
A Dynamic Primary View
Group Communication Service*

Roberto De Priscot Alan Feketet ::•.Janey Lyncht Alex Shvartsmai/i

March 3, 2002

Abstract

View-oriented group communication services are widely used for fault-tolerant distributed com
puting. For applications involving coherent data. it is important to know when a process has a
primary view of the current group membership. usually defined as a view containing a majority
out of a .static universe of processes. For high availability in a system where processes can join and
leave routinely. some researchers have suggested defining primary views dynamically. depending
on having enough members in common with recent views.

\Ve present a new formal automaton specification. nvs. for the safety guarantees made by a
practical group communication service providing a dynamic notion of primary view. The specifi
cation is a simple automaton. with only seven kinds of actions. \Ve demonstrate the value of nvs
by showing both how it can be implemented and how it can be used in an application. Both pieces
are shown formally. with assertional proofs.

First. we present a distributed algorithm based on a group membership algorithm of Lotem.
Keidar and Dolev; our version integrates communication with the membership service. uses infor
mation from the application processes saying when a view has been prepared for computation by
the application. and uses a static view-oriented service internally. \Ve prove that this algorithm
implements nvs. in the sense of trace inclusion.

Second. we present an application algorithm that is a variant of an algorithm of Amir. Dolev.
Keidar. Melliar-Smith and Moser. modified to use nvs instead of a static service. \Ve prove that
it implements a (non-group-oriented) totally-ordered-broadcast service.

1 Introduction
Applications designed for distributed systems must cope with failures, because in practical settings
failures are very likely to happen in a distributed system. Coping with failures in a distributed sys
tem, however, is not an easy task. A convenient approach is that of using general purpose building

'This research was supported by the following contracts: ARPA Fl9628-95-C-0118, AFOSR F49620-97-l-0337,
NSF 9225124-CCR, and NSF ITR 0121277.

rDipartimento di Informatica ed Applicazioni, Universita di Salerno, 84081 Baronissi (SA), Italy. This author
is also a member of Akamai's Office of Strategy and Technology.

+Basser Department of Computer Science, Madsen Building F09, University of Sydney, NS\V 2006, Australia.
3Dept. of Computer Science and Eng., 191 Auditorium Rd., Unit 3155, University of Connecticut, Storrs, CT

06269, USA and MIT Laboratory for Computer Science, 545 Technology Square, NE43-371, Cambridge, MA 02139,
USA. The work of this author was in part supported by a NSF CAREER Award and by the NSF Grant 9988304.

1

blocks that provide powerful distributed services and facilitate the construction of applications.
One such building block is a view-oriented group communication service.

Such a service enables application processes located at different nodes of a fault-prone dis
tributed network to operate collectively as a group, using the service to multicast messages to
all members of the group. Examples of view-oriented group communication services are found in
Isis [5], Transis [13], Totem [31], Newtop [16], Relacs [2], and Horus [34].

Solutions to practical, real world problems have benefited from group communication services.
Isis-based software has been used to provide reliable group communication services for the New
York Stock Exchange, for the Swiss Electronic Bourse and for the French Air Traffic Control
System [6].

The heart of a group communication service is a group membership service, which provides
each group member with a view of the group; a view includes a list of the processes that are
members of the group. Views are crucial because they describe which processes participate in
the computation and the system allow them to cooperate by guaranteeing that messages sent by
a process in one view are delivered only to processes in the membership of that view, and only
when they have the same view. Within each view, the service offers guarantees about the order
and reliability of message delivery. Clearly each particular group communication service has its
own set of properties that are offered to the user. A good survey of group communication services
that provides a description of the guarantees made by each service is provided in [37].

For maximum usefulness, system building blocks should have simple and precise specifications
of their guaranteed behavior. Producing good specifications for view-oriented group communi
cation services is difficult, because these services can be complicated, and because different such
services provide different guarantees about safety, performance, and fault-tolerance. Examples
of specifications for group membership services and view-oriented group communication services
appear in [3, 4, 7, 9, 14, 17, 18, 19, 20, 30, 32, 35, 36].

In [1 7], we presented a specification, vs, for a view-oriented group communication service.
This specification consists of a simple state machine expressing safety requirements, plus a timed
trace property expressing conditional performance and fault-tolerance requirements. We used
this specification as the basis for proving the correctness of a complex totally-ordered-broadcast
algorithm based on [22, l]. In ensuing work, Chockler has used a version of vs to model and verify
an adaptive totally-ordered-broadcast algorithm [8], Lesley and Fekete [25] have proved that a
version of an algorithm of Cristian and Schmuck [10] implements vs, and Khazan [23, 24] has
used vs in the design of a load-balancing database algorithm.

The vs service produces arbitrary views, with arbitrary membership sets. However, in many
applications of vs, especially those with strong data coherence requirements, the application
processes perform significant computations only when they have a special type of view called a
primary view. For example, a replicated database application might only perform a read or write
operation within a primary view, in order to ensure that each read receives the result of the last
preceding write, in some consistent order of the operations. In this setting, a primary view is
typically defined to be one whose membership comprises a majority of the universe of processes,
or more generally, a quorum in a pre-defined quorum set in which all pairs of quorums intersect.
The intersection property permits information flow from any previous primary to a newly formed
one.

2

Pre-defined quorum sets can yield efficient implementations in settings where the system
configuration is relatively static. However, they work less well in settings where the configuration
evolves over time, with processes joining and leaving the system. For such a setting, a dynamic
notion of primary is needed, one that can change to conform with the system configuration. A
dynamic notion of primary still needs to maintain some kind of intersection property, in order
to permit enough information flow between successive primary views to achieve coherence. For
example, each primary view might have to contain at least a majority of the processes in the
previous primary view. Several dynamic voting schemes have been developed to define primaries
adaptively [12, 15, 21, 26, 33].

