
System Support for Bandwidth Management and Content
Adaptation in Internet Applications

David Andersen, Deepak Bansal, Dorothy Curtis, Srinivasan Seshan; Hari Balakrishnan
M.I. T. Laboratory for Computer Science

Cambridge, MA 02139

{ dga, bansal, dcurtis, srini, hari}@lcs.mit.edu

Abstract

Thi8 paper de8cribe8 the implementation and evaluation
of an operating 8Y8tem module, the Conge8tion Manager
(CM), that provide8 integrated network flow manage
ment and export8 a convenient programming interface
that allow8 applications to be notified of, and adapt to,
changing network condition.s. H?e de8cribe the API by
which application.s interface with the CM, and the ar
chitectural con.sideration.s that factored into the de8ign.
To evaluate the architecture and API, we fir.st de8cribe
our implementation of TCP, a 8treaming layered au
dio /video application, and an interactive audio applica
tion u8ing the CM, and 8how that they achieve adaptive
behavior without incurring much end-8y8tem overhead.
All fiow8 including TCP benefit from the 8haring of con
ge8tion information, and applications are able to incor
porate new functionality .such a8 conge8tion control and
adaptive behavior.

1 Introduction

The impressive scalability of the Internet infrastructure
is in large part due to a design philosophy that advo
cates a simple architecture for the core of the network.
with most of the intelligence and state management im
plemented in the end systems [9]. The service model
provided by the network substrate is therefore primar
ily a "best-effort'' one, which implies that packets may
be lost. reordered or duplicated, and end-to-end delays
may be variable. Congestion and accompanying packet
loss are common in heterogeneous networks like the In
ternet because of overload, when demand for router re
sources, such as bandwidth and buffer space, exceeds
what is available. Thus, end systems in the Internet
must incorporate mechanisms for detecting and react
ing to network congestion, probing for spare capacity
when the network is uncongested, as well as managing
their available bandwidth effectively.

Previous work has demonstrated that the end result
of of uncontrolled congestion leads to a phenomenon

' IDM T . .J. \,Vatson Research Center, Hawthorne, NY;
srini@seshan.org

1

commonly called "congestion collapse'' [7. 12]. Con
gestion collapse is largely alleviated today because
the popular end-to-end Transmission Control Protocol
(TCP) [30, 40]. incorporates sound congestion avoid
ance and control algorithms. However, while TCP does
implement congestion control [17]. many applications
including the \Veb [5. 11] use several logically differ
ent streams in parallel. using multiple concurrent TCP
connections between the same pair of hosts. As several
researchers have shown [2. 3, 27, 28, 42]. these con
current connections compete with - rather than learn
from - each other about network conditions to the same
receiver, and end up being unfair to other applications
that use fewer connections. The ability to share conges
tion information between concurrent flows is therefore
a useful feature, one that promotes cooperation among
different flows rather than adverse competition.

Another important trend in today's Internet is the
increasing number of applications that do not use TCP
as their underlying transport, because of the constrain
ing reliability and ordering semantics imposed by its
in-order byte-stream abstraction. Streaming audio and
video [24, 34, 41] and customized image transport proto
cols for JPEG-like formats. where portions of an image
can be rendered out-of-order, are important examples.
Such applications use custom protocols that run over
the User Datagram Protocol (UDP) [29]. often with
out implementing any form of congestion control. The
unchecked proliferation of such applications will have
a significant adverse effect on the stability of the net
work [3. 7. 12].

A majority of Internet applications deliver HTML
documents and images or stream audio and video to
end users and are interactive in nature. A simple but
useful figure-of-merit for interactive content delivery is
the end-to-end download latency; users typically wait
no more than a few seconds before aborting a transfer.
Therefore, it would be beneficial for content providers
to adapt what they disseminate to the state of the net
work. so as not to exceed a threshold latency. For
tunately, such content adaptation is possible for most
applications. Streaming audio and video applications
typically encode information in a range of formats cor
responding to different encoding (transmission) rates

and degrees of loss resiliency. Image encoding formats
accommodate a range of qualities to suit a variety of
client requirements.

Today, the implementor of an Internet content dis
semination application has a challenging task: For her
application to be safe for widespread Internet deploy
ment, it must either use TCP, suffering the conse
quences of its fully-reliable, byte-stream abstraction, or
use an application-specific protocol over UDP, but at
tempt to implement congestion control in it, reinvent
ing this machinery and risking getting it wrong. Ftu·
thermore, neither alternative allows for sharing conges
tion information across flows. In addition, one of the
undesirable side effects of the layered protocol stack.
the common application programming interface (API)
classes-Berkeley sockets. streams, and vVinsock [31]
do not expose any information about the state of the
network in a standard way to applications1

. This makes
it difficult for applications running on existing end host
operating systems to make an informed decision, taking
network variables into account, during content adapta
tion.

This paper describes the implementation and eval
uation of an end-host operating system module and its
API that enables network-adaptive applications. Here,
we build on our recent proposal for a Congestion Man
ager (CM) [3]. an end-system architecture for shar
ing congestion information between multiple concurrent
flows. The advantage of the CM is that it moves the
task of performing sound congestion control to a trusted
kernel module, freeing transport protocols and applica
tions from having to re-implement it and ensures that
the en.semble of concurrent flows is not overly aggressive
to the network.

vVhile our previous work provided the rationale for
such an approach and laid out an initial design for the
CM, this paper details the design and implementation
of the CM architecture and describes how it collects
end-to-end information about the network and provides
it to applications through its API. We show using spe
cific case studies how applications can adapt their trans
missions to changing network conditions using the CM
API. Conceptually, our system is based on feedback in
the form of callback.s from the in-kernel CM to an ap
plication that are used to orchestrate its transmissions.
vVe show that our implementation of callbacks does not
affect performance or scalability of a data sender.

To our knowledge, this is the first implementation
of a general application-independent system that com
bines integrated flow management with a convenient
API for content adaptation. The end-result is that ap
plications achieve the desirable congestion control prop
erties of long-running TCP connections, together with
the flexibility to adapt data transmissions to prevailing
network conditions.
1 Utilities like netstat and ifconfig provide some infor

mation about devices, but not end-to-end performance
information that can be used for adapting content.

2

Another important contribution of this paper is to
demonstrate that the CM extensions are useful even
when applied to the sender side alone, requiring no
changes to the data receiver. Because most robust con
gestion control algorithms rely on receiver feedback. it is
natural to expect that a CM receiver is needed to inform
the CM sender of successful transmissions and packet
losses. However, to facilitate deployment, we have de
signed our system to take advantage of the fact that
several protocols including TCP and other applications
already incorporate some form of application-specific
feedback.

vVe demonstrate the benefits of integrated flow man
agement and show how applications can adapt their
transmissions using callbacks initiated by the kernel.
vVe do this by answering the following key questions in
this paper: Does the CM provide a convenient interface
for applications such as streaming layered video/audio,
real-time audio, and TCP to adapt without placing a
significant burden on developers? vVhat information is
needed from applications for the correct functioning of
the system? In today's off-the-shelf operating systems,
does the CM place any performance limitations upon
applications?

vVe answer these questions based on our implemen
tation of the CM in the Linux operating system and
its measured performance over a variety of TCP and
UDP applications. vVe find that our implementation
of TCP (which uses the CM for its congestion control)
has essentially the same performance as standard TCP,
with the added benefits of integrated congestion man
agement across flows. Our implementation of a lay
ered streaming audio/video application demonstrates
that CM architecture can be used to implement highly
adaptive congestion controlled applications. Adapta
tion via the CM API helps these applications achieve
better performance and also be fair to other flows on
the Internet. vVe find that the API introduces a neg
ligible to observable (between 2.5% and 18.5%) CPU
overhead depending on the type of callback used, but
that the higher CPU utilizations occur when the appli
cation desires very fine-grained about the network on
a per-packet basis. vVe do not believe this is a bad
trade-off, especially because our mid-range PC sender
(350 MHz Pentium) easily saturates a 100 Mbps Ether
net despite this overhead. vVe have also CM-enabled a
legacy application-the Internet audio tool vat from the
MASH toolkit [22]-to perform adaptive real-time de
livery. Since less than one hundred lines of source code
modification was required to CM-enable this complex
application and make it adapt to network conditions,
we believe it demonstrates the ease with which the CM
makes applications adaptive.

