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Natural Selection and Loop Analysis 

1 Introduction 

Mojdeh Mohtashemi 

Although much remains obscure, and will long 

remain obscure, I can entertain no doubt, after the most 

d_eliberate study and dispassionate judgment of which I 

am capable, that the view that each species has been 

independently created is erroneous. 

-Charles Darwin, 1809-1882 

Natural selection: a historical misconception 

It is a common misconception that the theory of evolution is the same as the theory of natural 
selection. This is not so. Biological theory of evolution refers to temporal changes in the 
proportion of genes for various traits. Evolutionary changes can occur for different reasons. 
Natural selection, by far, is the most important mechanism of evolutionary changes1

. 

Long before the publication of The Origin of Species in 1859 [1], most scholars had 
abandoned the notion of fixity of species through time, and had accepted the notion of change 
through some process of evolution. The modern theory of evolution as to explain how these 
changes are brought about, however, is due to Darwin. Darwin's theory of evolution by way 
of natural selection is based on three principles: 

1. Principle of variation. Organisms within any species are qualitatively different. 

2. Principle of heredity. Some of the existing variation among individuals is hereditary. 

3. Principle of selection. Among the existing variants, some forms are more successful 
at surviving and reproducing. 

The process of evolution through natural selection, as described by Darwin, can be better 
understood by drawing a parallel to the process of domesticating wild plants and animals 
by man through artificial selection. In the plant population, for instance, some plants have 
a higher yield than others. Taking advantage of the existing variability in yield, the plant 
breeder then selects the highest-yielding plants from the current generation and make them 
parents of the next generation of plants. If such high-yielding characteristics are indeed 
heritable, the next generation of plants should have a higher yield as well. While artificial 

1Other possible mechanism of evolut ion include the inheritance of acquired characteristics, gene flow, 
meiotic drive, and genetic drift. 
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selection dates back only as far as the time when people began to domesticate wild plants 
and animals, natural selection has been around since the beginning of life on earth. Hence, 
it was no accident that Darwin termed his model of evolution natural selection. In 1859, 
he wrote: "As man can produce a great result with his domestic animals and plants by 
adding up in any given direction individual differences, so could natural selection, but far 
more easily from having incomparably longer time for action" [l]. 

Although natural selection operates on the phenotypic characteristics of species, for nat­
ural selection to change the composition of population of a species, such phenotypes must 
be heritable and hence transmittable from generation to generation. Natural selection takes 
place when the individuals of ,th'e different genotypes either have different probabilities of sur­
vival or produce different numbers of offspring, or both; hence the reason for some genotypes 
to spread further in yie' population relative to the others. 

If the population size is growing, all genotypes could be expanding in absolute numbers 
even as their relative proportions are changing. If the population size is more or less constant, 
then the spread of some genotypes must mean that others are declining. 

For readings in the history, development, and implications of the theories of evolution 
and natural selection, see [1, 2, 3, 4, 10, 11, 13, 14, 16, 17] . 

In this paper, we focus on some other existing misconceptions about natural selection 
that are much more subtle in nature than the one addressed here. In particular, we will pay 
attention to the popular myth that natural selection works in the direction of stabilizing 
communities and making species more efficient and abundant. Using the qualitative method 
of loop analysis, as introduced in section 2.2, we will examine such assertions and will 
demonstrate that natural selection can work in ways that are by rio means intuitively obvious, 
and that there is indeed no justification for such naive anticipations. 

2 Loop analysis: signed digraphs 

There is a one-to-one correspondence between loop models and systems of differential equa­
tions, where a system of n differential equations represents a community of n interacting 
species. The variables of the system represent either species abundances, or some by-product 
of species such as toxicity or predation intensity. Let Xi be the ith variable. Then we define 
the rate of change, or the growth rate of Xi as follows: 

dXi 
dt = fi(X1,X2,• •· , Xn; C1,C2,--·) 

where Ch represents a potential parameter of the system, such as biological properties of 
the component species, or the environmental factors such as temperature. If we assume 
that a system (community) is at or near equilibrium, we can then examine its local stability 

dX· 
properties of when dt i = 0, i = l ... n. 
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Loop models are signed directed graphs, constructed from the structure ·of the interaction 
matrix, or the so called community matrix in ecology, of coefficients of X/s evaluated at 
equilibrium2

