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Abstract 

IOA is a high-level distributed programming language based on the formal I/O automaton 
model for asynchronous concurrent systems. A suite of software tools, called the IOA toolkit, has 
been designed and partially implemented to facilitate the analysis and verification of systems using 
techniques supported by the formal model. This paper introduces the IOA simulator 1 which is a 
part of the IOA toolkit. 

The IOA simulator runs selected executions of an I/O automaton on a single machine, generates 
logs of execution traces and displays information about the selected executions. The simulator also 
has the capability to simulate pairs of I/O automata, allowing users to check purported simulation 
relations between automata described at different levels of abstraction. 

This paper is a primary source of reference for both the users and the developers of the IOA 
simulator. It describes the design of the simulator focusing on the mechanism for resolving nondeter
minism in IOA programs. It includes a collection of small examples to illustrate the basic concepts 
regarding the simulation of IOA programs, and a larger tutorial example that demonstrates how 
to use the simulator. The final section of the paper gives information about the implementation of 
the simulator. 

Acknowledgements This work was funded by Acer Inc., Delta Electronics Inc., HP Corp., NTT 
Inc., Nokia Research Center, and Philips Research under the MIT Project Oxygen partnership, by 
DARPA through the Office of Naval Research under contract number N66001-99-2-891702, by 
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1 Introduction 

1.1 Overview 

The development of formal methods for modeling and reasoning about distributed systems is one 
of the major research activities within the Theory of Distributed Systems Group at MIT. The 
input/output automaton (I/0 automaton) model [LT89, Lyn96] constitutes the basis of the work 
on formal methods. It is a labeled transition system model suitable for describing asynchronous 
concurrent systems [Lyn96]. 

The I/0 automaton model incorporates the notion of abstraction to enable viewing systems 
at multiple levels of abstraction. A system can be first described at a high level of abstraction, 
capturing only the essential requirements about its behavior, and then be successively refined until 
the desired level of detail is reached. The model defines what it means for an automaton to 
implement another and introduces the notion of a simulation relation as a sufficient condition to 
prove an implementation relation between two automata. 

The notion of parallel composition, also included in the I/O automaton model, facilitates mod
ular design and analysis of distributed systems. The parallel composition operator in the model 
allows one to construct large and complex systems from smaller and simpler subsystems and study 
their behavior in terms of the behaviors of its components. 

Work on the I/O automaton model includes the definition of a formal language-the IOA 
language [GL00, GL98]-for describing I/O automata. The IOA language can be regarded as a high
level distributed programming language. Its design has been driven by the motivation to support 
both simulation and verification. A suite of software tools-the IOA toolkit-is being developed to 
facilitate the design, analysis, and development of systems within the I/O automaton framework. 
The toolkit consists of a front-end that checks whether system descriptions (IOA programs) comply 
with the IOA syntax and static semantics, and produces an intermediate representation of the code 
to be used by the back-end tools. The back-end tools include the IOA simulator, a code generator 
and translators to a range of representations suitable for use with some theorem provers and model
checking tools. The state of the tool development project is reported on our WWW pages [TDS]. 

This document is concerned with the IOA simulator in particular. We describe the design of 
the simulator, the major issues regarding its implementation and also provide a set of examples 
to demonstrate how to use the simulator. The IOA simulator has been developed over a period 
of four years by a number of people contributing to its design and implementation [TDS]. It has 
been the subject of the MEng theses of the authors Anna Chefter [Che98], Antonio Ramirez [RR00] 
and Laura Dean [DeaOl]. This document is intended to be a stand-alone reference for the IOA 
simulator and refers to the current implementation of the tools unless explicitly stated otherwise. 

The idea behind the simulation of a single automaton is rather conventional. The IOA simulator 
runs selected executions of an I/O automaton on a single machine, generates logs of execution 
traces and displays information upon the user's request. The IOA Language allows users to express 
invariants for an automaton. The simulator checks whether these invariants proposed by users are 
true in the selected executions. The IOA simulator also has the capability to simulate pairs of 
I/O automata, allowing users to reason about the behavioral correspondence between automata at 
different levels of abstraction. The need for this style of reasoning typically arises when a system 
is designed by moving through the highest level to the lowest level in the abstraction hierarchy. In 
this case, users define a simulation relation which relates the two automata at two different levels 
and the IOA simulator checks whether this relation holds in the selected executions. The capability 
to perform paired simulation in this sense is a very useful feature in distributed system design and 
analysis. 



1.2 Purpose of simulation 

Formal correctness proofs for distributed systems can be long, hard or tedious to construct. Simula
tion can be used as a way of testing automata before delving into correctness proofs. The execution 
of an IOA automaton either reveals bugs or increases the confidence that an automaton works as 
expected. 

The simulator can also assist users in constructing correctness proofs. By describing a system 
or an algorithm as an IOA program and simulating it, a user gains a better understanding of how it 
works. This can guide the strategy to be followed in proving correctness. Moreover, the invariants 
which are observed to be true for the simulated executions constitute candidates for useful lemmas 
in a full correctness proof. 

The current implementation of the IOA simulator does not aim at providing quantitative in
formation of the kind that would be useful for evaluating the performance of an algorithm under 
various conditions. However, it is conceivable that the IOA simulator be used for this purpose by 
means of some extensions to its design and implementation. 

Simulation in general is an efficacious method for exposing possible deficiencies in the design of 
systems and algorithms which can lead to the correction of discovered errors, revision of proofs or 
tuning for better performance. 

1.3 Design goals 

A key challenge in the design of the IOA language has been to provide support for both simulation 
and verification in a unified framework. Nondeterminism is favorable in IOA because it allows 
systems to be described in their most general forms and to be verified considering all possible 
behaviors without being tied to a particular implementation of a system design. On the other hand, 
nondeterminism complicates simulation, which must choose particular executions. The design of 
a satisfactory mechanism for resolving nondeterminism is an essential issue concerning the design 
of the simulator. The approach adopted by the IOA simulator is described in greater detail in the 
following sections. We note here the properties that have been identified as desirable properties for 
the nondeterminism resolution mechanism: 

• Broadness. It should provide several ways to resolve nondeterminism, each suited to differ
ent situations and applications. For instance, it should allow choices and transitions to be 
resolved as deterministic functions of the automaton's state, or using a pseudorandom number 
generator, or by querying the user, or any combination of these. 

• Extensibility. It should be sufficiently open-ended that future developers and advanced users 
can tailor it to specific needs without too much effort. For instance, if a new datatype 
implementation is added to the simulator, it should be possible to add useful nondeterminism 
resolution mechanisms to go with it. 

• Usability. It should be reasonably easy to use, and it should not place cumbersome demands 
upon the user. The resolution of nondeterminism is an absolute necessity for nontrivial uses of 
the simulator, and it would be unfortunate that a lack of attention to usability considerations 
should discourage its use. 

1.4 How to use this document 

The intended audience for this document is both users and developers of the IOA toolkit. The 
material has been organized so that it should be sufficient to read the first 5 sections to be able to 
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use the IOA simulator and to understand the fundamental ideas behind its design. Section 6 is for 
readers who are familiar with the core IOA language and are interested in a formal presentation of 
the syntactic extensions made to support simulation. Section 7 is intended for tool developers; it 
gives an overview of the IOA simulator implementation. 

2 1/0 automata and the IOA language 

This section includes a brief introduction to the I/O automaton model and the IOA Language. 
See [Lyn96, GLVOl] for an in-depth introduction. We focus only on those notions and language 
constructs that are crucial for understanding the material in this document. 

2.1 Theoretical background 

An I/0 automaton is a simple type of state machine in which the transitions are associated with 
named actions. The actions are classified as either input, output, or internal. The inputs and outputs 
are used for communication with the automaton's environment, whereas internal actions are visible 
only to automaton itself. The input actions are assumed not be under the automaton's control, 
whereas the automaton itself controls which output and internal actions should be performed. 

An I/0 automaton A consists of five components: 

• a signature, which lists the disjoint sets of input, output, and internal actions of A; 

• a (not necessarily finite) set of states, usually described by a collection of state variables; 

• a set of start states, which is a non-empty subset of the set of all states; 

• a state-transition relation, which contains triples (known as steps or transitions) of the form 
(state, action,state); and 

• an optional set of tasks, which partition the internal and output actions of A. 

An action 1r is said to be enabled in a state s if there is another state s' such that (s, 1r, s') is 
a transition of the automaton. Input actions are enabled in every state. That is to say automata 
are not able to block input actions from occurring. The external actions of an automaton consist 
of its input and output actions. 

2.1.1 Executions and traces 

An execution fragment of an I/0 automaton is either a finite sequence so, 1r1, s1, 1r2, ... , Kn, Sn, or 
an infinite sequence so, 1r1, s1, 1r2, ... , of alternating states Si and actions Ki such that Si, 7rHI, si+1 

is a transition of the automaton for every O :S: i. An execution is an execution fragment that begins 
with a start state. A state is reachable if it occurs in some execution. The trace of an execution is 
the sequence of external actions in that execution. 

2.1.2 Properties and proof methods 

Invariant assertions An invariant property of an automaton is any property that is true in all 
reachable states of the automaton. Invariants are typically proved by induction on the number of 
steps in an execution leading to the state in question. 
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Simulation proofs The I/0 automaton model aims at providing support for system descriptions 
at multiple levels of abstraction. The process of moving through the series of abstractions, from 
highest level to the lowest level is called successive refinement. The top level may be a problem 
specification written in the form of an automaton. The next level describes the system in more 
detail with respect to the top level. However, the actions typically have large granularity, and 
simple data structures are used. Lower levels in the abstraction hierarchy correspond more directly 
to the most optimized implementation of the system. To prove that one automaton implements 
another one higher in the hierarchy, one needs to show that for any execution of the lower level 
automaton there is a corresponding execution of the higher level automaton. The notion of a 
simulation relation facilitates this style of reasoning. 

Definition 2.1 (Forward simulation). A forward simulation from automaton A to automaton 
B is a relation f on states(A) x states(B) with the following properties: 

1. For every start state a of A, there exists a start state b of B so that f(a, b) holds. 

2. If a is a reachable state of A, b is a reachable state of B, f ( a, b) holds and a -2'.,. a', then there 

exists a state b' of B and an execution fragment (3 of B so that b J!+ b', f(a', b') holds and 
trace(1r) = trace(/3). 

Theorem 2.1. If there is a forward simulation relation from A to B, then every trace of A is a 
trace of B. 

Remark on terminology There is an unfortunate clash of terminology, due to the dual use of 
the term "simulation". Depending on the context, this term can refer either to the action of a 
simulator or to simulation relations as in Definition 2.1. 

2.1.3 Composition 

The composition operation allows an automaton representing a complex system to be constructed 
by composing automata representing individual system components. The composition identifies 
actions with the same name in different component automata. When any component automaton 
performs a step involving action 1r, so do all component automata that have 1r in their signatures. 

A countable collection { Si} of signatures is said to be compatible if for all i, j E I, i # j all of 
the following hold: 

• int(Si) n acts(Sj) = 0 where int(Si)) denote the set of internal actions in Si, and acts(Sj) 
denotes the set of actions in Sj. 

• out(Si) n out(Sj) = 0 where out(Si) and out(Sj denote the set of output actions in (Si) and 
( Sj) respectively. 

• No action is contained in infinitely many sets acts(Si)-

We say that a collection of automata is compatible if their signatures are compatible. The com
position S = [1iEJSi of a countable compatible collection of signatures {Si} is defined to be the 
signature with 

• out(S) = uiErout(Si) 

• int(S) = uiErint(Si) 
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Now, the composition A= [1iEIAi of a countable, compatible collection of I/O automata {AihEI 
can be defined as follows: 

• sig(A) = [1iEisig(Ai) 

• states(A) = [1iEistates(Ai) 

• start(A) = [1iEistart(Ai) 

• trans(A) is the set of triples (s, 1r, s') such that, for all i EI, if 1r E acts(Ai), then (si, 1r, s/) E 

trans(Ai); otherwise Si = s/ 

• tasks(A) = [1iEitasks(Ai) 

2.2 The IOA language 

In the IOA language, the description of an I/O automaton has four main parts: the action signature, 
the states, the transitions, and the tasks of the automaton. States are represented by collections of 
typed variables. The transition relation is usually given in precondition-effect style, which groups 
together all transitions that involve a particular action into a single piece of code. Each definition 
has a precondition (indicated by the keyword pre), which describes a condition on the state that 
should be true before the transition can be executed, and an effect (indicated by the keyword eff) 
which describes how the state changes when the transition is executed. If pre is not specified, 
then it is assumed to always hold. State changes are specified in terms of the initial state, the 
transition parameters, and optional additional parameters, which are chosen nondeterministically. 
The code may be written either in an imperative style, as a sequence of assignment, conditional, 
and looping instructions, or in declarative style, as a predicate relating state variables in the pre
and post-states, transition parameters, and nondeterministic parameters. It is also possible to use 
a combination of these two styles. 

The IOA language supports descriptions of systems composed from several interacting compo
nents based on the notion of composition in the theory of I/O automata. 

The sample programs in this paper do not exploit the full generality of the language. We assume 
that the automata are pre-composed, and restrict ourselves to a subset of the language that consists 
of imperative features and nondeterministic choice statements constrained by where predicates. 

2.3 Future research ideas 

The current IOA language allows description of distributed systems without any timing-dependence. 
We are interested in extending the language with constructs to express timing behavior, including 
upper and lower bounds on times for various events, and program constructs such as timeouts. Var
ious IOA tools, in particular, the simulator must also be extended to handle these new constructs. 
In the longer run we also aim to provide language support for describing and analyzing systems 
with probabilistic automata and hybrid automata. 

