1.,.sl, !~Sor JJ, J." "· . . 
Since R holds in 'so, lsO, ts~irXtsO(!sO(lxO))) •nd sO(~• •·· .. :tlO(J.JO(b()t). I. 
So w .. l w for the prefix of C. 
So R holds for sl, lsl. . -
Both car and lcar terminate in the normal condition for this case. 

Case 3.2: is[null](sO(x0)) 

Then since R bolds in sO, isCnull](J.sO(lsO(lxO))). 
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Let car(sO)(xO) .. sl and kar(J.sOXbO) • bl. 
Then st ... lsl 

Case 4: cdr 

By t~e definJtion of car ind lcar, ~ ":"·SO and J.$1 ~ hO. so Rholds. 
Both. car and lcar terminate in the no_car condition for this case. 

Similar to Case 3, proof left to the reader. 

Case 5: rplaca 

Let sO f.+ .J.sO, xO H l xO, and yo .,. lyO. 

Case 5.1: is[pairJ(sO(xO)) 

From R, is{pair](JsO(hO(!xO))). 
Lf.'t (sl, w) = rplaca(s0)(x0, yO). 
Let (lsl, lw) = rplaca(ls0)(tx0, l.yO). 
Then sl ... hi and w .,. lw. 
By the definition of rplaca, 
sl(z) = sO(z) for z 'If xO = w. 
By the d~fi~J,tion.of .Jrp,~ca,,, 
:fsl(lz) = lsO(h) for h 'll .J.w and isl(k) • isO(.J.c) for k ii l.sO(J.w) • J.sO(lxO). 
R holdtJn.~.JsO. ai:id.fr~Jhe th,k4 c~;of•-R,1 
z H h & z ~ xO => fsO(h) '/l. J.sO(.J.xO). 
So lsl(hl(h)) = .J.~O(bO(lz)).for h, ~ .,_ .11LKO, 
So R hold's 'ror x ~· x0. •. .. . . -

The first _clause pf R hokls for x • ~. • :w ~P il(nuQsl{w)). 
From the def~nition of rplaca, w • xO. 
F1pm t'1f.!~h:finiU011.of ~rfllaca,,,Jsl(l141),"',.laXJ.xO). 
and hl(iz) = l.sO('iz) for h 'll l-w. 
So the third clt1usf of R in sl,. lsl Iolbvs,kom R in Si(),. J.sQ. 
From the defmition of rplaca, sl(w) .. (I: yO, r: sO(xO). r). 
Suppose x = xO = w. 
Then from the third clause of R, 
x H h ~ Jsl(!i) ~ Jsl(J.w), lVld ~sl(!sl(lx)) * !Jl(tsl(l111)). 
From the definitiofl of lrplaca, is[patrXlsl(J.sl(J.w))) and 
tsl(Jsl(.J.w)) •,<I: lyO, r: J.s.O(bO(bO)). r). _ 
We have yO ... J.yO, and since R ho@s Jn s0, lsO, 
sO(xO). r --. J.sO(bO(J.xO)). r. 
So the second clause of R holds in sl, hi. 
So R holds. 
Both rp1aca and !rplaca terminate in the normal condition for this case. 

Case 5.2: is[null](sO(x0)) 



Lrt rplaca(sO)(xO, yO) .. sl and !rplaca(tsij)(bO, !yO) • bl. 
By thf' definitions of rptaca and !rplaca, sO • sl and .a.so • hi, so R holds. 
Both rpllia,anii '.M'plata·tet.a11titein tfie •~cartondi~ iW:this ca,. 

Case 6: rplacd· 

Similar to Case 5, proof left to reader. 

Case 7: eq 

Let sO ++hO, xO H lxO, -and yO .. lyO. 
Let eq(sO)(xO, yO) • (sl, b) and !eq(hO)(!xO, !yO) •'(lsl, -l&) .. 
By the definition of eq, sl • sO and b = (xO • yO). 
By the definition of !eq, hi • !s0 and lb = (!sO(xO) • !sO(yO)). 
Since R holds in sO, xO ff !xO, and yO ., lyO, (xO • yO) • (.&.sO(!xO) • lsO(lY-9)). 
Sob-!b,andRholds. ,_ .. ,., ·:- .. , .. 

Both eq and !eq terminate in the normal condition. ' 

So list and .I.list are behaviorally equivak-nt. 

.. 

The mutable list example was chosen to illustrate leffl'll1 · -~ arb,iJJg from the 
:a'" • . ·' ,- • 

sharing of mutable data objeets. Since wee have nade i :tri'k:t dtsfflKttan -~een -t~ identity of 
• . 't': · .. : ... ,.. . ., .. .. . 

a token and Us state, there is no notational ~frlCUlty 1n ~•ng that one object is a 

subcompont:nt of the states or ~•eralathtr objects (1.e., t,._t the: ftrsf ob)eetb ·shared by the 
• .. - ',-··. ! .- ' 

latter objects). Note the use of the cormpc,ndentt •ffiatbt .,. In the cont1u5Jon .or the second 
,, ,• s' • •. 

clause of tht> simulation refatfon ·R, to tndtca~ 'that the klffltlties ot the components or a 

non-null list must correspond in the two models. 

The example illustrates a case where tt~re rna'y ~ ~ny disti,n~ r_~resentations for 
• , k • ' - • l -~ , - ' • 

the same mutable object. Every time a rf,Laca or rf,latd opttation Ii perrormed on ~ list, a new 

representation object for that list · is created in the imp,~~rton. Despite tflf multiple 

representations, the externally observable behavior of mutable lists Is correct1y: realized in the 

implementation, so that the non-uniqueness of the representation used bl the tn,p~ntati~ ts 
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not externally observable. Whenever the state of a list is modified by a rplaca or rplacd 

operation, the change is reflected in the states of all of the representations for the abstract list 

that was modified, and not just in the particular representation that is returned as the result. 

This is accomplished by introducing an extra level of indirection: the state of a l1St in the 

implementation model is a cell containing the abstract state of the list. In our notation, if s ~ .J.s 

are two corresponding states and if x H !x are two corresponding lists, then the abstract state 

s(x) corresponds to the concrete state J.s(!s(h)), where !s(!x) denotes the identity of the shared 

cell. The cell is shared by all of the representations of the same abstract list, and all of the 

relevant state information is contained in this cell, so that any state changes are automatically 

renected in all "copies" of the list object. The eq operation computes the ident!tY relation on 

abstract lists, rather than the identity relation of the implementation model, which is not 

externally observable. The identity relation on abstract lists is described by the third clause of 

the simulation relation R. Note that the implementation depends critically on the fact that the 

data state of a token representing a list (the identity of the shared cell) never changes, although 

the data state of the data state of the token (the contents of the cell) may change. Jt is easy to 

check that this property is maintained, since none of the llist operations applies a statelupdate 

operation directly to a token representing a list. 

The interesting part of the proof is case 5.1, where the normal termination of the state 

changing rplaca operation is treated. Note the use of the third clause of the simulation relation 

R to implicitly describe the set of representation objects affected by the operation. 

Implementation objects other than those passed as arguments can be affected by a rplaca 

operation, due to the shared mutable cell in the state of a list in the Implementation model. In 

the argument to establish that the rplaca operation does not damage the simulation relation for 
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objects other than those passed as argufflfflts, the relation given by the third cla_use of R is_used 

to distinguish betw~ th; set or' objects that is supposed to be affected by the operation from 
'.' ·.. . .., •.• ·. . , .· .• ·•.·. c:1 ,,,;.,-,11- , ·11h .• , ···it·{;:· i,,1•1 .f ·· <i ·> c· d: 

those objttts that are not suppos.ed to be affected. It is jUst as important to establish that all of 
:/ !- ,! .. ·,~ .;r ~~u~,. hn, r, ·d ~. ~!;.: !,i,·· · · :,.-~ 

""', . ·.•'''':fl1 '·· 
the objects whose statt>s are supposed to be affected by the operation reflect the change as it is 

While it ma·y be difficult to derive a description of the set of objects that is supposed 
-;, . '" . ,_ . : .. ··, ,·,, ;i' ~~ '.,]f:~ _•,;,,.,.·· ~1;':._ ,:! ~,-,1_:~- •tc~~·. ·t• .. 

to be affected by a given operatton from an implementation of an arbitrary mutable data 
•;•,, -.. -.,._, ~~; t- !~~ t~ f'",~:~ :L c·; :~··•. ':- • 

abstraction, it is .impo11ant to ·;;;,k~ this set explicit, because errors stemmtng frO{n hidden 
. ~ _ .. _ ._.;·~- . : •·.. .:.? -. ~~ ·: ~.~r~- r~: : -~-,t~Jq;- .. :; rtf)•;f_,n'!(,{•}; -·~;f;;. ·,_."~ ···:':;f:·~; 

interactions. d·ue 'to unintended sharing mations are very dtfficUlt to track down. The designer 
, . . . , .. "~·,· ,.. ;,.,,·,·.•.,q: y:i •,.,T :>,;,' ,,,. ·.,--1,_:,:) ~:·•~·~(,·• H;,. ,,, : ·,·• :•·,. 

should th·erefore pay explicit and careful attention to the charaaerization of the set of data 

.. -. , .. : ~-e., 1 ,;,: (:-~i~•r1~;·,. 

objects that should be affected by an operation during the design of the implementation. The 
~-

1 

}{ ,-•i: •' ---:~ :_ z:~ ·_:{;'. :~ :-·-i:- ntHL-·;t·i ( 1~:f1'.i~.;~ JtfT' ~ic-;~\ !~-·· /.'.~~i'. • ,-.<: ·. 
intended rt>Stridions on tM sharing relationships should be written down as part of the design. 

• :'-1~"''""''·.• ~f; I • 1('~~-•i Q 

pr&ess, for fate.-' reference ana 'f~r ~ible use in proof~. This _suggestion ts analogous to the . 
. ·'. . . - . - . ."'- ·L :¥, ~:~ :,·•1. ·-,~-.: ._;<· '.:;;;. ~'._-;j•~t..<-Jf:'·· _;~; '.!. ~-- , .{; !} 

sugge~teit prattice · o( dt>vtloping loops together with the associated loop invariants. The 
-. f" " . --.. • ;•:. • :: ;~, " ¼ -· • r, , ~. -.,~ t. ;. 

suggestron is'rnotivated by the fact that the required information must be Informally considered 
..• ·. . • ·. ·.· ·~[ ~ >_.,.,~. ;_:,.<.:j;l;. ,-:· 

by n,e-designer' ·,inyvhy, and thatit is nsier to formalize a familiar but informal notion than it 

.t>' 

,L. 

is to derive the required properties from an unfamiliar implementation. 
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6. Conclusions 

In this chapter we review the concepts central to this work, present a comparison of 

the algebraic and abstract _model specifications, and suggest some directions for future research. 

