MIT-LCS-TR-819

CHORD: A SCALABLE PEER-TO-PEER
LOOKUP SERVICE FOR INTERNET
APPLICATIONS

lon Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

Chord: A scalablepeerto-peerookupservicefor Internetapplications

Ion Stoica,RobertMorris, David Karger, M. FransKaashoekHari Balakrishnan

Abstract

Efficiently determininghenodethatstoresadataitemin adistributednetwork is animportantandchallengingoroblem.
This paperdescribeghe motivation and designof the Chord system,a decentralizedookup servicethat storeskey/value
pairsfor suchnetworks. TheChordprotocoltakesasinputanm-bit identifier(derived by hashingahigherlevel application-
specifickey), andreturnsthe nodethatstoresthe valuecorrespondindo the key. EachChordnodeis identifiedby anm-bit
identifierandeachnodestoresthe key identifiersin the systemclosesto the nodes identifier Eachnodemaintainsanm-
entryroutingtablethatallows it to look up keys efficiently. Resultsfrom theoreticalnalysis simulations andexperiments
shav thatChordis incrementallyscalablewith insertionandlookup costsscalinglogarithmicallywith thenumberof Chord
nodes.

1 Intr oduction

A review of the featuresincludedin recentpeerto-peerapplicationsyields a long list. Theseincluderedundanstorage,
permanencesfficient datalocation, selectionof nearbyseners,anorymity, search authenticationandhierarchicainam-
ing. At their core, however, all theseapplicationsneedan efficient methodfor determiningthe location of a dataitem.
The contritution of this paperis a protocolthat solvesthe lookup problemanda simple systemthat usesit for storing
information.

The Chordsystemis an efficient distributedlookup servicebasedon the Chordprotocol. The Chordsystemsupports
five operationsthe additionanddepartureof Chordsener nodesandinsert,update andlookupof unstructuredkey/value
pairs. All operationausethe lookup primitive offeredby the Chordprotocol. We have usedthe Chordsystemto build a
peerto-peeffile sharingapplication[2].

TheChordprotocolsupportgustoneoperation:given akey, it will determinghenoderesponsibldor storingthekey’s
value.The Chordprotocolusesa variantof consistenhashing11] to assigrkeysto Chordsener nodes.Underconsistent
hashingload tendsto be balancedall nodesreceve at most(1 + ¢) timesthe averagenumberof key/valuepairs). Also
whenan N*" nodejoins (or leaves)the network, on averageonly anO(1/N) fractionof thekey/valuepairsaremoved to a
differentlocation.

Previous work on consistenthashingassumedhat nodeswere aware of mostothernodesin the network, makingit
impracticalto scaleto large numberof nodes We shav how eachnodecangetby with “routing” informationabouta small
numberof othernodes.Becauseaheroutingtableis distributed,a noderesohesthe hashfunctionby communicatingvith
afew othernodes.In the steadystate,in an V-nodenetwork, eachnodemaintainsinformationonly aboutO(log) other
nodes,andresohesall lookupsvia O(log N) messageto othernodes. We also explain how the hashfunctionandthe
routinginformationarerevisedwhena nodejoins or leaves the network. TheseupdatesequireO(log > N) messageshen
anodejoins or leaves.

* Authorsin reversealpha-beticabrder

Thefinal contribtution of this paperis an evaluationof the Chordprotocolandsystem.We presenjproofsthat support
thetheoreticaklaims. We alsopresensimulationresultswith up to 10,000nodesthat confirmthatthe theoreticakesults
areobtainablen practice. Finally, we presentmeasurementsf an efficient implementatiorof the Chordsystem. These
measurementonfirmthe simulationresults.

Therestof this paperis structuredasfollows. Section2 contrastsChordwith relatedwork. Section3 presentghe
systemmodelthatmotivatesthe Chordprotocol. Sectiord presentshe baseChordprotocol. Section5 presentgxtensions
to handleconcurrenjoins andfailures.Section6 outlinesresultsfrom theoreticabnalysisof the Chordprotocol. Section?
confirmsthe analysisthroughsimulation. Section8 presentghe implementatiorof the Chordsystem.Finally, Section9
summarizesur conclusions.

2 RelatedWork

Conceptualljthe Chordsystemfunctionsanalogouslyo the DNS system16]. Both systemsnapnamedo values.Chord’s
algorithmshave no specialseners,however, in contrasto DNS which relieson a setof specialroot seners. In addition,
Chorddoesnt putrestrictionsontheformatandmeaningf namesChordnamesarejustthekeys of key/valuepairs.Chord
doesnt attemptto solve theadministratve problemsof DNS.

The Chordsystemmay alsobe comparedo to Freenef5, 6]. Like FreenetChordis decentralizedsymmetric,and
automaticallyadaptsvhenhostsleare andjoin. Unlike FreenetChordqueriesalwaysresultin successr definitive failure.
FurthermoreChordis scalablethecostof insertingandretrieving values aswell asthe costof addingandremoving hosts,
grows slowly with the total numberof hostsandkey/valuepairs. Chords gainscomeat the costof anorymity, which is
implementedeparately2].

The Ohahasystem[19] usesa consistentashing-like algorithmfor mappingdocumentdo nodesanda Freenet-style
methodfor routingqueriesfor documentsAs aresult,it sharessomeof theweaknessesf FreenetArchiva Intermemory
usesanoff-line computedreeto maplogical addresseto machineghatstorethedata[4].

The Globesystem[3] hasawide-aredocationserviceto mapobjectidentifiersto locationsto supportmoving objects.
Globearrangeshe Internetasa hierarchyof geographicatopological,or administratve domains gffectively constructing
a staticworld-widesearchree,muchlike DNS. Informationaboutanobjectis storedin particularleaf domainandpointer
cachesrovide searchshortcuts[22]. As pointedout by the authors the searchtree doesnt scale,becauséigherlevel
nodesn thetreesene largenumberof requestandalsohave high storagedemands.

Thedistributeddatalocationprotocoldevelopedby Plaxtonetal. [7], avariantof whichis usedin OceanStor§l?2], is
perhapghe closestalgorithmto the Chordprotocol. It providesstrongerguaranteethanChord: like Chordit guarantees
thatqueriesmale alogarithmicnumbethopsandthatkeys arewell balancedbut the Plaxtonprotocolalsoensuressubject
to assumptionsiboutnetwork structuresthatqueriesnever travel furtherin network distancehanthe nodewherethe key
is stored.Chordinsteachasa heuristicto achieve network proximity andits protocolsaresubstantiallfesscomplicated.

Chordsroutingproceduranaybethoughtof asa one-dimensionanaloguef the Grid [14] locationsystem.The Grid
relieson geographic-locatiomformationto routeits querieswhile Chorddoesnt requirethe availability of geographic-
locationinformation.

Chordcanbeusedasalookupserviceto implementavariety of systemsasdiscussedh Section3. In particularit can
helpavoid singlepointsof failure or controlthatsystemdik e Napste{18] possessandthelack of scalabilitythatsystems
like Gnutella[9] displaybecausef theirwidespreadiseof broadcasts.

Function Description

i nsert(key, value) Insertsakey/ val ue bindingatr distinctnodes.
Understableconditions exactly » nodescontainthe key/valuebinding.
| ookup(key) Returngthevalueassociatedavith the key.

updat e(key, newal) | Insertsthekey/ newal bindingatr nodes.
Understableconditions exactly » nodescontainkey/newval binding.

j oi n(n) Causesanodeto additself asa senerto the Chordsystemthatnoden is partof.
Returnssucces®r failure.
| eave() Leave the Chordsystem.

No returnvalue.

Tablel: API of the Chordsystem.

3 Systemmodel

The Chordprotocolhasessentiallyoneoperation:given akey, it will determinghenoderesponsibldor thekey. Onecan
constructa wide rangeof systemausingthis primitive. To guidethe explanationof the protocolthis sectiondefinesone
suchasystemwhichwe have labeledthe Chordsystem.

The Chord systemprovidesa distributed lookup servicethat allows applicationsto insert,lookup, and deletevalues
usinga key as a handle. The Chord systemtreatsthe key simply as an array of bytesand usesit to derive a unique,
effectively randomm-bit key identifier, anddoesnot associatery meaningto the key providedby the application.Like a
key, thevalueprovidesby theapplicationis simply treatedasanarrayof bytes.Dependingon theapplication thesevalues
could correspondo network locationswhereapplicationdataor servicesmay be found (in which casethe Chordsystem
helpsin the “rendezwus” process)pr to the actualdataitself (e.g.,files). We expectthe predominanuseof the Chord
systento beasalookupservicefor rendezous,ratherthanfor transferringdocumentr largefiles.