. Given a community matrix A as follows: 

a1i a1i a1i 
fJX1 fJX2 fJXn 

A 

ofn ofn fJfn 

fJX1 fJX2 fJXn 

an a12 a1n 

a21 a22 a2n 

-

where aii is the coefficient of Xi in Ji, i.e. the effect of variable Xi on the growth rate of 
variable Xi, one can translate the community matrix A uniquely into a signed digraph. The 
variables of the system are the vertices of the graph, and the coefficients of the community 
matrix are the edges or links of the graph (see figure 1). 

2.1 Definitions and notations 

2.1.1 Links and their signs 

The coefficients aii of the community matrix are readily taken to translating into the effect 
of the variable Xi on the growth rate of the variable Xi- Depending on the sign of such 
coefficients in the matrix, there will be two types of Jinks in the signed digraph. If the sign of 
aii is negative in the original matrix, there will be a negative link from Xi to Xi, represented 
by the symbol -0- If the sign of aii is positive in the original matrix, meaning Xi has a 
positive impact on the growth rate of variable Xi, then there will be a positive link from Xi 
to Xi , represented by the symbol ~ (see figure 1). 

2.1.2 Path and loops 

A path is a sequence of links starting at a source variable and ending at a sink variable 
without going through any variable twice. A loop is a path where the sink variable is the 

2 The relationship between graphs and matrices have been developed independently by different researchers 
in different contexts. Samuel Mason at MIT [12] developed such models to compute gain in electrical circuits; 
Sewall Wright [18) used similar techniques to calculate statistical correlations among relatives of different 
breeding systems; Richard Levins [6) developed loop models to examine qualitative questions in ecology. 
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same as the source variable. Hence, in a loop, only the starting variable is met twice on the 
path. A loop that begins and ends on the same variable without going through any other 
intermediate variables is a self-loop. 

A self-loop with a negative link is called self-damped. A self-loop with a positive link is 
called self-accelerating (see figure 1). 

The length of a path or a loop is the number of links constituting the path or the loop. 
Consequently, a self-loop is a loop of length one. 

The sign of a path or a loop is the product of the signs of the constituent links in the 
path or the loop. · 

2.1.3 Conjunct loops and disjunct loops 

In a signed digraph there are two types of loops: conjunct loops and disjunct loops. Conjunct 
loops consist of those loops that have at least one variable in common. Disjunct loops have 
no variable in common. 

Figure 1 provides a definitional illustration of loop models. 

-a -a 
11 12 

a a 
21 22 

Figure 1: A predator-prey system with a self-damped herbivore (H), and a self-accelerating 
predator (P), and its community matrix. 

2.2 Conditions for stability 

The stability properties and the local behavior of systems of differential equations in the 
neighborhood of their critical points have been well studied. Here, we relate the general 
conditions of stability, as understood in systems theory, to the notion of the feedback of a 
system. 

The characteristic polynomial, p(-X) of a community matrix A, is defined as IA - -XII, 
where I is the identity matrix. For instance, the characteristic polynomial of a 3 x 3 matrix 
is the following: 
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p(,\) -

Expanding the determinant we get: 

p(,\) >? - [an + a22 + a33]).2 + 
[(aua22 - a12a21) + (aua33 - a13a31) + (a22a33 - a23a32)],\ -

[au(a22a33 - a23a32) - a12(a23a31 - a21a33) + a13(a21a32 - a22a31)] (2) 

Equation 2 can be generalized for an n dimensional matrix as follows: 

n-l 

p(,\) ,\n + I:(-l)k Dk,\n-k (3) 
k=l 

where Dk is the sum of all principal determinants of order k, corresponding to subsystems 
of k variables. But every such Dk can also be written as a sum of products df disjunct loops 
as can be investigated from equation 2. That is, we have: 

k 

Dk= L (-ll-m L(m, k) (4) 
m=l 

where L(m, k) is defined as the product of m disjunct loops with k variables. Note that for 
an n x n matrix, Dn is the determinant of the square matrix. We then transform this value 
into the measure of the feedback of a matrix . . Specifically, we define the notion of "! eedback 
at level k" as follows: 

m=l 
k 

fork = l .. . n 

by equation 4 

L (-1)(-1)2k-m L(m, k} 
m=l 

k 

L (- l)m+l L(m, k) since (- 1)2k-m = (-1)-m = (- l)m 
m =l 

5 
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where feedback at level 0 is defined as F0 = - l. 