3 Simulation of I/ 0 automata 

This section describes how the simulator is designed focusing on the IOA language support that it 
requires, and the algorithm that it follows to simulate an automaton. We do not treat details such 
as the management of operator and sort implementations. The reader is referred to Section 7 for 
further information about this and other software-related issues of the simulator. 
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3.1 Simulation and nondeterminism 

IOA programs allow two kinds of nondeterminism: implicit nondeterminism which involves the 
scheduling of actions, and, explicit nondeterminism, which arises from choose statements, choose 

parameters and choose expressions in initial assignments. For example: 

• an automaton can have multiple enabled actions in a given state; 

• a given enabled action can have multiple transition definitions associated with it; 

• a given transition definition can take arbitrary actual parameter values, as long as they satisfy 
its where clause; and 

• a transition definition can contain one or more choose statements, each of which may evaluate 
to an arbitrary value that satisfies the constraint in the where clause. 

3.2 Resolution of nondeterminism 

From the point of view of an IOA automaton specification, the sources of nondeterminism can be 
regarded as a black box that can yield transitions to be scheduled and values to be assigned to 
statements which involve nondeterministic choice. Thus, the problem of resolving nondeterminism 
can be regarded as that of providing an algorithmic means of obtaining these values and transitions 
as the need for them arises during the simulation of an automaton. 

The nondeterminism resolution approach adopted by the IOA simulator is to assign a program, 
called an NDR program, to each source of nondeterminism in an automaton. Each such program 
is capable of providing values that resolve a choice, or determining the transitions to be scheduled, 
depending on the context. There is an NDR program corresponding to every choose statement in 
an automaton, and an NDR program for scheduling the actions of the automaton. We illustrate the 
key points of our approach by a series of examples based upon an automaton - Chooser - described 
as an IOA program. 

Example 3.1. The automaton Chooser has two actions (action1 and action2), and two state vari
ables chosen and did_choose which is initially set to false to indicate that no integer has yet been 
chosen by the automaton. The transition definitions show that action1 is always enabled. Its effect 
is to nondeterministically choose an integer greater than or equal to 10 and assign the variable 
chosen to this integer. It also sets the state variable did_choose to true. The semantics of the IOA 
language requires that the assignments to chosen and did_choose occur atomically. The transition 
definition for action2 has a parameter, and the action is enabled when an integer has already been 
chosen and n is equal to that integer. The occurrence of action2 has no effect on the state. 

autornaton Chooser 
signature 

output action1 
output action2(n: Int) 

states 
chosen: Int, 
did choose: Bool .- false 

transitions 
output action1 

eff chosen := choose x: Int where 10 < x; 
did_choose := true 

output action2(n) 
pre did_choose An= chosen 
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This automaton exhibits both explicit and implicit nondeterminism. The choose statement in the 
definition of transition for action1 is the source of explicit nondeterminism. After action1 has 
occurred at least once, both action1 and action2(n) become enabled where the actual parameter 
n is equal to the value chosen by action1. The possibility of more than one action being enabled 
is the source of implicit nondeterminism in this automaton. 

3.2.1 NDR programs 

To aid the simulator in resolving nondeterminism a user is required to augment the automaton 
specification with a schedule block and det blocks each of which embodies an NDR program. A 
program in a schedule or a det block is used respectively for resolving automaton transitions and 
for resolving the values of a choose statement. Note that this requires modification of the IOA 
language syntax as discussed in Section 6. 

Example 3.2. The automaton Chooser can be augmented as below with NDR programs. 

autornaton Chooser 
signature 

output action1 
output action2(n: Int) 

states 
chosen: Int, 
did choose: Bool .- false 

transitions 
output action1 

eff chosen := choose x: Int where 10 S x 
det do 

% NDR program to be specified 
od; 

did choose := true 
output action2(n) 

pre did_choose An= chosen 
schedule do 

% NDR program to be specified 
od 

The NDR programs in schedule and det blocks can evaluate arbitrary IOA terms to decide which 
transitions to schedule, or which values to yield for a choice. Additionally, they can evaluate 
operators whose implementations perform pseudorandom number generation, or user prompting, 
to produce a result. Two forms of statements - fire statements and yield statements - have been 
introduced to IOA as essential building blocks of NDR programs. 

3.2.2 Fire statements 

Schedule blocks use fire statements to specify how the actions will be scheduled by the simulator. 
A fire statement specifies the parameters of an action and whether it is an input, output or an 
internal action. The parameters in these statements may depend on the values of state variables 
of the automaton. The NDR mechanism also supports fire statements with no arguments. These 
are useful under circumstances when it would be tedious to write a complete schedule by hand. 
When the simulator encounters a fire statement without arguments in an NDR context, it chooses 
an appropriate transition to schedule according to the following mechanism. It first examines in 
turn each locally-controlled transition definition of the automaton with no parameters. For each of 
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them, it evaluates the precondition to see if it is enabled. It chooses one of the enabled transitions 
randomly and executes it. 

In the special case of an automaton where all transitions are non-parameterized, the simulator 
can be run without a schedule block. At each step the simulator executes one of the enabled 
transitions. However, there are no guarantees about randomness or completeness. Note that we 
recommend the use of schedule blocks as part of a good programming discipline for simulation. 

3.2.3 Yield statements 

A yield statement is used to specify the values of choice in a choose statement. When the simulator 
encounters a choose statement, it starts executing the NDR program until it encounters a yield 

statement. At this point, it uses the value provided by the statement as the value of the choose 

statement. The current statement of the NDR program is recorded by the simulator so that the 
next time it encounters the same choose statement, the simulator does not start its NDR program 
from the beginning; rather, it resumes executing it where it left off. 2 

Example 3.3. This example illustrates the use of yield and fire statements in NDR programs. 
The particular det block we have added causes the choice to be resolved successively to 11, 12, 
and 13. The schedule block has been coded such that the simulator interleaves the executions of 
action1 and action2. 

autornaton Chooser 

signature 
output action1 
output action2(n: Int) 

states 
chosen: Int, 
did choose: Bool .- false 

transitions 
output action1 

eff chosen := choose x: Int where 10 S x 

det do 
yield 10; yield 11; yield 12 

od; 
did choose := true 

output action2(n) 

pre did_choose An= chosen 

schedule do 
while true do 

od 
od 

fire output action1; 
fire output action2 ( chosen) 

It may appear surprising to have a nonterminating while loop in the schedule block. This, however, 
does not cause a problem since the simulator has been designed so that the number of simulation 
steps are specified by the user at the beginning of simulation. Section A.I on page 43 shows the 
excerpts from the output of the simulator on the automaton Chooser. The simulator takes as 
command line arguments the number of transitions to simulate, the name of the automaton to 
simulate, and the name of a file containing the IOA specification of the automaton. For every 
step taken by the automaton (including the initialization step), the simulator reports the transition 
that was executed, and the state variables that changed. The sample output has been obtained by 

2 The semantics of yield and fire statements were inspired by the iterator construct in the programming language 
CUJ [LAB+s1 ]. 
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simulating the automaton for 100 steps. The example in Section 5 gives a detailed explanation of 
how to use the simulator. 

3.2.4 Labeling transition definitions 

The IOA Language allows multiple transition definitions to share the same action type, name 
and actual parameter sorts. In the absence of a mechanism to disambiguate these definitions, 
specifying action names in fire statements alone would not be sufficient to resolve nondeterminism. 
As a solution to this problem, the simulator incorporates a facility whereby a user can augment 
action names with case indicators. 

Example 3.4. The case indicator of the transition is local to the primitive automaton in which it 
is defined, and it can be a number or an alphanumeric identifier as shown in the example below. 

autornaton Undecided 

signature 
output hello 

states 
b: Bool 

transitions 
output hello case 1 

eff b := true 

output hello case 2 
eff b := false 

schedule do 

od 

while true do 
fire output hello case 1; 

fire output hello case 2 
od 

3.2.5 Alternative methods of resolving nondeterminism 

It is sometimes desirable to resolve choices and schedule transitions using pseudorandomness or 
user input as information. This issue can be addressed by providing extra operators that evaluate 
as random number generators and user prompters. One way to do this is to use a trait such as 
the one in Section B on page 51. Each of these operators is either currently implemented by the 
simulator, or is easy to implement with the current software support. 

Example 3.5. This version of the Chooser automaton uses an operator that yields an integer be
tween 20 and 30 rather than specifying the integers as was the case in Example 3.3. 

uses NonDet 
auton1aton Chooser 

signature 
output actionl 
output action2(n: Int) 

states 
chosen: Int, 
did choose: Bool .- false 

transitions 
output actionl 

eff chosen := choose x: Int where 10 S x 

det do 
yield randomint (20, 30) 
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od; 
did choose := true 

output action2(n) 
pre did_choose An= chosen 

schedule do 

od 

while true do 
fire output action!; 
fire output action2 ( chosen) 

od 

Note that it is also possible to prompt the user to choose an integer at the point where the operator 
randomint is used in this example. 

3.2.6 Simulation errors 

The simulator requires NDR programs to only fire transitions that are enabled, and yield choice 
values that make the corresponding where clause true. If the simulator encounters a situation 
where either of these conditions does not hold, it issues an error message and halts the simulation. 

3.3 The simulator algorithm 

So far, we have pointed out that it is necessary to resolve nondeterminism to be able to simulate 
IOA programs. There are, however, other requirements for an IOA program to be in the right form 
for simulation. The users are expected to transform programs into this required restricted form 
before using the IOA simulator. 

3.3.1 Simulability conditions for programs 

Quantifiers The simulator has the ability to handle quantifiers only when the quantified variable 
is of enumeration type. This implies that the variable has a finite number of possible values. 
Existential or universal quantifiers which do not satisfy this condition are not permitted anywhere 
in the IOA automaton to be simulated. The effect of an existential quantifier can often be achieved 
using a suitably constrained choose statement as described in [Che98], thereby reducing the problem 
of evaluating such quantifiers to the problem of nondeterminism resolution for choose statements. 
Evaluating universal quantifiers would require an essentially different mechanism. 

Transition parameters There are restrictions on the actual parameters in transition definitions: 
each of them must be either a pure variable, or a term that contains no variables, so that it evaluates 
to a constant. As explained in [Che98], this is not a drastic restriction, since expression parameters 
can be replaced by variables that are suitably constrained by the where clause of the transition. 
It would not be difficult to modify the current implementation to remove this constraint, but some 
corresponding changes to the NDR mechanisms would be necessary. 

Looping constructs No for loops are permitted anywhere in the automaton to be simulated. It 
is often possible to use a while loop instead. For example, for i :Nat where i < 20 do ... od can be 
replaced by while i < 20 do i:= i+1; ... od. Note that while does not incorporate a mechanism 
for declaring a variable; the variable i must be declared and initialized outside the loop. 
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Composition The simulator only supports primitive automaton specifications. There is a project 
in progress on the development of a tool which takes an IOA automaton composition specification 
as an input, and transforms it to an equivalent IOA specification of a primitive automaton. Once 
this composer implementation is complete it can be used in conjunction with the simulator. Com
posite automata can be simulated by providing the necessary NDR programs for the output of the 
composer. 

Data types The simulator currently has implementations for several built-in primitive IOA types 
(Bool, Natural, Real, Char, String) and it supports user-defined types formed from the construc
tors Array (for one-dimensional arrays), Seq (sequence), Set, Mset(multiset), and Map constructors 
and syntactic shorthands enumeration, tuple, and union shorthands, and those formed from the. 
These types, constructors and shorthands are described in the IOA Manual [GLVOI]. There is 
currently no implementation for the two dimensional use of Array. Specifications and implemen
tations for the parameterized datatypes Stack, Tree and PQ(priority queue) are also available for 
use with the simulator even though they are not yet a part of the language specified in the IOA 
Manual [GLVOl ]. Note also that it is possible to add new data types to the Simulator as explained 
in Section 7. 

3.3.2 Pseudocode 

A good way to understand how the simulator interprets NDR programs is through a description of 
the algorithm that it follows. On Page 11 we present a table which summarizes the abbreviations 
and the notation we use in describing the algorithm. Page 12 includes the pseudocode description 
of the simulator algorithm which is organized into three procedures. The main one is Simulate(A), 
where A is the primitive automaton specification to be simulated. This procedure in turn uses two 
auxiliary ones, ExecuteSched and EvalChoice also presented in the figure. The algorithm does not 
describe the details of evaluating IOA programs or terms but focuses on the NDR mechanisms. 
Evaluating a term requires every operator in the term to have a simulator implementation; refer to 
Section 7 for the details on matching operators and sorts with their implementations. 

Andr 
A.pc 

Ainv.s 
A.simpleTran.s 

t.pre 
t.where 

t.eff 
c.ndr 
c.pc 

c.var 
c.where 

tran.s(A, t, n, c) 

eval(t) 

Notation 

The schedule NDR program for automaton specification A 
A program counter for A ndr. 
Its value can be a statement in Andr or null. 
The list of invariants of A 
The set of transition definitions in A with constant actual parameters. 

The precondition term for a transition definition t. 
The where term for a transition definition t. 
The effect program for a transition definition t. 
The choice NDR program for a choose statement c. 
A program counter for c. ndr. 
Its value can be a statement in c. ndr or null. 
The dummy variable in a choose statement c. 
The where term in a choose statement c. 
The transition definition of type t, name n and case 
label c in automaton A 
The result of evaluating a term t. 
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Simulate(A) [A: IDA primitive automaton] 
initialize a program counter c.pc for each choose statement c in A 
initialize a program counter A.pc for the schedule block of A 

while Ape -::J. null do 
call ExecuteSched (A, A.pc) 
advance A.pc to the next statement in A. ndr 

ExecuteSched (A, .s) [A: IDA primitive automaton, .s: statement in A ndr] 
if.sis not a fire statement then execute .s 

(.s is an assignment, a conditional, or a while construct; 
the semantics for these types of statements are the obvious ones) 

else if .s = ''fire actionType actionName(actionActnal.s) case c'' then 
let t := tran.s(A, action Type, actionName, c) 
assign actionActnal.s to the formal parameter variables of t 
if eval(t.pre) = true and eval(t.where) = true then 

execute the statements in t. eff following IDA semantics; 
when a choose statement c needs to be evaluated, call EvalChoice(c) 

else halt with an error 
for each t E Ainv.s such that eval(t) = fal.se do 

issue an invariant failure warning 
else if .s = ''fire'' then 

let S = {t E A.simpleTran.sl eval(t.pre) = true} 
if S -::J. 0 then 

choose t E S uniformly at random 
execute the statements in t. eff following IDA semantics; 
when a choose statement c needs to be evaluated, call EvalChoice(c) 

Eva I Choice (c) [c: choice statement] 
forever do 

if c.pc is not a yield statement then 
execute c.pc (c.pc is an assignment, a conditional, or a while construct) 
advance c.pc to the next statement in c. ndr 

else if c.pc is of the form ' 'yield t' ' , where t is a term then 
let v = eval(t) 
assign v to c.var 
if eval ( c. where) -::J. fal.se then 

advance c.pc to the next statement in c. ndr 
exit Eva I Choice 

else halt with an error 

Figure 1: Simulator Algorithm 
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3.4 Invariant checking 

The simulator has the capability of checking whether the invariants of an automaton, stated using 
the IOA syntax, hold throughout an execution. This is done simply by evaluating each of the 
invariants found in the IOA specification after each transition is executed, and issuing a warning 
message if any of them fail. The ExecuteSched routine of the pseudocode of the algorithm presented 
in Section 3.3 includes a part for dealing with invariant checking. 

