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ABSTRACT

This paperpresentsien non-intrusie measuremertechniquego
detectsharingof upstreantongestioranddiscover bottleneckouter
link speeds. Our techniquesare completelypassive and require
only arrival timesof pacletsandflow identifiers.Our techniquefor
detectingsharedcongestioris baseduponthe obseration thatan
aggr@atedarrival tracefrom flows thatsharea bottleneckhasvery
differentstatisticsrom thosethatdo not sharea bottleneck.In par
ticular the entrogy of the inter-arrival timesis muchlower for ag-
gregatedtraffic sharingabottleneck Additionally this paperidenti-
fiesmodestructurein theinter-arrival distribution thatenableglis-
covery of thelink bandwidthsof multiple upstreanrouters.

We validatethesddeaswith extensive experimentoonawide-scale
Internettestbedandwith multiple ratecontrollingrouters.We find
thatthemethodcandetectary bottlenecksharingamonghundreds
of flows. The classificationerrors decreaseaxponentiallyin the
numberof tracedpaclets. Further the methodcopeswell with
heavy cross-trafic andtheerrorsdecreasexponentiallyasthefrac-
tion of crosstraffic at the bottleneckdecreasesUnlike prior pro-
posals,our techniquedoesnot inject ary new probetraffic, does
not requireary sendercooperation,and works with ary type of
traffic (UDP, TCP, or multicast),andawide variety of queuingdis-
ciplines. The methodis simpleandfastenoughto be real-timefor
ratesbeyond 10,000pacletspersecond.

1. INTRODUCTION

In this report! we shaw thatthe passie collectionof paclet inter-

arrival timescanreveal substantiainformation aboutthe conges-
tion statealong upstreanmpaths. We addresgwo particularprob-
lems: single-flav bottleneckcapacitiesand multi-flow bottleneck
sharing.The necessaryneasurementsanbe collectedcompletely
at endpoints. The appealof endpointmeasurementss that they

require no additionalinfrastructureand are accessiblgo a large
populationof users.

End-to-endneasurementsanbeactive or passie. Active methods
injectnew traffic (e.g.,probes)nto the network to inducea certain
responsewhich is thenusedto infer a performancemetric while
passie methodsobsere traffic alreadypresent.Despitetheir use-
fulness,active methodshave somedravbacks.Probedncreasehe
load on the network by someadditionaltraffic which could be on
the orderof hundredof kilobytes per experiment[4, 10, 30, 23].

ID. Katabi was supportecby ARPA Agreement]958100,under
contract~30602-00-20553C. Blake wassupportedinderDARPA
contractN66001-00-1-8933Theviews andconclusionsontained
hereinare thoseof the authorsand shouldnot be interpretedas
necessarilyepresentinghe official policy or endorsementgither
expressor implied of DARPA or theUS government.

Moreover, theactive traffic may perturbthenetwork, biastheensu-
ing results,andcomplicatethe analysig[26]. Our work focuseson
deducingasmuchaspossiblefrom passie measurementalone.

First,we devisemethodghatenableanendreceverto discoserthe
capacitiesof potentially multiple bottleneckstraversedby a flow
andtheir traversalorderfrom thearrival timesof thepacletsin the
flow. In particular we shav thatthedistribution of the pacletinter
arrival timesin aflow shavs afew commonpatternsyhichwe an-
alyzeandrelateto the bottlenecksalongthe path. Our resultscon-
firm thatthe commonpracticedor estimatingthe bottleneckband-
width usingthe minimuminter-arrivals of two consecutie paclets
in aflow [4, 10, 30] or the global modein the distribution of its
pacletinter-arrivals[23] canmale significanterrors.Nonetheless,
we shav how to adjustthe useof the inter-arrival PDF so thatthe
minimum capacityalongthe pathstill canbe extracted. Sincethis
methodrelies solely on processingf network-level traceswhich
are easily producibleat ary recever, it provides a general,non-
intrusive, andresourceefficient approacho learninginternetpath
characteristics.

Secondwe develop a novel passie techniguethat exploits the in-
formationembeddedn paclet inter-arrival distributionsto detect
flows thatsharethe samebottleneck.

Detectingsharedottlenecksisingend-to-endneasurements use-
ful for sharingcongestioninformation[12, 18], constructingthe
topology[28], and monitoring and dehugging the network. Per
forming this detectionusinga passie approachs highly desirable
becausét is resourceefficient(i.e., it doesnotgeneratgrobetraf-
fic) andis extremelygeneral(i.e., it makes no assumptiongbout
thetransportprotocolsor the queuingdiscipline).

Our approaclrelieson the obsenation that by clocking (i.e., pac-
ing) the paclets,abottleneckimposessomestructureon the prob-
ability distribution of theinter-arrival timesof pacletsthattraverse
it. This structureis lost when paclets that do not sharea bottle-
neckget mixed together The lossof structureshavs up asmore
randomnesén the inter-arrivals of the aggr@ate. Using entrogy

asourmeasuref randomnesgthelack of structure)we developa
passietechniquehatenablesinendreceveror apassie obserer
to detectflows that sharebottlenecksy minimizing the Réryi en-
tropy of the pacletinter-arrivals?

The papershaws that the developedpassie techniquecan detect
ary bottlenecksharingamonghundredsof flows andis efficient
andpracticalfor useoverthelnternet.In particular usingthe RON

2Reryi entropy is ageneralizedorm of Shannorentropy. Theex-
actdefinitionis in Section3.2



testbed[5], we shawv that our bottleneckdetectionmethodgives
correctresultsin extensie Internetexperimentsrun betweenl7
differentinternetsites.

Themethodrequiresarelatively smallnumbersf pacletsperflow.
In all caseswe find thaterrorsdecreasexponentiallyin the num-
ber of paclets. The exact numberof perflow paclets variesbe-
tweenl0and100pacletsdependingnthenumberof bottlenecks,
classifiedlows, andthetypeof errorsthatmatter TCPconnections
in thelnternetareoftenshort-lived. However, dependingntheap-
plication, the sourcefor a “flow” may be definedasan aggreate.
For example,if the focusis wide-areacongestioranalysis,it may
beacceptabléo definea sourceto betheentireLAN of thesender

Further the techniqueis robust in the presenceof heary cross-
traffic, thoughmore paclets may be required. The methodcanbe
appliedin real-time.On a commodityPC our implementatiorcan
classifysampleswith thousand®f pacletsin lessthanasecond.

The structureof this paperis asfollows. In Section2 we describe
the propertiesof inter-arrival distributionsfor singleflows anddis-

cussthe congestiorand bandwidthimplications. In Section3 we

exhibit the propertiesof multi-flow inter-arrival distributions and

describeour bottleneckdetectionalgorithm. In Section4 we eval-

uatethis algorithmin realisticexperimentalernvironments.Section
5 discussegossiblefuture avenuesandSection6 concludes.