The API provided by the Chord systemconsistsof five main functions,shovn in Table1l. Wheni nsert (key,
val ue) is called,Chordinsertsthekey/valuepairatr carefullychosemodes.Thequantityr is a Chordsystenparameter
thatdepend®on the degreeof redundang desired.Whenl ookup(key) is called,Chordefficiently finds the key/value
binding from somenodein the system,andreturnsthe valueto the caller Finally, Chordallows updatedo a key/value
binding, but currentlyonly by the originatorof the key. This restrictionsimplifies the mechanismsequiredto provide
correctupdatesemanticsvhennetwork partitionsheal. The Chordsystendoesnot provideanexplicit del et e operation—
an applicationthatrequiresthis featuremayimplementit usingupdat e(key, val ue) with avaluecorrespondingo
the “delete-operationthatis interpretedoy the applicationas such(this choiceis arbitraryandindependentf the chord
protocol). Thefinal two API callsarefunctionsfor nodego join andleave a Chordsystem.

The Chordsystems implementedasanapplication-layeoverlaynetwork of Chordsenernodes Eachnodemaintains
a subsetof the key/value pairs,aswell asrouting table entriesthat point to a subsetof carefully chosenChord seners.
Chordclientsmay; but arenotconstrainedo, runonthesamehostsasChordsenernodes.This distinctionis notimportant
to the Chordprotocoldescribedn this paper

The servicemodel provided by the Chord systemmay be thoughtof as a “best-efort persistence’model. As long
asat leastoneof the » nodesin the Chordnetwork storinga key is available,the key/valuebindingis persistent.If the
underlyingnetwork connectingChordsenerssuffersa partition,the senersin eachpartitioncommunicatevith eachother
to reoganizethe overlay within the partition, assuringhattherewill be eventuallyr distinct nodesstoringeachbinding.
Whenpartitionsheal,a stabilizationprotocolassureshattherewill beexactlyr distributedlocationsfor any bindingin ary

connectegbartition. The Chordsystendoesnot provide tight boundson consistenyg, preferringinstead(in the “best-efort”
sensejo rely on eventualconsisteng of key/valuebindings.Insertionsandupdatesarealsonotguaranteetb be atomic.

The Chordsystems simple API andservicemodelmake it usefulto a rangeof Internetapplications particularlybe-
causea wide variety of namespaceand valuescanbe usedby a Chordapplication. For example,to implementlookup
functionalityfor the DomainNameSystem(DNS), the valuesstoredin the Chordsystemcould correspondo the various
DNS recordsassociatedvith the name.The Chordsystemcanalsobe usedby resourcealiscovery senersstoringbindings
betweemetworkedservicegnamespyndtheirlocations(values)[1, 10, 21, 23].

Today eachapplicationrequiringthe ability to storeandretrieve key/value bindingshasto re-implementhis basic
functionality, often having to reconcileseveral conflicting goals. For example,a key requiremenfor DNS is scalability
for which it usesadministratve hierarchiesandaggressie caching;unfortunatelyits cachingmodel,basedon a time-to-
live field, conflictswith its ability to supportrapid updates.Someof today’s peerto-peerfile sharingsystemsshaw that
scalabilityis hardto achieve; Napstey for example,usesa centralizeddirectorythatis a single point of failure; Gnutella
relieson broadcastef increasingscope;andFreenetaggressiely replicatesdocumentsbut cannotguaranteghe retrieval
of a documentwithin a boundedhumberof stepsnor updatedocuments.The Chordsystemcansene as a usefullookup
servicefor theseapplications.

Basedon the needsof applicationdik e the onesmentionedabore andconditionson the Internet,we setthe following
designgoalsfor the Chordsystem:

1. Scalability. The systemshouldscalewell to potentiallybillions of keys, storedon hundredsor millions of nodes.
This impliesthatary operationghatare substantiallylargerthan-logarithmidn the numberof keys arelikely to be
impractical.Furthermoreary operationshatrequirecontactinglor simply keepingrackof) alargenumberof sener
nodesarealsoimpractical.

2. Availability . Ideally, the lookup serviceshouldbe able to function despitenetwork partitionsand nodefailures.
While guaranteeingorrectserviceacrossall patternsof network partitionsandnodefailuresis difficult, we provide
a“best-efort” availability guarantedasedn accesdo atleastoneof » reachableeplicanodes.

3. Load-balancedoperation. If resourceusageis evenly distributedamongthe machinedn the system,it becomes
easierto provision the serviceand avoid the problemof high peakload swampinga subsetof the seners. Chord
takesa stepin this directionby distributing the keys andtheir valuesevenly amongthe machinesn the system.More
refinedloadbalancing for exampleto dealwith a singlehighly popularkey by replicatingit, canbelayeredatopthe
basicsystem.

4. Dynamism. In a large distributed systemi,it is the commoncasethat nodesjoin andleave, andthe Chordsystem
needsto handlethesesituationswithout ary “downtime” in its serviceor massve reoiganizationof its key/value
bindingsto othernodes.

5. Updatability. Key/valuebindingsin mary applicationsarenotstatic;it shouldbe possiblefor theseto beupdatedy
theapplication.

6. Locating accordingto “pr oximity”. If thetargetof a queryis nearthe originatingnode,thenthe originatingnode
shouldnot have to contactdistantnodesto resole the query We do not provide formal guaranteefor this property
but describesomeheuristicmodificationghatshouldperformwell in practice.

The Chordsystemcouldprovide otherpropertiesaswell and,in fact,for certainpeerto-peerapplicationit should.For
example,certainapplicationamight requirethatthe systemprovide anorymity, thatinsertsbe authenticateathat stronger
consisteng be providedin the faceof network partitions,or that the systemprotectagainstmaliciousseners(e.g.,ones

thatlie abouttheir identity). We areoptimisticthatthe protocolswe proposecanbe extendedo provide supportfor these
features put thatis beyondthe scopeof this paper Instead this paperfocuseson the Chord protocol,which solvesthe
problemof determininghenodein a distributedsystenthatstoresthe valuefor a givenkey. This problemis challenging,
independentf whetherthe systemoffersa simpleor amorericherservicemodel.

4 The baseChord protocol

Chordsenersimplementthe Chordprotocol,usingit to returnthe locationsof keys, to help new nodesbootstrapandto
reomganizethe overlaynetwork of sener nodeswhennodedeave the system.We describehe baseprotocolin this section
for the sequentiatase whenno concurrenfoins or leaves occurandno nodesfail. Section5 describeenhancement®
thebaseprotocolto handleconcurrenjoins andleaves,andnodefailures.

4.1 Overview

At its heart,chordprovidesfastdistributedcomputatiorof a hashfunctionmappingkeysto machinesesponsibléor them.
We usea previously developedeonsistenhashfunction[11, 13], which hasseveralgoodpropertiesWith high probability !
the hashfunctionbalancedoad (all machinegeceve at most(1 + ¢€) timesthe averagenumberof keys). Also with high
probability whenan Nt machinejoins (or leaves) the network, only an O(1/N) fraction of the keys are moved to a
differentlocation—thisis clearlythe minimumnecessaryo maintaina balancedoad.

The previouswork on consistenhashingassumedhat mostmachinesvereaware of mostothermachinesn the net-
work. This assumptiordoesnot scale. We shav how eachmachinecanget by with only a small amountof “routing”
informationaboutothermachines Becausehe resolutioninformationis distributed,a machineresohesthe hashfunction
by communicatingvith afew othermachinesWe describeheinformationthateachmachinemaintaingn the steadystate,
andtherouting procesaisedto resolhe the hashfunction. More preciselyin an N-machinenetwork, eachmachinemain-
tainsinformationonly aboutO(log V') othermachinesandresohesall lookupsvia O(log N) messageto othermachines.

Finally, we alsoexplain how the hashfunctionandthe routinginformationarerevisedwhena machingoins or leaves
thenetwork. TheseupdatesrequireO(log2 N) messagewhenamachingoins or leaves.

4.2 The Hash Function

Theconsistenhashfunctionbeginshy assigningo eachnodeandkey in the systemanm-bit identifier. Theidentifiersare
generatedisinga basehashfunction suchasSHA-1. The nodeidentifiersarechosenby hashingthe IP addresgor some
otheruniquelD) of thenodeto them-bit identifierspace Similarly, theidentifiersof thekeys areproducedy hashingthe
keysto the m-bit space (We will usetheterm“key” to referto boththeoriginalkey andits imageunderthe hashfunction,
asthe meaningwill beclearfrom contet. Similarly, thetermnodewill referto boththe nodeandits identifierunderthe
hashfunction.)

As with ary hashfunction, thereis a small chanceof a collision wheretwo nodeshashto the sameidentifier; we take
m large enoughto male this probability negligible. Alternatively, we canappenda uniquesufix (suchasthe nodes IP
address}o the identifier for eachnodeto ensureuniquenodeidentifiers(this hasno significantimpacton our claimed
performance).Colliding identifiersfor keys are unimportantasthe keys themseles, not just the identifiers,are usedto
resohelookups.

