
A Type System for Preventing Data Races and Deadlocks in Java Programs

Chandrasekhar Boyapati Robert Lee Martin Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology

200 Technology Square, Cambridge, MA 02139

{chandra,rhlee,rinard}@lcs.mit.edu

Abstract
This paper presents a new static type system for multi-
threaded programs; well-typed programs in our system are
guaranteed to be free of data races and deadlocks. Our type
system allows programmers to partition the locks into a fixed
number of equivalence classes and specify a partial order
among the equivalence classes. The type checker then stat-
ically verifies that whenever a thread holds more than one
lock, the thread acquires the locks in the descending order.

Our system also allows programmers to use recursive tree-
based data structures to describe the partial order. For ex-
ample, programmers can specify that nodes in a tree must
be locked in the tree-order. Our system allows mutations to
the data structure that change the partial order at runtime.
The type checker statically verifies that the mutations do not
introduce cycles in the partial order, and that the changing
of the partial order does not lead to deadlocks. We do not
know of any other sound static system for preventing dead-
locks that allows changes to the partial order at runtime.

1 Introduction
The use of multiple threads of control is quickly becoming
a mainstream programming practice. But interactions be-
tween threads can significantly complicate the software de-
velopment process. Multithreaded programs typically syn-
chronize operations on shared mutable data to ensure that
the operations execute atomically. Failure to correctly syn-
chronize such operations can lead to data races or deadlocks.
A data race occurs when two threads concurrently access
the same data without synchronization, and at least one of
the accesses is a write. A deadlock occurs when there is a
cycle of the form: ∀i ∈ {0..n− 1}, Threadi holds Locki and
Threadi is waiting for Lock(i+1) mod n. Synchronization er-
rors in multithreaded programs are among the most difficult

The research was supported in part by DARPA/AFRL
Contract F33615-00-C-1692, NSF Grant CCR00-86154, and
NSF Grant CCR00-63513.

programming errors to detect, reproduce, and eliminate.

This paper presents a new static type system for multi-
threaded programs; well-typed programs in our system are
guaranteed to be free of data races and deadlocks. In recent
previous work, we presented a static type system to prevent
data races [3]. In this paper, we extend the race-free type
system to prevent both data races and deadlocks. The basic
idea behind our system is as follows. When programmers
write multithreaded programs, they already have a locking
discipline in mind. Our system allows programmers to spec-
ify this locking discipline in their programs. The resulting
specifications take the form of type declarations.

1.1 Deadlock Freedom
To prevent deadlocks, programmers partition all the locks
into a fixed number of lock levels and specify a partial order
among the lock levels. The type checker statically verifies
that whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. Our type system
allows programmers to write code that is polymorphic in
lock levels. Programmers can specify a partial order among
formal lock level parameters using where clauses. This is
somewhat similar to the use of where clauses in [11, 24].

Our system also allows programmers to use recursive tree-
based data structures to further order the locks that belong
to the same lock level. For example, programmers can spec-
ify that nodes in a tree must be locked in the tree-order. Our
system allows mutations to the data structure that change
the partial order at runtime. The type checker uses an intra-
procedural intra-loop flow-sensitive analysis to statically ver-
ify that the mutations do not introduce cycles in the partial
order, and that the changing of the partial order does not
lead to deadlocks. We do not know of any other sound static
system for preventing deadlocks that allows changes to the
partial order at runtime.

1.2 Data Race Freedom
To prevent data races, programmers associate every object
with a protection mechanism that ensures that accesses to
the object never create data races. The protection mech-
anism of an object can specify either the mutual exclusion
lock that protects the object from unsynchronized concur-
rent accesses, or that threads can safely access the object
without synchronization because either 1) the object is im-
mutable, 2) the object is accessible to a single thread, or
3) the variable contains the unique pointer to the object.
Unique pointers are useful to support object migration be-

1

tween threads. The type checker statically verifies that a
program uses objects only in accordance with their declared
protection mechanisms.

Our type system is significantly more expressive than previ-
ously proposed type systems for preventing data races [15,
2]. In particular, our type system lets programmers write
generic code to implement a class, then create different ob-
jects of the class that have different protection mechanisms.
We do this by introducing a way of parameterizing classes
that lets programmers defer the protection mechanism deci-
sion from the time when a class is defined to the times when
objects of that class are created.

1.3 Contributions
This paper makes the following contributions:

• Static Type System to Prevent Deadlocks: This
paper presents a new static type system to prevent
deadlocks in Java programs. Our system allows pro-
grammers to partition all the locks into a fixed number
of lock levels and specify a partial order among the
lock levels. The type checker then statically verifies
that whenever a thread holds more than one lock, the
thread acquires the locks in the descending order.

• Formal Rules for Type Checking: To simplify the
presentation of key ideas behind our approach, this
paper formally presents our type system in the context
of a core subset of Java called Concurrent Java[3, 15,
16]. Our implementation, however, works for the whole
of the Java language.

• Type Inference Algorithm: Although our type sys-
tem is explicitly typed in principle, it would be onerous
to fully annotate every method with the extra type in-
formation that our system requires. Instead, we use
a combination of intra-procedural type inference and
well-chosen defaults to significantly reduce the num-
ber of annotations needed in practice. Our approach
permits separate compilation.

• Lock Level Polymorphism: Our type system al-
lows programmers to write code where the exact levels
of some locks are not known statically—only some or-
dering constraints among the unknown lock levels are
known statically. Our system uses lock level polymor-
phism to support this kind of programming. Program-
mers can specify a partial order among formal lock level
parameters using where clauses. This is somewhat sim-
ilar to the use of where clauses in [11, 24].

• Support for Condition Variables: In addition to
mutual exclusion locks, our type system prevents dead-
locks in the presence of condition variables. Our sys-
tem statically enforces the constraint that a thread can
invoke e.wait only if the thread holds no locks other
than the lock on e. Since a thread releases the lock
on e on executing e.wait, the above constraint implies
that any thread that is waiting on a condition variable
holds no locks. This in turn implies that there cannot
be a deadlock that involves a condition variable. Our
system thus prevents the nested monitor problem [22].

• Partial-Orders Based on Mutable Trees: Our
system also allows programmers to use recursive tree-
based data structures to further order the locks that
belong to the same lock level. Our system allows muta-
tions to the trees that change the partial order at run-
time. The type checker uses an intra-procedural intra-
loop flow-sensitive analysis to statically verify that the
mutations do not introduce cycles in the partial order,
and that the changing of the partial order does not
lead to deadlocks.

• Partial-Orders Based on Monotonic DAGs: Our
system also allows programmers to use recursive DAG-
based data structures to order the locks that belong to
the same lock level. DAG edges cannot be modified
once initialized. Only newly created nodes may be
added to a DAG by initializing the newly created nodes
to contain DAG edges to existing DAG nodes.

• Implementation: We have a prototype implementa-
tion of our type system. Our implementation handles
all the features of the Java language including threads,
constructors, arrays, exceptions, static fields, and run-
time downcasts. We also modified some Java server
programs and implemented them in our system. These
programs exhibit a variety of sharing patterns. Our
experience indicates that our system is sufficiently ex-
pressive and requires little programming overhead.

1.4 Outline
The rest of this paper is organized as follows. Section 2 in-
troduces our type system using two examples. Section 3 de-
scribes a core subset of Java that we use to formally describe
our type system. Our implementation, however, works for
the whole of the Java language. Sections 4 and 5 present
our basic type system that prevents both data races and
deadlocks. Section 6 describes some important rules for
type checking. The full set of typing rules are presented
in the appendix. Section 7 contains our type inference algo-
rithm that significantly reduces the programming overhead.
Section 8 shows how our type system supports lock level
polymorphism, while Section 9 shows how our type system
prevents deadlocks in the presence of condition variables.
Section 10 presents tree-based partial orders and Section 11
presents DAG-based partial orders. Section 12 describes our
implementation. Section 13 presents related work and Sec-
tion 14 concludes.

2 Examples
This section introduces our type system with two examples.
The later sections explain our type system in greater detail.

2.1 Combined Account Example
Figure 1 presents an example program implemented in our
type system. The program has an Account class and a Com-
binedAccount class. To prevent data races, programmers as-
sociate every object in our system with a protection mecha-
nism. In the example, the CombinedAccount class is declared
to be immutable. A CombinedAccount may not be modified
after initialization. The Account class is generic—different
Account objects may have different protection mechanisms.