2. INTERARRIV AL TIME STATISTICS

In this section,we studythe time betweenarrivals of consecutie
pacletsin aTCPflow andplot its probability distribution function
(PDF). Our objective is to relatethe characteristicof the inter-
arrival PDF to the congestiorcharacteristicef the pathtraversed
by the flow. In particular we shav how to interpretthe PDF to
discover the capacitieof potentiallytwo traversedbottlenecksto
discerntheir relative location,to assessheir degreeof congestion,
andto probethedistribution of traffic burstsizes.

Beforeproceedingo analyzethe PDF of the paclet inter-arrivals,
we clarify threeterms.We use“Minimum capacitylink” to referto
thelink thathasthe minimum absolutecapacityalonga path. We
use“Bottlened” for alink/routerwherea flow experiencesignif-
icantqueuing.A bottleneckis a congestedink; it is notnecessar
ily theminimumcapacitylink alonga path. Finally, the “Nominal
TransmissioTime(NTT)” of alink is thetimeit takesto transmita
1500bytepaclet overthelink. For example thenominaltransmis-
siontime of aT1 is around8 msecwhile thenominaltransmission
timeof al0MbpsEtherneis 1.2msec.(SeeTablel for areference
ontheNTT of variouslink technologies.)

2.1 MeasurementMethodology

We conductedour measurementever the RON testbed[5]. Ta-
ble 1 providesa completdist of the RON nodegheirlocationsand
theiraccessdinks. Notethe heterogeneityn the measuremerervi-
ronmentwhich waschoserto reflectthe heterogeneitpf Internet
paths. Five machinesare locatedat US universities,threeare at
Europearor AsianUniversities threearebroadbandiomelnternet
hostsconnectedy Cableor DSL, oneis locatedat a US ISP and
five are at variousUS corporations. The length of the measured
pathsis betweenl1 and30 hopsandthe minimum capacityalong
apathvariesbetweerD.384Mbpsand100Mbps.

Each experimentinvolved a 5 minute TCP download from one

Name Description Accesslink BW NTT
MS ResidenceCA DSL 0.384 | 31
Sightpath| .COMin MA T1 1.544 | 8
Mazu .COMin MA T1 1.544 | 8
NC ResidenceNC | CableModem | 2 31
M1MA ResidenceMA | CableModem | 10 1.2
Aros ISPin UT FractionalT3 | 12 1.0
CClI .COMinUT Ethernet 100 12
PDI .COMin CA Ethernet 3..100| N/A
CMU Pittskurg, PA Ethernet 10 1.2
Cornell Ithaca,NY Ethernet 100 A2
MIT CambridgeMA | Ethernet 100 12
NYU ManhattanNY | Ethernet 100 A2
ACIRI ACIRI, CA Ethernet 10 1.2
Utah U. of Utah,SLC | Ethernet 100 12
NL Vrije U,Holland | Ethernet 100 12
Lulea Sweden Ethernet 100 12
Korea Korea Ethernet 100 A2

Table1: The RON testbed.Bandwidths arein Mbps. NTTs are
in msec.The top block areordinary Inter nethosts. The bottom
block have additional Inter net2 connectivity.

RON nodeto anothe? The RON machinesun FreeBSD4.4 and
the TCPstackusesanMTU of 1500bytes.Thereceverrant cp-
dunp [2] to log microsecongrecisionarrival timesof the paclets
at the Ethernetcard. We computedthe time differencebetween
successie arrivals andhistogrammedhemto plot the PDF of the
pacletinter-arrival in the flow. We repeatedheseexperimentsto
cover periodsof congestior{e.g.,peakhourson weekdaysandpe-
riods of low traffic (e.g.,weelends). In all, we conductedover a
hundredexperimentsover severalmonths.

Below we presenta summaryresultof our findings. The appendix
presentsnoregraphgthatshav thepersistencef ourfindingsover
various Internet pathsthat differ in their link technologiespath
length, andwhetherthe end nodesare at universitiesor corpora-
tions.

2.2 PDFofPacketinter-Arri valin aTCP Flow

A few commonpatternsappeaiin the inter-arrival PDFsfor TCP
flows. Thesepatternsareillustratedin Figurel. In particular note
the multiple spikesof variousheights widths, locations,andspac-
ings. ThePDFmight shaw a singlespike suchasFigurela,aspike
bumpsuchasFigurelb, a spike train suchasFigurelc, or atrain
of spike bumpssuchasFigure 1d. The roughly equalspacingbe-
tweenthe spikesin a spike train andor a spike bumpis the spike
gap Theroughly equalspacingbetweenthe bumpsin atrain of
spike bumpsandis thebumpgap In thefollowing subsectionsye
shaw how to interpretthesePDFpatternsn termsof thecongestion
characteristicalongthe paththe pacletstook.

Below, we interpretthe patternsn Figurel andshav how aproper
understandingf the PDF allows oneto discover bottlenecklink
bandwidthsor multiple congestedouters.

Single Spike: In this case the flow traversesa bottleneckwith no
substantiatrosstraffic. As such,mostof the pacletsarrive back-
to-backat the recever. The spike in the PDF corresponddo the

3While our experimentsuse TCP, thesemethodsonly rely upon
large,relatively constansizepaclet transmissions.
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pair and the potential cross traffic burst at the downstream bottle-
neck. Depending on the size of the cross traffic burst, this time is

NTT of the bottleneck. This situation is depicted in Figure 1lawhere SCMetimes larger than 8 msec and sometimes smaller. That is why
the bottleneck is a T1. the PDF shows a bump centered at 8 msec.

Spike Bump: In this case, the flow traverses a low bandwidth bot- N€xt, we consider why the bump is composed of equally spaced
spikes. Close inspection of many collected PDFs (see the appendix

tleneck followed by a high bandwidth bottleneck. The two bot- !
tlenecks might be separated by a number of uncongested hops_for more) reveals that the spikes are always separated by the NTT

We will show that the spike bump is centered at the NTT of the of the high bandwidth bottleneck. Thus, the most common case
low bandwidth upstream bottleneck. Further, the gap between the VaS always for a cross traffic burst at the downstream bottleneck to

spikes is the NTT of the high bandwidth downstream bottleneck. P& & multiple of 1500 bytes. This is somewhat surprising. Though

Thus, a spike bump carries information about two traversed bottle- € traced TCP download used a 1500 byte MTU, the cross traf-
necks. fic packets have various sizes and reflect the variability of packet

sizes in the Internet. (The appendix shows similar graphs in which
We explain the spike bump using the example in Figure 1b. In this the downstream bott_ler_1eck_s are the access links at big un_ivc_ersities
experiment the flow traverses a a T1 bottleneck (the access link Where the cross traffic is fairly repr_esentatlve of cross traffic in the
at Sightpath), then a lightly congested 12 Mbps fractional T3 (the Intgrnet.) It thergfore seems possible that though. cross traffic has
access link at Aros). The packets leave the upstream bottleneckVarous packet sizes, the most common cross traffic bursts are mul-
spaced by its NTT (or some integer multiple of the NTT). In the tiPl€ of 1500 bytes.
experiment in Figure 1b, most of the packets left the upstream T1
with an inter-arrival of 8 msec. When any of these packets hits
the congested downstream high bandwidth bottleneck, the packe
is queued.

