
MIT-LCS-TR-819�����������
	��
��	���	��������
���
�����������
���
�
���������������
�� "!#����$����%!'&�������&����

	(�)�)�*!+�
	(�,!-��&"�
.0/
1�2435/�60798�:�;</�=?>�@A3CBD/�@E@E6 F�:�G�8IH�6 JLKM8�@AN�>�@E:
BPO�Q
@R8�1IFLK�8�8IF*SI/)>�T9:)U�8�@R6*V�8�W#8�T9@R6 F*S�1�8�1

Chord:A scalablepeer-to-peerlookupservicefor Internetapplications

Ion
X

Stoica,RobertMorris, David Karger, M. FransKaashoek,Hari BalakrishnanY

Abstract
Z

Efficiently determiningthenodethatstoresadataitemin adistributednetwork is animportantandchallengingproblem.

This paperdescribesthemotivation anddesignof the Chord system,[a decentralizedlookup servicethat storeskey/value

pairsfor suchnetworks.TheChordprotocoltakesasinputan \ -bit identifier(derived by hashingahigher-level application-

specifickey), andreturnsthenodethatstoresthevaluecorrespondingto thekey. EachChordnodeis identifiedby an] -bit

identifierandeachnodestoresthekey identifiersin thesystemclosestto thenode’s identifier. Eachnodemaintainsan ^ -

entryroutingtablethatallows it to look upkeys efficiently. Resultsfrom theoreticalanalysis,simulations,andexperiments

show thatChordis incrementallyscalable,with insertionandlookupcostsscalinglogarithmicallywith thenumberof Chord

nodes.

1 Intr oduction

A
_

review of the featuresincludedin recentpeer-to-peerapplicationsyields a long list. Theseincluderedundantstorage,

permanence,` efficient datalocation,selectionof nearbyservers,anonymity, search,authentication,andhierarchicalnam-

ing. At their core,however, all theseapplicationsneedan efficient methodfor determiningthe locationof a dataitem.

The contribution of this paperis a protocol that solvesthe lookup problemanda simplesystemthat usesit for storing

information.

TheChordsystemis anefficient distributedlookupservicebasedon theChordprotocol. TheChordsystemsupports

five operations:theadditionanddepartureof Chordservernodes,andinsert,update,andlookupof unstructuredkey/value

pairs.` All operationsusethe lookupprimitive offeredby theChordprotocol. We have usedtheChordsystemto build a

peer` -to-peerfile sharingapplication[2].

The
a

Chordprotocolsupportsjustoneoperation:given akey, it will determinethenoderesponsiblefor storingthekey’s

vb alue.TheChordprotocolusesa variantof consistenthashing[11] to assignkeys to Chordservernodes.Underconsistent

hashing
c

load tendsto be balanced(all nodesreceive at most dfe
g�hji times
k

theaveragenumberof key/valuepairs). Also

whenl an mDnpo nodeq joins (or leaves)thenetwork,onaverageonly an r"sut
vxwDy fraction
z

of thekey/valuepairsaremoved to a

dif
{

ferentlocation.

Previous work on consistenthashingassumedthat nodeswereawareof mostothernodesin the network, makingit

impracticalto scaleto largenumberof nodes.Weshow how eachnodecangetby with “routing” informationaboutasmall

numberof othernodes.Becausetheroutingtableis distributed,a noderesolvesthehashfunctionby communicatingwith

a| few othernodes.In thesteadystate,in an } -nodenetwork, eachnodemaintainsinformationonly about ~"���#���*��� other�
nodes,andresolvesall lookupsvia �"���#���*��� messagesto othernodes. We alsoexplain how the hashfunction andthe

routing� informationarerevisedwhena nodejoinsor leaves thenetwork. Theseupdatesrequire�"�A�'���
���D� messageswhen

a| nodejoinsor leaves.
�
Authors
�

in reversealpha-beticalorder.

1

Thefinal contribution of this paperis anevaluationof theChordprotocolandsystem.We presentproofsthatsupport

the
k

theoreticalclaims. We alsopresentsimulationresultswith up to 10,000nodesthatconfirmthat the theoreticalresults

are| obtainablein practice.Finally, we presentmeasurementsof anefficient implementationof the Chordsystem.These

measurementsconfirmthesimulationresults.

The
a

restof this paperis structuredas follows. Section2 contrastsChordwith relatedwork. Section3 presentsthe

system� modelthatmotivatestheChordprotocol.Section4 presentsthebaseChordprotocol.Section5 presentsextensions

to
�

handleconcurrentjoinsandfailures.Section6 outlinesresultsfrom theoreticalanalysisof theChordprotocol.Section7

confirms� theanalysisthroughsimulation. Section8 presentsthe implementationof theChordsystem.Finally, Section9

summarizes� ourconclusions.

2

RelatedWork

Conceptually
¡

theChordsystemfunctionsanalogouslyto theDNSsystem[16]. Bothsystemsmapnamesto values.Chord’s

algorithms| have no specialservers,however, in contrastto DNS which relieson a setof specialroot servers. In addition,

Chord
¡

doesn’t putrestrictionsontheformatandmeaningof names;Chordnamesarejust thekeysof key/valuepairs.Chord

doesn’
{

t attemptto solve theadministrativeproblemsof DNS.

The Chordsystemmay alsobe comparedto to Freenet[5, 6]. Like Freenet,Chordis decentralized,symmetric,and

automatically| adaptswhenhostsleaveandjoin. UnlikeFreenet,Chordqueriesalwaysresultin successor definitivefailure.

Furthermore,Chordis scalable:thecostof insertingandretrieving values,aswell asthecostof addingandremovinghosts,

gro¢ ws slowly with the total numberof hostsandkey/valuepairs. Chord’s gainscomeat the costof anonymity, which is

implemented
£

separately[2].

The
a

Ohahasystem[19] usesa consistenthashing-like algorithmfor mappingdocumentsto nodes,anda Freenet-style

method¤ for routingqueriesfor documents.As a result,it sharessomeof theweaknessesof Freenet.Archival Intermemory

uses¥ anoff-line computedtreeto maplogicaladdressesto machinesthatstorethedata[4].

The
a

Globesystem[3] hasa wide-arealocationserviceto mapobjectidentifiersto locationsto supportmoving objects.

Globe
¦

arrangestheInternetasa hierarchyof geographical,topological,or administrativedomains,effectively constructing

a| staticworld-widesearchtree,muchlike DNS.Informationaboutanobjectis storedin particularleaf domainandpointer

caches� provide searchshortcuts[22]. As pointedout by the authors,the searchtreedoesn’t scale,becausehigher-level

nodesin thetreeserve largenumberof requestsandalsohavehighstoragedemands.

Thedistributeddatalocationprotocoldevelopedby Plaxtonet§ al. [7], a variantof which is usedin OceanStore[12], is

perhaps` theclosestalgorithmto theChordprotocol. It providesstrongerguaranteesthanChord: like Chordit guarantees

that
�

queriesmakea logarithmicnumberhopsandthatkeysarewell balanced,but thePlaxtonprotocolalsoensures,subject

to
�

assumptionsaboutnetwork structures,thatqueriesnever travel furtherin network distancethanthenodewherethekey

is
£

stored.Chordinsteadhasa heuristicto achievenetwork proximity andits protocolsaresubstantiallylesscomplicated.

Chord’
¡

sroutingproceduremaybethoughtof asaone-dimensionalanalogueof theGrid [14] locationsystem.TheGrid

relies¨ on geographic-locationinformationto routeits queries,while Chorddoesn’t requiretheavailability of geographic-

locationinformation.

Chord
¡

canbeusedasa lookupserviceto implementavarietyof systems,asdiscussedin Section3. In particular, it can

helpavoid singlepointsof failureor controlthatsystemslike Napster[18] possess,andthelack of scalabilitythatsystems

likeGnutella[9] displaybecauseof theirwidespreaduseof broadcasts.

2

Function Description
©

insert(key, value) Insertsakey/value bindingat ª distinct
«

nodes.

Understableconditions,exactly ¬ nodescontainthekey/valuebinding.

lookup(key) Returns
­

thevalueassociatedwith thekey.

update(key, newval) Insertsthekey/newval bindingat ® nodes.

Understableconditions,exactly ¯ nodescontainkey/newval binding.

join(n) Causes
°

anodeto additself asa server to theChordsystemthatnode ± is partof.

Returnssuccessor failure.

leave() Leave theChordsystem.

No returnvalue.

T
a
able1: API of theChordsystem.

3
²

Systemmodel

TheChordprotocolhasessentiallyoneoperation:given a key, it will determinethenoderesponsiblefor thekey. Onecan

construct� a wide rangeof systemsusingthis primitive. To guidethe explanationof the protocolthis sectiondefinesone

such� a system,whichwe have labeledtheChordsystem.

The Chordsystemprovidesa distributedlookup servicethat allows applicationsto insert, lookup, anddeletevalues

using¥ a key as a handle. The Chordsystemtreatsthe key simply as an arrayof bytesandusesit to derive a unique,

ef³ fectively randoḿ -bit k
µ
ey identifier,¶ anddoesnot associateany meaningto thekey providedby theapplication.Like a

k
·
ey, thevalueprovidesby theapplicationis simply treatedasanarrayof bytes.Dependingon theapplication,thesevalues

could� correspondto network locationswhereapplicationdataor servicesmaybefound(in which casetheChordsystem

helps
¸

in the “rendezvous” process),or to the actualdataitself (e.g.,files). We expectthe predominantuseof the Chord

system� to beasa lookupservicefor rendezvous,ratherthanfor transferringdocumentsor largefiles.

The API provided by the Chordsystemconsistsof five main functions,shown in Table 1. Wheninsert(key,

value) is called,Chordinsertsthekey/valuepairat ¹ carefully� chosennodes.Thequantityº is aChordsystemparameter

that
�

dependson thedegreeof redundancy desired.Whenlookup(key) is called,Chordefficiently finds thekey/value

binding
»

from somenodein the system,andreturnsthe valueto the caller. Finally, Chordallows updatesto a key/value

binding,
»

but currentlyonly by the originatorof the key. This restrictionsimplifies the mechanismsrequiredto provide

correct� updatesemanticswhennetworkpartitionsheal.TheChordsystemdoesnotprovideanexplicit delete operation—¼
an| applicationthat requiresthis featuremayimplementit usingupdate(key,½ value) with¾ a valuecorrespondingto

the
�

“delete-operation”that is interpretedby theapplicationassuch(this choiceis arbitraryandindependentof thechord

protocol).` Thefinal two API callsarefunctionsfor nodesto join andleaveaChordsystem.

The
a

Chordsystemis implementedasanapplication-layeroverlaynetwork of Chordservernodes.Eachnodemaintains

a| subsetof the key/valuepairs,aswell as routing tableentriesthat point to a subsetof carefully chosenChordservers.

Chord
¡

clientsmay, but arenotconstrainedto, runonthesamehostsasChordservernodes.Thisdistinctionis not important

to
�

theChordprotocoldescribedin thispaper.