-6 .1 Central Concepts 

We have been concerned with treating potentially shared mutable data. This 

orientation has lead us to adopt an object oriented viewpoint, and to define the correctness of 

an implementation of a data abstraction in terms of the behavioral equivalence of the 

implementation and the standard model. To prove the correctness of an implementation, we 

have found it necessary to replace the representation function introduced by Hoare [18) with the 

simulation relation. We have also found that a form of computation induction is an 

appropriate method for proving properties of mutable data abstractions. 

6.1.1 Data Objects 

In this work we have adopted an object oriented viewpoint, rather than the more 

conventional variable oriented view. This choice was motivated by our desire to treat shared 

mutable data. If then~ is no sharing of data, then a change in the state of a data object can 

affect at most one variable, and the change can be modeled as the assignment of a new 

immutable value to the affected variable. If data can be shared, then a change In the state of a 

mutable data object can affect arbitrarily many variables, so that the simplicity of the va·riable 

oriented viewpoint breaks down. 

In our approach, states are associated with data objects as well as with variables. A 



mutabll' data object is modeled as a featureless token, whkh serves to identify the object. The 

assignment statements. The system state fulKtion maps:."',h ~.m irl~,~ current data Jta~ 
~ ' ~ • ~ < ' • - -

For most mutable data abstractions all of the interesting propfflies of a mutable data object 
\'.)~:;:.,,_ .. ~~- ";ij-} i5 

other than its idmtity are subject to change. and are represented l,y the data state associated 

with the object by the currmt. system. state. fu~ion.. ,;~. • ~ a data;.-.~ - a .given t~ 
• .- ' • ◄ ' ; '. -· - - ,_ ,• • • ' -· 

can be affected by the primitjve Of>!!:ations of J~. type. . 
-~ , . - , ~ ' ' 

By introducing an extra level of Jndj~ Jn q1r ~ • . we. achie~ lof.alizcd. 
.., • - • }- t • , - ·- ' - •' • ' ' 

descriptions of opt>rations that modify ~en:t.~_lly s,,r,ct.~1,~· Jf~~-•ir~ltles share the iatlW· 

data object, then they ~emn the same tok~ •. a,~ •~l c~!-"C~tiq ~,~ stfte . .of ~hat-~ will 
~ :·' ·•·· / . ·- ; . . • - ~ -~- - ¥ • : : '. > • ~ ·-J~ . ' ;; . 

be reflected in both variables. t\fter such a state ~n~.both vari1l)les retai~ their orig•I 
. ,f'C ~,- ;' -~-~- .-;._-Q .. _a•. ,•. _,_,,. 

values, since the identity of the !~~red data e>b,jeq ~ ,~ ,~!·:'"",,!'14·~. of. the 

shared object are different in the MW state. 

8.1.2 Behavioral Bquivalenee 

The con,cept °1: l>ehavior~I t<fiiVa~,~}~ls is~_l,~Jhfs ~kr. T~,~ ·. 

are behaviorally equivalfflt if every computition ~Its.in the~. l'1'~ion COl'.ldiUon in -
. ; (~ ~" .. -. ,, ' ,. •. ;-,,-c·} . ;;~t·: -- ; ~' ::rf~---f"e, . 'l. • ., ·4 - • -

both models, and if any computa~ion,wtth a_~~~-~ .J.~t,t~~~,,,value in botll 

modeft. This ror~I chara~e~•iiation of t~. ex~~IIJ,1~,y~~-~-~~yiot 9f .a ~,J,,"5. 

intu,!~ivefy satisfying, s~nce it says that nvo models ~~e ~YifpfA\fJ,.-,1~~ Jf.-l~J Jaave the 

same externany observable properties. The charaaerization is alsQ ~uJ -~ tt,a.UOW• ~. to 

compare models with quite different i,ntern~l .structures. We ~ve ~,x-.~.onlJJbe.names or 
. '. • ! ~ , :. . ~ ,.. . \ }i •' •' , . , "• 4 • _. ,' ' • 

termination conditions and boolean values to apply our definition of behavioral equivalence. 
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The representation of the objects of all other types is not explicitly mentioned, and can be 

different in the two models to be compared. System state functions are never explicitly 

compared, and it does not matter whether a model has a phylum of system states or not. It is 

quite possible for a state machine model (with system states) to be behaviorally equivalent to an 

exception algebra model (without system states). 

An implementation of a data abstraction is correct if and only if it is behaviorally 

equivalf'nt to the standard model of the abstraction. We feel that this definition of correctness 

with respect to an abstract model specification is the right one to use, because it reduces to the 

classical one (existence of a homomorphism) for the case where both the standard model an~ 

the implementation model are static (see theorems 4 and 7), and because it applies also to 

dynamic models, whereas the classical criterion does not. 

8.1.3 Simulation Relations 

We have developed a method based on simulation relations for proving the 

behavioral equivalence of two models. The method can be used to prove the correctness of an 

implementation of a data abstraction with respect to an abstract model specification. The 

method is applicable to all models satisfying the assumptions set down at the beginning of this 

work, but it is most useful in the case where bath models are dynamic. Simpler methods based 

on correspondence functions and homomorphisms are available for the cases where one or both 

models are static, as described in Chapter 5. Simulation relations and correspondence functions 

were introduced because it was found that homomorphisms do not suffice for dynamic models. 

A simulation relation describes the relation that must hold between the representations 

and data states of corresponding objects in the Implementation and standard models in order 



for the externally obSE'rvabk- bl'hav'tor of th~ objects th be~the same. To show that two models 

a~ behaviorally equivafmt, a simulation relation ts explidtty constructed, and It is establi~hed 

that tftt .. sttnulirtio,r rtladori holds for aff r~cfaable sijtes by induction over all computati~ 

~tttncet. To· estabttsh 'behavioral equi'vafenc~. the _;simulati6n . r~lation. must,, imply that 

. , _ · . , 1,; ,- , -.. , . :t--.. . ., : 

corresponding operations on corresponding objettf result in the same termination conditions 

and boolt'ffl values. The shnulation~tion riiust also be stron{enough to establish all of the 

propemts of.the inputs that the' operations depend on, so 'that the induction, wllf go\tmmgh. 

Simulation · relations are d~ In terms of. t~ correspondence relation .,., which 

relates t-he identities of tormpondlng data objeeU in tHe~· models. , .. ls defined in terms of 

the comptttatian ,eqttfftct, bJ' saying ri,at t~ rl"sult~ of corr'ei'~ing' st~s o(i~e compUtatton' 

, • • > ~ • '- • • • ,f > ~ u,• : -{, -~~ • .' • , {J~ •' 

in the two models are related by '"+. Since 'thetbk'ens of a dynamk model are anonymous, and 

since operations that create new data objects result in. token.s _ unr#3t~ t9 previ~y knowa_ 
+~ - . ~ ) " ; , !_ . ! , _, .~ _.: ,-r .;; .- : r ~ -- .:._ 

tokms, the only generally applicable method for establishing the correspondence is to appeal to 

the history of thf computation; A simulation relation -his ·:tlle same purpose as a 

homomorphtsrn, but it cannot be defined as a function in 'the dynamie case because of the~ 

dependence on\•the hittory:of c~,ternputatien:·. m the statifca~:·a simulation rPlatlon would 

require that "Objttts rffctted by.,. are ttomomorphk tmlfge, but sinc:e;tttere is no'nttd to separate 

the identity of an t>bject rrom·tt» pr.,.des int~ sfatic ttie, the homomorphism can·be used In. 

the proof dtrectly, without tntred~ing-tM +. relation. 
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8.1.4 Proving Theorems about Data Abstractions 

In the main body of this work we have concentrated on proving the correctness or an 

implementation of a data abstraction with respect to a standard model specification. This is 

only half of the process required to verify programs that use data abstractions. The other half 

of the process involves proving that the invocations of the operations of a data abstraction in a 

program written ming the abstraction have the specified effect. 

The intended behavior of a program is typically described by giving assertions 

expressing the relations that must hold between the data objects manipulated by the program at 

various points in its execution. For programs that use data abstractions, the assertions will be 

written in terms of the primitive operations of the abstraction. For dynamic abstractions, the 

system state must be explicitly included in the assertions, so that the operations can be treated as 

functions, and used without regard for the context in which they appear (i.e., there are no side 

effects m the assertion language). 

The problem of showing that a program satisfies its assertions can be reduced to the 

problem of proving theorems about the data abstractions it uses, by using an axiomatic 

definition of the control constructs of the programming language to eliminate the program texts 

from the correctness requirements. The theorems derived from the annotated program texts, 

which must be proved in order to establish its correctness. are called verification conditions. 