1High probability doesnot referto ary distribution assumptionsboutthe input (machinesandkeys). Rather our algorithmusesa smallrandomseed
to definethe hashfunction androuting scheme With high probability in this choice of randomseed the propertieswe claim will hold regardlessof the
configurationof machinesandinputs.

successor(1) =1

successor(2) =3

successor(6) =0

Figurel: A network consisting of three nodes 0, 1, and 3, which stores three keys 2, 4, and 6. The size of the key-space,
m, in this example is 3 bits. Each key (and its associated value) is stored at the successor node of the key. The successor
node for an identifierid, is the first node with an identifier that is equal to or folloiksn the clockwise direction on the

identifier circle.

Given the identifiers, keys are assigned to nodes in a straightforward way. Eaéhikestored on the first node whose
identifier, id, is equal to or followsk in the identifier space. This node is called gweccessonodeof key k&, and it is
denotedby successdik). If node and key identifiers are represented on a circle marked with number$ t@gn™, then
successor(k) is the first node that we encounter when moving in the clockwise direction starting:frava call this circle
theidentifiercircle.

Figurel shows a simple example of a Chord network consisting of three nodes whose identifiers are 0, 1, and 3. The
setof keys (or more precisely, keys' identifiers){$, 2,6}, and these need to be stored at the three nodes. Because the
successoof key 1 amongthe nodes in the network is nodekey 1 is stored at nodé. Similarly, the successor of key
is 3, the first node found moving clockwise frofnon the identifier circle. For keg, the successor (nody is found by
wrappingaround the circle, so kdyis stored at nodé.

Consistenhashing was designed to let nodes enter and leave the network with minimal disruption. To maintain the
consistenhashing mapping when a nodegjoins the network, certain keys previously assignech® successor become
assignedo n. When noder leaves the network, all of its assigned keys are reassigne’d successor. No other changes
in assignment of keys to nodes need occur. In the example above, if a node were to join with identifier 6, it would capture
thekey with identifier 6 from the node with identifier 7.

Thefollowing results are proven in the paper that introduced consistent hashing [11]:

Theorem 1 For any set ofV nodesand K keys, with high probability:
1. Each machine is responsible for at mgst- €) K /N keys

2. When an(N + 1) madine joins or leaves the networ&(K/N) keys are moved (and only to or from the joining
or leaving machine).

The consistent hashing paper usedkauhiversal hash function” to map nodes and keys to identifiers. This function
is defined by a random seed, and the “high probability” statement in the theorem refers to the choice of random seed.
In practice, any good hash function (such as SHA-1) should be sufficient to achieve the claimed bounds. To achieve the
(1 + €)K/N boundon load with smalk, each node actually needs to fag N “virtual nodes,” each with its own hashed
identifier[13]. For simplicity, in the remainder of this section we dispense with the assumption of “virtual nodes.” In this
casethe load on a machine may exceed the average by (at moétjlag V) factor with high probability.

Notation Definition

finger[k].start (n+2¥1)mod2™,1 <k <m
finger[k].interval | [finger[k].start, fingerk + 1].start), f 1 <k <m
[finger(k].start,n), if k =m

finger[k].node first nodewhoseidentifieris equalto or follows
n.finger[k].start

successor immediatesuccessoof noden ontheidentifiercircle;
successoE finger[l].node

predecessor immediatepredecessarf noden ontheidentifiercircle

Table?2: Definition of variablesfor noden, wheren is representedsingm bits.

4.3 Scalablekey location

Consistenhashings straightforvardto implement(with the sameconstant-timeperationasstandarchashing)n a cen-
tralizedernvironmentwhereall machinesare knowvn. However, sucha systemdoesnot scale. In this sectionwe shav a
distributedimplementatiorof the hashfunction. More precisely we discusswhatroutinginformationeachnodeneedgo
maintain,andhow aroutingdecisionis madeby a nodewhenit doesnotknow the successoof therequestedkey.

As before,let m bethe numberof bits in the binary representatioof key/nodeidentifiers. Eachnode,n, maintainsa
routing tablewith m entries,calledthe finger table. Theit* entryin thetableat noden containsthe identity of the first
node,s, thatsucceeds. by atleast2i—! ontheidentifiercircle,i.e.,s = successor(n + 2i~1), wherel < i < m (andall
arithmeticis modulo2™). We call nodes theit® finger of noden, anddenoteit by n.finger[i].node (seeTable2). Notethat
thefirst fingerof n is its immediatesuccessoonthecircle.

In theexampleshavnin Figure2, thefingertableof noden = 1 storeshesuccessorsf identifiers(1+2°) mod23 = 2,
(1+2') mod2?® = 3, and(1 +2%) mod2? = 5, respectiely. Thesuccessoof identifier2 is node3, asthisis thefirst node
thatfollows 2, the successoof identifier3 is (trivially) node3, andthe successoof 5 is node0.

It is importantto make two obsenationsof this schemeFirst, eachnodestoresinformationaboutonly a smallnumber
of othernodes,andthe amountof informationmaintainedaboutothernodesfalls off exponentiallywith the distancein
key-spacebetweerthetwo nodes.Secondthefingertableof a nodemay not containenoughinformationto determinethe
successoof anarbitrarykey k. For example,node3 in Figure2 doesnot know thesuccessoof 1, as1’'s successofnode
1) doesnotappeain node3’s fingertable.

Whathappensvhenanoden doesnotknow the successoof akey k? To resohe this, noden asksanothemodein the
network to try andfind k’s successorNoden aimsto find a nodecloserto £ thann, as thatnodewill have more*“local
information” aboutthe nodeson the circle neark. To accomplistthis task,noden searcheds fingertablefor the closest
fingerprecedingk, andforwardsthe queryto thatnode.As aresultthe querymoves quickly to thetargetidentifier.

To malke this searchprocessnoreprecisewe introducesomenotations Considetthei suchthatk € [(n +2%71), (n +
2%)]. We call this the i finger interval of noden, anddenoteit by n. finger[i].interval (seeTable2). By definition,the
it" fingerof n is thefirst nodein n's it* fingerinterval, if sucha nodeexists. Otherwiseijt is thefirst nodefollowing the
interval.

The pseudocodéhatimplementghe searchprocesss shovn in Figure3. In the pseudocodéhe notationn.foo is used
to introducethe function definition for foo beingexecutedon noden. To differentiatebetweenremoteand local node
operationstemoteprocedureallsandvariablereferenceareprecededy theremotenode while local variablereferences
andprocedurecalls omit the local node. Thus,n.foodenotesa remoteprocedurecall on noden, while foo denotesa local

finger[3].interval = [finger[3].start, 1) finger table keys

start[int. [succ| E
1|12 1
2 [[24)] 3
4 |[40)] O
finger table keys
start[int. [succ|
2 [[23)] 3
finger[1].start = 2 3 |[35) | 3
5 |[51)] 0
finger[1].interval =
[finger[l] -start, finger table keys
finger[2].start) start] int. |succ] El

flnger[3]-start=5\/ finger[2].start = 3 4 |[45)| O
7 [[73)]| O

5 |[57)]| 0
finger[2].interval = [finger[2].start, finger[3].start)
(a) (b)

Figure 2:(a) Intervals associated to noge= 1, wherem = 1 (see Table 2). (a) The key and finger tables associated to each node in a
network consisting of nodes 0, 1 and 3, respectively, which stores three keys 1, 2, and 6, respectively.

call.

As can been seen in the pseudocdite, successois implemented by homing in on the immediate predecessor node of
theidentifier. That node can report that its immediate successor node is also the immediate successor node of the identifier.
We implemenfind_predecessoexplicitly, because it is used later to implement the join operation (see Section 4.4.1).

Thefind_predecessdiunctionfirst tests for the case wheris the only node in the network, and therefore its predecessor
is the node itself. In this case we simply return nedén a network with two nodes each node is the predecessor of the
othernode). The loop terminates whéhfalls between node’ andits successor, in which casg is returned as being the
id’s predecessor. Otherwisg], follows the successor af , which means that there is at least one finget 'athatprecedes
id. As a resultelosestprecedingfinger is called to return the closest fingerof thatprecedesd. This value is closer tid
thann. Thus, the algorithm always makes progress toward termination at the correct value.

We remark on the correctness of the code. Once we know the predeanéssfaid, the successor afl is simply the
successoof n'. This is because we are guaranteed that there is no other node betha®hd; otherwise, that node, and
notn’, would be the predecessor af

A simple optimization foffind_successoallows it to return early. If we determine that nodés betweerfinger[:].start
andfinger[i].node we can immediately deduce ttfiiger|i].nodeis the immediate successor figtandreturn that value.

In Section 6, we analyze this algorithm and show the following:

Theorem 2 With high probability, the number of nodes that must be contacted to resolve a successor quehy-irode
networkis O(log N).

Theintuition behind this claim is that each recursive calfital successohalves the distance to the target identifier.

Consideragain the example in Figure 2. Suppose ndaeants to find the successor of identifierSincel belongso
the circular interval[7, 3), it belongs to3.finger[2].interval; node3 thereforechecks thesecondentryin its finger table,
whichis 0. Becausd precedeg, node3 will ask nodé to find the successor daf In turn, noded will infer from its finger
tablethat1’s successor is the noddtself, and return node 1 to node 3.

