
Dosand Don’ts of Client Authentication on the Web

Kevin Fu,Emil Sit, KendraSmith,Nick Feamster�
fubob,sit, kendras,feamster� @mit.edu

MIT Laboratory for ComputerScience
http://cookies.lcs.mit.edu/

Abstract

Client authenticationhasbeena continuoussourceof
problemson theWeb. Althoughmany well-studiedtech-
niquesexist for authentication,Websitescontinueto use
extremely weak authenticationschemes,especiallyin
non-enterpriseenvironmentssuchasstorefronts. These
weaknessesoftenresultfrom carelessuseof authentica-
tors within Web cookies. Of the twenty-seven siteswe
investigated,we weakenedthe client authenticationon
two systems,gainedunauthorizedaccesson eight, and
extractedthesecretkey usedto mint authenticatorsfrom
one.

We provide a descriptionof the limitations, require-
ments,andsecuritymodelsspecificto Webclientauthen-
tication. This includesthe introductionof the interrog-
ative adversary, a surprisinglypowerful adversarythat
canadaptively querya Website.

We proposea setof hintsfor designinga secureclient
authenticationscheme.Usingthesehints,wepresentthe
designand analysisof a simple authenticationscheme
secureagainstforgeriesby the interrogative adversary.
In conjunctionwith SSL, our schemeis secureagainst
forgeriesby theactiveadversary.

1 Intr oduction

Client authenticationis a common requirementfor
modernWeb sitesas more and more personalizedand
access-controlledservicesmove online. Unfortunately,
many sitesuseauthenticationschemesthatareextremely
weakandvulnerableto attack.Theseproblemsaremost
oftendueto carelessuseof authenticatorsstoredon the

MIT TechnicalReport818. Appendixupdatedon September7, 2001.
This researchwas supportedby a USENIX scholarsfellowship. A
shorterversionof this documentwasoriginally publishedin the Pro-
ceedingsof the10thUSENIX SecuritySymposium,Washington,D.C.,
August,2001.

client. Weobservedthis in aninformalsurvey of authen-
ticationmechanismsusedby variouspopularWebsites.
Of thetwenty-sevensiteswe investigated,we weakened
theclientauthenticationof two systems,gainedunautho-
rized accesson eight, andextractedthe secretkey used
to mint authenticatorsfrom one.

This is perhapssurprisinggiven the existing client
authentication mechanismswithin HTTP [16] and
SSL/TLS[11], two well-studiedmechanismsfor provid-
ing authenticationsecureagainsta rangeof adversaries.
However, therearemany reasonsthatthesemechanisms
are not suitablefor useon the Web at large. Lack of
a centralinfrastructuresuchasa public-key infrastruc-
ture or a uniform Kerberos[40] contributesto the pro-
liferation of weak schemes.We also found that many
Websiteswould designtheir own authenticationmecha-
nismto provide a betteruserexperience.Unfortunately,
designersand implementersoften do not have a back-
groundin securityand,asa result,do not have a good
understandingof the tools at their disposal.Becauseof
thislackof controloveruserinterfacesandunavailability
of a client authenticationinfrastructure,Web sitescon-
tinue to reinvent weakhome-brew client authentication
schemes.

Our goal is to provide designersand implementers
with a clearframework within which to think aboutand
build secureWeb client authenticationsystems.A key
contributionof thispaperis to realizethattheWebis par-
ticularly vulnerableto adaptive chosenmessageattacks.
Wecall anadversarycapableof performingtheseattacks
aninterrogativeadversary. It turnsout thatfor mostsys-
tems,everyuseris potentiallyaninterrogativeadversary.
Despitehaving nospecialaccessto thenetwork (in com-
parisonto theeavesdroppingandactiveadversary),anin-
terrogativeadversaryis ableto significantlycompromise
systemsbyadaptivelyqueryingaWebserver. Webelieve
that, at a minimum, Web client authenticationsystems
shoulddefendagainstthis adversary. However, with this
minimumsecurity, sitesmaycontinueto bevulnerableto
attackssuchaseavesdropping,serverimpersonation,and
streamtampering. Currently, the bestdefenseagainst

1

suchattacksis to useSSLwith someform of client au-
thentication;seeRescorla[36] for moreinformationon
thesecurityandproperusesof SSL.

In Section 2, we describethe limitations, require-
ments,andsecuritymodelsto considerin designingWeb
client authentication.Using thesedescriptions,we cod-
ify the principles underlying the strengthsand weak-
nessesof existing systemsasa setof hints in Section3.
As anexample,wedesignasimpleandflexible authenti-
cationschemein Section4. Weimplementedthisscheme
and analyzedits securityand performance;we present
thesefindingsin Sections5 and6. Section7 compares
thework in thispaperto prior andrelatedwork. Wecon-
cludewith a summaryof our resultsin Section8. The
appendixdescribesseveralexistingclientauthentications
schemesin detail.

2 Security modelsand definitions

Clientswantto ensurethatonly authorizedpeoplecan
accessandmodify personalinformationthat they share
with Websites.Similarly, Websiteswant to ensurethat
only authorizedusershave accessto the servicesand
contentit provides. Client authenticationaddressesthe
needsof bothparties.

Client authenticationinvolvesproving the identity of
a client (or user)to a serveron the Web. We will use
theterm“authentication”to referto thisproblem.Server
authentication,thetaskof authenticatingtheserverto the
client, is alsoimportantbut is not thefocusthis paper.

In this section,we presentanoverview of thesecurity
modelsanddefinitionsrelevant in client authentication.
Webeginby describingthepracticallimitationsof aWeb
authenticationsystem.This is followedby a discussion
of commonrequirements.We thencharacterizetypesof
breaksandadversaries.

2.1 Practical limitations

Webauthenticationis primarily apracticalproblemof
deployability, useracceptability, andperformance.

Deployability

Web authenticationprotocolsdiffer from traditional
authenticationprotocolsin partbecauseof thelimited in-
terfaceofferedby theWeb. Thegoalis to developanau-
thenticationsystemby usingtheprotocolsandtechnolo-
gies commonlyavailable in today’s Web browsersand
servers.Authenticationschemesfor theInternetat large

cannotrely on technologynot widely deployed. For ex-
ample,Internetkioskstodaydonothavesmartcardread-
ers. Similarly, homeconsumerscurrentlyhave little in-
centive to purchasesmartcardreadersor otherhardware
tokensystems.

Theclientgenerallyspeaksto theserverusingtheHy-
pertext TransferProtocol(HTTP[14]). Thismaybespo-
kenover any transportmechanismbut is typically either
TCPor SSL.SinceHTTP is a stateless,sessionlesspro-
tocol, theclient mustprovide anauthenticationtokenor
authenticatorwith eachrequest.

Computationallows the browser to transforminputs
beforesendingthemto theserver. Thiscomputationmay
be in a strictly definedmanner, suchasin HTTP Digest
authentication[16] and SSL, or it may be much more
flexible. Flexible computationis availablevia Javascript,
Java, Tcl, ActiveX, Flash,andShockwave. Depending
on theapplication,thesetechnologiescouldperhapsas-
sistin theauthenticationprocess.However, mostof these
technologieshave high startupoverheadand mediocre
performance.As a result, usersmay chooseto disable
thesetechnologies.Also, theseextensionsmay not be
availableonall operatingsystemsandarchitectures.Any
standardauthenticationschemeshouldbeasportableand
lightweight aspossible,andthereforerequirefew or no
browserextensions.Thusfor today’s use,any authenti-
cationschemeshouldavoid usingclient computationfor
deployability reasons.If absolutelynecessary, Javascript
andJavaarecommonlysupported.

Client stateallows the client’s browser to storeand
reuseauthenticators.However, storagespacemay be
very limited. In the most limited case, the browser
canonly storepasswordsassociatedwith realms(as in
HTTP Basicauthentication[16]). A moreflexible form
of storagewhich is commonlyavailable in browsersis
thecookie[24, 31]. Cookiesallow a serverstorea value
on a client. In subsequentHTTP requests,the client
automaticallyincludesthe cookie value. A numberof
attributescancontrol how long cookiesarekept andto
whichserversthey aresent.In particular, theservermay
requestthat the client discardthe cookie immediately
or keepit until a specifiedtime. The server may also
requestthat the client only return the cookie to certain
hosts,domains,ports,URLs, or only over securetrans-
ports.Cookiesarethemostwidely deployedmechanism
for maintainingclient state.

Useracceptability

Web sitesmustalsoconsideruseracceptability. Be-
causesiteswantto attractmany users,theclientauthenti-
cationmustbeasnon-confrontationalaspossible.Users

2

will be discouragedby schemesrequiringwork suchas
installingaplug-in or clicking awaydialogboxes.

Performance

Strongersecurityprotocolsgenerallycostmorein per-
formance. Serviceprovidersnaturallywant to respond
to asmany requestsaspossible.Cryptographicsolutions
will usuallydegradeserverperformance.Authentication
shouldnotneedlesslyconsumevaluableserverresources
suchasmemoryandclock cycles.With currenttechnol-
ogy, SSLbecomesunattractive becauseof thecomputa-
tional costof its initial handshaking.

2.2 Server security requirements

The goalsof a server’s authenticationsystemdepend
on thestrengthandgranularityof authenticationdesired.
Granularityrefersto the fact that someservers identify
individualusersthroughouta session,while othersiden-
tify usersonly during the first request. A fine-grained
systemis usefulif specificauthorizationor accountabil-
ity of a useris required. A coarse-grainedsystemmay
bepreferredin situationswherepartialuseranonymity is
desired.

A simpleexampleof acoarse-grainedserviceis asub-
scriptionservice[41]. Subscriptionservicesmerelywish
to verify that a userhaspaid for the servicebeforeal-
lowing accessto read-onlycontent. During the initial
request,a usercould authenticatewith a usernameand
password. Unlesstheserviceallowscustomization,sub-
sequentrequestsneedonly verify that a userhasbeen
authenticatedwithout knowing theuser’sactualidentity.
A trustedthird partycouldhandlethe initial authentica-
tion of a user. Somespecificexamplesof sitesthatonly
requirethis level of authenticationarenewspapers(e.g.,
WSJ.com), online libraries(e.g.,acm.org), andadult
entertainment(e.g.,playboy.com).

However, mostsitescustomizethe datasentbackto
users. This naturally requiresa fine-grainedsystem.
Eachusermustbeidentifiedspecificallyto usetheirpref-
erences.Examplesof this includesitesthatallow users
to customize look-and-feel (e.g., slashdot.org),
sitesthat filter information on behalf of the user(e.g.,
infobeat.com), or siteswhich provide onlineidenti-
ties(e.g.,hotmail.com).

2.3 Confidentiality and pri vacy

Confidentialityis not strictly relatedto authentication
but it is worth mentioningaswell, sinceit canbe pro-
vided by cryptographyand since it is often confused

with authentication.A systemthatprovidesconfidential-
ity protectstraffic from disclosureby anyoneexceptthe
senderandrecipient. In contrast,a systemthatprovides
authenticationensuresthatthepersonsendingor receiv-
ing thedatais indeedwho they claim to be.Thismaybe
confusingbecauseSSL,theonly widely deployedmech-
anism for providing confidentiality of HTTP transac-
tions,providesoptionsfor both authenticationandcon-
fidentiality. The distinctionbetweenconfidentialityand
authenticationis furtherblurredby thepracticeof current
browsersof displayinga singlepadlockwhosemeaning
is ambiguous.

Typically, servers chooseto provide confidentiality
for only certainspecialdataby using SSL. For exam-
ple, financialdatarequireconfidentiality. Sitesthatdeal
with suchinformation,online brokerages, may be auc-
tion sites(e.g., ebay.com), banksandotherfinancial
serviceproviders(e.g.,etrade.com), or online mer-
chants(e.g.,FatBrain.com).