2

1 class Account {
2 int balance = 0;
3
4 int balance() accesses (this) { return balance; }
5 void deposit(int x) accesses (this) { balance += x; }
6 void withdraw(int x) accesses (this) { balance -= x; }
7 }
8
9 class CombinedAccount<readonly> {

10 LockLevel savingsLevel = new;
11 LockLevel checkingLevel < savingsLevel;
12 final Account<self:savingsLevel> savingsAccount
13 = new Account;
14 final Account<self:checkingLevel> checkingAccount
15 = new Account;
16
17 void transfer(int x) locks(savingsLevel) {
18 synchronized (savingsAccount) {
19 synchronized (checkingAccount) {
20 savingsAccount.withdraw(x);
21 checkingAccount.deposit(x);
22 }}}
23 int creditCheck() locks(savingsLevel) {
24 synchronized (savingsAccount) {
25 synchronized (checkingAccount) {
26 return savingsAccount.balance() +
27 checkingAccount.balance();
28 }}}
29 ...
30 }

Figure 1: Combined Account Example

The CombinedAccount class contains two Account fields—
savingsAccount and checkingAccount. The key word self in-
dicates that these two Account objects are protected by their
own locks. The type checker statically ensures that a thread
holds the locks on these Account objects before accessing the
Account objects.

To prevent deadlocks, programmers associate every lock in
our system with a lock level. In the example, the Com-
binedAccount class declares two lock levels—savingsLevel and
checkingLevel. Lock levels are purely compile-time entities—
they are not preserved at runtime. In the example, check-
ingLevel is declared to rank lower than savingsLevel in the
partial order of lock levels. The checkingAccount belongs
to checkingLevel, while the savingsAccount belongs to sav-
ingsLevel. The type checker statically ensures that threads
acquire these locks in the descending order of lock levels.

Methods in our system may contain accesses clauses to spec-
ify assumptions that hold at method boundaries. The meth-
ods of the Account class each have an accesses clause that
specifies that the methods access the this Account object
without synchronization. To prevent data races, our type
checker requires that the callers of Account methods must
hold the locks that protect the corresponding Account object
before the callers can invoke any of the Account methods.
Without the accesses clauses, the Account methods would
not have been well-typed.

Methods in our system may also contain locks clauses. The
methods of the CombinedAccount class contain a locks clause
to indicate to callers that they may acquire locks that belong
to lock levels savingsLevel or lower. To prevent deadlocks, the
type checker statically ensures that callers of CombinedAc-

1 class BalancedTree {
2 LockLevel l = new;
3 Node<self:l> root = new Node;
4 }
5
6 class Node<self:v> {
7 tree Node<self:v> left;
8 tree Node<self:v> right;
9
10 // this this
11 // / \ / \
12 // ... x ... v
13 // / \ --> / \
14 // v y u x
15 // / \ / \
16 // u w w y
17
18 synchronized void rotateRight() locks(this) {
19 final Node x = this.right; if (x == null) return;
20 synchronized (x) {
21 final Node v = x.left; if (v == null) return;
22 synchronized (v) {
23 final Node w = v.right;
24 v.right = null;
25 x.left = w;
26 this.right = v;
27 v.right = x;
28 }}}
29 ...
30 }

Figure 2: Tree Example

count methods only hold locks that are of greater lock levels
than savingsLevel. Like the accesses clauses, the locks clauses
are useful to enable separate compilation.

2.2 Tree Example
Figure 2 presents part of a BalancedTree implemented in our
type system. A BalancedTree is a tree of Nodes. Every Node
object is declared to be protected by its own lock. To prevent
data races, the type checker statically ensures that a thread
holds the lock on a Node object before accessing the Node
object.

The Node class is parameterized by the formal lock level v.
The Node class has two Node fields—left and a right. The
Nodes left and right also belong to the same lock level v.

Our system also allows programmers to use recursive tree-
based data structures to further order the locks that belong
to the same lock level. In the example, the key word tree
indicates that the Nodes left and right are ordered less than
the this Node object in the partial order. To prevent dead-
locks, the type checker statically verifies that the rotateRight
method acquires the locks on Nodes this, x and v in the tree-
order.

The rotateRight method in the example performs a standard
rotation operation on the tree to restore the tree balance.
The type checker uses an intra-procedural intra-loop flow-
sensitive analysis to statically verify that the mutations do
not introduce cycles in the partial order, and that the chang-
ing of the partial order does not lead to deadlocks.

Our type system thus statically verifies the absence of both
data races and deadlocks in the above examples.

3

P ::= defn* e
defn ::= class cn extends c body

c ::= cn | Object
body ::= {field* meth*}
meth ::= t mn(arg*) {e}
field ::= [final]opt t fd = e
arg ::= [final]opt t x

t ::= c | int | boolean

e ::= new c | x | x = e | e.fd | e.fd = e | e.mn(e*) |
e;e | let (arg = e) in {e} | if (e) then {e} |
synchronized (e) in {e} | fork (x*) {e}

cn ∈ class names
fd ∈ field names

mn ∈ method names
x ∈ variable names

Figure 3: Grammar for Concurrent Java

3 Core Subset of Java

This section presents Concurrent Java [3, 15], a core subset
of Java [17] with formal semantics. To simplify the presenta-
tion of key ideas behind our approach, we describe our type
system formally in the context of Concurrent Java. Our
implementation, however, works for the whole of the Java
language. Concurrent Java is an extension to a sequential
subset of Java known as Classic Java [16], and has much
of the same type structure and semantics as Classic Java.
Figure 3 shows the grammar for Concurrent Java.

Each object in Concurrent Java has an associated lock that
has two states—locked and unlocked—and is initially un-
locked. The expression fork(x*) {e} spawns a new thread
with arguments (x*) to evaluate e. The evaluation is per-
formed only for its effect; the result of e is never used. Note
that the Java mechanism of staring threads using code of the
form {Thread t=...; t.start();} can be expressed equivalently
in Concurrent Java as {fork(t) {t.start();}}. The expression
synchronized (e1) in {e2} works as in Java. e1 should eval-
uate to an object. The evaluating thread holds the lock on
object e1 while evaluating e2. The value of the synchronized
expression is the result of e2. While one thread holds a lock,
any other thread that attempts to acquire the same lock
blocks until the lock is released. A newly forked thread does
not inherit locks held by its parent thread.

A Concurrent Java program is a sequence of class definitions
followed by an initial expression. A predefined class Object
is the root of the class hierarchy. Each variable and field
declaration in Concurrent Java includes an initialization ex-
pression and an optional final modifier. If the modifier is
present, then the variable or field cannot be updated after
initialization. Other Concurrent Java constructs are similar
to the corresponding constructs in Java.

4 Type System to Prevent Data Races

This section presents our type system for preventing data
races in the context of Concurrent Java. Programmers asso-
ciate every object with a protection mechanism that ensures
that accesses to the object never create data races. Pro-
grammers specify the protection mechanism for each object
as part of the type of the variables that refer to that ob-

thisThread

o1 o2

o3

Thread1 Objects Potentially Shared ObjectsThread2 Objects

thisThread

o4
o6

o7

o8

o5 o9

o10

Figure 4: An Ownership Relation

1. The owner of an object does not change over time.

2. The ownership relation forms a forest of rooted trees,
where the roots can have self loops.

3. The necessary and sufficient condition for a thread to
access to an object is that the thread must hold the
lock on the root of the ownership tree that the object
belongs to.

4. Every thread implicitly holds the lock on the corre-
sponding thisThread owner. A thread can therefore ac-
cess any object owned by its corresponding thisThread
owner without any synchronization.

Figure 5: Ownership Properties

ject. The type can specify either the mutual exclusion lock
that protects the object from unsynchronized concurrent ac-
cesses, or that threads can safely access the object without
synchronization because either 1) the object is immutable,
2) the object is accessible to a single thread, or 3) the vari-
able contains the unique pointer to the object. Unique point-
ers are useful to support object migration between threads.
The type checker then uses these type specifications to stat-
ically verify that a program uses objects only in accordance
with their declared protection mechanisms.

This section only describes our basic type system that han-
dles objects protected by mutual exclusion locks and thread-
local objects that can be accessed without synchronization.
Our race-free type system also supports unsynchronized ac-
cesses to immutable objects and objects with unique pointers
that can migrate between threads. Our race-free type sys-
tem is described in greater detail in [3]. The key to our basic
race-free type system is the concept of object ownership. Ev-
ery object in our system has an owner. An object can be
owned by another object, by itself, or by a special per-thread
owner called thisThread. Objects owned by thisThread, ei-
ther directly or transitively, are local to the corresponding
thread and cannot be accessed by any other thread. Fig-
ure 4 presents an example ownership relation. We draw an
arrow from object x to object y in the figure if object x owns
object y. Our type system statically verifies that a program
respects the ownership properties shown in Figure 5.