In this way, feedback at level k is the the net feedback of all the subsystems of k variables 
in a system of n variables, where k = l .. . n . 

As an example for the calculation of feedback terms, consider the predator-prey system 
of figure 1. At level 1, F1 = -a11 + a22 ; and at level 2, 

Equipped with our definition of feedback at level k, as in equation 5, We can rewrite 
equation 3 as follows: 

n - i 

P(A) An+ L (- ll(- lt-m L(m, k)An- k 
k=i 
n-i 

An - L FkAn-k by equation 5 (6) 
k=i 

The characteristic polynomial resulting from equation 6 involves the feedback · terms as 
coefficients. Although, one may not be able to generally solve polynomials of higher orders, 
one can determine the sign of Re(Ai) using the coefficients of such polynomials. By the 
Routh-Hurwitz theorem, for the system to be locally stable, i.e. for Re(Ai) < 0, i = 1 . .. n , 
the coefficients of the polynomial must satisfy two conditions [5]: 

l. Fk < 0, Vk. 

2. Alternate Hurwitz determinants up to order n must be positive. 

If the roots of the polynomial are real, then condition 1 alone suffices and guarantees that 
all the roots are negative, and hence the system is stable. But if some or all of the roots are 
complex, then conditions 1 and 2 together imply that the system is oscillatory, but returns 
to equilibrium through damped oscillations, and hence stable. The second condition needs 
more elaboration. A Hurwitz determinant of order k , Hk , is defined as follows: 

-Fi -F3 - F5 -F2k- i 

- Fo - F2 - F4 - F2k-2 

0 - Fi -F3 - F2k - 3 

Hk 0 - Fo -F2 -F2k- 4 

0 0 -Fo - F2k-5 

0 0 0 -Fk 
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This means that for instance, for a system of 3 variables, where only the sign of H2 needs 
to be checked, H2 = F1F2 + F3 > 0 implies that negative feedback coming from shorter 
loops, in this case 'levels 1 and 2 combined, must be stronger than the negative feedback 
coming from the longer loops, in this case feedback at level 3. Since, in equation 6, lower 
order feedbacks are paired with the higher orders of >., intuitively this means that if >. is 
small, we get slow damping, and fast damping if >. is large. 

To date, there is no general form for Hn; for the purpose of this article test of positivity 
of H2 will be sufficient. 

3 Natural selection: not a virtuous force 

It is often assumed that natural selection operates in the directiqn of stabilizing the commu­
nities. Furthermore, it is taken for fact that the abundance of-ii. species undergoing selection 
is generally increased. This sometimes unspoken, false notion of evolution of communities, 
has persisted throughout the past century since the publication of Darwin's The Origin of 
Species in 1859.- Why is that? 

Darwin often spoke of natural selection as a "good" force, an "efficient" force, a "truer" 
force, a "serving" force, etc. In fact, chapter IV of The Origin of Species is full of such 
references. For example, "It may metaphorically be said that natural selection is daily and 
hourly scrutinizing, rejecting those that are bad, preserving and adding up all that are good, 
silently and insensibly working, ... " (emphasis not in the original); or "Although natural 
selection can act only through and for the good of each being, yet characters and structures, 
which we are apt to consider as of very trifling importance, may be acted on." ( emphasis 
not in the original); etc. Of course, there are much more references that portray natural 
selection as a positive force throughout the book, and it is no surprise that the title of the 
chapter itself reads: Natural Selection; or the Survival of the Fittest. 

But such references are only made with regards to the effect of evolution on the particular 
species undergoing selection, and hence, they cannot be generalized to the situations outside 
the domain of its action. What is the implication of such actions for a community of species 
as a whole and for the abundance of the coexisting species? In fact, it turns out that there 
are no obvious answers to these questions. 