The servicemodelprovided by the Chordsystemmay be thoughtof as a “best-effort persistence”model. As long

as| at leastoneof the ¿ nodesin the Chordnetwork storinga key is available,the key/valuebinding is persistent.If the

underlying¥ network connectingChordserverssuffersa partition,theserversin eachpartitioncommunicatewith eachother

to
�

reorganizetheoverlaywithin thepartition,assuringthat therewill beeventually À distinct
{

nodesstoringeachbinding.

When
Á

partitionsheal,astabilizationÂ protocolassures| thattherewill beexactly Ã distrib
{

utedlocationsfor any bindingin any

3
Ä

connected� partition.TheChordsystemdoesnotprovidetight boundsonconsistency, preferringinstead(in the“best-effort”

sense)� to rely oneventualconsistency of key/valuebindings.Insertionsandupdatesarealsonotguaranteedto beatomic.

TheChordsystem’s simpleAPI andservicemodelmake it usefulto a rangeof Internetapplications,particularlybe-

cause� a wide variety of namespacesandvaluescanbe usedby a Chordapplication. For example,to implementlookup

functionality
Å

for theDomainNameSystem(DNS), thevaluesstoredin theChordsystemcouldcorrespondto thevarious

DNS
Æ

recordsassociatedwith thename.TheChordsystemcanalsobeusedby resourcediscoveryserversstoringbindings

between
»

networkedservices(names)andtheir locations(values)[1, 10, 21, 23].

T
a
oday, eachapplicationrequiringthe ability to storeandretrieve key/valuebindingshasto re-implementthis basic

functionality, oftenhaving to reconcileseveral conflictinggoals. For example,a key requirementfor DNS is scalability,

for which it usesadministrative hierarchiesandaggressive caching;unfortunately, its cachingmodel,basedon a time-to-

live field, conflictswith its ability to supportrapidupdates.Someof today’s peer-to-peerfile sharingsystemsshow that

scalability� is hardto achieve; Napster, for example,usesa centralizeddirectorythat is a singlepoint of failure; Gnutella

relieson broadcastsof increasingscope;andFreenetaggressively replicatesdocuments,but cannotguaranteetheretrieval

of¼ a documentwithin a boundednumberof stepsnor updatedocuments.TheChordsystemcanserve as a usefullookup

service� for theseapplications.

Based
Ç

on theneedsof applicationslike theonesmentionedabove andconditionson theInternet,we setthefollowing

design
{

goalsfor theChordsystem:

1. Scalability
È

. The systemshouldscalewell to potentiallybillions of keys, storedon hundredsor millions of nodes.

This impliesthatany operationsthataresubstantiallylarger-than-logarithmicin thenumberof keys arelikely to be

impractical.Furthermore,any operationsthatrequirecontacting(or simplykeepingtrackof) a largenumberof server

nodesarealsoimpractical.

2. Availability . Ideally, the lookup serviceshouldbe able to function despitenetwork partitionsandnodefailures.

While
Á

guaranteeingcorrectserviceacrossall patternsof network partitionsandnodefailuresis difficult, we provide

a| “best-effort” availability guaranteebasedonaccessto at leastoneof É reachablereplicanodes.

3.
Ä

Load-balancedoperation. If resourceusageis evenly distributedamongthe machinesin the system,it becomes

easier³ to provision the serviceandavoid the problemof high peakload swampinga subsetof the servers. Chord

tak
�

esastepin thisdirectionby distributingthekeysandtheirvaluesevenlyamongthemachinesin thesystem.More

refinedloadbalancing,for exampleto dealwith a singlehighly popularkey by replicatingit, canbelayeredatopthe

basic
»

system.

4. Dynamism. In a large distributedsystem,it is the commoncasethat nodesjoin andleave, andthe Chordsystem

needsto handlethesesituationswithout any “downtime” in its serviceor massive reorganizationof its key/value

bindings
»

to othernodes.

5.
Ê

Updatability
Ë

. Key/valuebindingsin many applicationsarenotstatic;it shouldbepossiblefor theseto beupdatedby

the
�

application.

6.
Ì

Locating according to “pr oximity”. If thetargetof a queryis neartheoriginatingnode,thentheoriginatingnode

should� not have to contactdistantnodesto resolve thequery. We do not provideformalguaranteesfor this property,

b
»
ut describesomeheuristicmodificationsthatshouldperformwell in practice.

The
a

Chordsystemcouldprovideotherpropertiesaswell and,in fact,for certainpeer-to-peerapplicationit should.For

e³ xample,certainapplicationsmight requirethat thesystemprovide anonymity, that insertsbeauthenticated,thatstronger

consistenc� y be providedin the faceof network partitions,or that the systemprotectagainstmaliciousservers(e.g.,ones

4

that
�

lie abouttheir identity). We areoptimisticthattheprotocolswe proposecanbeextendedto providesupportfor these

features,but that is beyond the scopeof this paper. Instead,this paperfocuseson the Chordprotocol,which solvesthe

problem` of determiningthenodein a distributedsystemthatstoresthevaluefor a givenkey. This problemis challenging,

independentof whetherthesystemoffersasimpleor a morericherservicemodel.

4
Í

The baseChord protocol

Chord
¡

serversimplementtheChordprotocol,usingit to returnthe locationsof keys, to helpnew nodesbootstrap,andto

reor¨ ganizetheoverlaynetwork of servernodeswhennodesleave thesystem.We describethebaseprotocolin this section

for
Å

thesequentialcase,whenno concurrentjoins or leaves occurandno nodesfail. Section5 describesenhancementsto

the
�

baseprotocolto handleconcurrentjoinsandleaves,andnodefailures.

4.1 Overview

At its heart,chordprovidesfastdistributedcomputationof ahashfunctionmappingkeys to machinesresponsiblefor them.

W
Á

euseapreviouslydevelopedconsistentÎ hashfunction[11, 13], whichhasseveralgoodproperties.With highprobability Ï
the
�

hashfunctionbalancesload(all machinesreceive at most ÐuÑ4Ò�ÓRÔ times
�

theaveragenumberof keys). Also with high

probability` , whenan Õ×ÖpØ machine¤ joins (or leaves) the network, only an Ù"ÚuÛ
ÜxÝDÞ fraction
Å

of the keys aremoved to a

dif
{

ferentlocation—thisis clearlytheminimumnecessaryto maintainabalancedload.

The
a

previouswork on consistenthashingassumedthatmostmachineswereawareof mostothermachinesin thenet-

w¾ ork. This assumptiondoesnot scale. We show how eachmachinecanget by with only a small amountof “routing”

informationaboutothermachines.Becausetheresolutioninformationis distributed,a machineresolvesthehashfunction

by
»

communicatingwith afew othermachines.Wedescribetheinformationthateachmachinemaintainsin thesteadystate,

and| theroutingprocessusedto resolve thehashfunction. More precisely, in an ß -machinenetwork, eachmachinemain-

tains
�

informationonly aboutà"áAâ'ã�ä*åDæ other¼ machines,andresolvesall lookupsvia ç"è�é#ê�ë*ì�í messagesto othermachines.

Finally, we alsoexplain how thehashfunctionandtheroutinginformationarerevisedwhena machinejoins or leaves

the
�

network. Theseupdatesrequireî"ï�ð#ñ�ò9ó9ôDõ messageswhena machinejoinsor leaves.

4.2 The Hash Function

Theconsistenthashfunctionbeginsby assigningto eachnodeandkey in thesysteman ö -bit identifier
÷

. Theidentifiersare

generated¢ usinga basehashfunctionsuchasSHA-1. Thenodeidentifiersarechosenby hashingthe IP address(or some

other¼ uniqueID) of thenodeto the ø -bit identifierspace.Similarly, theidentifiersof thekeysareproducedby hashingthe

keys to the ù -bit space.(We will usetheterm“key” to referto boththeoriginalkey andits imageunderthehashfunction,

as| themeaningwill beclearfrom context. Similarly, the termnodewill referto boththenodeandits identifierunderthe

hash
¸

function.)

As
ú

with any hashfunction,thereis a smallchanceof a collision wheretwo nodeshashto thesameidentifier;we takeû lar
ü

geenoughto make this probabilitynegligible. Alternatively, we canappenda uniquesuffix (suchasthe node’s IP

address)| to the identifier for eachnodeto ensureuniquenodeidentifiers(this hasno significantimpacton our claimed

performance).` Colliding identifiersfor keys areunimportantasthe keys themselves,not just the identifiers,areusedto

resolve lookups.ý
High probabilitydoesnot refer to any distribution assumptionsabouttheinput (machinesandkeys). Rather, our algorithmusesa small randomseed

to
þ

definethehashfunction androuting scheme.With high probability in this choiceof randomseed, thepropertieswe claim will hold regardlessof the

configurationof machinesandinputs.

5
Ê

0
ÿ
6
�

1

2

3
�

4
�5

�

6
�

7
� 1

2
�

successor(2) = 3�
successor(6) = 0�

successor(1) = 1�

Figure
�

1: A network consisting of three nodes 0, 1, and 3, which stores three keys 2, 4, and 6. The size of the key-space,	 ,¶ in this example is 3 bits. Each key (and its associated value) is stored at the successor node of the key. The successor

node for an identifier,
�� ,¶ is the first node with an identifier that is equal to or follows
�� in the clockwise direction on the

identifier circle.

Gi
¦

ven the identifiers, keys are assigned to nodes in a straightforward way. Each key,� ,¶ is stored on the first node whose

identifier, ��� ,¶ is equal to or follows� in the identifier space. This node is called thesuccessor� nodeo¼ f key � ,¶ and it is

denoted
{

by successor� ����� . If node and key identifiers are represented on a circle marked with numbers from� to
�����

,¶ then�! #"$"$%&�'�!(')+*�,�- is the first node that we encounter when moving in the clockwise direction starting from. . We call this circle

the
�

identifier
÷

circle.

Figure
�

1 shows a simple example of a Chord network consisting of three nodes whose identifiers are 0, 1, and 3. The

set� of keys (or more precisely, keys’ identifiers) is/103254+687+9 ,¶ and these need to be stored at the three nodes. Because the

successor� of key : among| the nodes in the network is node; ,¶ key < is
£

stored at node= . Similarly, the successor of key>
is
£@?

,¶ the first node found moving clockwise fromA on¼ the identifier circle. For keyB ,¶ the successor (nodeC)D is found by

wrapping¾ around the circle, so keyE is stored at nodeF .
Consistent
¡

hashing was designed to let nodes enter and leave the network with minimal disruption. To maintain the

consistent� hashing mapping when a nodeG joins
H

the network, certain keys previously assigned toI ’s successor become

assigned| to J . When nodeK leaves the network, all of its assigned keys are reassigned toL ’s successor. No other changes

in assignment of keys to nodes need occur. In the example above, if a node were to join with identifier 6, it would capture

the
�

key with identifier 6 from the node with identifier 7.

The
a

following results are proven in the paper that introduced consistent hashing [11]:

Theorem 1 For any set ofM nodesN and O k
P
eys, with high probability:

1. Each machine is responsible for at mostQSRUTWVYXSZ\[Y] ke
P

ys

2.
^

When an_a`cbedgf$h�i macj hine joins or leaves the network,kmlonqp$rts k
P
eys are moved (and only to or from the joining

oru leaving machine).