Another issuecommonlyassociatedwith authentica-
tion is userprivacy. Privacy refersto protectingthedata
availableon theserver from accessby unauthorizedpar-
ties. While oftenthe informationprovidedby theserver
is not itself secret,onedoesnot usuallywant unknown
partiesdiscovering their personalinterests. For exam-
ple, a usermay sign up to seediscountairfaresto San
Franciscoor selectstocksin aportfolio for updatedstock
quotes.While thefactthatUS Airwaysis offeringa low
fareor thatCiscostockhasshedfour pointsis not in any
waysecret,it maybetelling to find outif aparticularuser
is interestedin that information.Thereforeserversoften
needto provide waysto keeppersonalizeddataprivate.
Privacy canbe achieved by usingsecureauthentication
andproviding confidentiality.

2.4 Breaks

An adversary’s goal is to break an authentication
schemefasterthanby bruteforce.Hereweuseterminol-
ogy looselyborrowedfrom cryptographyto characterize
thekindsof breaksanadversarycanachieve[18, 30].

In an existential forgery, the adversarycan forge an
authenticatorfor at leastoneuser. However, the adver-
sarycannotchoosetheuser. This maybemostinterest-
ing in the casewhereauthenticatorsprotectaccessto a
subscriptionservice.While anexistentialforgerywould
not give anadversaryaccessto a chosenuser’s account,
it would allow the adversaryto accesscontentwithout
payingfor it. This is theleastharmfulkind of forgery.

In a selectiveforgery, the adversarycanforge an au-
thenticatorfor a particularuser. This adversarycanac-

3

cessany chosenuser’s personalizedcontent,be it Web
e-mailor bankstatements.

Note thata forgery implies theconstructionof a new
authenticator, not onepreviously seen. In a traditional
replayattack, theadversaryis merelyreusinga captured
authenticator.

Finally, a total breakresultsin recovery of the secret
key usedto mint authenticators.This is themostserious
breakin that it allows the adversaryto constructvalid
authenticatorsatany time for all users.

2.5 Adversaries

Weconsiderthreekindsof adversariesthatattackWeb
authenticationprotocols: the interrogative adversary,
the eavesdroppingadversary, andthe activeadversary.
Eachsuccessive adversarypossessesall the abilities of
the weaker adversaries.Note that our definitionsdiffer
somewhat from tradition. Our adversariesgatherinfor-
mation and apply this information to achieve a break.
The adversariesdiffer from eachotheronly in their in-
formationgatheringability.

Interr ogative adversary

The interrogative adversary can make a reasonable
numberof queriesof a Web server. It can adaptively
chooseits next query basedon the answerto a previ-
ous query. We namedthis the interrogative adversary
becausetheadversarymakesmany queries,but lacksthe
ability to sniff thenetwork.

The ability to make queriesis surprisingly power-
ful. The adversarycan passattemptedforgeriesto the
server’s verificationroutine. By creatingnew accounts
on a server, the adversarycan obtain the authenticator
for many differentusernames.This is possibleon any
serverthatallowsaccountcreationwithoutsomeform of
out-of-bandauthentication(e.g.,credit cards)to throttle
requests.In thispaperweassumenosuchthrottleexists.

The interrogative adversarycanalsouseinformation
publicly availableon the server. A server may publish
theusernamesof valid accountholders,perhapsin apub-
lic discussionforum. An adversaryattackingthis server
might find this list useful.

In moretheoreticalterms,the interrogative adversary
maytreattheserverasanoracle.An interrogativeadver-
sarycancarryout anadaptivechosenmessage attack by
repeatedlyaskingfor theserver to mint or verify authen-
ticators[18].

Eavesdropping adversary

The eavesdropping adversary can seeall traffic be-
tweenusersandtheserver, but cannotmodify any pack-
etsflowingacrossthenetwork. Thatis, theadversarycan
sniff thenetwork andreplayauthenticators.This adver-
saryalsohasall the abilities of the interrogative adver-
sary.

An eavesdroppingadversarycanapply its sniffed in-
formationto attemptabreak.Computersystemsresearch
would considerthis an active attack; we do not. This
style of definition is morecommonin the theorycom-
munitywhereattacksconsistof aninformationgathering
process,a challenge,anotheroptionalinformationgath-
eringprocess,andthenanattemptedbreak[3].

Active adversary

The activeadversary canin additionseeandmodify
all traffic betweentheuserandtheserver. Thisadversary
canmountman-in-the-middleattacks.In therealworld,
thissituationmightariseif theadversarycontrolsaproxy
servicebetweentheuserandserver.

3 Hints for Webclient authentication

We presentseveralhintsfor designing,implementing,
andselectinga schemefor client authenticationon the
Web. Someof thesehintscomefrom our experiencesin
breakingauthenticationschemesin useon commercial
Websites.Otherscomefrom generalknowledgeor secu-
rity discussionforums[45]. Following thesehintsis nei-
thernecessarynor sufficient for security. However, they
would have preventedus from breakingthe authentica-
tion schemeson severalWebsitesmentionedin thissec-
tion. Most of thesesiteshave subsequentlyrepairedthe
problemswe identified. Theseincidentshelpto demon-
stratethe usefulnessof thesehints. The detailsof our
analysisaredocumentedin theappendix.

Although we give advice on how to perform client
authenticationon the Web, we certainly do not advo-
catehaving everyonedesigntheir own securitysystems.
Rather, we hopethat thesehints will assistresearchers
and developersof Web client authenticationand dis-
suadepersonsunfamiliarwith securityfrom implement-
ing home-brew solutions.

The hints fall into threecategories. Section3.1 dis-
cussesthe appropriateuseof cryptography. Section3.2
explainswhy passwordsmustbe protected.Section3.3
offerssuggestionson how to protectauthenticators.

4

3.1 Usecryptography appropriately

Useof cryptographyis critical to providing authenti-
cation. Without the useof cryptography, it is not pos-
sible to protect a systemfrom the weakest of adver-
saries. However, designingcryptographicsystemsis a
difficult and subtle task. We offer somehints to help
guidetheprospectivedesignerin usingthecryptographic
toolsavailable.

Usethe appropriate amount of security

An importantgeneraldesignhint is to KeepIt Sim-
ple, Stupid [26]. The more complex the scheme,the
harderit is to developcompellingargumentsthatit is se-
cure. If you aredesigningor selectinga system,choose
one that providesthe right amountof securityfor your
needs.For example,anonlinenewspapercaresaboutre-
ceiving compensationfor content.An onlinebrokerage
caresaboutconfidentiality, integrity, andauthentication
of information. Thesesecurityneedsarevery different
andcanbesatisfiedby differentsystems.Thereareusu-
ally tradeoffs betweenthe userinterface,usability, and
performance.Choosinganoverly complex or featureful
systemwill make managementmore difficult; this can
easilyresultin securitybreaches.

Do not be inventive

It is ageneralrule in cryptographythatsecuresystems
shouldbedesignedby peoplewith experience.Timehas
repeatedlyshown thatsystemsdesignedor implemented
by amateursareweakandeasilybroken.Thus,while we
encourageresearchin developingauthenticationsystems
for theWeb, it is very risky to designyour own authen-
tication system.This is closelyrelatedto our next hint.
If you do chooseto implementyour own scheme,you
shouldmakeyourprotocolpublicly availablefor review.

Do not rely on the secrecyof a protocol

A securitysystemshouldnot rely on the secrecy of
its protocol. A protocol whosesecurity relies on ob-
scurity is vulnerableto an exposureof the protocol. If
thereareany flaws, suchan exposuremay reveal them.
For example,a secretsystemcan be probedby an in-
terrogative adversaryto determineits behavior to valid
and invalid inputs. This techniqueallowed us to re-
verseengineerthe WSJ.com client authenticationpro-
tocol. By creatingseveral valid accountsand compar-
ing the authenticatorsreturnedby the system,we were
able to determinethat the authenticatorwas the output
of crypt (salt,username� secretstring)where � de-
notesconcatenation.Oncewe understoodthe formatof

theauthenticator, wewereableto quickly recoverthese-
cretstring,“March20”, by mountinganadaptivechosen
messageattack.Theprogram,includedin theappendix,
runsin �����	�
� queriesratherthantheintended������ . As-
sumingeachquerytakes1 second,this programfinishes
in 17minutesinsteadof theintended��������� years.This
informationconstitutesa totalbreak,allowing usto mint
valid authenticatorsfor all users.

On the otherhand,OpenMarket publishedtheir de-
signandimplementation[28].

Insteadof relyingonthesecrecy of thescheme,relyon
thesecrecy of awell-selectedsetof keys. Ensurethatthe
protocolis publicsothatit canbereviewedfor flawsand
improved. This will leadto a moresecuresystemthan
a privateprotocol which appearsundefeatablebut may
in practicebe fairly easyto break. If you are hesitant
to reveal the detailsof an authenticationscheme,then
you likely fear that it is vulnerableto an attackby an
interrogativeadversary.

Understandthepropertiesof cryptographic tools

When designingan authenticationscheme,crypto-
graphic tools are critical. Theseinclude hash func-
tions such as SHA-1 [15], authenticationcodes like
HMAC [23], and higher-level protocolslike SSL [11].
Thepropertieseachtool mustbeunderstood.

For example, SSL alone doesnot provide user au-
thentication.Although SSL canauthenticateuserswith
X.509 client certificates,commercialWeb sites rarely
usethis featurebecauseof PKI deployment problems.
Instead,SSLis usedto provideconfidentialityof authen-
tication tokensanddata. However, confidentialitydoes
not ensureauthentication.

Misunderstanding the properties of SSL made
FatBrain.com vulnerableto selective forgeriesby an
interrogative adversary. In an earlierscheme,their au-
thenticatorconsistedof a usernameanda sessionidenti-
fier basedon aglobalsequencenumber. Sincethis num-
ber was global, an interrogative adversarycould guess
the sessionidentifier for a chosenvictim and make an
SSLrequestwith this sessionidentifier. Here,theuseof
SSLdid not makethesystemsecure.

A more detailedexample comesfrom a misuseof
a hash function. One commonly (and often incor-
rectly) usedinput-truncatinghashfunction is the Unix
crypt() function. It takes a string input and a two-
charactersalt to createa thirteen-characterhash[30]; it
is believedto bealmostasstrongastheunderlyingcryp-
tographiccipher, DES [43]. However, crypt() only

5

considersthefirsteightcharactersof its stringinput. This
truncationpropertymustbetakeninto accountwhenus-
ing it asahash.

TheoriginalWSJ.comauthenticationsystemfailedto
do so, which madeour breakpossible. Sincethe input
to crypt() was the usernameconcatenatedwith the
serversecret,thetruncationpropertyof crypt() meant
that thesecretwould not behashedif theusernamewas
at leasteightcharacterslong. This meansauthenticators
for long usernamescan be easily created,merely with
knowledgeof theusername.Additionally, thealgorithm
will produceanidenticalauthenticatorfor all usernames
thatmatchin thefirst eightcharacters.This canbeseen
in Figure1.

It is likely that WSJ.com expectedthis construction
to actlike a securemessageauthenticationcode(MAC).
A messageauthenticationcodeis a one-way functionof
both its input anda secretkey thatcanbeusedto verify
theintegrity of thedata[42]. Theoutputof thefunction
is deterministicand relatively short (usually sixteento
twentybytes). This meansthat it canbe recalculatedto
verify thatthedatahasnot beentamperedwith.

However, the WSJ.com authenticatorwasjust a de-
terministicvaluewhich couldalwaysbecomputedfrom
the first eight charactersof the usernameand a fixed
secret. While HTTP Basic authentication[16] (which
usesno cryptographyat all) is secureagainstan exis-
tential forgeryof aninterrogativeadversary, theoriginal
WSJ.com schemefell to a total breakby the interroga-
tiveadversary.

Thus,whenpossibleyou shouldusea securemessage
authenticationcode.Certaincryptographicconstructions
have subtleweaknesses[30], so you shouldtake great
carein choosingwhich algorithm to employ. We rec-
ommendthe useof HMAC-SHA1[23]. This algorithm
preventsmany attacksknown to defeatsimpleconstruc-
tions.However, aswewill seein Section6, useof secure
messageauthenticationcodeis moreexpensive thanan
input-truncatinghashsuchascrypt() .