Example 3.6. The code in this example is an IOA specification of an automaton, along with two 
proposed invariants of its state and suitable NDR programs. 

autornaton Fibonacci 

signature 
internal compute 

states 
a: Int .- 1, 
b: Int .-0, 

c: Int .- 1 

transitions 
internal compute 

eff 
a .- b· 

' 
b .- c· 

' 
C .- a + b 

invariant of Fibonacci 

a + b = c 

: 

invariant of Fibonacci: 

a - b = c 

% true invariant 

% false invariant 

Section A.2 on page 44 gives the simulator output for 5 steps of execution. It shows that one of 
the invariants did not hold for this particular execution. 

3.5 Dynamic detection of invariants 

This section describes the connection between the IOA simulator and Daikon - an invariant dis
covery tool developed by the Program Analysis Group at the MIT Laboratory for Computer Sci
ence [PAG]. 

3.5.1 Daikon 

Daikon is a dynamic program analysis tool which extracts information from executions of a program. 
As input, Daikon requires a set of declarations and data traces. A declaration file contains lists 
of program points considered interesting to users and a list of variables in scope at each program 
point. Data trace files record information about the values the variables take on during execution. 
For each execution of a program point, the trace file contains the name of the point and the values 
of the variables at that point. The output generated by Daikon is a list of invariants detected to 
hold in all recorded executions. These are only potential invariants in that Daikon cannot guarantee 
their truth for all possible executions. 

3.5.2 Purpose of connecting IOA to Daikon 

There are mainly two motivations for connecting the IOA simulator with an invariant discovery 
tool such as Daikon. First of these concerns correctness proofs for automata. If the discovered 
invariants turn out to be verifiable, they can assist the proofs in several ways. One possibility is 
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that Daikon discovers invariants that are not readily detectable by users. In this case Daikon helps 
proofs by discovering those invariants that would have remained unnoticed by users. At the other 
extreme lie the invariants that are easily detectable by users even without the help of Daikon. The 
automatic discovery of such invariants is considered also useful, since it saves users the effort of 
finding and formulating these simple invariants. 

Second, Daikon might suggest invariants which are known to be not always true, pointing to 
shortcomings in the simulation. The IOA code and NDR programs should then be examined to 
correct errors or to increase the simulator's coverage of possible executions. 

3.5.3 Interface to Daikon 

Daikon has initially been designed to discover invariants for sequential programs written in lan
guages such as C or Java. It is however possible to make use of Daikon in discovering invariants 
for programs written in other languages so long as it is supplied with suitable declarations and 
data traces regarding a program. The simulator provides the necessary machinery for this. In the 
preceding sections we have described how the IOA simulator executes I/0 automata written in the 
IOA Language. The necessary input for Daikon can be generated by the simulator by recording 
data traces while executing I/0 automata. This is achieved by running the simulator with a special 
option (-daikon) as described in Section 5. 

When run with the above mentioned option, the IOA simulator generates a declaration file 
which declares a program point for the entry and exit of every transition and a program point for 
the automaton. Declaring entry and exit of every transition point as an interesting program point 
allows Daikon to infer how a transition's pre-state relates to its post-state. The program point at 
the top level allows Daikon to detect invariants that hold at all times, not just at certain entry 
and exit points in the automaton. Technical issues regarding the implementation can be found 
in [DeaOl, WSOl]. 

3.6 Future research ideas 

In this section we describe how we intend to continue our work on the IOA simulator. Our exper
iments convince us that the current state of the IOA simulator allows it to be used for nontrivial 
tasks in distributed system design and analysis. The future research will mostly concern user 
convenience and keeping the simulator in tandem with the extensions to the IOA language. 

3.6.1 Scheduling policies 

The users of the IOA simulator are required to encode scheduling policies explicitly by means of 
NDR programs. It would be possible alleviate this burden on the users if the simulator was given 
the capability to make scheduling decisions. We outline below a method for enhancing the IOA 
simulator with such a capability. 

The syntax and the semantics of schedule blocks are redefined so that the users are required 
only to resolve explicit nondeterminism, provide a list of conditional clauses that specify the set of 
selected transitions and their parameter values. They select a scheduling policy prior to simulation 
and communicate this choice to the simulator. Whenever multiple transitions are enabled during 
the execution, the scheduler selects a transition to be executed according to the scheduling policy 
that has been chosen by the user. 

This idea has appeared in Chefter's design of the simulator, however it is not supported by 
the IOA simulator yet. According to this design the user has a choice of three scheduling policies: 
randomized, round-robin, and one based on time estimates for each action. Moreover, the user is 
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required to specify a weight ( w) or time estimate for each transition to be used by the scheduler in 
the case of choosing the randomized policy or the policy based on time estimates respectively. 

For the randomized scheduler, the simulator computes the total t of the weights of all specified 
transitions, and at each step of the execution selects a transition with weight w with probability 
w/t. 

The round-robin scheduler keeps track of the number of times a transition was enabled but not 
selected for execution and maintains a queue of these counts. It always selects the transition with 
the greatest count. The count is reset to zero after the transition is executed. 

In time based scheduling time estimates are used for determining the probability of each action 
being scheduled such that the smaller the time estimate, the higher the probability that the action 
will be scheduled. Time estimates allow one to model the running of a system on multiple processors 
with different speeds. For example, if an action is intended to be run on a fast processor the time 
estimate associated would be smaller than that of other actions which are intended to be run on 
slower processors. Similarly, time estimates can be used to model computation latency or the 
rate at which an environment generates actions. Specifically, if times for n actions are given by n 
integers time 1, time2, ... timen, then the scheduler determines which of then actions to perform by 
the following procedure: 

1. Find the least common multiple m of time1, time2, ... timen 

2. Assign a weight to each selected action as follows: 

weighti = (m/timei)/ I:,]~J(m/timej)-

3. Divide the interval [O ... 1] into n parts 

[O ... weight0 ], [ weight0 ... weight0 + weight1], ... , [I:,]~5 ( weight.i) ... 1] 

and schedule the ith action if the random number is in the range 

["'i-1 "'i . ht l L,j=O ... L,j=O weig .i . 

The I/O automaton task partition can be thought of as an abstract description of threads of control 
within an automaton, and is used to define fairness conditions such that each of the tasks is given 
fair turns during execution. The simulator does not support task partitions, however it would be 
useful to devise a two-level mechanism for scheduling where the first level selects the next task to 
be scheduled and the second level selects a particular action within a task. 

3.6.2 NDR libraries 

The current mechanism for nondeterminisim resolution might lead to repetitive code fragments 
scattered over the automaton description (one NDR program for each choose statements) and 
complex schedule blocks. More important, it is the user who has to provide these programs. If 
the IOA simulator provided a library of NDR programs or some default NDR programs, the users 
would be relieved from having to do this. For each commonly encountered sort in IOA programs, 
such as natural numbers or booleans, the simulator could specify a default NDR program to be 
used when no NDR program is provided by the user. The similar idea applies to the predicates in 
choose statements. For example, many choose statements have where predicates that restrict the 
range of the chosen value to some fixed finite set of numbers. It would be possible to determine 
some patterns for predicates such as p : Int :S: q A q : Int Ar : Int and have the simulator provide 
a library of NDR programs which resolve nondeterminism such that the predicate holds. 
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3.6.3 Alternatives to NDR programs 

It is possible to resolve some of the nondeterminism in an automaton to be simulated by modifying 
its IOA specification. For example, the user can augment the automaton with new state variables 
containing scheduling information, can add extra constraints involving the new scheduling variables 
to the preconditions of transitions, and can add extra statements to the effects of transitions to 
maintain the scheduling variables. This conversion must be done manually, without the help of the 
NDR programs. We are considering the relative advantages of resolving nondeterminism with NDR 
programs as explained throughout this document or within the IOA language itself as mentioned 
above. We are planning to continue our work by evaluating the effects of alternative nondeterminism 
resolution schemes on the IOA programs with respect to user convenience, reusability of code within 
the toolkit and elegance. 

3.6.4 Theorem proving using Daikon-detected invariants 

A group of us are investigating how to make invariants discovered by Daikon more relevant to 
proofs of correctness of distributed systems. Toh Ne Win has recently finished an experiment on 
using Daikon-discovered invariants in the verification of a mutual exclusion algorithm [Win02]. By 
carrying out similar but more advanced experiments, we aim to identify when an invariant should be 
considered useful. Our ultimate aim is to make correctness proofs more automatic by feeding these 
invariants into the theorem prover. Our current efforts are based on the Larch Prover. However, 
we are potentially interested in using other theorem provers such as ACL2, Isaballe or HOL. 

4 Paired simulation 

In the study of distributed systems, it is common for complex systems to be analyzed through 
successive refinements: in the presence of an abstract specification A, one would like to show that 
another specification B is an implementation of A. If A and B are I/0 automata, this is modeled 
by the statement that traces(B) ~ traces(A). 

To prove a statement of this form, it is almost inevitable to use an argument by induction on 
the length of a finite prefix of an execution of B. This inductive reasoning on automaton executions 
has been abstracted, yielding the method of simulation relations. Using this method, one seeks to 
construct a simulation relation f from B to A. For a formal definition of simulation relations see 
Section 2. 

4.1 Simulation relations 

The IOA Language includes syntax for asserting simulation relations between automaton specifica
tions. One of the goals of IOA is to provide software tools to assist the analysis of I/O automata. 
For example, given a proposed simulation relation f from B to A, it would be useful to test its 
validity when restricted to a particular execution of B. As in the case of invariants, a single exe
cution in which f is observed not to hold would suffice to show that f is invalid. While continued 
verification of f in different executions of B does not prove the correctness of f, it does provide 
empirical evidence that f may be true, before the user spending the necessary effort to prove its 
correctness. 

In this section, we describe how the simulator described so far in the paper was extended to 
allow simulation of a pair of automata related by a mathematical simulation relation. The key 
problem here is the following: the simulation relation itself, being merely a predicate that relates 
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the states of two automata, is not sufficient to specify how each step in the implementation au
tomaton corresponds to a sequence of steps in the specification automaton. In general, there might 
be multiple step correspondences that realize a given valid simulation relation between automata, 
and even if there is only one, it can be difficult to find it. From this point of view, the problem of 
deriving a specification-level execution from an implementation-level execution is analogous to that 
of deriving a deterministic execution of a single automaton from a specification that allows non
determinism. Not surprisingly, the problem of programmatically specifying a step correspondence 
admits a similar solution. 

4.2 Encoding step correspondences 

A step correspondence needs to specify, for a given low level transition, a high level execution 
fragment such that the simulation relation holds between the respective final states of the transition 
and the execution fragment. Thus, a step correspondence can be seen as an "attempted proof' 
of the simulation relation, missing only the reasoning that shows that the simulation relation is 
preserved. To specify the proposed proof of a simulation relation, the current syntax of the IOA 
construct forward simulation was extended to include a new section called proof for specifying 
the step correspondence. This section contains one entry for each possible transition definition in 
the low level automaton, and each entry encodes an algorithm for producing a high level execution 
fragment, using a program similar to the NDR programs used in automaton schedule blocks. In 
addition to these entries, the proof section also contains an initialization block, which specifies how 
to set the variables of the high level automaton given the initial state of the low-level automaton, 
and an optional states section that declares auxiliary variables used by the step correspondence. 

Figure 2 on Page 18 shows the general high level structure of a simulation proof encoded using 
this language. Note that this syntax extends the syntax for forward simulation relations in IOA. 
Some of the sections in the proof block have a more flexible syntax than is depicted here, and some 
can be omitted; refer to Section 6 for the detailed grammar. The states block introduces auxiliary 
variables used in the proof, and their initial values. The initially block specifies how to initialize 
the state variables of the specification automaton as a function of the implementation automaton's 
initial state, so as to satisfy the simulation relation. 

Each proof Entryi is either the keyword ignore or a proof program, surrounded by do and od 

delimiters. Such a program is essentially an NDR program, of the form allowed in an automaton's 
schedule block, except that the fire statements must now provide additional information to resolve 
the choose statements of the specification automaton. If a proof program is present, the simulator 
will execute it from beginning to end to produce a high-level execution fragment for that case, using 
the fire statements to schedule transitions in the specification automaton. A proof entry equal to 
ignore is equivalent to a proof program with no statements, and it is used to represent an empty 
high-level execution fragment. 

The fire statements allowed in proof programs have the structure depicted in Figure 3 on 
page 18. This general fire statement has the meaning: "schedule the transition of type action Type, 
name actionName with actual parameters actionActuals, using the values of the terms term1 to 
termn to resolve the choose statements in the effect of the transition having dummy variables v1 

to vn". If present, the caseld label is used to disambiguate between transition definitions with the 
same signature. 