In particular, Lotem, Keidar, and Dolev [26] have described an implementation of a group
membership service that yields only primary views, according to a dynamic notion of primary.
An interesting feature of their work is that it points out various subtleties of implementing such a
membership service in a distributed manner - subtleties involving different opinions by different
processes about what is the previous primary view. These difficulties have led to errors in some of
the past work on dynamic voting. The algorithm of [26] copes with these subtleties by maintaining
information about a collection of primary views that "might be" the previous primary view. The
service deals with group membership only, and not with communication. Lotem et al. prove that
their protocol satisfies the following condition on system executions: any two (primary) views
that occur in an execution are linked by a chain of views where for every consecutive pair of views
in the chain, there is some process that "knows" it belongs to both views.

In this paper, we present a new formal automaton specification, DVS, for the safety guarantees
made by a practical dynamic primary view group communication service. This service is inspired
by the implementation of Lotem et al., but integrates communication with the group membership
service. An important feature of our specification is our careful handling of the interface between
the service and the application. When a new view starts, applications generally require some
initial pre-processing, typically, an exchange of information, to prepare for ordinary computation.
For example, processes in a coherent database application may need to exchange information
about previous updates in order to bring everyone in the new view up to date. We expect each
application process to indicate when it has completed this pre-processing for a new view v by
"registering" the view. The DVS service uses registration information when it creates a new view
v, in order to determine which previously-created views must satisfy the intersection property with
respect to v. When all members have registered v, the application has gathered all information it
needs from previous views, and the service no longer needs to ensure intersection in membership
between views before v and any subsequent ones that are formed.

Another feature of our specification, compared to that in [26], is that our specification is
given as an automaton, which maintains state information about the views and the messages sent
in each view. This global state can be used in invariants and abstraction functions, leading to
assertional proofs of the correctness of implementations of DVS, and also of applications built over
DVS. In contrast, Lotem et al. use a specification given in terms of the whole sequence of events
in an execution, and therefore must use operational reasoning about complex sequences of events.
Extensive experience with proofs of distributed algorithms suggests that assertional techniques
are less error-prone; also they are more amenable to automated checking.

3

We demonstrate the value of our DVS specification by showing both how it can be implemented
and how it can be used in an application. Both pieces are shown formally, with assertional proofs.

First, we consider an implementation that is a variant of the group membership algorithm of
Lotem et al.; our variant integrates communication with the membership service, uses registration
information from the application processes saying when a view has been prepared for computation
by the application, and uses a static view-oriented service (a version of vs) internally. We prove
that this algorithm implements DVS, in the sense of trace inclusion. The proof uses a (single
valued) simulation relation and invariant assertions. The key to the proof is an invariant expressing
a strong condition about nonempty intersections of views; the proof of this depends on relating a
local check of majority intersection with known views to a global check of nonempty intersection
with existing views.

Second, we consider an application algorithm that is a variant of an algorithm in [22, 1, 17],
modified to use DVS instead of a static view-oriented service. The modified algorithm uses the
registration capability to tell the DVS service that information has been successfully exchanged at
the beginning of a new view. We show that it implements a (non-group-oriented) totally-ordered
broadcast service. This proof also uses a simulation relation and invariant assertions.

We have designed our DVS specification to express the guarantees that we think are useful in
verifying correctness of applications that use the service.

Among previous work, two different sorts of specifications for a primary group service are
notable. Work by Ricciardi and others [36] is expressed in terms of temporal logic on consistent
cuts; the idea of their specification is that on any cut, there are no disjoint sets of processes
such that each set is collectively aware of no members outside that set. Lotem et al. [26] use a
property of an execution, which was previously defined by Cristian [9] for majority groups: any
two (primary) views are linked by a chain of views where every consecutive pair of views includes
a process that "knows" it belongs to both views. As far as we know, these previous specifications
have not been used to verify properties of applications running above them.

Our specification omits some properties of existing dynamic primary view management algo
rithms. For example, Isis [5] guarantees that processes that move together from one view to the
next receive exactly the same messages in the first view. Guaranteeing this property requires state
exchange within the view management service. This property is not needed to verify properties
of applications such as the one giving a totally-ordered broadcast. Also, our service provides no
explicit support for application-level state exchange. Systems like Isis do provide such support,
by allowing application-level state exchange messages to be piggybacked on the lower-level state
exchange messages.

In Section 2 we present our mathematical notation. The DVS service is presented in Section 3,
and its implementation in Section 4. In Section 5 we use DVS to implement a totally ordered
broadcast service. Section 6 contains some conclusions.

4

2 Mathematical foundations
2.1 Sets, functions, sequences

We write ..\ for the empty sequence. If a is a sequence then lal denotes the length of a. If a is
a sequence and 1 :S: i :S: j :S: lal then a(i) denotes the ith element of a and a(i .. j) denotes the
subsequence a(i), a(i + 1), ... , a(j) of a. The head of a nonempty sequence a is a(l). A sequence
can be used as a queue: the append operation modifies the sequence by concatenating it with a
new element and the remove operation modifies the sequence by deleting its head.

If a and bare sequences, a finite, then a+b denotes the concatenation of a and b. We sometimes
abuse this notation by letting a or b be a single element. We say that sequence a is a pre.fix of
sequence b, written a :S: b, provided that there exists c such that a+c = b. A collection A of
sequences is consistent provided that a :S: b or b :S: a for all a, b E A. If A is a consistent collection
of sequences, we define lub(A) to be the minimum sequence b such that a :S: b for all a E A.

If Sis a set, then seqof (S) denotes the set of all finite sequences of elements of S. If a E seqof(S)
and f is a partial function from S to T whose domain includes the set of all elements of S
appearing in a, then applytoall(f, a) denotes the sequence b such that length(b) = length(a) and,
for i :S: length(b), b(i) = f(a(i)).