The process of deriving the verification conditions from an annotated program text has been 

extensively treated in the literature on program verification for the case where the data 

abstractions used by the program are well understood domains such as the integers. The 

process is not significantly affected by the introduction of static user defined data abstractions. 
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The introduction of dJftamic absttmlonl tal~ tlie problem' of tntioducing symboli~ name~ f~ 

the intermediate system states, which a~e imp~lt in. tile p_r~~" trxt
1 
~.~ whh;h are required in 

the assertions. · This process will require a ~w --~"'l~s,.<1, t~~ pi;ogram., Prev~$ l!Wrk •°" 
automatic verification of programs opera~ing on mutable ~ta [~. l2l ~s not ~plidtly 

introduced states Into assertions, avoi~ipg this bsu~'. __ W9Mle we:.~~e:Jl~ ~v~g~,the 
- ' '• •• < • ·: •~ ' • , . • : • ' e' . ~- I 

problem in detail, we foresee no ~sen,ial di~f~~~Y., in)~~~t'&,v~U~~. ~Jtiofl~for 

programs that use mutab~ data abstractions. 

specification prest>nts no meth~olog~I P.r~_ alt~~-Ju.c,~•.any bl~ing ·data 
' - , . ; : 1.' _·_ ; : < • ' - , • 

domain has theorems which are ~ard,. to prove. It _i,~,-~.f~t tQ p~eJbe,,~~r$tiQOS of 

the verification conditions in the sta11d~rd _!l)Od~ o{Jlle. ,dJta ,~.,~-~~ b,r thtq>rogr:~ .. 
•.· ·;_ .- ,.- • .- ,' .f ,. ,- - • 

since behavioral equiva~e gua~antefS_ t!tat, ~.H ~, t~ g~~' ~--~poseq. f~,~ 
" 1';::c ~ ~ • - • 

primitive operations of the abstraction wiR have the same truth ~~"in:,~h Jhe.~ndar4,_ 

model and ,any behav!«aUy equivalept impJem.emat~ -~'~ d~iJ,\C,- qua~Qcn can be 
,- ' -- :;,: '., - - ·. • • ~ •-, . • • i ., .· ,-:, . I • 

restricted to range over only the c~tfb~ ob~s ,9if .-~ da~ ,1>sta;a~ ~avJofal. 
< ; • , ; '. ' • ''. ~ ' a < • - • • ~ • ' .. ••• 

8.1.fi Computatton · inctuotlon 

In doing the proofs of correctnest of imp~~t~ _ itJ .CJtiilpter ~ we have used .~ 

form of computation indu~tion to establish that the s~t~.rell.U41n.a.>kls for aff .. (reacNble)-. 
•: '" .,_ a • ~ , • 

objects and states of an abstraction. Thi$ tech11,ique is usef1JI for p~ving.propmies of dynamic 

data abstractions, and ~forn,s the same fun9t~.a~ the Je..-.- ~~;po~ ,{or .. ,$latic data· 
. . ,, - . . . 

abstractions. There are two essential differences between the two kinds of induction. 
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The generator induction rule requires us to show Jhat all of the operations of a data 
_j ~ .' -~ "-;. f'j,_ > at > 

abstraction preserve tht' property to be proved. To prove a property of the data abstraction d 

using the C:OfffplttatiQ:n induction rule,, we JmJSl,·lhowt,lhjif ~ eperatkms of any mutable 

abstr~(:tion subordinate to,d prese,ve the propfflf, iffiaddltfOtttofhe u,eratton-s of d. This is 

~euary because the operi.tions·of: theJUUtafijl,sllbonllhilte.tJptt'«ian <:ause state transitlons 

Up~t tan affect the t-r\Jth of an at$ffliolt.,invoh"inr objectfllf 1ype-,tt4sttChaptet 5). 

The generator induction rule requim m ta &ttow-thafftte d>ject.s l'~tumro by each 

operauon satisfy the property. we are trJfng te· prow. The' cerqputMiOn -ihductl6n rule also 

reqyires us to show- that all of the values, 1'esu1ting·:.ftomfldf q>fration-Uttif.y·the PNJfM'rty iwe' 

a.re trying to prove. including the new ,ystem"Slate<fuftctton that ts -an' imp1iclf tesuk or each 

operation :()f a state machine. Since .the system state ftmdion ,dM(ftbes 0ttre ·cur~t states of alt 

Qf:1the- data objects in--the s.ystem, WP haft te·shew t-hatiltM!1y.,ropertf• are trying to prove 

bolds in the- new,is,ystmt state for ,all daa objects, ad wet flllffW1ffie'data' objects thlit'· we,ec· 

passed as. arguments- to the-i0,peration or ,that Wtf'e. 1'tft.1111W0·1S -re1Utts:, 11'tlis ·is wetes~ry bttau~' 

an .. oper.atioo can cause :State ckanees'in obj«ti thati'wtlt~ passed;-'ls argtnn8th; but whldt 

att ;ffll<:hable.from tbe . .arguments: 

8.2 Algebraic vs. Abstract Model Speolfioatlons 
~ ,·;i"'t L ; 

-' In this sett-ion we potntout some of the relationf~ ttte:absttacfmodet and the 

a~braic-spec:ification techntques,,and-presentamttcaftf,mptth<Mt'bet1fffll'thetwd·techritijues. 
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8.2.1 Relation of the Techniques 

The algebr~jc ~ lhe ••ra,tJlllOdtl:ttchmqlla;a,e·bo&ft.1QJfKlfflled0:wtfh specifying 

the britavio.r; of a. data abltr~. and hence ,bgh, a,.,.....,.· with1•tM,~·•·t1ns ·'Of 

mathematkal s«ructures. a~h :lheff a,e .$1tpt, eedmkal dittWMa!S Hf tM' way in· whtdt 

different researcher$ ®ftntcJcl:te c:Jau; Thefe,-are,smnt,_.MCJW111~ 're1atmg 11n ,aipbratt 

specification tQ.t-.e class of model& satisfying die ,peci,ficatton. 

One- of the mai,n algebrak results. ,.n~·• the alpbrak sipedf'lcation techn~ {9) 

u .a unifon~ constructjoo (If a oROllkal ~ f«,&IIJ· ..._.d•tion~tftf :of a ·set of 

equations. where the expressions OR ,IN,th.,sides :ef',:ftdt· equation are. compaMd from the, 

operations of the data· ~IHtl!aaion. The rnodn .making, from this, censtructk>A ,is •a quotient 

struct,yre; whose elemcRts are 4N1Uinlence ·daiset. af••pnsskln~;where ·two ~xpressiortS: •~· 

equi.vaJent if one. t1 , derivable: r,-,. die otMr ff'Odt the- aXiDIM, itli cfinitety ""'ffif" sttips. This 

theo{em esta.bijs~s a cor,n~tion bdW'ffn .the proaf thtorJ of an: alpbfail' spectfkati6n and an: 

aJst>braic RlQCU:I fo,,:.the ip('tifted al>str~ioP. Tile itheermndlows,as to :vieW an -atpbrak! 

specification as a prescription for constructing a standard modelfor:;t..,.datai abstraction.ffl,ltff: 

specified, so that an algebraic specification can be considered either as an a,ciomatization or •~

the definition of a standard model. 

Another important algebraic res.uk is that thf, ~l model constructed as 

described above is .aninilial algebr,1 -jlltht .c.ateg_ory ef,aljd,fas ...,.,..;the axionls '91 which 

means that there is a homomorphism from the initial algebra to any other algebra in the 

catt>gory. In view of theorem 7, and ttie existence of the homomorphisms guaranteed by the 

initiality property, all of the elements of the category are behaviorally equivalent to the initial 



algebra. In view of theorem 4. if the in,tial algebra is reduced, then there is a homomorphism 

from the initial algebra to every other algebra behaviorally equivalent to it, so that the whole 

category is an equivalence class with respect to behavioral equivalence. If we restrict ourselves 

to static abstractiom and to axiomatizations that define a reduced canonical model, then the set 

of all models satisfying the axioms is the same as the set of all models behaviorally equivalent to 

the canonical model, and our definition of correctness agrees with those used in the· axiomatic 
.. 

approaches (37, 10, 9). For the case where the canonical model defined by the axioms is not 

reduced, there is a lack of agreement on the proper definition of the set of implementations 

consistent with an algebraic specification (12, 9, 221 

8 .2 .2 Criti.cal Comparison 

The criteria for evaluating specification techniques given in (31) are: (I) formality, (2) 

r . , , ~, , 

constructibility, (3) comprehensibility, (-f) minimality, (5) range of applicability, and (6) 

extensibility. 

Both the algebraic technique and the abstract model technique as developed in this 

work are sufficiently formal, since both techniques have been given mathematical definitions . 
. , :;_ '. - • . . ':·t'i-1~;-' ',: 

Both techniques result in minimal specifications. It has often been (incorrectly) said 

that abstract model specifications are not minimal, because the model may have irrelevant 

characteristics. As our definition of C(!rrectness mustrates, only those properties of a mod~I that 

are externally observable in terms of the operations of the abstraction are relevant, and those 

properties must be defined by any complete specification. Neither abstract model specifications 

nor algebraic specifications constrain either the representation structure or the algorithms that 

may be used by an · implementation, as long as the externally observable behavior of the 
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abstraction is rttalized. 

From a less formal point of view, it could be arg~ that the abstract repre~ntation ts 

not directly observablr. in terms of thtt opE"ration~ available to t~ user
1 

~f ,\~e, ,abs~raction, an~ 
j 

that this introduces thtt burden of keeping track of which details are directly obse~vab~, ~an~ 
. ';.;- -~ ' , '• "° ·. r -~ •"•;''. ~it~~~ it .';,-. >d ·;~- . ~ •.J; •,, : 

which details are not. The axiomatic approach has advantages with res~t to t~is criter~. 
-,ni•ti 

since there is no explicit mention of the representation. · 1t has been shown [52) that there are 

abstractions that c;1nnot be axiomatized without introducing auxiliary functions. Since the 
-!'-J ,:•...: ••~ , r • '(1 ::• •: ~ • t 

auxiliary functions also compute values that are not directly observable in terms of the 

operations, axiomatic specifications can also have details that nttd not appear in an 

implefflt'fltation. 

Another argument that has bt-f>n used to suggest that abstract model specifications are 
I ·; y-·; ~- ' . ·• ' 

not minimal is that the abstract representation tends to sugJest an trnplemmtat~on. Thb is 
, • • ' ' ~ ::. • • • • ':: /;; . I. ! . ;• . ' 

possible, but concern with issues of time and space eff1eiency often requires that, the 

representation used in an implementation differ significantly from the, representation uSt'd in 
' '- 1-..t • • - ,, r · · 

the standard model, which is usually the simplest structure that wiH exhibit the des;red 
,••--½ .-: •'' C ' '•• 

behavior. The abstract representation is often defined in terms of mathematical stru~tures not 
' . - , . : : '. ~ / :·~:.; • ~-•. t . '"''t- ),.-

directly supported by the host programming language, so that in many cases. it is not possible to • 
. -~~-. - t.,·, ·: .~--,-$,: - ·: -~~-.: ;· ; /. •,--- _; ~ :. !~ 

use the specification structure in the implementation. 