The rest of this paper is organized as follows. Sec
tion 2 describes our system architecture and implemen
tation. Section 3 describes how network-adaptive appli
cations can be engineered using the CM, while Section 4
presents results of several experiments. In Section 5,

we discuss some miscellaneous details and open issues
in the CM architecture. We survey related work in Sec
tion 6 and conclude with a summary in Section 7.

2 System Architecture and Implemen
tation

The CM performs two important functions. First, it en
ables efficient multiplexing and congestion control by in
tegrating congestion management across multiple flows.
Second, it enables efficient application adaptation to
congestion by exposing its knowledge of network con
ditions to applications. Most of the CM functionality
in our Linux implementation is in-kernel; this choice
makes it convenient to integrate congestion manage
ment across both TCP flows and other user-level pro
tocols, since TCP is implemented in the kernel.

To perform efficient aggregation of congestion infor
mation across concurrent flows, the CM has to identify
which flows potentially share a common bottleneck link
en route to various receivers. In general, this is a diffi
cult problem, since it requires an understanding of the
paths taken by different flows. However, in today's In
ternet, all flows destined to the same end host take the
same path in the common case, and we use this group
of flows as the default granularity of flow aggregation2

.

We call this group a macrofiow: a group of flows that
share the same congestion state, control algorithms, and
state information in the CM. Each flow has a sending
application that is responsible for its transmissions; we
call this a CM client. CM clients are in-kernel protocols
like TCP or user-space applications .

The CM incorporates a congestion controller that
performs congestion avoidance and control on a per
macroflow basis. It uses a a window-based algorithm
that mimics TCP's additive-increase/multiplicative de
crease (AIMD) scheme to ensure fairness to other TCP
flows on the Internet. However, the modularity pro
vided by the CM encourages experimentation with
other non-AIMD schemes that may be better suited to
specific data types such as audio or video.

While the congestion controller determines what the
current window (rate) ought to be for each macroflow,
a scheduler decides how this is apportioned among the
constituent flows. Currently, our implementation uses a
standard weighted round-robin scheduler whose weights
are settable by an administrator.

In-kernel CM clients such as a TCP sender use CM
function calls to transmit data and learn about net
work conditions and events. In contrast, user-space
clients interact with the CM using a portable, platform
independent API described in Section 2.1. A platform
dependent CM library, libcm, is responsible for inter
facing between the kernel and these clients, and is de-

2 This is not strictly true in the presence of network-layer
differentiated services. We address this issue later in this
section and in Section 5.

3

Web server
HTTP

·························· :::::: "····• ... ~ •·····
Callbacks for orchesrratmg ,_ •.
transmissions and application CM
notification

IP

Network

Audio
RTP2

Figure 1. Architecture of the congestion manager at
the data sender, showing the CM library and the CM.
The dotted arrows show callbacks, and solid lines show
the datapath. UDP-CC is a congestion-controlled UDP
socket implemented using the CM.

scribed in Section 2.2. These components are shown in
Figure 1.

When a client opens a CM-enabled socket, the CM
allocates a flow to it and assigns the flow to the appro
priate macroflow based on its destination. The client
initiates data transmission by requesting permission to
send data. At some point in the future depending on the
available rate, the CM issues a callback permitting the
client to send data. The client then transmits data, and
tells the CM it has done so. When the client receives
feedback from the receiver about its past transmissions,
it notifies the CM about these and continues.

When a client makes a request to send on a flow, the
scheduler checks whether the corresponding macroflow's
window is open. If so, the request is granted and the
client notified, upon which it may send some data.
Whenever any data is transmitted, the sender's IP layer
notifies the CM, allowing it to "charge" the transmis
sion to the appropriate macroflow. When the client re
ceives feedback from its remote counterpart, it informs
the CM of the loss rate, number of bytes transmitted
correctly, and the observed round trip time. On a suc
cessful transmission, the CM opens up the window ac
cording to its congestion management algorithm and
attempts to grant a pending request on a flow asso
ciated with this macroflow. The scheduler also has a
timer-driven component to perform background tasks
and error handling.

2.1 CM API

The CM API is specified as a set of functions and call
backs which a client uses to interface with the CM. It
specifies functions for managing state, for performing
data transmissions, for applications to inform the CM
of losses, for querying the CM about network state, and
for constructing and splitting macroflows if the default
per-destination aggregation is unsuitable for an appli
cation.

2.1.1 State management

All CM applications call cm_open () before using the
CM, passing the source and destination addresses,
transport-layer port numbers, and protocol numbers
as arguments. This returns a CM flow identifier
(cm_flowid). which is used as a handle for all future
CM calls. vVhen a flow terminates, the application is
expected to call cm_close (cm_flowid) to clean up inter
nal state. If a flow has been inactive for a pre-configured
amount of time, its state in the CM is purged. Appli
cations can also use the cmJiltu () call to obtain the
maximum transmission unit (MTU, the largest unfrag
mented datagram size) to a destination. Inside the
CM, this is either pre-configured or obtained using path
MTU discovery to the receiver and cached [25].

2.1.2 Data transmission

There are three ways in which an application can use
the CM to transmit data. These allow a variety of adap
tation strategies, depending on the nature of the client
application and its software structure.

(i) Buffered send. This API is similar to a con
ventional blocking write() call, but the result
ing data transmission is paced by the Congestion
Manager. vVe use this to implement a generic
congestion-controlled UDP socket (without con
tent adaptation), useful for bulk transmissions
that do not require TCP-style reliability or fine
grained control over what data gets sent at any
point in time. While this is useful for bulk data, it
is not convenient for an adaptive sender that might
want to revisit and change prior transmission de
cisions once packets are buffered in the CM, when
it learns that network conditions have appreciably
changed.

(ii) Request/callback. This is the preferred mode
of communication for adaptive senders that are
based on the ALF principle. Here, the client
does not send any data via the CM; rather.
it makes a cm_request(cm_flowid) call and ex
pects a notification (implemented as a well-known
cmapp_send() client callback) at some point in the
future when this request is granted by the CM.
This approach puts the sender in firm control of

4

deciding what to transmit at any point in time
and allows it to track fine-grained changes in avail
able bandwidth. It allows the sender to adapt to
sudden changes in network performance, which is
hard to do in a conventional buffered transmission
API. The client callback is a grant for the flow
to send up to MTU bytes of data. Observe that
cm_request () does not take the number of bytes
or MTU-sized units as an argument; each call to
cm_request () is an implicit request for sending
up to MTU bytes. This simplifies the internal im
plementation of the CM scheduler and congestion
controller at the expense of a slightly more com
plex interface This API is ideally suited for an im
plementation of TCP, since it needs to make a de
cision at each stage about whether to retransmit
a segment or send a new one.