The consistent hashing paper used a “v -universal hash function” to map nodes and keys to identifiers. This function

is
£

defined by a random seed, and the “high probability” statement in the theorem refers to the choice of random seed.

In
w

practice, any good hash function (such as SHA-1) should be sufficient to achieve the claimed bounds. To achieve thexzy|{~}Y�S�q�$�
bound
»

on load with small� ,¶ each node actually needs to run���1��� “virtual nodes,” each with its own hashed

identifier
£

[13]. For simplicity, in the remainder of this section we dispense with the assumption of “virtual nodes.” In this

case,� the load on a machine may exceed the average by (at most) an�m�o���1�U�t� f
Å
actor with high probability.

6
Ì

□

Notation
�

Definition

fing
�

er � �������!�S�1�'� ���¡ ~¢�£!¤¦¥$§ mod¤ ¨1© ,¶#ª¬«®­°¯~±
fing
�

er ² ³�´�µ ¶¸·º¹S»!¼'½�¾�¿ À fing
�

er Á Â�Ã�Ä�Å!ÆSÇ1È'Æ$É fing
�

er Ê ËÍÌ@ÎÐÏ�Ñ�Ò!ÓSÔ1Õ'ÓzÖ$× if
£ÙØÛÚ®Ü¡ÝßÞ

à
fing
�

er á âäã¸å æ!çSèäé'ç$êzëíì$î if
£ðïòñ@ó

fing
�

er ô õ�ö�÷ ø¦ù&ú1û first
ü

nodewhoseidentifieris equalto or followsýÿþ fing
�

er � ����� ���
	����
successor� immediatesuccessorof node
 on¼ theidentifiercircle;

successor� �������������������� !#"%$�&
pr' edecessor immediate

£
predecessorof node(on¼ theidentifiercircle

T
a
able2: Definitionof variablesfor node) ,¶ where* is

£
representedusing + bits.

»

4.3 Scalablekey location

Consistent
¡

hashingis straightforwardto implement(with thesameconstant-timeoperationsasstandardhashing)in a cen-

tralized
�

environmentwhereall machinesareknown. However, sucha systemdoesnot scale. In this sectionwe show a

distrib
{

utedimplementationof thehashfunction. More precisely, we discusswhatroutinginformationeachnodeneedsto

maintain,andhow a routingdecisionis madeby anodewhenit doesnotknow thesuccessorof therequestedkey.

As before,let , be
»

thenumberof bits in thebinaryrepresentationof key/nodeidentifiers.Eachnode,- ,¶ maintainsa

routing¨ tablewith . entries,³ calledthe fing
�

er table. The /�021 entry³ in the tableat node 3 contains� the identity of the fir
�

st

node,q 4 ,¶ thatsucceeds5 by
»

at least 6�798#: on¼ theidentifiercircle, i.e., ;=<?>�@�A�A�B%>�>�C�D�E9FHGJILK9M#NPO ,¶ where QSRUTWVUX (and
Y

all

arithmetic| is modulo Z�[).
D

Wecall node\ the
�^]`_2a

fing
�

er of¼ nodeb ,¶ anddenoteit by ced fing
�

er f gih�j k#l%m�n (see
Y

Table2). Notethat

the
�

first fingerof o is
£

its immediatesuccessoronthecircle.

In
w

theexampleshown in Figure2, thefingertableof nodeprqts stores� thesuccessorsof identifiers u`v�wyx{z�| mod¤ }�~���� ,¶�`�������P�
mod¤ �����U� ,¶ and �
��������� mod¤ ������� ,¶ respectively. Thesuccessorof identifier � is

£
node� ,¶ as this is thefirst node

that
�

follows � ,¶ thesuccessorof identifier � is (trivially) node� ,¶ andthesuccessorof � is node .
It is importantto make two observationsof this scheme.First,eachnodestoresinformationaboutonly a smallnumber

of¼ othernodes,andthe amountof informationmaintainedaboutothernodesfalls off exponentiallywith the distancein

key-spacebetweenthetwo nodes.Second,thefingertableof a nodemaynotcontainenoughinformationto determinethe

successor� of anarbitrarykey ¡ . For example,node3 in Figure2 doesnot know thesuccessorof 1, as ¢ ’s successor(node

1) doesnotappearin node£ ’s fingertable.

What
Á

happenswhena node¤ does
{

notknow thesuccessorof a key ¥ ? To resolve this,node¦ asks| anothernodein the

netwq ork to try andfind § ’s successor. Node ¨ aims| to find a nodecloserto © than
� ª

,¶ as thatnodewill have more“local

information”
£

aboutthenodeson thecircle near « . To accomplishthis task,node ¬ searches� its fingertablefor theclosest

finger
ü

preceding­ ,¶ andforwardsthequeryto thatnode.As a resultthequerymovesquickly to thetargetidentifier.

T
a
o make thissearchprocessmoreprecise,we introducesomenotations.Considerthe ® such� that ¯H°²±�³9´¶µ²·{¸9¹#º¼»P½�¾À¿¶ÁÂÄÃ2Å�Æ

. We call this the ÇÉÈ2Ê fing
�

er interval of¼ node Ë ,¶ anddenoteit by ÌeÍÏÎ�ÐiÌ�Ñ�Ò�Ó�Ô ÕiÖ�× Ø�ÙÛÚ
Ü�Ý�Þ�ß�à (see
Y

Table2). By definition,theá�â2ã
fingerof ä is thefirst nodein å ’s æèç2é finger interval, if sucha nodeexists. Otherwise,it is thefirst nodefollowing the

interval.

Thepseudocodethat implementsthesearchprocessis shown in Figure3. In thepseudocodethenotationê .foo is used

to
�

introducethe function definition for foo
ë

being
»

executedon node ì . To differentiatebetweenremoteand local node

operations,¼ remoteprocedurecallsandvariablereferencesareprecededby theremotenode,while localvariablereferences

and| procedurecallsomit the local node.Thus,n.fooN denotes
{

a remoteprocedurecall on nodeí ,¶ while foo
ë

denotes
{

a local

7
î

0
1

2

3

4

5

6

7

fi
ï

nger[1].interval =
[finger[1].start,

fi
ï

nger[2].start)

fi
ï

nger[2].interval = [finger[2].start, finger[3].start)

finger[3].interval = [finger[3].start, 1)

finger[1].start = 2

finger[2].start = 3
fi
ï

nger[3].start = 5

(a)
Y

0
ð

1
ñ

 [1,2) 1
2 [2,4) 3
4
ò

 [4,0) 0

só tart int. succ.
finger table keys

6
ô

1

2
õ

3
ö

4
÷5

ø

6
ù

7
ú

2
û

 [2,3) 3
3
ü

 [3,5) 3
5
ý

 [5,1) 0

só tart int. succ.
f
þ
inger table keys

1

4
ò

 [4,5) 0
5
ý

 [5,7) 0
7
ÿ

 [7,3) 0

só tart int. succ.
finger table keys

2
û

(b)
Y

Figure 2:(a)
�

Intervals associated to node����� ,� where �	��
 (see Table 2). (a) The key and finger tables associated to each node in a

network consisting of nodes 0, 1 and 3, respectively, which stores three keys 1, 2, and 6, respectively.

call.�
As can been seen in the pseudocode,find

�
successor� is implemented by homing in on the immediate predecessor node of

the
�

identifier. That node can report that its immediate successor node is also the immediate successor node of the identifier.

W
Á

e implementfind
�

pr� edecessore³ xplicitly, because it is used later to implement the join operation (see Section 4.4.1).

The
a

find
�

pr� edecessorfunction
Å

first tests for the case when
 is
£

the only node in the network, and therefore its predecessor

is
£

the node itself. In this case we simply return node� (in
Y

a network with two nodes each node is the predecessor of the

other¼ node). The loop terminates when��� f
Å
alls between node��� and| its successor, in which case��� is

£
returned as being the���

’s predecessor. Otherwise,��� follo
Å

ws the successor of��� ,¶ which means that there is at least one finger of�! that
�

precedes"�#
. As a result,closestÎ pr� ecedingfing

�
er is
£

called to return the closest finger of$&% that
�

precedes')(. This value is closer to*�+
than
� ,

. Thus, the algorithm always makes progress toward termination at the correct value.

W
Á

e remark on the correctness of the code. Once we know the predecessor-/. of¼10�2 ,¶ the successor of3�4 is simply the

successor� of 576 . This is because we are guaranteed that there is no other node between8:9 and| ;)< ; otherwise, that node, and

not =?> ,¶ would be the predecessor of@�A .
A simple optimization forfind

�
successor� allo| ws it to return early. If we determine that nodeB is betweenfing

�
er C DFE)G start�

and| fing
�

er H IFJFK nodeN ,¶ we can immediately deduce thatfing
�

er L MON)P nodeN is the immediate successor forQ)R and| return that value.

In
w

Section 6, we analyze this algorithm and show the following:

Theorem 2 With high probability, the number of nodes that must be contacted to resolve a successor query in anS -node

networkN is TVUXWZY\[^]`_ .a
The
a

intuition behind this claim is that each recursive call tofind
�

successor� halv
¸

es the distance to the target identifier.

Consider
¡

again the example in Figure 2. Suppose nodeb w¾ ants to find the successor of identifierc . Since d belongs
»

to

the
�

circular interval e fhgjilk ,¶ it belongs tomon fing
�

er p qsr)t uFvxwzy|{s}�~l� ; node � therefore
�

checks thesecond� entry³ in its finger table,

which¾ is � . Because� precedes` � ,¶ node� will¾ ask node� to
�

find the successor of� . In turn, node� will¾ infer from its finger

table
�

that � ’s successor is the node� itself, and return node 1 to node 3.

8
�

□

ITTI □

ITTI □

// �a
sk

n
o

d
e�

to �
fin

d�X�’s
su

cce
sso

r
�x�����������s�|�\�������¡ £¢X¤\¥
¦o§o¨ª©l«­¬o®¯�°²±³®¡±�´µ±²¶³¶�·¸°º¹£»X¼\½;
r ¾eturn¿ÁÀOÂÃ�Ä�ÅjÅ�Æ¸Ã³Ã�Ç¸È ; É

// �re
tu

rn
clo

se
stfin

ge
r

p
re

ce
d

in
gÊXË

ÌxÍÎsÏZÐhÑ�Ò\Ñ�ÓÔ�Õ³ÒºÎ²ÒºÖØ×ÚÙØÛÜxÙØÛ�Ò¡ÕºÝ£ÞXß\à
for á�âäã

do åw
nto æ

if çfin
g

è
e

r éê£ëXìíoî²ï¡ð:ñóò£ôxõ�öX÷\ø�ø
return

fin
g

è
e

r ùúXûXüýoþ²ÿ��;
return �

; É

// �a
sk

n
o

d
e�

to �
fin

d ���’s
p

re
d

e
ce

sso
r

�	�
	�
�����������������������������
if !#"�$&%'%)(�*,+-+�.�(/(�021�3

return4
;// �n

is
th

e
o

n
ly

n
o

d
e

in
n

e
tw

o
rk

57698):
;

w
hile

;
<�=�>#? @BA�C7DFEHGJI�KL�M�NON�P�L/L�Q2R/SUT

VJWJXZYJ[�\]-^U_�`/a�`-bc�d2a�]�a�egf�hJij,f�h9i�a�dlk�m�n�o;
return p7q;

F
igure

3:
T

he
pseudocode

to
find

the
successor

node
ofan

identifier
rHs.

