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Abstract. We present a fixed parameter algorithm that constructively solves the k-dominating set

problem on graphs excluding one of the K5 or K3,3 as a minor in time O(36
√

34knO(1)). In fact, we
present our algorithm for any H-minor-free graph where H is a single-crossing graph (can be drawn
on the plane with at most one crossing) and obtain the algorithm for K3,3(K5)-minor-free graphs as a
special case. As a consequence, we extend our results to several other problems such as vertex cover,
edge dominating set, independent set, clique-transversal set, kernels in digraphs, feedback vertex
set and a series of vertex removal problems. Our work generalizes and extends the recent result of
exponential speedup in designing fixed-parameter algorithms on planar graphs due to Alber et al. to
other (non-planar) classes of graphs.

1 Introduction

According to a survey paper published in year 1998 [HHS98], there are more than 200 research pa-

pers published on solving domination-like problems on graphs. Since this problem is very hard and

NP-complete even for special kinds of graphs such as planar graphs, much attention has focused

on solving this problem on a more restricted class of graphs. It is well known that this problem

can be solved on trees [CGH75] or even the generalization of trees, graphs of bounded treewidth

[TP93]. The approximability of the dominating set problem has received considerable attention,

but it is not known and it is not believed that this problem has constant factor approximation

algorithms on general graphs [ACG+99].

Downey and Fellows [DF99] introduced a new concept to handle NP-hardness, namely fixed

parameter tractability. Unfortunately, according to this theory, it is very unlikely that the k-

dominating set problem has a fixed parameter algorithm for general graphs. In contrast, this

problem is fixed parameter tractable on planar graphs. The first algorithm for planar k-dominating

set was claimed in the book of Downey and Fellows [DF99]. Recently, Alber et al. [ABFN00]

demonstrated a solution to the planar k-dominating set in time O(36
√

34kn). Indeed, this result

was the first non-trivial result for the parameterized version of an NP-hard problem where the

exponent of the exponential term grows sublinearly in the parameter. One of the aims of this

paper is to generalize this result to non-planar classes of graphs.

A graph G is H-minor-free if H cannot be obtained from any subgraph of G by contracting

edges. A graph is called a single-crossing graph if it can be drawn on the plane with at most
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one crossing. Similar to the approach of Alber et al., we prove that for a single-crossing graph

H, the treewidth of any H-minor-free graph G having a k-dominating set is bounded by O(
√
k).

We note that planar graphs are both K3,3-minor-free and K5-minor-free, where K3,3 and K5 are

both single-crossing graphs. As a result, we generalize current exponential speedup in designing

fixed-parameter algorithms on planar graphs to other kinds of graphs and show how we can solve

the k-dominating set problem on K3,3-minor-free orK5-minor-free graphs in time O(3
6
√

34knO(1)).

The genesis of our results lies in a result of Hajiaghayi et al. [HNRT01] on obtaining the local

treewidth of the aforementioned class of graphs.

Using the solution for the k-dominating set problem on planar graphs, Kloks et al. [KC00,CKL01,KLL01]

[GKL01] and Alber et al. [ABFN00,AFN01] obtained exponential speedup in solving other prob-

lems such as vertex cover, independent set, clique-transversal set, kernels in digraph and feedback

vertex set on planar graphs. In this paper also we show how our results can be extended to these

problems and many other problems such as variants of dominating set, edge dominating set and

a series of vertex removal problems (see Section 6 for details).

This paper is organized as follows. First, we introduce the terminology used throughout the

paper, and formally define tree decompositions, treewidth and fixed parameter tractability in

Section 2. In Section 3, we introduce the concept of clique-sum graphs, we prove two general

theorems concerning the construction of tree decompositions of width O(
√
k) for these graphs

and finally we consider the design of fast fixed parameter algorithms for them. In Section 4 we

apply our general result on the k-dominating set problem and in Section 5 we describe how this

result should be used in order to derive fast fixed parameter algorithms for a series of parameters.

In Section 6, we prove some graph theoretic results that provide a framework for designing fixed

parameter algorithms for a series of vertex removal problems. In Section 7, we give some further

extensions of our results and in Section 8 we end with some conclusions and open problems.

2 Background

2.1 Preliminaries

We assume the reader is familiar with general concepts of graph theory such as (un)directed

graphs, trees and planar graphs. The reader is referred to standard references for appropriate

background [BM76]. In addition, for exact definitions of various NP-hard graph-theoretic problems

in this paper, the reader is referred to Garey and Johnson’s book on computers and intractability

[GJ79].

Our graph terminology is as follows. All graphs are finite, simple and undirected, unless

indicated otherwise. A graph G is represented by G = (V,E), where V (or V (G)) is the set of

vertices and E (or E(G)) is the set of edges. We denote an edge e in a graph G between u and

v by {u, v}. We define n to be the number of vertices of a graph when it is clear from context.
We define the r-neighborhood of a set S ⊆ V (G), denoted by N r

G(S), to be the set of vertices

at distance at most r from at least one vertex of S ⊆ V (G); if S = {v} we simply use the
notation N r

G(v). The union of two disjoint graphs G1 and G2, G1 ∪ G2, is a graph G such that

V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
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For generalizations of algorithms on undirected graphs to directed graphs, we consider un-

derlying graphs of directed graphs. The underlying graph of a directed graph H = (V,E) is

the undirected graph G = (V,E) in which V (G) = V (H) and {u, v} ∈ E(G) if and only if

(u, v) ∈ E(H) or (v, u) ∈ E(H).
One way of describing classes of graphs is by using minors, introduced below.

Definition 1. Contracting an edge e = {u, v} is the operation of replacing both u and v by a
single vertex w whose neighbors are all vertices that were neighbors of u or v, except u and v

themselves. A graph G is a minor of a graph H if H can be obtained from a subgraph of G by

contracting edges. A graph class C is a minor-closed class if any minor of any graph in C is also
a member of C. A minor-closed graph class C is H-minor-free if H 6∈ C.

For example, a planar graph is a graph excluding both K3,3 and K5 as minors.

2.2 Treewidth

The notion of treewidth was introduced by Robertson and Seymour [RS86] and plays an important

role in their fundamental work on graph minors. To define this notion, first we consider the

representation of a graph as a tree, which is the basis of our algorithms in this paper.

Definition 2 ([RS86]). A tree decomposition of a graph G = (V,E), denoted by TD(G), is a

pair (χ, T ) in which T = (I, F ) is a tree and χ = {χi|i ∈ I} is a family of subsets of V (G) such
that:

1.
⋃

i∈I χi = V ;

2. for each edge e = {u, v} ∈ E there exists an i ∈ I such that both u and v belong to χi; and

3. for all v ∈ V , the set of nodes {i ∈ I|v ∈ χi} forms a connected subtree of T .

To distinguish between vertices of the original graph G and vertices of T in TD(G), we call

vertices of T nodes and their corresponding χi’s bags. The maximum size of a bag in TD(G)

minus one is called the width of the tree decomposition. The treewidth of a graph G (tw(G)) is

the minimum width over all possible tree decompositions of G.