(iii) Rate callback. A self-timed application (eg.
vat which samples periodically from the audio de
vice) transmitting on a fixed schedule may re
ceive callbacks from the CM notifying it when
the parameters of its communication channel have
changed, so that it can change the frequency of
its timer loop or its packet size. Such clients do
not use the request/callback API-if clients want
their transmissions time-svnchronized, thev do it
themselves-the CM provides the necessary infor
mation via the cmapp_update () callback that in
forms the client of the current rate available to it,
the round-trip time, and packet loss rate along the
path. The client registers a callback threshold us
ing the cm_thresh(down, up) call; if the rate re
duces by a factor of down or increases by a factor
of up, the CM calls cmapp_update (). This trans
mission API is ideally suited for streaming layered
audio and video.

2.1 . .'J Application notifications

One of the goals of our work was to investigate a
CM implementation that made no kernel changes or
installed additional software at receivers on the In
ternet. Since performing congestion management re
quires feedback about transmissions, the CM provides
clients with functions to provide it with feedback.
A client calls cm_update (cm_flowid, nsent, nrecd,
lossmode, rtt) to inform the CM about the number
of sent and received packets. type of congestion loss if
any, and a round-trip time sample. The CM distin
guishes between "persistent'' congestion as would occur
on a TCP timeout, versus "transient'' congestion when
only one packet in a window is lost. It also allows con
gestion to be notified using Explicit Congestion Notifi
cation (ECN) [32]. which uses packet markings rather
than drops to infer congestion.

To perform accurate bookkeeping of the conges
tion window and outstanding bytes for a macroflow,
the CM needs to know of each successful transmission

from the host. Rather than encumber clients to report
this information, we modify the IP output routine to
call cm_notify(cm_flowid, nsent) on each transmis
sion. (The IP layer obtains the cm_flowid using a well
defined CM interface that takes the flow parameters
(addresses, ports. protocol field) as arguments.) How
ever. if a client decides not to transmit any data upon a
cmapp_send() callback invocation, it is expected to call
cm_notify(dst, 0) to allow the CM to permit some
other flows on the macroflow to transmit data.

2.1.4 Querying

If a client wishes to learn about its (per-flow) avail
able bandwidth and round-trip time, it can use the
cm_query() call that returns these quantities. This
is especially useful at the beginning of a stream when
clients can make an informed decision about the data
encoding to transmit (e.g., a large color or smaller grev-
scale image). ··

2.1.5 Macroftow management

One of the decisions the CM needs to make is the gran
ularity at which a macroflow is constructed, bv de
ciding which flows belong to a single macroflo~ and
share congestion information. vVhile the default is per
destination sharing, the CM API also provides two func
tions that allow applications to decide which of their
streams ought to belong (or not belong) to the same
macroflow.

cm_getmacroflow(cm_flowid) returns
a unique macroflow identifier, while
cm_setmacroflow(cm-1Ilacroflowid, cm_flowid)
sets the macroflow of the flow cm_flowid to
cmJilacroflowid. If the cmJilacroflowid that is
passed to cm_setmacroflow() is -1. then a new
macroflow is constructed and this is returned to the
caller. Each call to cm_setmacroflow() overrides the
previous macroflow association for the flow. should
one exist. vVe expect this API to become useful as the
CM starts getting deployed over networks with service
differentiation, such as differentiated services.

2.2 libcm: The CM library

The CM library provides the user with the convenience
of a callback-based API while separating them from the
details of how the kernel to user callbacks are imple
mented. vVhile direct function callbacks are convenient
and efficient in the same address space, as is the case
when the kernel TCP is a client of the CM, callbacks
from the kernel to user code in conventional operating
systems are more difficult. A key decision in the imple
mentation of libcm was choosing a kernel/user interface
that maximizes portability, and minimizes both perfor
mance overhead and the difficulty of integration with
existing applications. The resulting interface is:

5

1. select O on a single per-application CM control
socket. The write bit indicates that a flow mav
send data, and the exception bit indicates th~t
network conditions have changed.

2. Perform an ioctl to extract a list of all flow IDs
which may send, or to receive the current network
conditions for a flow.

2. 2.1 Implementation alternatives

vVe considered a number of mechanisms with which to
implement libcm. In this section, we discuss our rea
sons for choosing the control-socket+select+ioctl ap
proach.

vVhile much research has focused on reducing the
cost of crossing the user/kernel boundary (extensible
kernels in SPIN [6]. fast. generic IPC in Mach [4]. etc.)
many conventional operating systems remain limited
to more primitive methods for kernel-to-user notifica
tion, each with their own advantages and disadvan
tages. While functionality like the Mach port set-based
IPC would be ideal for our purposes, pragmaticallv we
considered four common mechanisms for kernel to ·user
communication: Signals, system calls, semaphores, and
sockets. A discussion of the merits of each follows.

Signals have several immediate drawbacks. First.
if the CM were to appropriate an existing signal for
its own use, it might conflict with an application us
ing the same signal. A voiding this conflict would re
quire the standardization of a new signal type, a pro
cess both slow and of questionable value, given the ex
istence of better alternatives. Second, the cost to an
application to receive a signal is relatively high, and
some legacy applications may not be signal-safe. vVhile
the new POSIX 1003.lb [16] soft realtime signals allow
delivering a 32-bit quantity with a signal. applications
would need to follow up a signal with a svstem call to
obtain all of the information the kernel ~ished to de
liver, since multiple flows may become readv at once.
For these reasons, we consider mandating the use of
signals the wrong course for implementing the kernel
to user callbacks. However, we provide an option for
processes to receive a SIGIO when their control socket
status changes, akin to POSIX asynchronous I/O.

System calls that block do not integrate well with
applications that already have their own event loop,
since without polling, applications cannot wait on the
results of multiple system calls. A svstem call is able
to return immediately with the dat; the user needs,
but the impediments it poses to application integration
are large. System calls would work well in a threaded
environment, but this presupposes threading support,
and the select-based mechanism we describe below can
be used in a threaded system without major additional
overhead.

Semaphores suffer from the immediate drawback
that they are not commonly used in network applica-

tions. For an application that uses semop on an ar
ray of semaphores as its event loop, a CM semaphore
might be the best implementation avenue, for manv of
the same reasons that we chose sockets for netw~rk
adaptive applications. However, most network appli
cations use socket sets instead of semaphore sets. and
sockets have a few other benefits. which we discuss next.

Sockets provide a well-defined and flexible inter
face for applications in the form of the select() svs
tem call, though they have a downside similar to that of
signals: an application wishing to receive a notification
via a socket in a non-blocking manner must select()
on the socket, and then perform a system call to obtain
data from the socket. However, a select-based inter
face meshes well with many network applications that
already have a select-loop based architecture. Utiliz
ing a control socket also helps restrict the code changes
caused by the CM to the networking stack.

Finally, we decided to use a single control socket
instead of one control socket per flow to avoid unnec
essary overhead in applications with large numbers of
open socket descriptors, such as select O-based web
servers and caches. Because some aspects of select scale
linearly with the number of descriptors, and many op
erating systems have limits on the number of open de
scriptors, we deemed doubling the socket load for high
performance network applications a bad idea.