To confirm that this is not a peculiarity of the RON sites, we studied
tthe distribution of the cross traffic burst size from traces collected
by NLANR [1] at various monitored link4. Since we are inter-
ested in bursts of cross traffic at a bottleneck, we chose traces in

There are then 8 msec until our next packet arrives at the down- Which the average traffic rate exceeds two thirds of the capacity of

stream bottleneck. During this interval a number of cross traffic 47,ace file is from October 2001 and contains over 60,000 flows.
packets arrives and is queued before our packet. After 8 msec, ourit is at http://pma.nlanr.net/Traces/Traces/daily/20011005/COS-
second packet arrives at the higher bandwidth queue. Thus, thel002219707-1.tsh.gz




themonitoredlink. Figure2a,shavs the paclet sizeaccumulatre
distributionfor atypical trace.Thedistribution looks similar to the
onereportecby CAIDA [11]. In particular it shavs thatover 50%
of the pacletsarearound40 bytes;10% of the pacletsareaboutx
560bytes;and20%of the pacletsarearound1500bytes.

Figure 2b shaws the crosstraffic burst distribution for the same
trace. To computethe burstsize,we randomlypicked a TCP flow
andrecordedhe sizeof all traffic separatingeachpair of its pack-
ets. This is thereforepreciselythe traffic which, if subsequently
sentthrougha bottleneckink, would be clocked andcorvertedto
inter-arrival times. We repeatedhe procedureover a large num-
ber of active TCP flows andplottedthe PDF of theresultingcross
traffic bursts. The PDF revealsthe existenceof a strongmodeat
40 bytesandstrongmodesatinteger multiplesof 1500bytes. The
first modeat40 byteswould make thetracedpacletslook asif they
arrived back-to-back.The othermodeswould createinter-arrivals
spacedy oneand2 NTTs?

Spike Train: This caseis similar to the single spike caseexcept
that the traversedbottleneckis sharedwith a substantiaamount
of crosstraffic. Consequentlyit becomesnorelikely thata burst
of crosstraffic intervenesbetweenary pair of the tracedpaclets.
Similarly to the spike bump case the gapbetweerthe spikesis the
NTT of thebottleneckasillustratedin Figure2c. Notethoughthat
a spike train neednot alwayshave a decreasingpike length. In a
few of our experimentdt wasmorecommonfor thetracedpaclets
to beseparatetby a paclet of crosstraffic thanto be back-to-back.

A Train of Bumps: In this casetheflow first traversesalow band-
width upstreanbottlenecksharedvith asubstantiahmountof cross
traffic. As aresultthepacletinter-arrival atthe outputof this bot-

tleneckis a decreasingpike train asin Figurelb. Later, theflow

traversesalightly congestedhigh bandwidthbottleneck.Thequeu-
ing atthislatterbottleneckransformsevery spike in thespike train

into a spike bump creatinga train of bumps. The gapbetweerthe

spikesin asinglebumpis athe NTT of the high bandwidthdown-

streambottleneckwhile the gapbetweerthe bumpsis the NTT of

thelow bandwidthupstreanbottleneck For example,in Figure3d,

the upstreanctongestedink is a T1 andthe down streamlink is a

12 Mbpsfractional T3. Pacletsleave the congested'1 spacedyy

multiplesof 8 msec(i.e., thecrosstraffic burstsizeis either0 bytes
or 1500bytesor 3000bytes).However, whenthey reachthedown-

streamlink eachspike is transformednto a spike bumpwith agap

of 1 msec(theNTT of a12 Mbpslink).

2.3 Capacity Inference

The Internetliterature proposesa few approacheso discovering

the minimum capacityalonga path. The mostcommonapproach
is to usethe minimum inter-arrival of back-to-backpaclets [10,

21,4, 27]. Otherproposalsuggesthe mostcommoninter-arrival

(i.e., the global modein the distribution of paclet inter-arrivals).

[23]. Below, we shav thatbothapproachemaygive wrongresults
even in situationswherethe bottleneckbandwidthcan be easily
determinedrom a simpleexaminationof theinter-arrival PDF

Figure 3 (Mazu — Aros) shaws the inter-arrival PDF of a flow

5A Spike bump neednot be symmetric;Figure11in the appendix
shavs a non-symmetricspike bump. The non symmetrythereis
causedby severe congestionand high multiplexing at the down-
streamhigh bandwidthbottleneck. Hence,it was more likely to
spread pair of tracedpacletsthanto squeeze¢hem.
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Figure 3: The NTT of the minimum capacity link is the gap
betweenthe bumps. It shaws the link is a T1. Inferring the
minimum capacitylink fromthe minimum inter-arri val time or
the global mode of the PDF would have yielded wrongresults.

Receiver/
Observer

Figure 4: A simple clustering example; Sources S1 and S2
sharethe bottleneck B1, SourcesS3 and S4 and share the bot-
tleneck B2. The obsewer is co-locatedwith the recever. It
recevesall flows over the samelink yetwantsto cluster S1 and
S2 togetherand S3 and S4 together.

wherethe senderis behinda T1 andthe recever is behinda 12
Mbps fractional T3. The minimum capacityalongthe pathis the
T1link with anNTT of 8 msec.Howevertheminimuminter-arrival
is 1.7 msec.As such,a minimum capacityestimatorbasedon us-
ing the minimum inter-arrival would mistalenly concludethatthe
bottleneckbandwidthin 7 Mbps,muchmorethana T1 bandwidth.

The samefigure shawvs the global modeof the inter-arrival PDF
doesnotleada goodestimatorof the minimum capacityalongthe
path.In particular theglobalmodein thistracehappenst16 msec,
which would yield a 0.77 Mbps minimum capacitylink. However,

onecanseefrom the PDF thatthe minimum capacitylink isa T1

with an NTT of 8 msec. The 16 msecis the result of mary of

thetracedpacletsbeingseparatedby exactly one 1500 byte cross
traffic paclet.

Thus,ouranalysisof the pastfew sectionsshavs how to strengthen
previously proposedechniquesy computingthe bump andspike
gapsandrelatingthemto thetraversedbottlenecks.