At the time of this writing, the abstract model technique has a clear advantage with 
rH -- ~ -__ ~ · . 

respect to range or applicability over the algebraic specification technique, since it treats shared 
,- *"' 

mutable data while the algebraic .technique does not. We expect this advantage to be a 

temporary one, which will disappear as further research extends axiomatic specifications to 

apply to this domain also. 
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We have found abstract model specifications significantly easier to construct a.nd to 

understand than algebraic specifications. This is a subjective impression based on our own 

experience, and we urge the reader to try both techniques and to form his or he_r own opinion. 
t ~ , ' 

We conjecture that part of the rt'ason for our experience is that the set of data objects ~s 
.--: . ;• 

explicitly described by an abstract model specification, while it is implicitly defined by the 
:. ':';~ '. .,~ :.~-.;, ~ ~ 

interaction of a potentially large number of axioms in the algebraic technique. The result is 
'~ !', ,., ~ , :. . ' 

that the operations can often be understood and defintd one at a time and based _on fairly local 

considerations when ming the abstract model technique, whereas th~ interac!ions between a 
:·-t ,·1 :· i ·~ :,_'ti, ': ' 

number of operations must be considert'd in the algt'braic approach, requiring a more global 
~ J ·'" : . ' ~'..• : ~ 1 -~ • ~-:-'. < ';·:, '; 

analysis. 

We have found that abstract model sp«ificaUons are significantly easier to modify 

than algebraic spt>cifications, especially in the case where the meaning of one operation •~ 

changed but the meaning of the abstract representation is not changed, because only the 
) ~ 

operation that ts changed need be considered. In an algebraic specification, every axiom that 
. ' . . : .. 

mentions the e>peration that was changed must be reexamined, and usually each operation is 
• < ~- .f". • ' : ., ', • 

mentioned in more than one axiom. The effort of extending the specification of an abstraction 

by adding a new operation is roughly the same as that required to define an operation in the 

initial design, and again we have found that the process is easier using the abstract model 
} . - . ,' ,.-'.: ; .... ,, ,, 

technique. 

An algebraic specification can also be viewed as the definition of an abstract model 
. . ~' : ' ., ~ . . ") 

whose representation is the word algebra, containing all of. the. expression that can be 

c~nstructed from the names of the primitive operations. For abstractions whose operaUons are 
. • 1 . " 

relatively easy to define using this representation (i.e., syntax. trE"es), the algebraic specihcati~s 
" t ~ ' • ' . ' ' . 



-148-

are relatively simp~. whUe for other abstractions th,-OJ>eraUoQs may be quite a,vkward to define 
- .. ;;_" 

using this representation, and an abstract model using a representation algebra ,with a 

sigrilficantly different'° structure may be much simpler than the corresponding algebraic 
; . •\; 

! ;· 

specification. from this point of view, the abstract model t«hniqUe is easier to use sJmply 
: . ~ , -_, 

because it offers a widtt choice of representation structures to start from. By using the fixpoint 
; . ~ , . ""' ' ;: 

construction to defi~e a represmt~i~ doma~ ~ s;;.tax ~~ 1(1s a~ays ~ible to define an 

abstract model with essentially the same structure u any given algebraic definition. 

Another criterion for judging a speciftcation technique is the. relative difficulty of 

checking whether a· given specification is well formed. If we are interested in using 

specifications in the design process, it is helpful for the process of constructing the specifications 

~ r ~ 

to poi~t out inconsistencies in the design, or at Inst to make them easier to find. We would like 

iH f~rmed specifications to be easy to r«ognize. 

To check that an abstract model specification is weR formed it is necessary to 'check 

~ J,_· • • ?• ~' .'. - ~, ' '• .· ,• .... :, . , 

that the operations are well defined functions, and that the operations presttve the constraints 

adopted when defining the model. For each operation, it is necessary to check that the results 
'• - f_ :3>1L '. -

of the operation satisfy the invariant relation specified by the restrictions section of the. 

specification. It·, is also necessary to check that each operaUon wiU y~ld equivalent results when 
~ · t! •. ,.', •. ·,,{-. > ~~ ".-_- n ·.~j ;~ ·=-. f :•-,! i~ ·-: ·: 

C -;_ H: ;,_. ,·;..~ :-;;"tJ ' ,_..,., . ~ -

applied to either of two data objects related by the equivalence relation defined by the Identity 

st'Ction of the specification. These properties are fairly easy to check informally. and they are 

generally not too difficuk to prove rigorously. It is also usually fairly straightforward to check 
·iC!tW ;-1 •c:- •. 

that the operations are ddinl'd f~ all inputs, and. resuk tn unique values. It is necesury to 

show 'th.at· eath in~ocatkm of an operation that.~n ~ise 'an ~x.ion will terminate in the 

expected termination condition, and that each recu,.;ive d41finitioft and .. each iota expression (see 
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Chapter 1) is well founded Showing that a recursive function terminates is undecidable in the 

general case, but that seems to have little practical significance. In cases where something is 

wrong with the design, the designer will usually be unable to produce a function definition that 

even appears to be well formed. 

In the algebraic approach, there is no analog to the data invariant, and the 

equivalence is guarantred to be consistent with the operat.ions by construction (of the canonical 

model). If an attempt is made to define an operation that attempts to produce different value 

for expremons represent mg equivalent abstract objects, then the result will be an inconsistent 

axiomatiz.ation, where the multiple values are redefined to be equivalent. In such a case the 

subordinate types of the canonical model often collaps~ into singleton sets. Incomplete 

definitions introduce extra data objects into the subordinate types, which are produced by 

expressions that cannot be reduced to bona fide elements of the subordinate types by the 

axiomatic definition. Rather than leading to an easily recognized failure, the algebraic 

technique will typically redefine the previously defined types in cases where the basic design is 

flawed. 

Determining whether a given axiomatization is complete and consistent is generally 

acknowledged to be a difficult problem in modern mathematics, and there does not seem to be 

any straightforward procedure for checking the well formedness of an axiomatization. There 

are mechanical procedures for checking whether an axiomatization is complete and consistent 

that apply in restricted cases (the general problem is undecidable), but it is not clear whether 

these procedures can be used as practical aids in the design process. 

An advantage of algrbraic specifications is that fairly powerful automatic theorem 

provers for algebraically defined data abstractions have been developed. This advantage Is 



,. 
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probably abo temporar,y, pmding the devttfopmmt of good domain specific tht"Orem provers for 

the domams u~ to construct ·ll'andafd mod~f speclfacatkJns .. F~ 'the d~ain of static' data 

amtracttons. it is possib~ to d~itte an absthid mtdtt' ustng .. ~~I axioms, by introducing 

an auxiliary operation that maps an object of the representation •'ebr~;i,nto the abstract object 

it represents (cf. Hoaffs.abstraction functioo, 03»:'such.an .~.:.mch ~ik»w~ ~'~~~ advantage 

of . kflOWll fJRlpffliff of the mod'ettng d~m. and ilso' of' existing theorem provers for 

~.aUonaf axiomatu-.ions;, lr'·fllffen from· the disadvantage of not being im~iately 

appljQbJe- to•mtltab~ dat'a abstractions .. 

In- our opintoh- libstract modl!I specitibtion~ are dearly superior to algebraic 
' j. -

specificatiOns for,th~puq,ose ef desiptttg ptogtarm. the' algebra1e specification. technique has 

advantages for -dtt- purpose of proririg ·ttte tor~s ci prog~~ at ~~ cu~r~t t~me •. ~ince it 

• ' ' ? - ' :' ; ', ~·- _j ~ f 

~ been more extfflSivety ·c:re1v~; but we feel that a ·1ong term advantage has not been 

8 .3 Directions for Future Research 

One illterestmg question that has'bttn' raised but not resolved by the current work is 

wht'ther or not alKtract modtot sp«:ifkattons'•rt- better tftan axiontatk specifications with respect 

t0cpr.ogram vertficahon. Since theabstract representatiorn,r'each data ty'pe must be considered 

when Using ,abstract model sptcifkations, and need not be cotisidered when using axiomatic 

specifications." a naive analysis would indicate that pre)C)fs with . respect · to abstract; model, 

specifications are more complicated than the comspondlng proofs with respect to axiomatic 

specification,. bam:l on the sheer volume of detail robe expected. Hfflnr, tn the proofs we 

have dQJU! (,:nanuatty). we have;found thatknowRpn:,pffliei ('.jft~'fucxleting domain can often 
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be carried over to the abstract domain, leading to short and simple arguments. This 

phenomenon may have an analog for mechanical theorem provers, since special purpose 

theorem provers designed for the particular modeling domains used in constructing abstract 

models may be more efficient and more powerful than a general purpose theorem prover that 

must work with arbitrary axiomatizations. 

If proofs of correctness are to be used for certifying software, then it is necessary to 

develop mechanical proof checking procedures, because proofs developed manually are at least 

as susceptible to errors as programs written by people. While a completely automated theorem 

proving facility would be nice to have, it looks likely that in a practical system the theorem 

prover will need human guidance, perhaps in the form of an informal outline of a proof, which 

the mechanical procedure tries to augment until it either discovers a formal proof or an error. 

Our experience with proofs in terms of abstract model specifications indicates that an 

intuitive understanding of the model derived from familiarity with the underlying modeling 

domain often acts as a valuable guide to discovering a successful proof strategy. For a,ciomatic 

specifications this intuition is often lacking, and the process of trying to construct a proof 

degenerates into fairly blind symbol manipulation and syntax directed searching more often 

than for abstract model specifications. If the theorem pPover must rely on human guidance, 

then the ease of finding intuitive insights can be an important consideration. We also 

conjecture that the extra structure provided by the abstract model is useful in constructing . 

heuristics to guide the search strategy of a completely automated theorem prover. 

In order to settle these questions, special purpose theorem provers oriented to the 

modeling dom;iins used in ahm;ict model sp£'cifications should bt constructed and integrated 

into a program verification system. 
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Another question that is of interest is the extension of the framework developed here 
. .. ' 

to incorporate nondeterminism and partial opera~ions. Both of these extensions require a 

refinement of the idea of bmavioral equivalence. 

If the operations of a data abstraction can be nondeterministic, then a computation no 
. '\. .::-. ;, h . r , 

longer has a unique value, but rather a set of possible values. Strict equivalence of the 

behavior of two models would require that the set of possible results of a computation be the 

same in both models. Since a more deterministic implementation of a nond~erminbt~ 

operation is presumably correct if it always exhibits one of the possible behaviors for the 
' . "- . ' ~ 

+ : ·, '. 

standard model, an approximation relation that requires the set of possible resu~s for the 

implementation to be a subst"t of the set of possible results for the standard model is a ~' 

appropriate mtttric for the correctness of an implementation, provided that the set o~ possible 
•• ; < '; • ~~ '!- ~ ,, .,; ·-_ 

results is neve·r empty. 