R
em

ote
procedure

calls
are

preceded
by

the
rem

ote

node.

0 t

1
[1,2) 1

2
[2,

u
4)

3
4 v [4,0)

6

s wtart in
t. su

cc.
fin

g
er tab

le
keys

1

2

3 x
4 y

5 z

6 {

7
2 u [2,3) 3
3 | [3,5) 3
5 } [5,1) 6

s wtart in
t. su

cc.
fin

g
er tab

le
keys1

4 [4,5) 6
5 } [5,7) 6
7 ~ [7,3) 0

s wtart in
t. su

cc.
f �in

g
er tab

le
keys2

7 ~ [7,0) 0
0 � [0,2) 0
2 u [2,6) 3

s wtart in
t. su

cc.
f �in

g
er tab

le
keys6 �

(a)
�

0 t

1
[1,2) 0

2 [2,4)
3

4 [4,0)
6

s wtart in
t. su

cc.
f �in

g
er tab

le
keys

1

2 �

3 x
4

5 z

6 {

7 �

4 v [4,5) 6
5 } [5,7) 6
7 [7,3) 0

s wtart in
t. su

cc.
fin

g
er tab

le
keys1

7 [7,0) 0
0 � [0,2) 0
2 [2,6) 3

start i
w

n
t.

su
cc.

f �in
g

er tab
le

keys6 �

2

(b)
�

F
igure
�

4:
(a)
�

T
he

key
and

the
finger

tables
associated

to
each

node
after

node
6

joins
the

netw
ork.

(b)
T

he
key

and
the

finger
tables

associated
�

to
each

node
after

node
3

leaves
the

netw
ork.

T
he

changes
in

the
finger

tables
and

ofthe
keys

stored
by

each
node

as
a

result

of
�

a
node

joining/leaving
are

show
n

in
black;the

unchanged
entries

are
show

n
in

gray.

9 �

□

□

□

□

[D

4.4 Nodejoins and departures

In a dynamicnetwork, nodescan join and leave at any time. The main challengeof implementingtheseoperationsis

preserving� theability to locateeverykey in thenetwork. To achievethisgoal,weneedto preservetwo invariants:

1. Eachnode’sfingertableis correctlyfilled.

2.
�

Eachkey � is
£

storedat node�2�
�/�/�g���2���9���J� .
It
�

is easyto seethatthesetwo invariantswill guaranteethat ������� �2�����/ g����¡�¢ will¾ beableto successfullylocateany key—if

a£ nodeis not theimmediatepredecessorof thekey, thenits fingertablewill holdanodecloserto thekey to whichthequery

will¾ be forwarded,until the key’s successornodeis reached.In the remainderof this section,we assumethat thesetwo

in
£

variantshold beforea nodejoins or leave thenetwork. We deferthediscussionof multiple nodesleaving or/andjoining

simultaneously¤ to Section5. Beforeexplaininghow joining andleaving areimplemented,we summarizetheperformance

of¼ theschemeswe areaboutto define:

Theorem3 With highprobability, anynodejoining or leavingan ¥ -nodeChord networkwill use ¦&§�¨U©�ª¬«�­¯® messa° ges to

re-establishtheChord routinginvariants.

To simplify thejoin andleave mechanisms,eachnodein Chordmaintainsa pr� edecessorpointer. A node’spredecessor

pointer± pointsat the immediatepredecessorof that node,andcanbe usedto walk counterclockwisethroughnodeson

the
�

identifiercircle. For clarity, we alsointroducea successor� pointer. Thesuccessorpointerpointsto thesamenodeas²�³�´
µ9¶2·9¸º¹/»�¼ ½�¾g¿,À
(see
Á

Table2).

Therestof thissectiondescribeshow Chordhandlesnodesjoining andwith minimaldisruption.(We won’t presentthe

implementationof leave, becauseit is analogousto join.)

4.4.1
Â

Join operation

To preservethetwo invariantsdiscussedabove, whena nodeÃ joins
Ä

thenetwork, wehave to performthreeoperations:

1. Initialize thepredecessorandfingersof nodeÅ .

2.
�

Updatethe fingersandpredecessorsof existing nodesto reflectthe changein the network topologycausedby the

additionÆ of Ç .

3.
Ä

Copy all keys for whichnodeÈ hasbecametheir successorto É .

W
Ê

e assumethatthebootstrappingfor a new nodeis handledoffline, perhapsby someoneconfiguringthenewly joining

nodeË with¾ theidentifierof at leastoneothernodeÌ¬Í alreadyÆ in theChordnetwork. Oncethis is done,nodeÎ usesÏ ÐÒÑ to
�

initialize
£

its state.It performstheabovethreetasksasfollows.

Initializing fingersand predecessor:A straightforwardway to learnthepredecessorandfingersof nodeÓ is to simplyask

nodeÔÖÕ for them.Figure5 shows thepseudocodeof the init
÷

fing
�

er table× functionthatinitializesthefingertableof nodeØ
usingÏ this idea.Initializing thepredecessoris similar. As an optimization,notethatoncewe learnthe Ù,ÚFÛ finger, we check

whether¾ this nodeis alsothe Ü�ÝßÞáà�â-ãFä fingerof nodeå . This happenswhenfing
�

er æ ç�è�é ê�ë	ìîí�ï�ð�ñ�ò does
ó

not containany node,

andÆ thusfing
�

er ô õ�ö�÷ ø�ùgú,ûýüÿþ��������	��
 ����
�������������� .
As
ú

anexample,considerthescenarioin Figure4(a),wherenode6 joins thenetwork. Assumenode6 knows a node1,

alreadyÆ in thenetwork. Then,node6 will asknode1 for thesuccessorsof ��� �"!$#�% mod& ')(*,+ ,-�.0/ 132�4�5 mod& 6)798�: ,- and;�<>=@?BADC
mod& E)F9G�H ,- respectively. In turn,node1 will returnnode0 asbeingthesuccessorof identifiers7 and0, andnode

3
Ä

as beingthesuccessorof 3.

10

//
�

node I joins
J

thenetwork;

//
�LKNM

is an arbitrary nodein thenetworkOQP RTS�UWVYX[ZN\^]
if (_N`)

init fing
è

er table� (a�b);
notify();ced"fhgjiTiTkDf�fhl�m ; //

�
get successorn	o pLq�rts u)swv)n�x[y�z ;

else{ //
�

no othernodein thenetworkto | itself
}

for ~���� to �
fing
è

er � �[��� �N�D�t����� ;

pr� edecessor�3�h�j�T�T�D���h������� ;É

//
�

initialize finger tableof local node;

//
�L�N�

is an arbitrary nodealreadyin thenetwork�Q� �^���^ ¡Q��¢j£t¤ h¥)¦Q§^£N¨[©Nª[«
fing
è

er ¬�­T®�¯ °N±D²t³�´�µj¶�· ¸�¹�º¼» ½h¾j¿T¿TÀD½�½hÁ�Â)Ã0Ä�Å�Æ�ÇBÈwÉ)Ê�ËTÌ�Í ÎTÏ�ÐtÑ�Ï�Ò ;
successorÓ Ô"Õ�Ö�×�ØBÙwÚ)Û�ÜTÝ�Þ ßNàDátâ ;
fo
ã

r äQå�æ to çéèëê
if ì fing
è

er í îNï�ðTñ�ò óTô�õtö�ô$÷ùø úQûýü�þ�ú�ÿ���� � ���	�
���
������
fing
è

er � �������	� ������ "! fing
è

er # $�%'& (�)�*�+-,
else

fing
è

er . /�0�1�2	3 4�5�6�7"89;:	< find
è

successorÓ = fing
è

er > ?�@BADC'E FDGIH�J�G�K ;É

//
�

updatefinger tablesof all nodesfor

//
�

which local node, L , hasbecametheir fingerMON PRQTSVUXW	Y[Z	\
for]_̂à to b

//
�

find closestnodec whosed egf'h fing
è

er canbenikjmlTn'o�p qsr�tVp�t�uDt�v�vxw�rzy�{}|�~����R��� ;�R� �-�T�����I� �T�	�����V� �����D�g����������� ;É

//
�

if � is
}����'�

fing
è

er of , update¡ ’s finger tablewith ¢£O¤ ¥R¦¨§R©zªx« ¬O­¯®s«�° ªx©T±_²X«�³	´-µI¶�·
if ¸	¹"º�» ¼�½�¾T¿	¼�À�ÁVÂ�Ã Ä�Å'Æ Ç�È�É�Ê�Ë�Ë

fing
è

er Ì Í�Î'Ï Ð�Ñ�Ò�ÓÕÔmÖ ;×kØ�ÙsÚ�ÛVÜ�Û�ÝDÛ�Þ�Þxß�Ú ; //
�

get first nodeprecedingàáRâ ã-áTä�å�æIç èTé à�ê çVë æ�å�ìDígç�î	ïñðIò�ó ;É

//
�

if ô is new successorof local stored

//
�

key õ , mö ove ÷ (and
ø

its value)to ùúOû üþý�ÿ�� �������	��
�� ;É
for each
 key � storedlocally

if (
������� �������

)

m� ove � to � ;É

Figure
�

5: Thepseudocodeof thenodejoining operation.

11

Update
�

fingers and predecessorsof existing nodes: When
Ê

a new node, ,- joins thenetwork, ! maybecomethefinger

and/or" successorof othernodesin thenetwork. For example,in Figure4(a),node6 becomesthethird fingerof nodes0 and

1, andthefirst andthesecondfingerof node3. To accountfor this change,weneedto updatethefingersandsuccessorsof

the
#

existingnodes,aswell. For simplicity, we againlimit ourdiscussionto thefingertableonly.

Figure
�

5 shows thepseudocodeof the $&%('&)+*-, .(/1032�,54 *-)�6879,;: function
<

thatupdatesfingertablesof theexisting nodes.

Assume
=

that after > joins
Ä

the network, ? will@ becomethe ACB9D finger
E

of a node F . This will happenif andonly if (1) G
precedesH I by

J
at leastK�LNMPO ,- and(2) the QSR9T finger

E
of nodeU succeedsV W . Thefirst node,X ,- thatcanmeetthesetwo conditions

is
Y

theimmediatepredecessorof Z\[^]`_NaPb . Thus,for a given c ,- thealgorithmstartswith the dCe9f finger
E

of nodeg ,- andthen

continuesh to walk in the counter-clock-wisedirectionon the identifier circle until it encountersa nodewhose ikj9l finger

precedesH m .

Althoughit mightappearthatthenumberof nodesthathavetheir fingertablesupdatedis quitelarge,this is fortunately

not thecase.We show in Section6 thatthenumberof nodesthatneedto beupdatedwhena nodejoins thenetwork is onlyn�oqpsr&tvuxw
ony theaverage,andwith a very high probabilityis at most z�{N|~}�������� ,- where � is thetotal numberof nodesin

the
#

network.