3. DETECTING SHARED BOTTLENECKS

In the previous section we have developedanunderstandingf the
statisticsof pacletinter-arrivalsin the Internet.In this section,we
look at applyingthis understandingo multiple flows with the goal
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Figure 5: Packets inter-arrivals in various clusters of flows in Figure 4. The thick lines represent packets. They are numbered
according to the sender. The dotted lines emphasize the alignment in time. The x-axis is time. (a) and (b) are the outputdxif and
B2 respectively, and the correct clusters. (c) is the packet inter-arrivals as seen by the observer, which corresponds to putting all
sources in the same cluster. (d) is an example of an incorrect cluster, namel$2,53}.

of detecting bottleneck sharing. Particularly, we demonstrate that 3.1  Basic Idea
a passive observer watching the arrivals of packets at some link
can use the information embedded in the packet inter-arrivals to
cluster the flows into groups such that all flows in one group share
a common bottleneck.

We use the simple topology in Figure 4 to describe the intuition un-
derlying our approach to discriminating the sharing of a bottleneck.
In this scenario, four sources send to the same receilieandS2

are behind the same bottleneBd, and their total sending rate is
larger than the capacity @ 1. S3 andS4 share the bottleneck2

Before describing our approach to passive bottleneck dEteCtlon’and their total rate exceeds its capacity. The passive observer is co-

we note that detecting shared bottlenecks is a clustering IDrOblem’located with the receiver. It receives packets from all four sources

where the clustered objects are flows. A correct clustering groups on the same link vet wants to aroun together the sources that share
flows that share a bottleneck into the same cluster and produces Y group tog

one cluster per bottleneck. An incorrect clustering fails to group the same botleneck.
flows that share the bottleneck or groups flows that do not share
a bottleneck into the same cluster. We also note that for the pur-
pose of detecting bottleneck sharingflaw” is a stream of traced

IP packets with the same source identifier. The source identifier sent the inter-arrivals of packets in the correct clusté (52}

is defined by the user to fit the application of interest. It is usu- . . .

ally defined as the source IP-address in the packets, because ’[race%n.d {53’54})' Figure 5S¢ shows the packet inter-arrivals at the re-
) . ceiver. It is the overlay of the output @1 and B2. Note that 5¢c

packets with the same sender share the upstream part of their path:.

However, when NAT boxes [16] are suspected, the user may definedoes not show the constant mte_r-arnval observed in 5a and 5b. If
; e . the receiver succeeds in clustering the flows that share the bottle-
the source identifier to be the source IP-address and port pair.

neck, it ends up with two clusters in which the packet inter-arrival
is constant. If the receiver mistakenly groups the flé2sand.S3

Finally, we note that when a flow traverses more than one bottle- together, the resulting incorrect clus{ei2, 53} exhibits more ran-
neck, bottleneck sharing is resolved based on the most dominant 9 ' 9 '

bottleneck along the path. For example, consider two flows that dom packet inter-arrivals as illustrated in 5d.
have the same receiver. Each of these flows experiences sever
queuing at its sender access link. However, occasionally, both flows
share a transient queue at the receiver access link. In this case, th
flows do not share the same point of congestion and the clustering
technigue should not group them together.

Figure 5 shows the packets’ inter-arrivals at different points in our
simple topology. Figures 5a and 5b show the inter-arrival of packets
at the output ofB1 and B2 respectively. Furthermore, they repre-

ﬁ'hus, the inter-arrival of interleaved packets from flows that do not
hare a bottleneck is more random than the inter-arrival of inter-
eaved packets from flows that do share a bottleneck. We can fur-
ther confirm this intuition via the following experiment. We use an
MIT machine to download simultaneously a file from both MS and
Sightpath. The resulting two TCP flows experience bottlenecks at
the source access links, namely a T1 and a 0.38 Mbps DSL (very
little bandwidth compared to the 100 Mbps Ethernet to which the



0.5

(MS, Sightpath) -> MIT ——— (i.e.,limg_; Kq(z) = H(zx)). Rényi entropy shares many proper-
0.45 ties with Shannon entropy. Both entropies achieve their maximum
0.4 for uniform distributions. Neither depends upon the value where
0.35 the probability occurs. Also, for both entropies, the entropy of two
Z independent subsets of a data set is the sum of the individual en-
$ 0.3 | High Randomness :\OU_mm.
[a] .
2z 025 (High Entropy)
2 oo The effect of the Rényi entropy is to weight high probability values
& more than the problematic low probability incidental noise caused
015 by small sample effects. This is because raising probabilities on
0.1 (0,1) to high powers (i.e., largg) spreads them out, lifting peaks
0.05 and depressing tiny values. On the other hand, one should not
o choose very largg since then only the peaks would matter. We
0 5 10 15 20 25 choseq by assessing the end-to-end classification performance for
Inter-arrival (msec) { 0.08 msec bins } a few experiments. We found qf = 4 andg = 5 to yield good
results.

Figure 6: The PDF of the inter-arrivals over the aggregated
trace of unassociated flows. The heavy near-uniform distribu-
tion before the first peak and between the peaks is exactly the .
sort of smooth value-diversity measured by entropy. 3.3 Practical Issues
The simple scenarios in Figure 4 and Figure 5 are useful for ex-
o plaining the intuition underlying passive detection of shared bottle-
MIT machine is connected). Thus, they do not share a common pecks using entropy minimization, but they do not reveal the full
bottleneck. We log the arrival of the packets at MIT and plot the o mpjexity of the problem. In this section, we discuss the various
inter-arrival PDF of the aggregate trace. Figure 6 shows that the oo mpjications that arise in practice. Nonetheless we show that the
_u._u_u. of E_m incorrect o_.cmﬁﬁ exhibits an area of m_Bomﬁ uniform - main idea still holds; namely, that a bottleneck impodetectable
distribution before the first mode. Consider that since all of the gicture on the inter-arrivals of packets that traverse it. This struc-

inter-arrival PDF’s of Section 2 were single flows, thdg facto 16 is Jost when the packets get mixed with other packets that have
shared whatever bottlenecks they passed through. Comparing this, ot crossed the same bottleneck.

new aggregate trace PDF against the PDFs in Figure 1 we see that

the inter-arrival PDF’s for incorrectly clustered flows has substan- s number of issues could potentially confound the passive detec-

tially more randomness. A quantitative measure of this randomnessyjo, of shared bottlenecks with entropy metrics. First, many effects
should therefore discriminate between combinations of flows shar- 544 randomness to the PDFE of the inter-arrivals in a correct clus-

ing bottlenecks and combinations not sharing bottlenecks. ter, e.g. the dynamics of TCP congestion control. For example,
] when a relatively small number of TCPs share a Drop-Tail bottle-
3.2 Generalized Entropy neck, the bottleneck link might cycle between periods of severe

congestion with large number of drops followed by periods of un-

derutilization. During the periods of underutilization, packets do

not leave the bottleneck equally spaced. However, these periods of

underutilization are short or absent when the number of competing

flows is large. More importantly, the duration of such periods at a

H(z) = MU?. log, pi 1) bottleneck is relatively short compared to the duration of the peri-
3