2. 2. 2 Extracting data from the socket

Select provides notification that "some event'' has oc
cured. In theorv. 7 different events could be sent bv
abusing the reacl, write, and exception bits. but appli
cations need to extract more information than this. The
CM provides two types of callbacks. Generally speak
ing, the first is a "permission to send'' callback for a
particular flow. To maintain fairness. a loose order
ing should be preserved with these messages, but exact
ordering is unimportant provided no flows are ignored
until the application receives further updates (thereby
starving the flows). If multiple permission notifications
occur. the application should receive all of them so it
can send data on all available flows. The second call
back is a "status changed'' notification. If multiple sta
tus changes occur before the application obtains this
data from the kernel. then only the current status mat
ters.

The weak ordering and lack of history prompted us
to choose using an ioctl-based query instead of a read
or message queue interface, minimizing the state that
must be maintained in the kernel. Status updates sim
ply return the current CM-maintained network state
estimate, and "who can send'' queries perform a select
like operation on the flows maintained by the kernel. re
quiring no extra state, instead of a potentially expensive
per-process message queue or data stream. Returning
all available flows has an added benefit of reducing the
number of system calls which must be made if several

6

flows become ready simultaneously.

3 Engineering Network-adaptive Appli
cations

In this section, we describe several different classes of
applications, and describe the ways those applications
can make use of the CM. \Ve explore two in-kernel
clients. and several user-space data server programs,
and examine the task of integrating each with the CM.

3.1 Software Architecture Issues

Typical network applications fall into one of several cat
egories:

• Data-driven: Applications that transmit prespec
ified data, such as a single file, then exit.

• Synchronous event-driven: Self-timed data deliv
ery servers, like streaming audio servers.

• Asynchronous event-driven: File servers (http,
ftp) and other network-clocked applications.

The CM library provides several options for adap
tive applications that wish to make use of its services:

1. Data-driven applications may use the buffered
send API to efficiently pace their data transmis
sions.

2. An application may operate in an entirely
callback-based manner by allowing libcm to pro
vide its own event loop, calling into the applica
tion when flows are ready. This is most useful for
applications coded with the CM in mind.

3. Existing signal-driven applications may request a
SIGIO notification from the CM when an event
occurs

4. Existing applications with select-based event loops
can simply add the CM control socket into their
select set, and call the libcm dispatcher when the
socket is ready. Rate-clocked applications (or pure
polling-based applications) can perform a simi
lar nonblocking select test on the descriptor when
they awaken to send data, or, if they sleep, can
replace the sleep with a timed blocking select
call.

5. Applications may poll the CM on their own sched
ule.

6. Finally, applications may perform CM ioctl() s
directly, though this creates potential portability
and maintenence problems.

The remainder of this section describes how par
ticular clients use different CM APis, from the low
bandwidth vat audio application, to the performance
critical kernel TCP implementation.

3.2 TCP

\Ve implemented TCP as an in-kernel CM client.
TCP /CM offloads all congestion control to the CM.
while retaining all other TCP functionality (connection
establishment and termination. loss recovery and pro
tocol state handling). TCP uses the request/callback
API as low-overhead direct function calls in the same
protection domain. This gives TCP the tight control
it needs over packet scheduling. For example. while
the arrival of a new acknowledgement typically causes
TCP to transmit new data. the arrival of three dupli
cate ACKs instead causes TCP to retransmit an old
packet.

Connection creation. \Vhen TCP creates a new
connection via either accept (inbound) or connect
(outbound). it calls cm_open() to associate the TCP
connection with a CM flow. Thereafter. the pacing
of outgoing data on this connection is controlled bv
by the CM. When application data becomes avail
able. after performing all the non-congestion-related
checks (e.g .. the Nagle algorithm [40]. etc.) data is
queued and cm_request () is called for the flow. \Vhen
the CM scheduler schedules the flow for transmission.
the cmapp_send () routine for TCP is called. The
cmapp_send () for TCP transmits anv retransmission
from the retransmission queue. Othen:vise. it transmits
the data present in the transmit socket buffer bv send
ing up to one maximum segment size of data 1;er call.
Finally. the IP output routine calls cm_notify() when
the data is actually sent out.

TCP input. The TCP input routines now feed
back to the CM. Round trip time (RTT) sample col
lection is done as usual using either RFC 1323 times
tamps [18] or Karn ·s algorithm [20] and is passed to CM
via cm_update (). The smoothed estimates of the RTT
(srtt) and round-trip time deviation are calculated bv
the CM. which can now obtain a better average by cor~
bining samples from different connections to the same
receiver. This is available to each TCP connection via
cm_query () . and is useful in loss recoverv.

Data acknowledgements. On arri;al of an ACK
for new data. the TCP sender calls cm_update () to in
form the CM of a successful transmission. Duplicate ac
knowledgements cause TCP to check its dupack count
(dup_acks) and take appropriate action (as per TCP
semantics). If dup_acks < 3. then TCP does nothing.
If dup_acks == 3. then TCP assumes a packet loss.
and calls cm_update to inform the CM of the loss. TCP
also enqueues a retransmission of the lost segment and
calls cm_request (). If dup_acks > 3. TCP assumes
that a segment reached the receiver and caused this
ACK to be sent. It therefore calls cm_update (). When
the TCP retransmission timer expires. the sender iden
tifies that a segment has been lost and calls cm_update
with Cl\LPERSISTENT option set to signify the oc
currence of persistent congestion to the CM. TCP also
enqueues a retransmission of the lost segment and calls

7

cm_request ().
TCP /CM Implementation. The integration of

TCP and the CM required less than 100 lines of changes
to the existing TCP code. demonstrating both the flexi
bility of the CM API and the low programmer overhead
of implementing a complex protocol with the Conges
tion Manager.

3.3 Congestion-controlled UDP sockets

The CM also provides congestion-controlled UDP sock
ets. They provide the same functionalitv as standard
Berkeley UDP sockets. but instead ofimrn"ediatelv send
ing the data from the kernel packet queue to lo~er lav
ers for transmission. the buffered socket implement;
tion makes calls to the API exported by the CM inside
the kernel and gets callbacks from the CM. \Vhen a
CM UDP socket is created. it is bound to a particular
flow. Later. when data is added to the packet queue.
cm_request O is called on the flow associated with the
socket. \Vhen the CM schedules this flow for transmis
sion. it calls udp_ccappsend() in the CM UDP mod
ule. This function transmits one MTU from the packet
queue. and schedules transmission for any remaining
packets. The in-kernel implementation of the CM UDP
API adds no additional data copies or queue structures.
and all standard UDP options are supported. Modifv
ing existing applications to use this API requires onlv
providing feedback to the CM. and setting a socket 01;
tion on the socket.

A typical client of the CM UDP sockets will behave
as follows. after its usual network socket initialization:

flow= cm_open(dst, port)
setsockopt(flow, ... , CM_BUF)
loop:

<send data on flow>
<receive data acknowledgements>
cm_update(flow, sent, received, ...)

3.4 Streaming Layered Audio
Video

and

Streaming layered audio or video applications that have
a number of discrete rates at which thev can transmit
data are well-served by the CM rate callbacks. Instead
of requiring a comparatively expensive notification for
each transmission. these applications are instead noti
fied only in the rare event that their network conditions
change significantly. Layered applications open their
usual UDP socket. call cm_open() to obtain a control
socket. They operate in their own time event loop while
listening for status changes on their control socket. or
via a SIGIO. depending on their implementation. Thev
use cm_thresh() to inform the CM about changes f~r
which they should receive callbacks.