Many NP-complete problems have linear-time or polynomial-time algorithms when they are

restricted to graphs of bounded treewidth. There are a few techniques for obtaining such algo-

rithms. The main technique is called computing tables of characterizations of partial solutions.

This technique is a general dynamic programming approach, first introduced by Arnborg and

Proskurowski [AP89]. Bodlaender [Bod97] described a better presentation of this technique. Other

approaches applicable for solving problems on graphs of bounded treewidth are graph reduction

[ACPS93,BdF96] and describing the problems in certain types of logic [ALS88,Cou90].

2.3 Fixed parameter tractability

Developing practical algorithms for NP-hard problems is an important issue. Recently, Downey

and Fellows [DF99] introduced a new approach to cope with this NP-hardness, namely fixed
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parameter tractability. For many NP-complete problems, the inherent combinatorial explosion

is often due to a certain part of a problem, namely a parameter. The parameter is often an

integer and small in practice. The running times of simple algorithms may be exponential in the

parameter but polynomial in the problem size. For example, it has been shown that k-vertex

cover has an algorithm with running time O(kn + 1.271k) [CKJ99] and hence this problem is

fixed parameter tractable.

Definition 3 ([DF99]). A parameterized problem L ⊂ Σ∗ × N is fixed parameter tractable

(FPT) if there is an algorithm that correctly decides, for input (x, k) ∈ Σ∗×N, whether (x, k) ∈ L
in time f(k)nc, where n is the size of the main part of the input x, |x| = n, k is a parameter

(usually an integer), c is a constant independent of k, and f is an arbitrary function.

One of the interesting and important properties of fixed parameter tractability is that the

definition is unchanged if we replace time f(k)nc by time f ′(k)+nc
′
in the above definition. More

precisely:

Lemma 1. Suppose an algorithm A runs in time O(f(k)nc) for a parameterized problem (on

graphs) with parameter k for some function f(k). We can obtain an algorithm A′ for the problem

which takes O(g(k) + nc+1) time to execute for some function g(k).

Proof. First we compute a table T containing the solutions for all graphs of size at most f(k).

Now if our input graph has n ≤ f(k) vertices then we look up the solution in table T , otherwise,

i.e. n > f(k), we run algorithm A and obtain the solution in O(f(k)nc) = O(nc+1). ut

3 General results on clique-sum graphs

In this section we will define the general framework of our results. A basic tool will be the graph

summation operation that will play an important role as it did in the work due to Hajiaghayi et

al. [HNRT01,Haj01] to obtain the local treewidth of clique-sum graphs, defined formally below.

Definition 4. Suppose G1 and G2 are graphs with disjoint vertex-sets and k ≥ 0 is an integer.
For i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G

′
i (i = 1, 2) be obtained from Gi

by deleting some (possibly no) edges from Gi[Wi] with both endpoints in Wi. Consider a bijection

h : W1 → W2. We define a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by

G = G1 ⊕G2, to be the graph obtained from the union of G
′
1 and G

′
2 by identifying w with h(w)

for all w ∈W1. The images of the vertices of W1 and W2 in G1 ⊕k G2 form the join set.

In the rest of this section, when we refer to a vertex v of G in G1 or G2, we mean the

corresponding vertex of v in G1 or G2 (or both). It is worth mentioning that ⊕ is not a well-
defined operator and it can have a set of possible results. The reader is referred to Figure 1 to

see an example of a 5-sum operation.

Lemma 2 shows how the treewidth changes when we apply a graph summation operation.

Lemma 2. For any two graphs G and H, tw(G⊕H) ≤ max{tw(G), tw(H)}.
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G1

W1

|W1| = k

G2

|W2| = k

W2

h

G1 G2

join set

G = G1 ⊕G2

Fig. 1. Example of 5-sum of two graphs

Proof. Let W be the set of vertices of G and H identified during the ⊕ operation. Since W is

a clique in G, in every tree decomposition of G, there exists a node α such that W is a subset

of χα [BM93]. Similarly, the same is true for W and a node α′ of each tree decomposition of H.

Hence, we can construct a tree decomposition of G and a tree decomposition of H and add an

edge between α and α′. ut

Let s be an integer where 0 ≤ s ≤ 3 and C be a finite set of graphs. We say that a graph class
G is a clique-sum class if any of its graphs can be constructed after a sequence of i-sums (i ≤ s)

applied to planar graphs and the graphs in C. We call a graph clique-sum if it is a member of a
clique-sum class. We call the pair (C, s) defining pair of G and we call the maximum treewidth of
the graphs in C base of G and base of the graphs in G. A series of k-sums (not necessarily unique)
which generate a clique-sum graph G are called a set of clique-sum operations of G.

According to the result of [RS93], if G is the class of graphs excluding a single crossing graph
(can be drawn on the plane with at most one crossing) H then G is a clique-sum class with

defining pair (C, s) where the base of G is bounded by a constant cH depending only to H. In
particular, if H = K3,3, the defining pair is ({K5}, 2) and cH = 4 [Wag37] and if H = K5 then

the defining pair is ({V8}, 3) and cH = 4 [Wag37]. Here by V8 we mean the graph obtained from

a cycle of length eight by joining each pair of diagonally opposite vertices by an edge. For more

results on clique-sum classes see [Die89].

From the definition of clique-sum graphs, one can observe that for any clique-sum graph G

which excludes a single crossing graph H as a minor, any minor G′ of G is also a clique-sum

graph which excludes the same graph H as a minor

We call a clique-sum graph class G α-recognizable if there exists an algorithm that for any

graph G ∈ G outputs in O(nα) time a sequence of clique sums of graphs of total size O(|V (G)|)
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that constructs G. We call a graph α-recognizable if it belongs in some α-recognizable clique-sum

graph class.

Theorem 1 ([KM92]). The class of K5-minor-free graphs is a 2-recognizable clique-sum class.

Asano presented in [Asa85] an O(n) time algorithm for finding a set of clique-sum operations

of a graph with no subgraph homomorphic to K3,3. As for a cubic graph H (degree of each vertex

is at most three), H is a minor of G if and only if G contains a subgraph homeomorphic to H,

we have:

Theorem 2 ([Asa85]). The class of K3,3-minor-free graphs is a 1-recognizable clique-sum class.

A parameterized graph class (or just graph parameter) is a family F of classes {Fi, i ≥ 0}
where

⋃

i≥0Fi is the set of all the graphs and for any i ≥ 0 , Fi ⊆ Fi+1. Given two parameterized

graph classes F1 and F2 and a natural number γ ≥ 1 we say that F 1 4γ F2 if for any i ≥ 0 ,
F1
i ⊆ F2

γ·i.

In the rest of this paper, we will identify a parameterized problem with the parameterized

graph class corresponding to its “yes” instances.