Figure 6 shows how to obtain the grammar for Race-Free
Java by extending the grammar for Concurrent Java. Fig-
ure 7 shows a TStack program in Race-Free Java. For sim-
plicity, all the examples in this paper use an extended lan-
guage that is syntactically closer to Java. A TStack is a stack

4

defn::=classcn〈ownerformal*〉extendscbody
c::=cn〈owner+〉|Object〈owner+〉

owner::=formal|self|thisThread|efinal
meth::=tmn(arg*)accesses(efinal*){e}
efinal::=e

formal::=f

f∈ownernames

Figure6:GrammarExtensionsforRace-FreeJava

ofTobjects.ATStackisimplementedusingalinkedlist.A
classdefinitioninRace-FreeJavaisparameterizedbyalist
ofowners.Thisparameterizationhelpsprogrammerswrite
genericcodetoimplementaclass,thencreatedifferentob-
jectsoftheclassthathavedifferentprotectionmechanisms.
InFigure7,theTStackclassisparameterizedbythisOwner
andTOwner.thisOwnerownsthethisTStackobjectand
TOwnerownstheTobjectscontainedintheTStack.Ingen-
eral,thefirstformalparameterofaclassalwaysownsthethis
object.Incaseofs1,theownerthisThreadisusedforboth
theparameterstoinstantiatetheTStackclass.Thismeans
thatthemainthreadownsTStacks1aswellasalltheTob-
jectscontainedintheTStack.Incaseofs2,themainthread
ownstheTStackbuttheTobjectscontainedintheTStack
ownthemselves.TheownershiprelationfortheTStackob-
jectss1ands2isdepictedinFigure8(assumingthestacks
containsthreeelementseach).Thisexampleillustrateshow
differentTStackswithdifferentprotectionmechanismscan
becreatedfromthesameTStackimplementation.

InRace-FreeJava,methodscancontainaccessesclausesto
specifytheassumptionsthatholdatmethodboundaries.
Methodsspecifytheobjectstheyaccessthattheyassumeare
protectedbyexternallyacquiredlocks.Callersarerequired
toholdthelocksontherootownersoftheobjectsspecified
intheaccessesclausebeforetheyinvokeamethod.Inthe
example,thevalueandnextmethodsintheTNodeclass
assumethatthecallersholdthelockontherootownerof
thethisTNodeobject.Withouttheaccessesclause,thevalue
andnextmethodswouldnothavebeenwell-typed.

5TypeSystemtoPreventDeadlocks
Thissectionpresentsourtypesystemforpreventingboth
dataracesanddeadlocksinthecontextofConcurrentJava.
Topreventdeadlocks,programmersspecifyapartialorder
amongallthelocks.Thetypecheckerstaticallyverifiesthat
wheneverathreadholdsmorethanonelock,thethread
acquiresthelocksinthedescendingorder.Thissectiononly
describesourbasictypesystemthatallowsprogrammers
topartitionthelocksintoafixednumberofequivalence
classesandspecifyapartialorderamongtheequivalence
classes.Oursystemalsoallowsprogrammerstouserecursive
tree-baseddatastructurestodescribethepartialorder—
wedescribehowourtypesystemhandlestree-basedpartial
ordersinSection10.

Figure9describeshowtoobtainthegrammarforDeadlock-
FreeJavabyextendingthegrammarforRace-FreeJava.
WecalltheresultinglanguageSafeConcurrentJava.Safe
ConcurrentJavaallowsprogrammerstodefinelocklevelsin
classdefinitions.AlocklevelislikeastaticfieldinJava—

1//thisOwnerownstheTStackobject
2//TOwnerownstheTobjectsinthestack.
3
4classTStack<thisOwner,TOwner>{
6TNode<this,TOwner>head=null;
7
8T<TOwner>pop()accesses(this){
9if(head==null)returnnull;
10T<TOwner>value=head.value();
11head=head.next();
12returnvalue;
13}
14...
15}
16classTNode<thisOwner,TOwner>{
17T<TOwner>value;
18TNode<thisOwner,TOwner>next;
19
20T<TOwner>value()accesses(this){
21returnvalue;
22}
23TNode<thisOwner,TOwner>next()accesses(this){
24returnnext;
25}
26...
27}
28classT<thisOwner>{intx=0;}
29
30TStack<thisThread,thisThread>s1=
31newTStack<thisThread,thisThread>;
32TStack<thisThread,self>s2=
33newTStack<thisThread,self>;

Figure7:StackofTObjectsinRace-FreeJava

s1.head
(TNode)(TNode)

s1.head.nexts2.head.next.next
(TNode)

s1.head.next.next
(TNode)

s2.head.next.value
s2.head.values2.head.next.next.value

(T)
(T)

(T)

s2.head.next s2.head
(TNode)(TNode)

s2 (TStack)

thisThread

s1 (TStack)

s1.head.value
(T)s1.head.next.value

s1.head.next.next.value

(T)
(T)

Figure8:OwnershipRelationforTStackss1ands2

alocklevelisaper-classentityratherthanaper-object
entity.ButunlikestaticfieldsinJava,locklevelsareused
onlyforcompile-timetypecheckingandarenotpreserved
atruntime.Programmerscanspecifyapartialorderamong
thelocklevelsusingthe<and>syntaxinthelocklevel
declarations.Sinceaprogramhasafixednumberoflock
levels,ourtypecheckercanstaticallyverifythatthelock
levelsdoindeedformapartialorder.EverylockinSafe
ConcurrentJavabelongstosomelocklevel.Notethatthe
setoflocksinRace-FreeJavaisexactlythesetofobjects
thataretherootsofownershiptrees.Alockis,therefore,
anobjectthathasselfasitsfirstowner.InSafeConcurrent
Java,everyselfownerisaugmentedwiththelocklevelthat
thecorrespondinglockbelongsto.Thepropertiesofour
locklevelsaresummarizedinFigure10.

IntheexampleshowninFigure1,theCombinedAccount
classdefinestwolocklevels—savingsLevelandcheckingLevel.
checkingLevelisdeclaredtobelessthansavingsLevel.ACom-
binedAccountcontainsasavingsAccountandacheckingAc-
count.Theseobjectshaveselfastheirfirstowners—these
objectsarethereforelocks.ThesavingsAccountisdeclaredto

5

6 .0

0

body ::= {level* field* meth*}
level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*

owner ::= formal | self:cn.l | thisThread | efinal
meth ::= t mn(arg*) accesses (efinal*) locksclause {e}

locksclause ::= locks (cn.l* lock*)
lock ::= efinal

l ∈ lock level names

Figure 9: Grammar Extensions for Deadlock-Free Java

1. The lock levels form a partial order.

2. Objects that own themselves are locks. Every lock
belongs to some lock level. The lock level of a lock
does not change over time.

3. The necessary and sufficient condition for a thread to
acquire a new lock l is that the levels of all the locks
that the thread currently holds are greater than the
level of l.

4. A thread may also acquire a lock that it already holds.
The lock acquire operation is redundant in that case.

Figure 10: Lock Level Properties

belong to savingsLevel while the checkingAccount is declared
to belong to checkingLevel. In the example, both the meth-
ods of CombinedAccount acquire the lock on savingsAccount
before they acquire the lock on checkingAccount to satisfy
the condition that locks must be acquired in the descending
order.

Methods in Safe Concurrent Java can have locks clauses
in addition to accesses clauses to specify assumptions at
method boundaries. A locks clause can contain a set of lock
levels. These lock levels are the levels of locks that the cor-
responding method may acquire. To ensure that a program
is free of deadlocks, a thread that calls the method can only
hold locks that are of a higher level than the levels specified
in the locks clause. In the example in Figure 1, both the
methods of CombinedAccount contain a locks(savingsLevel)
clause. A thread that invokes either of these methods can
only hold locks whose level is greater than savingsLevel.

A locks clause can also contain locks in addition to lock lev-
els. If a locks clause contains an object l, then a thread
that invokes the corresponding method must either hold the
lock on object l (in which case re-acquiring the lock within
the method is redundant), or the thread can only hold locks
whose level is greater than the level of l. This is useful to
support the case where a synchronized method of a class
calls another synchronized method of the same class. Fig-
ure 11 shows part of a self-synchronized Vector implemented
in Safe Concurrent Java.1 A self-synchronized class is a class
that has self as its first owner instead of a formal owner pa-
rameter. Methods of a self-synchronized class can assume
that the this object owns itself—the methods can therefore
synchronize on this and access the this object without requir-
ing external locks using the accesses clause. In the example,

1As we mentioned before, all the examples in this paper use
an extended language that is syntactically closer to Java.

1 class Vector<self:Vector.l, elementOwner> {
2 LockLevel l = new;
3
4 int elementCount = 0;
5 ...
6 int size() locks (this) {
7 synchronized (this) {
8 return elementCount;
9 }}
10
11 boolean isEmpty() locks (this) {
12 synchronized (this) {
13 return (size() == 0);
14 }}
15 }

Figure 11: Self-Synchronized Vector

the isEmpty method acquires the lock on this and invokes
the size method which also acquires the lock on this. This
does not violate our condition that locks must be acquired
in the descending order because the second lock acquire is
redundant.

6 Type Checking
The previous sections presented the grammar for Safe Con-
current Java in Figures 3, 6, and 9. This section describes
some of the important rules for type checking. The full set
of rules and the complete grammar can be found in the ap-
pendix.