Some abstractions have potentially useful operations that are inherently pa,rUal 
~ ~ ~, . -

f~:nctions. O~e e~ample is the domain of txpressions for a Turing complete programmi~. 
' •.• i'.• ·,. ' .· . ' 

language, with an operation for evaluating expressions. In order to de~!'°P a model for such a. 
-~- :.:,•·- ; · ,i·.: ~}~!i:~ r - · • .. · 't 

structure, some sort of provision has to be made for cases in whkh the operations do not 
. '< ~ 

terminate. The impact of such an exttnsion on the rat of the theory should be investigated. 
,:,__ ., ! ; , ·'- -- ""'· 
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1. Partial Ope~ations · 

functions, since there may be circumstances under whi~h they do n.otJer,:nin~te., ,We ~UI -i:ecu,aire 
- ~ -- . ' ' . ' - '··1' -

the operations of a data abstraction to be total, because w~ feel,tti.at it is ba<i .progr1-mmmg 
~ ·, : ; ? . - - - ' . ' . . 

practice to design abstractions with primitive operations tflat may faitt9 t~r~nat~. Soqle. .r:e~ 
_ " , • · • • 1 t ·; ~ '· -1 '\. '. "'< ~ ' ·-,. " • • • -

work on specifying data abstractions with partial operati9"S can.~ found ir;J (27]. 
~ ; ~ ~ ': ' - ~ ' --- . /' . ' . '' . ' . 

Many data abstractions have operations that ~ke sense,only Jqr:_ ~ prop~r sub.:t 
• , . • ~ ' .. ! ' _ / "_,. ; : "" -~l ': . , f .. ' •- ' - ·• -

of the input domain (ie. dividing by zero is not well de(ined). If .an. operation iJ invoked with 
_ ;,. , -: a:~, - , 'i'J", ~!; _ f,L;, •~:: ·-- - . 

arguments that are outside its natural domain of definitic:in, the ~tion ,,,~kl tfrminattt by 
~ ~ . . . , r - , . ,_. ··: \ ., ·•;i; ~. , - ,: . w 

raising an exception, to indicate that something unusual has happen,ci .. .The reader sboulc;l 
, . -: :·-" . ~ . ·: . ... ~ - - t ,'_ . ,., , ' ".:! . ' 

note that it is possible to transform a compt~table p~rUal ru,~~tim,J, i_f!l~, a ~Ofll,Putab~ ~I, 
. .: - ·.. ',' .:'. - .I-; 

recursive set An interpreter for any :rurinrc~~-f~~}~~~u~z~t~~\a :~~rnai",_,of d~fi.oiUon tb!lt 

is not recursive (otherwise the halting problem would be ded,dab~). ~~~trat,.n; ~hat .t~ertr 
, •, ,'"},•~: - '._-•',,-,;.• ;·-.:{~✓ (;-f:":~1~sf>,·,;, "• ..... ,., • • -

are interesting functions that cannot be made t~ ,satisfr ~r r~stri_ctiort;.. ,~i,.rt~a! recursJ.ve 
., . t . _'; - ; ;-, ~ - 1' s. ; -1 ! . .. 1t..: • • 

procedures that compute such functions can of course be defined in terms of. the primitive 
' . . ' ~ . --. ' ~ -~ . ' 

operations of a suitable data abstraction, but we do not allow them to be included as primltiv~ 
i ·, • • • ' ~ • : _\'1 ,, --; • 

operations of the abstraction. 



- IM -

2. Nondeterhiintstlo Operation«. 

We would like to distingujsh· bttwttr1 · par~r - ,pntfial aphat.,_ afid 

nondetl'rministic operations. A. partially specified operation is defined only for some proper 
: ~·. ! ; ' ·, • '..-. I , :.• "' - •~ ~ ~ ;;-" ; 

subset flf' its'mput type, amt' prnuma'blythe designer
0

d~ ~ care what the operation does if it 
) .., ,, . --~ ; ' ~-. ;; ! ' 

is 'ptesenrect With an · input outside~ of that· subset. We feel that tt is bad design practise to 
,. 

!.. l ..._ ) 

produce: spmflcations of this type, because or" the possibility of undetected errors in the use of 
'i'. ,t··: . ·• ·, : ~: ' _:·t~) ~ ~ ~.;~ ... ~ ,· t 

,~ abstraction. The only caR in ~hich 'we.truly- do not' care what an operation does on a 

certain input is jf. we know th~t it wirt ~ever be ~tied ';ith that ~pu;.. -~ ~~II des~ned. data 
-::, ,_;•_::;: :,·· ,,~;f·t~,~.:' h':rL 

abstraction shouf<I rafse an ex~q>tion ,c,; ali ln~ts 
0

for which no normal response Is specif~. so 

that attempts to use the •ration outside of its domain of validity will not pass undetected. 

Data abstractions with nondeterministic operations are potentiaHy Interesting, but are 
'' . ~,_ 1 !'ft·~!i ''< ."··,·.' ~•--

not treat«! In the main bocffot this work. An operation ·can be described by an i~put~tput 
/'.i 

tetltion R, Which re1~tes the inputs of an operatiOn to the legal output values for those inpuu._ 

' ~.,. - '. ~ ,- '! ! _. ,.1,· ' 'II~, . .,, -~~}-J.. !'f, 

for a cfete'rministic operation, such a relation is single valued, and is In fact an ordinary 

f ".;,;·· 

function. Some operations are most naturally d.escribed by relations that are not single valued: 
: --h:'..J_'~-- ;.··":~·-' ;~; :--. ··,·.., ,_,l_'-,i' ~· •: 

the programmer wants the operation to satisfy certain criteria (eg. the relation R), and does not 

care if t'here' is a unique resuk. or which valid resuk is actually chosen, if there is more than one 

,' 

valid choice.· We do not recommend introducing extra constraints with the sole purpose of 

r~tricttng R to the point where it becomes a function. Such constraints complicate the 

specification by introducing irre~vant details, and also may exclude some of the simplest and 

most f'fftcient implementations, whkh would be perfectly acceptable without the artificial 
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A non functional input-output relation R, is consist~nt with,~ wf:a~l_e ~lass of operations. 

some of which are deterministic, and some of which are not. The reader should note that it is 

quire possible to imp1emcnt a data abstraction with nondeterministic 'op~tat1ons on a 

deterministic machine, because an abstract data object need ')ot have a_ unigue ,representation in 
. - • --: : ~ ~ .1 ' : 1" • " 

the implementation. For example, consider the data abstraction consist~ng .of the finite .sets,Qf 
·. . . ' ' } 

natural numbers, together with the usual set theoretic aperations, and a cl,,o~ut operation. T~C! 
- t .c ~ c" ·, - ➔ ,: ~."' , I· ' " , 

clioou operation returns an element of a given set if the set is nonempty, and r~is~~ a,n.,e~CfphQn 

otherwise. It is not specified which element of the set is to be chosen if 0,ere is more than one. 
;, o•• ', ~ - C :::: ', ' a • : 

Abstract sets are immutable, and two sets are equal if and only if t,hey t.,~ve the same elements. 
• • : J ~. ; ' ' ' - ' '. ~ • ..., ~"' 

In an implementation, sets might be represented as linked .lists, an<! tile c~QOst ~ra,toll n,tight 
. . ·,; ,·: " ·'"; ' - '~ ~ -

return the first element in the list: Howev~r., sine~ ~~ere ,r: ~~l;~iffe,r,e~,t. r:epr~~ntations for. 
• C • • I, •. • 1 ' 

the sattie set, with the elements stored in different orders, the clioost operation ~ppear~ .. tp.. ~·

nondeterministic when viewed as an operation on abstract sets. 
; f... •. '.: '--1.· • <,: ·,. :!, ~ :''!:-~ 17:! < 

We know of no work that has been done on specifyi11g data abstracti.ons with 

nondeterministic operations. Some work, on_ specifying nond,~erm!~istic ~ra,ttons in ter!"s of 
• -, .,-~ '. • : ?' . • '-"; l • ; ' <:, ,· ' 1 • .·': ~- -'. 

relations is reported in [3il 

3. Conc~rreno~ 

Concurrent access to data objects by parallel processes is an interesting. subject that is 

beyond the scope of this Thesis. It is profitable to consider parallel processing in .the conte.xt.~ 
•~ ' ' ' I 

data abstractions {20, 16, 6, 38, 2i] because processes need to be synchrOJ!ized only if they 
; ~ ·-, i ·i ' ~ ' - .. ; . . . 

operate on shared data. Even though a quite a bit of work, has been d~e _in this area, the 

issues involved in specifying the correctness of a data abstraction in the presence of concurrent 
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mutation of data objects are not yet well understood. 

4. Exceptions 

Since there is no generaliy a~ed model or exceptions and exception handling, we 
' ' . ; f ~ 

have chosen a point of view th~t simplifies the interface presented by an operation, and whkh 

helps to separate the externally' visible behavior of an operation from the internal processes that 

produce that beltavior. 

We a·ssume that an operation terminal~ whenever tt raises an exception. Thus an 
+'\·: f- • -r ; I ._:-., ·1 ~ - ~ 'I ; : 1 ; '. 

operation may termin~t; 1n·any one of a' number of conditions, one of which ts normal and the 

mt of which ire extq,tionat. In general, the ·results ~ the opffltion In each condition will be 

. . . ..• ·.· ' . . . . . . .·. .:;1·-! . . : 
dtfferent, and mttsr ~ 'specffi~ (or all possible termination conditions tn a complete description 

of tht' operatbl. 

The alternative to our point of view is to alto~ an exception to cause some events, and 

then. to coi1tinue performing· the original operation at the point whtre it left off. This 

F 
alternative is not attractive because the separation between the specifications of an operation 

J;,r:; . . ,, . ,. 
and the details of its implementation breaks down. Given a specification of an operation that 

describes the results of the operation for the nonnal ttrmination cond'jCIM1 'ifflf 'glWs tttei:· 

conditions under which each exception occurs, and given a specification of an exceptk>n 

handler for each exception raised by the operation, we still do not have enough information to 

. ' 

predict the behavior of the operation in the context of the specified exception handlers. It is 

necessary to analyze the implementation of the operation with rnpect to the specifications of the 

exception handlers In order to determin, the effects of the operation. Since different 

invocations of the operation can occur in the contexts of different exception handlers. we cannot 
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treat an operation as a closed module if we ~dc,pt th,e. resumpti~ model of,exception handling. 
~, ~ ,,., __ , -. .,. f; .. ,.t - --;"~7' , ~ ). ,·• .. , .··· 

Exceptions are discussed further in Chapter 2. 

