
AutomaticGenerationandCheckingof ProgramSpecifications

JeremyW. NimmerandMichaelD. Ernst

MIT Lab for ComputerScience
200TechnologySquare

Cambridge,MA 02139USA�
jwnimmer, mernst� @lcs.mit.edu

Abstract

Producingspecificationsby dynamic(runtime)analysisof
programexecutionsis potentiallyunsound,becausetheana-
lyzedexecutionsmaynot fully characterizeall possibleex-
ecutionsof the program. In practice,how accuratearethe
resultsof a dynamicanalysis?This paperdescribesthe re-
sultsof an investigationinto this question,comparingspec-
ificationsgeneralizedfrom programrunswith specifications
verifiedby astaticchecker. Thesurprisingresultis thatfor a
collectionof modestprograms,smalltestsuitescapturedall
or nearlyall programbehavior necessaryfor a specifictype
of staticchecking,permittingthe inferenceandverification
of usefulspecifications.For tenprogramsof 100–800lines,
theaverageprecision,ameasureof correctness,was.95and
theaveragerecall,a measureof completeness,was.94.

This is a positive result for testing,becauseit suggests
thatdynamicanalysescancaptureall semanticinformation
of interestfor certainapplications.Theexperimentalresults
demonstratethata specifictechnique,dynamicinvariantde-
tection,is effective at generatingconsistent,sufficient spec-
ifications. Finally, theresearchshows thatcombiningstatic
anddynamicanalysesover programspecificationshasben-
efitsfor usersof eachtechnique.

1 Intr oduction

Dynamic (runtime)analysisobtainsinformation from pro-
gram executions; examplesinclude profiling and testing.
Rather than modeling the stateof the program, dynamic
analysisusesactualvaluescomputedduring programexe-
cutions. Dynamicanalysiscanbeefficient andprecise,but
theresultsmaynot generalizeto futureprogramexecutions.
Thisunsoundnessmakesdynamicanalysisinappropriatefor
certainuses,andit may make usersreluctantto dependon
the resultseven in othercontexts becauseof uncertaintyas
to their reliability.

By contrast,static analysisoperatesby examining pro-
gramsourcecodeandreasoningaboutpossibleexecutions.
It builds a modelof the stateof the program,suchasval-
uesfor variables. Static analysiscan be conservative and

sound,andit is theoreticallycomplete[CC77]. However, it
canbe inefficient, canproduceweakresults,and(asin the
caseof theorem-provingor programverification)canrequire
explicit goalsor annotations.

We have integrated and comparedstatic and dynamic
analysesover programspecificationsin orderto understand
the relationshipsbetweenthem. In particular, our investi-
gationprovidespreliminaryanswersto the following ques-
tions.

How accurate is dynamic analysis? We do not have a
theoreticalanswerto this question,nor canwe predicthow
useful analysisresultswill be. (In any event, the answer
dependson the particularuseanduser.) However, our ex-
perimentsprovide an interestingdatapointfor the specific
exampleof programspecifications. Specificationsform a
particularlyrich domainthatcapturesagreatdealof whatis
interestingaboutaprogram’ssemantics,andweshow thata
dynamicanalysiscanrecover themaccurately.

How can dynamic analysisbe impr oved? Theaccuracy
of adynamicanalysiscanbeimprovedin at leastthreeways.
First,thedynamicanalysisitself canbemademorediscrimi-
nating;weshow thatourspecificationinferenceanalysisand
its implementationareeffective. Second,thedynamicanaly-
siscanbeintegratedwith otheranalyses.For instance,pass-
ing potentiallyunsoundoutputthrougha checker to remove
unverifiablepropertiesimprovessoundnesswhile possibly
reducingcompleteness.Wehaveimplementedandevaluated
sucha system.(Thechecker usedby our implementationis
unsound,but it neverthelessis of substantialbenefit;its se-
lectionwasan engineeringtradeoff.) Third, feedbackfrom
thedynamicanalysiscanindicatehow to improvetestsuites.
Feedbackaboutproperties(not) satisfiedmaybeat leastas
effective as codecoveragefeedbackaboutlines (not) exe-
cuted. This paperdoesnot directly addresssuchfeedback,
however.

How candynamic analysisbeuseddespiteunsoundness?
A dynamicanalysismight produceresultsthat are correct
over all possibleexecutions. If the resultscanbe verified,

1

then they can be used as if they resulted from a sound analy-
sis. Our

�
techniques produce fully verifiable results in many

circumstances, but even less than perfect results can be of
use. For instance, selecting and expressing goals for static
verification can be difficult and tedious, and current sys-
tems have trouble postulating them. Starting from partial or
nearly-true specifications could be easier for various tasks,
including program verification, than starting from no speci-
fications at all. Tool support for generating specifications has
the potential to ease use of formal methods, enabling them
to become more practical and more widely used. We provide
preliminary evidence to support this claim.

Our results demonstrate that much of program semantics
are present in test executions, as measured against verifiabil-
ity of generated specifications. They also demonstrate that
the technique of dynamic invariant detection is effective in
capturing this information, and that the results are effective
for the task of verifying absence of runtime errors. Finally,
they show that static and dynamic analyses can be integrated
to overcome the shortcomings of each: unsoundness for the
dynamic analysis and lack of goals or tedious annotation for
the static analysis.

1.1 Approach

We used program specifications to investigate the rela-
tionship between dynamically and statically available in-
formation about a program, and the accuracy of the for-
mer. Our approach is to extract specifications from program
runs [Ern00, ECGN01] and determine whether they are cor-
rect and sufficient. For the purposes of this paper, our suffi-
ciency measure is machine verifiability of the specifications.
Correct specifications may be insufficient if limitations of
the verifier prevent them from being proven.

The generated specifications are program invariants.
These specifications are partial: they describe and constrain
behavior but do not provide a full input–output mapping.
The specifications are also unsound: as described later, the
properties are likely, but not guaranteed, to hold.

A program invariant is a property that is true (or puta-
tively true) at a particular program point or points, such as
might appear in anassert statement or a formal specifi-
cation. Invariants include procedure preconditions and post-
conditions, loop invariants, and object (representation) in-
variants. Examples include�����	��
��� ;
�������������� ; ar-
ray a contains no duplicates; n = n.child.parent (for all nodes
n); ��� � �!�#"�� �$�%������� � �!�'& (*),+#��),+#�-� ; andgraph g is acyclic. In-
variants explicate data structures and algorithms and are
helpful for programming tasks from design to mainte-
nance. Invariants assist in creation of better programs
[Gri81, LG86, HHJ. 87b, HHJ. 87a], document program
operation [KL86, LCKS90], assist testing and enable cor-
rect modification [OC89, GKMS00], assist in test-case gen-
eration [TCMM98] and validation [CR99], form a program

Specification

Code

Checker
/

Generator
0

myStack.push(elt);

Q.E.D.

myStack.isEmpty() = false

Proof

Figure 1: Generation and checking of program specifications re-
sults in a specification together with a proof of its correctness. Our
generator is the Daikon invariant detector, and our checker is the
ESC/Java static checker.

spectrum [AFMS96, RBDL97, HRWY98], and can enable
optimizations [CFE99], among other uses. Despite their ad-
vantages, invariants are usually not stated explicitly in pro-
grams.

Dynamic invariant detection is a technique for postulat-
ing likely invariants from program runs: a dynamic invariant
detector runs the target program, examines the values that it
computes, and looks for patterns and relationships over those
values, reporting the ones that are always true over an entire
test suite and that satisfy certain other conditions (see Sec-
tion 2.1). The outputs are likely invariants: they are not guar-
anteed to be universally true, because the test suite might not
characterize all possible executions of the program.

To explore the issues listed above, we have integrated a
dynamic invariant detector, Daikon [Ern00, ECGN01], with
a static verifier, ESC/Java [DLNS98, LNS00]. Our system
operates in three steps (see Figure 1) [NE01]. First, it runs
Daikon, which outputs a list of likely invariants obtained
from running the target program over a test suite. (We use
the term “test suite” for any inputs over which executions are
analyzed; those inputs need not satisfy any particular prop-
erties regarding code coverage or bug detection.) Second,
it inserts those likely invariants into the target program as
annotations. Third, it runs ESC/Java on the annotated tar-
get program to report which of the likely invariants can be
statically verified and which cannot. All three steps are com-
pletely automatic, though users may provide guidance in or-
der to obtain better results if desired. Users may edit and
re-run test suites, or may add or remove specific program
annotations by hand.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on the dynamic invariant detec-
tor and static verifier used by our system. Section 3 presents
results from several experiments. Section 4 notes challenges
that arose while building and running our system. Section 5
discusses lessons learned from the experiments. Finally,
Section 6 relates our results to other research, Section 7 pro-
poses follow-on research, and Section 8 concludes.