Using the method of loop analysis [6, 7, 15), we will examine such assertions as the 
"maximizing effects of natural selection" and will demonstrate otherwise. In particular, we 
will show that "there is no justification for the belief that natural selection results in greater 
efficiency or stability or in any other civic virtue" [6] (emphasis not in the original). 

3.1 Natural selection and stability 

What is the impact of selective pressures within each species of a community on the stability 
of the community as a whole? 

It has been falsely presumed, within biological communities, that natural selection is an 
stabilizing force. That communities have always evolved and will continue to evolve in the 
direction of becoming more efficient and stable. Let 's examine this assertion more closely. 
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. . 
Natural selection changes the composition of the genotypes of-species by operating on 

those phenotypic characteristics that are heritable. Mathematically, this means that when a 
genetic variant arises in a species under selective pressures, a parameter Ch from equation 1 
is ultimately altered. The parameters Ch are assumed to consist of those characteristics 
that depend on the genotype of species, such as fecundity or heat tolerance or any other 
heritable traits. Suppose that species i in a community consisting of n interacting species is 
undergoing selection. Then since the genetic variant that is altering parameter Ch is selected 
for, we must have that: 

(7) 

which means that the direction of selection solely depends on the growth-rate of species i , 
fi. However, in what follows, we will demonstrate that the evolutionary consequences of that 
selection for the community depend on the entire ensemble of species in the community and 
the dynamics of their interactions, since Ji itself depends on such ensemble (see equation 1). 

Example: Figure 2 illustrates an ecosystem consisting of blue-green algae (B); green 
algae (G); two nutrients: nitrate (N), secreted by blue-green algae and consumed by green 
algae, and phosphate (P), consumed by both the green and the blue-green algae; and an 
herbivore (H) feeding on the green algae. In addition, the blue-green algae produces a 
substance with a toxic effect on the green algae, represented by the negative link acs-

Using the methodology developed in section 2.2, we calculate the qualitative values of 
the feedback terms to examine the conditions for stability. At level 1, we have F1 = - aNN -

app < 0. Next we examine feedback at level 2: I 

F2 = (acN)( - aNc) + (asp)( - aps) + (acp)( - apc) + 
(aHc)( - aaH) - ( - app)(- aNN) 

- aaNaNc - aspaps - acpapa - aHaacH - appaNN 

< 0 

What about feedback at level 3? 

F3 = -(-app)(- aaNaNc) - (-app)(- aoHaHc) - (-aNN)(-aspaps) 

-(- aNN)( - aapapc) - ( - aNN)(-aaHaHc) + ( - apa)(- aas)(asp) 

- - appacNaNc - appaaHaHa - aNNaspaps 

- aNNacpapc - aNNaaHaHG + apaacsasp 

? 

It is not clear whether F3 < 0 or F3 > O! The loop of length 3, namely apcaspacs, 

contributes a positive term to F3 that makes it ambiguous for a decision to be made. The 
same positive loop also enters into F4 which makes it-possible for-F4 tu-t-e--p-01,itive--a;s··welt · 

Suppose now that there is selection pressure on the green algae towards becoming more 
resistant to the toxin released by the blue-green algae. Such pressure affects the system 
in the direction of weakening the link acs and making it less negative. _ This link that 

8 



-a1''N O 

0 0 0 

0 0 

Figure 2: An ecosystem consisting of blue-green algae (B); green algae (G); two nutrients: 
nitrate (N) , consumed by green algae, and phosphate (P) consumed by both the green and 
the blue-green algae; and an herbivore (H) feeding on the green algae. The system can be 
stabilized if selection is for toxin resistance within the green algae. 

under equilibrium contributes a positive term to both F3 and F4 via- the loop of size 3, 
under selection, could contribute a negative term and hence may have a stabilizing effect 
on the system. However, if selection within the green algae is for less susceptibility to the 
herbivore predation, then by weakening the link aGH it may have a destabilizing effect on 
the community since it contributes a negative term to F3 • 

Hence, depending on the dynamics of the interrelations between the species of a system, 
selection within the components may either stabilize or destabilize the community as a whole, 
in ways that are not intuitively obvious. 