6.1 Rules for Type Checking
The core of our type system is a set of rules for reasoning
about the typing judgment: P ; E; ls; lmin ` e : t. P , the
program being checked, is included here to provide informa-
tion about class definitions. E is an environment providing
types for the free variables of e. ls describes the set of locks
held when e is evaluated. lmin is the minimum level among
the levels of all the locks held when e is evaluated. t is the
type of e.

The judgment P ; E ` e : t states that e is of type t, while
the judgment P ; E; ls; lmin ` e : t states that e is of type
t provided ls contains the necessary locks to safely evaluate
e and lmin is greater that the levels of all the locks that are
newly acquired when evaluating e.

A typing environment E is defined as follows, where f is a
formal owner parameter of a class.

E ::= ∅ | E, [final]opt t x | E, owner f

A lock set ls is defined as follows, where RO(x) is the root
owner of x.

ls ::= thisThread | ls, lock | ls, RO(efinal)

A minimum lock level lmin is defined as follows, where
LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k. Note that LUB(...)
is not computed—it is just an expression used as such for
type checking. The lock level ∞ denotes that no locks are
currently held.

lmin ::= ∞ | cn.l | LUB(cn1.l1 ... cnk.lk)

6

The rule for fork e checks the expression e using a lock set
that contains thisThread and is otherwise empty. Since a
new thread does not inherit locks held by its parent, lmin for
the child is set to ∞. The environment E might have some
types that contain thisThread. But the owner thisThread in
the parent thread is not the same as the owner thisThread
in the child thread. So, all the thisThread owners in the
environment must be changed to something else; we use the
special owner otherThread for that.

[EXP FORK]

P ; E; ls; lmin ` xi : ti
gi = final ti[otherThread/thisThread] xi

P ; g1..n; thisThread; ∞ ` e : t

P ; E; ls; lmin ` fork (x1..n) {e} : int

The rule for acquiring a new lock using synchronized e1 in e2

checks that e1 is a lock of some level cn.l. The rule checks
that cn.l is less than lmin. The rule then type checks e2 in
an extended lock set that includes e1 and with lmin set to
cn.l. A lock is a final expression that owns itself. A final
expression is either a final variable, or a field access e.fd
where e is a final expression and fd is a final field.

[EXP SYNC]
P ; E `final e1 : cn′〈self:cn.l ...〉

P ` cn.l < lmin

P ; E; ls, e1; cn.l ` e2 : t2

P ; E; ls; lmin ` synchronized e1 in e2 : t2

Before we proceed further with the rules, we give a formal
definition for RootOwner(e). The root owner of an expres-
sion e that refers to an object is the root of the ownership
tree to which the object belongs. It could be thisThread, or
an object that owns itself.

[ROOTOWNER THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉
P ; E ` RootOwner(e) = thisThread

[ROOTOWNER SELF]

P ; E ` e : cn〈self:cn′.l′ o∗〉
P ; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE]

P ; E ` e : cn〈o1..n〉
P ; E `final o1 : c1 P ; E ` RootOwner(o1) = r

P ; E ` RootOwner(e) = r

If the owner of an expression is a formal owner parameter,
then we cannot determine the root owner of the expression
from within the static scope of the enclosing class. In that
case, we define the root owner of e to be RO(e).

[ROOTOWNER FORMAL]

P ; E ` e : cn〈o1..n〉
E = E1, owner o1, E2

P ; E ` RootOwner(e) = RO(e)

The rule for accessing field e.fd checks that e is a well-typed
expression of some class type cn〈o1..n〉, where o1..n are actual
owner parameters. It verifies that the class cn with formal
parameters f1..n declares or inherits a field fd of type t and
that the thread holds the lock on the root owner of e. Since
t is declared inside the class, it might contain occurrences of
this and the formal class parameters. When t is used outside
the class, we rename this with the expression e, and the for-
mal parameters with their corresponding actual parameters.
The rule for assigning to a field is similar.

[EXP REF]
P ; E; ls; lmin ` e : cn〈o1..n〉

P ` ([final]opt t fd) ∈ cn〈f1..n〉
P ; E ` RootOwner(e) = r r ∈ ls

P ; E; ls; lmin ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP ASSIGN]
P ; E; ls; lmin ` e : cn〈o1..n〉

P ` (t fd) ∈ cn〈f1..n〉
P ; E ` RootOwner(e) = r r ∈ ls

P ; E; ls; lmin ` e′ : t[e/this][o1/f1]..[on/fn]

P ; E; ls; lmin ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]

The rule for invoking a method checks that the arguments
are of the right type and that the thread holds the locks on
the root owners of all final expressions in the accesses clause
of the method. The rule ensures that lmin is greater than all
the levels specified in the locks clause of the method. The
rule also ensures that for all the locks specified in the locks
clause, either the lock is in the lock set (in which case acquir-
ing that lock within the method is redundant), or the level
of that lock is less than lmin. The expressions and types used
inside the method are renamed appropriately when used out-
side their class.

[EXP INVOKE]

P ; E; ls; lmin ` e : cn〈o1..n〉
P ` (t mn(tj yj

j∈1..k) accesses(e′∗)
locks(cn.l∗ lock∗) ...) ∈ cn〈f1..n〉

P ; E; ls; lmin ` ej : tj [e/this][o1/f1]..[on/fn]

P ; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) = r′i r′i ∈ ls

P ` cni.li < lmin

(P ; E ` level(locki) < lmin) or (locki ∈ ls)

P ; E; ls; lmin ` e.mn(e1..k) : t[e/this][o1/f1]..[on/fn]

The rule for type checking a method assumes that the locks
on the root owners of all the final expressions specified in
the accesses clause are held. The rules also assumes that the

7

levels of all the locks held by the thread are greater than the
levels specified in the locks clause and the levels of the locks
specified in the locks clause. The rule then type checks the
method body under these assumptions.

[METHOD]
P ; E, arg1..n `final ei : ti

P ; E, arg1..n ` RootOwner(ei) = ri

ls = thisThread, r1..r

P ; E, arg1..n ` level(lockj) = cn′j .l′j
lmin = LUB(cnj .lj

j∈1..k cn′j .l′j
j∈1..l)

P ; E, arg1..n; ls; lmin ` e : t

P ; E ` t mn(arg1..n) accesses(e1..r)

locks(cnj .lj
j∈1..k lock1..l) {e}

Our type checker also statically verifies that the lock levels
declared in the program do indeed form a partial order. Our
type checker ensure that there is no cycle of the following
form.

[PARTIAL ORDER]

∃cn0.l0..cnn−1.ln−1 such that

∀i=0..n−1 P ` cni.li < cnj .lj , where j = (i + 1) mod n

P ` ¬ LockLevelsOK(P)

6.2 Soundness of the Type System
Our type checking rules ensure that for a program to be
well-typed, the program respects the properties described
in Figures 5 and 10. In particular, our type checking rules
ensure that a thread can read or write an object only if the
thread holds the lock on the root owner of that object, and
that whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. The properties
in Figure 5 imply that program is free of data races, while
the properties in Figure 10 imply that a program is free of
deadlocks. Well-typed programs in our system are therefore
guaranteed to be free of both data races and deadlocks.

A complete syntactic proof [29] of type soundness can be
constructed by defining an operational semantics for Safe
Concurrent Java (by extending the operational semantics of
Classic Java [16]) and then proving that well-typed programs
do not reach an error state and that the generalized subject
reduction theorem holds for well-typed programs. The sub-
ject reduction theorem states that the semantic interpreta-
tion of a term’s type is invariant under reduction. The proof
is straight-forward but tedious, so it is omitted here.

6.3 Runtime Overhead
The system described so far is a purely static type system.
The ownership relations and the lock levels are used only for
compile-time type checking and are not preserved at run-
time. Consequently, Safe Concurrent Java programs have
no runtime overhead when compared to regular Concurrent
Java programs. In fact, one way to compile and run a Safe
Concurrent Java program is to convert it into a Concurrent
Java program after type checking, by removing the type pa-

1 class A<oa1, oa2> {...};
2 class B<ob1, ob2, ob3> extends A<ob2, ob3> {...};
3
4 class C<oc1> {
5 void m(B<thisThread, this, oc1> b) {
6 A a1;
7 B b1;
8 b1 = b;
9 a1 = b1;
10 }
11 }

Figure 12: An Incompletely Typed Method

rameters, the lock level declarations, the accesses clauses,
and the locks clauses from the program.

The Java language, however, is not a purely statically-typed
language. Java allows downcasts that are checked at run-
time. Suppose an object with declared type Object〈o〉 is
downcast to Vector〈o,e〉. Since the result of this operation
depends on information that is only available at runtime,
our type checker cannot verify at compile-time that e is the
right owner parameter even if we assume that the object is
indeed a Vector. To safely support the Java downcast opera-
tion, our implementation keeps some ownership information
at runtime, but only for objects that can be potentially in-
volved in downcasts into types with multiple parameters.
Section 12 describes our implementation.