/1 ask noden to find id’s successor /I ask noden to find id’s predecessor

n.find_successor(id) n.find_predecessor(id)

n' = find_predecessor(id); if (n == successor)
return n'.successor; return n; // n is the only node in network
n' =n;
// return closest finger preceding while (id ¢ (n', n.successor])
n.closest_preceding_finger(id) n' = n/.closest_preceding-_finger(id);

for 4 = m downto 1 return n';
if (finger(i].node € (n, id))
return finger[i].node;
return n;

Figure 3: The pseudocode to find the successor node of an ideitiflfRemote procedure calls are preceded by the remote
node.

finger table keys

finger table keys finger table keys fi
A . inger table keys
start| int. [succ]| -
f [6] start[int. Jsuce] [] [start]int. Jsucc] [| start[int. Jsucc] [|
w ﬂv_mv m 1|12 1 7 1[70| 0 1 |2 o
0 W_mv 0 2 |[24)] 3 0 |[02)] 0 2 [[24)] 3
[2,6) 4 [[40)| 6 2 |[26)] 3 4 |[40)| 6
finger table keys
start] int. [succ] H
2 23] 3
3 [[35] 3
5 |[51)] 6
finger table keys "
start[int. |succ| H :Mmmw” ﬁwwhm
4 [45)| 6 4 [4,5)
5 |[57)] 6 5 _m_d
7 |73 o 7 |73
@) ®)

Figure4: (a) The key and the finger tables associated to each node after node 6 joins the network. (b) The key and the finger tables

associatedo each node after node 3 leaves the network. The changes in the finger tables and of the keys stored by each node as a result
of a node joining/leaving are shown in black; the unchanged entries are shown in gray.

4.4 Nodejoins and departures

In a dynamicnetwork, nodescanjoin andleave at ary time. The main challengeof implementingtheseoperationss
preservingheability to locateevery key in the network. To achieve this goal,we needto presere two invariants:

1. Eachnodesfingertableis correctlyfilled.
2. Eachkey k is storedat nodesuccessor(k).

It is easyto seethatthesetwo invariantswill guaranteghat find _successor will beableto successfullyocateary key—if
anodeis nottheimmediatepredecessarf thekey, thenits fingertablewill holdanodecloserto thekey to whichthequery
will be forwarded,until the key’s successonodeis reached.In the remainderof this section,we assumehat thesetwo
invariantshold beforea nodejoins or leave the network. We deferthe discussiorof multiple nodedeaving or/andjoining
simultaneouslyo Section5. Beforeexplaininghow joining andleaving areimplementedywe summarizehe performance
of theschemesve areaboutto define:

Theorem 3 With high probability, anynodejoining or leavingan N-nodeChord networkwill useO(log? N') messgesto
re-establishthe Chor routinginvariants.

To simplify thejoin andleave mechanismsgachnodein Chordmaintainsa predecessopointer. A nodes predecessor
pointer points at the immediatepredecessoof that node,and canbe usedto walk counterclockwiseéhroughnodeson
theidentifiercircle. For clarity, we alsointroducea successopointer. The successopointerpointsto the samenodeas
finger[1].node (se€Table2).

Therestof this sectiondescribesiow Chordhandlesnodegoining andwith minimal disruption.(We won'’t presenthe
implementatiorof leave, becausd is analogougo join.)

4.4.1 Join operation
To presere thetwo invariantsdiscusse@bove, whena noden joins the network, we have to performthreeoperations:
1. Initialize the predecessandfingersof noden.

2. Updatethe fingersandpredecessorsf existing nodesto reflectthe changen the network topologycausedy the
additionof n.

3. Coyy all keysfor whichnoden hasbecameheir successoto n.

We assumehatthe bootstrappindor a new nodeis handledoffline, perhapdy someoneonfiguringthe newly joining
noden with theidentifier of atleastoneothernoden’ alreadyin the Chordnetwork. Oncethis is done,noden usesn’ to
initialize its state.lt performsthe above threetasksasfollows.

Initializing fingersand predecessorA straightforvardway to learnthepredecessandfingersof noden is to simplyask
noden’ for them.Figure5 shavs the pseudocodef theinit finger tablefunctionthatinitializesthefingertableof noden
usingthis idea. Initializing the predecessds similar. As an optimization,notethatoncewe learnthei t* finger, we check
whetherthis nodeis alsothe (i + 1)t* fingerof noden. This happensvhenfinger[i].interval doesnot containary node,
andthusfinger[i].node > finger[i + 1].start.

As anexample,considerthe scenaridn Figure4(a), wherenode6 joins the network. Assumenode6 knows a nodel,
alreadyin thenetwork. Then,node6 will asknodel for thesuccessorsf (6 + 2%) mod23 = 7, (6 + 2!) mod23 = 0, and
(6 + 22) mod2® = 2, respectiely. In turn,nodel will returnnode0 as beingthe successoof identifiers7 and0, andnode
3 asbeingthesuccessoof 3.

10

/ noden joins the network;
/' is an arbitrary nodein the network
n.join(n')
if (n')
init_finger_table(n’);
notify();
s = successor; /l get successor
s.move_keys(n);
else// no othernodein the networkto n itself
fori=1tom
finger[¢].node = n;
predecessoE successor = n;

/l initialize finger table of local node;
/' n' is an arbitrary nodealreadyin the network
n.init_finger_table(n’)
finger[1].node = n'. find_successor(finger[1].start);
successoE finger[l].node;
fori=1tom—-1
if (finger[i + 1].start € [n, finger[i].node))
finger[: + 1].node = finger[i].node;
else
finger[i + 1].node =
n' find successdffinger[i + 1].start);

/1 updatefinger tablesof all nodesfor
/l which local node n, hasbecameheir finger
n.notify ()
fori=1tom
J/ find closesinodep whoseit® finger canben
p = find_predecessor(n — 271);
p.update_finger_table(n,1);

1if s is 4" finger of n, updaten’s finger tablewith s
n.update_finger_table(s, i)
if (s € [n, finger[i].node))
finger[i].node = s;
p = predecessor; /l get first nodeprecedingn
p.update_finger_table(s,);

J'if p is new successoof local stored
/1 key k, move k (andits value)to p
n.move_keys(p);
for eachkey k storedlocally
if (p € [d,n))

movek to p;

Figure5: Thepseudocodef the nodejoining operation.

11

Update fingers and predecessor®f existing nodes: Whena new node,n, joins the network, n may becomethe finger
and/orsuccessoof othernodesn thenetwork. For example,in Figure4(a),node6 becomeshethird fingerof nodes) and
1, andthefirst andthe secondingerof node3. To accounfor this changewe needto updatethe fingersandsuccessorsf
theexistingnodesaswell. For simplicity, we againlimit ourdiscussiorto thefingertableonly.

Figure5 shaws the pseudocodef the update _finger tables functionthatupdatedingertablesof the existing nodes.
Assumethat after n joins the network, n will becomethe i** finger of a nodep. This will happenif andonly if (1) p
precedes: by atleast2?~!, and(2) theit* fingerof nodep succeeds. Thefirst node p, thatcanmeetthesetwo conditions
is theimmediatepredecessanf n — 2¢~!. Thus,for agivenn, thealgorithmstartswith thei** fingerof noden, andthen
continuesto walk in the counterclock-wisedirection on the identifier circle until it encounterss nodewhosei ** finger
precedes..

Althoughit mightappeathatthe numberof nodeshathave their fingertablesupdateds quitelarge,thisis fortunately
notthecase.We shav in Section6 thatthe numberof nodeghatneedto be updatedvhena nodejoins thenetwork is only
O(log N) ontheaverageandwith avery high probabilityis at mostO(log? N), whereN is thetotal numberof nodesin
thenetwork.

Transferring keys: Thelast operationthat hasto be performedwhena noden joins the network is to move all the keys
for which noden hasbecomehesuccessoto n. The pseudocodéor this operationmove keys, is shovn in Figure5. The
algorithmis basedon the obsenationthatnoden canbecomehe successoonly for keys storedby the nodeimmediately
following n. For example,in Figure4(a), node6 needsto inspectonly the keys storedby node0. As aresult,key 6 is
moved to node6, asnodeb is now the new key’'s successor

5 Handling concurrent operationsand failur es

In practicethe Chord systemneedsto dealwith nodesjoining the systemconcurrentlyandwith nodesthat fail or leave
voluntarily. This sectiondescribesmodificationsto the basic Chord algorithm describedn Section4 to supportthese
situations.

Motivating this sectionis the obsenation that a substantiallywealer invariantwill guaranteghe correctnesof the
routing protocol, althoughtime boundsmay be sacrificed. As long as every nodeknows its immediatepredecessoand
successono lookupwill stall anywhereexceptatthe noderesponsibldor akey. Any othernodewill know of at leastone
node(its successorhatis closerto the key thanitself, andwill forwardthequeryto thatclosernode.