3.5 Real-time Adaptive Applications

Applications that desire to control which data is being
sent in real-time (i.e. those that do not want any buffer
i~g inside the kernel) use the request callback API pro
vided by the CM. On a callback from CM for transmis
sion of data, they may use cm_query () to discover the
network characteristics and adapt their content based
on that. Other servers may simply wish to send the
most up-to-date content possible, and so will defer their
data collection until they know they can send it. The
rough sequence of CM calls that are made to achieve
this in the application are :

flow= cm_open(dst)
cm_request(flow)
<receive cmapp_send() callback from libcm>
cm_query(flow, ...)
<send data>
cm_notify(flow, amount of data sent)
<receive data acks>
cm_update(flow, sent, lost, ...)

Other options exist for applications that wish to ex
ploit the unique nature of their network utilization to
r:duce the overhead of using the services of the Conges
t10n Manager. We discuss one such option below in the
manner in which we adapted the vat interactive audio
application to use the CM.

3.6 Interactive Real-time Audio

The vat application provides a constant bit-rate source
of interactive audio. Its inability to downsample its au
dio reduces the avenues it has available for bandwidth
adaptation. Therefore, the best way to make vat behave
in a network-friendly and backwards compatible man
ner is to preemptively drop packets to match the avail
abl: network bandwidth. There are, of course, compli
cat10ns. Network applications experience two types of
variation in available network bandwidth: long term
variations due to changes in actual bandwidth, and
short term variations due to the probing mechanisms
of the congestion control algorithm. Short-term varia
tion is_ typically _dealt with by buffering. Unfortunately,
buffering, especially FIFO buffering with drop-tail be
havior, the de-facto standard for kernel buffers and net
work router buffers, can result in long delay and signif
icant delay variation, both of which are detrimental to
vat's audio quality. vat therefore needs to act like an
ALF application, managing its own buffer space with
drop-from-head behavior when the queue is full.

The resulting architecture is detailed in figure 2.
The input audio stream is first sent to a policer which
provides long-term adaptation via preemptive' packet
dropping. The policer outputs into the application level
buffer, which can be configured in various sizes and
drop policies. This buffer feeds into the kernel buffer
on-demand as packets are available for transmission.

8

~ 64KAudio

Aclcs Data

Network

Policer

Kernel
Buffer

Figure 2. The adaptive vat architecture

500

450

400

350

I
~ 300

1
°g> 250

e
F

200

150

100

50
0 0.5 1.5 2.5

Packet Loss Rate(%)

3.5

TCP/CM f-------+----1

TCP/Linux 0 --x--~

4.5

Figure 3. Comparing throughput vs. loss for
TCP /CM and TCP /Linux. Rates are for a lOMbps
link with a 60ms RTT.

4 Experiments

This section describes several experiments that quantify
the costs and benefits of our CM implementation. Our
experiments show that using the Congestion Manager in
the kernel has minimal costs, and that even the worst
case overhead of the request/callback user-space API is
acceptably small.

Performance tests were performed on the Utah Net
work Testbed [21] using 350MHz Intel Pentium II
processors, 128MB PClO0 ECC SDRAM, and Intel
EtherExpress Pro/lO0B Ethernet cards, connected via
lO0Mbps Ethernet through an Intel Express 510T 24
port 10/ lO0Mbps Switch, with Dummynet channel sim
ulation. CM tests were run with Linux 2.2.9, with Linux
and FreeBSD clients.

To ensure the proper behavior of a flow the con
gestion control algorithm must behave in 'a "TCP
compatible" [7] manner. The CM implements a TCP
style window-based AIMD algorithm with slow start.
It shares bandwidth between eligible flows in a round
robin manner with equal weights on the flows.

11470

11460

11450

11440

11430

11420

11410

11400

Congestion Manager f------+----1
Native Linux TCP

11390 ~~~~~~~-~~~~~-~~~~~
1000 10000 100000 1e+06

Buffers transmitted

Figure 4. lO0Mbps TCP throughput comparison.
Note that the absolute difference in the worst case be
tween the Congestion Manager and the native TCP is
only 0.5%.

Figure 3 shows the throughput achieved by
the Linux TCP implementation (TCP /Linux) and
TCP with congestion control performed by the CM
(TCP /CM). There are slight algorithmic differences be
tween the two which lead to the small differences in ob
served throughput, but the congestion control provided
by the Congestion Manager still behaves in a network
friendly manner.

4.1 Kernel Overhead

To measure the kernel overhead, we measured the
CPU and throughput differences between the optimized
TCP /Linux and TCP /CM. The midrange machines
used in our test environment are sufficiently powerful
to saturate a lO0Mbps Ethernet with TCP traffic.

There are two components to the overhead imposed
by the congestion manager: The cost of performing ac
counting as data is exchanged on a connection, and a
one-time connection setup cost for creating CM data
structures. A microbenchmark of the connection es
tablishment time of a TCP /CM vs. TCP /Linux indi
cates that there is no appreciable difference in connec
tion setup times.

\Ve used long (megabytes to gigabytes) connections
with the ttcp utility to determine the long-term costs
imposed by the congestion manager. The impact of the
CM on extremely long term throughput was negligi
ble: in a 1 gigabyte transfer, the congestion manager
achieved identical performance (91.6 Mbps) as native
Linux. On shorter runs, the throughput of the CM di
verged slightly from that of Linux, but only by 0.5%.
The throughput rates are shown in figure 4. The dif
ference is due to the more conservative initial window
opening in the CM, not CPU overhead.

Because both implementations are able to saturate

g

80

60

40

20

~
" ft tr tr

0
1000 10000

~ ~ "
Buffers transmitted

Congestion Manager f------+----1
Native Linux TCP

" '

100000 1e+06

Figure 5. CPU overhead comparison between
TCP /Linux and TCP /CM. For long connections, the
CPU overhead converges to slightly under 1 % for the
unoptimized implementation of the CM.

the network connection, we looked at the CPU over
head incurred during these transmissions to determine
the steady-state overhead imposed by the Congestion
Manager. Figure 5 compares the CPU utilization of
the TCP /Linux and TCP /CM.

\Vith long-running connections, the CPU overhead
converged to slightly less than a 1 % difference between
the CM and the non-CM kernels. \Vith shorter connec
tions, the noise in the CPU overhead was too large for
statistically significant conclusions, but the processor
utilizations all lie within the same small ranges.

4.2 User-space API Overhead

The overhead incurred by our adaptation API is pri
marily in the form of extra user/kernel boundary cross
ings (select() and ioctl() system calls). A re
quest/ call back client is notified for each packet it may
send, and so represents the worst case overhead. The
buffered send API has overhead similar to that of in
kernel TCP, and the overhead imposed by the rate
change notification API varies with the frequency with
which rates change, but in most situations is quite low.

To measure the API overhead, we compared the
CPU utilization of the ttcp benchmark using the ker
nel TCP to a user-space program sending UDP packets
scheduled by the CM. ttcp was modified to force the
kernel to use a small segment size, resulting in transmis
sion behavior identical to the user-space program. The
test scenario was two machines connected via a 5Mbps
link with a 40ms round trip delay. (These test parame
ters were chosen to minimize the impact that the delay
software would have on accuracy.) The external behav
ior of the two programs is very similar-both send a
series of packets with TCP-style congestion avoidance.
By removing competing traffic, overhead due to TCP

40
Request/CallbackAPI f------+---1

Kernel TCP '---x--~

35

30

25

20

15

10

oL--~-------'==============-_J
0 200 400 600 800 1000

Maximum Segment Size (bytes)
1200 1400 1600

Figure 6. API Overhead. vVhen sending small packets.
the API imposes measurable overhead, but even with
the relatively modest processors in our test setup, the
request/callback API is able to saturate a lO0Mbps link
with 900 byte and larger packets.

retransmissions was minimized.
Using the request/callback API imposed between

2.5% to 18.5% additional CPU load, varying with
packet size. To put this in perspective, with the mod
est 350 Mhz processors in our testbed, our application
was still able to saturate a lO0Mbps Ethernet link when
sending packets of 900 bytes or larger.