3.2 · Natural selection and abundance of species 

What is the impact of selective pressures within each spedes of a community on the abun­
dance of the species itself and other coexisting species? 

It has been naively presumed that the driving force of natural selection is generally di-
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rected so as to make the equilibrium number of a species undergoing selection more abundant. 
Such assumptions, although often go unspoken, have been quite attractive to biologists. Let's 
examine this more closely. 

If a species i is undergoing selection, as a result a genetic variant must arise. This should 
ultimately affect a parameter Ch, as in equation 1, if Ch is in indeed under the genetic control 
of species i. To determine the effect of change in parameter Ch on the equilibrium abundance 
of species, we differentiate equation 1 with respect to Ch for each specie·s in the system and 
set it equal to zero to get: . 

i = 1. . . n (8) 

In matrix notation equation 8 can be represented as follows: 

&X· 
By matrix algebra, we can then solve for &C~ as follows: 

&X· anl an2 
_ Eb_ 

ann __ J ach 
&Ch an a12 a1j a1n 

(9) 

a21 a22 a2j a2n 



Let's see if we can understand the intuition behind equation 9. The denominator of 
equation 9 is simply the feedback at level n, i.e. Fn. The numerator is more tedious and 
needs more elaboration before turning it into feedback notation. Note that the effect of 

substituting the jth column of the community matrix with - :{{ is of breaking all the 

closed loops that have the link aij in common. On expanding the numerator, we make 

the foll~wing observation: for an n ~ n matrix, the numerator is the sum of all - :::~ , 

i = 1 .. . n each accompani.ed by a coefficient. The coefficient of - :::~ is the sum of all 

possible products of open paths between Xi and Xi, each multiplied by all the closed loops 
that share no variables with the open path considered. But this simply means that each 
open path is multiplied by the net feedback of the complement subsystem. Now, let Pi/k) 
represent the open path from Xi to Xi consisting of k variables, and Fn-k(comp) to represent · 
the feedback of the complement subsystem of size n - k, i.e. the subsystem remaining after . 
excluding the open path of k variables from the system. Then, equation 9 can be rewritten 
in terms of feedback loops as follows: 

~( 0 fi ) {k) ( ) ~ aC Pji Fn-k comp 
i,k h 

(10) 

Equipped with equation 9 and an intuitive understanding of it, by way pf equation 10, 
we are now ready to examine the question raised at the start of this section through some 
examples. 

Example: Figure 3 illustrates a community consisting of two competing self-damped_ 
prey species X1 , X 2 ; and a "keystone predator"3 X3 preying upon both species. 

Suppose that selection for some trait C1 within species X1 increases its viability or .fe­
cundity. Since C1 is selected for, we must have that: 

(11) 

We can now examine the effect of change in C1 on the equilibrium levels of all three 
species. Note that for the system to be stable at all, F3 < 0. Therefore, by equation 9 we 
have: 

3In ecology, a keystone predator refers to a predator that permits coexistence of several competing prey 
species. 
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0 

Figure 3: A community consisting of two competing self-damped prey species X1 , X 2 ; and 
a keystone predator X 3 preying upon both species. The introduction of the predator has a 
stabilizing effect on the community. 

_ !!.h._ - a12 - a13 8C1 

0 - a22 - a2a 

8X1 0 aa2 0 
-- -
8C1 Fa 

of · -adi ( a2aaa2) 

Fa 
> 0 

- au - !!.h.. - a1a 8C1 

- a21 0 -a2a 

8X2 aa1 0 0 

8C1 Fa 
a1i 
801 

(a23aa1 ) 
-

Fa 
< 0 
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- au -a12 
_ Eh_ 

8C1 

-a21 -a22 0 

8X3 a31 a32 0 

8C1 F3 
[)Ji 
BCi (a21a32 - a22a3i) 

(12) 
F3 

? 

That is, selection within X 1 increases its own aoundance, but decreases the abundance of 
X2 . As for X 3 , the direction of change is not clear; it depends on the relative magnitude of 
the coefficients a 21 , a 32 , a 22 , and a 31 . For instance, if the predator preys more upon X1, then 
its abundance may increase since it implies that a 31 > a 32 , and this makes the coefficients in 
the numerator of equation 14 more negative. 