The extra type information available in our system can be
also used to enable program optimizations. For example,
objects that are known to be thread-local can be allocated
in a thread-local heap instead of the global heap. A thread-
local heap may be separately garbage collected, and when
the thread dies, the entire space in the thread-local heap
may be reclaimed at once.

7 Type Inference
Although our type system is explicitly typed in principle, it
would be onerous to fully annotate every method with the
extra type information that our system requires. Instead,
we use a combination of inference and well-chosen defaults
to significantly reduce the number of annotations needed in
practice. We emphasize that our approach to inference is
purely intra-procedural and we do not infer method signa-
tures or types of instance variables. Rather, we use a default
completion of partial type specifications in those cases to
minimize the required annotations. This approach permits
separate compilation. Section 7.1 below describes our intra-
procedural inference algorithm, while Section 7.2 describes
our default types.

7.1 Intra-Procedural Type Inference
In our system, it is usually unnecessary to explicitly aug-
ment the types of method-local variables with their owner
parameters. A simple inference algorithm can automatically
deduce the owner parameters for otherwise well-typed pro-
grams. We illustrate our algorithm with an example. Fig-
ure 12 shows a class hierarchy and an incompletely-typed
method m. The types of local variables a1 and b1 inside m do
not contain their owner parameters explicitly. The inference
algorithm works by first augmenting such incomplete types
with the appropriate number of distinct, unknown owner

8

6 A<x1, x2> a1;
7 B<x3, x4, x5> b1;

Figure 13: Types Augmented With Unknown Owners

Statement 8 ==> x3 = thisThread, x4 = this, x5 = oc1
Statement 9 ==> x1 = x4, x2 = x5

Figure 14: Constraints on Unknown Owners

parameters. For example, since a1 is of type A, the algo-
rithm augments the type of a1 with two owner parameters.
Figure 13 shows augmented types for the example in Fig-
ure 12. The goal of the inference algorithm is to find known
owner parameters that can be used in place of the each of
the unknown owner parameters to make the program be well-
typed.

The inference algorithm treats the body of the method as a
bag of statements. The algorithm works by collecting con-
straints on the owner parameters for each assignment or
function invocation in the method body. Figure 14 shows
the constraints imposed by Statements 8 and 9 in the ex-
ample in Figure 12. Note that all the constraints are of
the form of equality between two owner parameters. Con-
sequently, the constraints can be solved using the standard
Union-Find algorithm in almost linear time [10]. If the so-
lution is inconsistent, that is, if any two known owner pa-
rameters are constrained to be equal to one another by the
solution, then the inference algorithm returns an error and
the program does not type check. Otherwise, if the solution
is incomplete, that is, if there is no known parameter that is
equal to an unknown parameter, then the algorithm replaces
all such unknown parameters with thisThread.

7.2 Default Types
In addition to the intra-procedural type inference, our sys-
tem provides well-chosen defaults to reduce the number of
annotations needed in many common cases. We are also
considering allowing user-defined defaults to cover specific
sharing patterns that might occur in user code. The follow-
ing are some default types currently provided by our system.

If a class is declared to be default-single-threaded, our sys-
tem adds the following default type annotations wherever
they are not explicitly specified by the programmer. If the
type of any instance variable in the class or any method ar-
gument or return value is not explicitly parameterized, the
system augments the type with an appropriate number of
thisThread owner parameters. If a method in the class does
not contain an accesses or locks clause, the system adds an
empty accesses or locks clause to the method. With these de-
fault types, single-threaded programs require no extra type
annotations.

If a class is declared to be default-self-synchronized, our sys-
tem adds the following default type annotations wherever
they are not explicitly specified by the programmer. If the
type of any instance variable is not explicitly parameterized,
the system augments the type with an appropriate number of
this owner parameters. If the type of any method argument
or return value is not explicitly parameterized, the system

defn ::= class cn〈owner formal* 〉 whereclause
extends c body

formal ::= f | self:v
locklevel ::= cn.l | v

whereclause ::= where (locklevel > locklevel)*
locksclause ::= locks (locklevel* lock*)

v ∈ formal lock level names

Figure 15: Grammar Extensions for Level Polymorphism

1 class Stack<self:v, elementOwner> where (v > Vector.l) {
2 Vector<self:Vector.l, elementOwner> vec = new Vector;
3 ...
4 int size() locks(this) {
5 synchronized (this) {
6 return vec.size();
7 }}
8 }

Figure 16: Self-Synchronized Stack Using Vector

augments the type with fresh formal owner parameters. If a
method in the class does not contain an accesses clause, the
system adds an accesses clause that contains all the method
arguments. If a method in the class does not contain a locks
clause, the system adds a locks(this) clause. With these de-
fault types, many self-synchronized classes require almost no
extra type annotations.

8 Lock Level Polymorphism
This section describes how our type system supports poly-
morphism in lock levels. In the type system described in
Section 5, the level of each lock was known at compile-time.
But programmers may sometimes want to write code where
the exact levels of some locks may not be known statically—
only some ordering constraints among the unknown lock
levels may be known statically. Lock level polymorphism
enables this kind of programming. To simplify the presen-
tation, this section describes how our type system supports
lock level polymorphism in the context of Safe Concurrent
Java. Figure 15 shows how the grammar of Safe Concurrent
Java can be extended to support lock level polymorphism.

Classes may be parameterized with formal lock level param-
eters in addition to formal owner parameters. Ordering con-
straints among the formal lock level parameters may be spec-
ified using where clauses. This is somewhat similar to the use
of where clauses in [11, 24]. Figure 16 shows part of a self-
synchronized Stack implemented using the self-synchronized
Vector shown in Figure 11. In the example, the lock level
of the this Stack object is a formal parameter v. The where
clause constrains v to be greater than Vector.l. It is therefore
legal for the synchronized Stack.size method to call the syn-
chronized Vector.size method. The type checker statically
verifies that locks are acquired in the descending order of
lock levels.

9 Condition Variables
This section describes how our system prevents deadlocks in
the presence of condition variables. Java provides condition
variables in the form of the wait and notify methods on Ob-
ject. Since a thread can wait on a condition variable as well
as on a lock, it is possible to have a deadlock that involves

9

locksclause ::= locks ([∞]opt locklevel* lock*)

e ::= ... | e.wait | e.notify

Figure 17: Grammar Extensions for Condition Variables

condition variables as well as locks. There is no simple rule
like the ordering rule for locks that can avoid this kind of
deadlock. The lock ordering rule depends on the fact that a
thread must be holding a lock to keep another thread wait-
ing for that lock. In the case of conditions, the thread that
will notify cannot be distinguished in such a simple way.

To simplify the presentation, this section describes how our
type system handles condition variables in the context of
Safe Concurrent Java. Figure 17 shows how the grammar
of Safe Concurrent Java can be extended to support condi-
tion variables. The expression e.wait and e.notify are similar
to the wait and notifyAll methods in Java. e must be a fi-
nal expression that evaluates to an object, and the current
thread must hold the lock on e. On executing wait, the cur-
rent thread releases the lock on e and suspends itself. The
thread resumes execution when some other thread invokes
notify on the same object. The thread re-acquires the lock
on e before resuming execution after wait.

To prevent deadlocks in the presence of condition variables,
our system enforces the following constraint. A thread can
invoke e.wait only if the thread holds no locks other than the
lock on e. Since a thread releases the lock on e on executing
e.wait, the above constraint implies that any thread that
is waiting on a condition variable holds no locks. This in
turn implies that there cannot be a deadlock that involves
a condition variable. To statically verify that a program
respects the above constraint, our type system requires that
any method m that contains a call to e.wait must have a
locks (∞) clause or a locks (∞ e) clause. The former locks
clause indicates that a thread holds no locks when it invokes
m, while the later locks clause indicates that a thread can
only hold the lock on e when it invokes m. Within the
method, our type checker ensures when type checking e.wait
that the lockset contains only the lock on e and no other
lock. The rules for type checking are shown below, assuming
the locks clause of the enclosing method is included in the
environment E.

[EXP WAIT]

P ; E ` Method has locks(∞ [e]opt) clause

P ; E `final e ls = {e}
P ; E; ls; lmin ` e.wait : int

[EXP NOTIFY]
P ; E `final e e ∈ ls

P ; E; ls; lmin ` e.notify : int

10 Tree-Based Partial Orders
This section describes how our type system supports tree-
based partial orders. Figure 18 shows the grammar exten-
sions to Safe Concurrent Java to support tree-based partial

field ::= [final]opt [tree]opt t fd = e

Figure 18: Grammar Extensions for Tree Ordering

Stmt Information in Environment After
Checking Statement in Figure 2

23 x=this.right
v=x.left
w=v.right

24 x=this.right w is Root this not in Tree(w)
v=x.left x not in Tree(w)

v not in Tree(w)
25 x=this.right v is Root this not in Tree(v)

w=x.left x not in Tree(v)
w not in Tree(v)

26 v=this.right x is Root this not in Tree(x)
w=x.left v not in Tree(x)

27 v=this.right
w=x.left
x=v.right

Figure 19: Illustration of Flow-Sensitive Analysis

orders. Programmers can declare fields in objects to be tree
fields. If object x has a tree field fd that contains a pointer
to object y, we say that there is a tree edge fd from x to y.
x is the parent of y and y is a child of x. Our type system
ensures that the graph induced by the set of all tree edges in
the heap is indeed a forest of trees. Any data structure that
has a tree backbone can be used to describe the partial order
in our system. This includes doubly linked lists, trees with
parent pointers, threaded trees, and balanced search trees.