5.1 Concurrentjoins

Thejoin codein Figure5 assumetheinvariantsmentionedn Sectiond.4. Theinvariantsmaynotbetrueif nodegoin the
systemconcurrently A slightly differentversionof the code,shavn in Figure6, is requiredto supportconcurrenjoins.
This codefocuseson maintainingthe correctnessf immediatepredecessorandsuccessorsincein the worstcasemore
distantrelationshipsanberesohed(thoughslowly) by nearest-neighbdraversalsof theidentifiercircle.

Whennoden first starts,it callsn.join(n'), wheren' is ary known Chordnode.The join functionfindstheimmediate
predecessandsuccessoof n, notifiesthosetwo nodeghatthey have anew immediateneighborandthencallsboot strap
tofill in n’sfingertableandinitialize n’s predecessor

If multiple nodeswith similaridentifiersjoin atthe sametime, they mayall try to notify the sameexisting predecessor
thatthey areits immediatesuccessornotify ensureghat only the newcomerwith the lowestidentifier will succeed.The
otherswill graduallylearntheirtrueimmediateneighbordy periodiccallsto stabilize stabilizeperiodicallychecksvhether
new nodeshave insertedhemselesbetweeranodeandits immediateneighbors A similar periodicfunction(notshovnin

12

/I njoinsthenetwork
n.join(n')

s = n'. find_predecessor(n);

do

p=s,

s = p.successor;
until n € (p, s]

successor = 8,

predecessor = p;

p.notify(n); // tell p to updateits state
s.notify(n); // tell sto updateits state
boot_strap(s);

n.notify (n’)
if (n' € (n, successor))
finger[l].node = successor =n’;
boot _strap(n’);
if (n' € (predecessor,n))
predecessor = n’;

/' let noden sendqueriesto fill in its owntables
n.boot strap(n’)
fori=1tom
p = n'.find_successor(finger[i].start);
do
s$=p;
p = p.predecessor,
until (p < finger[i].start)
finger[i].start = s;

/1 verify n’'simmediatepred/succ
/l calledperiodically
n.stabilize()

r = predecessor;

T = x.successor,

if (x € (predecessor,n)

predecessoE x;
T = successor,

x = x.predecessor;

boot_strap(n'); if (z € (n, successor))

finger[1l].node = successor = x;

Figure6: Pseudocodor concurrenjoin. Predecessdunctionsthatparalleltheir successoequivalentsareomitted.

Figure6) updategherestof eachnodesfingertable,sothatall tablesgraduallycorverge on correctvaluesafterary joins.

Obtainingthe successoby simply calling find_successomay not work correctly during the time in which all nodes
tablesarereactingto a new node.In particular a nodemaythink that finger|i].node is thefirst nodein aninterval, when
in facta new nodehasjoinedearlierin thatinterval. For this reasonye askthe putative successonodewhetherit doesnot
know abettersuccessoi.e.,whetherthe predecessasf theputative successonodesucceedginger[i].node. Thisprocess
is repeatedintil it reaches successowhoseimmediatepredecessqirecedeshekey.

Wheneer a nodenoticesthatit hasa new immediatepredecessoit moves appropriatekey/valuepairsto that prede-
cessor Therearecasesn which multiple joins may causekeys to becomeemporarilyinaccessiblaintil suficient callsto
stabilize have beenmade.This canbesolvedby serializingthe orderin whichanodeacceptsiew immediatepredecessors,
whichitself is easilyachiered by a simplelocking protocolbetweera new nodeandits immediatesuccessor

As anoptimization,a newly joinednoden canaskanimmediateneighborfor a copy of its completefingertableand
its predecessomn canusethe contentf thesetablesashintsto helpit find the correctvaluesfor its own tables sincen’s
tableswill be similarto its neighbors’. Specifically n's boot _strap routine canstartthe queryfor eachtableentry at the
nodereferredto by thecorrespondingntryin its neighborstable.

5.2 Failuresand replication

Whena noden fails, nodeswhosetablesincluden mustfind n’s successofor predecessorgndthenn’s successomust
ensurehatit hasacopy of thekey/valuepairsstoredn n. In additionthefailure of n mustnotbeallowedto disruptqueries
thatarein progresasthe systemis re-stabilizing.

If a nodefails, the stabilize procedure®f its immediateneighborswill seethatit is not responding.The recovery

13

procedurdor a noden that notices that its immediate successor has died is as follewleoks through its finger table
for the first live noden’. n thencallsn.find_successor(n',n) (i.e., sends a query ta'), and uses the result as its new
immediate successor. A similar strategy works when other table entries are found to be unresponsive.

Fault-tolerant storage of key/value pairs requires replication. To help achieve this, each Chord node maintains a list
of its r nearestsuccessors with a simple extension to the code in Figure 6 (in this cassjdbessoscalarvariable is
replacedy a table). When a node receives an insert, it propagates a copy of the key/value pair testhasssorst also
propagatesvhen it notices that its immediate successor changes during stabilization. After a node fails, queries for its keys
automaticallyend up at its successor, which will have copies of those keys.

After a node failure, but before stabilization has completed, other nodes may attempt to send requests to the failed node
aspart of afind_successor lookup. The problem can be detected by timing out the requests, but ideally the lookups would
beable to proceed immediately by another path despite the failure. In most cases this is possible: any node with identifier
closeto the failed node’s identifier will have similar routing table entries, and can be used to route requests at a slight extra
costin route length. All that is needed is a list of alternate nodes, easily found in the finger table entries preceding that of
thefailed node. If the failed node had a very low finger table indextheccessormentioned above are also available as
alternatesTheorem 5 in Section 6 discusses this procedure in more d&tail.

6 Theoretical analysis

As is discussed in the work on consistent hashing [11], with the proper choice of hash function the identifiers for nodes and
keys are effectively random: all analyses can be carried out as if the nodes ende ugratom points on the identifier
circle. The same holds true for our analyses, so we will make that assumption.

Theorem 4 With high probability, the number of nodes that must be contacted to resolve a successor quehy-irode
networkis O(log N).

Proof: Supposdhat noden wishesto resolve a query for the successokofLet p bethe node that immediately precedes
thequery identifierk. Recall that the query fdt eventually reacheg, which returns its immediate successor as the answer
to the successor query. We analyze the number of query steps topreach

Recallthat if n # p, thenn forwards its query to the closest predecessdr if its finger table. Suppose that noglés
in thei** finger interval of noder. Then since this interval is not empty, nodevill finger some nodg in this interval.
The distance (number of identifiers) betweeand f is at leasR?~!. But f andp areboth inn’s it finger interval, which
means the distance between them is at @ést. This meansf is closer top thanto n, or equivalently, that the distance
from f to p is at most half the distance fromto p.

If the distance between the node handling the query and the predegésdogs in each step, and is at m2$t initially,
we see that withingn stepsthe distance will be one, meaning we have arriveg.aln fact, the number of forwardings
necessaryvill be O(log N) with high probability. Afterlog N forwardings, the distance between the current query node
andthe keyk will be reduced t@™/N. The expected number of node identifiers landing in a range of this size is 1, and it
is O(log V) with high probability. Thus, even if the remaining steps advance by only one node at a time, they will cross the
entireremaining interval and reach kéywithin anotheiO(log V) steps.[]

Thefollowing lemma is the basis of Theorem 3 in Section 4.4, which claims that a node joining the network only needs
to sendO(log” N') messages to update other nodes’ tables.

Lemma 1 With high probability, every node is a finger (of a given orderi)gfog > N') nodes.

2The current implementation takes a slightly different approach to handling failures.

14

Proof: We begin with an easy expectation argument. Every node€Xths; N) distinctfingers (the easy argumentris
fingers, but th& (log N) boundfollows as it did in the previous theorem). Thus the total number of node-successor pairs
in the network isD(N log N). It follows that on average any given node is a fingef¢fog N) nodes.

For a high probability argument, we note that a nade a finger forn’ if n’ + 2¢ is in the range betweem andthe
predecessay of n. This happens with probability, — p)/2™. It is straightforward that with high probability, — p) =
0O(2™(log N)/N). So for a particulai the probability that a node fingersis O((log N)/N), which implies that with high
probability O(log N) nodesfinger N atleveli. Since there ar@(log N) levels, the total number of nodes fingerinds
O(log? N) with high probability.(]

We now discuss modifications of the Chord protocol to support fault tolerance. Our focus is not on the loss of data
(which can be dealt with by simple replication) but on the loss of routing information. If some of a node’s fingers fail, what
alternatve mechanism does it use to foward successor queries to the appropriate location? To deal with this problem, we
modify the Chord protocol to replicate certain routing information. In addition to maintaining iimger entries, each
node also maintains pointers to the figsif its immediate successors on the identifier circle. As will later become elear,
shouldbe large enough th&l /2)* is very small. Maintaining this information requires only a small constant factor more
spaceon each node. It also involves straightforward modifications to the protocols for joining, leaving, and stabilizing the
network which we do not discuss here. We do remark on the change to the routing protocol. If the node to which we want
to forward the query (say out” finger)is down, forward the query instead to the best earlier finger(gthel) ¢, or if that
is down the(i — 2)"¢, and so on). This sequence should includeztiremediatesuccessors.