2 Background

This section describes dynamic detection of program invari-
ants, as performed by the Daikon tool, and static checking

2

~

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Figure 2:An overview of dynamic detection of invariants as im-
plemented by Daikon.

of program annotations, as performed by the ESC/Java tool.
Full details about the techniques and tools appear elsewhere.

2.1 Daikon: Invariant discovery

Dynamic invariant detection [Ern00, ECGN01] discovers
likely invariants from program executions by instrumenting
the target program to trace the variables of interest, running
the instrumented program over a test suite, and inferring in-
variants over the instrumented values (Figure 2). The infer-
ence step tests a set of possible invariants against the val-
ues captured from the instrumented variables; those invari-
ants that are tested to a sufficient degree without falsification
are reported to the programmer. As with other dynamic ap-
proaches such as testing and profiling, the accuracy of the
inferred invariants depends in part on the quality and com-
pleteness of the test cases. The Daikon invariant detector is
language independent, and currently includes instrumenters
for C++ and Java.

Daikon detects invariants at specific program points such
as procedure entries and exits; each program point is treated
independently. The invariant detector is provided with a
variable trace that contains, for each execution of a program
point, the values of all variables in scope at that point. Each
of a set of possible invariants is tested against various com-
binations of one, two, or three traced variables.

For scalar variables1 , 2 , and 3 , and computed con-
stants 4 , 5 , and 6 , some examples of checked in-
variants are: equality with a constant (
7�8�) or a
small set of constants (
:9<;��>=?��=%&A@), lying in a range
(�:BC
�BD�), non-zero, modulus (
7ED�F�#GH(JIF�K�), linear re-
lationships (�H�L�,
M�8� �H�C&), ordering (
:BN�), and func-
tions (�F��OP)J�Q
��). Invariants involving a sequence variable
(such as an array or linked list) include minimum and maxi-
mum sequence values, lexicographical ordering, element or-
dering, invariants holding for all elements in the sequence,
or membership (
�9R�). Given two sequences, some exam-
ple checked invariants are elementwise linear relationship,
lexicographic comparison, and subsequence relationship.

In addition to locally-checkable invariants such asnode
= node.child.parent (for all nodes), Daikon detects global
invariants over pointer-directed data structures, such as
mytree is sorted by S , by linearizing graph-like data struc-
tures. Finally, Daikon can detect conditional invariants
such as “if TFUV�WAXAY Y then TAZ [?\ Y X?]_^a` ” and “ TAZ [?\ Y X?]b^CY cedfc g or
TAZ Y]ihjglkRdnm�gpoq]-] ”. Conditional invariants result from splitting

data into parts based on the condition and comparing the re-
sulting invariants; if the invariants in the two halves differ,
they are composed into a conditional invariant [EGKN99].

For each variable or tuple of variables in scope at a given
program point, each potential invariant is tested. Each po-
tential unary invariant is checked for all variables, each po-
tential binary invariant is checked over all pairs of variables,
and so forth. A potential invariant is checked by examin-
ing each sample (i.e., tuple of values for the variables being
tested) in turn. As soon as a sample not satisfying the invari-
ant is encountered, that invariant is known not to hold and is
not checked for any subsequent samples. Daikon maintains
acceptable performance as program size increases because
false invariants tend to be falsified quickly, so the cost of de-
tecting invariants tends to be proportional to the number of
invariants discovered. All the invariants are inexpensive to
test and do not require full-fledged theorem-proving.

An invariant is reported only if there is adequate statistical
evidence for it. In particular, if there are an inadequate num-
ber of observations, observed patterns may be mere coin-
cidence. Consequently, for each detected invariant, Daikon
computes the probability that such a property would appear
by chance in a random set of samples. The property is re-
ported only if its probability is smaller than a user-defined
confidence parameter [ECGN00].

The Daikon invariant detector is available fromhttp://

sdg.lcs.mit.edu/daikon/ .

2.2 ESC: Static checking

ESC [Det96, DLNS98, LN98] is an Extended Static Checker
that has been implemented for Modula-3 and Java. It stat-
ically detects common errors that are usually not detected
until run time, such as null dereference errors, array bounds
errors, and type cast errors.

ESC is intermediate in both power and ease of use be-
tween typecheckers and theorem-provers, but it aims to be
more like the former and is lightweight by comparison with
the latter. Rather than proving complete program correct-
ness, ESC detects only certain types of errors. Programmers
must write program annotations, many of which are similar
in flavor to assert statements, but they need not interact
with the checker as it processes the annotated program. ESC
issues warnings about annotations that cannot be verified and
about potential run-time errors.

ESC performs modular checking: it checks different parts
of a program independently and can check partial programs
or modules. It assumes that specifications for missing or
unchecked components are correct. ESC’s implementation
uses a theorem-prover internally. We will not discuss ESC’s
checking strategy in more detail because this research treats
ESC as a black box. (It is distributed in binary form.)

ESC/Java is a successor to ESC/Modula-3. ESC/Java’s
annotation language (see Section 4.1) is simpler, because it
is slightly weaker. This is in keeping with the philosophy of

3

~ ~

StackAr stackrepresentedby anarray
QueueAr
r

queuerepresentedby anarray
DisjSets disjoint setssupportingunion,find
Vector java.util.Vector growablearray
StreetNumberSetcollectionof numericranges
GeoSegment pair of pointson theearth
Graph genericgraphdatastructure
RatNum rationalnumber
RatPoly polynomialover rationalnumbers
FixedSizeSet setrepresentedby a bitvector

Figure3: Descriptionof theanalyzedprograms.Theseprograms
areavailablefrom theauthors.

a tool that is easyto useanduseful to programmersrather
thanonethat is extraordinarilypowerful but so difficult to
usethatprogrammersshyaway from it.

ESCis not sound;for instance,it doesnot modelarith-
metic overflow, andpermitsthe userto supply(unverified)
assumptions.However, ESCprovidesagoodapproximation
to soundness.

This paperusesESC/Java not only asa lightweight tech-
nologyfor detectinga restrictedclassof runtimeerrors,but
also as a tool for verifying representationinvariantsand
methodspecifications.We choseto useESC/Java because
we are not aware of other equally capabletechnologyfor
statically checkingpropertiesof runnablecode. Whereas
many otherverifiersoperateover non-executablespecifica-
tionsor models,our researchaimsto compareandcombine
dynamicandstatictechniquesover thesamecodeartifact.

Both versionsof ESCarepublicly availablefrom http:

//research.compaq.com/SRC/esc/ .

3 Experiments

This sectiongivesquantitativeandqualitativeresultsfrom a
numberof experiments.Resultsdemonstratethatfor certain
programs,our systemis ableto infer specificationsthatare
oftenpreciseandcompleteenoughto bemachineverifiable.

Section 3.1 presentsour methodology. Sections3.2
and3.3 discusstwo exampleprogramsin detail; thesesec-
tions characterizethe generatedspecificationsandprovide
an intuition about the output of our system. Section3.4
overviews other experimentsand highlights the types of
problemsthesystemmayencounter.

3.1 Methodology

Weanalyzedtheprogramslistedin Figure3. (Figure4 sum-
marizesthe results.) The first threeprogramscomefrom
a datastructurestextbook [Wei99]; Vector is part of the
Java standardlibrary [Bla]; and the last six programsare
staff solutionsto assignmentsin a programmingcourseat
MIT [MIT01].

All of theprogramsexceptVector camewith testsuites,
eitherfrom thetextbookor thatwereusedfor grading.Sev-
eral of thesetestsuitesweresmall unit teststhat contained
just threeor four calls per methodanddid not exercisethe
program’s full functionality. We extendedthe deficienttest
suites,aneasytask(seeSection4.4). Wewroteourown test
suitefor Vector .

As describedin Section1.1,our systemrunsDaikon and
insertsits output into the target programas ESC/Java an-
notations.Someof Daikon’s invariantsareinexpressiblein
ESC/Java’s notation(the“Inexpr” columnof Figure4; also
seeSection4.1). We did not studythesefurther.

We determinedby handhow many of Daikon’s invari-
antswereredundantbecausethey werelogically implied by
otherinvariants(the“Redund”columnof Figure4). We en-
suredthat redundantinvariantsverified exactly when their
non-redundantcounterpartsdid. Weremovedall of thesein-
variantsfrom further consideration,for two reasons.First,
Daikonattemptsto avoid reportingredundantinvariants,but
its testsarenot perfect; theseresultsindicatewhat an im-
proved tool could achieve. More importantly, only onere-
dundantinvariantdid not verify, so including redundantin-
variantswould have inflated our results. Userswould not
needto remove theredundantinvariantsin orderto usethe
tool.