Theorem 3. Let G be an α-recognizable clique-sum graph class with base c and let F be a pa-
rameterized graph class. In addition, we assume that each graph in G can be constructed using
i-sums where i ≤ s ≤ 3. Suppose also that there exist two positive real numbers β1, β2 such that:

(1) For any k ≥ 0, planar graphs in Fk have treewidth at most β1

√
k + β2 and such a tree

decomposition can be found in linear time.

(2) For any k ≥ 0 and any i ≤ s, if G1 ⊕i G2 ∈ Fk then G1,G2 ∈ Fk

Then, for any k ≥ 0, the graphs in G ∩ Fk all have treewidth ≤ max{β1

√
k + β2, c} and such a

tree decomposition can be constructed in O(nα + (
√
k)

s · n) time.

Proof. Let G ∈ G ∩ Fk and assume that G = G1 ⊕ G2 ⊕ · · · ⊕ Gm where each Gi, 1 ≤ i ≤ m,

is either a planar graph or a graph of treewidth at most c. We use induction on m, the number

of Gi’s. For m = 1, G = G1 is either a planar graph that from (1) has treewidth at most

β1

√
k + β2 or a graph of treewidth at most c. Thus the basis of the induction is true for both

cases. We assume the induction hypothesis is true for m = h, and we prove the hypothesis for

m = h + 1. Let G′ = G1 ⊕ G2 ⊕ · · · ⊕ Gh and G
′′ = Gh+1. Thus G = G′ ⊕ G′′. By (2), both G′

and G′′ belong in Fk. By the induction hypothesis, tw(G
′) ≤ max{β1

√
k + β2, c} and from (1)

tw(G′′) ≤ max{β1

√
k + β2, c}. The proof, for m = h+ 1, follows from this fact and Lemma 2.

To construct a tree decomposition of the aforementioned width, first we construct a tree

decomposition of width at most β1

√
k + β2 for each planar graph in linear time. We also note

that using Bodlaender’s algorithm [Bod96], we can obtain a tree decomposition of width c for

any graph of treewidth at most c in linear time (the hidden constant only depends on c). Then

having tree decompositions of Gi’s, 1 ≤ i ≤ m, in the rest of the algorithm, we glue together the

tree decompositions of Gi’s using the construction given in the proof of Lemma 2. To this end, we
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introduce an array Nodes indexed by all subsets of V (G) of size at most s. In this array, for each

subset whose elements form a clique, we specify a node of the tree decomposition which contains

this subset. We note that for each clique C in Gi, there exists a node z of TD(G) such that all

vertices of C appear in the bag of z [BM93]. This array is initialized as part of a preprocessing

stage of the algorithm. Now, for the ⊕ operation between G1 ⊕ · · · ⊕Gh and Gh+1 over the join

set W , using array Nodes, we find a node α in the tree decomposition of G1⊕· · ·⊕Gh whose bag

contains W . Since we have the tree decomposition of Gh+1, we can find the node α
′ of the tree

decomposition whose bag contains W by brute force over all subsets of size at most s of bags.

Simultaneously, we update array Nodes by subsets of V (G) which form a clique and appear in

bags of the tree decomposition of Gh+1. Then we add an edge between α and α
′. As the number

of nodes in a tree decomposition of Gh+1 is in O(|V (Gh+1)|) and each bag has size at most O(
√
k)

(and thus there are at most O((
√
k)

s
) choices for a subset of size at most s), this operation takes

O((
√
k)

s · |V (Gh+1)|) time for Gh+1.

The claimed running time follows from the time required to determine a set of clique-sum

operations, the time required to construct tree decompositions, the time needed for gluing tree

decompositions together and the fact that
∑m

i=1 |V (Gi)| = O(|V (G)|). ut

Theorem 4. Let G be a graph class and let F be some parameterized graph class. Suppose also
for some positive real numbers α, β1, β2, δ the following hold:

(1) For any k ≥ 0, the graphs in G ∩ Fk all have treewidth ≤ β1

√
k + β2 and such a tree decom-

position can be decided and constructed (if it exists) in O(nα) time. We also assume testing

membership in G takes O(nα) time.
(2) Given a tree decomposition of width at most w of a graph, there exists an algorithm deciding

whether the graph belongs in Fk in O(δ
wn) time.

Then there exists an algorithm deciding in O(δβ1

√
k+β2 + nα) time whether an input graph G

belongs in G ∩ Fk.

Proof. First, we can test membership in G in O(nα) time. Then we can apply the algorithm from
(1) and (assuming success) supply the resulting tree decomposition to the algorithm from (2).

4 Fixed parameter algorithms for dominating set

In this section, we will describe some of the consequences of Theorems 3 and 4 on the design of

efficient fixed parameter algorithms for a series of parameterized problems where their inputs are

clique-sum graphs.

A dominating set of a graph G is a set of vertices of G such that each of the rest of vertices has

at least one neighbor in the set. We represent the k-dominating set problem with the parameterized

graph class DS where DSk contains graphs which have a dominating set of size ≤ k. Our target

is to show how we can solve the k-dominating set problem on clique-sum graphs, where H is a

single-crossing graph, in time O(c
√
knO(1)) instead of the current algorithms which run in time

O(cknO(1)) for some constant c. By this result, we extend the current exponential speedup in
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designing algorithms for planar graphs [AFN01] to a more generalized class of graphs. In fact,

planar graphs are both K3,3-minor-free and K5-minor-free graphs, where both K3,3 and K5 are

single-crossing graphs.

The following result implies that condition (1) of Theorem 3 is satisfied for DS for β1 = 6
√
34

and β2 = 8.

Theorem 5 ([ABFN00]). Suppose we have a planar graph G and a dominating set of size at

most k. Then the treewidth of G is at most 6
√
34
√
k+8 and one can obtain a tree decomposition

of this width in linear time.

The next lemma shows that condition (2) of Theorem 3 is also correct.

Lemma 3. If G = G1⊕mG2 has a k-dominating set, then both G1 and G2 have dominating sets

of size at most k.

Proof. Let the k-dominating set of G be S and W be the join set of G1 ⊕k G2. W.l.o.g. we show

that G1 has a dominating set of size k. If S1 = S ∩ V (G1) is a dominating set for G1 then the

result immediately follows, otherwise there exists vertex w ∈ V (G1) which is dominated by a

vertex v ∈ V (G2) − V (G1). One can observe that all such vertex w are in W . Since v ∈ S, but

v 6∈ S1, set S
′
1 = S1+{w} has at most k vertices and sinceW is a clique in G1, S

′
1 is a dominating

set of size at most k in G1. ut

We can now apply Theorem 3 for β1 = 6
√
34 and β2 = max{8, c}.

Theorem 6. If G is an α-recognizable clique-sum class of base c, then any member G of G
where its dominating set has size at most k has treewidth at most 6

√
34
√
k +max{8, c} and the

corresponding tree decomposition of G can be constructed in O(nα) time.

Theorem 6 tells us that condition (1) of Theorem 4 is satisfied. The following result shows

that for the graph parameter DS condition (2) of Theorem 4 is also satisfied for δ = 3.