This design imposes a constraint not present in the single automaton case: it must be required 
that, for a given transition definition in the specification automaton, the choice statements in it 
have dummy variable names which are distinct. While in general it is undesirable to place unique
naming constraints for local dummy variables, we justify this design decision by arguing that, in 
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forward simulation 
from autlmpl to autSpee : 
simPredieate 
proof 

states 
auxV ar1 : sort1, 
aux V ar2 : sort2, 

auxVarm : sortm, 
initially 

var1 := term1: 
var2 := term2: 

var 11 := term 11 

for aetType1 aetN ame1 (actFormals1) 
case easel d1 
proof Entry 1 

for aetType2 aetName2(aetFormals2) 
case easel d2 
proof Entry2 

for aetTypeP aetN amep(aetFormalsp) 
case easel dp 
proof EntryP 

Figure 2: Syntax of step correspondence 

fire aetionType aetionN ame(aetionAetuals) 
case caselcl 
using term1 for v1, 

te'T"m2 for v2, 

ter'm1,, for v1,, 

Figure 3: fire statements in proof blocks 
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the case of paired simulation, these are not just dummy variables, but serve also as natural names 
for the choices in a high-level transition. An alternative design would be to add syntax for explicitly 
naming the choose statements. 

Example 4.1. The automaton GreeterSpec is a specification for automata that produce the output 
action hello any, perhaps infinite, number of times. The automaton Fini teGreeter is a specializa
tion of this - an automaton that only produces a finite (bounded by the value of maxGreets) number 
of hello outputs. Note the use of dummy variable sg in the choose statement. FiniteGreeter has 
exactly one choice point, which occurs in its initialization of the maxGreets variable. To be able to 
simulate it, it has been augmented with an NDR program that yields 100 as the value of choice. 

axiorns NonDet 

auton1aton GreeterSpec 

signature 
output hello 

states 
stillGoing: Bool 

transitions 
output hello 

pre stillGoing 

eff stillGoing .- choose sg 

auton1aton Fini teGreeter 

signature 
output hello 

states 
maxGreets: Int choose x:Int det do yield 100 od, 
count: Int .- 0 

transitions 
output hello 

pre count< maxGreets 

eff count := count + 1 

forward sin1 ulat ion 
fron1 Fini teGreeter to GreeterSpec : 

GreeterSpec.stillGoing <=> 
(Fini teGreeter. count < Fini teGreeter. maxGreets) 

proof 
initially 

GreeterSpec.stillGoing .-

(FiniteGreeter.count < FiniteGreeter.maxGreets) 

for output hello do 
fire output hello 

using ( Fini teGreeter. count < Fini teGreeter. maxGreets) for sg 

od 

The forward simulation block embodies a simulation predicate, which states that the value of 
the variable stillGoing for automaton GreeterSpec is required to be true if the value of count in 
automata Fini teGreeter has not reached the value of maxGreets yet, and false otherwise. The proof 

block initializes the value of stillGoing and states the step correspondence suggested by the user. 
According to the user, each hello action executed by the low-level automaton (FiniteGreeter), 

can be mimicked by a hello action of the high-level automaton Greeter if the dummy variable is 
chosen to be the value of the predicate (Fini teGreeter. count < Fini teGreeter. maxGreets). It is 
the simulator's responsibility to check whether the simulation predicate holds and the traces of the 
low-level and high-level executions are the same. 
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Section A.3 on page 45 contains the output of the paired simulator for 100 steps. As in the case 
of non-paired simulation, it outputs the transitions taken and state variables modified for every 
step of the implementation automaton. In addition, it outputs the transitions of the specification 
automaton induced by each implementation step. For each transition taken in either automaton, 
the simulator outputs the variables that were changed by the transition's effect. The absence of 
simulator error messages in the output indicates that the simulation relation was verified to hold, 
in this particular run, with this proposed step correspondence. We refer the reader to Section 5 for 
a detailed description of how to run the paired simulator. 

4.3 The paired simulator algorithm 

In this section we present the pseudocode for the paired simulator on pages 21 and 22, as we did 
in Section 3.3 for the single automaton case. The pseudocode is organized into several procedures, 
of which SimulatePair is the main one. The reader is referred to Page 21 for the abbreviations and 
the notation used. 

The procedure SimulatePair invokes the algorithm for single-automaton execution described in 
Section 3.3, except that it calls procedure ExecCorresponding for every low-level transition t that 
is scheduled. The procedure ExecCorresponding follows the proof program associated with t in the 
proof block of the simulation relation, executing each of the high level transitions determined by 
fire statements. In addition, ExecCorresponding verifies that the induced high level transitions have 
the same trace as t, and calls CheckSimRel to determine if the simulation relation holds at the 
end of the step. The procedure ExecSpecEffect, called by ExecCorresponding for each high-level 
transition, executes the effect program of the transition as in the single-automaton case, except 
that procedure EvalSpecChoice is called for every explicit choice. The latter procedure evaluates a 
choose statement using the value provided in the using part of the fire statement that determined 
the high level transition, provided that it satisfies the where predicate. 

Notice that the low level step is taken in full before its corresponding proof entry is examined, 
and the prior state of the low level automaton is not recorded. This means that the proof program 
can only refer to the low level state after the low level step has taken place. Nevertheless, it is easy 
to modify an implementation automaton to make it keep track of relevant parts of its old state, or 
of the choices it makes. In this way, the proof can refer to this information, and the language can 
be very expressive. A possibility for future expansion is to extend the syntax so that it can refer 
explicitly to the state before and after the low level step, and to the choices taken during the step. 

4.4 Future research ideas 

There are many directions for future work on the paired simulation tool. We present below some 
suggestions for possible projects. 

4.4.1 Improving the step correspondence language 

The language described in this section is already substantially flexible, and it might be argued that 
together with auxiliary automaton state variables and auxiliary variables in the step correspon
dence, it allows one to express most of what is usually expressed in simulation proofs. However, to 
make easier to use, it might be desirable to have explicit syntax for: 

• referring to state variable values both before and after the low-level transition, and, 

• referring to the actual value to which an explicit choice was resolved in the low-level automa
ton. 
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Notation 

R.proof 
R.impl 
R . .spec 

The proof block in simulation relation R 
The implementation-level automaton in simulation relation R 
The specification-level automaton in R 

t.pre 
t. where 

t.eff 

The precondition term for a transition definition t. 
The where term for a transition definition t. 
The effect program for a transition definition t. 

c.var 
c.where 

The dummy variable in a choose statement c. 
The where term in a choose statement c. 

tran.s(A, t, n, c) 
eval(t) 

proofProg(R, t) 

The transition definition of type t, name n and case label c in automaton A 
The result of evaluating a term t. 
The proof program corresponding to t in R.proof. 
t must be a transition of R. impl 

SimulatePair(R): 
[R: IDA simulation relation] 

let A := R. impl, B := R . .spec, p := R.proof 
call lnitialize(R) 
simulate A as described in Section 3, except that: 

for each transition t executed in A 
call ExecCorresponding(R,t) 

lnitialize(R): 
[R:IDA simulation relation] 

let A := R. impl, B := R . .spec, p := R.proof 
initialize the state of A (using its NDR mechanism if necessary) 
initialize the auxiliary variables in the states block of p 

initialize the state of B according to the initially block of p 
call CheckSimRel (R) 

ExecCorresponding(R, t): 
[R: IDA simulation relation, 
t: a transition of R.impl] 

p := proofProg(R, t) 
let£ be an empty sequence of transitions 
for each statement.sin p do 

if.sis not a fire statement then 
execute .s (.s is an assignment, a conditional, or a while construct) 

else 
t' := tran.s(S . .spec, actionType, actionName, ca.seld) 
call ExecSpecEffect(R, .s, t') 
append t' to £ 

call CheckSimRel(R) 
if trace(£) :f. trace(t) then 

halt with an error 

Figure 4: Paired Simulator Algorithm (1) 
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ExecSpecEffect(R, .s, t): 
[R:IOA simulation relation, 
.s:a fire statement of the form given in Figure 3, 
t:the transition of R . .spec corresponding to .s] 

assign actionActnal.s to the formal parameters of t 
if eval(t.pre) = true and eval(t.where) = true then 

execute the statements in t.eff following IDA semantics; 
when a choose statement c needs to be evaluated, call EvalSpecChoice(R, .s, t, c) 

else 
halt with an error 

EvalSpecChoice(R, .s, t, c) 
[R:IOA simulation relation, 
.s:a,fire statement of the form given in Figure 3, 
t: the transition of R . .spec corresponding to .s, 
c: a choose statement in t. eff] 

let r := eval(term;), where v; is the name of c.var 
assign r to c.var 
if eval(c.where) = fal.se then 

halt with an error 

CheckSimRel(R) 
[R:IOA simulation relation] 

if eval(R.pred) = fal.se then 
halt with an error 

Figure 5: Paired Simulator Algorithm (2) 

Neither of these two additions should be hard to implement. For example, prior and posterior values 
of variables could be distinguished with a prime decoration on variable names. References to low
level explicit choice values could be done using another unique-naming-per-transition convention, 
this time in the low-level automaton. 

4.4.2 Interfacing with a computer-assisted theorem prover 

The paired simulator may provide counterexample executions where the proposed step correspon
dence does not hold, but it will never completely certify the proof, even if it provides empirical 
evidence of its correctness after multiple simulations. However, a version of this language could be 
used as an interface between the simulation relation stated in IOA and a theorem prover: the proof 
program can be used to drive the theorem prover in the major overall steps of the proof, reducing 
the amount of routine work that the user has to do. We refer the reader to [KCD+] for an example 
that illustrates the promise of this direction. 

4.4.3 Adding syntax for providing a complete proof 

As it stands, the proof block is not a really a proof, since it is missing the reasoning that shows that 
each high-level execution fragment produced by a for block in the proof preserves the simulation 
relation, assuming the relation held true in the immediately preceding state. An interesting project 
would be to add syntax that would allow the inclusion of this reasoning, in a form suitable for 
automated proof verification. 
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CRIT 

Figure 6: Cycle of regions for a single user 

5 Mutual exclusion: A Tutorial example 

In the preceding sections we introduced the basic concepts concerning the simulation of I/O au
tomata and presented simple examples to illustrate the simulation language (an extension of IOA) 
supported by the IOA simulator. This section is intended to serve as a tutorial for using the IOA 
toolkit for simulating IOA programs. The instructions for obtaining the toolkit can be found at 
URL http: //theory. lcs .mit. edu/tds/ioa.html. 

We take a well-known problem in distributed algorithms research - the mutual exclusion problem 
- and proceed with the reader through multiple levels of abstraction in specifying the problem and 
deriving a low-level algorithm that implements mutual exclusion. We use the simulation tools to 
check that our algorithms work as expected and to increase our confidence in the correctness of the 
proposed simulation relations between different levels in the abstraction hierarchy. 

5.1 The Mutual exclusion problem 

The mutual exclusion problem involves the allocation of a single, indivisible, non-shareable resource 
among n processes. The resource could be, for example, an output device that requires exclusive 
access to produce sensible output or a data structure that requires exclusive access in order to avoid 
interference among the operations of different processes. 

A process with access to the resource is modeled as being in a critical region, which is a 
designated subset of its states. When a process is not involved in any way with the resource, it 
is said to be in the remainder region. In order to gain admittance to its critical region, a process 
executes a trying protocol, and after it is done with the resource, it executes an exit protocol. This 
procedure can be repeated, so that each process follows a cycle, moving from its remainder region 
(R) to its trying region (T), then to its critical region ( C), then to its exit region (E), and then 
back to its remainder region. This cycle is shown in Figure 6. 

In our example, we consider mutual exclusion algorithms within the shared memory model [Lyn96]. 
The shared memory system contains n processes, numbered L ... , n. The inputs to process i are 
the tryi action which models a request for access to the resource by process i, and the e:riti action, 
which models an announcement that process i is done with the resource. The outputs of process i 
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Figure 7: External interface of a process 

are criti which models the granting of access to process i, and remi which tells the process i that 
it can continue with the remainder of its work. 

The try, crit, e:rit, and rem actions are the only external actions of the shared memory system. 
The processes are responsible for performing the trying and exit protocols. The external interface 
of process i is depicted in Figure 7. 

5.2 Specification of mutual exclusion for three processes 

The automaton Mutex below is the IOA specification for a mutual exclusion service in a system of 
three processes. 

type Index = enurneration of pi, p2, p3 

type Region = enun1eration of rem, try, cri t, exit 

auton1aton Mutex 
signature 

input try(p:Index) 
output crit(p:Index) 
input exit(p:Index) 
output rem(p:Index) 

states 
regionMap: Array[Index, Region] .- constant(rem) 

transitions 
input try(p: Index) 

eff regionMap [p] := try 
output crit(p: Index) 

pre (regionMap[p] = try) 
/\Vu: Index ((p =/- u) ⇒ (regionMap[u] =/- crit)) 

eff regionMap [p] : = cri t 
input exit (p: Index) 

eff regionMap [p] : = exit 
output rem(p: Index) 

pre regionMap[p] = exit 
eff regionMap [p] := rem 

Explanation of code The code above assumes that the processes in the system are referred to 
by indices pi, p2 and p3 and the regions which constitute the cycle used in modeling the execution 
of a process are called rem, try, crit and exit. The definitions for types Index and Region are used 
to express these assumptions in IOA. 
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The signature of Mutex corresponds to the expression of the the external interface in the IOA 
language of a process shown in Figure 7. The state variable regionMap maps process indices to 
regions and is used to keep track of the current region of a process. Each process is assumed to be 
in its remainder region initially, hence the initialization of regionMap to constant(rem). 

The transition definitions are mostly self-explanatory. Each action causes the variable regionMap 

to be updated to record the region that is entered upon its execution. The transition definition for 
cri t warrants more attention as it is this definition which imposes the mutual exclusion condition. 
A process in a trying region is allowed to enter its critical region only if there is no other process 
which is also in region er it. 