If S is a set, the notation SJ_ refers to the set S U {-l}. Whenever S is ordered, we order SJ_
by extending the order on S, and making _l less than all elements of S. If R is a binary relation,
then we define dom(R), the domain of R, to be the set (without repetitions), of first elements of
the ordered pairs comprising relation R. If f is a partial function from S to T, and (s, t) E S x T,
then f EB (s, t) is defined to be the partial function that is identical to f except that f(s) = t.

P denotes the universe of all processors, 1 and M the universe of all possible messages. g is
a totally ordered set of identifiers used to distinguish views, with a distinguished least element
go. A view v = (g, P) consists of a view identifier g E g and a nonempty membership set
P c;;; P; we write v.id and v.set to denote the view identifier and membership set components of
v, respectively. V denotes the set of all views, and vo = (go, Po) is a distinguished initial view.

2.2 I/0 automata

We describe our services and algorithms using the I/0 automaton model of Lynch and Tuttle [28]
(without fairness). The model and its proof methods are described in Chapter 8 of [27].

An execution fragment of an I/0 automaton is an alternating sequence of states and actions
consistent with the transition relation. An execution is an execution fragment that begins with
a start state. The trace of an execution fragment a is the subsequence of a consisting of all the
external actions. The external behavior of an I/0 automaton is captured by the set of traces
generated by its executions.

Execution fragments can be concatenated. Definitions of composition for I/0 automata appear
in Chapter 8 of [27], along with theorems showing that composition respects the external behavior.
Invariant and simulation methods for these models are also presented in that chapter.

1 \Ve use "processor" and "process" interchangeably, since the difference is immaterial in the context of this
paper.

5

3 The DVS specification
We now present DVS, our specification for a dynamic primary view group communication service.

The DVS service works as follows. Each client of the service has a "current" view of the group
of processes. A process can send a message to all other members of its current view and the
service guarantees that messages sent within a view are delivered only within that view and each
member of the view receives messages in the same order as other members. However, not all
messages need to be delivered to all members. The service also provides a "safe" notification
for a particular message m that tells the recipient that message m has been received by all the
members of the current view. New views are announced to all members of the new view and
they are guaranteed to be "primary" views. Primary views are defined according to a dynamic
notion [21]: a new primary needs to contain a majority of the members of the previous primary.
The DVS service allows the clients to "register" a new view after completing the pre-processing
for that view.

The specification is given in Figure 1. In this specification, Mc c;;; M denotes the set of mes
sages that clients may use for communication. The most interesting part of the DVS specification
is the transition definition for nvs-cREATEvmw(v). The precondition specifies the properties that a
view must satisfy in order to be considered primary. For example, the precondition says that v.set
must intersect the membership set of all previously-created smaller-id views w for which there is
no intervening totally registered view - that is, the set of all "possible previous primary views".
Since (for convenience) we allow out-of-order view creation in DVS, we also include a symmetric
condition for previously-created larger-id views. All created views are recorded in created.

DVS informs its clients of view changes using nvs-NEwvmw((g, P))p actions; such an action in
forms processor p that the view identifier g is associated with membership set P and that the
current group of processors connected top is P. After any finite execution, we define the current
view at p to be the argument v in the last nvs-NEwvmw(v)p event, if any, otherwise it is the initial
view vo for processors in Po and is undefined for other processors. Even though views can be
created out of view id order, the notification to each client is consistent with that order. Not
every client needs to see every view. The variable attempted records, for each view, which process
have been notified of that view. Variable attempted is only used in the proof.

With the nvs-REGISTERp action, the client at p informs the service that it has obtained whatever
information the application needs to begin operating in the new view v. For many applications,
this will mean that p has received messages from every other member of view v, reporting its state
at the start of v. The variable registered records, for each view, which process have registered
that view. Variable registered is only used in the proof.

DVS allows a processor p to broadcast a message m using a nvs-GPSND(m)p action, and delivers
the message to a processor q using a nvs-GPRcv(m)p,q action. DVS also uses a nvs-sAFE(m)p,q action
to report to processor q that the earlier message m from p has been delivered to all members of
the current view of q. DVS guarantees that messages sent by a processor p when the current view
of p is v are delivered only within view v (i.e., only to processors in v.set whose current view is
v). Moreover, each processor receives messages in the same order as other processor and without
gaps in the sequence of received messages; however, a processor may receive only a prefix of the
sequence of messages received by another processor. Variables queue, pending, next and next-safe
are used for handling the messages. Their use should be clear from the code.

6

Signature:

Input: DVS-GPSND(m)p, m E A1c, p E P
DVS-REGISTERp, p E p

Internal: DVS-CREATEVIEW(v), VE V
DVS-ORDER(m,p,g), m E A1c, p E P, g E Q

State:

created E 2 v, init {Vo}
for each p E P:

cnrrent-viewid[p] E 91-, init go if p E Po, .l_ else
for each g E Q:

qnene[g] E 8eqof (J\1.c x P), init .A.
atternpted[g] E 2P, init Po if g = go, {} else
regi8tered[g] E 2P, init Po if g = go, {} else

Transitions:

internal DVS-CREATEVIEW(v)

Pre: Vw E created : v.id =f. w.id
Vw E created :

:lx E 'Tot'Reg: w.id < x.id < v.id
or :lx E 'Tot'Reg: v.id < x.id < w.id
or v.8et n w.8et =f. {}

Eff: created := created U { v}

output DVS-NEWVIEW(v)p

Pre: v E created
v.id > cnrrent-viewid[p]

Eff: cnrrent-viewid[p] := v.id
atternpted[v. id] := atternpted[v. id] U {p}

input DVS-REGISTERp

Eff: if cnrrent-viewid[p] =f. .l_ then
regi8tered[cnrrent-viewid[p]] :=

regi8tered[cnrrent-viewid[pl] U {p}

input DVS-GPSND(m)p

Eff: if cnrrent-viewid[p] =f. .l_ then
append m to pending[p, cnrrent-viewid[p]]