Theorem 7 ([ABFN00]). If a tree decomposition of width w of a graph is known, then a min-

imum dominating set can be determined in time O(3w · n), where n is the number of vertices.

The following theorem is a direct consequence of Theorems 4, 6 and 7.

Theorem 8. There is an algorithm that in O(36
√

34
√
kn + nα) time solves the k-dominating set

problem for any α-recognizable clique-sum graph.

Corollary 1. There is an algorithm that in O(36
√

34
√
kn) (O(36

√
34
√
kn + n2)) time solves the

k-dominating set problem for K3,3(K5)-minor-free graphs.
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5 Algorithms for parameters bounded by dominating set number

We provide a general methodology for deriving fast fixed parameter algorithms in this section.

First, we consider the following theorem which is an immediate consequence of Theorem 4.

Theorem 9. Let G be a graph class and let F1, F2 be two parameterized graph classes where

F1 4γ F2 for some natural number γ ≥ 1. Suppose also that there exist positive real numbers
α, β1, β2, δ such that:

(1) For any k ≥ 0, the graphs in G ∩ F2
k all have treewidth ≤ β1

√
k + β2 and such a tree decom-

position can be decided and constructed (if it exists) in O(nα) time. We also assume testing

membership in G takes O(nα) time.
(2) There exists an algorithm deciding whether a graph of treewidth ≤ w belongs in F 1

k in O(δ
wn)

time.

Then

(1) For any k ≥ 0, the graphs in G ∩ F1
k all have treewidth at most β1

√
γk + β2 and such a tree

decomposition can be constructed in O(nα) time.

(2) There exists an algorithm deciding in O(δβ1
√
γk+β2 + nα) time whether an input graph G

belongs in G ∩ F1
k .

Proof. Consequence (1) follows immediately from the definition of 4γ . Consequence (2) follows

from Theorem 4.

The idea of our general technique is given by the following theorem that is a direct consequence

of Theorems 6 and 9.

Theorem 10. Let F be a parameterized graph class satisfying the following two properties:

(1) It is possible to check membership in Fk of a graph G of treewidth at most w in O(δ
wn) time

for some positive real number δ.

(2) F 4γ DS.

Then

(1) Any clique sum graph G of base c in Fk has treewidth at most max{6
√
34
√
γk + 8, c}.

(2) We can check whether an input graph G is in Fk in O(δ
6
√

34
√
γkn+nα) 1 on an α-recognizable

clique-sum graph of base c.

In what follows we will explain how Theorem 10 applies for a series of graph parameters. In

particular, we will explain why Conditions (1) and (2) are satisfied for each problem.

1 In the rest of this paper, we assume that constants, e.g. c, are small and they do not appear in the powers, since
they are absorbed into the O notation.
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5.1 Variants of the dominating set problem

A k-dominating set with property Π on an undirected graph G is a k-dominating set D of G

which has the additional property Π and the k-dominating set with property Π problem is the

task to decide, given a graph G = (V,E), a property Π, and a positive integer k, whether or not

there is a k-dominating set with property Π. Some examples of this type of problems, which are

mentioned in [ABFN00,TP93,TP97], are the k-independent dominating set problem, the k-total

dominating set problem, the k-perfect dominating set problem, the k-perfect independent domi-

nating set problem also known as k-perfect code and the k-total perfect dominating set problem.

For each Π, we will denote the corresponding dominating set problem as DSΠ .

Another variant is the weighted dominating set problem in which we have a graph G = (V,E)

together with an integer weight function w : V → N with w(v) > 0 for all v ∈ V . The weight

of a vertex set D ⊆ V is defined as w(D) =
∑

v∈D w(v). A k-weighted dominating set D of an

undirected graph G is a dominating set D of G with w(D) ≤ k. The k-weighted dominating set

problem is the task of deciding whether or not there exits a k-weighted dominating set. We will

use the parameterized class WDS to denote the k-weighted dominating set problem.
Condition (1) of Theorem 10 holds for δ = 4 because of the following.

Theorem 11 ([ABFN00]). If a tree decomposition of width w of a graph is known, then a

solution to DSΠ or to WDS can be determined in at most O(4w · n) time.

Clearly, DSΠ 41 DS and WDS 41 DS and Condition (2) also holds. Therefore Theorem 10
holds for γ = 1 and δ = 4 for DSΠ and WDS.
Another related problem is the Y -domination problem (DSY ) introduced in [BBHS96].

Definition 5. Let Y be a finite set of integers. A Y -domination is an assignment f : V → Y

such that for each vertex x, f(N [x]) =
∑

v∈N [x] f(x) ≥ 1 where N [x] stands for the neighborhood
of x including x itself. An efficient Y -domination is an assignment f with f(N [x]) = 1 for all

vertices x ∈ V . The value of a Y -domination f is |{x|f(x) > 0}|. The weight of a Y -domination
is

∑

x∈V f(x). Two Y -dominations are equivalent if they have the same closed neighborhood sum

at every vertex. The Y -domination problem asks whether the input graph G has an efficient

Y -domination of value at most k.

Using the generalized dynamic programming approach, Cai and Kloks [KC00] presents an

algorithm which runs in time O(|Y |wn) to decide whether a graph G of treewidth at most w has
an efficient Y -domination of value at most k. It is worth mentioning that, according to Bange et

al. [BBHS96], a graph G has an efficient Y -domination if and only if all equivalent Y -dominations

have the same weight, and thus there is no need to worry about the actual weight of an efficient

Y -domination. Therefore, we have that Condition (1) of Theorem 10 holds for δ = |Y |.
One can easily see that for Y -domination f of a graph G = (V,E), D = {x|f(x) > 0} is a

dominating set, since each vertex x has at least one vertex with a positive number assigned to it

in N [x]. Thus if f is a Y -domination of G with value at most k, then G also has a dominating set

of size k. Therefore, DSY 41 DS and Condition (2) holds as well. Theorem 10 applies for γ = 1
and δ = |Y |.
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5.2 Vertex cover

The k-vertex cover problem (VC) asks whether there exists a subset C of at most k vertices such
that every edge of G has at least one endpoint in C. This problem is one of the most popular

problems in combinatorial optimization.

A great number of researchers believe that there is no polynomial time approximation al-

gorithm achieving an approximation factor strictly smaller than 2 − ε, for a positive constant

ε, unless P = NP . Currently, the best known lower bound for this factor is 1.36 [DS] and the

best upper bound is 2 which can be obtained easily. The best current fixed-parameter tractable

algorithm has time O(1.271k + k|V |) [CKJ99]. In this section, we present an exponentially faster
algorithm for this problem on clique-sum graphs.

Without loss of generality, we can restrict our attention to graphs with no vertex of degree

zero. One can observe that if a graph G has a vertex cover of size k, then it has also a k-dominating

set. Therefore VC 41 DS and condition (1) of Theorem 10 holds. Moreover, Condition (2) holds
because we can solve the vertex cover problem in time O(2w) if we know the tree decomposition

of width w of a graph G [AFN01]. Therefore, Theorem 10 applies for γ = 1 and δ = 2 for the

k-vertex problem.