5.2.1 The Environment 

We have hitherto assumed that each process obeys the cyclic region protocol. Formally, we define 
a sequence of tryi, criti, e:riti and remi actions to be well-formed for process i if it is a prefix of 
the cyclically ordered sequence tryi, criti, e:riti, remi, tryi, . . . In this section we no longer assume 
but enforce the condition that the interaction of the automaton Mutex with its environment is 
well-formed by specifying the behavior of the environment by means of the automaton Env. The 
signature of Env is similar to that of Mutex. The point to notice is that the input actions of Mutex 

are output actions for Env and the output actions of Env are input actions for Mutex. 

type Region = enurneration of rem, try, cri t, exit 

type Index = enun1eration of pi, p2, p3 

auton1aton Env 
signature 

output try(p: Index) 

input cri t (p: Index) 

output exit(p: Index) 
input rem(p: Index) 

states 
regionMap: Array[Index, Region] .- constant(rem) 

transitions 
output try(p) 

pre regionMap [p] = rem 
eff regionMap [p] .- try 

input crit(p) 

eff regionMap [p] .- crit 
output exit (p) 

pre regionMap [p] = crit 

eff regionMap [p] .- exit 
input rem(p) 

eff regionMap [p] .- rem 

5.2.2 Well-formed interaction with the environment 

The automaton MutexEnv below is an automaton which has been obtained by composing Mutex and 
Env according to the definition of composition from Section 2. The resulting automaton MutexEnv 

is the IOA specification of mutual exclusion for three processes where the well-formedness of inter
action with the environment is guaranteed. The invariant at the very end asserts mutual exclusion. 

type Index = enun1eration of pi, p2, p3 

type Region = enun1eration of rem, try, cri t, exit 
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autornaton MutexEnv 
signature 

output try(p: Index) 
output crit(p: Index) 
output exit(p: Index) 
output rem(p: Index) 

states 
regionMap: Array[Index, Region] .- constant(rem) 

transitions 
output try ( p) 

pre regionMap[p] = rem 
eff regionMap [p] := try 

output cri t (p) 
pre regionMap [p] try 

AV u: Index (p # u ⇒ regionMap[u] # crit) 
eff regionMap [p] := crit 

output exit (p) 
pre regionMap[p] = crit 
eff regionMap [p] := exit 

output rem (p) 
pre regionMap[p] = exit 
eff regionMap [p] .- rem 

invariant of MutexEnv: % asserts mutual exclusion 
V p: Index 

(regionMap[p] = crit 
⇒ Vu: Index (p # u ⇒ regionMap[u] # crit)) 

5.2.3 Syntax and semantic checking with ioaCheck 

Each IOA program needs to pass through a syntax checking phase before it is subjected to further 
study with back-end tools such as the simulator. The tool for syntax checking can be used by 
running the shell script ioaCheck. Note that this program also performs some semantic checks on 
the code. To check your code with ioaCheck: 

1. Place the code in a file with extension .ioa. For example: MutexEnv.ioa 

2. At the command line type 
> ioaCheck MutexEnv.ioa 

The result of using ioaCheck without any options is either a message on the standard output 
that indicates a successful check (Finished checking specifications) or errors. The command 
ioaCheck can also be used to check LSL specifications placed in a file with the extension.Isl. The 
following is the list of options available for running ioaCheck. 

Usage 
ioaCheck [option] source-file 

Options 
-il 

-p 
-path <dirlist> 
-sorts 
-syms 
-debug 
-verbose 

translate to intermediate language 
prettyprint source files 
use <dirlist> to find source files (default '. ') 
print sorts in first source file (LSL only) 
print symbols in first source file (LSL only) 
print debugging information 
print verbose debugging information 
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5.3 Levels of abstraction and simulation 

In this section we present the IOA code of two algorithms that implement mutual exclusion specified 
by the automaton MutexEnv. The automaton Dijkstra describes the mutual exclusion algorithm 
designed by Dijkstra [Lyn96]. The automaton Dijkstraint is a simpler version of Dijkstra's algo
rithm that abstracts from those parts in the original algorithm dedicated to dealing with liveness. 
In other words, we have an abstraction hierarchy where the automata MutexEnv, Dijkstraint and 
Dijkstra lie respectively at the top, intermediate and lowest levels. 

Figure 8 summarizes how we proceed in the rest of this section. We first present the IOA code for 
the intermediate level algorithm and use the IOA simulator to check whether it works as expected. 
To increase our confidence that it complies with the specification of mutual exclusion, we propose 
a forward simulation relation from Dijkstraint to MutexEnv. We then use the paired simulator 
to check that the proposed relation holds for the selected executions. We follow a similar line of 
action for the lower level algorithm. In this case we propose and check a forward simulation relation 
from Dijkstra to Dijkstraint. We know by Theorem 2.1 that if there is a forward simulation from 
Dijkstraint to MutexEnv and from Dijkstra to Dijkstraint, then traces(Dijkstra) must be a subset 
of traces(MutexEnv). That is to say all observable behaviors of Dijkstra are a subset of observable 
behaviors of MutexEnv and therefore satisfy mutual exclusion. 

5.3.1 Intermediate level algorithm 

The following is an IOA program which includes the description of the intermediate level algorithm 
and a schedule block to simulate the automaton Dijkstraint. 

axiorns NonDet 

type Index = enun1eration of pi, p2, p3 

type Region = enun1eration of rem, try, cri t, exit 
type PcValue = enun1eration of rem, setflag01, setflag2, check, leavetry, 

crit, reset, leaveexit 

type Stage = enun1eration of stage01, stage2 

autoniaton Dijkstraint 

signature 
output try(p: Index) 

output crit(p: Index) 

output exit(p: Index) 
output rem(p: Index) 

internal setflag01 (p: Index) 

internal setflag2 (p: Index) 
internal check(p: Index, u: Index) 

internal reset (p: Index) 

states 
flag: Array [Index, Stage] := constant ( stage01), 

pc: Array[Index, PcValue] := constant(rem), 

S: Array[Index, Set[Index]] := constant({}) 

transitions 
output try ( p) 

pre pc[p] = rem 
eff pc [p] := setflag01 

internal setflag01 (p) 

pre pc[p] = setflag01 
eff flag [p] := stage01; 

pc [p] := setflag2 
internal setflag2 (p) 

pre pc[p] = setflag2 
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eff flag [p] := stage2; 
s [p] := {p}; 

pc [p] := check 
internal check (p, u) 

pre pc[p] = check A ,(u E S[p]) 
eff if flag[u] = stage2 then S[p] := {}; 

pc[p] := setflagOi 
else S [p] := S [p] U {u}; 

fi 

if size(S[p]) = 3 then pc[p] := leavetry 

fi 

output crit (p) 

pre pc[p] = leavetry 

eff pc [p] := cri t 
output exit (p) 

pre pc[p] = crit 

eff pc [p] := reset; 
internal reset(p) 

pre pc[p] = reset 

eff flag [p] := stageOi; 
S[p]:={}; 

pc [p] := leaveexi t 
output rem (p) 

pre pc[p] = leaveexit 

eff pc [p] := rem 

schedule 
states pick: Int, 

p: Index 

do while true do 

od 

pick:= randomint(i,3); 

if pick = i then p := pi 
elseif pick = 2 then p := p2 

else p := p3 

fi ; 

if pc[p] = rem 
else if pc [p] 
else if pc [p] 

else if pc [p] 

then fire output try (p) 

setflagOi then fire internal setflagOi (p) 
setflag2 then fire internal setflag2 (p) 

check then if , (pi E S [p]) then fire internal check (p, pi) 

elseif ,(p2 E S[p]) then fire internal check(p,p2) 
elseif ,(p3 E S[p]) then fire internal check(p,p3) fi 

else if pc [p] leavetry then fire output crit (p) 

elseif pc [p] crit then fire output exit (p) 
else if pc [p] reset then fire internal reset (p) 

else fire output rem(p) 

fi 
od 

Explanation of code The automaton Dijkstralnt makes use of the types PcValue and Stage 

in addition to those that we have already introduced. The values of type PcValue represent the 
possible program counter values for the process while values of type Stage represent the stages of 
the algorithm. The phrase axioms NonDet is included to allow the use of operations specified by 
the trait NonDet. 

The signature of Dijkstraint has three internal actions along with those of MutexEnv. It also 
has some state variables which are not present in MutexEnv. The algorithm specified by Dijkstraint 
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has two stages. The first stage stage01 indicates that a process is either inactive or is about to enter 
the second stage. The second stage stage2 embodies the crucial steps and determines whether a 
process is allowed to enter the its critical region. A process can enter its critical region only if all 
other processes are in the first stage of the algorithm. The transition definition for action check 

details how this is checked. The state variables flag and pc are used respectively to record the stage 
of the algorithm for each process and to control the order of occurrence of the actions mimicking the 
program counter of a process. The schedule block implements a randomized scheduling policy for 
three processes. One of the three processes is picked randomly each time the while loop is executed. 
When pc [p] is check then the schedule block decides the process to be checked by p, by looking at 
S [p] and yielding the process with the smallest identifier that is not already in S[p]. Such a process 
is guaranteed to exist because pc [p] is no longer check once S[p] contains all processes. 

5.3.2 Running the simulator with sim 

To simulate your code with sim: 

1. Place your code in a file with extension .ioa, for example Dijkstralnt.ioa 

2. Check the code for syntax and semantic errors with ioaCheck 

3. At the command line type 
> sim 100 Dijkstraint.ioa 
where the first argument to sim is the number of required simulation steps and the second 
argument is the source file. The choice of number 100 here is arbitrary. 

A sample output is presented in Section A.4 of the Appendix. 
The following is the list of options available for running sim. 

Usage 
sim [option] <# steps> [<automaton name>] <IL filename> 

Options 
[-big] Use Biginteger and BigReal for all calculations 
[-config <string>]+ Use the given configuration file(s) for options 
[-daikon] Turn on Daikon instrumentation on 
[-dbg <string>]+ Turn on debug information for a java class or package. 
[-debug] Turn on debug information globally 
[-ignoreFirst] Ignore first program point (init states) during Daikon instrumentation 
[-noil] Do not send il output to a file (if reading an IDA file) 
[-o <string>] Set base name for output 
[-odecls <string>] Set destination file for decls output 
[-odtrace <string>] Set destination file for dtrace output 
[-oil <string>] Set destination for il output 
[-rseed <number>] Set randomizer seed for regression resting 
[-state] Show all state variables during execution 
[-traces] Show only traces during execution 
[-traces □nly] Show only traces during execution 

5.3.3 Forward simulation from Dijkstralnt to MutexEnv 

The code below defines a forward simulation relation in IOA and contains a proof block for that 
relation. Together with the IOA descriptions of Mutex and Dijkstraint augmented with the NDR 
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programs from Section 5.3.1, this block allows one to use the paired simulator to check whether 
the relation holds in the simulated executions. 

forward sirnulation fron1 Dijkstraint to MutexEnv 
Vi: Index (Dijkstraint.pc[i] = setflag01 V Dijkstraint.pc[i] = setflag2 V 

Dijkstraint.pc[i] = check V Dijkstraint.pc[i] = leavetry 
<==> MutexEnv. regionMap [i] = try); 

V i: Index ( Dijkstraint. pc [i] cri t <==> MutexEnv. regionMap [i] = cri t); 
Vi: Index (Dijkstraint.pc[i] =rem<==> MutexEnv.regionMap[i] = rem); 
Vi: Index (Dijkstraint.pc[i] = reset V Dijkstraint.pc[i] = leaveexit 

<==> MutexEnv. regionMap [i] = exit); 
proof 

initially MutexEnv. regionMap := constant (rem) 
for output try(p:Index) do fire output try(p) od 
for output crit (p: Index) do fire output crit (p) od 
for output exit (p: Index) do fire output exit (p) od 
for output rem(p:Index) do fire output rem(p) od 
for internal setflag01 (p: Index) ignore 
for internal setflag2 (p: Index) ignore 
for internal check(p:Index,u:Index) ignore 
for internal reset(p:Index) ignore 

Explanation of code The candidate relation in this example is based on the relation between the 
values of the state variable pc of the low-level automaton and those of the state variable regionMap 

of the specification automaton. The intuition behind this relation is as follows. For each region in 
the specification of mutual exclusion there are certain actions that can be performed by the low
level automaton. These actions are determined by the pc values. The relation states that whenever 
the program counter of a process at the low-level automaton is set to one of setflag01, setflag2, 

check, or leavetry, the regionMap of the specification automaton must show region try for the 
same process. The rest of the relation is defined similarly. The delimiter ";" can be interpreted as 
conjunction. 

In paired simulation, the simulation of the low-level algorithm drives the simulation of the high
level one. For each external action performed by the low-level automaton, the proof block directs 
the simulator to fire the action with the specified name at the high-level. The internal actions 
are matched by empty execution fragments indicated by ignore statements. The simulator checks 
whether the proposed simulation relation holds after the actions are performed. 

5.3.4 Running the paired simulator with psim 

To run the paired simulator: 

1. Place the code is in a file with extension .ioa, for example InttoMutex.ioa 

2. Check the code for syntax and semantic errors with ioaCheck 

3. At the command line type 
> psim 100 Dijkstraint MutexEnv InttoMutex.ioa 
where the first argument to psim is the number of simulation steps, the second argument is 
the name of the low-level (implementation) automaton and the third argument is the name 
of the high-level (specification) automaton and the fourth one is the name of the source file. 
The choice for number 100 in this example is arbitrary. 
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A sample output is presented in Section A.5 of the Appendix. 

The following is the list of options available for running psim. 