Transferring keys: The last operationthathasto beperformedwhena node � joins
Ä

thenetwork is to move all thekeys

for which node� hasbecomethesuccessorto � . Thepseudocodefor this operation,mo� ve ke
�

ys,- is shown in Figure5. The

algorithm" is basedon theobservationthatnode� canh becomethesuccessoronly for keys storedby thenodeimmediately

following � . For example,in Figure4(a),node6 needsto inspectonly the keys storedby node0. As a result,key 6 is

moved to node6, asnode6 is now thenew key’ssuccessor.

5
�

Handling concurrent operationsand failur es

In practicethe Chordsystemneedsto dealwith nodesjoining the systemconcurrentlyandwith nodesthat fail or leave

v� oluntarily. This sectiondescribesmodificationsto the basicChordalgorithmdescribedin Section4 to supportthese

situations.V
Moti
�

vating this sectionis the observation that a substantiallyweaker invariantwill guaranteethe corr� ectnessofy the

routing� protocol,althoughtime boundsmay be sacrificed.As long asevery nodeknows its immediatepredecessorand

successorV , no lookupwill stall anywhereexceptat thenoderesponsiblefor a key. Any othernodewill know of at leastone

node� (its successor)thatis closerto thekey thanitself, andwill forwardthequeryto thatclosernode.

5.1 Concurrent joins

Thejoin codein Figure5 assumestheinvariantsmentionedin Section4.4.Theinvariantsmaynotbetrueif nodesjoin the

systemV concurrently. A slightly differentversionof thecode,shown in Figure6, is requiredto supportconcurrentjoins.

This
�

codefocuseson maintainingthecorrectnessof immediatepredecessorsandsuccessors,sincein theworstcasemore

distant
�

relationshipscanberesolved(thoughslowly) by nearest-neighbortraversalsof theidentifiercircle.

When
Ê

node� first
E

starts,it calls ��� �+�������N ¢¡¤£ ,- where¥¢¦ isY any known Chordnode.The §+¨�©1ª function
<

findstheimmediate

predecessorH andsuccessorof « ,- notifiesthosetwo nodesthatthey haveanew immediateneighbor, andthencallsboot
¬

str­ ap

to
#

fill in ® ’s fingertableandinitialize ¯ ’s predecessor.

If multiple nodeswith similar identifiersjoin at thesametime, they mayall try to notify thesameexisting predecessor

that
#

they areits immediatesuccessor. notify° ensures± thatonly thenewcomerwith the lowestidentifierwill succeed.The

othersy will graduallylearntheirtrueimmediateneighborsbyperiodiccallsto stabilize­ . stabilize­ periodicallyH checkswhether

new nodeshaveinsertedthemselvesbetweenanodeandits immediateneighbors.A similarperiodicfunction(notshown in

12

//
�

n joins thenetwork²´³ µ·¶�¸~¹»º½¼k¾¤¿
ÀvÁÃÂ`ÄNÅ Æ+ÇNÈ`É Ê+Ë5Ì8ÉÍÌ8Î·ÌCÏÐÏ·Ñ	Ë�Ò½Ó�Ô ;É
do
å
Õ×Ö^Ø ;ÙvÚ�Û(Ü Ý·Þ�ßàßàáCÝCÝ·âCã ;

untilä åçæ�è�é(êìëàí
î·ï�ðàðàñ	îÐî·òCóõô^ö ;É÷�ø	ùÐúÍù8ûàù	üÐü·ýCøÿþ�� ;��� notify� ����	 ; //

�
tell p to updateits state
�� notify
���� ;É //

�
tell s to updateits state������� �����������! �"
;

#%$ &�')(+*-,!.0/�13254
if
687�93:�;=<�>@?BA�C)DBD�E�A�A�F�G�HIH
JLK!MONQP+RQSUTBVXW Y3Z�[]_^a`�b)c�c�d�`�`�e�fhgji3k

;l�m�m�n o�n�p�q�r�s�t3uwv
;É

if
68x�y3z�{=|~})���+�]�+�����������������I�
�)���+�]�+�������������j�3� ;������� �������������3�w�

;É

//
�

let noden sendqueriesto fill in its owntables� .boot
�

strap(
�! 3¡

)

for ¢�£¥¤ to ¦§©¨jª3«!¬ ­L®X¯3° ±�²)³B³�´�±�±+µ�¶Q·!¸L¹!ºO»Q¼+½Q¾ ¿�ÀXÁ Â�ÃÅÄ]Æ�ÃIÇ ;É
doÈÊÉÌË

;ÉÍ©Î�Ï�Ð Ï)Ñ�Ò�Ó]Ò+Ô�Ò�Õ�Õ�Ö�Ñ ;
until ×~ØÚÙÜÛLÝXÞOßQà+áãâ ä�åXæ ç�è�éQê�èìëíLîXïOðQñ+òãó ô�õXö ÷�ø�ùQú�øüûaý

;É

//
�

verify n’s immediatepred/succ

//
�

calledperiodicallyþ .stabilize()ÿ
���������
	��
�
�����
��� ;É������� �
�����
�����
��� ;É
if �! #"%$'&�(*)
+�)
,
)�-�-
.�(�/1032

pr� edecessor4�5 ;É6�798
:�;�;
<�8�8
=�> ;É?�@�A�B C�D�E
F�E
G
E�H�H
I�D ;É
if J!K#L%M!NPO�Q
R�S�S
T�Q�Q
U�V*WXWY[Z]_^a`
bdc'egf]h ikj�l�mon9p
q[rgr
s�p�p
t�uwv�x

;É

Figure6: Pseudocodefor concurrentjoin. Predecessorfunctionsthatparalleltheirsuccessorequivalentsareomitted.

Figure
�

6) updatestherestof eachnode’sfingertable,sothatall tablesgraduallyconvergeon correctvaluesafterany joins.

Obtaining
y

the successorby simply calling find
z

successor{ may| not work correctlyduring the time in which all nodes

tables
#

arereactingto a new node.In particular, a nodemaythink that }�~1���_�*�_� �1��� �P���[� is
Y

thefirst nodein aninterval, when

in
Y

factanew nodehasjoinedearlierin thatinterval. For this reason,weasktheputativesuccessornodewhetherit doesnot

know abettersuccessor, i.e.,whetherthepredecessorof theputativesuccessornodesucceeds���������*�_� ����� �P���d� . Thisprocess

is repeateduntil it reachesasuccessorwhoseimmediatepredecessorprecedesthekey.

Whene
Ê

ver a nodenoticesthat it hasa new immediatepredecessor, it moves appropriatekey/valuepairsto thatprede-

cessorh . Therearecasesin which multiple joins maycausekeys to becometemporarilyinaccessibleuntil sufficient callsto��� �_¡
¢X£]¢X¤[¥ havebeenmade.Thiscanbesolvedby serializingtheorderin whichanodeacceptsnew immediatepredecessors,

which@ itself is easilyachieved by a simplelockingprotocolbetweenanew nodeandits immediatesuccessor.

As
=

anoptimization,a newly joinednode ¦ canh askan immediateneighborfor a copy of its completefinger tableand

its
Y

predecessor. § canh usethecontentsof thesetablesashintsto helpit find thecorrectvaluesfor its own tables,since ¨ ’s

tables
#

will besimilar to its neighbors’.Specifically, © ’s ª
«�«­¬ ®�¬X¯�°�± routine� canstartthequeryfor eachtableentryat the

node� referredto by thecorrespondingentryin its neighbor’s table.

5.2 Failur esand replication

When
Ê

a node ² fails, nodeswhosetablesinclude ³ mustfind ´ ’s successor(or predecessor),andthen µ ’s successormust

ensure± thatit hasacopy of thekey/valuepairsstoredin ¶ . In addition,thefailureof · must| notbeallowedto disruptqueries

that
#

arein progressasthesystemis re-stabilizing.

If
�

a nodefails, the ¸�¹ º_»
¼X½]¼X¾[¿ proceduresH of its immediateneighborswill seethat it is not responding.The recovery

13

procedureH for a nodeÀ that
#

notices that its immediate successor has died is as follows.Á looks through its finger table

for the first live nodeÂÄÃ . Å then
#

calls ÆÄÇ'È�É�ÆPÊ Ë�Ì�Í�Í�Î�Ë*Ë*Ï­Ð_Ñ]ÒÔÓ1Õ×ÖÙØ (i.e.,
Ú

sends a query toÛÄÜ),Ý and uses the result as its new

immediate successor. A similar strategy works when other table entries are found to be unresponsive.

Fault-tolerant storage of key/value pairs requires replication. To help achieve this, each Chord node maintains a list

ofy its Þ nearest� successors with a simple extension to the code in Figure 6 (in this case, thesuccessor{ scalarV variable is

replaced� by a table). When a node receives an insert, it propagates a copy of the key/value pair to thoseß successors;V it also

propagatesH when it notices that its immediate successor changes during stabilization. After a node fails, queries for its keys

automatically" end up at its successor, which will have copies of those keys.

After a node failure, but before stabilization has completed, other nodes may attempt to send requests to the failed node

as" part of aà�á�âPã ä�å�æ�æ�ç�ä­ä*è­é lookup. The problem can be detected by timing out the requests, but ideally the lookups would

be
J

able to proceed immediately by another path despite the failure. In most cases this is possible: any node with identifier

closeh to the failed node’s identifier will have similar routing table entries, and can be used to route requests at a slight extra

costh in route length. All that is needed is a list of alternate nodes, easily found in the finger table entries preceding that of

the
#

failed node. If the failed node had a very low finger table index, theê successorsV mentioned above are also available as

alternates." Theorem 5 in Section 6 discusses this procedure in more detail.ë

6
ì

Theoretical analysis

As is discussed in the work on consistent hashing [11], with the proper choice of hash function the identifiers for nodes and

k
í
eys are effectively random: all analyses can be carried out as if the nodes ended up atî random points on the identifier

circle.h The same holds true for our analyses, so we will make that assumption.

Theorem 4 With high probability, the number of nodes that must be contacted to resolve a successor query in anï -node

networkð is ñ#ò]óõôaöo÷ùø .ú
Pr
û

oof: Suppose
ü

that nodeý wishes@ to resolve a query for the successor ofþ . Let ÿ be
J

the node that immediately precedes

the
#

query identifier� . Recall that the query for� e± ventually reaches� ,- which returns its immediate successor as the answer

to
#

the successor query. We analyze the number of query steps to reach� .

Recall
�

that if ����
	 ,- then � forw
<

ards its query to the closest predecessor of� in
Y

its finger table. Suppose that node
 is
Y

in the ����� finger interval of node� . Then since this interval is not empty, node� will@ finger some node� in this interval.

The distance (number of identifiers) between� and" � is at least������� . But � and" are" both in ! ’s "$#�% finger interval, which

means the distance between them is at most&('�)�* . This means+ is closer to, than
#

to - ,- or equivalently, that the distance

from . to
#
/

is at most half the distance from0 to
#
1

.