Output: DVS-GPRCV(m)p,q, m E A1c, p, q E P
DVS-SAFE(m)p,q, m E A1c, p, q E P
DVS-NEWVIEW(v)p, VE V, p E V.8et

for each p E P, g E Q:

pending[p,g] E 8eqof(J\1.,,), init .A.
next[p, g] E N> 0

, init 1
next-8afe[p, g] E N> 0

, init 1

internal DVS-ORDER(m,p, g)
Pre: m is head of pending[p, g]
Eff: remove head of pending[p, g]

append (m,p) to qnene[g]

output DVS-GPRCV(m)p,q, choose g

Pre: g = cnrrent-viewid[q]
qnene[g] (next[q, g]) = (m, p)

Eff: next[q,g] := next[q,g] +l

output DVS-SAFE(m)p,q, choose g, P
Pre: g = cnrrent-viewid[q]

(g, P) E created
qnene[g](next-8afe[q,g]) = (m,p)

for all r E P:
next[r, g] > next-8afe[q, g]

Eff: next-8afe[q,g] := next-8afe[q,g] +l

Figure 1: The DVS service

7

We define the following derived variables:

Att E 2 V, defined as { v E created I attempted[v. id] # {}}
TotAtt E 2V, defined as {v E created Iv.set c;;; attempted[v.id]}
Reg E 2 V, defined as { v E created I registered[v. id] # {}}
Tot"Reg E 2V, defined as {v E created I v.set c;;; registered[v.id]}

Informally, a view belongs to the set Att if it has been reported to at least one member of the
view (we say that it is attempted). A view belongs to the set TotAtt if it has been reported to all
members of the view (we say that the view is totally attempted). Similarly, a view belongs to the
set Reg if at least one member of the view has registered the view (we say that it is registered)
and belongs to the set TotRey, if all members of the view have registered the view (we say that
the view is totally registered).

We close this section with some invariants giving properties of DVS.

The first one is a trivial invariant which follows directly from the definition of the sets
Att, TotAtt, Reg and TotRey.

Invariant 3.1 (Dvs)
In any reachable state, TotAtt c;;; Att, TotRey c;;; Reg, Reg c;;; Att, and Tot"Reg c;;; TotAtt.

The next invariant is a basic invariant saying that if a process p has attempted a view v whose
identifier is g then the current view of p is either v itself or a view with an identifier greater than
g.

Invariant 3.2 (Dvs)
In any reachable state if p E attempted[g] then current-viewid[p] :2". g.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state p E attempted[g] implies that p E Po and
g = go. For p E Po we have that current-viewid[p] = go and hence the invariant is true.

For the inductive step assume the invariant is true in s. We need to prove that it is true
ins' for any possible step (s, 1r, s'). The only step that changes attempted and current-viewid is
1r =nvs-cREATEvmw(v)p- By the precondition of 1r we have that for any g for which p E attempted[g]
it holds v.id > current-viewid[p] and by the code we have that the new value of current-viewid[p]
is v. id. Hence the invariant is still true. □

Invariant 3.3 expresses the key intersection property guaranteed by DVS; this is weaker than
the intersection property required by static definitions of primary views, which says that all
primary components must intersect. This invariant is our version of the correctness requirement
for dynamic view services that two consecutive primary views intersect.

Invariant 3.3 (Dvs)
In any reachable state, if v, w E created, v.id < w.id, and there is no :r E TotRey such that
v.id < :r.id < w.id, then v.set n w.set # {}.
Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state created= { vo} and thus the invariant is
vacuously true.

8

For the inductive step assume the invariant is true ins. We need to prove that it is true ins'
for any possible step (s, 1r, s'). The only steps that can change the hypothesis from false to true
are nvs-cREATEvmw(v) and nvs-cREATEvmw(w). The preconditions of these actions show that the
needed conclusion holds. No step changes the conclusion from true to false. D

Invariant 3.4 says that if a view w is totally attempted, then any earlier view v has a member
whose current view is later than v.

Invariant 3.4 (Dvs)

In any reachable state, if v E created, w E TotAtt, and v.id < w.id, then there exists p E v.set
with current-viewid[p] > v.id.

Proof: Consider any particular reachable state. Assume that v E created, w E TotAtt, and
v.id < w.id. Then let y be the view in TotAtt having the smallest viewid strictly greater than
v.id. Then there is no :r E TotAtt with v.id < :r.id < y.id. Then Invariant 3.1 implies that there
is no :r E Tot'Reg with v.id < :r.id < y.id. Then Invariant 3.3 implies that v.set n y.set # {}. Let
p E v.setny.set; thenp E attempted[y.id]. Then Invariant 3.2 implies that current-viewid[p] :2". y.id.
This implies current-viewid[p] > v.id. □

4 An implementation of DVS

We now present an algorithm that implements the DVS service specification and reason about
its correctness. Our implementation uses as a building block the group communication service
vs [17], and it uses the ideas from [26]. The overall system is comprised of the automata vs

TO-DVSp, for each p E P, and the vs service. We call this system DVS-IMPL and we illustrate
it in Figure 2. Formally, the DVS-IMPL system is the composition of all VS-TO-DVSp automata
(presented in Section 4.2) and the vs automaton (given in Section 4.1). We show that DVS-IMPL

is a formal implementation of the DVS service in the sense of the trace inclusion, that is we prove
that any trace of the DVS implementation is a trace of the DVS specification (Section 4.3).

DVS-IMPL

Figure 2: The DVS-IMPL system.

4.1 The vs specification

The vs service [17] is a group communication service that is similar to DVS except that vs does
not provide support for primary views. The DVS service thus can be seen as an augmented version

9

of the vs service designed to provide support for primary views. Due to the similarity of the two
services, vs is a convenient building block for DVS. The specification for the vs service is given in
Figure 3. To avoid a complete restatement we refer the reader to [1 7] for an informal description
of the service.