Do not composesecurity schemes

It is difficult to determinethe effects of composing
two different securitysystems. Breakingone may al-
low an adversary to break the other. Worse, simply
composingtheschemesmayhaveadversecryptographic
sideeffects,even if theschemesaresecurein isolation.
Menezeset al explain in remark10.40how usinga sin-
glekey pair for multiplepurposescancompromisesecu-
rity [30]. Theuseof a singlekey for authenticationand

confidentialityleadsto compromiseof bothif thatkey is
stolen. On the otherhand,if separatekeys areused,a
breakof the authenticationwill not affect the confiden-
tiality of pastmessagesandviceversa.

FatBrain.com had two separateuserauthentica-
tion systems.To purchasea book,a userentereda user-
nameandpassword at thetime of purchase.Futurepur-
chasesrequiredreauthentication.The accountmanage-
mentWeb pageshada separatesecurityschemewhich
was stateful. After the user entereda usernameand
password,FatBrainestablishedasessionidentifierin the
URL path.In thisway, userscouldnavigateto otherparts
of theaccountmanagementsystemwithouthaving to te-
diously re-enterthe password. Unfortunately, the secu-
rity holediscussedin Section3.3allowedanadversaryto
gainaccessto theaccountmanagementsystemfor anar-
bitraryuserby guessingavalidsessionidentifier. Theac-
countmanagementsystemincludesanoption to change
a user’s registeredemailaddress.By changingtheemail
addressof avictim’saccountandthenselecting“mail me
my password,” anadversarycouldbreakinto to thebook
purchasingpartof thesystem,despitethefactthatit was
securein isolation.

3.2 Protectpasswords

Passwords are the primary meansof authenticating
userson the Web today. It is important that any Web
site guardthe passwordsof its userscarefully. This is
especiallyimportantsinceusers,whenfacedwith many
Web sitesrequiringpasswords,tendto reusepasswords
acrosssites.

Limit exposure of passwords

Compromiseof a password completelycompromises
a user. A site should never reveal a password to a
user. For instance,ihateshopping.net included
the user’s password asa hiddenform variable. A valid
usershouldalreadyknow the password; sendingit un-
necessarilyoverthenetwork givestheeavesdroppingad-
versarymore opportunity to sniff the password. Fur-
thermore,sitesshouldusethe “password” field type in
HTML forms. This hides the password as it is typed
in andpreventsanadversaryfrom peekingover a user’s
shoulderto copy thepassword.

Evenfor non-secureWeb sites,usersshouldhave the
optionto authenticateoverSSL.Thatis, usersshouldnot
type passwordsover HTTP. Passwordssentover HTTP
arevisible to eavesdroppingadversariessniffing thenet-
work andactive adversariesimpersonatingservers. Be-
causeusersoften have the samepassword on multiple

6

username crypt() output authentication cookie
bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc
bitdiddler MaRdw2J1h6Lfc bitdiddlerMaRdw2J1h6Lfc

Figure 1: Comparison ofcrypt() andWSJ.com authentication cookies. The last field represents the username
prepended to the output of thecrypt() function. The input to thecrypt() function is the username prepended to
the string “March20”.

servers, a stolen password can be extremely damaging.
To protect against such attacks, a server could require
users to conduct the login over an SSL connection to
provide confidentiality for the password exchange; upon
successful completion of the login exchange, the server
can then set a cookie with an unforgeable authenticator
for use over HTTP. The authenticator can be designed to
limit the spread of damage, whereas passwords can not.

Prohibit guessable passwords

Many Web sites advise users to choose memorable
passwords such as birthdays, names of friends or fam-
ily, or social security numbers. This is extremely poor
advice, as such passwords are easily guessed by an at-
tacker who knows the user. Even without bad advice,
passwords are fairly guessable [32]. Thus, servers ought
to prohibit users from using any password found in a dic-
tionary; such passwords are vulnerable to dictionary at-
tacks. Servers can reduce the effectiveness of on-line dic-
tionary attacks by restricting the number of failed login
attempts or requiring a short time delay between login
attempts.

Unfortunately, implementing this requirement will
make a Web site less appealing to use since it makes
passwords harder to remember.

Reauthenticate before changing passwords

In security-sensitive operations such as password
changing, a server should require a user to reauthenti-
cate. Otherwise, it may be possible for an adversary
to replay an authentication token and force a password
change, without actual knowledge of the current pass-
word.

3.3 Handle authenticators carefully

Authenticators are the workhorse of any authentica-
tion scheme. These are the tokens presented by the client
to gain access to the system. As discussed above, authen-
ticators protect passwords by being a short-term secret;
the authenticator can be changed at any time whereas
passwords are much less convenient to change.

Make authenticators unforgeable

Many sites have authenticators that are eas-
ily predictable. For instance, we noticed that
highschoolalumni.com uses ID numbers and
email addresses inside cookies to authenticate users.
An interrogative adversary can find this information
in the publicly available alumni database and mint an
authenticator for an any user.

Authenticators often contain keys that function as ses-
sion identifiers. These identifiers should be crypto-
graphically random; statistical randomness is not suf-
ficient. The Allaire Cold Fusion Web server issues
CFTOKEN session identifiers which come from a lin-
ear congruential number generator [2]. As described
above,FatBrain.com used essentially a global se-
quence number. While these numbers may be appropri-
ate for tracking users, it is possible for an adversary to
deduce the next output, and hence the next valid session
identifier. This may allow the adversary access the infor-
mation of another user.

Authenticators may also contain other information that
the system will accept to be true. Thus, they must also
be protected from tampering. This is done by use of a
message authentication code (MAC). Because message
authentication codes require a secret key, only an entity
with knowledge of the key can recreate a valid code. This
makes the codes unforgeable since no adversary should
possess the secret key. Use only strong cryptographic
hash functions. Do not use CRC codes or other non-
cryptographic hashes, as such functions are often trivial
to break.

Relatedly, when combining multiple pieces of data
to input into a message authentication code, be sure to
unambiguously separate the components. Otherwise, a
cryptographic splicing attack may defeat the message au-
thentication code. Since most inputs are text, this can be
done using some character that is known not to appear
in the input fragments. If components are not clearly
separated, multiple inputs can lead to the same out-
puts. For example, “usernameaccess” could come from
“username” followed by “access” or “user” followed by

7

I I

“nameaccess”;betterto write “username&access”to en-
surethat the interpretationis unambiguous.Of course,
caremust be taken to prevent the usernamefrom con-
taininganampersand!

Protect authenticators that must be secret

Some systemsbelieve that they are secureagainst
eavesdroppingadversariesbecausethey sendtheir au-
thenticatorsover SSL. However, a securetransportis
ineffective if the authenticatorsleak through plaintext
channels.We describetwo waysthatauthenticatorsare
sentoverSSLandmistakeswhichcanleadto theauthen-
ticatorleakinginto plaintext.

One methodis to set the authenticatoras a cookie.
Whendoing so, it is usually appropriateto set the Se-
cure flag on cookiessentover SSL. When set to true,
this flag instructsa Webbrowserto sendthecookieover
SSL only. A numberof SSL Web sitesneglect to set
this flag. This simple error can completelynullify the
benefitsof SSL. For instance,customersof SprintPCS
canview their accountinformationandmakeequipment
purchasesonline. To authenticate,a userentersa phone
numberandpassword over SSL. SprintPCSthensetsa
cookiewhich actsasanauthenticator. Anyonewith the
cookiecanlog in asthatuser. Theprotocolsofar is rea-
sonablysecure.However, becauseSprintPCSdoesnot
set the Secureflag on their authenticationcookie, the
authenticatortravels in plaintext over HTTP whenever
a uservisits themainSprintPCSWeb page.We believe
thatSprintPCSintendedto protectagainsteavesdropping
adversaries. Nevertheless,an eavesdroppingadversary
canaccessa victim’s accountwith a replaybecausethe
cookieauthenticatorleaksoverHTTP.

A secondmethodof settingan authenticatoris to in-
cludeit aspartof theURL. ThoughtheHTTP 1.1spec-
ification [14] recommendsagainstthis, it easyto do and
sitesstill usethis. Theproblemwith this methodis that
it too canleakauthenticatorsthroughplaintext channels.
If a user follows a link from one pageto another, the
WebbrowserusuallysendstheReferer[sic] header. This
field includesthe URL of the pagefrom which the cur-
rent requestoriginated. As describedin Section14.36
of the HTTP specification,the Refererfield is normally
usedto allow a server to traceback-links for logging,
caching,or maintenancepurposes.However, if theURL
of thelinking pageincludestheauthenticator, theserver
will receive a copy of the authenticatorin the HTTP
header. Section15.1.3of the specificationrecommends
thatclientsshouldnot includeaRefererheaderin anon-
secureHTTPrequestif thereferringpagewastransferred
with a secureprotocolfor exactly this reason.However,

this is not a requirement;browserssuchasNetscapeand
Lynx sendtheRefererheaderwithout any warning.

This can be exploited via a cross-sitescripting at-
tack [9]. An adversarycancausea userto executear-
bitrary codeandoffer theusera link from a secureURL
includingtheauthenticator(thatappearslegitimate)to a
link of the adversary’s choosing. If the userselectsthe
link, theRefererfield in therequestmayincludetheau-
thenticator, makingit availableto an eavesdroppingad-
versary. Worse,the link could point to the adversary’s
machine. Then no eavesdroppingis necessaryto cap-
ture the authenticator. If the attacker is clever anduses
anSSLserver to hosttheattack,mostbrowserswill not
indicatethatanything untoward is happeningsincethey
only warnusersabouttransitionsfrom SSL to non-SSL
links.

Therefore,be careful when settingauthenticatorsin
cookiesandfollow therecommendationof theHTTP1.1
specificationby not usingauthenticatorsin URLs.

Avoid using persistentcookies

A persistentcookie is written to a file on the user’s
system;anephemeral or temporary cookieis only stored
in the browser’s memoryanddisappearswhenthe user
exits the browser. An error in the way the browseror
userhandlesthecookiefile maymake it accessibleover
the Internet,exposingthe user’s cookiesto anyonewho
knows whereto look. For instance,certainqueriesto
searchenginescanproducemany cookiefiles acciden-
tally placedon the Web. This is documentedin the ap-
pendix.If a persistentcookiein a leakedfile containsan
authenticator, an adversarycansimply copy the cookie
andbreakinto theuser’saccount.In addition,if theuser
accessesthe accountfrom a public system(sayat a li-
braryor Internetcaf́e)andreceivesa persistentauthenti-
cationcookieon thatsystem,any subsequentuserof that
systemcanaccessthe account. For thesereasons,per-
sistentcookiesshouldnot beconsideredprivate.Do not
storeauthenticatorsin persistentcookies.

Limit the lifetime of authenticators

A gooddesignmustalsogracefullyhandlethe com-
promiseof tokenswhich aredesignedto be secret. To
limit the amountof damagea leaked authenticatorcan
cause,limit its lifetime.

For authenticatorsthat arestoredin usercookies,do
not rely on thecookieexpirationfield for secureexpira-
tion. Sincetheclient is responsiblefor enforcingthatex-
piration,amaliciousclientcansetthelifetime arbitrarily.

8

Netscapeuserscanmanuallyextendtheseexpirationsby
simply editing a text file. We wereable to indefinitely
extendthe lifetime of our WSJ.com cookieauthentica-
tor even thoughWSJ.com set the cookie to expire in
11 hours. This was not extremely alarming,but if an
adversarystole a cookie (as describedin Section3.3),
therewould beno way to revoke theadversary’saccess.
The problemwas compoundedbecausethe cookie au-
thenticatorremainedthesameevenif a user’s password
changed.This preventedtheWSJ.com site from easily
revokingaccessto a compromisedaccount.