Now suppose that evolution within X 3 is so that a parameter C3 is selected for. In 
principle alteration of parameter C3 should increase some genotype related to the predator's 
viability or fecundity. Hence, this implies that we must have: 

oh 
0 8C3 > 

(13) 

Let's examine the effect of change in C3 on the equilibrium levels of all three species. 
Note that for the system to be stable at all, again F3 < 0. Therefore we have: 

-au - a12 0 

- a21 - a22 0 

8X3 a31 a32 
_ Eh_ 

0C3 

8C3 F3 
oh 
oC

3 
( a12a21 - au a22) 

(14) 
F3 

< 0 

since the coefficient of it in equation 14 is F2 for the subsystem (X1, X2 ) which by definition 

must be positive if X 3 is a keystone predator. But this implie; that !~: < O! In other words, 
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selection on the predator for more viability reduces its abundance, and hence the stabilizing 
predator can select itself to extinction. This is not an intuitive result, and it should clarify 
the claim we made at the beginning of this paper that the direction of natural selection are 
not always predictable or intuitively obvious. 

N .f . 8X1 h ext, 1 we examme 803 , we ave: 

0 -a12 - a13 

0 -a22 - a23 

8X1 _ Eh_ a32 0 0C3 

0C3 F3 
oh 
803 

( a13a22 - a12a23) 

F3 
? (15) 

The direction of change for X1 is not clear, and it depends on the relative magnitude of 
the coefficients a13, a22, a12 , and a23 . If a23 > a13 , that is, if the predator preys more on X 2 
than Xi, then the change in the abundance of Xi is likely to be positive; a rather intuitive 
result. A similar kind of analysis holds for the study of direction of change in the equilibrium 
level of X 2 . I 

Hence, depending on the dynamics of the interrelations between the species of a system 
and with their environment, selection within the component species may either increase or 
decrease the equilibrium abundance of the species in the community. 

4 Discussion 

4.1 An extension 

What happens when we leave the so called mendelian world of lower organisms, where 
evolution can occur in matter of hours, and enter populations of higher organisms such as 
those of humans? 

For a mendelian population to be perpetuated, it may be sufficient to have a single 
surviving pair or a single individual. "Thus, when a bacterial culture containig billions of 
cells is exposed to a lethal concentration of antibiotics, such as streptomycin, the presence 
of a single resistant mutant cell is sufficient to perpetuate the strain." [10]. 

Where cultural and social measures have not interposed themselves between us and the 
physical environment, natural selection operates as it did before. Disease and diet are ex­
amples of areas where natural selection is still in work in the context of human populations. 
Not all populations are equally exposed to all diseases, and therefore nor are they equally 
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Figure 4: A population cohort consisting of three vulnerability classes. The links between 
pair of classes indicate social mobility and/ or movement of people by natural processes such 
as diseases or aging. 

susceptible to all; malaria is one such disease, where a population of west Africans posses 
a protective genetic factor, namely the sickle-cell trait. Similarly, not every one can digest 
bean or milk as easily as some others. 

Hence, we have not eliminated natural selection and evolution may still occur on geolog­
ical time scales within human populations. But where we have created social environments, 
certain genetic differences become symbols of social behavior, and so we can speak of selec­
tion acting in a non-geological time scale4 • For instance, skin pigmentation is an identifier 
of race and is a heritable trait, but there is nothing inherent in the melanin concentration in 
the skin which would influence the likelihood of getting arrested, as it is statistically a fact 
in the black population. 

Every social measure taken within the human populations, therefore Jets as selective 
pressures upon individuals; population cohorts identified by age, sex, race or ethnicity; or 
even psudo-populations such as organizations. As a result, there will be changes in the 
differential survival and reproductivity of those populations. Let's try to apply our loop 
methodology to two such populations. 