Signature:

Input: VS-GPSND(m)p, m E A1, p E P Output: VS-GPRCV(m)p,q, m E A1, p,q E P
VS-SAFE(m)p,q, m E A1, p, q E P,
VS-NEWVIEW(v)p, VE V, p E V.8et

Internal: VS-CREATEVIEW(v), VE V
VS-ORDER(m,p,g), m E A1, p E P, g E Q

State:

created E 2v, init {vo}
for each p E P:

cnrrent-viewid[p] E 91-, init go if p E Po, .l_ else
for each g E Q:

qnene[g] E 8eqof (J\1. x P), init .A.

Transitions:

internal VS-CREATEVIEW(V)
Pre: Vw E created : v.id > w.id
Eff: created:= created U{v}

output VS-NEWVIEW(v)p
Pre: v E created

v.id > cnrrent-viewid[p]
Eff: cnrrent-viewid[p] := v.id

input VS-GPSND(m)p
Eff: if cnrrent-viewid[p] =f. .l_ then

append m to pending[p, cnrrent-viewid[p]]

internal VS-ORDER(m, p, g)
Pre: mis head of pending[p, g]
Eff: remove head of pending[p, g]

append (m,p) to qnene[g]

for each p E P, g E Q:

pending[p,g] E 8eqof(J\1.), init .A.
next[p, g] E N> 0

, init 1
next-8afe[p, g] E N> 0

, init 1

output VS-GPRCV(m)p,q, choose g

Pre: g =f. .l_

g = cnrrent-viewid[q]
qnene[g] (next[q, g]) = (m, p)

Eff: next[q,g] := next[q,g] +l

output VS-SAFE(m)p,q, choose g, P
Pre: g =f. .l_

g = cnrrent-viewid[q]
(g, P) E created
qnene[g](next-8afe[q,g]) = (m,p)
for all r E P:

next[r, g] > next-8afe[q, g]
Eff: next-8afe[q,g] := next-8afe[q,g] +l

Figure 3: The vs service

As also reasoned in [1 7], the fact that vs allows views to be created only in the order of view
identifier is not significant: weakening this requirement to allow out-of-order view creation does
not change the external behavior, because vs-NEwvmw actions are constrained to occur in such a
way that views are always delivered in the order of view identifiers.

We rely on the following safety properties of the vs service [17]:

• New views are reported in increasing order of view identifier (monotone views property);

• Messages sent in a view are delivered only within that view (view synchrony property);

• The sequences of messages delivered in a view at any two processors are such that one sequence
is a prefix of the other (prefix order property).

10

The following invariant holds.

Invariant 4.1 (vs)
In any reachable state, if v, v' E created and v.id = v'.id, then v = v'.

4.2 The DVS implementation algorithm and the DVS- IMPL system

The DVS implementation algorithm is given in terms of the automaton VS-TO-DVSp, where p E P,
in Figure 4. VS-TO-DVSp acts as a "filter", receiving vs-NEwvmw inputs from the underlying
vs service and deciding whether to accept the proposed views as primary views. If VS-TO-DVSp

decides to accept some such view v, it "attempts" the view by performing a nvs-NEwvmw(v) output.
For each v, we think of the DVS internal nvs-cREATEvmw(v) action as occurring at the time of the
first DVS-NEWVIEW(v) event.

VS-TO-DVSp uses special messages, tagged either with "info" or "registered". Thus, we use
M = Mc U ({ "info"} x V x 2V) U { "registered"}, where Mc is the set of all client messages and
M is the universe of all messages. The state variables attempted, reg, and info-sent are auxiliary
- they are not needed for the algorithm, and are only used in the proofs.

According to the DVS specification, the algorithm is supposed to guarantee nonempty inter
section of each newly created primary view v with any previously created view w having no
intervening totally registered view - this is a global condition involving nonempty intersection
of view sets. The VS-TO-DVSp processors, however, do not have accurate knowledge of which
primary views have been created by other processors, nor of which views are totally registered.
Therefore, the processors employ a local check of majority intersection with known views, rather
than a global check of nonempty intersection with existing views. Specifically, each VS-TO-DVSp

keeps track of an "active" view act, which is the latest view that it knows to be totally registered,
plus a set of "ambiguous" views amb, which are all the views that it knows have been attempted
(i.e., have had a nvs-NEwvmw action performed someplace), and whose identifiers are greater than
act.id. We define use= { act} U amb. When VS-TO-DVSp receives a vs-NEwvmw(v) input, it sends
out "info" messages containing its current act and amb values to all the other processors in the
new view, using the vs service, and then waits to receive corresponding "info" messages for view
v from all the other processors in the view. After receiving this information (and updating its
own act and amb accordingly), VS-TO-DVSp checks that v has a majority intersection with each
view in use. If so, VS-TO-DVSp performs a nvs-NEWVIEWp output.

Following the nvs-NEWVIEWp even, the clients of the communication system can exchange state
information as needed for processing in view v. When the client at p has obtained enough
information, it "registers" the view by means of action nvs-REGISTERp, which causes processor p to
send "registered" messages to the other members. When a processor receives "registered" messages
for a view v from all members, it may perform garbage collection by discarding information about
views with identifiers smaller than that of v. VS-TO-DVS uses vs to send and receive messages.

The system DVS-IMPL is defined as the composition of all the VS-TO-DVSp automata and the
vs service, with all the external actions of vs hidden.