We start with the definition of Shannon entropy, a traditional mea-
sure of the uncertainty (i.e., randomness) in a random variable. The
Shannon entropy{ (=) of a discrete random variablethat takes

on the valuev; with probability p; is defined as:

ods during which the bottleneck clocks the packets. Consequently,
the structure imposed on the packet arrival times by the bottleneck

In [20], the authors propose minimizing the Shannon entropy as ¢|ocking should dominate any randomness introduced by TCP dy-
a means for discriminating between bottleneck sharing and non- 5 ics” This is supported by our empirical findings.

sharing flows. They provide simulation results that show the va-

lidity of the approach in environments with low to moderate Cross- a second reason for randomness in the inter-arrival of packets in
traffic. We found this measure to do a reasonably good job of dis- 5 cqrrect cluster is the fact that routers downstream from a bottle-
criminating shared from non-shared flow aggregations. However, ok might build transient queues without being congested. For
the spiky nature of the _:Hmﬂ..w:?m_ distributions causes Eoc_m_.jm. lower capacity routers with very occasional queues the number of
Even for correct flow combinations, many new small probability packets and inter-arrivals affected is small (since these routers are
spikes can arise in the PDF as it simply fills out with more data p,; gefinition not the bottleneck). For higher capacity routers, single
points from the larger, combined trace. The Shannon entropy cangyiye structure may be transformed into a spike bump (or a spike
increase in this o:ocBmS:om.. even ﬁsocm:.ﬁ:.m small spikes are at gy4in may be transformed into a train of bumps), but the overall
place that makes them a continuation of existing PDF structure. entropy remains quite low compared to aggregations of unclocked

- L flows (see Figure 6).
To overcome this difficulty we propose the use of Renyi entropy

[29], a generalization of the Shannon entropy, defined as: Another issue that complicates passive detection of shared bottle-
1 a necks is that most of the traffic at the output of a bottleneck may
Kq(z) = 1-g¢ log, MUP @ end up being unobserved by the receiver. For example, in Figure 4,

if the packets sent b§1 do not cross the link monitored by the ob-
The parametey specifies the order of the Renyi entropy. In the server then the correct clustering{i§S2}, {S3 S4}}. In this case,
limitasq — 1 the Rényi entropy converges to the Shannon entropy though the clustefS2} does not exhibit a constant inter-arrival, the



observer is likely to discover the correct clustering. In particular, in both its old and new clusters. Simpler distance-based clustering

althaughthe cluster{.S2} has high entropy, any attempt to pt problems are already NP-complete complexity [17, 7].

in the same cluster with3 or S4 (or to putS3 and.S4 in different

clusters) is likely to further increase the entropy of the clustering. In To reduce the computational complexity, we use an iterative proce-

general, cross-traffic plays the role of noise on the signal of interest. dure which starts with an initial random clustering and iterates by

As more of the output traffic at bottlenecks becomes cross-traffic, moving a source from one cluster to another to obtain an incremen-

the information embedded in the inter-arrival PDF becomes more tal reduction in the Rényi entropy. Despite that this technique is not

immersed in noise. In Section 4.2, we investigate the robustness ofguaranteed to find the global minimum, our empirical results show

the algorithm against heavy cross-traffic. that it almost always yields the correct clustering, which is after all
the end goal.

Another potential obstacle comes from the fact that packets do not

have the same length; consequently, the time to transmit one packefThe optimization strategy is as follows:

over the bottleneck is not constant. In practice, this is not an issue. 1. Start with each flow in a cluster by itself.

To see why, recall that the distribution of packets inter-arrivals in 2. Pick a sources; in round-robin fashion.

the single TCP flows of Section 2 showed a considerable amount 3. Try movingsS; from its cluster to every other cluster.

of structure despite the fact that cross-traffic packets have various 4. Accept the move that most reduces the total cost.
sizes. 5. Repeat from step 2 as long as progress can be made.

3.4 |terative Passive ._.mo_\_sﬁcm for Umﬁmo::@ Finally, a few important points are worth noting. First, our cluster-
Shared Bottlenecks ing technique is designed so that the errors decrease as the num-

ber of flows increases. In particular, it is conceptually possible
To develop a clustering technique based on entropy-minimization, to cluster the flows that share the same bottleneck based on some
two design issues must be resolved. similarity metric defined over a pair of sources’ inter-arrival PDFs.
However, clustering based on similarity would cause the errors to
The first issue is choosing the function that should be minimized. accumulate as the number of flows increases. In contrast, since
Equation 2 shows how to compute the Renyi entropy of the inter- our algorithm computes the entropy of entire clusters (rather than
arrivals of packets in a cluster. However, it does not indicate how flows), the more sources there are the more packets we get and the
to combine the entropies of the various clusters into a quantity that easier it is to identify the structure resulting from bottleneck clock-
we can minimize. We call the quantity we want to minimize the ing. Having the error decreases with the number of flows is an im-

‘cost function’, which we define as follows: portant feature given that the complexity of the problem increases
N with the number of flows. Furthermore, clustering based on sim-
Cost = Y  ne Kq(pe) ®) ilarity may not distinguish between two different bottlenecks that

have the same bandwidth. For example, It may not differentiate
between two flows that share the same T1 link and two flows that
cross different T1 links.

c=1
wheren, is the number of packets in cluster K, is the Rényi

entropy ofp. of the inter-arrivals of the aggregate flowsdnand

N is the number of clusters. A second advantage of the entropy-based technique is its gener-

ality. In particular, the approach does not make any assumptions
about the bandwidth of the bottlenecks nor about their queuing
disciplines. It works when the different bottlenecks have exactly

the same capacities. It also works with Drop-Tail, RED, and other

work-conserving queue disciplines.