We then measuredhow different the reportedinvariants
arefrom asetof annotationsthatESC/Javacanverify (while
alsoverifying thatno run-timeerrorsoccur). Therearepo-
tentially many suchverifiablesets.For instance,onesetof
annotationsmightonly ensurethatno run-timeerrorsoccur,
while anothersetmight alsoensurethata representationin-
variantis maintained.Weselectedasourgoalsettheonethat
requiredthe smallestnumberof annotationsto be addedto
or removedfrom thesetthatDaikonreported.This is amea-
sureof how differentthe reportedinvariantsarefrom a set
that is both consistentandsufficient for ESC/Java’s check-
ing— anobjectivemeasureof how muchof thesemanticsof
theprogramwascapturedby Daikon from theprogramexe-
cutions. It is alsoa measureof programmereffort to verify
theprogramwith ESC/Java,startingfrom a setof invariants
detectedby Daikon. One potentialsourceof error is that
we selectedthe goalsetof annotationsby hand;it is possi-
ble thatwe overlookeda closergoal.However, thenumbers
we presentarea pessimisticbound,becauseany sucherror
would degradethem.

Given the setof reportedinvariantsandthe goal set,we
countedthe numberof invariantsin both sets(the “Verif”
columnof Figure4), the numberonly reportedby Daikon
(the “Unver” column),andthe numberonly in the goal set
(the “Miss” column). We computedprecisionand recall
basedon thesethreenumbers.

4

Programsize Numberof invariants Accuracy
Program LOC NCNB Meth. Verif. Unver. Inexpr. Redund. Report. Miss. Prec. Recall
FixedSizeSet 76 28 6 16 0 7 8 31 0 1.00 1.00
DisjSets 75 29 4 32 0 21 16 69 0 1.00 1.00
StackAr 114 50 8 25 0 6 1 32 0 1.00 1.00
QueueAr 116 56 7 42 0 11 5 58 13 1.00 0.76
Graph 180 99 17 15 0 0 1 16 4 1.00 0.79
GeoSegment 269 116 16 38 0 0 9 47 0 1.00 1.00
RatNum 276 139 19 25 2 0 9 36 1 0.93 0.96
StreetNumberSet 303 201 13 22 7 6 6 41 1 0.76 0.96
Vector 536 202 28 100 2 33 8 143 2 0.98 0.98
RatPoly 853 498 60 66 10 2 45 123 5 0.87 0.93
Average 280 142 18 38 2 9 11 60 3 0.95 0.94

Figure4: Summaryof invariantsdetectedby Daikon andverifiedby ESC/Java. Theprogramsaredescribedin Figure3. “LOC” is thetotal
linesof code.“NCNB” is thenon-comment,non-blanklinesof code.“Meth” is thenumberof methods.“Verif” is thenumberof reported
invariantsthat ESC/Java verified. “Unver” is the numberof reportedinvariantsthat ESC/Java failed to verify. “Inexpr” is the numberof
reportedinvariantsthat were inexpressiblein ESC/Java’s annotationlanguage.“Redund” is the numberof reportedinvariantsthat were
redundant;thesearenot countedin previous columns. “Report” is the total numberof reportedinvariants,the sumof the previous four
columns.“Miss” is thenumberof invariantsnot reportedby Daikon but requiredby ESC/Java for verification.“Prec” is theprecisionof the
reportedinvariants,theratio of verifiableto verifiableplusunverifiableinvariants.“Recall” is therecallof thereportedinvariants,theratio
of verifiableto verifiableplusmissing.

3.2 StackAr: array-basedstack

TheStackAr exampleis anarray-basedstackimplementa-
tion [Wei99]. Thesourcecontains50 non-commentlinesof
codein 8 methods,alongwith commentsthat describethe
behavior of the classbut do not mentionits representation
invariant.

Our system determined the representationinvariant,
methodpreconditions,modificationtargets,andpostcondi-
tions,andverifiedthatthesepropertieshold. Daikon invari-
ant detectorfinds 32 invariants,of which 25 arecandidates
for verification. In addition,our systemheuristicallyadded
2 annotationsinvolving aliasingof thearray.

Figure5 showspartof theautomatically-annotatedsource
codefor StackAr . The first six annotationsdescribethe
representationinvariant,statingthat thearrayindex is legal
andonly unusedstorageis null. Thenext threeannotations
describethe specificationfor the constructor. Daikon also
detectsthatafter construction,all elementsof the arrayare
null, but this propertyis implied by the representationin-
variant,soDaikon doesnot reportthepropertyandit is not
includedin theresults.

Our systemgeneratedspecificationsfor all operationsof
theclass,andverifiedthattheimplementationmetthespec-
ification. For example,a postconditionfor the pop method
wasthebi-implication:

(\old(topOfStack) == -1) == (\result == null)

This invariantstatesthat themethodreturnsnull if and
only if thestackis emptyuponentry.

Without these annotations,ESC/Java issueswarnings
aboutmany potentialruntime errors,suchas null derefer-
encesandarrayboundserrors.With theadditionof thede-
tectedinvariants,ESC/Java issuesno warnings,successfully

public class StackAr
{
//@ invariant theArray != null
//@ invariant \typeof(theArray) == \type(Object[])
//@ invariant topOfStack >= -1
//@ invariant topOfStack <= theArray.length-1
/*@ invariant (\forall int i; (0 <= i &&

i <= topOfStack) ==> (theArray[i] != null)) */
/*@ invariant (\forall int i; (topOfStack+1 <= i &&

i <= theArray.length-1) ==> (theArray[i] == null)) */

public StackAr(int capacity)
//@ requires capacity >= 0
//@ ensures capacity == theArray.length
//@ ensures topOfStack == -1
{

theArray = new Object[capacity];
topOfStack = -1;
//@ set theArray.owner = this

}

...

/*@ spec_public */ private Object [] theArray;
//@ invariant theArray.owner == this
/*@ spec_public */ private int topOfStack;

...
}

Figure5: Theobjectinvariants,first method,andfield declarations
of the annotatedStackAr.java file [Wei99]. The ESC/Java
annotations(commentsstartingwith “@”) areproducedautomati-
cally by Daikon,areautomaticallyinsertedinto thesourcecodeby
oursystem,andareautomaticallyverifiedby ESC/Java.

checksthat the StackAr classavoids runtimeerrors,and
verifiesthat the implementationmeetsits generatedspecifi-
cation.

5

Verif. Unver. Inexpr. Redund.Report. Miss.
Objects 4 0 0 1 5 2
Requires 33 6 1 24 64 2
Ensures 29 4 1 20 54 1

Total 66 10 2 45 123 5

Figure 6: Breakdown of invariantsdetectedby Daikon in the
RatPoly program.Theinvariantsaredividedinto objectinvari-
ants,preconditions,andpostconditions.Thecolumnsarethesame
asthe“Numberof invariants”columnsof Figure4.

3.3 RatPoly: polynomial over rational num-
bers

A secondexamplefurther illustratesour results,and pro-
videsexamplesof verificationproblems.

TheRatPoly programis animplementationof rational-
coefficient polynomialsthat supportbasicalgebraicopera-
tions[MIT01]. Thesourcecontains498non-commentlines
of code,in 3 classesand42 methods.Informal comments
statetherepresentationinvariantandmethodspecifications.
Our systemproducedan annotationset that was close to
a verifiable set. Additionally, the annotationset reflected
somepropertiesof the programmer’s specification,which
wasgivenby informal comments.

Figure6 shows thatDaikon reported123 invariantsover
the class;10 of thosedid not verify, and5 morehadto be
added.

The unverifiableinvariantswereall true, but othermiss-
ing invariantspreventedthemfrom beingverified. For in-
stance,the RatPoly implementationmaintainsan object
invariant that no zero-valuecoefficientsareever explicitly
stored,soDaikon reportedthata get methodnever returns
zero. However, sinceelementsof Java collection classes
maynot beaccessedin ESC/Java annotations,theobjectin-
variantis not expressibleandtheget methodfailedto ver-
ify. Similarly, themul operationexits immediatelyif oneof
the polynomialsis undefined,but the determinationof this
condition also requiredannotationsaccessingJava collec-
tions. Thus,ESC/Java couldnot prove thathelpermethods
usedby mul never operatedon undefinedcoefficients, as
reportedby Daikon.