A simple standard reduction to the problem kernel due to Buss and Goldsmith [BG93] is as

follows: Each vertex of degree greater than k must be in the vertex cover of size k, since otherwise,

not all edges can be covered. Thus we can obtain a subgraph G′ of G which has at most k2 edges

and at most k2+k vertices and k′ is obtained from k reduced by the number of vertices of degree

more than k. Chen et al. [CKJ99] showed that in Buss and Goldsmith’s approach one can even

obtain a problem kernel with at most 2k vertices in O(nk+k3) time. Thus, using this result with

the consequence (2) of Theorem 10 for VC, we obtain the following result.

Theorem 12. We can find a k-vertex cover in time O(26
√

34
√
kk+kn+nα) on an α-recognizable

clique-sum graph.

5.3 Edge dominating set

Another related problem is the edge dominating set problem EDS that given a graph G asks for
a set E′ ⊆ E of k or fewer edges such that every edge in E shares at least one endpoint with

some edge in E ′. Again without loss of generality we can assume that graph G has no vertex of

degree zero.

One can observe that if a graph G has a k-edge dominating set E ′, we can obtain a vertex

cover of size 2k by including both end-points of each edge e ∈ E ′. This means that EDS 42 VC.
In the previous section we show that VC 41 DS therefore, the Condition (2) of Theorem 10 holds
for EDS when γ = 2. Condition (1) holds because the edge dominating set problem can be solved
in cw

eds
n [Bod88,Bak94] (ceds is a small constant) on a tree decomposition of width w for a graph

G. We conclude that Theorem 10 applies for γ = 2 and δ = ceds.

Theorem 13. We can find a k-edge dominating set in time O(ceds
6
√

34
√

2kn + nα) on an α-

recognizable clique-sum graph.
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5.4 Clique-transversal set

A clique-transversal set of a connected graph G is a subset of vertices intersecting all the maximal

cliques of G [BNR96,CCCY96,AST91,GR00]. Since the vertex cover problem is NP-complete even

restricted to triangle-free planar graphs [CKL01,Ueh96], the clique-transversal problem remains

NP-complete on clique-sum graphs. The k-clique transversal problem CT asks whether the input
graph has a clique-transversal set of size ≤ k.

If a graph G has a k-clique-transversal, then it has a dominating set of size at most k, since

every vertex of G is contained in at least one maximal clique. This implies that CT 41 DS and
Condition (2) of Theorem 10 holds for γ = 1. Using the general dynamic programming technique,

we can solve the k-clique-transversal problem on a graph G of treewidth at most w in O(cwctn) for

some constant cct (the approach is very similar to Chang et al. [CKL01]). Therefore, Theorem 10

applies for γ = 1 and δ = cct.

Theorem 14. We can find a k-clique-transversal set in time O(cct
6
√

34
√
kn + nα) on an α-

recognizable clique-sum graph.

5.5 Minimum Maximal Matching

A matching in a graph G is a set E ′ of edges without common endpoints. A matching in G is

maximal if there is no other matching in G containing it. The k-maximal matching problemMM
asks whether an input graph G has a maximal matching of size ≤ k.

Let E′ be the edges of a maximal matching of G. Notice that the set of endpoints of the edges

in E′ is a dominating set of G. ThereforeMM 42 DS and the Condition (2) of Theorem 10 holds.
Condition (1) holds because the problem can be solved in cwmmn [Bod88] on a tree decomposition

of width w for a graph G. Hence Theorem 10 gives the following result.

Theorem 15.

(1) Any clique-sum graph of base c with a minimum maximal marching of size k has treewidth

≤ 6
√
34
√
2k +max{8, c}.

(2) One can decide whether an α-recognizable clique-sum graph G has a minimum maximal match-

ing of size at most k in time O(c6
√

34
√

2k
mm n+ nα).

5.6 Kernels in digraphs

A set S of vertices in a digraph D = (V,A) is a kernel if S is independent and every vertex in

V −S has an out-neighbor in S. It has been shown that the problem of deciding whether a digraph
has a kernel is NP-complete [GJ79]. Franenkel [Fra81] showed that the kernel problem remains

NP-complete even for planar digraphs D with indegree and outdegree at most 2 and total degree

at most 3. The k-kernel problem KER asks whether a graph has a kernel of size k. Moreover,

we define the co-KER problem as the one asking whether an n-vertex graph has a kernel of size
n− k.

Here, we again observe that if a digraph D has a kernel of size at most k, then its underlying

graph G has a dominating set of cardinality at most k. Also for a connected digraph D = (V,A)
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and kernel K, V − K is a dominating set in the underlying graph of D. Resuming these two

facts we have KER 41 DS and co-KER 41 DS and Condition (2) of Theorem 10 folds for both
problems. We note that a slight variation of Condition (1) also holds because Guting [GKL01]

gives a O(3wkn) time algorithm solving the k-kernel problem on graphs of treewidth at most w

using the general dynamic programming approach. The straightforward adaptation of Theorem 10

to this variation of Condition (1) gives the following.

Theorem 16.

(1) Any clique-sum graph of base c that has a kernel of size k or n−k has treewidth ≤ 6
√
34
√
k+

max{8, c}.
(2) One can decide whether an α-recognizable clique-sum graph G of base c has a kernel of size k

in time O(36
√

34
√
knk + nα) for some constant c.

(3) One can decide whether an α-recognizable clique-sum graph G of base c has a kernel of size

n− k in time O(36
√

34
√
kn(n− k) + nα) for some constant c.

5.7 Independent set

Here we present a fixed parameter algorithm for the maximum independent set problem (MIS)
in which one asks for a subset V ′ ⊆ V of maximum size such that no two vertices in V ′ are

joined by an edge in E. In the k-maximum independent set problem, we want to know whether a

graph G has a maximum independent set of size at most k. We can observe that if a clique-sum

graph G has a maximum independent set of size at most k, then each of the planar graph in its

clique-sum operations has a maximum independent set of size at most k. According to the paper

due to Alber et al. [AFN01], if the maximum independent set of a planar graph G is at most k

then its treewidth is at most 4
√
6k and we can obtain a tree decomposition of this width in linear

time. This makes it possible to apply Theorem 3 and derive Condition (1) of Theorem 4. As it is

possible to solve the k-maximum independent set problem for graphs of treewidth at most w in

O(2wn) time [AFN01] Condition (2) also holds and we have the following.

Theorem 17.

(1) Any clique-sum graph of base c with maximum independent set of size at most k has treewidth

at most 6
√
34
√
k +max{8, c}.

(2) There is an algorithm that decides whether an α-recognizable clique-sum graph of base c has

a maximum independent set of size at most k in time O(26
√

34
√
kn+ nα).