To prevent unauthorizedcookie lifetime extensions,
includea cryptographicallyunalterabletimestampin the
valueof thecookie,or storetheexpirationtimein auser-
inaccessibleplaceon theserver. Securelybindingexpi-
rationsto authenticatorslimits the damagecausedby a
stolenauthenticator.

Note that an authenticatorthat is storedin a cookie
canbereplayed,regardlessof its expirationtime, if it is
leaked.By definition,unlesstheclientusescomputation,
it canonly sendunmodifiedcookiesbackto the server.
If replaypreventionis desired,theauthenticatormustbe
keptconfidentialandchangedaftereachuse.In thatcase,
it mightbenecessaryto recordrecentlyreceivedauthen-
ticatorsandverify thatnewly receivedauthenticatorsare
not replays.

Bind authenticators to addresses

It can also be useful to tie authenticatorsto specific
network addresses.This helpsprotectagainstreplayat-
tacksby makingit moredifficult for theadversaryto suc-
cessfullyreusetheauthenticator. In additionto acquiring
theauthenticator, theadversarymustappearto originate
from thesamenetwork addressfor which theauthentica-
tor wasminted. However, this may prematurelyinvali-
dateauthenticatorsissuedto mobileDHCPusers.

4 Design

In this sectionwe presenta schemefor performing
clientauthentication.Thisdesignis intendedto beanex-
ampleof a simplesystemthatfollows thehintsprovided
in Section3. We do not claim that theschemeis novel,
but wedoclaim thattheconceptsanddesignprocessare
notextensivelydiscussedin literature.Wepresentabrief
securityanalysisof theschemesin Section5.

Our schemeprovides a personalizableauthenticator
which allows theserver to statelesslyverify the authen-
ticity of therequestandits contents.Theserver canex-
plicitly control the valid lifetime of the authenticatoras

well. The authenticatorcanincludeall the information
neededto servicea request,or canbe usedasa key to
referto sessioninformationstoredon theserver.

Theoverall operationof this schemeis shown in Fig-
ure 2. We assumethat the userhasan existing account
ontheserverwhich is accessedvia ausernameandpass-
word. At thestartof eachsession,theserverreceivesthe
usernameandpassword, verifies them,andsetsan au-
thenticationcookieon the user’s machine.Sincecook-
iesarewidely supported,thismakesthesystemportable.
Subsequentrequeststo theserver includethiscookieand
allow theserver to authenticatethe request.Thedesign
of eachcookieensuresthat a valid cookiecanonly be
createdby theserver; thereforeanyonepossessingavalid
cookie is authorizedto accessthe requestedcontenton
theserver.

Our schemeis designedto be secureagainstan in-
terrogative adversary, as we believe that most of the
schemeswe evaluatedwere designedwith this type of
adversaryin mind. However, becauseSSL with server
authenticationprovidesconfidentialityandintegrity, lay-
eringour designon top of SSLcanprovide anauthenti-
cationsystemsecureagainstanactiveadversary.

4.1 CookieRecipe

Therecipefor ourcookiefollowseasilyfrom thehints
presentedin Section3. Wecreateanunforgeableauthen-
ticator that includesanexplicit expiration time. We use
HTTP state(i.e. cookies)to storethis authenticatorwith
theclient. Thevalueof this cookieis shown here:

exp= � &data= � &digest=MAC � (exp= � &data= �)

Theexpirationtime is denoted� andis expressedassec-
ondspast1970 GMT. The datastring � is an optional
parameterdenotingarbitrarydatathat theserver wishes
to associatewith theclient. Finally, thecookieincludes
a MAC for thecleartext expirationanddata.

Our cookierequirestheuseof a non-malleableMAC;
that is, onewhereit is intractableto generatea valid ci-
phertext from a plaintext messagerelatedto a plaintext
messagewith a known ciphertext [12, 23]. That is, no
adversarycan generatea valid ciphertext without both
the server’s secretkey andthe plaintext, no matterhow
many samplesof valid plaintext/ciphertext pairsthe ad-
versaryhas. Examplesof keyed, non-malleableMACs
areHMAC-MD5 andHMAC-SHA1[23].

9

Checks that user
has valid account

Creates authentication
token

Stores authentication token
as cookie

Bob
Fu

Authentication token

Username, password

Verifies authentication
token

Content request, authentication token

Content

Bob
Fu?

Subsequent requests:

Login procedure:User Server

Figure 2: One-exchange authentication system.

4.2 Discussion

Selecting an expiration time� is a trade-off between
limiting the damage that can be done with a leaked au-
thenticator and requiring the user to reauthenticate. Ya-
hoo!, for example, allows users to specify what expira-
tion interval they prefer for authenticators that control
access to sensitive data [46]. This allows the user to con-
trol the trade-off. On the other hand, for insensitive data,
it makes sense for the server to make the choice. For ex-
ample, a newspaper might want cookies to be valid for
only a day, whereas a magazine might allow sessions to
be valid for a month (as if the user were buying a single
issue).

The value � may be any information specific to the
user that the server wishes to access without maintaining
server state. This may be anything from a session identi-
fier to a username. Beware that this data is not encrypted
so sensitive information should not be stored here; if sen-
sitive data is needed, we recommend that a cryptograph-
ically random session identifier be used. This will pre-
vent information leaks from compromising a user’s pri-
vacy. On the other hand, if sensitive user information is
required to handle only a small percentage of the content
requests, the authenticator can contain the information
needed to service the majority of requests. This way the
server can avoid doing a possibly expensive look-up with
every request.

A server may also choose to leave� empty (and re-
moving thedata parameter from the cookie). This
might be useful in the case where authentication must
expire, but all users are essentially the same. A plausible
example of this might be a pay-per use service, such as a
newspaper.

4.3 Authentication and revocation

To authenticate a user, the server retrieves the cookie
and extracts the expiration. If the cookie has not expired,
the server recalculates the MAC in thedigest parame-
ter of the cookie. Since the server is the only entity who
knows the key� , the properties of theMACfunction im-
ply that a valid cookie was generated by the server. So
long as the server only generates cookies for authenti-
cated users, any client with a valid cookie is a valid user.

This scheme does not provide a mechanism for se-
curerevocation; that is, ending the user’s session before
the expiration time is up. The easiest option is for the
server can instruct the client to discard the authentication
cookie. This will usually be adequate for most applica-
tions. However, a client who has saved the value of the
cookie can continue to reuse that value so long as the
explicit expiration time has not yet passed.

In most cases, a short session can make revocation un-
necessary: the user can access the server until the session
expires, at which time the server can refuse to issue a
new authenticator. Servers that require secure revocation
should keep track of the session status on the server (e.g.,
using a random session key or our personalized scheme
with a server database). This session can then be explic-
itly revoked on the server, without trusting the client.

The scheme does allow simultaneous revocation of all
authenticators, which can be accomplished by rotating
the server key. This will cause all outstanding cookies to
fail to verify. Thus, all users will have to log in again.
This might be useful for finding unused accounts.

4.4 Design alternatives

One interesting point of our scheme is that we have
included the expiration time� in the cookie value itself.

10

l!D----------

This is the only way for a server to have accessto the
expiration datewithout maintainingstate. Explicit in-
clusionof theexpirationdatein a non-malleablecookie
providesfixed-lengthsessionswithouthaving to trustthe
client to expire thecookie. It would alsohave beenpos-
sible to merely usea sessionidentifier but that would
always requireserver stateand might lead to mistakes
whereexpirationwasleft in thehandsof theclient.

Many schemesdo involve settinga randomsession
identifier for eachuser. This sessionidentifier is used
to accesstheuser’s sessioninformation,which is stored
in a databaseon the server. While sucha schemeal-
lows for a client to make customizations(i.e. it is func-
tionally equivalentto the schemewe have presented),it
is potentiallysubjectto guessingattackson the session
identifierspace.If anadversarycansuccessfullyguessa
sessionidentifier, thesystemis broken(seeSection3.3).
Our schemeprovidesa meansfor authenticatingclients
thatis resistantto guessingattacksonsessionidentifiers.
Furthermore,our schemeprovidestheoptionof authen-
ticatingclientswith ������� server state,ratherthan ������� ,
where� is thenumberof clients.

Our systemcan also make it easierto deploy multi-
server systems.Usingsessionidentifiersrequireseither
synchronized,duplicateddatabetweenserversorasingle
server to coordinaterequests,which becomesapotential
bottleneck. Our schemeallows any server to authenti-
cateany userwith a minimum of information,noneof
which mustbe dynamicallysharedbetweenservers. In
addition,theauthenticationalwayscompletesin constant
time,ratherthanin timewhichincreaseswith thenumber
of users.

5 Security analysis

In this sectionwe presentan informal analysisof the
securitypropertiesof ourdesign.For thepurposeof dis-
cussion,we will refer to the cookie’s two halves: the
plaintext andtheverifier. Theplaintext is theexpiration
concatenatedwith the userstring,andtheverifier is the
HMAC of theplaintext.

We will discussthe securityof the schemeoncethe
authenticator(i.e.cookie)is receivedby theuserfrom the
server. We will not discussmechanismsfor completing
theinitial login.

5.1 Forging authenticators

An adversarydoesnot needto log in if it cancreatea
valid authenticatoroffline. Often an adversarycancre-
atea plausibleplaintext string; thereforethe securityof

theauthenticatorrestson thefactthat theverifier cannot
becalculatedby anadversarywithout thekey. Sincewe
have selectedour MAC to be non-malleable,an adver-
sarycannot forgea new authenticator.

An attacker may also attemptto extend the capabil-
ities associatedwith the authenticator. This might in-
clude changingthe expiration date or someaspectof
the datastring which would allow unauthorizedaccess
to the server. For instance,if the datastring includes
a username,and the adversarycan alter the username,
this mightallow accessanotheruser’saccount.It is easy
enoughfor the adversaryto changethe plaintext of the
authenticatorin the desiredmanner. However, as we
have seen,becauseHMAC is non-malleable,it is in-
tractablefor theadversaryto generatea valid ciphertext
for an alteredplaintext string. Thereforethe adversary
cannotbring aboutany changein an authenticatorthat
will beacceptedby theserver.

5.2 Authenticator hijacking

An interrogative adversarycannotseeany messages
that passbetweenthe userandthe server. Therefore,it
cannothijack anotheruser’s authenticator. However, an
eavesdroppercan seethe authenticatoras it passesbe-
tweenthe userand the server. Suchan adversarycan
easilyperforma replayattack. Thereforethe systemis
vulnerableto hijackingby suchanadversary. However,
the replayattacklastsonly as long asthe authenticator
is valid; that is, betweenthe time the adversary“sniffs”
theauthenticatorandtheexpirationtime. Theadversary
doesnot have theability to createor modify a valid au-
thenticator. Thereforethis is anattackof limited useful-
ness. The lifetime of the authenticatordetermineshow
vulnerablethesystemis; systemswhichemploy ashorter
authenticatorlifetime will have to reauthenticatemore
often,but will have tighterboundson thedamagethata
successfuleavesdroppingadversarycanaccomplish.In
addition, the systemcan protectagainstan eavesdrop-
ping adversaryby usingSSL to provide confidentiality
for theauthenticator.

5.3 Other attacks

We mention briefly some attacks on our schemes
which do not deal with the authenticatordirectly. The
bestknown attackagainstthe schemein Section4 is a
bruteforcekey search.

A server compromisebreaksthesystem:if theadver-
saryobtainsthe key to the MAC, it cangeneratevalid
authenticatorsfor all users. Randomkeys and key ro-
tationhelpto preventtheadversaryfrom mountingbrute

11

force key attacks (see Lenstra [27] for suggestions on key
size).

In addition, key rotation helps protect against volume
attacks, whereby an adversary may be able to obtain the
key to the hash function because the adversary has ob-
tained a great quantity of data encrypted using it. We
note that HMAC-MD5 and HMAC-SHA1 are not be-
lieved to be vulnerable to this type of analysis [23]. How-
ever, we believe that it is prudent to include key rotation
since it does not decrease the security of the scheme, it
protects against server compromise, and it has minimal
cost to the server.