Weighting the entropy by the number of packets in the cluster is
important because it prevents the clustering technique from reduc-
ing the cost by collapsing all of the flows into the same cluster.
For example, there might be two correct clusters each having an
entropy of 2 bits. The entropy resulting from combing all flows

together could be 3 bits. Although, this latter entropy is larger than
the entropy of any of the correct clusters, without the weighting 4. CLUSTERING EVALUATION

factor the algorithm can reduce the entropy by putting all the flows \we used extensive Internet measurements to evaluate the effective-
in the same cluster, which would produce an incorrect outcome. ness of the passive techniques in detecting flows that crossed the
In general, a statistical understanding of the packet-weighting of same bottleneck. Although simulation-based evaluation is an op-
entropy in a global cost derives from the subsample additivity of tjon it does not reflect the variability encountered in the Internet.
both Shannon and Renyi entropy. That is, the entropy of two inde- By evaluating the technique in the environment it is meant to work
pendent subsets of a data set is the sum of the individual entropiesin we ensure that it works with the different link technologies, real

Thus the entropy of a whole aggregated sample of packets is simplycross traffic patterns, existing router policies, and various TCP im-
the entropy of the parent distribution multiplied by the number of plementations.

packets. This notion also makes it meaningful to sum the entropies
of each cluster to define the total entropy of the entire m:m:@mam:ﬁ.b 1 Measurement _/\_mﬁjogo_oov\

The second issue is the computational complexity of the optimiza- The basic problem in evaluating any bottleneck sharing detection
tion problem. The search space is exponential in the number of technique on real Internet traces is to verify that the output of the
flows. In particular, there ar€¥ /C! ways to groupF flows into algorithm matches bottleneck sharing in the network. In particular,
C clusters [15]. When the number of bottlenecks is unknown the we must design experiments in which we are confident about which
search space is even larger. A brute force search is infeasible for allflows share bottlenecks. We address this problem with two different
but a small number of flows and simple candidate topologies. The approaches that create three classes of sharing topologies.
optimization surface is also quite rough. E.g, changing the clus-

ter of a flow ofn packets can change up 2a inter-arrival times In the first approach, we exploit our knowledge of the topology of



the RON network to ensurethatthe flows sharecongestiorat spe-
cific bottlenecks.In particular we know the capacitiesof access
links connectingcertainRON nodesto the Internet. Thus,we can
createsxperimentsn whichthesenderareconnectedo 100Mbps
Ethernetsaandthereceveris behindaT1 link. By inspectingaggre-
gatethroughputachieredby sendersve canverify thattheflowsall
facedcongestiorat the T1 link connectingthe recever siteto the
broadernternet.

Similarly, we cancreateexperimentsn which eachof the senders
is behindalow bandwidthlink suchasaT1,aDSL, or acablemo-
dem, while therecever is connectedo a 100 Mbps Ethernetand
locatedat a big universitywith goodconnectiity. By checkingthe
throughpubf eachsendemagainsthecapacityof its accesdink, we
canensurethat eachsenderhasfacedcongestiorocally. We can
furtherconfirmlocal outboundcongestiorby checkingthatthe ag-
gregatethroughputof the senderss significantlylessthanthetyp-
ical bandwidthshareavailable on the recever accesdinks. Thus,
ourknowledgeof thetopologyandconnectiity of theRON testbed
provide us with a non-intrusve way to constructexperimentsthat
have reasonablyinambiguousutcomes.

Our seconcapproactor creatingexperimentswith controlledout-
comesrelies on the useof the Click router[22]. Click wasde-
signedto allow flexible reconfigurationpacletre-writing, andtraf-
fic shaping.In particular we uselP masqueradingndbandwidth
throttling to very closely emulatethe behaior of a pair of real
routerswith diminishedcapacity The IP masqueradinge-writes
paclets so that TCP connectionsan be transparentlyestablished
betweerarbitraryRON hostseventhoughtheroutesof pacletsare
pinnedto go throughthe Click routersunderour control. This ar
rangemenensuresinambiguoudottlenecksharing.

Using the methodologydescribedabove, we conductechundreds
differentinternetexperiments Eachoneinvolvesanumberof TCP
sendersstreamingdatato the samerecever. Using tcpdump,we
recordarrival timesattherecever andfeedthelog filesto our clus-
teringprogram.

4.2 Clustering Accuracy

Thereis no standardnethodfor evaluatingtheaccurag of cluster
ing algorithms[15]. To evaluateour technique we usethreeerror
metricsthatwe judgeusefulto the specificapplicationof the bot-
tleneckdetectiontechnique.

Thefirst metricis the probability of any error, which providesthe
mostconserative view of the accurag. For ary particularbottle-
necksharingscenariothe probability of ary erroris computedby
clusteringmultiple differentdatasetsandtaking the percentag®f

outcomeghatdo notcompletelymatchthecorrectanswer Thedif-

ficulty with usingthis metricalonearisesfrom thefactthatnotall

clusteringerrorsareequialent. For example,assumehatwe have
50flowsthatsharehesamebottleneck A clusteringtechniquethat
puts49 flows in the sameclusterandoneflow in a differentcluster
is definitely betterthanatechniquethat putseachof thefifty flows
in its own cluster Yet, both outputswould be treatedthe sameif

we usethe probability of arny errorasour metric of accurag.

The secondmetricis the probability of creatingincorrectclusters
wheresomeof the flows do not sharethe samebottleneck. We
call this metricthe probability of falsegrouping This metricmea-
suresthe correctnessof the algorithm. For example, if the user

Send- | Bottle- | Configuration P[Any | Pkts/
ers necks Error] | flow
7 1 Sharectong.at M1IMA 2% 90
10 1 Sharedtong.atMS 0% 90
10 1 Sharecdtong. at Sightpath 1% 65
10 1 Sharedtong. at Mazu 1% 60
11 1 Sharedtong. at Aros 0% 50
11 1 Sharedtong.at CMU 5% 90
6 6 Separateong.;RecvatMIT 7% 25
6 6 Separateong.;Recvat CCl 1% 30
6 6 Separateong.;RecvatCornell | 2% 35
6 6 Separateong.;RecvatNYU 0% 10
12 2 Click Bottlenecks 0% 50
24 2 Click Bottlenecks 0% 60
48 2 Click Bottlenecks 1% ~100
88 2 Click Bottlenecks 0% ~100
102 2 Click Bottlenecks 2% ~100
170 2 Click Bottlenecks 2% ~100
88 2 Click; 50%crosstraffic 3% ~200
40 2 Click; 75%crosstraffic 1% ~800
25 2 Click; 85%crosstraffic 8% 2000

Table 2: Efficiency of the iterati ve technique. Summary results
showing that the technique eventually convergesto almost per-
fect accuracy even for scenarioswith large number of senders
and fairly complexbottleneck sharing.

wantsto identify theflowsthattraversethesamebottlenecko share
their congestiorinformation,thenthe probability of falsegrouping
would tell theuserhow lik ely thetechniquds to produceincorrect
resultsthatwould leadto thewrongsharingof congestioninforma-
tion. For ary particularbottlenecksharingscenariothe probability
of falsegroupingis computedoy clusteringmultiple differentdata
setsandtakingthefractionof clustersghatcontainflowsthatdo not
sharea bottleneck.