If the distance between the node handling the query and the predecessor2 halves in each step, and is at most354 initially,

we@ see that withing6 stepsV the distance will be one, meaning we have arrived at7 . In fact, the number of forwardings

necessary� will be 8:9�;=<?>A@CB with@ high probability. After DFEHGJI forwardings, the distance between the current query node

and" the key K will@ be reduced toLNMPORQ . The expected number of node identifiers landing in a range of this size is 1, and it

is
YTS:UWVFXHYAZ\[

with@ high probability. Thus, even if the remaining steps advance by only one node at a time, they will cross the

entire± remaining interval and reach key] within@ another̂:_W`FaHbAc\d steps.V
The
�

following lemma is the basis of Theorem 3 in Section 4.4, which claims that a node joining the network only needs

to
#

sende:f�g=h?ikjmlCn messages to update other nodes’ tables.

Lemma
o

1 With high probability, every node is a finger (of a given order) ofp:qWrFsHtvu�wCx nodes.y
z
The current implementation takes a slightly different approach to handling failures.

14

D

Proof: W
Ê

e begin with an easy expectation argument. Every node has{:|W}F~H���C� distinct
�

fingers (the easy argument is�
fingers, but the�:���=�?�A�C� bound

J
follows as it did in the previous theorem). Thus the total number of node-successor pairs

in the network is�:�����=�?�J�C� . It follows that on average any given node is a finger of�:�W�F�H���C� nodes.

For a high probability argument, we note that a node� is a finger for��� if �m N¡£¢¥¤ is in the range between¦ and" the

predecessorH § ofy©¨ . This happens with probabilityª�«­¬­®°¯$±H²�³ . It is straightforward that with high probability´Wµ·¶­¸�¹5º»:¼¾½¥¿ÁÀWÂFÃHÄAÅ\Æ$ÇRÈ\É
. So for a particularÊ the

#
probability that a node fingersË is

YTÌ:ÍÎÍ�Ï=Ð?ÑAÒCÓÕÔRÖC×
,- which implies that with high

probabilityH Ø:ÙWÚFÛHÜ�ÝCÞ nodes� finger ß at" level à . Since there areá:âWãFäHåAæ\ç le
è

vels, the total number of nodes fingeringé is
Y

ê:ë�ì=í?îðï�ñ\ò
with@ high probability.

W
Ê

e now discuss modifications of the Chord protocol to support fault tolerance. Our focus is not on the loss of data

(which
Ú

can be dealt with by simple replication) but on the loss of routing information. If some of a node’s fingers fail, what

alternati" ve mechanism does it use to foward successor queries to the appropriate location? To deal with this problem, we

modify the Chord protocol to replicate certain routing information. In addition to maintaining itsó finger entries, each

node also maintains pointers to the firstô ofy its immediate successors on the identifier circle. As will later become clear,õ
shouldV be large enough thatöÎ÷ùøHúHûýü is very small. Maintaining this information requires only a small constant factor more

spaceV on each node. It also involves straightforward modifications to the protocols for joining, leaving, and stabilizing the

netw� ork which we do not discuss here. We do remark on the change to the routing protocol. If the node to which we want

to
#

forward the query (say ourþ ÿ � finger)
E

is down, forward the query instead to the best earlier finger (the
�������
	���

,- or if that

is
Y

down the������������� ,- and so on). This sequence should include the� immediate
Y

successors.

This
�

replication and routing modification suffices to route around failures. We consider the following model: begin

with@ a network of � nodes with all routing information correct, and suppose that each node fails with probability��� � .
Eventually the stabilization procedure described in Section 5 will correct the routing information, but in the meantime many

ofy the remaining nodes’ tables will refer to failed nodes. The following lemma shows that correct routing still takes place.

Theorem 5 In a stable network, if every node fails with probability 1/2, then with high probability any successor query

r! eturns the closest living successor to the query key.

Pr
"

oof: Before
#

the failures, each node was aware of its$ immediate
Y

successors. The probability that all of these successors

fail is %'&�()�*,+ ,- so with high probability every node is aware of its immediate living successor. As was argued in the previous

section,V if the invariant holds that every node is aware of its immediate successor, then all queries are routed properly, since

e± very node except the immediate predecessor of the query has at least one better node to which it will forward the query.

In fact, even the efficiency of our routing scheme is preserved in the face of failures.

Theor
-

em 6 In
.

a stable network, if every node fails with probability 1/2, then the expected time to resolve a query in the

failed
/

network is0214365�798;:
Proof: W

Ê
e consider the expected time for a query to move from a node that has the key in its<>=@? finger interval to a node

that
#

has the key in itsA4B�CED�FHG�I finger interval. We show that this expectation isJ2K,L
M . Summing these expectations over allN
,- we find that the time to drop from theO�P@Q finger interval to theR�SUT;V6W�XZY\[�]@^ finger interval is_2`4a6b�ced\f . At this point,

as" was argued before, onlyg2h�ikj�lem;n nodes stand between the query node and the true successor, soo2p�qkr�set;u additionalv
forwarding steps arrive at the successor node.

To see that the expectation isw2x4y6z�{e|\} consider~ the current node� that
�

has the key in its� �@� finger interval. If � ’s ���@�
finger � is up, then in one forwarding step we accomplish our goal: the key is in the�4�����
����� finger interval of node� . If� is
�

down then, as argued in the previous theorem,� is
�

still able to forward (at least) tosome� node.� More precisely,� wa@ s

av ware of � immediate
�

successors; assume������ 6¡�¢¤£ . If we consider the¥4¦6§�¨e©\ª¬«@­ through
� ®@¯�°6±�²e³;´¶µ,·

successors,¸ the

probability¹ that they all fail is º�»H¼ . So with high probability, node½ can~ forward the query past at least¾6¿�ÀeÁ successors.¸
As
=

was implied by Lemma 1, it is unlikely that allÂ6Ã�ÄZÅ ofÆ these skipped nodes had the sameÇ È@É finger
E

. In other words, the

15

□

□

node to whichÊ forwards the query has a differentË�Ì@Í finger thanÎ did.
Ï

Thus, independent of the fact thatÐ ’s Ñ�Ò@Ó finger

failed, there is a probablityÔ�Õ�Ö that
�

the next node’s×¬Ø@Ù finger is up.

Thus, the query passes through a series of nodes, where each node has a distinctÚ�Û@Ü finger (before the failures) each of

which@ is up independently with probabilityÝßÞ à afterv the failures. Thus, the expected number of times we need to forward

the
�

query before finding anáãâ@ä finger
E

that is up is therefore 2. This proves the claim.

In
�

fact, our claims hold even if an adversary maliciously chooses anarbitrå ary set¸ of æèç é nodes� to fail. So long as the

advv ersary is unaware of the specific hash function used to map nodes to the identifier circle, his choice results in the failure

ofÆëêèì í “random” points on the circle, which is precisely what we analyzed above.

7
î

Simulation Results

In
�

this section, we evaluate the Chord protocol by simulation. We have implemented a packet level simulator that fully

pro¹ vides the functionality of the algorithm described in Sections 4 and 5.

7.1
ï

Protocol implementation and simulator

The
ð

Chord protocol can be implemented in aiter
ñ

ative orÆ rò ecursivestyle,¸ like the DNS protocol. In the iterative style, a

node� that is resolving a lookup, initiates all communication: it iteratively queries intermediate nodes for information until it

reachesó the destination node. In the recursive style, an intermediate node recursively calls the lookup procedure to resolve

the
�

query.

The
ð

main advantage of the iterative style is two fold: it is simple to implement (the intermediate nodes just respond to

requests, but never initiate communication recursively) and it puts the initiator in control (e.g., it can monitor easily whether

av node is responding or not). However, as we discuss in Section 8, there are some disadvantages to the iterative style. The

iterative scheme will send queries over long distances repeatedly under certain circumstances. Recursive scheme does a

better
J

job of taking short hops when possible. The simulator implements the protocols in an iterative style.

Unless
ô

other specified, packet delays are exponentially distributed with the mean of 50 ms. Each node periodically

invokes thestabilization� protocol¹ at an average rate of 0.5 invocations per minute. The time interval between two consecutive

invocations by a node is uniformly distributed betweenõ>ö ÷ andv ø�ù ú ofÆ the mean value. As shown in [8] in the context of route

updates,û this choice is likely to eliminate protocol self-synchronization, i.e., all nodes invoking the stabilization protocol

atv the same time. For key and node identifiers, we use a 24 bit representation. Our implementation assumes that we can

transfer
�

any number of keys between two neighbor nodes with only one message. However, we do not expect that this

assumptionv to impact the general behavior of the algorithm as illustrated by the following experiments.

7.2
ï

Load balancing

In
�

this section, we consider the ability of Chord to achieve load balancing. Ideally, given a network withü nodes,� and ý
k
í
eys, we would like each node to storeþèÿ�� k

í
eys.

W
Ê

e consider a network consisting of����� nodes,� and vary the total number of keys from�	��
 to
�
�	���

in
�

increments of�����
. For each value, we repeat the experiment 20 times. Figure 7(a) plots the mean value, the 1st and the 99th percentile of

the
�

number of keys per node. The number of keys per node exhibits large variations that increase linearly with the number

ofÆ keys. For example, in all cases there are nodes that do not store any keys. For a better intuition, Figure 7(b) plots the

probability¹ density function (PDF) of the number of keys per node when there are��������� keys stored in the network.

The maximum number of nodes stored by any node in this case is 457, or���! �" the
�

mean value. For comparison, the 99th

percentile¹ is #%$ &(' the
�

mean value.

16

□

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
um

be
r

of
 k

ey
s

pe
r

no
de

Total number of keys (x 10,000)

1st and 99th percentiles

(a)
Ú

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350 400 450 500

P
D

F

Number of keys per node

(b)
Ú

Figure 7: (a) The mean value, the 1st and the 99th percentiles of the number of keys stored by a node in a)	*,+ node network.

(b)
Ú

The probability density function (PDF) of the number of keys per node. The total number of keys is-/.10	243 .

0

50

100

150

200

250

300

350

400

450

500

1 10

N
um

be
r

of
 k

ey
s

pe
r

no
de

Number of virtual nodes

1st and 99th percentiles

Figure
5

8: The 1st and the 99th percentiles of the number of keys per node as a function of virtual nodes mapped to a real

node.� The network has6�7�8 realó nodes and stores9	:<; k
í
eys.

One
=

reason for these variations is that node identifiers do not cover uniformly the entire identifier space. If we divide the

identifier
�

space in> equal-sized? bins, where@ is
�

the number of nodes, the probability that a particular bin does not contain

anv y node is significant. In particular, this probability isACBEDGFIHKJML�N ,- which for large values ofO approachesv PRQ(S�TVU�W X�Y�Z .
One
[

possibility to address this problem is to allocate a set of virtual nodes and then map them to real nodes. Intuitively,

this
�

will provide a more uniform coverage of the identifier space. For example, if we allocate\!]�^`_ identifiers
�

to each node,

with@ a high probability each of thea bins
J

containsbdcfehg�i`jMk nodes [17].

To verify this hypothesis, we perform an experiment in which we allocatel virtualm nodes to each real node. In this case

keys are associated to virtual nodes instead of real nodes. We consider again a network withn�oqp real nodes andr	s<t keys.