In addition, the adversary can obtain unauthorized ac-
cess by guessing the user’s password; see Section 3.2 for
some guidelines for preventing this.

Our scheme in itself only provides user authentication.
For protection against server impersonation or for data
integrity, we recommend SSL.

6 Implementation and performance

The client authentication scheme described in Sec-
tion 4 was implemented in Perl 5.6 using the LWP, HTTP,
CGI, FCGI, and Digest modules. We tested the imple-
mentation on two dual Pentium III 733 MHz machines
each with 256 MB of RAM running the Linux 2.2.18-
smp kernel and Apache 1.3.17 with modfastcgi 2.2.10.
Everything ran on a local disk. A dedicated Gigabit link
with a 20 � s round-trip time connected the machines.

6.1 Microbenchmark performance

We ran � !���� trials of crypt() and HMAC-SHA1.
The input tocrypt() was an 8-byte input and a 2-
byte salt. The input to HMAC-SHA1 was a 27-byte in-
put and a 20-byte key.crypt() finished on average
in 8.08 � sec with 99% of the trials completing in under
10 � sec. HMAC-SHA1 took on average 41.4� sec with
99% of the trials completing in under 47� sec. We at-
tribute the variances to context switching.

6.2 End-to-end performance

To measure the end-to-end performance of cookie-
based logins, we repeatedly retrieved 400 bytes of data
from a Web server that authenticated our client. Both the
client and the cookie authentication scheme were imple-
mented in Perl, and the server ran the cookie authentica-
tion script with FastCGI. Our end-to-end test consisted of

the client presenting a cookie authenticator (as described
in Section 4) to the server, which verifies the authentica-
tor by performing HMAC-SHA1 on the expiration date
presented by the client. In order to provide a baseline for
comparison, we also measured the average performance
of plain HTTP, HTTP with Basic Authentication [16],
and an always-authenticated FastCGI script for the same
page.

For each scheme, we made 5,000 successive requests,
with valid authentication information (when needed).
Figure 3 presents the average time from the request being
sent in our HTTP client until a response was received.

99% of the HTTP trials without authentication were
faster than 5.9 ms. Similarly, 99% of HTTP Basic au-
thentication trials were faster than 6.3 ms. 99% of the
plain FastCGI trials were faster than 7.7 ms, and 99% of
the FastCGI trials with our HMAC-SHA1 scheme took
less than 8.8 ms. Figure 3 shows that the cost of HTTP
Basic authentication is 0.4 ms per request while the cost
of our HMAC-SHA1 scheme is 1.2 ms. We suspect that
non-cryptographic factors such as string parsing and file
I/O cause the disparity between the microbenchmarks
and the end-to-end measurements.

Note that SSL is an order of magnitude slower than
the HMAC-SHA1 cookie scheme. A single new SSL
connection takes 90 ms [17] on a reasonable machine.
SSL client authentication, even with session resumption,
cannot run faster than the HMAC-SHA1 cookie scheme
because SSL authenticates the entire HTTP stream. Our
scheme runs HMAC-SHA1 on fewer than 30 bytes of
data per request (a timestamp, personalization data, and
a key).

7 Related work

There is an extensive body of work related to authen-
tication in general and Web authentication in particular.
We highlight a few relevant examples. For other studies
of design principles, see Abadi [1] or Lampson [26].

7.1 General authentication protocols

In the past ten years, several new authentication
protocols have been developed, including AuthA [4],
EKE [5], provably secure password authenticated key
exchange [7], and the Secure Remote Password proto-
col [44]. Furthermore, groups are simplifying and stan-
dardizing password authentication protocols [21]. How-
ever, these protocols are not well-suited for the Web be-
cause they are designed for session initialization of long-
running connections, as opposed to the many short-lived

12

-

0

5

10

15

20

av
er

ag
e

la
te

nc
y

(m
s/

re
qu

es
t)

"

HTTP (no authentication)
HTTP + Basic Auth
FastCGI (no authentication)
#
FastCGI + HMAC-SHA1 cookie
#

5.8$ 6.2$ 7.2$
8.4$

Figure 3: End-to-end performance of average service la-
tency per request. We measure HTTP and FastCGI with-
out authentication to obtain a baseline for comparison.
Basic Auth is the cleartext password authentication in
HTTP [16].

connections made by Web browsers. Long-running con-
nections can easily afford a protocol involving the ex-
change of multiple messages, whereas short-lived ones
cannot absorb the overhead of several extra round-trips
per connection. Additionally, these protocols often re-
quire significant computation, making them undesirable
for loaded Web servers.

One-time passwords can prevent replay attacks. Lam-
port’s user password authentication scheme defends
against an adversary who can eavesdrop on the network
and obtain a copies of server state (i.e. the hashed pass-
word file) [25]. This scheme is based on a one-way func-
tion. Haller later implemented the S/Key one-time pass-
word system [19, 20] using techniques from Lamport.
De Waleffe and Quisquater extended Lamport’s scheme
with zero-knowledge techniques to provide more gen-
eral access control mechanisms [10]. With their one-
exchange protocol, a user can authenticate and prove
possession of a ticket. This scheme is not appropriate
for our model of Web client authentication because it re-
quires the client to perform computation such as modular
exponentiation.

Kerberos uses tickets to authenticate users to ser-
vices [22, 33, 40]. The Kerberos ticket is encrypted with
a key known only to the service and the Kerberos in-
frastructure itself. A temporary session key is protected
by encryption. The ticket approach differs greatly from
schemes such as ours because tickets are message pre-
serving, meaning that an adversary who compromises a
service key can recover the session key. If an adversary
compromises the key in our scheme, it can mint and ver-
ify tokens, but it cannot recover the contents that were

originally authenticated. Authentication and encryption
should be separated, but Kerberos does both in one step.

The Amoeba distributed operating system crypto-
graphically authenticated capabilities (or rights) given to
a user [42]. One of the proposed schemes authenticated
capabilities by XORing them with a secret server key and
hashing the result. Client authentication on the Web falls
into the same design space. A Web server wishes to send
a user a signed capability.

7.2 Web-specific authentication protocols

The HTTP specifications provide two mechanisms for
authentication: Basic authentication and Digest authen-
tication [16]. Basic authentication requires the client to
send a username and password in the clear as part of
the HTTP request. This pair is typically resent preemp-
tively in all HTTP requests for content in subdirectories
of the original request. Basic authentication is vulnera-
ble to an eavesdropping adversary. It also does not pro-
vide guaranteed expiration (or logout), and repeatedly
exposes a user’s long-term authenticator. Digest authen-
tication, a newer form of HTTP authentication, is based
on the same concept but does not transmit cleartext pass-
words. In Digest authentication, the client sends a cryp-
tographic hash (usually MD5) of the username, pass-
word, a server-provided nonce, the HTTP method, and
the URL. The security of this protocol is extensively dis-
cussed in RFC 2617 [16]. Digest authentication enjoys
very little client support, even though it is supported by
the popular Apache Web server.

The main risk of these schemes is that a successful
attack reveals the user’s password, thus giving the adver-
sary unlimited access. Further, breaks are facilitated by
the existence of freely available tools capable of sniffing
for authentication exchanges [39].

The Secure Sockets Layer (SSL) protocol is a stronger
authentication system provides confidentiality, integrity,
and optionally authentication at the transport level. It
is standardized as the Transport Layer Security proto-
col [11]. HTTP runs on top of SSL, which provides
all the cryptographic strength. Integration at the server
allows the server to retrieve the authentication parame-
ters negotiated by SSL. SSL achieves authentication via
public-key cryptography in X.509 certificates [8] and re-
quires a public-key infrastructure (PKI). This require-
ment is the main difficulty in using SSL for authentica-
tion — currently there is no global PKI, nor is there likely
to be one anytime soon. Several major certificate author-
ities exist (e.g., Verisign), but the space is fractured and
disjoint. To some degree, users avoid client certificates

13

-
C]

C]

C]

- -
-

-
~

~

-

becausecertificatesarepractically incomprehensibleto
non-technicalusers. Other argumentssuggestthat the
merits of PKI as the answerto many network security
problemshave beensomewhatexaggerated[13]. Client
supportfor SSLis non-standardandthuscanhave inter-
operability problems(e.g., Microsoft InternetExplorer
andNetscapeNavigator client certificatesdo not inter-
operate),andperformanceconcerns.SSLdecreasesWeb
server performanceandoftenprovidesmorefunctional-
ity than most applicationsneed. In an effort to avoid
usingSSL,Bergadano,Crispo,andEccettuatouseJava
appletsto secureHTTPtransactions[6].

Park andSanduidentify securityproblemsof regular
cookies,network threats,end-systemthreats,andcookie
harvestingthreats[34]. Samardescribesa cookie-based
distributedarchitecturefor single-signon[37].

7.3 Schemesin the field

Many ad hoc schemesare used today to perform
Webauthenticationwithout makinguseof eitherSSLor
any of the HTTP authenticationmechanisms.Instead,
schemesoftenuseHTTP statemanagementto storeau-
thenticatorswith theclient. This helpssitesprovide au-
thenticationfor Webapplicationswhile preservingease-
of-useandperformance.While many of theseschemes
are well-designedand do indeedprovide appropriately
strongauthenticationfor theenvironmentin which they
aredeployed,just asmany schemeshavefatalflaws.

Shibboleth,a projectof Internet2,is investigatingar-
chitectures,frameworks, and technologiesto support
cross-realmauthenticationandauthorizationfor access
to Web pages[38]. The group completeda survey of
client authenticationon the Web at several universities,
mostof whichuseacombinationof Kerberos,clientcer-
tificates,HTTP authentication,and cookies. However,
they havenot yetpresenteda completedesign.

Open Market has patenteda schemethat createsa
folded cryptographichashof a server secret,a session
identifier, andotherparameters[28]. Yahoohasacookie
authenticationschemethat computesMD5 of a server
secret, user identifier, timestamp,and other parame-
ters[46]. TheArsDigita CommunitySystem(ACS)has
a SHA1-basedcookie authenticationscheme[29]. All
theseschemesare likely to be secureagainstinterroga-
tive adversaries,but all appearvulnerableto eavesdrop-
pers.

Microsoft Passportoffers a managedcookie authen-
tication scheme[35]. Microsoft mints a cookieauthen-
ticator after a userlogs in. Vendorsparticipatingin the

passportservicecanverify theauthenticatorto determine
authenticityandauthorization.Thedetailsof theauthen-
tication schemehave not beenpublished,but the white
paperindicatesthatMicrosoft sharesa uniquesymmet-
ric key with eachvendor. Thesekeys canbothmint and
verify authenticators.

8 Conclusion

To provide designersand implementerswith a clear
framework, we have given a descriptionof the limita-
tions,requirements,andsecuritymodelsspecificto Web
clientauthentication.We presenteda setof hintsonhow
to designasecureclientauthenticationscheme,basedon
experiencegainedfrom our informal survey of commer-
cial schemes.Thesurvey showedthatmany sitesarenot
secureagainstthe interrogativeadversary. We proposed
anauthenticationschemesecureagainsttheinterrogative
adversary.

Web sites have such a large rangeof requirements
that no one authenticationschemecan meet them all.
CurrentlySSLremainstoo costlyandclient authentica-
tion infrastructuresremainhardly deployed. This par-
tially explainswhy so many home-brew schemesexist.
TheWebcommunityoughtto recommendasecurestan-
dardor securepracticesif thereis any hopeto eliminate
the proliferation of insecurehome-brew authentication
schemes.We hopethat this paperwill help schemesin
resistingcommonattacks.

For more information and our source code, see
the appendix or visit our Web site at http://
cookies.lcs.mit.edu/ .