The invariantsthat had to be addedwere of two cate-
gories.Someweredueto aspecificationlanguagemismatch
betweenESC/Java andDaikon. Daikon usesconsistentno-
tation to statethe runtime type of elementsin a sequence,
whetherit is an arrayor a Java collectionclass;ESC/Java
expressesthetwo in unrelatednotations.In ourexperiments,
thesepropertieshadto betranslatedby hand,but automating
thisstepisstraightforward.Therestof themissinginvariants
weredetectedby Daikon, but suppressedfor lack of statis-
tical justification. Providing a moreextensive testsuite,or
improving Daikon’s statisticalmeasures,would correctthis
problem.

3.4 Other experiments

Wealsoperformedeightotherexperiments,asshown in Fig-
ure 4. The resultswerepositive andrangedfrom complete
successasfor StackAr to theoccasionalproblemsasout-
lined for RatPoly . The averageprecision(a measureof
correctness)and recall (a measureof completeness)were
0.95and0.94,respectively.

Unverifiable invariantswere either test suite artifactsor
lackedsupportinginvariants.Testsuiteartifactsarisewhen
the test suite maintainsa property, even thoughthat prop-
erty is not generallytrue. Theseproblemsoften indicatea
deficiency in testing,but did notarisefrequentlyin theseex-
periments(seeSection4.4).

Unverifiableinvariantsmorecommonlyoccurwhensup-
porting invariantsareoutsidethescopeof thetools. For in-
stance,in theRatNumclass,Daikonfoundthatthenegate
methodpreservesthedenominatorandnegatesthenumera-
tor. However, verifying thatpropertywould requiredetect-
ing andverifying that thegcd operationcalledby thecon-
structorhasno effect becausethenumeratoranddenomina-
tor of theargumentarerelatively prime.

Missing invariantsthat could have reasonablybeenex-
pectedto bedetectedcanalsoleadto failedverification.For
example,the QueueAr classguaranteesthat unusedstor-
ageis setto null. Therepresentationinvariantsthatmaintain
this propertywere missingfrom Daikon’s output, because
they wereconditionedonapredicatemorecomplicatedthan
Daikon currentlyattempts.This omissionpreventedverifi-
cationof many methodpostconditions.

Redundantinvariants— those implied by other invari-
ants— areoften unhelpful to the userbecausethey convey
no new information. For instance,in theDisjSets class,
Daikon reportedthat the union methodensureda certain
propertyoverall elements,but alsoreportedthesameprop-
erty for varioussubsetsof the elements.Redundantinvari-
antsmay occasionallyhighlight importantconclusionsnot
obvious to the programmer, suchaswhena conclusionde-
pendson invariantsfrom severalotherobjectsin thesystem.
However, in generalredundantinvariantsarenot useful,and
we plan to improve Daikon’s redundancy checks(seeSec-
tion 7).

4 Limitations

This sectiondiscusseslimitations of automaticgeneration
andcheckingof programspecifications.Theselimitations
fall into threegeneralcategories: problemswith the tools,
problemswith the target programs,andproblemswith the
testsuitesfor thetargetprograms.

4.1 ESC/Java

ESC’s input languageis a variant of the Java Modeling
LanguageJML [LBR99, LBR00], aninterfacespecification

6

languagethat specifiesthe behavior of Java modules. We
use “ESCJML” for the JML variant acceptedas input by
ESC/Java.

Limitations of ESCJMLprevent certainpropertiesfrom
beingexpressed.As a result,thesepropertiesmustbeomit-
ted from the generatedspecifications,even thoughDaikon
reportsthemastrue over a program’s testsuite. ESCJML
annotationscannotincludemethodcalls,evenonesthatare
side-effect-free. Daikon usesthesefor obtainingVector
elementsandaspredicatesin implications. Unlike Daikon,
ESCJMLcannotexpressclosureoperations,suchasall the
elementsin a linkedlist.

ESCJML requiresthat object invariantshold at entry to
andexit from all methods,soit warnedthattheobjectinvari-
antsDaikon reportedwereviolatedby privatehelpermeth-
ods. We worked aroundthis problemby inlining onesuch
methodfrom theQueueAr program.

ESCJMLcannotexpressinvariantsoverstrings,although
Daikon reportsfew suchinvariantsin any event. As a re-
sult, ESC/Java cannotverify that object invariantshold at
theexit from a constructoror othermethodthat interpretsa
string argument,even thoughit canshow that the invariant
is maintainedby othermethods.

Thefull JML languagepermitsmethodcallsin assertions,
\reach() for expressingreachabilityvia transitive clo-
sure,andspecifiesthat object invariantshold only at entry
to andexit from public methods.

Some of this functionality might be missing from
ESC/Javabecauseit is designednot for proving generalpro-
gram propertiesbut as a lightweight methodfor verifying
absenceof runtimeerrors. However, our investigationsre-
vealedexampleswheresuchverification requiredeachof
thesemissingcapabilities. In somecases,ESC/Java users
may be ableto restructuretheir codeto work aroundthese
problems. In others, userscan insert unsoundpragmas
that causeESC/Java to assumeparticularpropertieswith-
out proof, permitting it to completeverificationdespiteits
limitations. We did not useany suchpragmasin our experi-
ments.

4.2 Daikon

A limitation of automaticgenerationof specificationsin-
volves invariants that Daikon does not detect— missing
classesof invariants. Section3.4 discussedproblemswith
a negate methodfor rationalnumbers;a possiblesolution
is to detectwhennumbersarerelatively prime.We hadpre-
viouslyrejectedthatinvariantasof insufficiently generalap-
plicability.

Comparedwith previously publishedwork, the version
of Daikon usedin this experimentincorporatesseveral im-
provementsessentialto generatingverifiablespecifications.
Of mostinterest,Daikon’s conditioningpredicateswereen-
hancedto includebooleanprocedurereturnvaluesandpro-
cedureexit points. Daikon usesthesepredicatesto produce

Program NCNB Original Added
FixedSizeSet 28 0 39
DisjSets 29 27 15
StackAr 50 11 39
QueueAr 56 11 54
Graph 99 Sys 1
GeoSegment 116 Sys 0
RatNum 139 Sys 39
StreetNumberSet 201 165 151
Vector 202 0 190
RatPoly 498 382 15

Figure7: Comparisonof programsizeto testsuitesize,given in
non-comment,non-blanklinesof code.“NCNB” is sizeof thepro-
gram;“Original” is thesizeof its original,accompanying testsuite;
“Added” is thenumberof linesaddedto yield theresultsdescribed
in Section3. “Sys” indicatesa systemtestnot specificallyfocused
on theprogram(seeSection4.4).

implicationsanddisjunctions,which arecritical to specify-
ing methodsthattakedifferentactionsdependingoninternal
state.

4.3 Target programs

Another challengeto verification of invariantsis the like-
lihood that programscontainerrorsthat falsify the desired
invariant. (Although it was never our goal, we have pre-
viously identifiedsucherrorsin textbooks[Gri81, Wei99],
in programsusedin testingresearch[HFGO94, RH98], and
elsewhere.)As anexampleof a likely errorthatwedetected
in thecourseof this project,oneof theobjectinvariantsfor
StackAr statesthatunusedelementsof thestackarenull.
Thepop operationsmaintainthis invariant(which approxi-
matelydoublesthesizeof their code),but themakeEmpty
operationdoesnot. We noticedthis whenthe expectedob-
ject invariantwasnot inferred,andwe correctedtheerrorin
our versionof StackAr .

4.4 Testsuites

A final challengeto generationis deficientor missingtest
suites. If the executionsprovided by a test suite are not
characteristicof aprogram’sgeneralbehavior, propertiesob-
servedduring testingmay not generalize.However, oneof
thekey resultsof this researchis thatevenlimited testsuites
cancapturecertainsemanticsof a program.

Figure7 shows relative sizesof testsuitesandprograms
usedin thisexperiment.Testsuitesfor thesmallerprograms
werelarger in comparison,but no testsuitewasunreason-
ably sized.

Systemtests— teststhat checkend-to-endbehavior of a
system— tendedto producegood invariantsimmediately,
confirming earlier experiences[ECGN01]. Thesesystem
testswerefor asystemcontainingthemoduleweexamined,
ratherthanbeingjust for themoduleitself.

7

Unit tests— teststhat checkspecificboundaryvaluesof
procedurest in a singlemodulein isolation— werenot im-
mediatelysuccessful.Whenthe initial testsuiteswereunit
teststhat camefrom the textbooksor wereusedfor grad-
ing, they oftencontainedjust threeor four callspermethod.
Somemethodson StreetNumberSet werenot testedat
all.