Thethird metricis the probability that the algorithmmight fail in

groupingsomeflows that sharethe bottleneck which we call the
probability of falsesepaation. This metricmeasuresheefficiency
of thealgorithm. For example,considera userwho is interestedn

sharingcongestiorinformation betweerflows that crossthe same
bottleneck.Thenthe betterthetechniquds in collapsingthe flows

that sharethe bottleneckinto the samecluster the morethe user
can sharetheir congestionstateand the lessthe total numberof

statesmaintainedby the system. To find the probability of false
separatiorfor a particularbottlenecksharingscenariowe run the
clusteringtechniqueover multiple differentdatasets. The prob-
ability of falseseparationis the differencebetweerthe numberof

generatedlustersandthecorrectnumberof clustersdividedby the
numberof generatedlusters.

Table 2 shaws the efficiengy of the iterative clusteringtechnique
in dealingwith large numbersof sourcesandfairly complex bot-

tlenecksharing. Thetable hasthreeblocks. Experimentgeported
in the first and secondblocks do not usethe Click router The
crosstraffic in theseexperimentsis uncontrolled. Experimentsn

the third andfourth blocksare controlledusingtwo Click routers.
The probability of ary erroris computedover 100 differentsam-
ples.Thetableshaws thatalthoughtheiterative techniquedoesnot
try all possiblecombinationsof sourcesandbottlenecksit always
corvergesto almostperfectresult. This convegencehappengven
whenthe numberof sourceds 170 andthe searchspaces on the
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fic increases or the clustering experiment becomes more complex 0.01 b e v 1
(i.e., more flows or more cross traffic) more packets per flow are U
needed for correct clustering. Below, we examine these aspects in S b
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First, we address the number of packets per flow necessary for cor- (b) Observed Traffic Fraction (800 pkt/flow)
rect clustering. Figure 7a illustrates the probability of any error as Figure 8: Error probabilities vs. observed traffic fraction. The
a function of the average number of packets from each flow. The first graph shows the error rate rapidly vanishes when more
figure shows two representative graphs: The first graph, labeledthan 15% of the bottleneck traffic is observed. The second is a
“CMU Shared”, is for the case where all senders share the samelog-scale graph which shows the trend is consistent with expo-
bottleneck; the second graph, “labeled NYU Unshared”, is for the nential improvement in traffic fraction. (The scale on the x-axis
case where each sender has a separate bottleneck. The probabiis reduced since the error reaches zero for larger fractions of
ity is computed over 500 different samples. The figure shows that observed traffic)
a few dozen packets are enough for correct clustering. Figure 7b
shows trend line on the log scale. It indicates that although the
absolute number of packets required for correct clustering differs common cross traffic situations.
from one type of experiment to the next, the error probability dies
off exponentially. To discover the behavior of both false grouping and false separation
under heavy cross traffic, we funnel a large number of TCP flows
Note that though the data plotted in Figure 7 is the probability from many senders through a pair of Click routers and back out to
of any error, the nature of the two types of “natural” experiments a receiver across the Internet. We considered various cross-traffic
makes the them representative of our two other types of error met- fractions by censoring various subsets of flows from our data set.
ric. The upper curve is the probability of any error for the case This effectively gives the algorithm exactly the data it would have
where all flows share a bottleneck. In that case the only type of er- had if the censored flows had been diverted before reaching the
ror is false separation. The lower curve, barely visible on the same receiver. We ran the algorithm on many random censorings to get
scale, is the probability of any error for the case where no flows reasonable failure rate estimates.
share bottlenecks. In that case the only type of possible error is
false grouping. The extremely fast convergence of false grouping Figure 8a shows the clustering error as a function of the fraction
errors is a highly desirable property of our technique. This is be- of the bottleneck link traffic seen at the observer. The probabilities
cause grouping senders that do not share the bottleneck together isre computed by taking the average of 1000 different measurements
a more severe error than failing to recognize senders that share dor sample sizes of on average 800 packets/flow. The graph shows
bottleneck. that the clustering technique provides perfect clustering as long as
at least 20% of traffic crossing the bottleneck can be observed. As
Next, we consider the robustness of the technique against heavyobserved traffic drops below 20% of the total bottleneck traffic, the
cross-traffic. The experiments in Table 2 were run during mid- technique begins to make minor false separation errors (i.e., occa-
day. As such, they experienced natural cross traffic along their path.sionally separating flows that share the same bottleneck but never
Given that many of the sites involved in these experiments are largegrouping flows that do not share the bottleneck). False grouping
universities with continuous Internet activity, we argue that the re- errors do not become an issue until over 95% of the traffic goes un-
sults in Table 2 are representative of the technique’s behavior underobserved. The straight trend line on the semi-log plot in Figure 8b
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Figure 9: Samplesize convergencefor 25% cross-traffic. The

first graph shows how falsegrouping rates are only marginally

worse than when 100% of traffic can be obsewed. The second
graph shawsthat substantialamountsof hidden traffic doesnot

destroy the exponential corvergence.

shaws that the probability of error decreasesxponentiallyasthe
fractionof obseredtraffic increases.

Figure9 shawvsthatthenumberof pacletsperflow requiredfor cor-
rectclusteringwhen75% of thebottleneckdtraffic is crosstraffic.
Notethatthis numberdecreaseasthe fraction of obsered bottle-
necktraffic increasesOnly afew hundredpacletsperflow arere-
quiredfor correctclassificationgvenwhen75% of the bottleneck
traffic is unobsered crosstraffic.

A final noteis thatthesimplicity of thealgorithmlendsitself to effi-

cientsoftwareor hardwareimplementationsAll theprogrammust
do is iterateover the aggr@atedarrival time trace of a potential
flow combinationsndbin successie differencesWhile onemight

imaginean O(Npgcket 10g Npacket) algorithmbasedon sorting
the arrival times of potentialcombinationsit is actually possible
to memgethearrivalsin O(Npacket 10og Nyiow) time sincethein-

dividual arrival lists canbe pre-sortedust once. The histograms
canbe keptcompactandin fastmemoryandthe entropiescanbe
computedalmostentirely with lookup tablesfor logarithmssince
the rangeof bin countsis relatively small for reasonablesample
sizes.Ourimplementatiorcanclustersampleswith 1,000paclets
in under10 msecon commodityPC hardware. This translateso

over 10,000paclets/sec.

The principal scalingissuefor large numbersof flows is thelarger
numberof total paclets involved and the much larger numberof
combinationghat mustbe tried. Even so, our algorithmsuccess-
fully classifiestraceswith tensof thousandf paclets and 170
flowsin underasecondf CPUtime.

5. FUTURE WORK

This work lendsitself to extensionin several directions.Oneopen
issueis determiningcongestionsharingin a multiple bottleneck
scenario. Namely sharingor not sharingis more than simply a

binary variable. Considertwo flows that sharecongestionat the

accesdink of their commonrecever; yet, one of themcrossesa

separateupstreambottleneck. In sucha scenario,somekind of

hierarchicalcongestiorclassificatioris desirable.