9 Acknowledgments

We thankDavid Andersen,Ian Anderson,Jeffrey W.
Baker, RichardBarbalace,Andrew M. Boardman,Benjie
Chen,David Dittrich, Paul Hill, FransKaashoek,David
Mazières,Robert T. Morris, Steve Morris, JoonPark,
Matt Power, Ron Rivest, Jerry Saltzer, RichardSmith,
Win Treese,theanonymousreviewers,andthemembers
of the PDOSgroupat MIT. We also thank the compa-
nieswho talkedwith usaboutthe securityof their Web
sites: FatBrain.com , WSJ.com, andyahoo.com .
The studentsof the MIT Applied Security Reading
Group(http://pdos.lcs.mit.edu/asrg/) de-
serve credit for the genesisof this project. Finally,
we thankDuncanHinesfor manufacturingthematerials
necessaryto sustainour efforts.

14

References

[1] Mart́in Abadi andRogerNeedham.Prudentengineering
practicefor cryptographicprotocols. TechnicalReport
125,DEC SystemsResearchCenter, June1994.

[2] Allaire Corporation. PersonalCommunication,January
2001.

[3] Mihir Bellare, Anand Desai, David Pointcheval, and
Phillip Rogaway. Relationsamongnotionsof securityfor
public-key encryptionschemes.In HugoKrawczyk, ed-
itor, Proceedingsof Advancesin Cryptology—CRYPTO
98, volume1462of Lecture Notesin ComputerScience,
pages26–45,SantaBarbara,CA, 1998.Springer-Verlag.

[4] Mihir Bellare and Phillip Rogaway. The AuthA
protocol for password-based authenticatedkey ex-
change. Technical report, IEEE P1363, March
2000. http://grouper.ieee.org/groups/
1363/StudyGroup/Passwd.html#autha .

[5] StevenM. Bellovin andMichaelMerritt. Encryptedkey
exchange:Password-basedprotocolssecureagainstdic-
tionary attacks. In Proceedingsof the 1992IEEE Sym-
posiumon SecurityandPrivacy, pages72–84,Oakland,
CA, May 1992.

[6] F. Bergadano,B. Crispo, and M. Eccettuato. Secure
WWW transactionsusing standardHTTP and Java ap-
plets. In Proceedingsof the 3rd USENIX Workshop
on Electronic Commerce, pages109–119,Boston,MA,
September1998.

[7] Victor Boyko, Philip MacKenzie,andSarvarPatel.Prov-
ably securepassword authenticatedkey exchangeusing
Diffie-Hellman.In B. Preneel,editor, Proceedingsof Ad-
vancesin Cryptology—EUROCRYPT2000, volume1807
of Lecture Notesin ComputerScience, Bruges,Belgium,
May 2000.Springer-Verlag.

[8] CCITT. RecommendationX.509: Thedirectoryauthen-
ticationframework, 1998.

[9] CERT. Malicious HTML tags embedded in
client Web requests. CA-2000-02, February
2000. http://www.cert.org/advisories/
CA-2000-02.html .

[10] DominiquedeWaleffe andJean-JaquesQuisquater. Bet-
ter login protocolsfor computernetworks. In B. Preneel,
R. Govaerts,andJ. Vandewalle, editors,Proceedingsof
ComputerSecurityandIndustrial Cryptography, volume
741of Lecture Notesin ComputerScience, pages50–70.
Springer-Verlag,1993.

[11] Tim DierksandChristopherAllen. TheTLS protocolver-
sion 1.0. RFC 2246,Network Working Group,January
1999.

[12] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
malleablecryptography. In Proceedingsof the %'& rd ACM
Symposiumon Theory of Computing, pages542–552,
New Orleans,LA, 1991.

[13] Carl Ellison andBruceSchneier. Tenrisksof PKI: What
you’re not being told about public key infrastructure.
ComputerSecurityJournal, 16(1):1–7,2000.

[14] Roy Fielding, JamesGettys, Jeffrey Mogul, Henrik
Frystyk, Larry Masinter, Paul Leach,andTim Berners-
Lee. Hypertext TransferProtocol— HTTP/1.1. RFC
2616,Network WorkingGroup,June1999.

[15] FIPS180-1. Secure HashStandard. U.S.Departmentof
Commerce/N.I.S.T., NationalTechnicalInformationSer-
vice,Springfield,VA, April 1995.

[16] John Franks, Phillip Hallam-Baker, Jeffrey Hostetler,
ScottLawrence,PaulLeach,Ari Luotonen,andLawrence
Stewart. HTTP authentication:Basicanddigestaccess
authentication.RFC2617,NetworkWorkingGroup,June
1999.

[17] Kevin Fu,M. FransKaashoek,andDavid Mazières.Fast
andsecuredistributedread-onlyfile system.In Proceed-
ingsof the4thUSENIXSymposiumonOperatingSystems
Design and Implementation(OSDI 2000), pages181–
196,SanDiego,CA, October2000.

[18] Shafi Goldwasser, Silvio Micali, and RonaldL. Rivest.
A digital signature scheme secure against adaptive
chosen-messageattacks. SIAM Journal of Computing,
17(2):281–308,April 1988.

[19] Neil Haller. The S/KEY one-timepassword system. In
Proceedingsof theISOCSymposiumonNetworkandDis-
tributedSystemSecurity, pages151–157,SanDiego,CA,
February1994.

[20] Neil Haller. TheS/KEY one-timepasswordsystem.RFC
1760,Network WorkingGroup,February1995.

[21] IEEE P1363a: Standardspecificationsfor public key
cryptography: Additional techniques. http://
www.manta.ieee.org/groups/1363/P1363a .

[22] JohnT. Kohl. Theuseof encryptionin Kerberosfor net-
work authentication. In G. Brassard,editor, Proceed-
ings of Advancesin Cryptology—CRYPTO 89, volume
435of Lecture Notesin ComputerScience, pages35–43.
Springer-Verlag,1990.

[23] HugoKrawczyk,Mihir Bellare,andRanCanetti.HMAC:
Keyed-hashingfor messageauthentication. RFC 2104,
Network Working Group,February1997.

[24] David Kristol andLou Montulli. HTTP StateManage-
mentMechanism.RFC2965,Network Working Group,
October2000.

[25] Leslie Lamport. Password authenticationwith inse-
cure communication. Communicationsof the ACM,
24(11):770–771,November1981.

[26] Butler Lampson. Hints for computersystemdesign. In
Proceedingsof the 9th ACM Symposiumon Operating
SystemsPrinciples, pages33–48, Bretton Woods,NH,
1983.

[27] Arjen LenstraandEric Verheul. Selectingcryptographic
key sizes. http://www.cryptosavvy.com/
cryptosizes.pdf , November1999.

[28] ThomasLevergood,LawrenceStewart, StephenMorris,
Andrew Payne, and Winfield Treese. Internet server
accesscontrol and monitoring systems. U.S. patent
#5,708,780,OpenMarket, January1998.

15

[29] Richard Li and Archit Shah. ArsDigita Commu-
nity System (ACS) security design. http:/
/developer.arsdigita.com/doc/
security-design.html .

[30] Alfred J. Menezes,Paul C. Van Oorschot,andScottA.
Vanstone.Handbookof appliedcryptography. TheCRC
Pressserieson discretemathematicsandits applications.
CRCPress,1997.

[31] Keith Moore andNed Freed. Useof HTTP StateMan-
agement.RFC 2964,Network Working Group,October
2000.

[32] RobertMorris andKenThompson.Passwordsecurity:A
casehistory. Communicationsof the ACM, 22(11):584–
597,November1979.

[33] B. Clif ford NeumanandTheodoreTs’o. Kerberos:An
authenticationservice for computer networks. IEEE
CommunicationsMagazine, 32(9):33–38, September
1994.

[34] JoonS. Park and Ravi Sandhu. Securecookieson the
Web. IEEEInternetComputing, 4(4):36–44,July/August
2000.

[35] Microsoftpassport.http://www.passport.com/ .

[36] Eric Rescorla.SSLandTLS:DesigningandBuilding Se-
cure Systems. Addison-Wesley, 2000.

[37] Vipin Samar. Singlesign-onusingcookiesfor Web ap-
plications. In Proceedingsof the8th IEEE Workshopon
EnablingTechnologies: Infrastructure for Collaborative
Enterprises, pages158–163,PaloAlto, CA, 1999.

[38] The Shibboleth Project. http://
middleware.internet2.edu/shibboleth/ .

[39] Dug Song. dsniff. http://www.monkey.org/
˜dugsong/dsniff/ .

[40] JenniferSteiner, Clif ford Neuman,and Jeffrey Schiller.
Kerberos: An authenticationservicefor open network
systems. In Proceedingsof the Winter 1988 USENIX,
pages191–202,Dallas,TX, February1988.

[41] Paul Syverson, Stuart Stubblebine,and David Gold-
schlag. Unlinkableserialtransactions.In R. Hirschfeld,
editor, Proceedingsof Financial Cryptography, volume
1318 of Lecture Notesin ComputerScience, Anguilla,
BWI, 1997.Springer-Verlag.

[42] Andrew Tanenbaum,SapeMullender, and Robbertvan
Renesse.Using sparsecapabilitiesin a distributedsys-
tem. In Proceedingsof the6th InternationalConference
on DistributedComputing, pages558–563,Cambridge,
MA, 1986.

[43] David Wagner and Ian Goldberg. Proofs of secu-
rity for the Unix password hashing algorithm. In
T. Okamoto, editor, Proceedings of Advances in
Cryptology—ASIACRYPT2000, volume1976of Lecture
Notes in ComputerScience, Kyoto, Japan,December
2000.Springer-Verlag.

[44] ThomasWu. The secureremotepassword protocol. In
Proceedingsof the 1998 Internet SocietyNetwork and
Distributed SystemSecuritySymposium, pages97–111,
SanDiego,CA, March1998.

[45] Web and mobile code security. http:/
/www.securityfocus.com/forums/
www-mobile-code/ .

[46] Yahoo,Inc. PersonalCommunication,November2000.

16

A Search enginequeries

CookiefilesareoccasionallypublishedontheInternet
and are indexed by somesearchengines. Variantsof
thesequerieshave at times worked on Google.com ,
Yahoo.com , NorthernLight.com , and
AltaVista.com .

After we reported these queries, Google immedi-
ately removed all files called “cookies.txt ” or
“COOKIES.TXT” from their indexing and later their
cache. This removes the indexing for most cookie
files. Somecookiefilesstill exist undernon-standardfile
names,apparentlybecauseof corruptedtext files (e.g.,
resumesthat includea person’s cookiefile at the end).
The other searchenginesgave no definitive responses.
For historicalpurposes,herearethequeriesthatusedto
producemany cookiefiles.

(avenuea.comFALSE FALSE

(CERT7.DB

(text:CERT7.DB

Theideaof thesearchqueriesis to locatecookiefiles
basedon information inside the cookie. For instance,
avenuea.com is found in most cookie files because
of online advertisingandusertracking. CERT7.DB of-
tenappearsnearfilescalledcookies.txt . Censoring
cookies.txt will not preventsomeonefrom search-
ing for CERT7.DB thenindirectly findingacookiefile.

B ichat Roomsv3.0

ichat Rooms v3.0 (www.ichat.com) is a Web-
basedcommercialchat server system. A user logs in
with a username/password andreceivesa cookie,which
is composedof theusernameandpasswordXORedwith
a universalconstantvalue. Subsequentrequestsareau-
thenticatedwith this cookie.

This systemis vulnerableto an attackby an eaves-
droppingadversary. Theadversarycanreplaythecookie
sinceit never expires. Knowledgeof theconstantstring
(easilyobtainedby aninterrogativeadversary)allowsan
adversaryto reconstructtheuser’spasswordaswell. Fig-
ure 4 containsa sufficient numberof samplecookiesto
recover theconstantkey.

We did not analyzenewer versionsof ichat Rooms.
We only know thatthecurrentschemeis different.

C NewEngland Bride (nebride.com)

nebride.com is the Web site for the New Eng-
land Bride magazine. A user logs in with a user-
name/passwordandreceivesanID cookie,which is sim-
ply a username.This cookie authenticatessubsequent
requests.