Wecorrectedthesetestsuites,but did notattemptto make
them minimal. The correctionswere not difficult. When
failedESC/Java verificationattemptsindicatea testsuiteis
deficient,the unverifiableinvariantsspecifythe unintended
property, so a programmerknows exactly how to improve
thetests.For example,theoriginal testsfor thediv opera-
tion on RatPoly exerciseda wide rangeof positivecoeffi-
cients,but all testswith negativecoefficientsusedanumera-
tor of u7v . Otherexamplesincludedcertainstackoperations
not beingperformedon a full stack,callsto a safestackpop
operationalwaysbeingprotectedby a checkwhetherthear-
raywasempty, andaqueueimplementedvia anarraynotbe-
ing forcedto wrap around.Thesepropertiesweredetected
and reportedasunverifiableby our system,andextending
theteststo coveradditionalvalueswaseffortless.

Testsuitesarean importantpartof any programmingef-
fort, so time investedin their improvementis not wasted.
In our experience,the additionaleffort (if any) requiredto
obtainaccurateinvariantsis indistinguishablefrom that re-
quired to createa generaltest suite. In short, poor ver-
ification results indicate specific failures in testing, and
reasonably-sizedtestsuitesareableto accuratelycapturese-
manticsof a program.

5 Discussion

The mostsurprisingresultof our researchis that specifica-
tionsgeneratedfrom programexecutionsarereasonablyac-
curate: they form a set that is (nearly) self-consistentand
self-sufficient, asmeasuredby verifiability by anautomatic
specificationcheckingtool. Thisresultwasnotatall obvious
a priori . Onemightexpectthatdynamicallydetectedinvari-
antswould suffer from seriousunsoundnessby expressing
artifactsof thetestsuiteandwould fail to captureenoughof
the(formal) semanticsof theprogram.

This positive resultimplies thatdynamicinvariantdetec-
tion is effective, at leastin our domainof investigation.A
second,broaderconclusionis thatexecutionsoverrelatively
small test suitescapturea significantamountof informa-
tion aboutprogramsemantics.This detectedinformationis
equivalentto that resultingfrom, andverifiableby, a static
analysis.Although we do not yet have a theoreticalmodel
to explain this,nor canwe predictfor a giventestsuitehow
muchof aprogram’ssemanticspaceit will explore,wehave
presenteda datapointfrom a setof experimentsto explicate
thephenomenonandsuggestthatit maygeneralize.

We speculatethatthreefactorsmaycontributeto our suc-
cess.First, our specificationgenerationtechniquedoesnot

attemptto reportall propertiesthat happento be true dur-
ing a testrun. Rather, it producespartialspecificationsthat
intentionally omit propertiesthat areunlikely to be of use
or that are unlikely to be universally true. It usesstatisti-
cal, algorithmic,andheuristicteststo make this judgment.
Second,the information that ESC/Java needsfor verifica-
tion maybeparticularlyeasyto obtainvia a dynamicanal-
ysis. ESC/Java’s requirementsaremodest:it doesnot need
full formal specificationsof all aspectsof programbehav-
ior. However, it doesrequiresomespecificationsandinput–
outputrelations,andwe wereableto verify detectedprop-
ertiesthat were not strictly necessaryfor ESC’s checking,
but provided additional informationaboutprogrambehav-
ior. Third, our testsuiteswereof acceptablequality. Unit
testsareinappropriate,for they produceverypoorinvariants.
However, Daikon’s output makes it extremelyeasyto im-
provethetestsuitesby indicatingexactlywhatis wrongwith
them.Furthermore,existingsystemtestswereadequate,and
thesearemorelikely to exist andofteneasierto produce.

Our resultssuggesta new metric for test suite quality,
which we call “valuecoverage”[Ham87, CR99] or “spec-
ification coverage.” Specificationsarecloserthancodecov-
erageis to the abstract,semanticlevel at which programs
areoftenunderstood.Softwareengineersmaymorereadily
interpretprogrampropertiesthanspecificpathsthroughthe
program,even if they would eventuallyequatethetwo. We
areunsurewhetherspecification-complete(or specification-
verifiable)testsuites— that is, testsuitesfrom whoseexe-
cutionscompleteor verifiablespecificationscanbedynam-
ically extracted— aregoodfor catchingbugs,andwhether
they tendto becoverage-complete.We would like to further
investigatethesetopics.

Wedoknow thatdynamicallydetectedprograminvariants
make it easyto constructandextendtestsuitesto achieve
specificationcompleteness.Thereis substantialanecdotal
evidencethat they alsoassistin detectionof bugs. For ex-
ample,in additionto the StackAr problemnotedin Sec-
tion 4.3, our experimentsalsorevealeda bug in the Vec-
tor classfrom JDK 1.1.8.The toString methodthrows
an exceptionfor vectorswith null elements. Our original
(codecoveragecomplete)testsuitedid not reveal this bug,
but Daikon reportedthat the vector elementswere always
non-nullonentryto toString , leadingto discoveryof the
bug. Thebug is correctedin JDK 1.3.

Thegoalof producingprogramspecificationsis soimpor-
tant that it is worthwhileto considermany approaches.Our
researchsuggeststhatanovel approachcancomplementex-
istingones:generatethespecificationunsoundly, thencheck
it, resultingin a specificationanda verificationof its cor-
rectness.We believe thatunsoundspecificationscanalsobe
usedto advantagein other situations: this can expandthe
applicability andutility of specificationsandprovide many
of the benefitsof soundspecifications,in more situations.
Evenif full input–outputrelationsarehardto generateauto-
matically, universallytrueproperties(especiallyconditional

8

invariants)thatcharacterizetherelationareastepin theright
direction.w

5.1 Benefitsof integration

Staticanddynamicanalyseshave complementarystrengths
andweaknesses,socombiningthemhasgreatpromise:dy-
namicanalysiscanproposeprogrampropertiesto beverified
by staticanalysis. Integratingdynamicinvariantdetection
with staticverificationhasbenefitsfor bothtools.

Useof a staticverifier to augmentdynamicinvariantde-
tectionovercomesa potentialobjectionaboutpossiblyun-
soundoutput,classifiestheoutput(asproventrueor poten-
tially incorrect)to permitprogrammersto useit moreeffec-
tively, permitsverifiedinvariantsto beusedin contexts(such
asinput to certainprograms)thatdemandsoundinput, and
mayimprovetheperformanceoroutputof dynamicinvariant
detection. As a result,moreprogrammerscantake advan-
tageof dynamicallydetectedinvariantsin a varietyof con-
texts. This mayeventuallyleadto fewer bugs(by introduc-
ing fewer and detectingmore), betterdocumentation,less
time wastedon programunderstanding,better test suites,
moreeffective validationof programchanges,andmoreef-
ficient programs.

Use of dynamically detectedinvariants can bootstrap
staticverificationby providing initial programannotations,
goals,andintermediateassertions.Few programmersenjoy
or aregoodat annotatingprograms,a time-consuming,te-
dious,anderror-pronetask.This automationmayspeedthe
adoptionof staticanalysistoolsby lesseningtheuserburden,
even if somework still remainsfor the user. Dynamically
detectedinvariantscanalsocheckandrefineexisting spec-
ificationsandindicatepropertiesprogrammersmight other-
wise have overlooked. Theseimprovementscould lead to
preventionand to earlier detectionof errors,aiding in the
productionof more robust, reliable, and correctcomputer
systems.

6 Relatedwork

This is the first researchwe are awareof that hasdynam-
ically generated,thenstaticallyverified,programspecifica-
tions,or hasusedsuchinformationto investigatetheamount
of information about programsemanticsavailable in test
runs.Thetwo componenttechniquesarewell-known, how-
ever.

Dynamic analysishasbeenusedfor a variety of tasks;
for instance,inductive logic programming(ILP) [Qui90,
Coh94] producesa set of Horn clauses(first-order if-then
rules)andcanbe run over programtraces[BG93], though
with limited success.Programmingby example[CHK . 93]
is similar but requiresclosehumanguidance,and version
spacescancompactlyrepresentsetsof hypotheses[Mit78,
Hir91, LDW00]. Value profiling [CFE97, SS98, CFE99]
can efficiently detectcertainsimple propertiesat runtime.

Eventtracescangeneratefinite statemachinesthatexplicate
potentialsystemorganizationor behavior [BG97, CW98a,
CW98b]. Programspectra[AFMS96, RBDL97, HRWY98,
Bal99] also captureaspectsof systemruntime behavior.
None of theseother techniqueshasbeenas successfulas
Daikon for detectinginvariantsin programs,thoughmany
havebeenvaluablein otherdomains.