Locks that belong to the same lock level are further ordered
according to the tree-order. Suppose x and y are two locks
(that is, they are objects that own themselves) and that x
and y belong to the same lock level. Suppose a thread t holds
the lock on x and reads a tree field fd of x to get a pointer to
y. So y is a child of x. Our type system then allows thread
t to also acquire the lock on y while holding the lock on x.
Note that as long as t holds the lock on x, no other thread
can modify x, so no other thread can make y not a child of
x. The type checking rule is shown below, assuming that for
every pair of final variables x and y, environment E contains
information about whether the objects x and y are related
by tree edges.

[EXP SYNC CHILD]

∀y∈ls (P ; E ` level(y) > lmin or P ; E ` y is an ancestor of x)

x′ ∈ ls P ; E ` x is a child of x′

P ; E ` level(x) = level(x′) = lmin

P ; E; ls, x; lmin ` e : t

P ; E; ls; lmin ` synchronized x in e : t

Figure 2 presents an example with a tree-based partial order.
The Node class is self-synchronized, that is, the this Node
object owns itself. The lock level of the this Node object

10

field ::= [final]opt [tree]opt t fd = e | final dag t fd = e

Figure 20: Grammar Extensions for DAG Ordering

is the formal parameter v. A Node has two tree fields left
and right. The Nodes left and right own themselves and also
belong to lock level v. Nodes left and right are therefore
ordered less than the this Node object in the partial order.
In the example, the rotateRight method acquires the locks
on Nodes this, x and v in the tree-order.

Our type system allows a limited set of mutations on trees
at runtime. The type checker uses a simple intra-procedural
intra-loop flow-sensitive analysis to check that the mutations
do not introduce cycles in the trees. We illustrate our flow-
sensitive analysis using the example in Figure 2. The type
checker keeps the following additional information in the en-
vironment E for every pair of final variables x and y: 1)
If the objects x and y are related by a tree edge, 2) If x
is the root of a tree, and 3) If x is a root and y is not in
the tree rooted at x. Figure 19 contains the information
stored in the environment after the type checking of vari-
ous statements in the rotateRight method in Figure 2. Since
the analysis is flow-sensitive, the environment changes after
checking each statement.

The rules for mutating a tree are as follows. Deleting a tree
edge (for example, setting a tree field to null or over-writing
a tree field) requires no extra checking. A tree edge from
x to x′ may be added only if x′ is the root of a tree and
x is not in the tree rooted at x′. The rule is shown below.
Note that if x′ is a unique pointer to an object (for example,
x′ is newly created using the expression new c), then x′ is
trivially a root. Similarly, if x is a unique pointer, then x
cannot be in the tree rooted at x′.

[EXP TREE ASSIGN]

P ; E; ls; lmin ` x : cn〈o1..n〉
P ` (tree t fd) ∈ cn〈f1..n〉

P ; E ` RootOwner(x) = r r ∈ ls

P ; E; ls; lmin ` x′ : t[x/this][o1/f1]..[on/fn]

P ; E ` x′ is Root

P ; E ` x not in Tree(x′)
P ; E; ls; lmin ` x.fd = x′ : t[x/this][o1/f1]..[on/fn]

11 DAG-Based Partial Orders
Our type system also allows programmers to use directed
acyclic graphs (DAGs) to describe the partial order. Fig-
ure 20 shows the grammar extensions to Safe Concurrent
Java to support DAG-based partial orders. Programmers
can declare fields in objects to be dag fields. Our type sys-
tem ensures that no object can be both part of a tree and
part of a DAG. Locks that belong to the same lock level are
further ordered according to the DAG-order. DAGs used for
partial orders are monotonic. DAG fields cannot be modified
once initialized. Only newly created nodes may be added to
a DAG by initializing the newly created nodes to contain
DAG edges to existing DAG nodes.

Lines Lines
Program of Code Changed

elevator 523 15
http 563 26
chat 308 22
stock quote 242 12
game 087 11
phone 302 10

Figure 21: Programming Overhead

12 Implementation

We have a prototype implementation of our type system.
Our implementation handles all the features of the Java lan-
guage including threads, constructors, arrays, exceptions,
static fields, interfaces, and runtime downcasts. The type
system we implemented is also more expressive than the type
system we described formally in earlier sections of this pa-
per. Our implementation supports unsynchronized accesses
to immutable objects and objects with unique pointers [3].

Our implementation also supports parameterized methods
in addition to parameterized classes. This is useful in many
cases. For example, the PrintStream class has a print(Object)
method. Let us say, the Object argument is owned by Ob-
jectOwner. If we did not have parameterized methods, then
the PrintStream class would have to have an ObjectOwner pa-
rameter. Not only would this be unnecessarily tedious, but
it would also mean that all objects that can be printed by
a PrintStream must have the same protection mechanism.
Having parameterized methods allows us to implement a
generic print(Object) method.

We also support safe runtime downcasts in our implementa-
tion. This is important because Java is not a fully statically-
typed language. It allows downcasts that are checked at
runtime. Suppose an object with declared type Object〈o〉 is
downcast to Vector〈o,e〉. We cannot verify at compile-time
that e is the right owner parameter even if we assume that
the object is indeed a Vector. We use type passing to sup-
port safe runtime downcasts. Our technique is similar to
the technique for implementing parametric polymorphism
in Java described in [27]. We only keep runtime ownership
and lock level information for objects that are potentially
involved in downcasts to types with multiple parameters.

To gain preliminary experience, we implemented several Java
programs in our system. These include elevator, a real time
discrete event simulator [28, 7], an http server, a chat server,
a stock quote server, a game server, and phone, a database-
backed information sever. These programs exhibit a variety
of sharing patterns. Our type system was expressive enough
to support these programs. In each case, once the sharing
pattern of the program was known, adding the extra type
annotations was a fairly straight forward process. Figure 21
presents a measure of the programming overhead involved.
The figure shows the lines of code that needed type annota-
tions.

In our experience, we found that threads rarely need to hold

11

multiple locks at the same time. In cases where threads
do hold multiple locks simultaneously, the threads usually
acquire the multiple locks as they cross abstraction bound-
aries. For example, in elevator, threads acquire the lock on a
Floor object and then invoke synchronized methods on a Vec-
tor object. Even though such programs use an unbounded
number of locks, these locks can be classified into a small
number of lock levels. These programs are therefore easily
expressed in our type system.

We also note that in cases where threads do hold multiple
locks simultaneously, it is usually because of conservative
programming. In the elevator example mentioned above,
the Vector object is contained within the Floor object. Ac-
quiring the lock on the Vector object is thus unnecessary. In
fact, programmers can use an ArrayList instead of a Vector.
The reason many Java programs are conservative is because
there is no mechanism in Java to prevent data races or dead-
locks. For example, Java programs that use ArrayLists risk
data races because ArrayLists may be accessed without ap-
propriate synchronization in shared contexts. But since our
type system guarantees data race freedom and deadlock free-
dom, programmers can employ aggressive locking disciplines
without sacrificing safety.

13 Related Work
There has been much research on approaches that help pro-
grammers detect data races and deadlocks in multithreaded
programs.

13.1 Static Tools
Tools like Warlock [26] and Sema [20] use annotations sup-
plied by programmers to statically detect potential data
races and deadlocks in a program. The Extended Static
Checker for Java (Esc/Java) [21, 12] is another annotation
based system that uses a theorem prover to statically detect
many kinds of errors including data races and deadlocks.
Another recent system [14] assumes bugs to be deviant be-
havior to statically extract and check correctness conditions
that a system must obey without requiring programmer an-
notations. While these tools are useful in practice, they
are not sound, in that they do not certify that a program
is race-free or deadlock-free. For example, ESC/Java does
not always verify that a partial order of locks declared in a
program is indeed a partial order.

13.2 Dynamic Tools
There are many systems that detect data races and dead-
locks dynamically. These include systems developed in the
scientific parallel programming community like [13, 18], tools
like Eraser [25], and tools for detecting data races in Java
programs like [28, 7]. Eraser dynamically monitors all lock
acquisitions to test whether a linear order exists among the
locks that is respected by every thread. Dynamic tools have
the advantage that they can check unannotated programs.
However, these tools are not comprehensive—they may fail
to detect certain errors due to insufficient test coverage.