This replication and routing modification suffices to route around failures. We consider the following model: begin
with a network of N nodes with all routing information correct, and suppose that each node fails with probajlity
Eventually the stabilization procedure described in Section 5 will correct the routing information, but in the meantime many
of the remaining nodes’ tables will refer to failed nodes. The following lemma shows that correct routing still takes place.

Theorem 5 In a stable network, if every node fails with probability 1/2, then with high probability any successor query
returns the closest living successor to the query key.

Proof: Beforethe failures, each node was aware ofitenmediatesuccessors. The probability that all of these successors

fail is (1/2)#, so with high probability every node is aware of its immediate living successor. As was argued in the previous

section|f the invariant holds that every node is aware of its immediate successor, then all queries are routed properly, since

every node except the immediate predecessor of the query has at least one better node to which it will forward the query.
In fact, even the efficiency of our routing scheme is preserved in the face of failures.

Theorem 6 In a stable network, if every node fails with probability 1/2, then the expected time to resolve a query in the
failed network isO(log N)

Proof: We consider the expected time for a query to move from a node that has the key'ihfitsger interval to a node
thathas the key in it§i — 1)*¢ finger interval. We show that this expectatiorfiél). Summing these expectations over all
i, we find that the time to drop from the ‘" finger interval to thém — log N)*" finger interval isO(log N). At this point,
aswas argued before, only(log N) nodes stand between the query node and the true succeséiiipgdV) additional
forwarding steps arrive at the successor node.

To see that the expectation@log N) considerthe current node thathas the key in itg** finger interval. Ifn’s it*
fingers is up, then in one forwarding step we accomplish our goal: the key is ifithel) *¢ finger interval of node. If
s is down then, as argued in the previous theoreris, still able to forward (at least) tsomenode.More preciselyn was
aware of z immediatesuccessors; assume> 2log N. If we consider thelog N) " through(2log N)h successorghe
probabilitythat they all fail is1/N. So with high probability, node canforward the query past at ledsi N successors.
As was implied by Lemma 1, it is unlikely that dig NV of these skipped nodes had the sartfefinger In other words, the

15

node to whichn forwards the query has a differeiit* finger thann did. Thus, independent of the fact tha it* finger
failed, there is a probablity/2 thatthe next node’s!” finger is up.

Thus, the query passes through a series of nodes, where each node has a Hidtimgitr (before the failures) each of
whichis up independently with probability/2 afterthe failures. Thus, the expected number of times we need to forward
thequery before finding a#t” fingerthat is up is therefore 2. This proves the claim.

In fact, our claims hold even if an adversary maliciously choosearhitrary setof N/2 nodesto fail. So long as the
adwersary is unaware of the specific hash function used to map nodes to the identifier circle, his choice results in the failure
of N/2 “random” points on the circle, which is precisely what we analyzed above.

7 Simulation Results

In this section, we evaluate the Chord protocol by simulation. We have implemented a packet level simulator that fully
provides the functionality of the algorithm described in Sections 4 and 5.

7.1 Protocol implementation and simulator

The Chord protocol can be implemented intarative or recursivestyle, like the DNS protocol. In the iterative style, a
nodethat is resolving a lookup, initiates all communication: it iteratively queries intermediate nodes for information until it
reacheghe destination node. In the recursive style, an intermediate node recursively calls the lookup procedure to resolve
thequery.

The main advantage of the iterative style is two fold: it is simple to implement (the intermediate nodes just respond to
requests, but never initiate communication recursively) and it puts the initiator in control (e.g., it can monitor easily whether
anode is responding or not). However, as we discuss in Section 8, there are some disadvantages to the iterative style. The
iterative scheme will send queries over long distances repeatedly under certain circumstances. Recursive scheme does a
betterjob of taking short hops when possible. The simulator implements the protocols in an iterative style.

Unlessother specified, packet delays are exponentially distributed with the mean of 50 ms. Each node periodically
invokes thestabilizationprotocolat an average rate of 0.5 invocations per minute. The time interval between two consecutive
invocations by a node is uniformly distributed betw@ehand1.5 of the mean value. As shown in [8] in the context of route
updatesthis choice is likely to eliminate protocol self-synchronization, i.e., all nodes invoking the stabilization protocol
atthe same time. For key and node identifiers, we use a 24 bit representation. Our implementation assumes that we can
transferany number of keys between two neighbor nodes with only one message. However, we do not expect that this
assumptiorio impact the general behavior of the algorithm as illustrated by the following experiments.

7.2 Load balancing

In this section, we consider the ability of Chord to achieve load balancing. Ideally, given a netwotX witdesand K
keys, we would like each node to sta¥g K keys.

We consider a network consisting td* nodes,and vary the total number of keys frohd® to 10° in increments of
10°. For each value, we repeat the experiment 20 times. Figure 7(a) plots the mean value, the 1st and the 99th percentile of
thenumber of keys per node. The number of keys per node exhibits large variations that increase linearly with the number
of keys. For example, in all cases there are nodes that do not store any keys. For a better intuition, Figure 7(b) plots the
probability density function (PDF) of the number of keys per node when theré ard 0 ® keys stored in the network.
The maximum number of nodes stored by any node in this case is 484,>othe mean value. For comparison, the 99th
percentileis 4.6 x themean value.

16

0.025

T T
1st and 99th percentiles ro—

350
300 Bl 0.015 |

250

PDF

200 Bl 0.01

Number of keys per node

150

100 Bl 0.005 |

50 Bl

0 l 0 L L L My e A L L
40 60 80 100 0 50 100 150 200 250 300 350 400 450 500
Total number of keys (x 10,000) Number of keys per node

(@) (b)

Figure 7: (a) The mean value, the 1st and the 99th percentiles of the number of keys stored by a hddenimdz network.
(b) The probability density function (PDF) of the number of keys per node. The total number of Keyslig °.

500 —

T
1st and 99th percentiles ~—
450 -

400 [
350
300
250

200

150 H
100
50 -

0

Number of keys per node

Number of virtual nodes

Figure8: The 1st and the 99th percentiles of the number of keys per node as a function of virtual nodes mapped to a real
node.The network hag0* realnodes and store)® keys.

Onereason for these variations is that node identifiers do not cover uniformly the entire identifier space. If we divide the
identifierspace inV equal-sizedbins, whereV is the number of nodes, the probability that a particular bin does not contain
ary node is significant. In particular, this probability(is— 1/N) ™, which for large values oV approaches~! = 0.368.

Onepossibility to address this problem is to allocate a set of virtual nodes and then map them to real nodes. Intuitively,
thiswill provide a more uniform coverage of the identifier space. For example, if we allgalé identifiersto each node,
with a high probability each of th& binscontainsO (log V) nodes [17].

To verify this hypothesis, we perform an experiment in which we allocaietual nodes to each real node. In this case
keys are associated to virtual nodes instead of real nodes. We consider again a netwddk wéthl nodes and0® keys.

Figure 8(b) shows the 1st and 99th percentilesfet 1,2,5,10, and 20, respectively. As expected, the 99th percentile
decreasesyhile the 1st percentile increases with the number of virtual nedds,particular, the 99th percentile decreases
from 4.8 x to 1.6 x themean value, while the 1st percentile increases from®ia themean value. Thus, adding virtual
nodesas an indirection layer can significantly improve load balancing. The tradeoff is that the space usage will increase
aseach actual node now needsimesas much space to store the information for its virtual nodes. However, we believe
thatthis increase can be easily accommodated in practice. For example, assuming a netwdik=witl) ¢ nodes,and

17

12

T
1st and 99th percentiles ro—

10
02

Path length
=)
PDF

0.1

~
T

N
—
—_——

o

=)

a

L L L
10000 100000 0 2 10 12

6
Path length

(@) (b)

Figure9: (a) Thepathlengthasafunctionof network size. (b) ThePDFof thepathlengthin thecaseof a2 2 nodenetwork.

100 100
Number of nodes

assuming: = log N, eachnodehasto maintaina tablewith log® N ~ 400 entries.

7.3 Path length

One of the main performanceparameter®f any routing protocolis the length of the path (route) betweentwo arbitrary
nodesin the network. Here,we definethe pathlengthasthe numberof nodestraversedby a lookup operation. Recall
thatthe pathlengthis m + 1 in the worst case wherem representshe numberof bits in the binaryrepresentationf the
identifiers,andO(log V) in the averagecase whereNN is the numberof nodes.For simplicity, herewe assumehatthere
arenovirtual nodes.

We considera network with 2% nodesthatstores100 x 2* keys. Figure9(a) plotsthe meanvalue,the 1standthe 99th
percentile®f thepathlength,asafunctionof thenetwork size. As expectedthemeanpathlengthincreasetogarithmically
with the numberof nodes.The sameis alsotrue for the 1standthe 99th percentilesFigure9(b) plotsthe PDF of the path
lengthfor a network with 212 nodes.Remarkablythe maximumpathlengthfor this casehasnever exceededL2 nodesin
oursimulation.In all the othercasesve have obtainedsimilar results. TheseresultssuggesthatChord’s routingalgorithm
is fully scalableandit will achievze goodresultsin practice.