Many staticinferencetechniquesalsoexist, includingab-
stract interpretation(often implementedby symbolic exe-
cution or dataflow analysis),modelchecking,andtheorem
proving. (Spaceprohibitsacompletereview here.)A sound,
conservative static analysisreportspropertiesthat are true
for any programrun, andtheoreticallycandetectall sound
invariantsif runtoconvergence[CC77]. Staticanalysesomit
propertiesthat aretrue but uncomputableandpropertiesof
the programcontext. To control time andspacecomplex-
ity (especiallythecostof modelingprogramstates)anden-
suretermination,they make approximationsthat introduce
inaccuracies,weakening their results. For instance,accu-
rate and efficient alias analysisis still beyond the stateof
the art [CWZ90, LR92, WL95], thoughfor specificappli-
cations,contexts, or assumptions,efficient pointeranalyses
canbesufficiently accurate[Das00].

Therearemany othertoolsbesidesESC/Javafor statically
checking specifications[Pfe92, DC94, EGHT94, Det96,
Eva96, NCOD97, LN98]. Theseothersystemshave differ-
ent strengthsandweaknessesthanESC/Java, but few have
the polish of its integration with a real programminglan-
guage.

An independentproject[JvH. 98, HJv01] verifiedanob-
ject invariantin Java’sVector class,usingautomatictrans-
lationto PVS[ORS92, ORSvH95], user-specifiedgoals,and
someuserinteractionwith PVS.

6.1 Houdini

The researchmost closely related to our integrated sys-
tem is Houdini, an annotation assistant for ESC/Java
[FL01, FJL01]. (A similar systemwas proposedby Rin-
tanen[Rin00].) Houdini is motivatedby theobservationthat
usersare reluctantto annotatetheir programswith invari-
ants;it attemptsto lessentheburdenby providing an initial
set. Houdini takesa candidateannotationsetas input and
computesthegreatestsubsetof it that is valid for a particu-
lar program.It repeatedlyinvokesthechecker andremoves
refutedannotations,until no moreannotationsare refuted.
Thecandidateinvariantsareall possiblearithmeticcompar-
isonsamongfields(and“interestingconstants”suchas u7v ,
0, 1, arraylengths,andnull); many elementsof this initial
setaremutuallycontradictory.

Houdini hasbeenusedto find bugsin several programs.
Over30%of its guessedannotationsareverified,andit tends
to reducethenumberof ESC/Javawarningsby afactorof 2–
5. At present,Houdini may bemorescalablethanour sys-
tem.Houdini took62hoursto runona36,000-lineprogram.

9

Daikon hasrun in underanhouron several10,000-linepro-
grams.x Becauseit currentlyoperatesoffline in batchmode,
its memoryrequirementsmake Daikon unlikely to scaleto
significantlylargersystemswithout re-engineering;suchan
effort is now underway. This is a limitation of the Daikon
prototype,not of the techniqueof dynamicinvariantdetec-
tion.

Daikon’s candidateinvariants are richer than those of
Houdini; Daikon outputsimplicationsanddisjunctions,and
its baseinvariantsare also richer, including more compli-
catedarithmeticand sequenceoperations. If even one re-
quiredinvariantis missing,thenHoudinieliminatesall other
invariantsthat dependon it. Houdini makesno attemptto
eliminateimplied(redundant)invariants,asDaikondoes(re-
ducingits outputsizeby anorderof magnitude[ECGN00]),
so it is difficult to interpretnumbersof invariantsproduced
by Houdini. Finally, Houdini is notpublicly available,sowe
cannotperformadirectcomparison.

Merging the two approachescould be very useful. For
instance,Daikon’s outputcould form the input to Houdini,
permittingHoudini to spendlesstime eliminatingfalsein-
variants.(A prototype“dynamicrefuter”— essentiallyady-
namicinvariantdetector— hasbeenbuilt [FL01], but node-
tailsor resultsaboutit areprovided.)Houdinihasadifferent
intent thanDaikon: Houdini doesnot try to producea com-
pletespecificationor annotationsthat aregoodfor people,
but only to makeup for missingannotationsandpermitpro-
gramsto be lesscluttered; in that respect,it is similar to
typeinference.However, Daikon’s outputcouldperhapsbe
usedin placeof Houdini’s. Invariantsthat aretrue but de-
pendonmissinginvariantsor arenotverifiableby ESC/Java
would not beeliminated,sousersmight becloserto a com-
pletelyannotatedprogram,thoughthey might needto elim-
inatesomeinvariantsby hand.

7 Futur ework

Section4 listeda numberof limitationsof our system(and
its componentsDaikon and ESC/Java) that shouldbe cor-
rected. We would also like to investigatewhat test suites
leadto goodspecifications,asnotedin Section5.

Another obvious way to extend this work is to usedif-
ferent invariantdetectorsthanDaikon or differentverifiers
than ESC/Java. Section6 lists someother invariant de-
tectors. Examplesof static verifiers that are connected
with realprogramminglanguagesincludeLCLint [EGHT94,
Eva96, Eva00], ACL2 [KM97], LOOP[JvH. 98], JavaPath-
Finder[HP00], andBandera[CDH . 00].

We are currently integratingDaikon with IOA [GLV97,
GL00], a formal languagefor describingcomputationalpro-
cessesthat aremodeledusingI/O automata[Lyn96, LT87,
LT89]. TheIOA toolset(http://theory.lcs.mit.edu/

tds/ioa.html) permitsIOA programsto be run andalso
provides an interface to the Larch Prover [GG90, GG91,
SAGG. 93], aninteractivetheorem-provingsystemfor mul-

tisortedfirst-orderlogic. Daikon will proposegoals, lem-
mas, or intermediateassertionsfor the theorem prover.
Sideconditionssuchasrepresentationinvariantscanenable
proofsthatholdin all reachablestatesor representations(but
notin all possiblestatesor representations).It canbetedious
and error-pronefor peopleto specify the propertiesto be
proved,andcurrentsystemshave troublepostulatingthem;
someresearchersconsiderthat taskharderthanperforming
theproof [Weg74, BLS96, BBM97]. Ourpreliminaryexper-
imentshave resultedin theautomaticdetectionof invariants
usedin a publishedproof [GL00].

We arealsointerestedin recoveringfrom failedattempts
at staticverification.Broadlyspeaking,verificationfailsbe-
causethe goalpropertiesaretoo strongor too weak. Prop-
ertiesthat aretoo strongmay be true but beyond the capa-
bilities of the verifier, or may not be universally true (for
instance,guaranteedby the programcontext or artifactsof
thetestsuite).Propertiesthataretoo weakaretrue,but can-
not beprovedby thestaticverifier or arenot usefulto it —
for instance,loop invariantsmay needto be strengthened
to beproved.We anticipatethatdynamicinvariantdetection
will proposemoreoverly-stronginvariantsthanoverly-weak
ones. Whenverificationfails, we would like to know how
to strengthenandweaken invariantsin a principledway, by
examiningthesourcecode,programexecutions,patternsof
invariants,andverifier output,to increasethe likelihoodof
successfulverification.

While dynamicinvariantdetectionhasbeensuccessfulin
several applicationdomains,we believe that truly success-
ful programanalysisrequiresbothstaticanddynamiccom-
ponents.Someof the propertiesthat aredifficult to obtain
from a dynamicanalysisareapparentfrom an examination
of the sourcecode,andpropertiesthatarebeyond thestate
of theart in staticanalysiscanbeeasilycheckedat runtime.
We plan to integratemore static analysisinto our system
(and particularly into Daikon). For example,the dynamic
analysisneednot checkpropertiesdiscoveredby the static
analysis,and the dynamicanalysiscan focus on statically
indicatedcode.

8 Conclusion

We have proposed,implemented,and experimentallyas-
sesseda novel approachto producingcorrectspecifications:
generatethem unsoundlyfrom programexecutions, then
verify them. To our knowledge,ours is the first systemto
dynamicallydetectandthenstaticallyverify programspeci-
fications.

Our experimentsindicatethateven limited testsuitesac-
curatelycharacterizegeneralexecutionproperties:they can
generatea consistentandsufficient setof specificationsthat
canbe automaticallyverifiedwith little or no change.This
surprisingresult suggeststhat runtime propertiesmay not
beasunreliableasgeneralopinionholds,givenaneffective
methodfor extracting them. We do not yet have a princi-

10

pled descriptionof the static characteristicsof a test suite
thatresulty in ahigh-qualitygeneratedspecification,but even
simplesystemtestsseemto besufficient.

Ourexperimentsalsodemonstratetheeffectivenessof dy-
namic invariantdetection,and of the Daikon implementa-
tion. More specifically, in our tests,it generatedspecifica-
tionswith high(about95%)precisionandrecall,whenmea-
suredagainstthetaskof staticverificationbyESC/Java. This
validatestheapproachof producinginvariantsfrom program
executions.