13.3 Language Mechanisms
To our knowledge, Concurrent Pascal is the first race-free
programming language [5]. Programs in Concurrent Pascal

used synchronized monitors to prevent data races. But mon-
itors in Concurrent Pascal were restricted in that threads
could share data with monitors only by copying the data. A
thread could not pass a reference to an object to a monitor.

More recently, researchers have proposed type systems to
prevent data races in object-oriented programs. Race Free
Java [15] extends the static annotations in Esc/Java into a
formal race-free type system. Guava [2] is another dialect of
Java for preventing data races. Our race-free type system
published earlier [3] lets programmers write generic code to
implement a class, and create different objects of the same
class that have different protection mechanisms. Our type
system described in this paper extends the race-free type
system [3] to prevent both data races and deadlocks.

13.4 Message Passing Systems
There are several systems that statically check for races and
deadlocks in message passing systems [19, 6]. The program-
ming model used in these systems is different from the Java
programming model. Unlike Java programs, these programs
do not access shared objects in a heap.

13.5 Related Type Systems
Our type system is related to several other type systems
discussed in literature, even though their goals and tech-
niques were different. The concept of object ownership used
in this paper is similar to the one in ownership types [9,
8]. Ownership types were motivated by software engineer-
ing principles and were used to restrict object aliasing. Our
way of parameterizing classes is similar to the proposals for
parametric types for Java [24, 4, 1, 27], except that the pa-
rameters in our system are values and not types. Our use of
where clauses is somewhat similar to the use of where clauses
in [11, 24]. Our accesses clauses and locks clauses are similar
to type and effect systems [23].

14 Conclusions

Multithreaded programming is difficult and error prone. This
paper presents a new static type system for multithreaded
programs; well-typed programs in our system are guaranteed
to be free of both data races and deadlocks. Our type sys-
tem allows programmers to partition the locks into a fixed
number of lock levels and specify a partial order among the
lock levels. Our system also allows programmers to use re-
cursive tree-based data structures to further order locks that
belong to the same lock level. The type checker then stat-
ically verifies that whenever a thread holds more than one
lock, the thread acquires the locks in the descending order.
The type checker also uses an intra-procedural intra-loop
flow-sensitive analysis to check that mutations to trees used
for describing partial orders do not introduce cycles in the
partial order, and that the changing of the partial order does
not lead to deadlocks. We do not know of any other sound
static system for preventing deadlocks that allows changes
to the partial order at runtime. We implemented our type
system for Java. Our preliminary experience indicates that
our type system is sufficiently expressive and requires little
programming overhead.

12

References
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding

type parameterization to the Java language. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 1997.

[2] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A
dialect of Java without data races. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2000.

[3] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity
to the Java programming language. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[5] P. Brinch-Hansen. The programming language
Concurrent Pascal. In IEEE Transactions on Software
Engineering SE-1(2), June 1975.

[6] S. Chaki, S. K. Rajamani, and J. Rehof. Types as
models: Model checking message-passing programs. In
Principles of Programming Languages (POPL),
January 2002.

[7] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs.
In Programming Language Design and Implementation
(PLDI), June 2002.

[8] D. G. Clarke, J. Noble, and J. M. Potter. Simple
ownership types for object containment. In European
Conference for Object-Oriented Programming
(ECOOP), June 2001.

[9] D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press, 1991.

[11] M. Day, R. Gruber, B. Liskov, and A. C. Myers.
Subtypes vs. where clauses: Constraining parametric
polymorphism. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
October 1995.

[12] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. Research Report 159,
Compaq Systems Research Center, 1998.

[13] A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections. In
ACM/ONR Workshop on Parallel and Distributed
Debugging (AOWPDD), May 1991.

[14] D. R. Engler, D. Y. Chen, S. Hallem, A. Chon, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Symposium on Operating Systems Principles (SOSP),
October 2001.

[15] C. Flanagan and S. N. Freund. Type-based race
detection for Java. In Programming Language Design
and Implementation (PLDI), June 2000.

[16] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In Principles of Programming Languages
(POPL), January 1998.

[17] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[18] G. Ien Cheng, M. Feng, C. E. Leiserson, K. H.
Randall, and A. F. Stark. Detecting data races in Cilk
programs that use locks. In Symposium on Parallel
Algorithms and Architectures (SPAA), June 1998.

[19] A. Igarashi and N. Kobayashi. A generic type system
for the Pi-calculus. In Principles of Programming
Languages (POPL), January 2001.

[20] J. A. Korty. Sema: A lint-like tool for analyzing
semaphore usage in a multithreaded UNIX kernel. In
USENIX Winter Technical Conference, January 1989.

[21] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking
Java programs via guarded commands. Research
Report 002, Compaq Systems Research Center, 1999.

[22] A. Lister. The problem of nested monitor calls. In
Operating Systems Review 11(3), July 1977.

[23] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Principles of Programming Languages
(POPL), January 1988.

[24] A. C. Myers, J. A. Bank, and B. Liskov.
Parameterized types for Java. In Principles of
Programming Languages (POPL), January 1997.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. In Symposium on
Operating Systems Principles (SOSP), October 1997.

[26] N. Sterling. Warlock: A static data race analysis tool.
In USENIX Winter Technical Conference, January
1993.

[27] M. Viroli and A. Natali. Parametric polymorphism in
Java: An approach to translation based on reflective
features. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October
2000.

[28] C. von Praun and T. Gross. Object-race detection. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 2001.

[29] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. In Information and Computation
115(1), November 1994.

13

Appendix
A Type System for Safe Concurrent Java
This appendix presents the type system described in Section 5. The grammar for the type system is shown below.

P ::= defn* e
defn ::= class cn〈owner formal* 〉 extends c {level* field* meth*}

c ::= cn〈owner+〉 | Object〈owner+〉
owner ::= formal | self:cn.l | thisThread | efinal
level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*
meth ::= t mn(arg*) accesses (efinal*) locks (cn.l* lock*) {e}
field ::= [final]opt t fd = e
arg ::= [final]opt t x

t ::= c | int | boolean
formal ::= f

e ::= new c | x | x = e | e.fd | e.fd = e | e.mn(e*) | e;e | let (arg=e) in {e} | if (e) then {e} | synchronized (e) in {e} | fork (x*) {e}
efinal ::= e
lock ::= efinal

cn ∈ class names
fd ∈ field names

mn ∈ method names
x ∈ variable names
f ∈ owner names
l ∈ lock level names

We first define a number of predicates used in the type system informally. These predicates (except the last one) are based
on similar predicates from [16] and [15]. We refer the reader to those papers for their precise formulation.

Predicate Meaning

ClassOnce(P) No class is declared twice in P
WFClasses(P) There are no cycles in the class hierarchy
FieldsOnce(P) No class contains two fields with the same name, either declared or inherited
MethodsOnce(P) No class contains two methods with the same name
OverridesOK(P) Overriding methods have the same return type and parameter types as the methods being overridden

The accesses clause of an overriding method must be the same or a subset of the overridden methods
The locks clause of an overriding method must be the same or a subset of the overridden methods

LockLevelsOK(P) There are no cycles in the lock levels

A typing environment is defined as E ::= ∅ | E, [final]opt t x | E, owner f

A lock set is defined as ls ::= thisThread | ls, lock | ls, RO(efinal); where RO(e) is the root owner of e

A minimum lock level is defined as lmin ::= ∞ | cn.l | LUB(cn1.l1 ... cnk.lk); where LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k

Note that RO(e) and LUB(...) are not computed—they are just expressions used as such for type checking.

We define the type system using the following judgments. We present the typing rules for these judgments after that.