Also, we note that if a graph G has an (n− k)-independent set then it has a vertex cover of

size at most k and visa versa. Using Theorem 12 we have:

Theorem 18. One can decide whether an α-recognizable clique-sum graph G has a n−k-independent
set in time O(26

√
34
√
kk + kn+ nα).
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6 Fixed parameter algorithms for vertex removal problems

In this section, we focus our attention to K3,3-minor-free graphs and K5-minor-free graphs and

present some general results allowing the construction of O(c
√
kn) time algorithms for a series of

vertex removal problems.

We start with some definitions. For any graph class G and any non-negative integer k the
graph class k-almost(G) contains any graph G = (V,E) where there exists a subset S ⊆ V (G)

of size at most k such that G[V − S] ∈ G. We note that using this notation if G contains all
the edgeless graphs or forests then k-almost(G) is the class of graphs with vertex cover ≤ k or

feedback vertex set ≤ k.

A useful notion is that of a strong k-cut, defined below. A graph G = (V,E) has a k-cut S ⊆ V

when G[V − S] is disconnected and |S| = k. Let G1, G2 be two of the connected components of

G[V −S]. Given a component G1 = (V1, E1) of G[V −S] we define its augmentation as the graph
G[V1 ∪ S] in which we add all edges among vertices of S. We say a k-cut S minimally separates
G1 and G2 if each vertex of S has a neighbor in G1 and G2. A graph G = (V,E) has a strong

k-cut S ⊆ V if |S| = k and G[V − S] has at least k connected components and each pair of them
is minimally separated by S.

We say that G is the result of the multiple k-clique sum of G1, . . . , Gr with respect to some

join set W if G = G1 ⊕k · · · ⊕k Gr where the join set is always W and such that W is a strong

k-cut of G.

Lemma 4. Let k be a positive integer and let G be a graph with a strong k-cut S where 1 ≤
k. Then the treewidth of G is bounded above by the maximum of the treewidth of each of the

augmented components of G after removing S.

Proof. The proof is very similar to the proof of Lemma 2 and hence omitted. ut

Lemma 5. Let G = (V,E) be a graph with a strong k-cut S where 1 ≤ k ≤ 3. Then if G belongs
to some minor-closed graph class G then any of the augmented components of G after removing
S is also k-connected and belongs to G.

Proof. Let G1, . . . , Gr be the pairwise minimally separated components of G[V − S] (r ≥ k).

W.l.o.g. we will prove that if G̃1 is the augmentation of G1 then G̃1 ∈ G. Consider the graph
G′ = G[S ∪⋃

1≤i≤k V (Gi)] and then contract in G
′ all the edges in

⋃

2≤i≤kGi. That way, each of

Gi, 2 ≤ i ≤ r collapses to a single vertex vi connected to all the vertices in S. It is now easy to

see that if we contract any perfect matching of the edges between {v2, . . . , vr} and S we obtain
G̃1. ut

We now need the following adaptation of the results of [KM92] and [Asa85] (Theorems 1 and 2).

Lemma 6. Let G be a connected K3,3-free graph and let S be the set of its strong i-cuts, 1 ≤ i ≤ 2.
Then G can be constructed after a sequence of multiple i-clique sums, 1 ≤ i ≤ 2, applied to planar
graphs or K5’s where each of these multiple sums has a member of S as join set. Moreover this
sequence can be constructed by an algorithm in O(n) time.
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Lemma 7. Let G be a connected K5-free graph and let S be the set of its strong i-cuts, 1 ≤ i ≤ 3.
Then G can be constructed after a sequence of multiple i-clique sums, 1 ≤ i ≤ 3, applied to planar
graphs or V8’s where each of these multiple sums has a member of S as join set. Moreover this
sequence can be constructed by an algorithm in O(n2) time.

For each K5-free or K3,3-free graph G, we say that its valence is the number of its strong

i-cuts, i ≥ 1. In the rest of this section, we will assume that α = 2 when we refer to K5-free

graphs and that α = 1 when we refer to K3,3-free graphs. We now demonstrate the following

variance of Theorem 3.

Theorem 19. Let G be a K3,3(K5)-minor-free graph class and let F be any minor-closed param-
eterized graph class. Suppose that there exist real numbers β0 ≥ 4, β1 such that any planar graph

in Fk has treewidth at most β1

√
k+β0 and such a tree decomposition can be found in linear time.

Then graphs in G ∩ Fk all have treewidth ≤ β1

√
k + β0 and such a tree decomposition can be

constructed in O(n) (O(n2)) time.

Proof. Let G ∈ G ∩ F be such a graph. The proof is based on an induction on its valence. If the
valence of G is 0 the result is clear. Suppose that the result is correct for any graph of valence

< r. We will prove that it also holds for graphs with valence r ≥ 1. Let W be a strong 3-cut of G.

From Lemma 5 all the augmented components of G−W are K3,3(K5)-minor-free graphs in Fk.

Applying the induction hypothesis, we have that each of the augmented components has treewidth

at most β1

√
k + β0. Using now lemma 4, we derive the same bound for G. The construction is

very similar to the construction mentioned in Theorem 3 and hence omitted. ut

We define Tr to be the class of graphs with treewidth ≤ r. It is known that for 1 ≤ i ≤ 2,
Ti is exactly the class of Ki+2-minor-free graphs (see e.g. [Bod98]). We now present a series of

consequences of Theorem 19 for solving a series of vertex deletion problems on K3,3-minor-free

graphs and K5-minor-free graphs. First, we need the following combinatorial lemma.

Lemma 8. Planar graphs in k-almost(T2) have treewidth ≤ 6
√
34
√
k + 8. Moreover, such a tree

decomposition can be found in linear time.

Proof. Our target is to prove that planar graphs in k-almost(T2) are subgraphs of planar graphs

in DSk and the result will be a consequence of Theorem 5.
Let G be a planar graph and S be a set of ≤ k vertices in G where G[V −S] is K4-minor-free.

From Lemmas 4 and 5 we can assume that G does not have strong 1- or 2-cuts. A consequence of

this is that all the vertices of G have degree at least 3. Another consequence is that two faces of

G can have in common either a vertex or an edge (otherwise, a strong 2-cut appears). Consider

any planar embedding of G. We call a face of this embedding exterior if it contains a vertex of

S, otherwise we call it interior. For each exterior face choose a vertex in S and connect it with

the rest of its vertices. We call the resulting graph H and we note that (a) G is a subgraph of H,

(b) H[V − S] = G[V − S], and (c) all the vertices of the exterior faces of H are dominated by

some vertex in S. We claim that S is a dominating set of H. Suppose, towards a contradiction,
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that there is a vertex v that is not dominated by S. From (c) we can assume that all of the faces

containing v are interior. Let H ′ be the graph induced by the vertices of these faces. As they

are all interior, H ′ should be a subgraph of H[V − S]. Let (x1, . . . , xq, x1) be a cyclic order of

the neighbors of v and notice that q ≥ 3. Let also Fi be the face of H containing the vertices

xi, v, xnext(i), 1 ≤ i ≤ q, where next(i) = (i + 1) mod q + 1. We note that all these faces are

pairwise distinct otherwise v will be a 1-cut for H and G. Let Pi be the path connecting xi and

xnext(i) in H
′ avoiding v and containing only vertices of Fi. Recall now that two faces of H have

either v or an edge containing v in common. Therefore, it is impossible two paths Pi, Pj , i 6= j,

share an internal vertex. This implies that the contraction of all the edges but one of each of

these paths transforms H ′ to a wheel Wq that, as q ≥ 3, can be further contracted to a K4 (a

weel Wq is the graph constructed taking a cycle of length q and conecting all its vertices with a

new vertex v). As H ′ is a subgraph of the graph H[V − S] (b) implies that G[V − S] contains

a K4, and this is a contradiction. As now S is a dominating set for H the treewidth of H is at

most 6
√
34
√
k + 8. From (a) we have that G is a subgraph of a planar graph in DSk and this

completes the proof of the theorem. ut

We conclude the following general result.