The resultsgenerally justify the use of unsoundtech-
niquesin appropriatewaysin programdevelopmentandsug-
gestthat thesemay be extendedto programspecifications,
which have traditionallyrequiredcompletecorrectness.We
alsofoundthat integratingstaticanddynamictechniquesin
our systemproducesbenefitsin eachdirection,becauseof
their complementarystrengthsandweaknesses.Finally, dy-
namicallygeneratedspecificationsmay assistin bug detec-
tion andproveto beavaluablemeasureof testsuitequality.

Acknowledgments

We thankthe membersof the Daikon group— particularly
Nii Dodoo,MichaelHarder, andBenMorse— for theircon-
tributionsto this project.We alsohadfruitful conversations
with ChandraBoyapati,StevenGarland,William Griswold,
Daniel Jackson,JoshKataoka,RustanLeino, Greg Nelson,
David Notkin, JamesSaxe, and Kevin Sullivan. This re-
searchwassupportedin part by NSF grantsCCR-9970985
andCCR-6891317.

References

[AFMS96] David Abramson,Ian Foster, John Michalakes, and
Rok Socǐc. Relative debugging: A new methodologyfor de-
bugging scientific applications. Communicationsof the ACM,
39(11):69–77,November1996.

[Bal99] ThomasBall. The conceptof dynamic analysis. In
ESEC/FSE, pages216–234,September6–10,1999.

[BBM97] Nicolaj Bjørner, AncaBrowne,andZoharManna.Au-
tomaticgenerationof invariantsandintermediateassertions.The-
oretical ComputerScience, 173(1):49–87,February1997.

[BG93] IvanBratko andMarko Grobelnik. Inductive learningap-
plied to programconstructionandverification. In Jośe Cuena,
editor, AIFIPP ’92, pages169–182.North-Holland,1993.

[BG97] BernardBoigelotandPatriceGodefroid. Automaticsyn-
thesisof specificationsfrom thedynamicobservationof reactive
programs.In TACAS’97, pages321–333,Twente,April 1997.

[Bla] Blackdown project. Java DevelopmentKit (JDK) version
1.1.8for Linux. http://www.blackdown.org/ .

[BLS96] SaddekBensalem,YassineLakhnech,andHassenSaidi.
Powerful techniquesfor the automaticgenerationof invariants.
In CAV, pages323–335,July31–August3, 1996.

[CC77] Patrick M. Cousotand RadhiaCousot. Automatic syn-
thesisof optimalinvariantassertions:Mathematicalfoundations.

In Proceedingsof theACM Symposiumon Artificial Intelligence
and ProgrammingLanguages, pages1–12,Rochester, NY, Au-
gust1977.

[CDH z 00] JamesCorbett,Matthew Dwyer, JohnHatcliff, Corina
Păs̆areanu,Robby, Shawn Laubach,andHongjunZheng. Ban-
dera: Extractingfinite-statemodelsfrom Java sourcecode. In
ICSE, pages439–448,June7–9,2000.

[CFE97] BradCalder, PeterFeller, andAlan Eustace.Valuepro-
filing. In MICRO-97, pages259–269,December1–3,1997.

[CFE99] BradCalder, PeterFeller, andAlan Eustace.Valuepro-
filing andoptimization.Journalof InstructionLevelParallelism,
1, March1999.http://www.jilp.org/vol1/ .

[CHK z 93] Allen Cypher, Daniel C. Halbert, David Kurlander,
HenryLieberman,David Maulsby, BradA. Myers,andAlan Tur-
ransky, editors.Watch WhatI Do: Programmingby Demonstra-
tion. MIT Press,Cambridge,MA, 1993.

[Coh94] William W. Cohen. Grammatically biased learning:
Learninglogic programsusinganexplicit antecedentdescription
language.Artificial Intelligence, 68:303–366,August1994.

[CR99] Juei Chang and Debra J. Richardson. Structural
specification-basedtesting: Automatedsupportandexperimen-
tal evaluation. In ESEC/FSE, pages285–302,September6–10,
1999.

[CW98a] JonathanE. Cook and AlexanderL. Wolf. Discover-
ing modelsof softwareprocessesfrom event-baseddata. ACM
TOSEM, 7(3):215–249,July1998.

[CW98b] JonathanE. CookandAlexanderL. Wolf. Event-based
detectionof concurrency. In FSE, pages35–45,November1998.

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth
Zadeck. Analysis of pointersand structures. In PLDI, pages
296–310,WhitePlains,NY, June20–22,1990.

[Das00] ManuvirDas.Unification-basedpointeranalysiswith di-
rectionalassignments.In PLDI, pages35–46,June18–23,2000.

[DC94] Matthew B. DwyerandLori A. Clarke. Dataflow analysis
for verifying propertiesof concurrentprograms. In FSE, pages
62–75,December1994.

[Det96] David L. Detlefs. An overview of the ExtendedStatic
Checkingsystem.In Proceedingsof theFirst Workshopon For-
mal Methodsin Software Practice, pages1–9,January1996.

[DLNS98] David L. Detlefs,K. RustanM. Leino, Greg Nelson,
andJamesB. Saxe. Extendedstaticchecking. SRCResearch
Report159, CompaqSystemsResearchCenter, December18,
1998.

[ECGN00] Michael D. Ernst, Adam Czeisler, William G. Gris-
wold, and David Notkin. Quickly detectingrelevant program
invariants.In ICSE, pages449–458,June2000.

[ECGN01] MichaelD. Ernst,JakeCockrell,William G.Griswold,
andDavid Notkin. Dynamicallydiscovering likely programin-
variantsto supportprogramevolution. IEEE TSE, 27(2):1–25,
February2001.A previousversionappearedin ICSE, pages213–
224,LosAngeles,CA, USA, May 1999.

[EGHT94] David Evans, John Guttag, James Horning, and
YangMengTan.LCLint: A tool for usingspecificationsto check
code.In FSE, pages87–97,December1994.

[EGKN99] Michael D. Ernst, William G. Griswold, Yoshio
Kataoka,andDavid Notkin. Dynamicallydiscovering pointer-
basedprograminvariants.TechnicalReportUW-CSE-99-11-02,
Universityof Washington,Seattle,WA, November16,1999.

11

[Ern00] Michael D. Ernst. Dynamicallydiscovering likely pro-
gram{ invariants. PhD thesis,University of WashingtonDepart-
mentof ComputerScienceandEngineering,Seattle,Washington,
August2000.

[Eva96] David Evans.Staticdetectionof dynamicmemoryerrors.
In PLDI, pages44–53,May 21–24,1996.

[Eva00] David Evans. LCLint User’s Guide, Version 2.5, May
2000.http://lclint.cs.virginia.edu/guide/ .

[FJL01] CormacFlanagan,Rajeev Joshi,andK. RustanM. Leino.
Annotation inferencefor modularcheckers. Information Pro-
cessingLetters, 2(4):97–108,February2001.

[FL01] CormacFlanaganandK. RustanM. Leino. Houdini, an
annotationassistantfor ESC/Java. In Formal MethodsEurope,
volume2021of LNCS, pages500–517,Berlin, Germany, March
2001.

[GG90] StephenGarlandandJohnGuttag. LP, theLarchProver.
In M. Stickel, editor, Proceedingsof theTenthInternationalCon-
ferenceon AutomatedDeduction, volume449of LNCS, Kaiser-
slautern,WestGermany, 1990.Springer-Verlag.

[GG91] StephenJ. GarlandandJohnV. Guttag. A guideto LP,
theLarchProver. TechnicalReport82, Digital EquipmentCor-
poration,SystemsResearchCenter, 31December1991.

[GKMS00] ToddL. Graves,Alan F. Karr, J. S. Marron,andHar-
vey Siy. Predictingfault incidenceusingsoftwarechangehistory.
IEEETSE, 26(7):653–661,July 2000.

[GL00] StephenJ. GarlandandNancy A. Lynch. Using I/O au-
tomatafor developingdistributedsystems. In Gary T. Leavens
andMurali Sitaraman,editors,Foundationsof Component-Based
Systems, pages285–312.CambridgeUniversityPress,2000.

[GLV97] StephenJ. Garland, Nancy A. Lynch, and Mandana
Vaziri. IOA: A languagefor specifying,programming,andvali-
datingdistributedsystems.Technicalreport,MIT Laboratoryfor
ComputerScience,1997.

[Gri81] David Gries. The Scienceof Programming. Springer-
Verlag,New York, 1981.

[Ham87] RichardG. Hamlet. Probablecorrectnesstheory. Infor-
mationProcessingLetters, 25(1):17–25,April 20,1987.