Note that a real application that desired this be
havior would be better served by using the buffered
send APL which has much less overhead. The re
quest/callback API is designed for applications that
need last-minute control of their packet scheduling, for
whom the additional overhead is a worthwhile trade-off
for increased functionality.

4.3 Benefits of Sharing

One benefit of integrating congestion information with
the CM is immediately clear. A client that sequen
tially fetches files from a webserver with a new TCP
connection each time loses its prior congestion infor
mation, but with concurrent connections with the CM,
the server is able to use this information to start subse
quent connections with more accurate congestion win
dows. Figure 7 shows a test we performed across the
vBNS between MIT and the Universitv of Utah, where
an unmodified (non-CM) client perfor:med 8 retrievals
of the same 128k file with a 500ms delay between re
trievals, resulting in a 20% improvement in the trans
fer time for the later requests. (Other file sizes and
delays yield similar results.) This pattern of multiple
connections is still quite common in webservers despite
the adoption of persistent connections: Many browsers
and servers open 4 concurrent connections to a server.
and many servers do not support persistent connections.

10

1400
TCP/CM f------+---1

Linux TCP

1200

1000

800

600

400

200

Client Request#

Figure 7. Sharing TCP state: The client requests
the same file 8 times with a 500ms delay between re
quests. By sharing congestion information, the CM
enabled server is able to provide faster service for sub
sequent requests.

The higher initial time is due to the Cl\fs more conser
vative initial window opening.

4.4 Adaptive Applications

In this section, we demonstrate some of the network
adaptive behaviors enabled by the CM.

As noted earlier. applications that require tight
control over data scheduling use the request/callback
(ALF) APL and are notified by the CM as soon as they
can transmit data. The behavior of an adaptive lay
ering application run across the Internet between MIT
and the University of Utah using this API is shown
in figure 8. This application chooses a layer to trans
mit based upon the current rate, but sends packets as
rapidly as possible to allow its client to buffer more
data. We see that the CM is able to provide sufficient
information to the application to allow it to adapt prop
erly to the network conditions.

For self-clocked applications that base their trans
mitted data upon the bandwidth to the client (such as
conventional layered audio servers). the CM rate call
back mechanism provides a low-overhead mechanism
for adaptation, and allows clients to specify threshholds
for the notification callbacks. Figure 9 shows applica
tion adaptation using rate callbacks for a connection
between MIT and University of Utah. Here, the ap
plication decides which of the four layers it should send
based on notifications from the CM about rate changes.

Fl-om figures 8 and 9, we see from the increased oscil
lation rate in the transmitted layer that the ALF appli
cation is more responsive to smaller changes in available
bandwidth, whereas the rate callback application relies
occasionally on short-term kernel buffering for smooth
ing. There is an overhead vs. functionality trade-off

25000
,-------~--R_e_q"_'s~t c_alc-lba_,,_,p_:_pl_ica_tio_,~"'-=ing_:_C_M __ ~--~

Layertransmitted
Rate reported by CM -

20000

15000

10000

5000

0 □~---5□~00----,□~oo-□---,~50-□o---,-□o~o-□ --__J25000
Time(inmsec)

Figure 8. Adaptive layered application using request
callback (ALF) API

25000

20000

15000

"'

-
~ 10000

5000

Rate Callback application using CM

1
~1 Transmission Rate -if ate reported by CM -------

Figure 9. Adaptive layered application using rate call
back API

involved in the decision of which API to use, given the
higher overhead of the ALF APL but applications face
a more important decision about the behavior thev wish
to exhibit. ··

Some applications may be concerned about the over
head from receiver feedback. To mitigate this, an ap
plication may delay sending feedback; we see this in a
minor and inflexible way with TCP delaved acks. In
figure 10, we see that delaying feedback to the CM
causes burstiness in the reported bandwidth. Here, the
feedback by the receiver was delayed by min(500 acks,
2000ms). The initial slow start is delaved bv 2s wait
ing for the application, then the updat~ cau;es a large
rate change. Once the pipe is sufficientlv full, 500 acks
come relatively rapidly, and the normal..though burstv.
non-timeout behavior resumes. ··

11

20000

15000

10000

5000

0 oL-""'--=,=oo~oo--,~□o-□o--,~□o-□o--•□~o-□o--5□~oo-□--,□~oo-□ -__J7oooo
Time(inmsec)

Figure 10. Adaptive layered application using rate
callback API with delayed feedback

5 Discussion

\Ve have shown several benefits of integrated flow man
agement and the adaptation APL and have explored the
design features that make the API easv to use. This sec
tion describes an optimization useful for busv servers
and discusses some drawbacks of the current CM archi~
tecture.

Optimizations. Servers with large numbers of con
current clients are often very sensitive to the overhead
caused by multiple kernel boundary crossings. To re
duce this overhead, we can batch several sockets into
the same cm_request call with the cm_bulk_request
call, and its corresponding bulk query, notify, and
update calls.

By multiplexing control information for manv sock
ets on each CM call, the overhead associated witl{ multi
ple kernel crossing is avoided, at the expense of manag
ing more complicated data structures for the CM inter
face. The bulk querying is already performed in libcm
when multiple flows are ready during a single ioctl to
determine which flows can send data, but this completes
the interface.

Trust issues. Because our goal was an architec
ture that did not require modifications to receivers, we
devised a system where applications provide feedback
using the cm_update () call. The consequence of this is
that there is a potential for misuse, due to bugs or mal
ice. For example, the CM client could repeatedlv mis
inform the CM about the absence of congestion along a
path and obtain higher bandwidth. \Ve do not believe
that this in any way increases the vulnerabilitv of the
Internet to such problems because this is easv t·o do to
day. More important is the possibility of an ;pplication
to falsely report congestion along a path and prevent
another flow on the same macroflow, but belonging to
a different process. from making progress. \Vhile this is
a possibility. we believe that the incentive for such be-

havior is small, since the malicious flow would also get
low performance. FHrthermore, we intend to explore
macroflow-splitting algorithms that dynamically adjust
the composition of macroflows based on flows sharing
common performance. Another form of abuse is when
a malicious receiver attempts to defeat congestion con
trol, as pointed out [37]. The techniques proposed there
can be used in the CM as well.

Macroflow construction Some Internet Service
Providers deploy network-layer load balancers that
route packets belonging to different flows along differ
ent paths inside the network. which might violate the
granularity assumptions made in the CM. However, un
less such balancers are careful, they would route pack
ets on the same TCP connection along different paths,
which would confound its loss recovery and reordering
detection schemes. \Ve observe that as long as such load
balancers work on the granularity of host addresses,
there will be no problems for the CM to tackle.

\Vhen differentiated services start being deployed,
the CM would have to reconsider the default choice of a
macroflow. \Ve expect to be able to gain some benefit by
including the IP differentiated-services field in deciding
the composition of a macroflow.

Finally, we observe that remote LANs are not often
the bottleneck for an outside communicator. As sug
gested in [42, 36] among others, aggregating congestion
information about remote sites with a shared bottleneck
and sharing this information with local peers may ben
efit both users and the network itself. A macroflow may
thus be extended to cover multiple destination hosts, all
behind the same shared bottleneck link. The efficient
determination of such bottlenecks remains an open re
search problem.