An interrogative adversary can achieve a selective
forgeryby guessingtheusernameof anexisting account
on theserver andusethis for full accessto theaccount.
Furthermore,sincethe password is displayedin plain-
text on theserver’s informationpage,the adversarycan
retrieve the victim’s password, possiblycompromising
accountsof thesameuseron othersystems.

We notifiedNew Englandbride,but we arenot sureif
they understandtheproblem.

D Fatbrain.com

A userlogsin with their emailaddressandpassword,
thenreceivesaURL-basedauthenticatorfrom theserver.
TheURL-basedauthenticatoris generatedfrom aglobal,
monotonicallyincreasingsequencenumber. The URL-
basedauthenticatoris usedto authenticatetheremainder
of theuser’s session.

This attack can proceedmore quickly if the victim
hasloggedin recently, or thetime at which theuserlast
loggedin canbeestimated.In thatcase,anadversarycan
begin searchingbackwardsin thesequencespacefor the
properauthenticator. Usingthis authenticator, anadver-
sarycanchangethevictim’semailaddress,receiveemail
informing them of the victim’s password, and thereby
gainfull control— includingpurchasingability — over
thevictim’saccount.

TheFatbrain.com pagesuseaneasilypredictable
sequencenumberas an authenticator. This permitsan
interrogativeadversaryto guesstheauthenticationtoken.

TheengineersatFatbrainrespondedswiftly by chang-
ing thesequencenumberto a randomnumber. This de-
featstheattackdescribedabove.

E ihateshopping.net

A userlogsin with a username/passwordandreceives
an ephemeralID cookie, which is simply a serially-
assignedintegeruniqueto theuser. This cookieis used
to authenticatethe user’s requestsfor the remainderof

17

username fubob
password aaaaaaaa

cookie ichat cookie=0F160A0E1656233E21254D080B0 B0D0058080B5359
username fubbb(notethe1 letterchange)
password aaaaaaaa

cookie ichat cookie=0F160A031656233E21254D080B0 B0D0058080B5359

Figure4: Sampleichatauthenticators.

username fubob
cookie ID=fubob

Figure5: Samplenebride.com authenticator

that session. An interrogative can accessarbitrary ac-
countsbecauseof the densely-populatednamespaceof
ID cookies.

The ihateshopping.net pagesprovide a simple
numericauthenticator, the namespaceof which can be
trivially steppedthroughto reveal theaccountdetailsof
all accountson thesystem.Theadversarywould not re-
quiretheir own accountor any othersortof prior access.

Wenotifiedthesiteandreceivedaquickresponse.We
do not know how thecurrentauthenticationschemedif-
fersbecausetheWebsiteappearsto no longerexist.

F SprintPCS.com

A user logs in with their phone number and ac-
countpassword (PIN), then receivesa cookie from the
server which appearsto be someform of the standard
Unix crypt() function appliedto the submitteddata.
The cookie providesadministrative accessto one’s ac-
count,andthis andsubsequentaccount-relatedtransac-
tions areprotectedwith SSL.The cookie’s “SSL Only”
flag, however, is not set, and the cookie domain is
sprintpcs.com .

An eavesdroppingadversarycan obtain a user’s au-
thenticationcookieif the userlogs in to the securesec-
tion of sprintpcs.com andlater revisits a non-SSL
sectionof the site. Since the cookie is usedfor au-
thenticationonly within SSL-protectedsectionsof the
sprintpcs.com site, setting the “SSL Only” flag
wouldprovideincreasedprotectionfor theauthenticator.

While SprintPCSappearsto spendmany CPU cycles
on SSL,theSSLis of little benefitsincethesecretleaks
in plaintext.

We notifiedSprintPCSthroughtheirWebinterface.

G Snowball.com Websites

A user registerswith a username/password and re-
ceives an authenticationcookie. The site uses this
cookie to authenticate the user for future logins.
The same schemeis used on chickclick.com ,
highschoolalumni.com , andign.com .

Simply by changingtheusernameanduserID (UID)
in the Beacon cookieto the that of the victim, an ad-
versarycan login as the victim. First, an adversary
logs in to obtain a legitimate username/UIDpair in-
cluded in the Beacon cookie. Given such a cookie,
the adversarychangesthe usernameandUID to that of
the victim. Usernameand UID information are read-
ily available from the Web site itself. In the case
of highschoolalumni.com , knowing a user’s high
schoolenablesanadversarytodiscovertheusernameand
UID of a user.

This is anexampleof a non-cryptographicauthentica-
tion scheme.We supposethat thesitewantedto reduce
databaselookupsfor eachrequest.

Wenotifiedsnowball.com andeventuallyreceived
a response.We havenot inspectedthesiterecently.

H Yahoo.com

Yahooprovided us with a descriptionof their client
authenticationscheme.

Ar chitecture Overview

Yahooprovidesalargenumberof serviceswith essen-
tially a singlesign-on.In themostbasiccase,eachuser
hasa username,a uniqueuserID (thatmaychangeover

18

https://fatbrain.com/...?t=0&p1=fubob@mit.edu&p2=540555758

Figure6: SampleFatbrain.com authenticator

RM%5FON=Y&CN1=X&R115=Y

Figure7: In theSprintPCS.com cookie,X andY represent13-charactercrypt() -likeoutputs.R115is afunction
of theuser’spassword. CN1 is likely a functionof theuser’sphonenumber.

time),andapassword. For moresecureservices(suchas
Yahoo!Wallet), anadditionalsecurekey (a longerpass-
word) is requiredaswell. Authenticationandpersonal
informationis encodedinto a smallsetof cookies.

Theoverallarchitectureconsistsof:

(acentraluserdatabase,whichmapsauser’s ID to a
long list of properties,

(some login machines, such as
login.yahoo.com ,

(all the servicemachines,like my.yahoo.com or
calendar.yahoo.com .

HTTP andHTTP over SSLareusedto communicate
betweenclientsandYahoo.

Authentication Scheme

Yahoo’s authenticationschemeusescookiesto store
userandauthenticationinformationon the user’s com-
puter. Users are initially authenticatedvia password
which can be performedeither over regular HTTP or
HTTP layeredon SSL.This allows usersto protecttheir
password from passiveadversariesif they sochoose.All
loginsmustbeprocessedinitially via thelogin machines.

Upon successfullogin, usersaregiven 2 authentica-
tion cookiesat Yahoo:Y andT. Y is persistent,but T is
normallylostwhenthebrowserexits. Thepersistenceof
the Y cookiecanbe configuredby the userto oneof a
fixedsetof expirationtimesrangingfrom 15 minutesto
oneday.

TheY cookiealoneis acceptedfor somelow-security
things, like displayingthe user’s My Yahoopage. For
more “personal” info, like Calendaror Mail, an up-to-
dateT cookie is also needed. The Y cookie encodes
theuser’s userid,somebasicdemographicinfo, andthe
user’s internal unique ID. For instance,a test user ID
“tlbtlbtlb2” getsthefollowing in Figure9.

The ‘l’ part is a transposedversionof theID. The ‘n’
partis thatlogin’suniqueID. It’scomparedto theversion
storedin the centraldatabasewhenqueryingto retrieve
any information.

Other parametersencode language/countryprefer-
ences,gender, yearof birth, andregionalinformation.

Theseallow certainsimplecontentcustomizationsto
happenquickly — for example,genderis for targeting
ads,yearof birth helpsfilter out adult from searchre-
sults to kids, andzipcodecanbe usedfor weatherand
yellow pagessearch.Also, encodingthis directly helps
reduceloadon thedatabasemachinessinceservicema-
chinesdonotneedto queryfor thiscommoninformation
specifically.

TheT cookieis basicallyatimestampandasymmetric
digital signature.A sampleT cookieis in Figure10.

The ‘z’ is for backwardscompatibility. The ‘a’ field
containsflagsthatspecifytheexpiration time andsome
flagsrelatedto protectingprivacy of minors.Theimpor-
tantfieldsare‘d’ and‘sk’, which area timestampanda
signatureon the login, uniqueID, andtimestamp.(The
‘d’ field may also include someother things for back-
wardscompatibility.) Thesignaturedoesrequirehaving
a Yahoo-widesharedsecretthatevery machinesknows.
This signatureis calculatedas an MD5 hashover the
datawith the sharedkey. This schemealsoreliesupon
a looselysynchronizedclock,muchlike Kerberosdoes.

For maximumsecuritypartsof the system,like Ya-
hoo! Wallet, yet anothercookie, called the S cookie,
is used. The S cookie is actually very different in
structureasthe generationandmanagementof thecon-
tentsis different. This cookieis limited to machinesin
the .secure.yahoo.com domain,andonly in SSL
mode. It is roughly like the T cookiein structure.This
cookie is issuedwhenyou enteryour Yahoo! security
key, which is only enteredin SSLmode,andwhich has
somepassword quality rules enforced. The secureS
cookies,andthevendor-specificcookiesthatwegenerate

19

Beacon=hsareg.uid.username.hsa0.97665 9917

Figure8: A sampleSnowball.com cookie

Y=v=1&n=5qhie84hrpd9n&l=jb1jb1jb1s/o&p=m252rq8401b304&r=3k&lg=us&intl=us&np=1

Figure9: YahooY cookie

T=z=eFGF6AeLbF6Acbnur1trzJ7&a=gEE&sk=DAAkjV.h3/r2GU&d=YQFnRUUBenoBZUZHRjZBZ1dB

Figure10: YahooT cookie

from them,aretied to a particularIP address.Although
mostHTTP proxiesmake the IP addressof usersjump
around,Yahooreportsthat this appearsto be quite rare
in theHTTPScase,sotheIP addresscheckdoesn’t seem
to hurt anyone.

By limiting this cookie to the
.secure.yahoo.com domain, Yahoo ensures
that only a carefully administeredset of machines
can accessthis cookie. Thesesystemspresentvery
simpleuserinterfaces(just thepassword entrypages)to
minimizethechanceof allowing someJavascriptcookie
stealinghack.

Someserviceshostedby Yahoo,like StoresandPay-
direct, requireaccessto securedatabut don’t run under
.secure.yahoo.com . Such requestsare authenti-
catedvia aseparatesystem.Initial requestsrequiringau-
thenticationareredirectedto a .secure.yahoo.com
machinewhichrequeststhesecurepassword. Uponvalid
authenticationhere,the usersareredirectedbackto the
hostedservicewith anauthenticationtokenontheendof
theURL. Theoriginal machinethensetsa cookiesimi-
lar to the S cookiethat is visible only to it andauthen-
ticatedusinga secretkey that is private to the original
machine.Whenthatcookieexpires(accordingto thein-
cludedtimestamp),the servicewill have to re-sendthe
clientto the.secure.yahoo.com machinesfor reau-
thentication. The URL authenticatoris service-specific
and is also checked for replays. This ensuresthat a
sniffedauthenticatoris notusefulto any adversary.

Yahoovalidatesthe integrity of all datasentin the T
(andpresumablyS)cookies,exceptfor thedemographics
informationusedfor adtargeting.

Invalidationandrevocationarehandledby changing
theuniqueID in theuserdatabase(while preservingthe
usernameandotherassociatedinformation). By ensur-
ing thattheuniqueID is changedwheneverthepassword

is changed,Yahooensuresthatany outstandingcookies
areimmediatelyinvalidated.

Discussion

TheHTTPschemeappearssecureagainsttheinterrog-
ative adversary, andtheHTTP overSSLschemeagainst
the active adversary. However, the schememaybe vul-
nerableto cryptanalyticsplicingattacksbecauseit does
not usea strongkeyed MAC, but insteadusesstraight
MD5 with a fixed sharedkey. This constructiondoes
notoffer thesameamountof confidenceasHMAC-MD5
mightprovide. Fortunately, unlikecrypt() , MD5 con-
siderstheentireinput,makinganattacklike theoneex-
ecutedagainsttheWall StreetJournalmuchlesslikely.