[HFGO94] Monica Hutchins, Herb Foster, Tarak Goradia, and
ThomasOstrand.Experimentson theeffectivenessof dataflow-
and controlflow-basedtest adequacy criteria. In ICSE, pages
191–200,May 1994.

[HHJz 87a] C. A. R. Hoare,I. J.Hayes,He Jifeng,C. C. Morgan,
A. W. Roscoe,J. W. Sanders,I. H. Sorensen,J. M. Spivey, and
B. A. Sufrin.Corrigenda:“Lawsof programming”.Communica-
tionsof theACM, 30(9):771,September1987.See[HHJz 87b].

[HHJz 87b] C. A. R. Hoare, I. J. Hayes,He Jifeng, C. C. Mor-
gan,A. W. Roscoe,J. W. Sanders,I. H. Sørensen,J. M. Spivey,
and B. A. Sufrin. Laws of programming. Communications
of the ACM, 30(8):672–686,August 1987. Seecorrigendum
[HHJz 87a].

[Hir91] HaymHirsh.Theoreticalunderpinningsof versionspaces.
In IJCAI, pages665–670,August1991.

[HJv01] Marieke Huisman,Bart P.F. Jacobs,andJoachimA.G.M.
van denBerg. A casestudyin classlibrary verification: Java’s
Vectorclass.InternationalJournal on Software Toolsfor Techn-
logyTransfer, 2001.

[HP00] KlausHavelundandThomasPressburger. Modelchecking
Java programsusingJava PathFinder. InternationalJournal on
Software Toolsfor Technology Transfer, 2(4):366–381,2000.

[HRWY98] Mary JeanHarrold, Gregg Rothermel,Rui Wu, and
Liu Yi. An empiricalinvestigationof programspectra.In PASTE
’98, pages83–90,June16,1998.

[JvHz 98] Bart Jacobs,JoachimvandenBerg, Marieke Huisman,
Martijn vanBerkum,Ulrich Hensel,andHendrikTews. Reason-
ing aboutJava classes.In OOPSLA, pages329–340,Vancouver,
BC, Canada,October18–22,1998.

[KL86] JohnC. Knight andNancy G. Leveson. An experimen-
tal evaluationof theassumptionof independencein multiversion
programming.IEEETSE, 12(1):96–109,January1986.

[KM97] Matt Kaufmannand J. StrotherMoore. An industrial
strengththeoremproverfor alogicbasedonCommonLisp. IEEE
TSE, 23(4):203–213,April 1997.

[LBR99] GaryT. Leavens,AlbertL. Baker, andClydeRuby. JML:
A notationfor detaileddesign.In Haim Kilov, BernhardRumpe,
and Ian Simmonds,editors,Behavioral Specificationsof Busi-
nessesandSystems, pages175–188.Kluwer AcademicPublish-
ers,Boston,1999.

[LBR00] GaryT. Leavens,Albert L. Baker, andClydeRuby. Pre-
liminary designof JML: A behavioral interfacespecificationlan-
guagefor Java. TechnicalReport98-06m,Iowa StateUniver-
sity, Departmentof ComputerScience,February2000. See
www.cs.iastate.edu/˜leavens/JML.html .

[LCKS90] Nancy G. Leveson,StephenS. Cha, JohnC. Knight,
and Timothy J. Shimeall. The use of self checksand voting
in software error detection: An empirical study. IEEE TSE,
16(4):432–443,1990.

[LDW00] TessaLau, PedroDomingos,andDanielS. Weld. Ver-
sionspacealgebraandits applicationto programmingby demon-
stration.In ICML, Stanford,CA, June2000.

[LG86] BarbaraLiskov andJohnGuttag. AbstractionandSpeci-
fication in ProgramDevelopment. MIT Press,Cambridge,MA,
1986.

[LN98] K. RustanM. LeinoandGreg Nelson.An extendedstatic
checker for Modula-3.In CompilerConstruction’98, pages302–
305,April 1998.

[LNS00] K. RustanM. Leino, Greg Nelson,andJamesB. Saxe.
ESC/Java user’s manual. TechnicalReport2000-002,Compaq
SystemsResearchCenter, Palo Alto, California, October12,
2000.

[LR92] William LandiandBarbaraG. Ryder. A safeapproximate
algorithm for interproceduralpointer aliasing. In PLDI, pages
235–248,June1992.

[LT87] Nancy A. LynchandMark R. Tuttle. Hierarchicalcorrect-
nessproofsfor distributedalgorithms.In PODC, pages137–151,
Vancouver, BC, Canada,August1987.

[LT89] Nancy A. LynchandMark R.Tuttle.An introductionto In-
put/Outputautomata.CWI-Quarterly, 2(3):219–246,September
1989.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kauf-
mann,SanFrancisco,CA, 1996.

[Mit78] Tom M. Mitchell. VersionSpaces:An Approach to Con-
cept Learning. PhD thesis,Departmentof ComputerScience,
StanfordUniversity, Stanford,CA, December1978. Stanford
UniversityTechnicalReport,HPP-79-2.

[MIT01] MIT Dept.of EECS. 6.170:Laboratoryin softwareen-
gineering.http://www.mit.edu/˜6.170/ , Spring2001.

12

[NCOD97] Gleb Naumovich, Lori A. Clarke, Leon J. Osterweil,
and| Matthew B. Dwyer. Verificationof concurrentsoftwarewith
FLAVERS. In ICSE, pages594–595,May 1997.

[NE01] JeremyW. Nimmer andMichael D. Ernst. Staticverifi-
cation of dynamicallydetectedprograminvariants: Integrating
Daikon andESC/Java. In Proceedingsof RV’01, First Workshop
onRuntimeVerification, Paris,France,July23,2001.

[OC89] Mitsuru OhbaandXiao-Mei Chou. Doesimperfectde-
buggingaffect softwarereliability growth? In ICSE, pages237–
244,May 1989.

[ORS92] S. Owre, J. M. Rushby, andN. Shankar. PVS: A pro-
totypeverificationsystem. In Proceedingsof the 11th Interna-
tional Conferenceon AutomatedDeduction(CADE-11), volume
607,pages748–752,SaratogaSprings,NY, June1992.

[ORSvH95] Sam Owre, John Rushby, NatarajanShankar, and
Friedrichvon Henke. Formal verification for fault-tolerantar-
chitectures: Prolegomenato the designof PVS. IEEE TSE,
21(2):107–125,February1995. SpecialSection—BestPapers
of FME (FormalMethodsEurope)’93.

[Pfe92] FrankPfenning. Dependenttypesin logic programming.
In FrankPfenning,editor, Typesin Logic Programming, chap-
ter10,pages285–311.MIT Press,Cambridge,MA, 1992.

[Qui90] J. RossQuinlan. Learninglogical definitionsfrom rela-
tions. MachineLearning, 5:239–266,1990.

[RBDL97] ThomasReps,ThomasBall, Manuvir Das,andJames
Larus. The useof programprofiling for softwaremaintenance
with applicationsto theyear2000problem.In ESEC/FSE, pages
432–449,September22–25,1997.

[RH98] GreggRothermelandMary JeanHarrold.Empiricalstud-
ies of a safe regressiontest selectiontechnique. IEEE TSE,
24(6):401–419,June1998.

[Rin00] JussiRintanen. An iterative algorithm for synthesizing
invariants. In AAAI/IAAI, pages806–811,Austin, TX, July 30–
August3, 2000.

[SAGGz 93] Jørgen F. Søgaard-Anderson,StephenJ. Garland,
John V. Guttag, Nancy A. Lynch, and Anna Pogosyants.
Computer-assistedsimulationproofs. In CostasCourcoubetis,
editor, Fifth Conferenceon Computer-AidedVerification, pages
305–319,Heraklion,Crete,June1993.Springer-VerlagLecture
Notesin ComputerScience697.

[SS98] AvinashSodaniandGurindarS. Sohi. An empiricalanal-
ysisof instructionrepetition. In ASPLOS, pages35–45,October
1998.

[TCMM98] Nigel Tracey, JohnClark, Keith Mander, and John
McDermid.An automatedframework for structuraltest-datagen-
eration.In ASE’98, pages285–288,October1998.

[Weg74] Ben Wegbreit. The synthesisof loop predicates.Com-
municationsof theACM, 17(2):102–112,February1974.

[Wei99] Mark Allen Weiss.Data StructuresandAlgorithmAnal-
ysisin Java. AddisonWesley Longman,1999.

[WL95] RobertP. Wilson andMonicaS. Lam. Efficient context-
sensitive pointeranalysisfor C programs.In PLDI, pages1–12,
June1995.

13