Judgment Meaning

` P : t program P yields type t
P ` defn defn is a well-formed class definition
P ; E ` wf E is a well-formed typing environment
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype of t2
P ; E `owner o o is an owner
P `level cn.l cn.l is a well-formed lock level
P ` cn1.l1 < cn2.l2 cn1.l1 is less than cn2.l2 in the partial order formed by lock levels
P ` cn.l < lmin cn.l is less than lmin in the partial order formed by lock levels
P ; E ` level(e) = cn.l e is a final expression that owns itself and the lock level of e is cn.l
P ; E ` level(e) < lmin e is a final expression that owns itself and the lock level of e is less than lmin

P ; E `final e : t e is a final expression with type t
P ; E ` field init field init is a well-formed field initializer
P ` field ∈ cn〈f1..n〉 class cn with formal parameters f1..n declares/inherits field
P ` meth ∈ cn〈f1..n〉 class cn with formal parameters f1..n declares/inherits meth
P ; E ` meth meth is a well-formed method
P ; E ` RootOwner(e) = r r is the root owner of the final expression e
P ; E ` e : t expression e has type t
P ; E; ls; lmin ` e : t expression e has type t and evaluating e will not create data races or deadlocks

14

` P : t

[PROG]

ClassOnce(P) WFClasses(P) FieldsOnce(P)

MethodsOnce(P) OverridesOK(P) LockLevelsOK(P)

P = defn1..n e P ` defni P ; ∅; thisThread; ∞ ` e : t

` P : t

P ` defn

[CLASS]

if (f1 6= self:cn′.l′ | thisThread) then g1 = owner f1

∀i=2..n gi = owner fi E = g1..n, final cn〈f1..n〉 this

P ; E ` c P ; E ` fieldi P ; E ` methi

P ` class cn〈f1..n〉 extends c {field1..j meth1..k}

P ; E ` wf

[ENV ∅]

P ; ∅ ` wf

[ENV OWNER]

P ; E ` wf f /∈ Dom(E)

P ; E, owner f ` wf

[ENV X]

P ; E ` t x /∈ Dom(E)

P ; E, [final]opt t x ` wf

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE BOOLEAN]

P ; E ` boolean

[TYPE OBJECT]

P ; E `owner o

P ; E ` Object〈o〉

[TYPE SHARED CLASS]

P ` class cn〈self:cn′.l′ f2..n〉 ...

o1 = self:cn′.l′ P ; E `owner o1..n

P ; E ` cn〈o1..n〉

[TYPE THREAD-LOCAL CLASS]

P ` class cn〈thisThread f2..n〉 ...

o1 = thisThread P ; E `owner o1..n

P ; E ` cn〈o1..n〉

[TYPE C]

P ` class cn〈f1..n〉 ...

f1 6= self:cn′.l′ | thisThread P ; E `owner o1..n

P ; E ` cn〈o1..n〉

P ; E ` t1 <: t2

[SUBTYPE REFL]

P ; E ` t

P ; E ` t <: t

[SUBTYPE TRANS]

P ; E ` t1 <: t2 P ; E ` t2 <: t3

P ; E ` t1 <: t3

[SUBTYPE CLASS]

P ; E ` cn1〈o1..n〉
P ` class cn1〈f1..n〉 extends cn2〈f1 o∗〉 ...

P ; E ` cn1〈o1..n〉 <: cn2〈f1 o∗〉 [o1/f1]..[on/fn]

P ; E `owner o

[OWNER THISTHREAD]

P ; E `owner thisThread

[OWNER OTHERTHREAD]

P ; E `owner otherThread

[OWNER SELF]

P `level cn.l

P ; E `owner self:cn.l

[OWNER EXP]

P ; E `final e : t

P ; E `owner e

[OWNER FORMAL]

P ; E ` wf

E = E1, owner f , E2

P ; E `owner f

P `level cn.l

[LEVEL]

P ` class cn... {... Locklevel l ...}
P `level cn.l

P ` cn1.l1 < cn2.l2

[LEVEL <]

P ` class cn1... {... LockLevel l1 < ... cn2.l2 ...}
P ` cn1.l1 < cn2.l2

[LEVEL >]

P ` class cn2... {... LockLevel l2 > ... cn1.l1 ...}
P ` cn1.l1 < cn2.l2

P ` cn.l < lmin

[LEVEL < INFTY]

lmin = ∞
P `level cn.l

P ` cn.l < lmin

[LEVEL < LUB]

lmin = LUB(... cn.l ...)

P `level cn.l

P ` cn.l < lmin

[LEVEL < CN.L]

lmin = cn′.l′

P ` cn.l < cn′.l′

P ` cn.l < lmin

[LEVEL TRANS]

P ` cn′.l′ < lmin

P ` cn.l < cn′.l′

P ` cn.l < lmin

P ; E ` level(e) = cn.l

[LEVEL(EXP)]

P ; E `final e : cn′〈self:cn.l ...〉
P ; E ` level(e) = cn.l

P ; E ` level(e) < lmin

[LEVEL < LEVEL MIN]

P ; E ` level(e) = cn.l

P ` cn.l < lmin

P ; E ` level(e) < lmin

P ; E `final e

[FINAL VAR]

P ; E ` wf

E = E1, final t x, E2

P ; E `final x : t

[FINAL REF]

P ` (final t fd) ∈ cn〈f1..n〉
P ; E `final e : cn〈o1..n〉

P ; E `final e.fd : t[o1/f1]..[on/fn]

P ; E ` field init

[FIELD INIT]

P ; E; thisThread; ∞ ` e : t

P ; E ` [final]opt t fd = e

P ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... {... field ...}
P ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ` class cn〈f1..n〉... {... field ...}
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` field[o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... {... meth ...}
P ` meth ∈ cn〈f1..n〉

15

[METHOD INHERITED]

P ` class cn〈f1..n〉... {... meth ...}
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` meth[o1/f1]..[on/fn] ∈ cn′〈g1..m〉

P ; E ` method

[METHOD]

P ; E, arg1..n `final ei : ti P ; E, arg1..n ` RootOwner(ei) = ri

P ; E, arg1..n ` level(lockj) = cn′j .l′j lmin = LUB(cnj .lj
j∈1..k cn′j .l′j

j∈1..l)

P ; E, arg1..n; thisThread, r1..r; lmin ` e : t

P ; E ` t mn(arg1..n) accesses(e1..r) locks(cnj .lj
j∈1..k lock1..l) {e}

P ; E ` RootOwner(e) = r

[ROOTOWNER THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉
P ; E ` RootOwner(e) = thisThread

[ROOTOWNER OTHERTHREAD]

P ; E ` e : cn〈otherThread o∗〉
P ; E ` RootOwner(e) = otherThread

[ROOTOWNER SELF]

P ; E ` e : cn〈self:cn′.l′ o∗〉
P ; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE]

P ; E ` e : cn〈o1..n〉
P ; E `final o1 : c1 P ; E ` RootOwner(o1) = r

P ; E ` RootOwner(e) = r

[ROOTOWNER FORMAL]

P ; E ` e : cn〈o1..n〉
P ; E `owner o1

P ; E ` RootOwner(e) = RO(e)

P ; E ` e : t

[EXP TYPE]

∃ls P ; E; ls; ∞ ` e : t

P ; E ` e : t

P ; E; ls ` e : t

[EXP SUB]

P ; E; ls; lmin ` e : t′

P ; E; ls; lmin ` t′ <: t

P ; E; ls; lmin ` e : t

[EXP NEW]

P ; E ` c

P ; E; ls; lmin ` new c : c

[EXP VAR]

P ; E ` wf

E = E1, [final]opt t x, E2

P ; E; ls; lmin ` x : t

[EXP VAR ASSIGN]

P ; E ` wf

E = E1, t x, E2 P ; E; ls; lmin ` e : t

P ; E; ls; lmin ` x = e : t

[EXP SEQ]

P ; E; ls; lmin ` e1 : t1
P ; E; ls; lmin ` e2 : t2

P ; E; ls; lmin ` e1; e2 : t2

[EXP LET]

arg = [final]opt t x P ; E; ls; lmin ` e : t

P ; E, arg; ls; lmin ` e′ : t′

P ; E; ls; lmin ` let (arg = e) in {e′} : t′

[EXP IF]

P ; E; ls; lmin ` e1 : boolean

P ; E; ls; lmin ` e2 : t2

P ; E; ls; lmin ` if (e1) then {e2} : t2

[EXP REF]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ` ([final]opt t fd) ∈ cn〈f1..n〉
P ; E ` RootOwner(e) = r r ∈ ls

P ; E; ls; lmin ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP ASSIGN]

P ; E; ls; lmin ` e : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉
P ; E ` RootOwner(e) = r r ∈ ls

P ; E; ls; lmin ` e′ : t[e/this][o1/f1]..[on/fn]

P ; E; ls; lmin ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]

[EXP SYNC]

P ; E ` level(e1) = cn.l

P ` cn.l < lmin

P ; E; ls, e1; cn.l ` e2 : t2

P ; E; ls; lmin ` synchronized e1 in e2 : t2

[EXP SYNC REDUNDANT]

e1 ∈ ls

P ; E; ls; lmin ` e2 : t2

P ; E; ls; lmin ` synchronized e1 in e2 : t2

[EXP FORK]

P ; E; ls; lmin ` xi : ti

gi = final ti[otherThread/thisThread] xi

P ; g1..n; thisThread; ∞ ` e : t

P ; E; ls; lmin ` fork (x1..n) {e} : int

[EXP INVOKE]

P ; E; ls; lmin ` e : cn〈o1..n〉
P ` (t mn(tj yj

j∈1..k) accesses(e′∗) locks(cn.l∗ lock∗) ...) ∈ cn〈f1..n〉
P ; E; ls; lmin ` ej : tj [e/this][o1/f1]..[on/fn]

P ; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) = r′i r′i ∈ ls

P ` cni.li < lmin (P ; E ` level(locki) < lmin) or (locki ∈ ls)

P ; E; ls; lmin ` e.mn(e1..k) : t[e/this][o1/f1]..[on/fn]

16