6 Related work

Designing adaptive network applications has been an
active area of research for the past several years. In
1990, Clark and Tennenhouse [10] advocated the use
of application-level framing (ALF) for designing net
work protocols, where protocol data units are chosen
in concert with the application. Using this approach,
an application can have a greater influence over decid
ing how loss recovery occurs than in the traditional lay
ered approach. The ALF philosophy has been used with
great benefit in the design of several multicast transport
protocols including the Real-time Transport Protocol
(RTP) [38], frameworks for reliable multicast [13, 33],
and Internet video [23, 35].

Adaptation APis in the context of mobile informa
tion access were explored in the Odyssey system [26].
Implemented as a user-level module in the NetBSD op
erating system, Odyssey provides API calls by which
applications can manage system resources, with upcalls
to applications informing them when changes occur in
the resources that are available. In contrast, our CM
system is implemented in-kernel since it has to manage

12

and share resources across applications (e.g., TCP) that
are already in-kernel. This necessitates a different ap
proach to handling application callbacks. In addition,
the CM approach to measuring bandwidth and other
network conditions is tied to the congestion avoidance
and control algorithms, as compared to the instrumen
tation of the user-level RPC mechanism in Odyssey.
\Ve believe that our approache to providing adapta
tion information for bandwidth, round-trip time, and
loss rate complements Odyssey's management of disk
space, CPU, and battery power.

The CM system uses application callbacks or up
call8 as an abstraction, an old idea in operating systems.
Clark describes upcalls in the Swift operating system,
where the motivation is a lower layer of a protocol stack
synchronously invoking a higher-layer function across a
protection boundary [8]. The Mach system used the no
tion of port8, a generic communication abstraction for
fast inter-process communication (IPC). POSIX speci
fies a standard way of passing "soft real-time signals''
that can be used to send a notification to a user-level
process, but it restricts the amount of data that can be
communicated to a 32-bit quantity.

Event delivery abstractions for mobile computing
have been explored in [1], where "monitored'' events
are tracked using polling and "triggered'' events (e.g.,
PC card insertion) are notified using IPC. This work
defines a language-level mechanism based on C++ ob
jects for event registration, delivery, and handling. This
system is implemented in Mach, using its ports as the
abstraction.

Our approach is to use a select() call on a control
socket to communicate information between kernel and
user-level. The recent work of Banga et al. to improve
the performance of this type of event delivery can be
used to further improve our performance.

The Microsoft \Vinsock implementation is largely
callback-based, but here callbacks are implemented as
conventional function calls since \Vinsock is a user-level
library within the same protection boundary as the ap
plication [31]. The main reason we did not implement
the CM as a user-level daemon was because TCP is al
ready implemented in-kernel in most UNIX operating
systems, and it is important to share network informa
tion across TCP flows.

Quality-of-service (QoS) interfaces have been ex
plored in several operating systems, including Neme
sis [15]. Like the exokernel approach [19] and SPIN [6],
Nemesis enables applications to perform as much of the
processing as possible on their own using application
specific policy, supported by a different set of operat
ing system abstractions from UNIX. \Vhereas Neme
sis treats local network-interface bandwidth as the re
source to be managed, we take a more end-to-end ap
proach of discovering the end-to-end performance to dif
ferent end-hosts, enabling sharing across common net
work paths. FHrthermore, the API exported by Nemesis
is useful for applications that can make resource reser-

vations, while the CM API provides information about
network conditions.

Multiple concurrent streams can cause problems for
TCP congestion control. First, the ensemble of flows
probes more aggressively for bandwidth than a single
flow. Second, upon experiencing congestion along the
path, only a subset of the connections usually reduce
their window. Third, these flows do not share any in
formation between each other. \Vhile we propose a gen
eral solution to these problems, application-specific so
lutions have been proposed in the literature. Of partic
ular importance are approaches that multiplex several
logically distinct streams onto a single TCP connection
at the application level. including Persistent-connection
HTTP (P-HTTP [28], part ofHTTP/1.1 [11]), the Ses
sion Control Protocol (SCP) [39], and the MUX pro
tocol [14]. Unfortunately, these solutions suffer from
two important drawbacks. First, because they are
application-specific, they require each class of applica
tions (\Veb, real-time streams, file transfers, etc.) to
reimplement much of the same machinery. Second, they
cause an undesirable coupling between logically differ
ent streams: if packets belonging to one of the streams
is lost, another stream could stall even if none of its
packets are lost because of the in-order "linear'' deliv
ery forced by TCP. Independent data units belonging
to different streams are no longer independently proces
sible and the parallelism of downloads are often lost.

7 Conclusion

The CM system enables applications to obtain an un
precedented degree of control over what they can do
in response to different network conditions. It incorpo
rates robust congestion control algorithms, freeing each
application from having to reimplement them. It ex
poses a rich API that allows applications to adapt their
transmissions at a fine-grained level. and allows the ker
nel and applications to integrate congestion information
across flows.

The implementation of the CM provides easy-to-use
facilities for congestion control and integrated flow man
agement. Our performance evaluation shows that it is
possible for an operating system to incorporate these
services with low overhead.

References

[1] BADRI:\'ATH, B. R., Ai\'D 'iVELLI:\'G, G. Event Delivery
Abstraction for Mobile Computing. Tech. Rep. LCSR
TR-242, Rutgers University, 1995.

[2] BALAKRISH:\'Ai\', H., PADMA:\'ABHA:\', \!. N., SESHA:\',
S., STEMM, M., Ai\'D KATZ, R. TCP Behavior of a
Busy \,Veb Server: Analysis and Improvements. In Proc.
IEEE INFOCOM (San Francisco, CA, Mar. 1998).

[3] BALAKRISH:\'Ai\', H., RAIH:L, H. S., Ai\'D SESHA:\', S.
An Integrated Congestion Management Architecture

13

for Internet Hosts. In Proc. ACM SIGCOMM (Sep
1999).

[4] BARRERA, .J. S. A fast Mach network IPC implemen
tation. pp. 1-12.

[5] BER:\'ERS-LEE, T., FIELDI:\'G, R., Ai\'D FRYSTYK, H.
Hypertext Tran.sfer Protocol-HTTP/1.0. Internet En
gineering Task Force, May 1996. RFC 1945.

[6] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER,
E. G., Fit:CZY:\'SKI, M. E., BECKER, D., CHAMBERS,
C., Ai\'D EGGERS, S. Extensibility, safety, and perfor
mance in the SPIN operating system. pp. 267-284.

[7] BRADE:\', B., CLARK, D., CROWCROFT, .J., DAVIE,
B., DEERI:\'G, S., ESTRI:\', D., FLOYD, S., .JACOBSO:\',
\!., }VlI:\'SHALL, G., PARTRIDGE, C., PETERSO:\', L.,
RAMAKRISH:\'Ai\', K., SHE:\'KER, S., •iVROCLAWSKI, .J.,
Ai\'D ZHA:\'G, L. Recornrnendation.s on (Jueue Manage
ment and Conge.stion Avoidance in the Internet. Inter
net Engineering Task Force, Apr 1998. RFC 2309.

[8] CLARK, D. The Structuring of Systems Using Upcalls.
In Proc. SOSP 10 (Dec. 1985), pp. 171-180.

[9] CLARK, D. The Design Philosophy of the DARPA
Internet Protocols. In Proc. ACM SIGCOMM (Aug.
1988).