Usage 
sim [option] <numSteps> <implAut> <specAut> <filename> 

Options 
[ -big] 
[-config <string>]+ 
[ -daikon] 
[-dbg <string>]+ 
[ -debug] 
[-ignoreFirst] 
[ -noil] 
[ -o <string> J 
[-odecls <string>] 
[-odtrace <string>] 
[ -oil <string> J 
[-rseed <number>] 
[ -state] 
[ -traces] 
[ -traces Only J 

Use Biginteger and BigReal for all calculations 
Use the given configuration file(s) for options 
Turn on Daikon instrumentation on 
Turn on debug information for a java class or package. 
Turn on debug information globally 
Ignore first program point (init states) during Daikon instrumentation 
Do not send il output to a file (if reading an IDA file) 
Set base name for output 
Set destination file for decls output 
Set destination file for dtrace output 
Set destination for il output 
Set randomizer seed for regression resting 
Show all state variables during execution 
Show only traces during execution 
Show only traces during execution 

5.3.5 Forward simulation from Dijkstra to Dijkstaint 

In this section we present the IOA code written for use with the paired simulator on automata 
Dijkstra and Dijkstaint. Note that the low-level automaton Dijkstra is presented for the first 
time. We do not explain it in detail as it is similar in many aspects to Dijkstraint. The main 
difference is that Dijkstra has three stages as opposed to two in Dijkstra. The additional stage is 
necessary to deal with the turn variable whose purpose is to guarantee that a process eventually 
enters its critical region. The internal actions which are present in Dijkstra but not in Dijkstraint 

all deal with testing and setting the variable turn. 

type PcValueLow = enurneration of rem, setflag1, testturn, testflag, sett urn, 

setflag2, check, leavetry, cri t, reset, 
leaveexit 

type StageLow = enun1eration of stageO, stage1, stage2 

auton1aton Dijkstra 

signature 
output try(p:Index) 
output crit(p:Index) 

output exit(p:Index) 

output rem(p:Index) 
internal setflag1 (p: Index) 

internal setflag2 (p: Index) 

internal testturn (p: Index) 
internal testflag (p, u: Index) 

internal sett urn (p: Index) 

internal check(p: Index, u: Index) 
internal reset(p :Index) 

states 
turn: Index, 
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flag: Array[Index, StageLow] := constant(stageO), 

pc: Array[Index, PcValueLow] := constant(rem), 
whose_flag: Array[Index, Index], 

S: Array[Index, Set[Index]] .- constant({}) 

transitions 
output try(p: Index) 

pre pc[p] = rem 

eff pc [p] := setflag1 
internal setflag1 (p: Index) 

pre pc[p] = setflag1 

eff flag [p] := stage1; 
pc [p] := testturn 

internal testturn (p: Index) 

pre pc[p] = testturn 
eff if turn = p then pc [p] := setflag2 

else pc [p] := testflag; 
whose_flag [p] := turn 

fi 
internal testflag (p, u: Index) 

pre pc[p] = testflag A whose_flag[p] = u 
eff if flag [u] = stageO then pc [p] .- setturn 

else pc [p] .- testturn 

fi 
internal sett urn (p: Index) 

pre pc[p] = setturn 

eff turn := p; 
pc [p] := setflag2 

internal setflag2 (p: Index) 

pre pc[p] = setflag2 
eff flag [p] := stage2; 

S[p] .- {p}; 

pc [p] := check 
internal check (p, u: Index) 

pre pc[p] = check A ,(u E S[p]) 

eff if flag[u] = stage2 then S[p] 
pc [p] 

:= {}; 

else S[p] .- S[p] U {u}; 

if size(S[p]) = 3 then pc[p] 

fi 
output crit(p: Index) 

pre pc[p] = leavetry 
eff pc [p] := cri t 

output exit(p: Index) 

pre pc[p] = crit 
eff pc [p] := reset 

internal reset (p: Index) 

pre pc[p] = reset 
eff flag [p] := stageO; 

S[pJ.-G; 
pc [p] := leaveexi t 

output rem(p: Index) 

pre pc[p] = leaveexit 

eff pc [p] .- rem 

schedule 
states pick: Int, 

p: Index 

do while true do 
pick:= randomint (1,3); 
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od 

if pick = i then p := pi 
elseif pick = 2 then p := p2 
else p := p3 
fi ; 

if pc [p] = rem then fire output try (p) 
else if pc [p] = setflagi then fire internal setflagi (p) 
elseif pc [p] = testturn then fire internal testturn (p) 
elseif (pc[p] = testflag A whose_flag[p] # p) then 

elseif 
elseif 
elseif 

pc [p] 
pc [p] 
pc [p] 

fire internal testflag (p, whose_flag [p]) 
sett urn then fire internal sett urn (p) 
setflag2 then fire internal setflag2 (p) 
check then if , (pi E S [p]) then fire internal check (p, pi) 

elseif ,(p2 E S[p]) then fire internal check(p,p2) 
elseif ,(p3 E S[p]) then fire internal check(p,p3) 
fi 

else if pc [p] leavetry then fire output crit (p) 
else if pc [p] crit then fire output exit (p) 
else if pc [p] reset then fire internal reset (p) 
else fire output rem(p) 
fi 
od 

forward sin1ulation fron1 Dijkstra to Dijkstraint 
(Dijkstra.S = Dijkstraint.S); 
V p:Index 

V p:Index 
V p:Index 
V p:Index 
V p:Index 

V p:Index 
V p:Index 
V p:Index 
V p:Index 
V p:Index 

(Dijkstra.flag[p] = stageO V Dijkstra.flag[p] = stagei 
<=> Dijkstraint. flag [p] = stageOi); 

(Dijkstra.flag[p] = stage2 <=> Dijkstraint.flag[p] = stage2); 
(Dijkstra.pc[p] rem<=> Dijkstraint.pc[p] = rem); 
(Dijkstra.pc[p] = setflagi <=> Dijkstraint.pc[p] = setflagOi); 
(Dijkstra.pc[p] = testturn V Dijkstra.pc[p] = testflag V 

Dijkstra.pc[p] = setturn V Dijkstra.pc[p] = setflag2 
<=> Dijkstraint.pc[p] = setflag2); 

(Dijkstra.pc[p] check<=> Dijkstraint.pc[p] = check); 
(Dijkstra.pc[p] leavetry <=> Dijkstraint.pc[p] = leavetry); 
(Dijkstra. pc [p] cri t <=> Dijkstraint. pc [p] = cri t); 
(Dijkstra.pc[p] reset <=> Dijkstraint.pc[p] = reset); 
(Dijkstra.pc[p] leaveexit <=> Dijkstraint.pc[p] = leaveexit); 

proof 
initially 
Dijkstraint.flag := constant(stageOi); 
Dijkstraint.pc := constant(rem); 
Dijkstraint.S := constant({}) 
for output try(p:Index) do fire output try(p) od 
for internal setflagi (p: Index) do fire internal setflagOi (p) od 
for internal testturn (p: Index) ignore 
for internal testflag(p,u: Index) ignore 
for internal sett urn (p: Index) ignore 
for internal setflag2 (p: Index) do fire internal setflag2 (p) od 
for internal check(p,u:Index) do fire internal check(p,u) od 
for output crit (p: Index) do fire output crit (p) od 
for output exit (p: Index) do fire output exit (p) od 
for internal reset (p: Index) do fire internal reset (p) od 
for output rem(p:Index) do fire output rem(p) od 
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Explanation of code The forward simulation relation is based on the idea that the first two 
stages (stageO and stage1) of algorithm Dijkstra are represented by a single stage in Dijkstraint 

(stage01). The rest of the code should be self-explanatory. The paired simulation can be carried 
out by placing the code for Dij kstraint from Section 5.3.1 in the same file as the code for Dijkstra 

with the schedule block and the proposed simulation relation. 

6 Simulator-related extensions to the IOA language 

In this section we revisit those parts of the IOA language that were modified in order accommodate 
the language constructs on which the IOA simulator depends. The modifications to the IOA syntax 
are described formally using a BNF grammar. We also comment on the semantic constraints for 
the extensions to the IOA language. The reader is referred to [GLVOI] for the rest of the IOA 
grammar, the grammar syntax conventions used here and the semantics of the IOA Language. 

6.1 Resolution of nondeterminism 

As explained in Section 3, our approach to resolution of nondeterminism requires programmers to 
specify how the nondeterminism in an automaton is to be resolved by the simulator. The necessary 
modification to the IOA Language has two parts: 

1. Addition of syntax for sequential programs that specify the values to choose or the transitions 
to schedule ("NDR programs"). 

2. Extensions to the existing syntax for automaton and choose that incorporate these sequential 
programs. 

The resulting grammar is very similar to the existing program grammar in IOA, except that it 
permits the new fire and yield statements, used by the NDR mechanisms to schedule automaton 
actions and determine values of choices, as well as the while statement, which provides a looping 
construct with simple deterministic semantics. 

Extension to primitive automaton syntax: This extension is straightforward: it simply pro
vides a place to specify the schedule of a primitive automaton. 

Original: 

basicAutomaton 

Modified: 

basicAutomaton 
schedule 
NDRProgram 
NDRStatement 

NDRConditional 

NDRWhile 
NDRFire 

'signature' formalActions+ states transitions tasks? 

'signature' formalActions+ states transitions tasks? schedule? 
'schedule' states? 'do' NDRProgram 'od' 
NDRStatement;* 
assignment 
NDRConditional 
NDRWhile 
NDRFire 
'if' predicate 'then' NDRProgram 
('elseif' predicate 'then' NDRProgram)* 
('else' NDRProgram)? 'fi' 
'while' predicate 'do' NDRProgram 'od' 
'fire' actionType actionName actionActuals? transCase? 
'fire' 
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An assignment in a schedule block may assign a value to any of the schedule's state variables, but 
it may not assign values to variables inside the automaton. This constraint is verified during static 
checking. 

Determining values within a choose: This extension is also mostly straightforward. Besides 
providing a place to hold the NDRProgram, however, it does two additional things: first, it specifies a 
shorthand notation for a (presumably) common form of choice determination, and second, it allows 
for a choose statement to specify a variable name without a constraining where predicate. This is 
necessary for paired simulation, since the names of the chosen values in the specification automa
ton are still necessary to carry out the step correspondence, even in the absence of a where predicate. 

Original: 

choice 

Modified: 

choice 
choiceNDR 

NDRPrograrnY 
NDRStatementY 

NDRConditionalY 

NDRWhileY 
NDRYield 

'choose' (variable 'where' predicate)? 

'choose' (variable ('where' predicate)?)? choiceNDR? 
'det' 'do' NDRProgramY 'od' 
NDRYield 
NDRStatementY;* 
assignment 
NDRConditionalY 
NDRWhileY 
NDRYield 
'if' predicate 'then' NDRPrograrnY 
('elseif' predicate 'then' NDRPrograrnY)* 
('else' NDRProgramY)? 'fi' 
'while' predicate 'do' NDRProgramY 'od' 
'yield' term 

The only statements appearing m a yield context are those that return values; specifically fire 
statements are disallowed. 

6.2 Labeling transition definitions 

As explained in Section 3, our approach to resolution of nondeterminism requires a way to refer to 
a transition definition in a primitive automaton. In general, it is not enough for this to specify the 
name and parameters of the transition: it is possible for two transitions with identical signature 
and where clause to be enabled in the same state. This addition to the IOA syntax remedies the 
situation by providing an explicit naming mechanism: 

Original: 

transition 
actionHead 

Modified: 

transition 
actionHead 

transCase 

actionHead chooseFormals? precondition? effect? 
actionType actionNarne (actionActuals where?)? 

actionHead chooseFormals? precondition? effect? 
actionType actionNarne (actionActuals where?)? 
trans Case? 
'case' idOrNumeral 
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The user is free to define, for a given action, two transitions with the same parameters and case 

name. The semantic checker does not issue an error message unless a schedule block for the 
automaton refers to such a duplicate transition. In case a duplicate transition is referred to, it 
indicates that more than one transition matches the given description, just as it would if there were 
no case names given. 

6.3 Labeling invariants 

It is convenient for invariants to have a name, so that the simulator can refer to the specific invari
ant in case it fails. This was accomplished with the following grammar change, which allows any 
numeral or identifier to be given as the name for an invariant. 

Original: 

invariant 

Modified: 

invariant 

'invariant' 'of' automatonNarne '·' predicate 

'invariant' idOrNumeral? 'of' automatonName '·' predicate 

Because invariant labels exist only for the user's convenience in reading the simulator's output, the 
user is free to choose any (alphanumeric) name desired; no semantic checks are performed. For 
example, the user may give all invariants of an automaton the same name - this is considered as 
legal although it should obviously be avoided. 

6.4 Paired simulation 

In addition to the mathematical statement of a simulation relation between automata, the simulator 
also needs a step correspondence between the automata which realizes the simulation relation. 
Hence, it was necessary to develop a language for specifying these correspondences. See Section 4 
for the semantics of this language, and for justification of the approach and terminology. 

The syntax of IOA has been extended with forward simulations to permit the specification 
of a "proof', which embodies the step correspondence. This proof specifies, for each transition 
that the implementation automaton might take, a way to produce a sequence of transitions for the 
specification automaton. The following are the additions: 

Original: 

simulation 

Modified: 

simulation 

simProof 

simProofEntry 

simProofProgram 

('forward' I 'backward') 'simulation' 'from' 
automatonName 'to' automatonNarne '·' predicate 

('forward' I 'backward') 'simulation' 'from' 
automatonName 'to' automatonNarne ':' predicate 
simProof? 
'proof' states? ('initially' (variable ':=' term);+)? 
simProofEntry+ 
'for' actionType actionName 
actionFormals? transCase? 
(('do' simProofProgram 'od') I 'ignore') 
simProofStatement;+ 
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simProofStatement 

simProofConditional 

simProofWhile 
simProofFire 

assignment 
simProofConditional 
simProofWhile 
simProofFire 
'if' predicate 'then' simProofProgram 
('elseif' predicate 'then' simProofProgram)* 
('else' simProofProgram)? 'fi' 
'while' predicate 'do' simProofProgram 'od' 
'fire' actionType actionName 
actionActuals? transCase? 
('using' ( term 'for' variable),+)? 

The left-hand side of an assignment in a simProofinit block must refer to a state variable of the 
specification automaton. The user assumes the burden of ensuring that the initially assignments 
result in a reachable state of the specification automaton. 