Vulnerability and stability:- Suppose that a human population cohort is distributed 
among 3 vulnerability classes, ¼, each associated with its own mortality rate. Here, "vul­
nerability" is defined with respect to the general health status of people. Furthermore, the 
degree of vulnerability is assumed to increase with index i. For example, Vs is more vulnera­
ble than Vi- Further, individuals in one class may move to another due to disease processes 
or natural processes such as aging, in which case the flow is to the adjacent higher vulnerabil­
ity classes; but there is also some back flow due to social mobility and health-improvement 
policies, acquiring knowledge and skill, or good fortune, etc. This model is illustrated in 
figure 4. 

At level 1, we have F1 = -a11 - a22 - a 33 < 0. Next we examine feedback terms at leve 
2 and 3: 

4 Selection simply refers to differential survival or reproduction or both, and is one of the three postulates 
that Darwin had for natural selection to cause genetic evolution. 
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F.2 - - (- an)(-a22) - (-an)(-a33) - (-a22)(- a33) 

+(a12a21) + (a23a32) 

-ana22 - ana33 - a22a33 + a12a21 + a23a32 

? 

What about feedback at level 3? 

" F3 - (- an)(- a22)(- a33) - (- an)(a23a32) - (- a33)(a12a21) 

-ana22a33 - ana23a32 + a33a12a21 
? 

The loops of size 2, namely a12a21 and a 23a 32 contribute positive terms to both F2 and 
F3 , which make it ambiguous as to whether the system is stable or not. 

Now suppose that there is selection for less vulnerability in Vs . This could occur, for 
instance, due to a new health policy by the government which affects mostly the poor and 
the elderly which by definition should reside in the highest vulnerability class. As a result 
some people from Vs will move to Vz . This means that the link a23 is further strengthend, 
which in turn, unless the self dampings are strong, will destabilize the community since a 23 

contributes a positive term to F2 and F3 . Similarly, any increased movement towards more 
vulnerable classes has a destabilizing effect as well, but that's rather intuitive. However, 
selection for preventing movements in any direction promotes stability. This is an intriguing 
result: increased social mobility could have devistating effects in a society that has reached 
equilibrium! 

The dawn of Internet: Consider a technological system (techno-society) consisting of 
two competing computer companies, namely Microsoft (M) and Netscape .(N), as in figure 5. 
Self dampings of the companies are possibly be due to implementation of occasional "bad" 
ideas. Let's examine the conditions for stability: 

At level 1, we have F1 = - an - a 22 < 0. At level 2 we have: 

F2 - (- an)(- a22) + (- a12)(- a21) 

-an a22 + a12a21 

? 

The sign of F2 is ambiguous. Unless the self damping effect are very strong, F2 may 
be positive and hence the system unstable. It is true that Microsoft's monopoly has been 
driving all other competing industries towards extinction in the direction of destabilizing 
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Figure 5: A techno-society consisting of two competing computer companies, Microsoft (M) 
and Netscape (N). · 

the entire techno-society. But in fact , this is an inherent outcome of any dynamical system 
of this sort. The bottom line is that competing species cannot "coexist" in the absence of 
an stabilizing factor. Thus far , this has been the outcome of the power struggle between 
Microsoft on one side and all the other competing companies on the other side. But then the 
government stepped in and assumed the role of a keystone, and so we get the same picture as 
in figure 3. Clearly, our keystone is aiming at stabilizing the system by establishing,s.~.!"o.nger 
tax laws, anti-trust regulations, and monitoring plans (represented as negative links in the 
digraph of figure ._3). But the question is: By selecting for more regulations, can a goverment 
select itself to extinction? I leave this question open to ·brain storm. 

4.2 Conclusions 

1. The course of natural selection within species, may affect communities in ways that are 
not intuitively obvious and therefore not predictable. In particular, there is no justifi­
cation for the popular assumption that natural selection generally make communities 
more stable and efficient. 

2. It is by no means inevitable that natural selection serves to increase the abundance of 
the species undergoing selection. Moreover, it is not clear how the abundance of other 
coexisting species is affected. 

3. There is potential for applying the methodology of loop analysis to structures within 
which selection forces operate. We have particularly argued for its applicability to 
problems pertaining to human populations. Specifically, we demonstrated through 
examples of social and technological nature that such qualitative approach can help 
unravel mysteries about stability of the societal structures within the human popula­
tion. 
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