Theorem 20. Let G be any class of graphs with treewidth ≤ 2. Then any K3,3(K5)-minor-free

graph in k-almost(G) has treewidth ≤ 6
√
34
√
k + 8. Moreover, such a tree decomposition can be

found in linear time.

Proof. Let G be such a graph and let S ⊆ V (G) such that G[V − S] ∈ G. We note that
treewidth(G[V − S]) ≤ 2. Therefore, G ∈ k-almost(T2) and the result follows from Theorem 19

and Lemma 8. ut

Combining Theorems 4 and 20 we conclude the following.

Theorem 21. Let G be any class of graphs with treewidth ≤ 2. Suppose also that there exists
an O(δwn) algorithm that decides whether a given graph belongs in k-almost(G) for graphs of
treewidth at most w. Then, one can decide whether a K3,3(K5)-minor-free graph belongs in k-

almost(G) in time O(δ6
√

34
√
kn+ nα).

If {O1, . . . , Or} is a finite set of graphs, we denote as minor-excl(O1, . . . , Or) the class of

graphs that are Oi-minor-free for i = 1, . . . , r.

As examples of problems for which Theorems 20 and 21 can be applied, we mention the

problems of checking whether a graph, after removing k vertices, is edgeless (G = T0), or has

maximum degree ≤ 2 (G = minor-excl(K1,3)), or becomes a a star forest (G = minor-excl(K3, P3)),

or a caterpillar (G = minor-excl(K3, subdivision of K1,3)), or a forest (G = T1), or outerplanar

(G = minor-excl(K4,K2,3)), or series-parallel, or has treewidth ≤ k (G = T2).

We consider the cases where G = T0 and G = T1 in the next two subsections.
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6.1 Feedback vertex set

A feedback vertex set (FVS) of a graph G is a set U of vertices such that every cycle of G passes

through at least one vertex of U . The previous known fixed parameter algorithms for solving the

k-feedback vertex set problem has running time O((2k + 1)kn2) [DF99] and alternatively time

O((917k4)!(n+e)) [Bod92]. Also there exists a randomized algorithm which needs O(c4kkn) time

with probability at least 1− (1− 1
4k )

c4k
[BBYG00]. The k-feedback vertex set problem (FVS) asks

whether an input graph has a feedback vertex set of size ≤ k.

Kloks et al. [KLL01] proved that the feedback vertex set problem on planar graphs of treewidth

at most w can be solved in O(cw
fvs
n) time for some constant cfbs. The complexity of their algorithm

is based on the fact that the number of edges of a planar graph is bounded by a simple linear

funcion of its vertices (i.e. 3n − 6). As we have similar bound 3n − 5 for K3,3(K5)-minor-free

graphs [Asa85,KM92], we can easily prove that the algorithm of [KLL01] works also for the more

general case. Therefore, Theorem 21 can be applied for G = T1 and δ = cfvs and we have the

following.

Theorem 22. For any K3,3(K5)-minor-free graph G the following hold.

(1) If G has a feedback vertex set of size at most k then G has treewidth at most 6
√
34
√
k + 8.

(2) We can check whether G has a feedback vertex set of size ≤ k in O(c6
√

34
√
k

fvs
n+ nα) time.

Theorem 22 generalizes the results of [KLL01] to the non-planar K3,3(K5)-minor-free graphs.

6.2 Improving bounds for vertex cover

Alber et al. [AFN01] proved that planar graphs in VCk have treewidth at most 4
√
3
√
k + 5.

Applying Theorem 20, we have that Condition (1) of Theorem 4 holds for K3,3(K5)-minor-free

graphs when β1 = 4
√
3 and β2 = 5. Also, as we mentioned in Subsection 5.2 it is possible to

decide in O(2wn) time if a graph has a vertex cover of size at most k. Therefore, Condition (2)

holds for δ = 2. Concluding, we have the following improvement of the results of Subsection 5.2

for K3,3(K5)-minor-free graphs.

Theorem 23. For any K3,3(K5)-minor-free graph G the following hold.

(1) If G has a vertex cover of size at most k then G has treewidth at most 4
√
3
√
k + 5.

(2) We can check whether G has a vertex cover of size ≤ k in O(24
√

3
√
kn+ nα) time.

(3) We can check whether G has a vertex cover of size ≤ k in O(24
√

3
√
kk + kn+ nα) time.

Since EDS 42 VC, we can also obtain an O(ceds
4
√

3
√

2kn+ nα)-time algorithm for the edge domi-

nating set problem.

7 Further extensions

In this section, we obtain fixed parameter algorithms with exponential speedup for k-vertex

cover and k-edge dominating set on graphs more general than K3,3(K5)-minor-free graphs. Our
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approach, similar to the Alber’s et al. approach [AFN01], is a general one that can be applied to

other problems.

Baker [Bak94] developed several approximation algorithms to solve NP-complete problems for

planar graphs. To extend these algorithms to other graph families, Eppstein [Epp00] introduced

the notion of bounded local treewidth, defined formally below, which is a generalization of the no-

tion of treewidth. Intuitively, a graph has bounded local treewidth (or locally bounded treewidth)

if the treewidth of an r-neighborhood of each vertex v ∈ V (G) is a function of r, r ∈ N, and not
|V (G)|.

Definition 6. The local treewidth of a graph G is the function ltwG : N → N that asso-

ciates with every r ∈ N the maximum treewidth of an r-neighborhood in G. We set ltwG(r) =

maxv∈V (G){tw(G[N r
G(v)])}, and we say that a graph class C has bounded local treewidth (or lo-

cally bounded treewidth) when there is a function f : N → N such that for all G ∈ C and r ∈ N,
ltwG(r) ≤ f(r).

A graph is called an apex graph if deleting one vertex produces a planar graph. Eppstein [Epp00]

showed that a minor-closed graph class E has bounded local treewidth if and only if E is H-minor-
free for some apex graph H.