7 Implementation of the simulator 

7.1 The IOA toolkit architecture 

The simulator is part of the IOA toolkit, which is written in Java. The toolkit is split into two 
parts: the front end and the back end. The front end includes the IOA parser and syntax checker, 
while the back end includes the simulator, a code generator (to Java) and a translator to LSL. The 
tools share many components, and the shared parts are designed to facilitate adding new tools with 
minimal effort. The components can be divided into three categories: 

• Intermediate language and syntax trees All back end tools use the same syntax tree to 
represent the IOA language structures as Java data structures. The front end generates an 
intermediate language (IL) representation of IOA, and back end libraries parse this IL into 
the shared syntax tree. 3 

• Data structures for executable IOA In addition to the simulator, the IOA code generator 
can also execute IOA programs". To prevent redundant code and to ensure similar behavior, 
the toolkit programs that can execute IOA all use the same Java package for IOA data 
structures and functions. 

• Shared utility components To provide similar behavior across all the IOA tools, many user 
interface and other features are implemented in shared libraries. In addition to the IL parser 
and syntax tree described below, the tools share an error handling mechanism, a command 
line argument processor and debug output generator. 

Of course, all the tools are different in the ways they work with IOA. Specifically, some tools 
require only a subset of the language. For example, the simulator has no need for assert clauses in 
LSL specifications for data structures, but requires schedule and det blocks for nondeterminism 
resolution. In contrast, the the translator to LSL needs the assert clauses, but does not need 
nondeterminism resolution. We use the following rules for handling these implementation issues: 

3 Note that the front end has to have a syntax tree to parse IOA, but this tree is different from the back end tree, 
and does not interact with the back end. \Ve shall henceforth call the front end parser the IOA parser and the back 
end IL parser the IL parser. 

4 Using the same ideas for nondeterminism resolution and scheduling that are presented in this paper 
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• The IOA front end parser understands all extensions of the language and writes IL files 
containing all the relevant information. 

• The IL parser understands the core part of IOA, such as automaton signature, state variables 
and transition definitions. 

• For a language structure that is specific to a particular tool, the tool is responsible for parsing 
and creating syntax trees for the structure. 

The advantage of the above rules is that it makes the tools more independent from each other 
and the IL more robust to changes. The disadvantage is that implementing global features (like 
unparsing) is more difficult with respect to syntax trees. 

7 .2 The Intermediate language and IL parser 

The IL is written to a text file by the IOA parser after an IOA file is read. It is meant to be "self 
contained": unlike an IOA file, it does not refer to external definitions such as LSL traits. 

The format of the IL is parenthesized symbolic expressions (S-expressions), which are easily 
parsed and allow human reading and editing for debugging. 

The convention is that the IOA parser and the IL parser do not write/read directly to/from 
text format. Instead, they parse/unparse the into S-expressions and then let a utility write to 
text form. This separates the steps involved in text processing and low-level parsing from the 
high-level recognition of IOA syntax structures. Another advantage of this is that the formatting 
and appearance of IL is the same when it is being generated by the IOA parser or the IL parser·5. 

Lastly, when the IL parser finds an error in the IL, it uses the error handler common to all tools. 

7.2.1 The spec object 

Every IL file contains a top level object called the spec: 

(ioa *sort-table* *operator-table* *variable-table* 
*automaton-definition* 
*annotations*) 

The spec is a an S-expression list (S-list) that begins with the word ioa, and contains the 
symbol tables (one for data type sorts, one for operators and one for variable names), followed by 
the automaton definitions (more than one automaton can be defined), followed by any additional 
annotations for the spec. 

The IL defines specific places where tool-specific extensions of the language may be placed: they 
are always at the end of S-lists and are written as S-lists following globally-recognized elements. 
The IL Parser delegates the parsing of tool-specific extensions back to the tool that invoked it. 

5 Even though they use different syntax trees, both of them generate S-expressions 
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7.2.2 Symbol tables 

The IOA checker and parser resolve all name and scope issues, so that variables and operators share 
one flat namespace. The symbol tables map from this flat name space to the original IOA name 
space. The Simulator uses the flat namespace, but reports actions using the symbol table so users 
can refer to state variables and operators by their original names. For example in the following 
symbol tables: 

(ioa 
(sorts 

(s0 "Boal" ()) 

(s3 "Int" () lit) 
... ) 

(ops 
(op1 (infix "=") ((s0 s0) s0) (scope 0)) 

(op452 (infix "=") ( (s3 s3) s0) (scope 22)) 
... ) 

, , *sort-table* 

, , *operator-table* 

The operator op452 is the = operator that operates on two arguments of type Int and returns 
a type Boal. Since the equality operator for integers is explicitly named, back end tools do not 
have to determine what a particular usage of = is. This is convenient because two data types may 
define and operator like* to mean different things (e.g. concatenation vs. multiplication). 

7.2.3 Additional annotations 

The two major types of annotations recognized by the shared IL parser in the spec object are 
shorthand sorts (such as tuple definitions) and invariant statements. Simulation relations between 
automata are annotations that are parsed only by the simulator and LSL generators. 

7.2.4 Automaton definitions 

Each automaton definition is an S-list that consists of a description of the actions, the state variables 
( and their initializations), the possible transitions followed by tool-specific annotations. The only 
annotation the simulator uses is a schedule block for nondeterminism resolution. 

(automaton "Channel" 
( (actions 

(a0 input "send" (formals v1)) 
(a1 output "receive" (formals v1))) 

(states *state-variables*) 
(transitions *transitions-list*) 
(schedule *schedule-block*))) 

Laura Dean's thesis [DeaOl] contains the formal BNF specification of the IL, along with the 
simulator-specific extensions. 
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7 .3 Implementation of the IL 

In this section, we briefly look at the way the IL syntax tree is implemented. For a more detailed 
view, see Ramirez's thesis [RR00]. 

Every object in the IL tree is a Java interface that inherits from ioa. il. ILElement. For exam
ple, ioa. il. Program is an ioa. il. ILElement that contains multiple ioa. il. Statements. Each 
of these interfaces is implemented with Java objects that inherit from ioa. il. BasicILElement. 
There are two reasons for using interfaces rather than objects for the IL: 

• Tools can choose to implement the IL in a completely different way from the default objects 
under ioa. il.BasicilElement. 

• Java does not permit multiple inheritance in objects, so using interfaces provides more flexi
bility for tools that want to extend object functionality. 

Each back-end tool can choose to directly use classes in ioa. il to implement its functionality, or 
it can extend some of the objects derived from ioa. il. BasicILElement and create a parallel syntax 
tree for itself. The convention is to delegate standard functionality to ioa. il objects whenever 
possible. Therefore , for example, ioa. simulator. SimChoice extends ioa. il. NDRChoice which 
extends ioa. il. BasicValue. ioa. simulator. SimChoice does not directly extend 
ioa. simulator. Sim Value ( which extends ioa. il. BasicValue). 

To parse and generate IL tree objects, the factory design pattern is used. The ILParser is a 
subroutine called by back-end tools that does the actual parsing. ILParser generates objects in 
the tree as needed by asking an ILFactory. By default, the ILParser uses ioa. il. BasicILFactory 
which produces children of ioa.il.BasicILElement. Back-end tools that want to replace IL tree 
objects with customized ones just have to change the factory that is used to a custom one. The 
simulator thus uses a ioa. simulator. SimILFactory. 

7 .4 Simulator data types 

The Simulator shares runtime type libraries with the IOA Code Generator to ensure similar code 
behavior and to reduce repeated code. The toolkit refers to these as abstract data types (ADTs) 
and Michael Tsai in "ADTs for IOA Code Generation" [TsaOl] describes the process in detail. 

Data types and associated operators used in IOA are specified either explicitly (in LSL files) or 
implicitly (built in) to the IOA parser and checker. These specifications are implemented by ADTs 
in the runtime libraries. When an IOA program is run and an operator or data type is constructed 
in the IL tree, the Simulator looks up the appropriate implementation in an ADT "Registry" that 
maps operator and sort specifications to implementations. The implementation sort or operator is 
then used when working with data values. 

7.4.1 The ADT registry 

Before the Registry is used, it must be told which IOA operators and sorts are being implemented by 
what. This is done by a set of registration classes. For example, the registration class for IntSort 
tells the Registry that: the IOA data type Int will be implemented by the Java class IntSort, and 
the operators that work on Int (such as+) will be implemented by methods in IntSort. 
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A registration class may register for any number of operators or sorts, but the convention is to 
use one registration class for each IOA data type and its associated operators. For functions that 
operate on multiple sorts, registration can be done by any of the sorts' registration classes. 

Since specifications are separate from implementation, users can choose to have an alternate 
set of data type implementations. This is done by configuring the Registry to use a different set of 
registration classes in the . ioarc configuration file. 

It is important to note that with this flexible registration mechanism, mismatches in registration 
are not detected at compile time. For example, if an ADT was missing and a registration class 
referred to it, the registration class would still compile. Only when the simulator is run would this 
error be detected. This makes good testing and error checking vital (see below). 

7.5 Testing and implementation 

The IOA toolkit also shares testing infrastructure between its tools. There are two types of tests: 

• Unit tests These test a few classes for their expected functionality by themselves. This is 
done using .Junit[.JUn02]. Currently, all the ADT implementations and some shared interface 
libraries are tested this way. Testing the ADTs with unit tests is important as it would be 
troublesome to generate IOA files that call every method in an ADT implementation. 

• Regression tests All the output generated by IOA tools is compared to the expected output 
using a test suite of more than 30 tests. These tests check for correct implementation of IOA 
data and language structures, and each test is run for each tool. 

Extensions to the Simulator or other tools should also add the appropriate unit and regression 
tests to ensure verification of correct operation. 
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A Simulator outputs 

This section includes the simulator outputs for the examples presented throughout this paper. 
(Note: some of them need to be updated). 

A.1 Simulator output for Chooser 

[[[[ Begin initialization[[[[ 
%%%% Modified state variables: 

chosen--> 87 
did_choose --> false 

]]]] End initialization]]]] 
[[[[ Begin step 1 [[[[ 

transition: output action1 in automaton Chooser 
%%%% Modified state variables: 

chosen--> 11 
did_choose --> true 

]]]] End step 1 ]]]] 
[[[[ Begin step 2 [[[[ 

transition: output action2(11) in automaton Chooser 
%%%% No modified state variables 
]]]] End step 2 ]]]] 
[[[[ Begin step 3 [[[[ 

transition: output action1 in automaton Chooser 
%%%% Modified state variables: 

chosen--> 12 
did_choose --> true 

]]]] End step 3 ]]]] 
[[[[ Begin step 4 [[[[ 

transition: output action2(12) in automaton Chooser 
%%%% No modified state variables 
]]]] End step 4 ]]]] 
[[[[ Begin step 5 [[[[ 

transition: output action1 in automaton Chooser 
%%%% Modified state variables: 

chosen--> 13 
did_choose --> true 

]]]] End step 5 ]]]] 

[[[[ Begin step 95 [[[[ 
transition: output action1 in automaton Chooser 

%%%% Modified state variables: 
chosen--> 13 
did_choose --> true 

]]]] End step 95 ]]]] 
[[[[ Begin step 96 [[[[ 

transition: output action2(13) in automaton Chooser 
%%%% No modified state variables 
]]]] End step 96 ]]]] 
[[[[ Begin step 97 [[[[ 

transition: output action1 in automaton Chooser 
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%%%% Modified state variables: 
chosen--> 11 
did_choose --> true 

]]]] End step 97 ]]]] 
[[[[ Begin step 98 [[[[ 

transition: output action2(11) in automaton Chooser 
%%%% No modified state variables 
]]]] End step 98 ]]]] 
[[[[ Begin step 99 [[[[ 

transition: output action1 in automaton Chooser 
%%%% Modified state variables: 

chosen--> 12 
did_choose --> true 

]]]] End step 99 ]]]] 
[[[[ Begin step 100 [[[[ 

transition: output action2(12) in automaton Chooser 
%%%% No modified state variables 
]]]] End step 100 ]]]] 
No errors 

A.2 Simulator output for Fibonacci 

[[[[ Begin initialization[[[[ 
%%%% Modified state variables: 

a--> 1 
b --> 0 
C --> 1 

]]]] End initialization]]]] 
[[[[ Begin step 1 [[[[ 

transition: internal compute in automaton Fibonacci 
%%%% Modified state variables: 

a--> 0 
b --> 1 
C --> 1 

>>>> Invariant B failed 
]]]] End step 1 ]]]] 
[[[[ Begin step 2 [[[[ 

transition: internal compute in automaton Fibonacci 
%%%% Modified state variables: 

a--> 1 
b --> 1 
C --> 2 

>>>> Invariant B failed 
]]]] End step 2 ]]]] 
[[[[ Begin step 3 [[[[ 

transition: internal compute in automaton Fibonacci 
%%%% Modified state variables: 

a--> 1 
b --> 2 
C --> 3 

>>>> Invariant B failed 
]]]] End step 3 ]]]] 
[[[[ Begin step 4 [[[[ 
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transition: internal compute 
%%%% Modified state variables: 

a--> 2 
b --> 3 
C --> 5 

>>>> Invariant B failed 
]]]] End step 4 ]]]] 
[[[[ Begin step 5 [[[[ 

transition: internal compute 
%%%% Modified state variables: 

a--> 3 
b --> 5 
C --> 8 

>>>> Invariant B failed 
]]]] End step 5 ]]]] 

in automaton Fibonacci 

in automaton Fibonacci 

**** Some errors occured during simulation 

A.3 Forward simulation from FiniteGreeter to GreeterSpec 

[[[[ Begin initialization[[[[ 
%%%% Modified state variables for impl automaton: 

maxGreets --> 100 
count--> 0 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End initialization]]]] 
[[[[ Begin step 1 [[[[ 

Executed impl transition: output hello in automaton FiniteGreeter 
%%%% Modified state variables for impl automaton: 

count--> 1 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 1 ]]]] 
[[[[ Begin step 2 [[[[ 

Executed impl transition: output hello in automaton FiniteGreeter 
%%%% Modified state variables for impl automaton: 

count--> 2 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 2 ]]]] 
[[[[ Begin step 3 [[[[ 

Executed impl transition: output hello in automaton FiniteGreeter 
%%%% Modified state variables for impl automaton: 

count--> 3 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 3 ]]]] 
[[[[ Begin step 4 [[[[ 