We assume that the operations of a data abstraction are funct~al. This mean~ .that 
,. .-. .,., . : .··., -! ·: , ~~:,:-•l• '",'. ::'"i~ _-,,,· :·:) ~ ,., ., 

an operation must not have any internal state, so that the resuks of an operation depend only 
~ . .- i ,_ ': : - . ! . I 

on the information contained in the data objects passed to t~ .~rat~on as arguments J'!llidt 
~ " :}~ :·. i . • . : ... •~. -"'~"tr;~-~-<~ '•.'..i·,~--~.;. ;)\ ;L ~~-;, _,;. - , . 

may include references to other objects). Data objects may themselves have states, so that wear,. 
"• ., ~. . -~\ : ., . : - .. · . - . ; ' ' 

not excluding the possibility that an operation may retur!' diff~rent results if _it is invoked wtth 
~ • • ': /_ ~ _,; "j • • .•_ ; ; ( t :~; .:• '• • • , •' :: ,•:;_ -:• ? C • < • 

the same arguments at two differtnt times. This restriction is meant to prohibit type managers 

(ie. SIMULA classes, -cLU dtisfers,- Ali>HARD forms, ·etc.) from ·1c.eq,tng mutable own data, 

which introduces a component of the state associated with the type as a whole, rather than with 

the individual data objects. This issue is discussed further in Section 3.2. 
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Appendix II' • Baslo T7pe Deflnltlons 

The definitions of the natural numbers and the integers are imporllf:ldilec.tlJ from. 

thl" underlying standard matMmatics. The definition of the natural number abstraction is 
,: ~{' . ': · q,,; ~: 1 

shown in Figure 24., As in the definition of set in Chapter .... the standard notations for 

. . 
natural numbers and integers are used in the definitions of the operations to refer ro the 

- . 
standard operations of the underlying mathematical domains, while the same notations are 

introduced as abbreviations for the operations of the e~~ion algebra. for use in the 

ddinttions of other modules. The only nonstandard, fea~re of this. definition of the natural 

Figure 24. Natural Numbers 

type nat as NN 

wtth 

representation 
restrictions 
Identity 

operations 

end nat 

constant[nl -+NN 
zero: -+NN 
successor: NN-+ NN 
plus: NN x NN-+ NN 
ttmE'S: NN xNN-+NN 
less: NN x NN -+ boolean 
equal: NN x NN -+ boolean 

natural numbffs N 
none 
natlequal 

constant[nX) • n 
zero()• 0 
successor(x) • O'(x) 
plus(x, y) • x + y 
fimes(x, y) • x f.• y 
Jess(x, y) • X < J 

•• n for n c N 
asO 
•• 0-(arg I) 
asargl+arg2 
•• argl<i erg 2 
u erg I< arg 2 
asargt-arg2 
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numbers is the mfinite parameterized family of constants. These operations ar~ intr~uced s,p 
. "_-,.. i ': .. 

that we can use the familiar decimal notation for natural numbers in our specification_ language, 

rather than having to build up each number from zero using the successor function, which 
~" ' ' , - ' ' 

quickly gets cumbersome. 

The definiflot\ of. the integers is shown in: Figure 25. lnt1!rr.a1so have an infinite 

supply of consr.tnt optt,ations. Note the conversion ~operatibns inttgtr an~ nn, which serve to 

convert integers _to natural numbers and YK.t versa. Tffe quotitnf and rt"laindtr operations 

have exception conditions in the cues where thl' standard mathematical definitions are 
t:. t 

u~defined. •._· The quotitltt ·operation rounds &;wir'trresf)Wtite of the st~n 1of its arguments, in 

agreement with the usual mathematical definition, and in contrast to the w~y divisiorp ~r~SJ!'., 
' 'c' " <1' • • ~ 

most programming languages (e.g., FORTRAN). 

The astute reader wil1 have noticed that we have omitted the definitions of th~ 

operations >, ;t:, ~. and ~. even though we have used thenhr&I} in tJte ~ification language. 

• . ·,1'· '.' 

The astute reader will also be able to supply the standard deti'ttitibns fo/ t~se operations, and 
).- < '.: • •• <" , 

is advised to do so. 

These types are inten«!lt'd fur ·use)n the specif'idtion tangu~ge. The corresponding 

types for a programming language should prdl>lbty 'be de~~ ~ift:erently, to include 
; ~·- .,, '. ' " ; ' ' 

limitations on \the sizes of the numbers, exception condition's f6r oses in• which those iize 
!c_ " 

limitations are exceeded, and additional operations for converting strings of decimal digits info 

numbers, and for printing out numbers. ~ 
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Figure 25. Integers 

type int as I 

with 

representation 
restrictions 
Identity 

operations 

en~ int 

constant[nl · -+ I 
integer: 
minus: 
plus: . 
difference: 
times: 

quotient 
remainder: 
abs: 
nn: 
less: 
equal: 

integers Z 
none 
intlequ.al 

nat-+I 
I-+ I 
lxJ-.+J 
lxl_.l 
lxl-+J 
I x I -+ I + (zero_divide : ) 
J XI_. l ♦. (zeio_cijvid,,Z,.), 

I-+ I 
I ·-::" na.t: + (wrongJip : ),: · 
I x I -+ boolean 
lxJ-+bo91tao 

constant[nX) • n 
integer(n) • ·" in Z . 
manus(x) - -~ 
difftren~l'(x. y) • x , J . 
tillll's{x, y) • x r) y 
quotimt(x, y) .. if y • 0 then {zero_divlde: ) 

as n for n < Z 

u - arg I 
..... ,., .... 2. 
as argl + arg2 
.......... 2 

aslargll 

aaargl<arg2 

,,418:···- -· 2 

el~ q : 3r( x • q • y + r & 0 :S r < abs(y) 1 
s:emainder(x~ y) .. if y ~ 0-then ~•ride t~ - · 

el~ r : 3q( x • q o y + r I: 0 :S r < abs(y) 1 
abs(x) '."Jf ~ <, O then~.,~ x . -. 
nn(x) "' if x < 0 thm (wrong_sign : ) else x In N 
fess(x, y) • x < y 
equal(x, y) .. x • y 
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Appendix Ill - 11.~oof~ 

An exception.alg~ra differs rrom a heterogeneous ~lgf1,;J ~defined in (I] by having 

a disjoint union $tructu.-e for the ranges of the':bperations, w~~~ ~i. dis~t .~nion is indexed 

by termination conditions, and where the components of Jhe, <hJJQint. union are:,cartesiaft 
' - . - . ~ '. ,! . ~ ! ... 

. ' ' .,. . C ,, ' ( . \. , .. 

products of t~ phyla. In a heterdgerifflu~ algebra, the· range of nch oper.ai«in h~ii to be some 

phylum of the algebra. The definitions of basic algebra,t~ '.~,;~. sµch 1as- mt>atgmras. 

congruence relations, quotient structures, and homomorphisms hav~ ~~; b~ adapted slighd1 .to ftt 

into our framework. The required extensions are concerned mostly with termination conditions. 

·. ~r ·•;11 ... ·,·.cf 

For exa •• a, congruence ~tatton is an equivafenct ~elation that preserves all of the 

operations of an exception algebra. so that ir _corresp<J9<Ung ~rg,,unen1$•'0f an operation -a,ff 
l . .. - } , .. - -·• 

related by the congruence, then the terminatiOI}, f:OQditp:i~_ q(, tf\e l~ inv<Qtic,ns must M · 
a • • ;~ ; ~ ·' ' • ,_._, J ; '. . • , • 

identical, and corresponding return values must be rtfat~ by the:~~,.-.en~· of (he conptaence' ' 

relation for the appropriate phyla. As in (l],.~n ,~i~aj'e~ re~~ .QQ·;~n egcept;an algnra ts 
; 

defined to be an indexed set of equivalence relation~.'~lo~ each p~ylum. 

Theorem 2: Every equivalence class of static models with respect to the behavioral _,.;nh~ 

relation contains a reduced model. 

Proof: Let E be an equivalence class of m~els ""'.i\h _,res,p~~to ~.~vior~I equiva1$1(.e. '\ 
and. cboose.:M -< E: This WiU ~lwlfys 'be tJossibfe,1 ' . ,_ . . ' 

since equivalence classes are nonempty by definition. 
Let M' be the subalgebra of M containing only the reachable objects of the principal type, 
and with the same subordinate types as M. 
M' is closed with respect to the operations of M, since it contains aU reachable data objects. 
M' is behaviorally equivalent to M 
since the value of any closed computation C in M' is the same as the value of C in M. 
Let M" "' M'/ =. where = is the external equivalence relation defined in Chapter 3. 
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M" is well defined because = is consistent with all of thf operations by construction. 
Then M" is reduced and behaviorally tqt1ivalmt to M. 
Every ek-mmt of the prindpal tn,e of M .. iS reachable, 
because any such tlement is N\ff•I to (xJ (Qr~~~.~~ ,-.,atfJ!pe'ofM'~ 
!Ind every such ~ n readdb~. by the construction of M'. 
Any two ek-ments of the prim.:tpal type llf M".dlat.art ~~••t:1n111t be fdendeat, 
by th~ const~IM t!,fiJr tfunf' M'. · · · 
Hence M" is reduced. . , . . . 
M" JS' behavioralf(equiva~t to M' because ans a homomorphk image of M', 
under the natural homomorphisr,n I, denn.t bJ !t(x) I" b:J.if~,~·#•aM j(k) ••r adierwbe, 
w.re 'tf ii' lhe'fritklpaffype•ot M' .. · 
Since behavioral equivalfflce is transJtive, · 
M~ is,~ioralty fqttirilent to Ni, · 
and the theorem is established. 
6ndot~· 

Theorem 3: If two reduced models are behaviorally ffllliY~._ t"8n tMy,amitlonlorphk. 
• > : - >--.--"' ,, 

Proof,Ler M~and M2 be reduced and behavioraUy tqoivalenl 
Define the isomorphism fas rotlows. . 1 

Far E'Yerf doW(f t:Mtptttatlon C, W J(vahff(C, Ml) • value(C, M2). 
By Lemma I bf-low, whtnever va~C,,Afl)!!,va~:.JfQ, ,, 
that valuil(C, M2) .. valuf(C', ·M2). . , . . . 

so that/ ts single valued, and hence a fun~ion.. - , _ . , . 
The mn,ie awappint i! 6bfah,ffl'byint'erchMiging Mf and M2 in the above definition, 
and it is also single ,ah.led, by rhe same 1rgument ... ,

0 
i". 