So far, the only graph classes studied with small local treewidth are the class of planar graphs

[Epp00] and the class of clique-sum graphs, which includes minor-free graphs like K3,3-minor-free

or K5-minor-free graphs [HNRT01]. It has been proved that for any planar graph G, ltw
G(k) ≤

3k−1 [HNRT01], and for anyK3,3-minor-free orK5-minor-free graph G, ltw
G(k) ≤ 3k+4 [Epp00].

For these classes of graphs, there are efficient algorithms for constructing tree decompositions.

Eppstein [Epp00] showed how the concept of the kth outer face in planar graphs can be

replaced by the concept of the kth layer (or level) in graphs of locally bounded treewidth. The

kth layer (Lk) of a graph G consists of all vertices at distance k from an arbitrary fixed vertex v

of V (G). We denote consecutive layers from i to j by L[i, j] = ∪i≤k≤jLk.

Here we generalize the concept of layerwise separation, introduced in Alber’s et al. work

[AFN01] for planar graphs, to general graphs.

Definition 7. Let G be a graph layered from a vertex v, and r be the number of layers. A layerwise

separation of width w and size s for G is a sequence (S1, S2, · · · , Sr) of subsets of V , with property
that Si ⊆

⋃i+(w−1)
j=i Lj; Si separates layers Li−1 and Li+w; and

∑r
j=1 |Sj | ≤ s.

Here we relate the concept of layerwise separation to parameterized problems.

Definition 8. A parameterized problem P has layerwise Separation Property (LSP) of width w

and size-factor d, if for each instance (G, k) to problem P , graph G admits a layerwise separation

of width w and size dk.

For example, we can obtain constants w = 2 and d = 2 for the vertex cover problem. In fact,

consider a k-vertex cover C on a graph G and set Si = (Li ∪Li+1)∩C. Sets Si’s form a layerwise
separation. Similarly, we can get constants w = 2 and d = 2 for the edge dominating set problem.
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Lemma 9. Let P be a parameterized problem on instance (G, k) that admits a problem kernel

of size dk. Then the parameterized problem P on the problem kernel has LSP of width 1 and

size-factor d.

Proof. Consider the problem kernel (G′, k′) for an instance (G, k) and obtain layering L′ for G′

from arbitrary vertex v. Then clearly the sequence Si = L′i for i = 1, · · · , r′ (r′ is the number of
layers), is a layerwise separation of width 1 and size k′ ≤ dk for G′. ut

In fact, using Lemma 9 and the problem kernel of size 2k (see Subsection 5.2) for the vertex

cover problem, this problem has the LSP of width 1 and size-factor 2.

The proof of the following Theorem is very similar to the proof of Theorem 12 of Alber’s et

al. work [AFN01] and hence omitted.

Theorem 24. Suppose for a graph G, ltw(G) ≤ cr+ d and a tree decomposition of width ch+ d

can be constructed in O(nα) for any h consecutive layers (h is a constant). Also assume G admits

a layerwise separation of width w and size dk. Then we have tw(G) ≤ 2
√
6dk + cw + d. Such a

tree decomposition can be computed in time O(nα).

Now, since for anyH-minor-free graph G, whereH is a single-crossing graph, ltw(G) ≤ 3r+cH
and tw(L[i, j]) ≤ 3(j − i+ 1) + cH [HNRT01], we have the following.

Corollary 2. For any H-minor-free graph G, where H is a single-crossing graph, that admits a

layerwise separation of width w and size dk, we have tw(G) ≤ 2
√
6dk + 3w + cH .

Since we can construct the aforementioned kind of tree decompositions for K3,3(K5)-minor-

free graphs in O(n)(O(n2)) and their local treewidth is 3r + 4 [HNRT01], the following result

follows immediately.

Corollary 3. For any K3,3(K5)-minor-free graph G, that admits a layerwise separation of width

w and size dk, we have tw(G) ≤ 2
√
6dk + 3w + 4. Such a tree decomposition can be computed in

time O(n) (O(n2)).

For example, using Corollary 3, we know that if a K3,3(K5)-minor-free graph G has a k-vertex

cover then tw(G) ≤ 4
√
3k + 10. Since we can solve the vertex cover problem in time O(2w) if we

know the tree decomposition of width w of a graph G, we have the following.

Theorem 25. We can find a k-vertex cover in time O(24
√

3kn) (O(24
√

3kn+n2)) on a K3,3(K5)-

minor-free graph G.

Similarly, we have the following.

Theorem 26. One can find a k-edge dominating set in time O(ceds
4
√

3kn)(O(ceds
4
√

3kn+n2)) on

a K3,3(K5)-minor-free graph G for some constant ceds, if it exists.

In fact, we have this general theorem.

19



Theorem 27. Suppose for a graph G , ltw(G) ≤ cr+d and a tree decomposition of width ch+d

can be constructed in time O(nα) for any h consecutive layers. Let P be a parameterized problem

on G such that P has the LSP of width w and size-factor d and there exists an O(δwn)-time

algorithm, given a tree decomposition of width w for G, decides whether problem P has a solution

of size k on G.

Then there exists an algorithm which decides whether P has a solution of size k on G in time

O(δ2
√

6dk+cw+dn+ nα).

8 Conclusions and future work

In this paper, we considered H-minor-free graphs, where H is a single-crossing graph, and proved

that if these graphs have a k-dominating set then their treewidth is at most c
√
k for some small

constant c. As a consequence, we obtained exponential speedup in designing FPT algorithms for

several NP-hard problems on these graphs, especially K3,3-minor-free or K5-minor-free graphs. In

fact, our approach is a general one that can be applied to several problems which can be reduced

to the dominating set problem as discussed in Section 5 or to problems that themselves can be

solved exponentially faster on planar graphs [AFN01]. Here, we present several open problems

that are possible extensions of this paper.

One topic of interest is finding other problems for which the technique of this paper can be

applied. Moreover, introducing other classes of graphs than H-minor-free graphs, where H is a

single-crossing graph, on which the problems can be solved exponentially faster for parameter k

is an interesting question.

For several problems in this paper, Kloks et al. [CKL01,KLL01,GKL01,KC00] introduced a

reduction to the problem kernel on planar graphs. Since K3,3-minor-free graphs and K5-minor-

free graphs are very similar to planar graphs in the sense of having a linear number of edges and

not having a clique of size six, we believe that one might obtain similar results for these graphs.

Working in this area was beyond the scope of this paper, but still it would be instructive.

As mentioned before, Lemma 20 holds for any class of graphs with treewidth ≤ 2. It is an open
problem whether it is possible to generalize it for any class of graphs of treewidth ≤ h for arbitrary

fixed h. Moreover, there exists no general method for designing O(δwn) time algorithms for vertex

removal problems in graphs with treewidth ≤ w. If this becomes possible, then Theorem 21 will

have considerable algorithmic applications.

Finally, as a matter of practical importance, obtaining a better constant coefficient than 6
√
34

for the treewidth of planar graphs having a k-dominating set, which has a direct improvement to

our results, would be quite interesting.
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