Executed impl transition: output hello in automaton FiniteGreeter 
%%%% Modified state variables for impl automaton: 
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count--> 4 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 4 ]]]] 

[[[[ Begin step 15 [[[[ 
Executed impl transition: output hello in automaton FiniteGreeter 

%%%% Modified state variables for impl automaton: 
count--> 15 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 15 ]]]] 
[[[[ Begin step 16 [[[[ 

Executed impl transition: output hello in automaton FiniteGreeter 
%%%% Modified state variables for impl automaton: 

count--> 16 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 16 ]]]] 

[[[[ Begin step 99 [[[[ 
Executed impl transition: output hello in automaton FiniteGreeter 

%%%% Modified state variables for impl automaton: 
count--> 99 
Executed spec transition: output hello in automaton GreeterSpec using true for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> true 

]]]] End step 99 ]]]] 
[[[[ Begin step 100 [[[[ 

Executed impl transition: output hello in automaton FiniteGreeter 
%%%% Modified state variables for impl automaton: 

count--> 100 
Executed spec transition: output hello in automaton GreeterSpec using false for sg 

%%%% Modified state variables for spec automaton: 
stillGoing --> false 

]]]] End step 100 ]]]] 
>>>> No errors 

A.4 Simulator output for Dijkstraint 

[[[[ Begin initialization[[[[ 
%%%% Modified state variables: 

flag--> (ArraySort (ConstantValue stage01)) 
pc--> (ArraySort (ConstantValue rem)) 
S --> (ArraySort (ConstantValue ())) 

]]]] End initialization]]]] 
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[[[[ Begin step i [[[[ 
transition: output try(p3) in automaton Dijkstraint 

%%%% Modified state variables: 
pc--> (ArraySort (ConstantValue rem) (p3 setflagOi)) 

]]]] End step i ]]]] 
[[[[ Begin step 2 [[[[ 

transition: output try(p2) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (p2 setflagOi) (p3 setflagOi)) 
]]]] End step 2 ]]]] 
[[[[ Begin step 3 [[[[ 

transition: output try(pi) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi setflagOi) (p2 setflagOi) (p3 setflagOi)) 
]]]] End step 3 ]]]] 
[[[[ Begin step 4 [[[[ 

transition: internal setflagOi(pi) in automaton Dijkstraint 
%%%% Modified state variables: 

flag--> (ArraySort (ConstantValue stageOi) (pi stageOi)) 
pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 setflagOi) (p3 setflagOi)) 

]]]] End step 4 ]]]] 

[[[[ Begin step 52 [[[[ 
transition: internal setflag2(p2) in automaton Dijkstraint 

%%%% Modified state variables: 
flag--> (ArraySort (ConstantValue stageOi) (pi stage2) (p2 stage2) (p3 stage2)) 
pc--> (ArraySort (ConstantValue rem) (pi check) (p2 check) (p3 leavetry)) 
S --> (ArraySort (ConstantValue ()) (pi (pi p2)) (p2 (p2)) (p3 (pi p2 p3))) 

]]]] End step 52 ]]]] 
[[[[ Begin step 53 [[[[ 

transition: output crit(p3) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi check) (p2 check) (p3 crit)) 
]]]] End step 53 ]]]] 
[[[[ Begin step 54 [[[[ 

transition: internal check(p2, pi) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi check) (p2 setflagOi) (p3 crit)) 
S --> (ArraySort (ConstantValue ()) (pi (pi p2)) (p2 ()) (p3 (pi p2 p3))) 

]]]] End step 54 ]]]] 
[[[[ Begin step 55 [[[[ 

transition: output exit(p3) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi check) (p2 setflagOi) (p3 reset)) 
]]]] End step 55 ]]]] 
[[[[ Begin step 56 [[[[ 

transition: internal reset(p3) in automaton Dijkstraint 
%%%% Modified state variables: 

flag--> (ArraySort (ConstantValue stageOi) (pi stage2) (p2 stage2) (p3 stageOi)) 
pc--> (ArraySort (ConstantValue rem) (pi check) (p2 setflagOi) (p3 leaveexit)) 
S --> (ArraySort (ConstantValue ()) (pi (pi p2)) (p2 ()) (p3 ())) 

]]]] End step 56 ]]]] 
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[[[[ Begin step 57 [[[[ 
transition: internal check(pi, p3) in automaton Dijkstraint 

%%%% Modified state variables: 
pc--> (ArraySort (ConstantValue rem) (pi leavetry) (p2 setflagOi) (p3 leaveexit)) 
S --> (ArraySort (ConstantValue ()) (pi (pi p2 p3)) (p2 ()) (p3 ())) 

]]]] End step 57 ]]]] 

[[[[ Begin step 62 [[[[ 
transition: output crit(pi) in automaton Dijkstraint 

%%%% Modified state variables: 
pc--> (ArraySort (ConstantValue rem) (pi crit) (p2 setflag2) (p3 leaveexit)) 

]]]] End step 62 ]]]] 
[[[[ Begin step 63 [[[[ 

transition: output rem(p3) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi crit) (p2 setflag2) (p3 rem)) 
]]]] End step 63 ]]]] 
[[[[ Begin step 64 [[[[ 

transition: internal setflag2(p2) in automaton Dijkstraint 
%%%% Modified state variables: 

flag--> (ArraySort (ConstantValue stageOi) (pi stage2) (p2 stage2) (p3 stageOi)) 
pc--> (ArraySort (ConstantValue rem) (pi crit) (p2 check) (p3 rem)) 
S --> (ArraySort (ConstantValue ()) (pi (pi p2 p3)) (p2 (p2)) (p3 ())) 

]]]] End step 64 ]]]] 
[[[[ Begin step 65 [[[[ 

transition: internal check(p2, pi) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi crit) (p2 setflagOi) (p3 rem)) 
S --> (ArraySort (ConstantValue ()) (pi (pi p2 p3)) (p2 ()) (p3 ())) 

]]]] End step 65 ]]]] 
[[[[ Begin step 66 [[[[ 

transition: internal setflag0i(p2) in automaton Dijkstraint 
%%%% Modified state variables: 

flag--> (ArraySort (ConstantValue stageOi) (pi stage2) (p2 stageOi) (p3 stageOi)) 
pc--> (ArraySort (ConstantValue rem) (pi crit) (p2 setflag2) (p3 rem)) 

]]]] End step 66 ]]]] 
[[[[ Begin step 67 [[[[ 

transition: output try(p3) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi crit) (p2 setflag2) (p3 setflagOi)) 
]]]] End step 67 ]]]] 
[[[[ Begin step 68 [[[[ 

transition: output exit(pi) in automaton Dijkstraint 
%%%% Modified state variables: 

pc--> (ArraySort (ConstantValue rem) (pi reset) (p2 setflag2) (p3 setflagOi)) 
]]]] End step 68 ]]]] 
[[[[ Begin step 69 [[[[ 

transition: internal reset(pi) in automaton Dijkstraint 
%%%% Modified state variables: 

flag--> (ArraySort (ConstantValue stageOi) (pi stageOi) (p2 stageOi) (p3 stageOi)) 
pc--> (ArraySort (ConstantValue rem) (pi leaveexit) (p2 setflag2) (p3 setflagOi)) 
S --> (ArraySort (ConstantValue ()) (pi ()) (p2 ()) (p3 ())) 
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]]]] End step 69 ]]]] 

[[[[ Begin step 81 [[[[ 
transition: output crit(p3) in automaton Dijkstraint 

%%%% Modified state variables: 
pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 setflag2) (p3 crit)) 

]]]] End step 81 ]]]] 

[[[[ Begin step 100 [[[[ 
transition: internal setflag2(p3) in automaton Dijkstraint 

%%%% Modified state variables: 
flag--> (ArraySort (ConstantValue stage01) (pi stage2) (p2 stage2) (p3 stage2)) 
pc--> (ArraySort (ConstantValue rem) (pi check) (p2 leavetry) (p3 check)) 
S --> (ArraySort (ConstantValue ()) (pi (pi)) (p2 (pi p2 p3)) (p3 (p3))) 

]]]] End step 100 ]]]] 
No errors 

A.5 Forward simulation from Dijkstraint to MutexEnv 

[[[[ Begin initialization[[[[ 
%%%% Modified state variables for impl automaton: 

flag--> (ArraySort (ConstantValue stage01)) 
pc--> (ArraySort (ConstantValue rem)) 
S --> (ArraySort (ConstantValue ())) 

%%%% Modified state variables for spec automaton: 
regionMap --> (ArraySort (ConstantValue rem)) 

]]]] End initialization]]]] 
[[[[ Begin step 1 [[[[ 

Executed impl transition: output try(p2) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

pc--> (ArraySort (ConstantValue rem) (p2 setflag01)) 
Executed spec transition: output try(p2) in automaton MutexEnv 

%%%% Modified state variables for spec automaton: 
regionMap --> (ArraySort (ConstantValue rem) (p2 try)) 

]]]] End step 1 ]]]] 
[[[[ Begin step 2 [[[[ 

Executed impl transition: output try(p1) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

pc--> (ArraySort (ConstantValue rem) (pi setflag01) (p2 setflag01)) 
Executed spec transition: output try(p1) in automaton MutexEnv 

%%%% Modified state variables for spec automaton: 
regionMap --> (ArraySort (ConstantValue rem) (pi try) (p2 try)) 

]]]] End step 2 ]]]] 
[[[[ Begin step 3 [[[[ 

Executed impl transition: output try(p3) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

pc--> (ArraySort (ConstantValue rem) (pi setflag01) (p2 setflag01) (p3 setflag01)) 
Executed spec transition: output try(p3) in automaton MutexEnv 

%%%% Modified state variables for spec automaton: 
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regionMap --> (ArraySort (ConstantValue rem) (pi try) (p2 try) (p3 try)) 
]]]] End step 3 ]]]] 

[[[[ Begin step 9 [[[[ 
Executed impl transition: output crit(p2) in automaton Dijkstraint 

%%%% Modified state variables for impl automaton: 
pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 crit) (p3 setflag01)) 
Executed spec transition: output crit(p2) in automaton MutexEnv 

%%%% Modified state variables for spec automaton: 
regionMap --> (ArraySort (ConstantValue rem) (pi try) (p2 crit) (p3 try)) 

]]]] End step 9 ]]]] 

[[[[ Begin step 59 [[[[ 
Executed impl transition: internal check(p2, p3) in automaton Dijkstraint 

%%%% Modified state variables for impl automaton: 
pc--> (ArraySort (ConstantValue rem) (pi check) (p2 leavetry) (p3 setflag2)) 
S --> (ArraySort (ConstantValue ()) (pi (pi)) (p2 (pi p2 p3)) (p3 ())) 

]]]] End step 59 ]]]] 
[[[[ Begin step 60 [[[[ 

Executed impl transition: output crit(p2) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

pc--> (ArraySort (ConstantValue rem) (pi check) (p2 crit) (p3 setflag2)) 
Executed spec transition: output crit(p2) in automaton MutexEnv 

%%%% Modified state variables for spec automaton: 
regionMap --> (ArraySort (ConstantValue rem) (pi try) (p2 crit) (p3 try)) 

]]]] End step 60 ]]]] 
[[[[ Begin step 61 [[[[ 

Executed impl transition: internal check(p1, p2) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

pc--> (ArraySort (ConstantValue rem) (pi setflag01) (p2 crit) (p3 setflag2)) 
S --> (ArraySort (ConstantValue ()) (pi ()) (p2 (pi p2 p3)) (p3 ())) 

]]]] End step 61 ]]]] 
[[[[ Begin step 62 [[[[ 

Executed impl transition: internal setflag01(p1) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

flag--> (ArraySort (ConstantValue stage01) (pi stage01) (p2 stage2) (p3 stage01)) 
pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 crit) (p3 setflag2)) 

]]]] End step 62 ]]]] 
[[[[ Begin step 63 [[[[ 

Executed impl transition: output exit(p2) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 reset) (p3 setflag2)) 
Executed spec transition: output exit(p2) in automaton MutexEnv 

%%%% Modified state variables for spec automaton: 
regionMap --> (ArraySort (ConstantValue rem) (pi try) (p2 exit) (p3 try)) 

]]]] End step 63 ]]]] 
[[[[ Begin step 64 [[[[ 

Executed impl transition: internal setflag2(p3) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

flag--> (ArraySort (ConstantValue stage01) (pi stage01) (p2 stage2) (p3 stage2)) 
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pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 reset) (p3 check)) 
S --> (ArraySort (ConstantValue ()) (pi ()) (p2 (pi p2 p3)) (p3 (p3))) 

]]]] End step 64 ]]]] 
[[[[ Begin step 65 [[[[ 

Executed impl transition: internal reset(p2) in automaton Dijkstraint 
%%%% Modified state variables for impl automaton: 

flag--> (ArraySort (ConstantValue stage01) (pi stage01) (p2 stage01) (p3 stage2)) 
pc--> (ArraySort (ConstantValue rem) (pi setflag2) (p2 leaveexit) (p3 check)) 
S --> (ArraySort (ConstantValue ()) (pi ()) (p2 ()) (p3 (p3))) 

]]]] End step 65 ]]]] 

[[[[ Begin step 100 [[[[ 
Executed impl transition: internal check(p3, pi) in automaton Dijkstraint 

%%%% Modified state variables for impl automaton: 
pc--> (ArraySort (ConstantValue rem) (pi setflag01) (p2 check) (p3 setflag01)) 
S --> (ArraySort (ConstantValue ()) (pi ()) (p2 (p2)) (p3 ())) 

]]]] End step 100 ]]]] 
>>>> No errors 

B Trait N onDet 
NonDet: trait 

introduces 
randomNat: Nat, Nat--+ Nat 

% uniformly random natural number in given range 
queryNat: Nat, Nat--+ Nat 

% query user for natural number in given range 
randomint: Int, Int--+ Int 

% uniformly random integer in given range 
queryint: Int, Int--+ Int 

% query user for integer in given range 
randomBool:--+ Bool 

% random boolean (each value with probability 0.5) 
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