So f is I : I. •·. ' · .r · · l .· · · 

The operations of the algebra are preserved by construction, 
so the isomorphism is t'stablbhtd. 
EncJ.offlnlof .,: . 

Lemma I: LE"f Ml and M2 be behaviorally equivaltnt exception algebra models. let C and C' be 
,!· 

closed computatlkm, a'ftd :fet vafue(C;MI) ·• value(C~ Ml}. T•:nlue<C.;M2) ts :e.xtemtHJ 

equivalent to valut(C, M2). 
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Proof: let Ml and M2 be behaviorally equivalent exception algebras, 
let C and C' be closed computations, · · · ··. · 
Jet value(C, Ml) = value(C', Ml), 
and let CO be an open computation. 
Then value(CO, value(C". M). M) = vatue(C''fCO,.,~f'>.; 

l i i 

for any exception algebra M, ... .., , . · 
where C"flCO is the con<atenation of tbe computations ~" and C0{2 .. length{CO)l 
and where the step indices of all of the argument specifications in CO 
have been increast'd by length(C")-1. 
then vatue(CO, va1ue(C, M2), M2) = 

value(Cl{CO,~M2) .. , py,the detiftitfCIJI df·~lion; · 
value(CflCO, MO z since Ml and M2 are behaviorally equivalent 
value(CO, value((;. MJ}. Ml~ ... ·. ~y;-~litm'of~fenation 
value((;O, value(C', Ml), Ml} = by assumption, 
value(C'IICO, Ml) .. by the definition of concatenation, 
value(C'IICO, M2) = since Ml an~ M2 are behaviorallf~ivalent, 
value{CO, value(C', M2), M2) by the d~finitiOfl ot

1
~~FJl~lfQtl. 

So value(C, M2) is externally equivalent to value(C, M2)., . . . 
End of Proof ' '. · 

Theorem 4: If M is behaviorally equivalent to At arid . .:M as ~~~ced, t~., there i$ .a 

homomorphism from a subalgebra of M' onto M. 

Proof: Let M"f>e the subalgebra of M' containing only the reachable 
objects of the principal type of M', 
and with the same subordinate types as M'. 
The quotient of M" with respect to the external equivalence relation is reduce,d. 
and behaviorally rquivalent to M' by Thfioretn 2: :•' ' __ 1 · 

and by transitivity of behavioral equivalence, it is also behaviorally equivafeft()to M. 
Then by Theorem 3, the quotient is isomorphic to M. 
The composition of the natura I homomorphisn\J{P9\<M..: Ip 1"4 quotient~aftd 
the isomorphism guaranteed by Theorem 3 is a homomorphism from M" to M, 
so the theorem ls established. 
End of Proof 

Theorem 5: Every chain of algebras with respect to i;; ~as a JeastJJP~C~-
.. . . M ·• . 
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f 

Proof: Let A; : i < N ~ a chain of algebras with respect to I;. 

Then A -= U A,·, where A is defined as follows. . 
; c N 

Va E A. typt'llames [ A. phyta0 • U A; ■ phylatr J, 
t < N 

V fJ c A. opnamtts [ 1. e>perllt~ ~ f ~If~;•-~ 1 · 
A.x - u A;oX, 

t c N 
where x can be any one of the following components: 

typenames, opnames, t~MghllgdJ,-,t,pe. tc,1teftgth, rtypt-/or pt. · 

By Lemma 2 the oper~!~.s ~~Jy~~-,_..,..s artt•lhltfiliect:. 
• ~~ )< : 

A1 C A for all i < N, 

since s
1
. & U s

1
. for any j,< ,N. 

i c N 
So A is an upper bound for.rhe'chain .41._ ,, 

If A; ~ B for all i < N then A 1;; 8, 

since si & S for an i c N implies U s, & S. 
i < N 

So A is the least up~ bound !m: !he c,haiQr-Ai. 
Elid'of~f' . 1 ; "·. ; ,, ' _. 

lemma 2: If /; : i c N is a chain of functions with respect to G. then / • U ft is a well 
. . . ·· ... • . , .. -; ,; .. ,.---i--.--•l,-,, J,,c .. 11, oi -·· ·,_, ,., 

defined function. 
~1 . 

Proof: We have to s'frow that/• 
1 

-~ NI; is single~ ..... '.-. 

Proof by contr~ie,tkla. · 
Suppose/ is not single valued. 
Tht'll for some X, (x, a ► •~t,-...t~~; •)it {where,, . ._ 6. , ... 
Since/ wr U J..·, · .~ · · 

i c N 1 

pick n, m such that (x. a) < /n and (x. b) c /wa· 
Since/i is a c~ain,/71 &/max(n, m) and/m '-fmax(n, 91t 

·•.-(.. ~-, ..,.~ 

So (x, a)< fmax(n. m) a~ <x:~~} fma~<?r:,'P't~~~ ~ "bh,: 
But/; is a sing It- vahffl'.f fttnttmftror ·an I ( N. contradiction. 

So/ must b~ single valul"d. 
End of Proof 
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Note that we are 11 ~atrng a funcHon / as tbe-Siet of . .-.l9't1Sl fr,J(»)} such that x < domain(/). 

Theorem 6: The tuple tr~nsfo,;mation is contu.1uom. w,ith r~ to ~ 

Proof: Let Ai be a chain with re~pect to~-

Let LI denote the least upper bound with respect to ~ •. 
( U A; ) x s2 x ... x Sn = ll ( A1- x s ... x .... >rlS .... ~ 
iCN i<N ' .. 

from the defmit1or1 of union and crp~s proch_,ct. 

The dC'finition of e;ich operation is a functional F from the MY"' tQJJpe,q1~ons,on t~ phyla, · 
with the propeny rhat the v,llne of an operation on any input depends only on the input values. 
and not on the phylum as a whole. . ..... ,, . . . ... 

_' 7--t C rf ·, - , · . . : .' " , ' : J '~ · , " .• . ' . · . -· · 

(The f mite quantification in the:d!!fin_~tioo o~ ~f canJ,e_ d.pan4s<J. 
into an equivalent finite conjunction.) · · · 
So F(U S;Xx) "' F(S jXx) for any S j such that x < SI 

F(S }x) is undennro if .., X ( s I 
So F(U S i)(x) = U F(S }x). . _ _ . _ 
The definitions of the signaturl' «ff'kffflffl'ilsl);lMive-lthfS'JH~Y.n; . .wr, · ·., 

So the tupte.u......-or.-nion:1• alflbt•'1 it t'41titffllN!JWl)wtffl:ir~tW C. 
End. of Proof ,L ""' ,.i,,,,,; · · 

Theorem 7: Let Ml and M2 be complete excepti~ ~with'ffttlume"sfgriature and 
:} ~0. ~!·;· _..~ i-:;.·~t~-i'-4 - , _~) --~,_ ~(f.v t;_,- .. 

the same interpretations far t~e,su~:dina~if.YPeJ.iiW\,~4-1~~-(~nilln from Ml to 
... ,-~'}, ")~C-1 ,,,. t<.,tf --1' '\'ct.~•- • ~~ ,.~~-~· 

M2, such that h is the identity mapping on ~II c!f t~,~~~toat, l.JRf,5,-,, T1~en ~fl and M2 are 

beha vioraHy eqtilvale:nt. 

Proof: For every finite closed computation C, we have to shQW Jhat:. 
''· . ' '.·. ~-

{"i~., 

A. C is feasible in Ml if and only if C is feasible in M2. 

B. value(C, Ml} >~hie(C. A~fwhenever C is feasib~ ',n "'" a_nd i>'r~u~~s a bool~"-" ~a1u'~:· 
'_)fff-t-:;~•~ l, ••• , '.!· . '. /. 

Let H(C) = ( feasible(C, Ml) = foa:iible(C,'M2H & 
( length(C) 2: I 8c frasibte<C. MO),~ A(valadC; Mt));;,• .valtM(C; Aft); 1,l 
Assuming that ll(C') holds for all C' such that length(C') < fength(C); 
show that H(C) holds. 

Case I: length(C) = 0 
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H(C) is trivially true, sin« the anltffllfflt of I.fie tmptkation ts false. 
A. holds since the t'fflf)tJ computation ts frasible m anr model 
8. holds stnce there ar~wo,~'bf1~ 0 pt'Gtlad11g:i·boiJlm1 value. 

Case 2: length(C) > O 

Let length(C) "' n and let c• • CCI .. n-11 
Then H(C') since IE'ngth(C') • n-1 < length(C). 

A. To show feasiblt{C, Ml) if and only if feasibfe(C; M2) 

Case 2.1: c .. ts not feasible in Mt 

Then by the induction hypothtsis _H(C'), C' is !ffJt . .f~Ji~9' in. ·~i 
Since C' is a preox·ofC, tis 'not feasible m Ml or A.f2. : . . 
So A. holds for caR 2.1. · ·" · · 

Case 2.2: C' is feasible in Ml. 

Then by the inductioo,\l_~~iJ C'i5 featibleiahW2. ·· 
Therefore tht ter~ <flllllfUtitas ttf~dle lfl......,. _tda,t• ..,.anents: 
for every step of C' in both models. 

. j 

C is feasible in Ml if and only If the cermination conditiCJns of the arguments of C[n) 
match the requiremmts of step C(nl 

;:£,~ar.a"'~li,,i~,,..,.,.. ... r<=,..1','<' · '; c: · • ,,·;, ·,; ~!' 

where length(Ci) 2: I and where c1 is a proper prefix of C. 