Figure 8(b) shows the 1st and 99th percentiles foruMvxw�y{z�|{}<~	�	� ,- and 20, respectively. As expected, the 99th percentile

decreases,
Ï

while the 1st percentile increases with the number of virtual nodes,� . In particular, the 99th percentile decreases

from ��� ��� to
����� �(�

the
�

mean value, while the 1st percentile increases from 0 to�����R� the
�

mean value. Thus, adding virtual

nodes� as an indirection layer can significantly improve load balancing. The tradeoff is that the space usage will increase

asv each actual node now needs� times
�

as much space to store the information for its virtual nodes. However, we believe

that
�

this increase can be easily accommodated in practice. For example, assuming a network with��������� nodes,� and

17

-

I l

j

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

P
at

h
le

ng
th

Number of nodes

1st and 99th percentiles

(a)
Ú

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

P
D

F

Path length

(b)
Ú

Figure9: (a)Thepathlengthasafunctionof networksize.(b) ThePDFof thepathlengthin thecaseof a �,�C� nodenetwork.

assumingv ���¡ h¢�£�¤ ,- eachnodehasto maintaina tablewith ¥!¦�§(¨�©«ª­¬�®�® entries.?

7.3 Path length

One
¯

of the main performanceparametersof any routing protocolis the lengthof the path(route)betweentwo arbitrary

nodesin the network. Here,we definethe pathlengthasthe numberof nodestraversedby a lookup operation.Recall

that
�

thepathlengthis °²±´³ in theworst case,where µ representsthenumberof bits in thebinaryrepresentationof the

identifiers,
�

and ¶d·¹¸!º�»`¼¾½ in theaveragecase,where ¿ is thenumberof nodes.For simplicity, herewe assumethat there

arev novirtual nodes.

W
Ê

e considera network with À�Á nodes� thatstoresÂ�Ã�ÃÅÄÇÆ<È k
í
eys. Figure9(a)plotsthemeanvalue,the1standthe99th

percentiles¹ of thepathlength,asafunctionof thenetworksize.As expected,themeanpathlengthincreaseslogarithmically

with@ thenumberof nodes.Thesameis alsotruefor the1standthe99thpercentiles.Figure9(b)plotsthePDFof thepath

lengthfor a network with ÉËÊCÌ nodes.Remarkably, themaximumpathlengthfor this casehasnever exceeded12 nodesin

ourÆ simulation.In all theothercaseswe haveobtainedsimilar results.TheseresultssuggestthatChord’s routingalgorithm

is fully scalable,andit will achievegoodresultsin practice.

7.4 Simultaneousnodefailur es

In
�

thisexperiment,weconsidertheability of theoverlaynetworkconstructedbyChordtosurvivein thecaseof simultaneous

nodefailures.This scenariocanhappenin practicewhena LAN is temporarydisconnectedfrom theInternet,or a major

networkpartitionoccurs.In particular, thisexperimentshowsthattheoverlaynetwork remainsconnectedevenwhenalarge

percentage¹ of nodesfail simultaneously.

W
Ê

e consideragaina Í	ÎÐÏ nodenetwork that stores Ñ�Ò�Ó keys, andrandomlyselecta percentageof Ô nodesthat fail.

Since
Õ

thereis no correlationbetweenthenodeidentifiersandthenetwork topology, selectinga randomnumberof nodes

is equivalentto selectingall nodesfrom thesamelocationor network partition. After the failuresoccurs,we wait for the

network to reachsteadystate,andthenmeasurethemissrate,i.e., theprobabilityto successfullyretrievea key.

Figure
5

10(a)plotsthemeanmissrateandthe95%confidenceinterval asa functionof thepercentageof nodefailures,Ö . Themissrateincreaseslinearlywith × . Sincethis is exactly themissratedueto thelostkeyscausedby nodefailures,we

conclude~ thatthereis nosignificantpartitionin theoverlaynetwork. Indeed,if it werea half-to-halfpartitionfor example,

we@ wouldexpectthathalf
Ø

ofÆ therequeststo fail simplybecausein half of thecasestherequestinitiator andthequeriedkey

18

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20

M
ea

n
m

is
s

ra
te

Percentage of node failures

95%confidence interval

(a)
Ú

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
m

is
s

ra
te

Node failure rate

95% confidence interval

(b)
Ú

Figure10: (a) Thekey missrateasa functionof thepercentageof nodefailures.(b) Thekey missrateasa functionof the

rateat whichnodesfails. ThismissratereflectsonlyÙ the
�

queryfailuresdueto stateinconsistency; it doesnotÚ includequery

f
Û
ailuresdueto lost keys.

will@ bein differentpartitions.Thefact thatour resultsdo not reflectthis behavior, suggeststhatour algorithmis robust in

the
�

presenceof simultaneousnodefailures.

7.5 Dynamic scenario

In
�

a dynamicscenario,therearetwo reasonsfor which a querycanfail. Thefirst is becausethenodewhich storesthekey

hasfailed. The secondis becausenodes’finger tablesandpredecessorsstoreinconsistentstatedueto concurrentjoins,

leavesandnodefailures.An interestingquestionis whatis theimpactof theconcurrentoperationsandnodefailureson the

missrate.We try to answerthisquestionwith thenext experiment.

To isolatebetweenthetwo typesof misses,whenanodefails,wemoveits keysto its successor. In thisway wefactorout

the
�

missesdueto lost keys. Any queryfailurein sucha systemwill bethentheresultof tableinconsistencies;nodeslearn

aboutv the failednodesonly whenthey invoke thestabilizationprotocol. Also notethat thesimulatordoesnot implement

queryÜ retries.If a nodeforwardsa queryto a nodeandthis nodeis down, thequerysimplefails. Thus,theresultsgiven in

this
�

sectioncanbeviewedastheworstcasescenariofor thequeryfailuresinducedby stateinconsistency.

Because
#

theprimarysourceof inconsistenciesis nodejoinningandleaving,andbecausethemainmechanismto resolve

these
�

inconsistenciesin thedescribedimplementationis to invoke thestabilizationprotocol,Chord’s performanceswill be

sensiti¸ ve to thefrequency of nodeoperationsversusthefrequency of invokingthestabilizationprotocol.

To illustratethis interdependence,we consideranexperimentin which nodesjoin andfail randomly. During this time

otherÆ nodesinsertandsearchfor randomkeys. Key insertionsandlookupsaregeneratedaccordingto a Poissonprocessat

av rateof ÝIÞàß insertionspersecond,andonelookuppersecond,respectively. Similarly, joins andfailuresaremodeledby a

Poissonprocesswith themeanarrival rateof á . We startwith a network of 500nodesstoring100keys.

Figure10(b) plots the averagemissratesandthe confidenceintervals whenthe rateof nodejoining andleaving the

network, â , i- s ã�ä å�æ�çéè�ê ëíì<î{ï�ð ñ�ò ,- and ó�ôhõ ,- respectively. Notethat ö�÷ ø�ù corresponds~ to onenodejoining andleaving every100

seconds¸ on average,while ú�û!ü corresponds~ to onenodejoining andleaving eachsecond.For comparison,recall thateach

node� invokesthestabilizationprotocolonceevery30secontheaverage.Theresultspresentedin Figure10(b)areaveraged

oÆ ver approximatelytwo hoursof simulatedtime. Theconfidenceintervalsarecomputedover 10 independentruns.There

arev two pointsworthnoting.First,asexpected,themissratedueto stateinconsistency ismuchlower thanthemissratedue

to
�

nodefailures(compareFigures10(a)and(b), andconsiderthefactthatduringeachsimulationat least14%of nodesfail

19

onÆ average).Second,themissratedueto stateinconsistency increasesfastwith failure frequency. This fully justifiesthe

optimizationÆ describedin Section8 to reducethetime afterwhichnodeshearaboutthenodefailures.

8
ý

Chord systemimplementation

TheChordprotocolsimulatedandanalyzedin theprevioussectionshasbeenimplementedin anoperationalsystem.

8.1 Location table

Instead
�

of limiting Chord’s routingto just the informationin thefinger table,theChordsystemalsomaintainsa location
þ

tableÿ ,- which containsnodesthatChordhasdiscoveredrecentlywhile runningtheprotocol. The locationtableis a cache

that
�

mapsnodeidentifiersto their locations
þ

(IP
Ú

addressandport). Nodeidentifiersthat arein the Chordfinger tableare

pinned¹ in thelocationtable.Othernodesarereplacedbasedontheirnetwork proximity. Whenreplacinga node,theChord

serv¸ er replacesa nodethatis far away in thenetwork over anodethatis closeby in thenetwork.

Thelocationtableis usedto optimizelookupperformance.Insteadof choosingthenodefrom thefingertablethatis the

closest~ predecessorof thekey (which might on theothersideof thenetwork), theChordserver choosesthenodefrom the

location
è

tablethat is a closepredecessorand� that
�

is closein thenetwork (asmeasuredby theround-triptime). Becauseof

the
�

locationtable’scache-replacementpolicy, whichreplacesfar-away nodesover close-bynodes,aChordserverwill learn

oÆ ver timeaboutmoreandmorenodesthatarecloseby in thenetwork andwill usethosenodesto resolve lookupqueries.

When
Ê

the Chordserver learnsabouta new node,it insertsit in the locationtable. A Chordserver learnsaboutthe

location
è

of anodesaspartof runningtheChordprotocol.A nodeidentifierin aprotocolmessagecomesalwaysalongwith

its location.In additionto thelocation,theserver recordsthesourcefrom which it learnedaboutthenew node.Thisserver

alertsv thesourcewhentheserverdiscoversthatthenodehasfailed.

TheChordserver alsorecordsfor eachnodein thelocationtablethemeasuredaverageround-triptime. Eachtime the

serv¸ er performsan RPCto a node,it measuresthe responsetime of the RPCandupdatesthe averageround-triptime to

that
�

node. Sinceall ChordRPCsaresimpleoperationswith small argumentandresulttypes(e.g.,they don’t recursively

initiate new RPCson theremotenode),theround-triptime is dominatedby network latency. (If theremoteserverhappens

to
�

beoverloadedbecauseoneparticularkey is popular, thenwe wantto avoid thenodeanyway; eitherway theend-to-end

measurement| is helpful.)

Because
#

thecurrentimplementationusesaniterativelookupprocedure,alookuprequestmightstill travel largedistances

oÆ ver thenetwork. Considera server in Australiaresolvinga querythatis destinedto a server in theUSA. Thequerymight

tra
�

vel for a while closeto Australiabut onceit makes the hop to the USA, it might take multiple hopsbackand forth

between
J

theAustraliaandtheUSA, becausein ourcurrentimplementationthenodein Australiainitiatesall RPCs.We are

considering~ switchingfrom aniterativelookupto arecursivelookupproceduresothatqueriesalwaystravel in thedirection

ofÆ the their final destination.In that case,the protocolwould returnall the nodesthat werevisited to resolve a queryto

allov w theinitiator to build upa locationtable.