We define four derived variables for DVS-IMPL analogous to those of DVS, indicating the
attempted, totally attempted, registered, and totally registered views, respectively. They are:

• Att = { v E created I (=lp E v.set)v E attemptedp};

11

Signature:

Input: DVS-GPSND(m)p, m E A1c
DVS- REG ISTERp

State:

VS-NEWVIEW(v)p, VE V, p E V.8et
VS-GPRCV(m)q,p, m E A1, q E P
VS-SAFE(m)q,p, m E A1, q E P

cur EV 1_, init vo if p E Po, .l_ else
client-cur E V 1_, init vo if p E Po, .l_ else
act E V, init Vo
amb E 2 v, init {}
attemptedE 2v, init {vo} ifpE Po,{} else
for each g E Q

m8_q8-to-v8[g] E 8eqof(J\1.), init .A.
m8_q8-from-v8[g] E 8eqof (JV1.c x P), init .A.
8afe-from-v8[g] E 8eqof(JV1.c x P), init .A.

Internal:
Output:

reg[g] a boo!, init true if p E Po and g = go, false else
info-8ent[g] E (V x 2vh, init J_

Transitions:

input VS-NEWVIEW(v)p
Eff: cur:= v

append ("info", act, amb) to
m8_q8-to-v8[cur.id]

info-8ent[cur. id] := (act, amb)

input VS-GPRCV(("info", v, V))q,p
Eff: info-rcvd[q, cur.id] := (v, V)

if v.id > act.id then act:= v
amb := {w E amb UV I w.id > act.id}

input VS-SAFE(("info", v, V))q,p
Eff: none

output DVS-NEWVIEW(v)p
Pre: v = cur

v.id > client-cur.id
Vq E v.8et, q =/. p : info-rcvd[q, v.id] =/. .l_

Vw E u8e : lv.8et n w.8etl > lw . .5etl/2
Eff: amb := amb U { v}

attempted := attempted U { v}
client-cur:= v

input DVS-REGISTERp
Eff: if client-cur=/. .l_ then

reg[client-cur] := true

append ("re_qi8tered") to
m8_q8-to-v8[client-cur. id]

input VS-GPRCV(("re_qi8tered"))q,p
Eff: rcvd-r_q8t[cur.id, q] := true

DVS-GARBAGE-COLLECT(v)p, VE V
VS-GPSND(m)p, m E A1
DVS-NEWVIEW(v)p, VE V, p E V.8et
DVS-GPRCV(m)q,p, m E A1c, q E P
DVS-SAFE(m)q,p, m E A1c, q E P

for each g E Q, q E P
info-rcvd[q, g] E (V x 2vh, init J_

rcvd-r_q8t[q, g] a boo!, init false

Derived variables
u8e E 2 v, defined as u8e = { act} U amb

input VS-SAFE(("re_qi8tered"))q,p
Eff: none

internal DYS-GARBAGE-COLLECT(v)p
Pre: Vq E v.8et: rcvd-r_q8t[q, v.id] = true

v.id > act.id
Eff: act:= v

amb := {w E amb I w.id > act.id}

input DVS-GPSND(m)p
Eff: if client-cur. idp =/. .l_ then

append m to m8_q8-to-v8[client-cur.id]

output VS-GPSND(m)p
Pre: mis head of m8_q8-to-v8[cur.id]
Eff: remove head of m8_q8-to-v8[cur.id]

input VS-GPRCV(m)q,p, where m E A1c
Eff: append (m, q) to m8_q8-from-v8[cur. id]

output DVS-GPRCV(m)q,p
Pre: (m, q) is head of m8_q8-from-v8[client-cur.id]
Eff: remove head of m8_q8-from-v8[client-cur.id]

input VS-SAFE(m)q,p, where m E A1c
Eff: append (m, q) to 8afe-from-v8[cur.id]

output DVS-SAFE(m)p
Pre: (m, q) is head of 8afe-from-v8[client-cur. id]
Eff: remove head of 8afe-from-v8[client-cur.id]

Figure 4: VS-TO-DVSp

12

• TotAtt = { v E created I (Vp E v.set)v E attemptedp};

• Reg= {v E created I (=lp E v.set)reg[v.id]p = true}; and

• Tot"Reg = { v E created I (Vp E v.set)reg[v.id]p =true}.

Another derived variable, usep is defined in the code of VS-TO-DVSp.

4.3 Correctness of the DVS- IMPL system

We prove that DVS-IMPL implements DVS using a forward simulation argument [29] by providing
an abstraction function that maps states of DVS-IMPL to states of DVS and that leads to the main
observation that each trace of DVS-IMPL is a trace of DVS. We present such an abstraction function
in Section 4.3.2.

Section 4.3.1 unveils a series of invariants of DVS-IMPL culminating in Invariant 4.17 and
Invariant 4.18. The local condition requiring a majority intersection is captured by Invariant 4.17.
Invariant 4.18 states that any two attempted views that have no intervening totally registered
view have at least one member in common. This is the global condition on nonempty intersection
that we have discussed in the previous section. These invariants are then used in the proof that
DVS-IMPL implements DVS in Section 4.3.2.

4.3.1 Invariants

We begin with invariants that state simple facts about DVS and then proceed to more complex
ones ending with the key invariant about the global condition on nonempty intersections.

Invariant 4.2 (DVS-IMPL)

In any reachable state, if curp # l_ then current-viewid[p] = cur.idp.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix p. In the initial state we have that curp = l_.

For the inductive step assume the invariant is true ins. We need to prove that it is true ins'
for any possible step (s, 1r, s'). Fix p. We prove the invariant considering each possible action 1r.

1. 7r = VS-NEWVIEW(v)p.

By the code of 1r in vs, we have that current-viewid[p] = v.id. By the code of 1r in DVS-IMPL,

we have that cur.idp = v.id.

2. Other actions.

Variables current-viewid[p] and cur.idp are not modified. Hence the assertion cannot be made
false.

D

Invariant 4.3 (DVS-IMPL)

In any reachable state, if v E attemptedP then client-cur.idp :2". v.id.