· ay fM,if1t111aiM¥,tty~sii(qlfte(Cl•~"'ioi'ViW(C1,''42l'.· 
Then tc(h(value(Ci, Ml)) 7 ~~va~f~,t: ~~~;, , .. . ·' 
since ftomdmorp'htsms pr'tserVe tefmiriation conditions. 
Therefort' the arguments wilf match the requirements for the int,r,r~tion.of 
C in M2 whenever tht'J will match for the mterpretatiCJn of C tn'Mi ·. · 
So A. is established for case 2.2. 

B. Assume C i!> foasiblr in''MI and terigth{C) ~ t. 
Show 1,(vaJue(C, Ml)) • vatue(C, M2). 

Each argument xi of the last operation Qf C is the mu, or.~ prep" Ci.or C. 
where Ii lmgth((;i) <·lierlgth(C). · · · , 
By the induction ·hypothesis, A(value(C;, Ml),. va.<c1,. M~. 
Since Ii is a homomorphttm. A prtMrvrs, the operations of Ml and M2. 
So li(vah,e(C, Ml)) • value(C, M2t. 

So H(C) for all comptttiltions C. 
If the principal type of Ml is boolean then Ml • M2, 



s-ince there is a unique standard model for th~boolean domain, 
and otherwise boolean is .a subordinate type. 
In either case, !,boolean is the identity mapping. 
So if a computation results in a boolean value, 
it must resu1t in tht> saw·bOoJRff value in 'Ml and tn·M2. 
So MJ and M2 are behaviorally equivaient. 

Then H(C) holds for all finite computations C. 
End of Proof 

Theorem 8: Let Ml be a s<ak> machine model and. let Nf2'be an ex~~ption ,algebra model with 

the same signature and the · nme interpretations for the lubordinate types. · . Let c be a 
' ': - ·:- ::;-fl"' ' 

correspondence function from Ml to M2, such that , 'returns its second argument for all 
·,, ' ' 

subordinate tY,pes. Then Ml and M2sare behaviOAUy -.mv.atent. 

Proof: For every finite closed g,mp\lli.tiOIJ C, w.e have to ~w that: 

A. C is feasible in Ml if and. on.ly if C is feasible Jn. Ma 

B. value(C, Ml) "' value(C. M2) whenever C is feasible in Ml and produces a boolean value. 

Let state(C, M) denote the final state produced by 
the interpretation of the closed computation C in the state machine model M. 

Let H(C) = ( ftasible(C, Ml) = feasible(C, M2)} & , 
( tength(C) ~ I & feasible(C, Ml) ) ==> c(state(C, Ml}, val-.e(C, Ml)) • v-.,~e(C, M~).· 
Assuming that H(C') holds for an C' such that Jength(C') ,< ~gth(C), . . 
show that H(C) holds. .• ' . . , 

Case I: length(C) • 0 

H(C) is trivially Hue, since the antecedent of the implication is false. 
A. holds since the empty computation is feasible in any model · < 

B. holds since, there are no~~leftgtff 9'pmdutlt(g'a' boolean value. 

Case 2: length(C) > 0 

Let length(C) .. n and Jet C' "' C{I .. n-lJ. 
Then H(C') since length(C') .. n-1 < Jength(C). 
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A. To show feil~ible(C, Ml) if afld mJy if haJil,le(C., M2) 

Case 2.1: C' is not fr.asible if) Mt. 

n ' 

Then by the induction hJPJl~ts fic{C\-C: J~-.f~.M-2. 
Since C' is a prefix of C, C ·1s not feasible t-. 'fl"l··Mai• (''.' , dy, 
So A. holds for case 2.1. 

Case 2.2: C' is feasible in Ml. 

Then by the induction hypothesis C' ts ftasible in M2. 

Theref'ore,Jh~.1~tllriP4'lpl ~NIA$ q(U.aqpP,!•Nllddt tfiei r~ · · · 
for every step lJf c- fo both ·models. -· 
C is feasible i~ Mf it~ "11J,.jJ fM,H'/~ ~-- flf~arp1111entu•f-Cbll 
match the requirements oi 'step Clnl ' 
Each arg_~~l :lf1 i$Jhe VfluesofJ,r: . i ,,:-,., . · 

- . ,. '.,;'-,··• t. •. / 

where length(C;) ~ I and where C; is a prefix of C. . 
By the induction hyplllhestnfslite4Ci;. AIO~~,/Mf) ,.zv.rtie{c1/Mif' · ,:,,• 
Then tc(c(srate(C;, Ml), vatue<c,, Ml)) • tc(value(C1• M2)). 

since correspondmce functt.oos p~r~! •~•~ .~~~s. _,"' • , 0 -. -, 

Therriore the argUfnktW'WilfWtdi1 tftf ,fqifiettWHi~'-- ..,,. · · 
the interpretation of C in M2 _ _ _ _ . _ _ _ • 
whenever they wiH match for tM;lnt~ittblrof t IJ.'Jf!' 1 

• '· 

So A. is e$tablished for case 2.2. 

B. Assume C is feasible in Ml and length(C) ~ I. 
Show c(state(C, Ml), value(C, Ml)) • valut(t; )ft):' 

Each argument x1 of the la.st operation of C i~ t~ r~ ,of 591'M:pr,efix, g1 of C, 
'~·~ ir'J,:..':,; ,:• :· ~ .. · , '_,.· ... ~. 

where I !': wngth(C1) < length(Ci_ ., . < ·-~ ., • .-:. _ , . . _ _ , . 
' - • .. + - ~- •• + :·· .,, 0 : , :· •• f .- - -- ·). .- 0. ·-- , ' ... ;~. - - • ., 

By the indtrttbf h'1Pot~~' ,1~t~,~.M:!),.J•~~~""! ~ ,~~~er"2l. , 
Since Ci is a prefix of C, c(state(C;, Ml), x1) • c(state(C. Ml). x1), :c'·' -' · ·. ·, · 

by the monotonkity property of correspondence functions. 
Stnce c is a corr~pondence function, c preserves the operations of Ml and·M'Z. 
So c(state(C, Ml), value(C, Ml)) • value(C, M2). . 

So H(C) for an computations~. - , , -:, 
By the hypot_'I,~•~ 9flM':}~~F;.~ thll ~'·"'PJHll•4'fti._ltoal1a1: donlatn. 
So if a computation results in ·a boolnn value, 
tt must rt-suk tn th, same boolean value in Ml and in M2. · · 
So Mt and M_ art- behaviorally tquivalent. 

Then H(C) holds for all finite computations C. 
End of Proof 



The syntax of an. abstract model :sptcif~ is given below in an extended form of 

bnf. (X] means t-hat X is opijqn~t ~~ge, par-hts'5 ( ) are symbols of the meta language 

used for grouping terms. Small parenthe;es ~l_nd ~ire brackets ~r. .. 1i. T. ancJ.·T are &er~nal 
. -~ . . . . 

symbols denoting the respective characters thernse1v~,_, X~ means.,x' an .,bt,:repeated ~rp or 
- : ' • ~·~ ·' - ,·...,. • ". : >_ - ~ 

more times. X • is the same as X X,.. (X may occur one or more times). 

<speciJication>::= <module> I <type definition> 
<module>::• module <type def iniUon>·• end modble 

<type definition>::• type <t~;narnb l ~ralriffi!r 1tsDJt <abbrevlitkWf> 1 
[<requires>] · "·; · ' ·, ,,, .,, · · 

<signature> 
<rep spec> 
<ops> 
[ <auxHrarrsignafflff>} 
[<definitions>] 
end <type name> 

<parameter list>::- [ <flflrameter,name> ( .• ~ameter natM> r] 
<abbreviation>::• as <abbreviation body> 

.. , 

<requires>::• requires <parameter type> (, <parameter type> )ff. 
<parameter type>;,.-,<patametername>: <tr,e.na,ne.(~._.t- ,cipredtcaw> J 

~lgnatlJJe>::• wttb -cfl\lne(ioa type>+ 

<auxiliary signature>::= internal <function type>• 
<function type>::-= <function name>: [ <domain spec> ] ~ [ <domain spec> ] <condition spec>(' 

<domain spec>::• <type name> ( x <type name> Y:, 
<condition spec>::=- + < <exception name> : [ <domain spec> ] ) 



<rep spec>::• <domain equation>..(l(J'mrktion>f (<-,.nlllltte~,J 
<domain equation>::• <domain name> • <domain expression> 
<domain expression>::• <domain name> t ( <domain na~> • } . 

I t•lel [ <labeled expression list> ) J 
f 111'Jwtt('~ _,..""°" list> J l 
I ae( <damaa expression> J 

., ....... .Pdan•·~> J 
<labeled expteSS!OO ltst>::~.<J?beled ~~~> (,!_<!!~~> r 
<tab.ted exprtsskin>::• <label>: <tklffia1n"et'~>· · · ·' ··'. ·· ... 
<restriction>::• reatrtct-. none, ,..trtc~~~--~ t~t,<predkate> 
<ecpitnlena>:1•.r1ctenttty <Op'erltion riame> ' •.'' .. ~ ' . . . 

<ops>::• operations <opttation definition>• 

<definitions>::• deflntflon <Opffltion definition>• ,.. . . , .. , . • . , , . .. . · .. 

~ration definition>::• <apttation name> c:r.~,,•:~11:t.~it>~~: ~; ~p{.~1$»; J, .. 
<argument list>::• [ ( <klffltififf> ) J ( <identifier>*) 

<operation body>::• <~"'°>;~,~~VWP••~,:~-~ · w,,, ,. 

I <identil'ier> : <predicate> 
I if <bootNn expression> 
thffl ~lion body> 
else <aperation body> 

<expression list>::• () I ( <Opttltk>n body> ( ' <aperatian,Wf►. r.>, 
<locals>::•·where (<Variable>• coperation body> J+ -

The grammar shown c a6ott specifies _., th <UMeXI 1Mt, fl"" of' die·~•· 
; t~·~~-..-i ,-7(, :o •• •-~-.:.-;ti!': ~.:..:~ 't_ ! , 

There are a number of additional constraints that must be met for a well formed specification. 
::;_•;;\ ~ . • . ..-., hr•,.~, ~j, .'•, 1, I 'f,~_,.",;'•, " ,:' ~ ;.j '. - ... -7 

For example, the number' of arglllileld exptesiens CIJ}an ope,atillt ,tn·-.• :opetatkJn Wp 'ffllllt 

be the same as the number of type names in ~he domain apedfk ltn:i, If ~thttaperat..,. In _the 

signature. 
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