Anotherdirectionfor future work is a moredetailedinvestigation
of the shapeof theinter-arrival distributions. In particular the en-

velopesformedby thetips of the spikesin Figurel traceout very

regular curves. It would be informative to fit the spike train and
the spike bumpto well-known distributionsandanalysethe shape
of theirtails. This mayleadto a betterunderstandingf the distri-

bution of the crosstraffic burst. Furthermorefinding goodmodels
for theinter-arrival distributionin a flow would improve the ability

to clusterflows that sharethe bottlenecks.Particularly, if a cata-
log of commonshapesds developedthenit might be possibleto

embedahisin aclusteringalgorithmto improve recognitionof cor

rectclusterings.In principleit shouldalsobe possibleto improve

recognitionof incorrectclusterings As Figure6 shavs, thenoisein

theinter-arrival PDFdueto unsynchronizegacletsdoesnotoccur
justarywhere.

6. RELATED WORK

Much prior work hasstudiedlearninginternetpathcharacteristics
from endpointmeasurements[1@0, 4, 27, 28, 30,12, 18, 13, 25,
8, 19, 24]. The objective of thesemeasurementsould be bot-
tleneckbandwidthdetection[4,28, 14, 13, 23], topology discov-
ery[28,12, 18], detectingthe stateof congestiorandthe available
bandwidth[9,12, 18, 25, 8, 19, 24], or simply understandinghe
network andthetraffic patterns[6].

For example,pathcharand cprobeare usefultools for discovering
the bandwidthavailable along a path. However, they consumea
large amountof network resources.In particular pathchamgener
atesatleastl0Kbytesof probetraffic perhopandcprobegenerates
5 Kbytesof probetraffic perhop[30]. Theaccurag of thesetools
is acceptabldor low bandwidthlinks (lessthan10 Mb/s), yet they
becomesignificantlyinaccuratdor high bandwidthlinks [14].

ThePacletBunchMode (PBM) estimatesheraw bottleneckband-
width of aconnectiorby looking for modalitiesin thetiming struc-
turesof groupsof back-to-baclpaclets. Althoughmorerobustthan
pathcharit requiresinformationfrom boththe senderandrecever
sides[27].

Traceroute[3]is a widely usedtool for learningthe intermediate
routersandthe lateny alonga path. It requiresthatintermediate
routersreply to ICMP echomessages featurethat might be dis-
ableddueto securityconcerns.

The authorsin [9] proposethe useof multicastloss-correlatiorto
infer the lossratesover individual links alonga path. Their simu-
lation shaws thatthe estimatortracksthe changesn thelossrate.
However, the proposedapproachsendgprobepacletsinto the net-
work andrequiresthe existenceof a multicastservice.

The authorsof [28] useloss correlationamongthe receversin a

multicastgroupto infer thelogical shapeof a multicasttree. Their

approachdoesnot inject probetraffic in the network; however, its

relianceonlossinformationlimits its useto significantlylong mul-

ticast sessions. The authorsin [25] useloss pairsto infer some
characteristic®f input buffering behaior suchas RED parame-
ters. While this work usedactive probesthey note that their ap-
proachmightbeusedin a passie context.

Paclet pair dispersiorandbandwidthhistogramshave beenexam-
inedin [13] towardthe endof bandwidthestimation.The focusof
the analysistherewasfixed bin-width bandwidthhistograms.We



foundhowever thatthereis alsomuchsignificantinformationto be
gleanedrom the equalspacingsn inter-arrival time distributions.

Recently thereweretwo proposalgor detectingwhetherpairs of
flows sharethe samebottleneck[12, 18]. Despitethe usefulness
of theseproposalsn simplecircumstanceghey have a numberof
practicaldisadantageghat limit applicability Sincethey gener
ateprobetraffic, bothproposalsarenon-passie andrequiresender
cooperation. Additionally they male strongerqueuingdiscipline
assumptions.Also, theseproposalsdo not generalizetheir tech-
niguesto more than two flows while ours handlesmary. Thus,
the clusteringproblemthatwe addressn this paperis intrinsically
harderthanthe problemaddressetly theseproposals.

7. CONCLUSION

This paperdemonstratesffective, efficient, androbusttechniques
for inferringinterestingoropertieof networksseerby pacletflows.
The only input datarequiredis a completelypassie collection of
time stampf pacletarrivalsatendnodesor atintermediatenon-
itors.

We demonstratedhat correctinterpretationof inter-arrival PDFs
allowsinferenceaboutthebandwidthanddegreeof multiplexing at
potentiallymultiple bottlenecKinks. In the spike bump andspike
train caseswe relateinter-arrival distributionsto the distributions
of crosstraffic burstsizes. Finally we shav how to correctlyin-
fer bottleneckcapacityfrom the locationsand gapsof spikesand
bumpsin theinter-arrival PDF

Higherorderstatisticsdefinedon thearrival timesof combinations
of flowsallow sensite detectiorof bottlenecksharing.We demon-
stratethatthis detectioncanbebothfastandreliablegivensmallto
moderateamountsof dataevenin thefaceof substantiafractions
of unobsered crosstraffic atthe bottleneckroutersin question.

We validatedthesetechniqueswith extensive experimentson the
RON testbedandwith controlledexperimentausinga pair of Click
routers.We foundthatthe methodcandetectary bottleneckshar
ing amonghundredsf flows. Nearperfectsharingdetectioneffi-
cieng requiredon the orderof 100 pacletsperflow. The classifi-
cationerrorsdecreasexponentiallyin the numberof tracedpack-
ets. Further themethodcopeswell with heavy cross-trafic andthe
errorsdecreasexponentiallyasthe fraction of crosstraffic at the
bottleneckdecreases.
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Figure 12: Here we compare our classificationperformanceus-
ing Shannonand fifth order Renyientropyfor 25% crosstraffic
with a pair of Click routers. The y-axisis a log scale.Note the
impr oved statistical efficiencyat small samplesizes.
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Figure 10: Several additional experiments. In each experiment, we choose a pair of RON nodes and send a TCP flow from the
first node to the second, record the arrival times and construct the inter-arrival PDF of the forward path. Then, we start a second
TCP flow from the second node to the first one, log the arrival times and construct the inter-arrival PDF of the reverse path. Using
the reverse path is a device to construct a comparison case where it is likely that a bottleneck whose bandwidth is the same as the
access link of the forward path. In all experiments the inter-arrival PDF of flows traversing a high bandwidth access link then a low
bandwidth access link shows a single spike at the NTT of the low bandwidth link. On the other hand, the inter-arrival PDF of flows
that first traverse a low bandwidth access link then a high bandwidth access link shows a bump of spikes whose local mode (tallest
spike in the bump) coincides with the NTT of the low bandwidth link and with gap that coincide with the NTT of the high bandwidth

link.
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Figure 11: Here we exhibit the effect of congestion at the downstream high bandwidth bottleneck.