13

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix v,p. In the initial state we have that attemptedp = {vo} for
p E Po and attemptedP = l_ for p (/_ Po. So assume that v = vo and p E Po. Then client-curp = vo.
Hence the invariant is true.

For the inductive step assume the invariant is true in s. We need to prove that it is true in
s' for any possible step (s, 1r, s'). Fix v,p and assume that v E s'.attemptedp. We distinguish two
possible cases.

l. v E s.attemptedP.

By the inductive hypothesis we have that s.client-curp > v.id. By the monotonicity of
client-curp we have that s'.client-curp :2". s.client-curp.

2. v (/_ s.attemptedP.

Then it must be 1r =nvs-NEwvmw(v)p- The invariant follows from the code which sets client-curp
to v.

D

Invariant 4.4 (DVS-IMPL)

In any reachable state, if v E info-sent[g]p = (:r:, X) then cur.idp :2". g.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix v, p. In the initial state we have that info-sentp = l_ and
thus the invariant is vacuously true.

For the inductive step assume the invariant is true in s. We need to prove that it is true in
s' for any possible step (s, 1r, s'). Fix p, g, :r:, X and assume that s'.info-sent[g]p = (:r:, X). We
distinguish two possible cases.

l. s.info-sent[g]p = (:r:, X)

By the inductive hypothesis we have that s.curp :2". g. By the monotonicity of curp we have
that s'.curp :2". s.curp. Hence the invariant is true.

2. s.info-sent[g]p # (:r:, X)

Then it must be 1r =vs-NEwvmw(v)p and g = v.id = s'.act.idp. Action vs-NEwvmw(v)p sets s'.cur

to v, so s'.cur.id = g.

Invariant 4.5 (DVS-IMPL)

In any reachable state:

1. Vo E ,otJ?ey.

2. go :S: v. id for all v E created.

D

14

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Part 1 is true because in then initial state every processor
p E Po has reg[go] = true. Part 2 is true because the only view in created is vo.

For the inductive step assume the invariant is true ins. We need to prove that it is true ins'
for any possible step (s, 1r, s').

Consider Part 1 first. No view is ever removed from TotRey. Hence no step can make the
assertion false. Consider Part 2 now. Fix v and assume that v E s'.created. We distinguish two
cases.

l. v Es.created.

Then the assertion follows from the inductive hypothesis.

2. v (/_ s.created.

It must be 1r=vs-cREATEvmw(v)p- By the precondition of this action we have that v.id > w.id
for all w E s.created. By the inductive hypothesis go ::; w.id for all w E s.created. Since
s'.created = s.created U { v }, it follows that go ::; w.id for all w E s'.created.

D

Invariant 4.6 (DVS-IMPL)

In any reachable state, if rcvd-rgst[q, v.id]p # l_ then curp # l_.

Proof: By induction on the length of the execution. The base case consists of proving that
the invariant is true in the initial state. Fix p, q and v. In the initial state we have that
rcvd-rgst[q, v.id]p = l_. Hence the invariant is vacuously true.

For the inductive step assume the invariant is true ins. We need to prove that it is true ins'
for any possible step (s, 1r, s'). Fix p, q, v. We prove the invariant considering each possible action
1r. Assume that s'.rcvd-rgst[q, v.id]p # l_.

1. 7r = VS-NEWVIEW(v)p.

Since s'.curp = v we have that s'.curp # l_ (vs cannot deliver _l_, it is not a view).

2. 7r = VS-GPRCV(("regi8tered"))p,q•

By the precondition of 1r (see vs) we have that s.current-viewid[p] # l_. By Invariant 4.2 we
have s.cur.idp = s.current-viewid[p] # l_. Hence s'.cur.idp = s.cur.idp # l_.

3. Other actions.

Variables rcvd-rgst[q, v.id]p and curp are not modified. Hence the assertion cannot be made
false.

D

Invariant 4. 7 (DVS-IMPL)

In any reachable state, if cur.idp = l_ then actp = vo and ambp = {}.

15

Proof: By induction on the length of the execution. The base case consists of proving that
the invariant is true in the initial state. Fix p. In the initial state we have that actp = vo and
ambp = {}.

For the inductive step assume the invariant is true ins. We need to prove that it is true ins'
for any possible step (s, 1r, s'). Fix p. We prove the invariant considering each possible action 1r.

Assume that s'.curp = l_. Since no actions sets curp to _l it must be s.curp = l_.

1. 7r = VS-GPRCV(("info", v, V))p,q .

This cannot happen. Indeed by precondition of 1r (see vs) we have that s.current-viewid[p] #
_l. By Invariant 4.2 we have s.cur.idp = s.vs.current-viewid[p] Hence s'.cur.idp = s.cur.idp #
l. But we know that s'.cur.id = l.

2. 1r = DVS-NEWVIEW(v)v.

Cannot happen. Indeed the precondition of 1r says that v = s.curp. Since s.cur.id = l_, we
have v = l_. Thus the precondition v.id > client-cur.idp cannot be satisfied (_i cannot be
strictly greater than any view identifier).

3. 7r = DVS-GARBAGE-COLLECT(v).

Cannot happen. Indeed by Invariant 4.6 we have that s.curp # l_. But we know that
s.curp = l_.

4. Other actions.

Variables curp, actp and ambp are not modified. Hence the assertion cannot be made false.

D

The following invariant states that if an "info" message is in transit for view v or has been
received by some process q in view v then there exists a process p that has sent the "info" in view
v and such that its current view is either v or a later one.

Invariant 4.8 (DVS-IMPL)

In any reachable state, let C be the following condition:

("info",:r,X) E msgs-to-vs[g]p or ("info",:r,X) E pending[p,g] or (("info",:r,X),p) E

queue[g] or info-rcvd[p, g]q = (:r, X).