7.4 Simultaneousnodefailur es

In thisexperimentwe considetheability of theoverlaynetwork constructedby Chordto survivein thecaseof simultaneous
nodefailures. This scenariacanhappenin practicewhena LAN is temporarydisconnectedrom the Internet,or a major
network partitionoccurs.In particular this experimentshavsthattheoverlaynetwork remainsconnecte@gvenwhenalarge
percentagef nodedfail simultaneously

We consideragaina 10* nodenetwork that stores10® keys, and randomlyselecta percentagef p nodesthat fail.
Sincethereis no correlationbetweerthe nodeidentifiersandthe network topology selectinga randomnumberof nodes
is equivalentto selectingall nodesfrom the samelocationor network partition. After the failuresoccurs,we wait for the
network to reachsteadystate andthenmeasurghe missrate,i.e., the probabilityto successfullyetrieve a key.

Figure10(a)plotsthe meanmissrateandthe 95% confidencénterval asa functionof the percentagef nodefailures,
p. Themissrateincrease$inearlywith p. Sincethisis exactlythemissratedueto thelostkeys causedy nodefailures,we
concludethatthereis no significantpartitionin the overlaynetwork. Indeed|f it werea half-to-halfpartitionfor example,
we would expectthathalf of therequestdo fail simply becausén half of the casegherequestnitiator andthe queriedkey

18

T T T T
95%confidence interval re— 95% confidence interval +o—

02 % ,

{ | 0.05 |

0.07

0.06 -

Mean miss rate
Mean miss rate
o
o
S

oL %] 003 |

0.02

% 0.01 - %

.
10 15 20 0 0.02 0.04 0.06 0.08 0.1
Percentage of node failures Node failure rate

(@) (b)

Figurel10: (a) Thekey missrateasa functionof the percentagef nodefailures.(b) Thekey missrateasa functionof the
rateatwhich nodedfails. This missratereflectsonly the queryfailuresdueto stateinconsisteng; it doesnotincludequery
failuresdueto lost keys.

will bein differentpartitions. Thefactthatour resultsdo not reflectthis behaior, suggestshatour algorithmis robustin
thepresencef simultaneousodefailures.

7.5 Dynamic scenario

In adynamicscenariotherearetwo reasongor which a querycanfail. Thefirstis becaus¢he nodewhich storesthe key
hasfailed. The secondis becausanodes’finger tablesand predecessorstoreinconsistenstatedueto concurrengoins,
leaves andnodefailures.An interestingquestionis whatis theimpactof the concurrenbperation@andnodefailuresonthe
missrate.We try to answetthis questionwith the next experiment.

Toisolatebetweerthetwo typesof misseswhenanodefails, we moveits keysto its successoi n thisway we factorout
the misseddueto lost keys. Any queryfailurein sucha systemwill bethentheresultof tableinconsistenciesyodedearn
aboutthe failed nodesonly whenthey invoke the stabilizationprotocol. Also notethat the simulatordoesnot implement
queryretries.If anodeforwardsa queryto a nodeandthis nodeis down, the querysimplefails. Thus,theresultsgiven in
this sectioncanbeviewedastheworstcasescenaridor the queryfailuresinducedby stateinconsisteny.

Becausehe primarysourceof inconsistencies nodejoinningandleaving, andbecaus¢he mainmechanisnto resohe
theseinconsistencief the describedmplementationis to invoke the stabilizationprotocol,Chords performancesvill be
sensitve to thefrequeng of nodeoperationsrersughe frequeng of invoking the stabilizationprotocol.

To illustratethis interdependenceye consideran experimentin which nodegoin andfail randomly During this time
othernodesinsertandsearchfor randomkeys. Key insertionsandlookupsaregenerateéccordingo a Poissorprocessat
arateof 1/5 insertiongpersecondandonelookuppersecondrespectiely. Similarly, joins andfailuresaremodeledby a
Poissomprocessvith themeanarrival rateof R. We startwith a network of 500nodesstoring100keys.

Figure 10(b) plots the averagemiss ratesandthe confidenceantervals whenthe rate of nodejoining andleaving the
network, R, is0.01,0.02,0.05, and0.1, respectiely. Notethat0.01 correspond# onenodejoining andleaving every 100
second®n averagewhile 0.1 corresponds$o onenodejoining andleaving eachsecond.For comparisonrecallthateach
nodeinvokesthestabilizationprotocolonceevery 30 secontheaverage . Theresultspresentedh Figure10(b)areaveraged
over approximatelytwo hoursof simulatedtime. The confidencentervals arecomputedover 10 independentuns. There
aretwo pointsworth noting. First, asexpectedthe missratedueto stateinconsisteng is muchlower thanthemissratedue
to nodefailures(compare-iguresl0(a)and(b), andconsidethefactthatduringeachsimulationat least14%of nodedail

19

on average).Secondthe missratedueto stateinconsisteng increases$astwith failure frequeng. This fully justifiesthe
optimizationdescribedn Section8 to reducethetime afterwhich nodeshearaboutthe nodefailures.

8 Chord systemimplementation

The Chordprotocolsimulatedandanalyzedn theprevioussectionshasbeenimplementedn anoperationakystem.

8.1 Location table

Insteadof limiting Chords routingto just the informationin the fingertable,the Chordsystemalsomaintainsa location
table which containsnodesthat Chordhasdiscoveredrecentlywhile runningthe protocol. The locationtableis a cache
that mapsnodeidentifiersto their locations(IP addressandport). Nodeidentifiersthatarein the Chordfingertableare
pinnedin thelocationtable.Othernodesarereplaceasedn their network proximity. Whenreplacinga node theChord
senerreplacesa nodethatis far away in the network over anodethatis closeby in the network.

Thelocationtableis usedto optimizelookupperformancelnsteadof choosinghenodefrom thefingertablethatis the
closestpredecessanf the key (which might on the othersideof the network), the Chordsener chooseghe nodefrom the
locationtablethatis a closepredecessandthatis closein the network (asmeasuredby the round-triptime). Becausef
thelocationtable’s cache-replacemepblicy, whichreplacegar-away nodesover close-bynodesa Chordsenerwill learn
over time aboutmoreandmorenodeghatarecloseby in the network andwill usethosenodeso resolelookupqueries.

Whenthe Chord sener learnsabouta new node, it insertsit in the locationtable. A Chordsener learnsaboutthe
locationof anodesaspartof runningthe Chordprotocol.A nodeidentifierin a protocolmessageomesalwaysalongwith
its location.In additionto thelocation,the senerrecordghe sourcefrom whichit learnedaboutthe nev node.This sener
alertsthe sourcewhenthe sener discoversthatthe nodehasfailed.

TheChordsener alsorecordsfor eachnodein thelocationtablethe measuredverageround-triptime. Eachtime the
sener performsan RPCto a node,it measureshe responsdime of the RPC andupdateghe averageround-triptime to
thatnode. Sinceall ChordRPCsare simpleoperationsvith smallagumentandresulttypes(e.g.,they don't recursvely
initiate new RPCson theremotenode) the round-triptime is dominatedby network lateng. (If theremotesener happens
to be overloadedbecaus®neparticularkey is popular thenwe wantto avoid the nodearnyway; eitherway the end-to-end
measuremens helpful.)

Becausehecurrentimplementatiousesaniterative lookupprocedurealookuprequestightstill travel largedistances
over the network. Considera senerin Australiaresolvinga querythatis destinedo a senerin the USA. The querymight
travel for a while closeto Australiabut onceit makesthe hopto the USA, it might take multiple hopsback and forth
betweerthe Australiaandthe USA, becausén our currentimplementatiothenodein Australiainitiatesall RPCs.We are
consideringswitchingfrom aniterative lookupto arecursve lookupproceduresothatqueriesalwaystravel in thedirection
of the their final destination.In that case the protocolwould returnall the nodesthat werevisited to resole a queryto
allow theinitiator to build up alocationtable.

Thelocationtableis alsousedto recover quickly from failed nodes;as our simulationresultshave shavn, this is an
importantoptimization. Whenan RPCfails, the lookup procedurechosesanothemodefrom the locationtablethatis a
closepredecessaindroutesqueriesthroughthatnode. Sinceover time, the sener is likely to learnaboutquite a number
of nodesit is likely thatit mightbeableto hopover failednodes WhenanRPCfails becaus®f anodefailure,the Chord
sener alsodeleteghe nodefrom its locationtable,and,if the nodeis alsoin its fingertable,the sener rekuilds the finger
table.