The useof a singlesharedkey is alsoa risk because
compromiseof this sharedkey could compromisethe
sameportionof Yahoo’ssystem.

Remedy

Thereis noknownattackagainstthisschemeasof yet,
exceptthattheuseof thehashasaMAC is notknown to
resistsplicingattacks.

I WSJ.com

The fastlogincookie is an authenticatorissuedto a
userafter typing in a username/password on WSJ.com.
Thealgorithmwasdeterminedto be:

fastlogin=
username+ crypt (username+ rotatingserversecret)

where+ denotesconcatenationwithout delimiters.

This schemeis weaker than schemessuchas HTTP
authenticationwhich sendcleartext passwordsover the
network. An interrogative adversarywho discoversthe
algorithmcanforgea cookieauthenticatorfor any user.
This resultsin a totalbreak.

20

Discussion

The vulnerability on the WSJ.com site givesan ad-
versaryaccessto any user’ssubscriptionandpersonalin-
formation. In addition,anadversarycanpurchaseitems
at theWSJandaffiliated sites(suchasarchivedarticles)
underany user’s credit card. Furthermore,anadversary
can view optional information setby the user. For in-
stance,many userskeepa list of their stockportfolio on
theWSJ.com site.

An adversaryneedsonly onepieceof informationto
gain access:the usernameof the victim. In this docu-
mentweexplainninesecurityholesonWSJ.com.

1. With knowledgeof a username,an adversarycan
log in asthatuser.

The WSJ.com site requiresa paid accountto read
articles,purchasearchivedarticles,etc. A usercan
log into a personalizedWSJ.com site if the user’s
Web browser hasa valid “f astlogin” cookie. Be-
causeof several mistakes in the useof cryptogra-
phy, we wereableto write a programthat,givena
username,createsa working fastlogincookie.This
programis attachedat thebottomof thisdocument.

Figure1 showsanexampleof a fastlogincookie.

The last field representsthe username,bitdiddle,
prependedto the output of the Unix crypt() func-
tion. The input to the crypt() function is the user-
nameprependedto thestring“March20”.

Likely WSJ.com expectedthe fastlogincookie to
act like a one-way hash or somethingthat de-
pendsonsecretinformation.However, thefastlogin
cookieis adeterministicvaluewhichcanalwaysbe
computedfrom justthefirst 8 charactersof theuser-
name.

2. If anadversaryis notawareof vulnerability# 1, the
adversarycanstill accessmostaccounts.

Beforediscoveringvulnerability#1, we considered
a less seriousattack that allowed accessto most
WSJ.com accounts.Any curiouspersonwith two
accountshaving similarusernamescouldnoticethis
vulnerability. However, vulnerability #1 contains
all of theimplicationsof vulnerability#2andmore.

Thecrypt() functiononly paysattentionto thefirst
8 charactersof its input. Theimplicationis that for
all usernamesthatmatchin thefirst eightcharacters,
the fastlogincookie is the same. Everythingafter
the8th characterof a usernameis ignored.

This attackworks againstall accountsthat have 8
to 14 characterusernames.Only userswith 5, 6,

or 7 characterusernamesaresafefrom this simple
attack. However, all usersare still susceptibleto
vulnerability#1.

In otherwords,if avictim hastheusername“bitdid-
dle”, thenanadversarycanregisterfor anotherac-
countwith thevictim’susernameastheprefix (e.g.,
“bitdiddler”). This resultsin the samecrypt() out-
put:

username Crypt() Output FastloginCookie
bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc
bitdiddler MaRdw2J1h6Lfc bitdiddlerMaRdw2J1h6Lfc

If anadversarywishesto takecontrolof theaccount
of anotheruser, the adversarymustonly know the
login nameof the victim. The adversarythencre-
atesa new user on WSJ.com such that the new
usernamestartswith the victim’s username(e.g.,
“bitdiddler”). Theadversaryeditsthecookieto re-
move the “r” in “bitdiddler”. Next, the adversary
startsa Web browser (e.g., Netscape)andgoesto
www.wsj.com . The site allows the adversaryto
log in as the victim. Now the adversaryhasac-
cessto the victim’s credit card and can view per-
sonalinformationsuchashomephonenumbersand
addresses.In addition, the adversarycan change
the victim’s password, althoughthis is not neces-
sary. The only condition is that the victim’s user-
namemustbeat least8 charactersfor theincorrect
useof crypt() to appear. Again, this vulnerability is
eclipsedby vulnerability#1mentionedearlier.

The implicationscenariosarethesameasvulnera-
bility #1.

3. Thesaltis constant.

WSJ.com usesthesamesalt,“Ma”, for everyuser.
Thesaltis supposedto helprandomizetheoutputof
crypt(). WhenWSJ.com issuesfastlogincookies,
it oughtto seta random2-charactersalt ratherthan
simply “Ma” for everyuser.

Becausethe fastlogin cookie doesnot take pass-
wordsinto account,this doesnot appearto further
weakenthescheme.But if WSJ.com wereto hash
passwords,theconstantsaltwould makedictionary
attackseasierto mountagainststolencookies.

4. Thesecretpaddingis partially revealedby thesalt.

The salt is not intendedto be a privatevalue; it is
by definition a public valuethat is sentalongwith
the ciphertext. Using the samevalue for a secret
string(thepadding)anda public string(thesalt) is
dangerous,becauseit inherentlycompromisesthe
secretstring.Thesalt“Ma” consistsof thefirst two

21

domain Javascript? Path SSL? Expiration Variable
name

Value

.wsj.com FALSE /cgi FALSE 941452067 fastlogin bitdiddleMaRdw2J1h6Lfc

Figure11: A samplecookieauthenticatorfrom WSJ.com.

charactersof the secretpaddingstring “March20”
which is usedto createfastlogincookies.

Theimplicationis that thesaltpartially givesaway
thesecretusedto createfastlogincookies.

We later discoveredthat the secretstring was in-
tendedto be a rotatingkey. However, the rotation
wasnot implemented.Therollout day, “March20”,
remainedthesecretkey until recently.

5. Lack of secretinformationandignoredinput

The authenticationschemerelieson the secrecy of
a 7-characterstring storedon the WSJ.com Web
server. We were able to extract this 7-character
string.

We first ranoffline a bruteforceguessingprogram
to determine3 of the seven characters.This took
about an hour on ten 733MHz machines. Then
we improvedtheprogramby letting it interactively
query the WSJ.com Web server (about 128 � 8
times)to determinetheremaining4 characters.Ex-
cludingtheprogrammingtime,thissecondtesttook
lessthan18 minutesof computation(1 secondper
querybecausewe did not want to flood the server
with requests).

Second,the crypt() function ignoresall input after
the 8th character. WSJ.com ought to usea trans-
form thatusesall of its input. For instance,SHA-1
takesan arbitrarily long string andproducesa 20-
byteoutput.

Becauseof thesetwo flaws,wewereableto quickly
recoverthissemi-secret,“March20”. Thisis usedas
asecretto createfastlogincookies.Theimplication
is thatcryptanalysisis straightforwardandfast.

6. Lack of revocation

Even if a userchangeshis/herpassword, the fast-
login cookie remainsthe same. This preventsthe
WSJ.com site from revoking a compromisedac-
count.

The implication is thatstolencookiesarenot revo-
cable. Even if a victim changeshis or her pass-
word,theadversarycanreuseanoldstolenfastlogin
cookie.

7. Thefastlogincookielastsforever

There is no cryptographicallystrong lifetime in
the fastlogincookie. Although WSJ.com setsthe
cookie to expire 11 hours later, a savvy usercan
modify thecookiesfile to delaytheexpirationtime
indefinitely. Our cookiesstill workedafter 5 days.
One way to fix this is to include a timestampin
themessageauthenticationcodeto enforceacookie
lifetime.

8. Patternsin encryptedtext

WSJ.com sometimesusesa secondcookiecalled
WSJIELOGIN. This appearsto be somefunction
of the usernameand password. However, the en-
cryption schemein the WSJIELOGIN cookieex-
hibits too many patternsto be secure.We identify
ciphertext patternsbelow. A realencryptionor hash
algorithm would result in random-lookingoutput.
WSJIELOGIN is far from random. For example,
thepairsbelow arecorrelatedto thealphabetlisted
backwards.For instance,’a’ encryptsto ’v’, ’b’ en-
cryptsto ’u’, ’c’ encryptsto ’ t’, etc.However, some
encryptionsappearto varyby username.

Password EncryptedPassword
a v KfAnAfOi
b u KfAnAfOi
c t KfAnAfOi
... ...

[Spacesaddedfor clarity.]

Theimplicationis thatanadversarymaybeableto
retrievea password from this cookie.

9. WSJ.com allows invalid accounts

Onecanusenon-existentusernamesto log in to read
contenton WSJ.com. While this doesnot affect
any particularuser, it allows adversariesto readthe
WSJfor free. For instance,the cookiein Figure9
worksfine eventhoughit hasfewer than5 charac-
ters.

Sampleauthenticator

Cookie: fastlogin=bitdiddleMaRdw2J1h6Lfc

The programin Figure13 will generatea cookieau-
thenticatorgivenausername.

22

.wsj.com TRUE / FALSE 1314159265 fastlogin abcdMaTFoOb31s/Gg

Figure12: A cookiefor anon-existentuserwhereusername= “abcd” andcrypt() = “MaTFoOb31s/Gg”.

#!/usr/bin/perl
$salt = "Ma";
$pad = "March20";

print STDERR"Enter username: ";
$username = <STDIN>;
chop $username;

$in = $username . $pad;
while (length ($in) > 8) { chop $in; }

$fasterlogin = crypt ($in, $salt);

print STDERR"Place the following in your .netscape/cookies file.\n\n";
print ".wsj.com TRUE / FALSE 1314159265 fastlogin $username$fasterlogin\n";

Figure13: A programto createWSJ.com cookieauthenticators.

We useddynamicprogrammingin an adaptive cho-
senmessageattackto recover the rotatingsecretserver
key, “March20”, in Figure 14. The programruns in
������)*� queriesratherthanthe intended������� (1,024vs.
72,057,594,037,927,936). Assumingeachquerytakes1
second,this programfinishesin 17 minutesinsteadof
the intended��)+����� years.Therotatingsecretwassup-
posedto be the currentdate,but thesecretgot stuckon
therollout date,March20.

Remedy

We met with Dow Jones,the parentcompany of the
Wall StreetJournal,shortlyafterdiscoveringthevulner-
ability. Thecookieauthenticationschemewasimmedi-
ately changed. However, we have not investigatedthe
new scheme.The peopleat Dow Joneswereextremely
responsiveandhelpful.

23

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Cookies;

$mysalt = "Ma"; # The well-known 2-char salt
$url = "http://interactive.wsj.com/pages/money.h tm"; # URL returning 200 only if cookie ok
$cookiefile = "/tmp/.netscape/cookies.txt";
$ua = new LWP::UserAgent;
$ua->agent("Cookie-Eaters/1.0");
$request = new HTTP::Request (’GET’, $url);
$cookie = HTTP::Cookies::Netscape->new (

File => $cookiefile,
AutoSave => 0,);

$username = "bitdiddl"; # Start with 7-character username to find the left-most padding char
$pad = ""; # What we know about the padding appended to the input of crypt.
$iteration = 1; # Try every character for the current pad character
for ($count = 0; $count <= 127; $count++) {

$guess = sprintf("%c", $count);
$out = crypt ($username . $pad . $guess, $mysalt);
$cookie->set_cookie(1, "fastlogin" => "$username$out", "/", ".wsj.com");
$cookie->add_cookie_header($request);
$ua->cookie_jar($cookie);
$response = $ua->simple_request($request);
if ($response->is_success) {

$pad = $pad . $guess;
}
if ($iteration == 8) {

print "Exhausted. Pad is so far: $pad\n"; exit;
}
$iteration++; sleep 1;

}

Figure14: An adaptivechosenmessageattackto quickly recover theWSJ.com serversecret.

24