The locationtableis alsousedto recover quickly from failed nodes;asour simulationresultshave shown, this is an

importantoptimization. Whenan RPCfails, the lookupprocedurechosesanothernodefrom the locationtablethat is a

close~ predecessorandroutesqueriesthroughthatnode.Sinceover time, theserver is likely to learnaboutquitea number

ofÆ nodes,it is likely thatit mightbeableto hopover failednodes.WhenanRPCfails becauseof a nodefailure,theChord

serv¸ er alsodeletesthenodefrom its locationtable,and,if thenodeis alsoin its fingertable,theserver rebuilds thefinger

table.
�

T
ð
o allow otherserversalsoto learnquickly aboutfailednodes,theserver alertsthenodefrom which it learnedabout

the
�

failednode.A nodethatreceivesan alertRPCfirst checkswhetherit alsoobservesthatthenodeis down. (Theremight

20

3.5

4

4.5

5

5.5

6

6.5

7

10 100

A
vg

. R
P

C
s

pe
r

op
er

at
io

n

Number of nodes

Figure11: Averagenumberof RPCsfor a lookupin network scalingfrom 10to 250nodes.

be
J

a network a problemthatmakesit impossiblefor a nodeA to talk to B, but nodeC might still beableto reachnodeB.)

If
�

the receiver of thealertmessagecannotcontactthe failednodeeither, it deletesthe failednodefrom its locationtable,

rebó uilds its fingertable(if necessary),andrecursively alertsits sources.

8.2 Details

The
ð

Chordsystemconsistsof two programs:theclientandandtheserver. Theclientprogramis a library thatprovidestwo

k
í
ey functionsto thefile sharingapplication:(1) it insertsvaluesundera key and(2) it looksup valuesfor a givenkey. It

essentially? implementstheinterfacedescribedin Section3. To implementtheinsertsandlookups,theclient calls its local

Chord
�

server.

TheChordserver implementstwo interfaces:oneto acceptrequestfrom a local client andto communicatewith other

serv¸ ers.Both interfacesareimplementedasremoteprocedurecalls. Theexactmessageformatsaredescribedin theXDR

protocol¹ descriptionlanguage[20].

Thefile-sharingapplicationusestheChordsystemto storethemappingsfrom file namesto IP addressesof serversthat

store¸ thefile. TheChordsystemmapsthefile namesinto key identifierswith a cryptographichashfunction(SHA-1). The

vm alueis anarrayof bytes,containinga list of IP addresses.

The Chordserver internally representskey identifiersasmultiple-precisionintegersto allow for keys that are larger

than
�

64 bits. We usethe GNU Multiple PrecisionArithmetic Library to computewith large keys. Nodeidentifiersare

alsov representedasmultiple-precisionintegers.Thetablethatstoreskey-valuepairsis implementedasa simplehashtable,

i
�
ndexed by key.

The
ð

client andthe server areuser-level programswritten in C++. The programscommunicatewith SunRPCover a

TCP connection.The Chordserver setsup a TCP connectiononcewith a remoteserver andsendsmany RPCover that

connection.~ To handlemany connectionsandRPCssimultaneously, theprogramsuseSFS’sasynchronousRPClibrary [15].

8.3 Experiment results

This
ð

implementationprovidesChordwith high-performancefor its operations.For example,onaPIII 733,theChordserver

can~ process10,300lookupRPCspersecond.

W
Ê

e haven’t deployedour serversin enoughlocationsacrosstheInternetyet to beableto collectmeaningfuldatafrom

av field experiment � . Instead,we validatethesimulationresultswith theoperationalChordservice.Figure11 shows the
�
By thefinal versionof this paperwe hopeto have resultsfrom a small-scaleInternetdeploymentthatconfirmsour proximity claims

21

numberof RPCsperlookupwith varyingnumberof Chordnodes.As onecanseethepathlengthsscalein thesamemanner

asv in oursimulationresults.

9
�

Conclusion

Many distributedapplicationsneedto determinethenodethatstoresadataitem. TheChordprotocolsolvesthischallenging

problem� in decentralizedmanner. It offers a powerful primitive: given a key, it will determinethe noderesponsiblefor

storing� the key’s value. The Chord protocolprovides this primitive in an efficient way: in the steadystate,in an � -

node� network, eachnodemaintainsrouting informationfor only about 	�

��������� other� nodes,andresolvesall lookups

viam ��������� ��! messages| to othernodes. Updatesto the routing informationfor nodesleaving and joining requireonly"�#
$�%�&('*),+
messages.|

W
Ê

e alsopresentextensionsto the Chordprotocolthat make it practicalin actualsystems.Theseextensionsinclude

support� for concurrentjoins, nodesleaving voluntarily andinvoluntarily, a high degreeof fault tolerance,andminimizing

the
-

network distancethata querytravels.

TheChordprotocolandits extensionshave beenimplementedin theChordsystem.TheChordsystemusestheChord

primiti� ve to provide a peer-to-peerlookupservicethatallows applicationsto insertandupdatekey/valuepairsandlookup

vm aluesfor a givenkey. Theimplementationis efficient (a singleChordnodecanprocessover 10,000lookupspersecond)

and. scaleswell with thenumberof nodes(a lookupin anetwork of 250nodestravelsonaverage7 hops).

BasedonourexperienceusingtheChordsystemfor apeer-to-peerfile sharingapplicationandour resultsfrom theoret-

ical analysis,simulationstudieswith up to 10,000nodes,andexperiments,we believe thattheChordprotocolandsystem

is
/

a valuablecomponentfor many decentralized,large-scaledistributedapplications.

References

[1] ADJIE
0 -WINO

1
TO, W., SCHW

2
ARTZ , E3 . AND

4 B
5

ALAKRISHN
4

AN , H. AND
4 L ILLEY

1 , J. Thedesignandimplementationof anintentional

naming6 system.In Proc.ACM Symposiumon Operating SystemsPrinciples(Kiawah Island,SC,Dec.1999),pp.186–201.

[2] AUTHORS
7

ELIDED FOR ANONYMITY .8 Building peer-to-peersystemswith chord,adistributedlocationservice.In Submitted
9

to 8th

HotOS(June
:

2001).This positionpaperis availableon request.

[3] BAKKER
4 ,3 A., AMADE

; , E., BALLINTIJN
4 ,3 G., KUZ

7 , I., VERKAIK
< , P., V

=
AN DER WIJK

1 ,3 I., VA
=

N S
>

TEEN
? ,3 M., AND

4 TANENB
4

AUM .,

A. Theglobedistributionnetwork. In Proc.2000USENIXAnnualConf. (FREENIXTrack) (SanDiego,June2000),pp.141–152.

[4] CHEN, Y3 ., EDLER, J., GOLDBERG, A., GOTTLIEB , A., SOBTI, S., AND Y IANILOS , P. A prototypeimplementationof archival

intermemory. In Proceedingsof thefourth ACM Conferenceon Digital libraries(DL ’99) (1999).
:

[5] CLARKE
@ , I . A distributeddecentralisedinformationstorageandretrieval system.Master’s thesis,Universityof Edinburgh,1999.

[6] CLARKE , I., SANDBERG,3 O., WILEY,3 B., AND HONG,3 T. W. Freenet:A distributedanonymousinformationstorageandretrieval

system.A In Proceedingsof the Workshopon DesignIssuesin Anonymityand Unobservability(Berk
:

eley, California, June2000).

http://freenet.sourceforge.net.

[7] C.PLAXT
@

ON, RAJ
4

ARAMAN ,3 R., AND
4 RICHA

1 , A. Accessingnearbycopiesof replicatedobjectsin a distributedenvironment. In

Proceedingsof theACM SPAA (Newport,RhodeIsland,June1997),pp.311–320.

[8] FLOYD ,3 S., AND J
B
ACOBSON,3 V. Thesynchronizationof periodicroutingmessages.In Proceedingsof ACM SIGCOMM’93(San

Francisco,CA, Sept.1993),pp.33–44.

[9] Gnutellawebsite.http://gnutella.wego.com.

[10] Jini (TM). http://java.sun.com/products/jini/,2000.

22

[11] KARGER,3 D., LEHMAN ,3 E., LEIGHTON, F3 ., LEVINE,3 M., LEWIN,3 D., AND PANIGRAHY, R. Consistenthashingandrandomtrees:

Distributedcachingprotocolsfor relieving hot spotson theworld wide web. In Proceedingsof the29thAnnualACM Symposium

onC Theoryof Computing(May 1997),pp.654–663.

[12] KUBIA
7

TOWICZ ,3 J., BINDEL
1 ,3 D., CHEN

D , Y3 ., CZER
E

WINSKI , S., EAT
4

ON, P., GEELS
< , D., GUMMADI

7 , R., RHEA
D , S., WEA

<
TH -

ERSPOON
< ,3 H., WEIMER

< , W3 ., WELLS
< ,3 C., AND

4 ZHA
D

O., B. Oceanstore:An architecturefor global-scalepersistentstorage. In

Proceeedingsof theNinth internationalConferenceon Architectural Supportfor ProgrammingLanguages andOperating Systems

(ASPLOS
F

2000)(Boston,MA, November2000).

[13] LEWIN,3 D. Consistenthashingandrandomtrees: Algorithms for cachingin distributednetworks. Master’s thesis,MIT, 1998.

A
G

vailableat theMIT Library, http://thesis.mit.edu.H
[14] L I , J., JANNOTTI , J.,COUTO, D. S. J. D., KARGER,I D. R., AND MORRIS, R. A scalablelocationservicefor geographicadhoc

routing. In Proceedingsof the6th ACM InternationalConferenceon Mobile ComputingandNetworking(MobiCom’00) (Boston,

Massachusetts,August2000),pp.120–130.

[15] MAZI
J

ÈRES
K , D., KAMINSKY

J ,I M., KAASHOEK
J , MI . F., AND

J W
L

ITCHEL
M , E. Separatingkey managementfrom file systemsecurity. In

Pr
N

oceedingsof the17thACM Symposiumon Operating SystemsPrinciples(SOSP’99) (Kiawah Island,SouthCarolina,December

1999).http://www.fs.net.

[16] MOCKAPETRIS, PI ., AND DUNLAP
O ,I K. J. Developmentof theDomainNameSystem.In Proc. ACM SIGCOMM(Stanford,CA,

1988).

[17] MOTWANI , R., AND
J RA

J
GHAVAN, PI . Randomized

P
Algorithms.H CambridgeUniversityPress,New York, NY, 1995.

[18] Napster. http://www.napster.com.

[19] Ohaha.http://www.ohaha.com/design.html.

[20] SRINIVASAN,I R. XDR: Externaldatarepresentationstandard.RFC1832,Network Working Group,August1995.

[21] UniversalPlugandPlay: Background.http://www.upnp.com/resources/UPnPbkgnd.htm,2000.

[22] VA
Q

N STEEN, M., HAUCK, F., BALLINTIJN ,I G., AND TANENBAUM , A. Algorithmic designof theglobewide-arealocationservice.

TheComputerJournal 41, 5 (1998),297–310.

[23] VEIZADES,I J., GUTTMAN
O ,I E., PERKINS,I C., AND KAPLAN , SI . Service

R
Location Protocol, June 1997. RFC 2165

(http://www
S

.ietf.org/rfc/rfc2165.txt).

23