[10] CLARK, D., Ai\'D TE:\'i\'Ei\'HOt:SE, D. Architectural
Consideration for a New Generation of Protocols. In
Proc. ACM SIGCOMM (September 1990).

[11] FIELDI:\'G, R., GETTYS, .J., MOGt:L, .J., FRYSTYK, H.,
Ai\'D BER:\'ERS-LEE, T. Hypertext Tran.sfer Protocol
HTTP/1.1. Internet Engineering Task Force, .Jan 1997.
RFC 2068.

[12] FLOYD, S., Ai\'D FALL, K. Promoting the Use of End
to-End Congestion Control in the Internet. IEEE/ACM
Tran.s. on Networking 7, 4 (Aug. 1999).

[13] FLOYD, S., .JAconsoi\', V., McCA:\'i\'E, S., Lit:, C. G.,
Ai\'D ZHA:\'G, L. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
In Proc. ACM SIGCOMM (Sept. 1995).

[14] GETTYS, .J. MUX protocol specification, WD-MUX-
961023. http://www.w3.org/pub/WWW/Protocols/
MUX/WD-mux-961023. html, 1996.

[15] I. LESLIE Ai\'D D. McAt:LEY Ai\'D R. BLACK Ai\'D T.
ROSCOE Ai\'D P. BARHAM Ai\'D D. EVERS Ai\'D R. FAIR
BAIR:\'S Ai\'D E. HYDE:\'. IEEE Journal on Selected Ar
ea.s in Cornrnunication.s 14, 7 (September 1996), 1280-
1297.

[16] Ii\'ST!Tt:TE OF ELECTRICAL Ai\'D ELECTRO:\'ICS Ei\'GI
i\'EERS, Ii\'C. IEEE Standard for Information Technol
ogy - Portable Operating Sy.stern Interface (POSIX)
- Part 1: Sy.stern Application Programming Interface
(API) - Amendment 1: Realtirne Exten.sion {C Lan
guage}, 1994. Std 1003.lb-1993.

[17] .JACOBSO:\', V. Congestion Avoidance and Control. In
Proc. ACM SIGCOMM (Aug 1988).

[18] .JACOBSO:\', V., BRADE:\', R., Ai\'D I30RMA:\', D. TCP
Exten.sion.s for High Performance. Internet Engineering
Task Force, May 1992. RFC 1323.

[19] KAASHOEK, M. F., Ei\'GLER, D. R., GA:\'GER, G. R.,
I3mcERo, H. M., Ht:i\'T, R., MAZIERES, D., PI:\'CK
i\'EY, T., GRIMM, R., .JA:\'i\'OTTI, .J., Ai\'D }VlACKE:\'ZIE,
K. Application performance and flexibility on exokernel
systems. In Proceeding.s of the 16th A CM Sympo.sium on
Operating Sy.stern.s Principle.s (SOSP '97} (Saint-Malo,
France, October 1997), pp. 52-65.

[20] KAR:\', P., Ai\'D PARTRIDGE, C. Improving Round-Trip
Time Estimates in Reliable Transport Protocols. A CM
Tran.saction.s on Computer Sy.stern.s 9, 4 (Nov. 1991),
364-373.

[21] LEPREAt:, .J., ALFELD, C., Ai\'DERSE:\', D., Ai\'D
MARE:\', K. V. A large-scale network testbed. Un
published, in 1999 SIGCOMM works-in-progress. http:
/ /www. cs. utah. edu/flux/testbed/, Sept. 1999.

[22] The MASH Project Home Page. http:/ /www-mash. cs.
berkeley. edu/mash/, 1999.

[23] McCA:\'i\'E, S., .JACOBSO:\', \!., Ai\'D \!ETTERLI, M.
Receiver-driven Layered Multicast. In Proc ACM SIG
COMM (Aug. 1996).

[24] Microsoft Windows Media Player.
microsoft.com/windows/mediaplayer/.

http://www.

[25] MoGt:L, .J., Ai\'D DEERI:\'G, S. Path MTU Di.sea-very.
Internet Engineering Task Force, Nov 1990. RFC 1191.

[26] NOBLE, I3., SATYA:\'ARAYA:\'Ai\', }VI., NARAYA:\'Ai\', D.,
TILTO:\', .J., FLI:\'i\', .J., Ai\'D •iVALKER, K. Agile
Application-Aware Adaptation for Mobility. In Proc.
16th A CM Sympo.sium on Operating Sy.stem.s Princi
ple.s (Oct 1997).

[27] PADMA:\'ABHA:\', V. Addre.s.sing the Challenge.s of Web
Data Tran.sport. PhD thesis, Univ. of California, Berke
ley, Sep 1998.

[28] PADMA:\'ABHA:\', V. N., Ai\'D MoGt:L, .J. C. Improving
HTTP Latencv. In Proc. Second International WWW
Conference (Oct. 1994).

[29] POSTEL, .J. I3. U.ser Datagram Protocol. Internet En
gineering Task Force, August 1980. RFC 768.

[30] POSTEL, .J. I3. Tran.smi.s.sion Control Protocol. Internet
Engineering Task Force, September 1981. RFC 793.

[31] Qt:1:\'i\' 1 I3., Ai\'D Smt:TE, D. Window.s Socket.s Network
Programming. Addison-\,Vesley, .Jan. 1999.

[32] RAMAKRISH:\'Ai\', K., Ai\'D FLOYD, s. A Propo.sal to
Add Explicit Conge.stion Notification (ECN) to IP. In
ternet Engineering Task Force, .Jan 1999. RFC 2481.

[33] RAMA:\', S., Ai\'D McCA:\'i\'E, S. Scalable Data Naming
for Application Level Framing in Reliable Multicast. In
Proc. ACM Multimedia (Sept. 1998).

[34] Real Networks. http://www.real.com/.

14

[35] REJAIE, R., HA:\'DLEY, M., Ai\'D ESTRI:\', D. RAP: An
End-to-end Rate-based Congestion Control Mechanism
for Realtime Streams in the Internet. In Proc. IEEE
INFOCOM (March 1999).

[36] SAVAGE, S., CARDWELL, N., Ai\'D Ai\'DERSO:\', T. The
Case for Informed Transport Protocols. In Proc. 7th
Work.shop on Hot Topic.s in Operating Sy.stem.s (HotOS
VII) (Mar 1999).

[37] SAVAGE, S., CARDWELL, N., •i\:ETHERALL, D., Ai\'D
Ai\'DERSO:\', T. TCP Congestion Control with a Mis
behaving Receiver.

[38] SCIH:LZRI:\'i\'E, H., CAS:\'ER, S., FREDERICK, R., Ai\'D
.JACOBSO:\', V. RTF: A Tran.sport Protocol for Real
Time Application.s. Internet Engineering Task Force,
.Jan 1996. RFC 1889.

[39] SPERO, S. Session Control Protocol (SCP).
http://www.w3.org/pub/WWW/Protocols/HTTP-NG/
http-ng-scp. html, 1996.

[40] STEVE:\'S, \\,-. R. TCP/IP Illu.strated, Volume 1.
Addison-\,Vesley, Reading, MA, Nov 1994.

[41] TA:\',\\,-., Ai\'D ZAKHOR, A. Real-time Internet Video
Using Error Resilient Scalable Compression and TCP
friendly Transport Protocol. IEEE Tran.s. on Multime
dia (May 1999).

[42] Tot:CH, .J. TCP Control Block Interdependence. Inter
net Engineering Task Force, April 1997. RFC 2140.