To allow othersenersalsoto learnquickly aboutfailed nodes the sener alertsthe nodefrom which it learnedabout
thefailednode.A nodethatreceves an alertRPCfirst checkswhetherit alsoobsenesthatthenodeis down. (Theremight

20

Avg. RPCs per operation

Number of nodes

Figurell: Averagenumberof RPCsfor alookupin network scalingfrom 10to 250nodes.

beanetwork a problemthatmakesit impossiblefor a nodeA to talk to B, but nodeC might still beableto reachnodeB.)
If the recever of the alertmessageannotcontactthe failed nodeeither, it deleteshe failed nodefrom its locationtable,
reluildsits fingertable(if necessaryandrecursvely alertsits sources.

8.2 Detalils

TheChordsystemconsistof two programstheclientandandthe sener. Theclientprogramis alibrary thatprovidestwo
key functionsto the file sharingapplication:(1) it insertsvaluesundera key and(2) it looksup valuesfor a givenkey. It
essentiallyimplementghe interfacedescribedn Section3. To implementthe insertsandlookups,the client callsits local
Chordsener.

The Chordsenerimplementgwo interfaces:oneto acceptrequesfrom alocal clientandto communicatevith other
seners. Both interfacesareimplementedasremoteprocedurecalls. The exactmessagéormatsaredescribedn the XDR
protocoldescriptionanguagg20].

Thefile-sharingapplicationuseshe Chordsystemo storethemappinggrom file namedo IP addressesf senersthat
storethefile. The Chordsystemmapsthefile namesnto key identifierswith a cryptographidashfunction(SHA-1). The
valueis anarrayof bytes,containingalist of IP addresses.

The Chord sener internally represent&ey identifiersas multiple-precisionintegersto allow for keys that are larger
than 64 bits. We usethe GNU Multiple PrecisionArithmetic Library to computewith large keys. Nodeidentifiersare
alsorepresentedsmultiple-precisiorintegers.Thetablethat storeskey-valuepairsis implementedisa simplehashtable,
indexed by key.

The client andthe sener areuserlevel programswritten in C++. The programscommunicatevith SunRPCover a
TCP connection.The Chordsener setsup a TCP connectiononcewith a remotesener andsendsmary RPC over that
connectionTo handlemary connectionsindRPCssimultaneouslythe programaiseSFS5 asynchronouRPClibrary [15].

8.3 Experiment results

ThisimplementatiomprovidesChordwith high-performancéor its operationsFor example,onaPIll 733,theChordsener
canprocessl0,300lookupRPCspersecond.

We haven't deployedour senersin enoughlocationsacrosghe Internetyetto be ableto collectmeaningfuldatafrom
afield experiment®. Instead we validatethe simulationresultswith the operationalChordservice. Figure 11 shows the

3By thefinal versionof this paperwe hopeto have resultsfrom a small-scaldnternetdeploymentthatconfirmsour proximity claims

21

numberof RPCsperlookupwith varyingnumberf Chordnodes. As onecanseethe pathlengthsscalein thesamemanner
asin our simulationresults.

9 Conclusion

Mary distributedapplicationsieedio determinghenodethatstoresa dataitem. The Chordprotocolsolvesthis challenging
problemin decentralizednanner It offers a powerful primitive: givena key, it will determinethe noderesponsibldor
storing the key’s value. The Chord protocol providesthis primitive in an efficient way: in the steadystate,in an N-
nodenetwork, eachnodemaintainsrouting informationfor only aboutO(log N) other nodes,andresolhesall lookups
via O(log N) messageso othernodes. Updatesto the routing informationfor nodesleaving and joining requireonly
O(log® N) messages.

We also presentextensionsto the Chord protocolthat malke it practicalin actualsystems. Theseextensionsinclude
supportfor concurrenjoins, nodeseaving voluntarily andinvoluntarily, a high degreeof fault toleranceandminimizing
thenetwork distancethata querytravels.

The Chordprotocolandits extensionshave beenimplementedn the Chordsystem.The Chordsystemusesthe Chord
primitive to provide a peerto-peerookup servicethatallows applicationgo insertandupdatekey/valuepairsandlookup
valuesfor a givenkey. Theimplementatioris efficient (a singleChordnodecanprocessver 10,000lookupspersecond)
andscaleswvell with thenumberof nodegalookupin anetwork of 250nodedravelson averager hops).

Basedon our experienceusingthe Chordsystemfor a peerto-peeffile sharingapplicationandourresultsfrom theoret-
ical analysis simulationstudieswith up to 10,000nodesandexperimentswe believe thatthe Chordprotocolandsystem
is avaluablecomponenfor mary decentralizedarge-scalalistributedapplications.

References

[1] ADJIE-WINOTO, W., SCHWARTZ, E. AND BALAKRISHNAN, H. AND LILLEY, J. Thedesignandimplementatiorof anintentional
namingsystem.In Proc. ACM Symposiunon Opemting System®rinciples(Kiawah Island,SC,Dec.1999),pp. 186—201.

[2] AUTHORSELIDED FOR ANONYMITY . Building peerto-peersystemswith chord,adistributedlocationservice.ln Submittedo 8th
HotOS(June2001). This positionpaperis availableon request.

[3] BAKKER, A., AMADE, E., BALLINTUN, G., Kuz, |., VERKAIK, P., VAN DER WIJK, |., VAN STEEN, M., AND TANENBAUM.,
A. Theglobedistribution network. In Proc.2000USENIXAnnualConf (FREENIXTrack) (SanDiego, June2000),pp. 141-152.

[4] CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI, S.,AND YIANILOS, P. A prototypeimplementatiorof archval
intermemory In Proceeding®f the fourth ACM Confeenceon Digital libraries(DL '99) (1999).

[5] CLARKE, I. A distributeddecentraliseihformationstorageandretrieval system.Masters thesis,University of Edinburgh, 1999.

[6] CLARKE, I|., SANDBERG, O., WILEY, B., AND HONG, T. W. FreenetA distributedanorymousinformationstorageandretrieval
system. In Proceedingf the Workshopon Designlssuesin Anonymityand Unobservability(Berkeley, California, June2000).
http://freenet.sourcefge.net.

[7] C.PLAXTON, RAJARAMAN , R., AND RICHA, A. Accessingnearbycopiesof replicatedobjectsin a distributedervironment. In
Proceedingof the ACM SPAA (Newport, Rhodelsland,Junel997),pp. 311-320.

[8] FLovyD, S., AND JAcOBSON V. Thesynchronizatiorof periodicrouting messagesln Proceedingof ACM SIGCOMM’'93(San
FranciscoCA, Sept.1993),pp. 33—-44.

[9] Gnutellawebsite.http://gnutella.wgo.com.

[10] Jini (TM). http://java.sun.com/products/jini2000.

22

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]
[21]
[22]

(23]

KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M., LEWIN, D., AND PANIGRAHY, R. Consistenhashingandrandomtrees:
Distributed cachingprotocolsfor relieving hot spotson the world wide weh In Proceedingsf the 29th Annual ACM Symposium
on Theoryof Computing(May 1997),pp. 654-663.

KuBlaTOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI , S., EATON, P, GEELS, D., GUMMADI, R., RHEA, S., WEATH-
ERSPOON H., WEIMER, W., WELLS, C., AND ZHAO., B. OceanstoreAn architecturdfor global-scalepersistenstorage. In
Proceeeding®f the Ninth international Confeenceon Architectural Supportfor ProgrammingLanguaes and Operating Systems
(ASPLOS2000)(Boston,MA, November2000).

LEwIN, D. Consistenthashingandrandomtrees: Algorithms for cachingin distributed networks. Masters thesis,MIT, 1998.
AvailableattheMIT Library, http: //thesis. nit. edu.

L1, J.,JANNOTTI, J.,CouTO, D. S. J. D., KARGER, D. R., AND MORRIS, R. A scalabldocationservicefor geographiadhoc
routing. In Proceeding®f the 6th ACM International Confeenceon Mobile Computingand Networking(MobiCom’00) (Boston,
Massachusett#ugust2000),pp. 120-130.

MAZIERES D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. Separatingey managemerfrom file systemsecurity In
Proceeding®of the 17th ACM Symposiunon Operating System#®rinciples(SOSP99) (Kiawah Island,SouthCarolina,December
1999).http://wwv fs. net.

MOCKAPETRIS P, AND DUNLAP, K. J. Developmentof the DomainNameSystem.In Proc. ACM SIGCOMM (Stanford,CA,
1988).

MOTWANI, R., AND RAGHAVAN, P. Randomized\lgorithms CambridgeUniversity PressNew York, NY, 1995.
Napster http://www.napstecom.

Ohaha.http://www.ohaha.com/design.html.

SRINIVASAN, R. XDR: Externaldatarepresentatiostandard RFC 1832,Network Working Group,August1995.
UniversalPlugandPlay: Background.http://www.upnp.com/resources/UPnPbkgnd.h8000.

VAN STEEN, M., HAUCK, F., BALLINTION, G., AND TANENBAUM, A. Algorithmic designof theglobewide-aredocationservice.
TheComputerJournal 41, 5 (1998),297-310.

VEIZADES, J., GUTTMAN, E., PERKINS, C., AND KAPLAN, S. Service Location Protocol June 1997. RFC 2165
(http:/lwwwietf.org/rfc/rfc2165.txt).

23