If C is true then info-sent[g]p = (:r, X) and cur.idp :2". g.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix p, q, g, :r and X. In the initial state msgs-to-vs[g]p = ..\,
pending[p, g] = ..\, queue[g] = ..\ and info-rcvd[p, g]q = l_. Hence, in the initial state, C is false and
the invariant is vacuously true.

For the inductive step assume that the invariant is true in a reachable state s. We need to
prove that it is true in state s' for any possible step (s, 1r, s') of the execution. Fix p, q, g, :r, and
X and assume that C is true in s'.

16

1. 7r = VS-NEWVIEW(v)p.

By the code of 1r, s'.curp = v. Assume v.id # g. Then the code of 1r shows that none of
msgs-to-vs[g]p, pending[p, g], queue[g] or info-rcvd[p, g]q is changed during this step. Thus C
is true also ins. By the inductive hypothesis we have s.info-sent[g]p = (:r:, X) and cur.idp :2". g.
Since we are considering the case v.id # g, we have that info-sent[g]p is not changed by 1r.

Moreover the precondition of 1r (see vs) shows that s'.current-viewid[p] > s.current-viewid[p].
By Invariant 4.2, cur.idp = current-viewid[p], so s'.cur.idp > s.cur.idp. This completes show
ing the conclusion for the situation w.id # g.

Assume now v.id = g. The code shows s'.cur.idp = g as required. It remains to show that
(:r:, X) E info-sent[g]p.
Action 1r does not alter the values of pending[p, g], queue[g] and info-rcvd[p, g]q and ap
pends ("info", s.actp, s.ambp) to msgs-to-vs[g]p. We claim that it must be :r: = s.actp and
X = s.ambp. Indeed if it is not so, then condition C is true also in state s (for the given
p, q, g, :r:, X) and by the inductive hypothesis we have s.cur.idp :2". g = w.id. By Invariant 4.2,
s.current-viewid[p] :2". w.id. But this contradicts the precondition of 1r (see vs).
Thus :r: = s.actp and X = s.ambp. Then the code of 1r shows that (:r:, X) E info-sent[g]p, as
required.

2. 1r = VS-GPRCV(("in/o",v, V))p,q.

If g # cur.idq then since C is true ins' it is true also ins (for the given p, q, g, :r:, X). Thus
the inductive hypothesis is true. Since the code does not change info-sent[g]p and cur.idp, the
invariant follows from the inductive hypothesis.

Hence assume that g = cur.idq. First consider the case :r: = v and X = V. In this case, by
the precondition of 1r (see vs) we have that (("info", :r:, X),p) E queue[g]. Then the invariant
follows from the inductive hypothesis.

Consider now the case :r: # v or X # V. In this case, by the code, we have that s'.info-rcvd[p, g]q #
(:r:,X). Since C is true ins', it must be that ("info",:r:,X) E msgs-to-vs[g]p or ("info",:r:,X) E

pending[p, g] or (("info", :r:, X),p) E queue[g] is true ins'. Variables msgs-to-vs[g]p, pending[p, g]
and queue[g] are not changed by 1r. Hence C is true in s. The invariant follows from the in
ductive hypothesis.

3. 1r = VS-GPSND(("in/o",v,V))p-

If g # client-cur.idp then since C is true in s' it is true also in s (for the given p, q, g, :r:, X).
Thus the inductive hypothesis is true. Since the code does not change info-sent[g]p and cur.idp,
the invariant follows from the inductive hypothesis.

Hence assume that g = client-cur.idp. First consider the case :r: = v and X = V. In this case,
by the precondition of 1r (see DVS-IMPL) we have that (("info", :r:, X),p) E msgs-to-vs[g]. Then
the invariant follows from the inductive hypothesis.

Consider now the case :r: # v or X # V. Since C is true ins' we have that C is true ins too.
Indeed no ("info", :r:, X) message is deleted and info-rcvd[p, g]q is not changed. The invariant
follows from the inductive hypothesis.

17

4. 1r = VS-ORDER(("in/o",v,V),p,g).

First consider the case :r = v and X = V. In this case, by the precondition of 1r we have that
(("info",:r,X),p) E pending[g]. Then the invariant follows from the inductive hypothesis.

Consider now the case :r # v or X # V. Since C is true ins' we have that C is true ins too.
Indeed no ("info", :r, X) message is deleted and info-rcvd[p, g]q is not changed. The invariant
follows from the inductive hypothesis.

5. Other actions.

Condition C never changes from false to true and variables info-sent[g]p and cur.idp are not
modified. Hence the assertion cannot be made false.

D

The following invariant states that if a "registered" message for view v has been sent by process
p then variable reg[v.id]p is set to true (that is, the view has been registered by the client at p).

Invariant 4.9 (DVS-IMPL)

In any reachable state, let C be the following condition:

("registered") E msgs-to-vs{q}p or ("registered") E pending[p, g] or ("registered",p) E

queue[g] or rcvd-rgst[p, g]q = true.

If C is true then reg[g]p = true.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix p, g, q. In the initial state we have that msgs-to-vs{q}p = ..\,
pending[p, g] = ..\, queue[g] = ..\ and rcvd-rgst[p, g]q = false. Hence C is false in the initial state
and the invariant is vacuously true.

For the inductive step assume the invariant is true ins. We need to prove that it is true ins'
for any possible step (s, 1r, s'). Fix p, g, q and assume that C is true ins'.

1. 7r = DVS- REGISTERp.

If s.client-cur.idp # g then C is true also in s and the invariant follows from the inductive
hypothesis. Hence assume s.client-cur.idp = g. By the code of 1r we have that we have
reg[g]p = true.

2. 7r = VS-GPSND(("regi8tered"))p-

If s.current-viewid[p] # g then C is true also ins and the invariant follows from the inductive
hypothesis. Hence assume g = s.current-viewid[p]. By Invariant 4.2 we have that s.cur.idp =
s.current-viewid[p]. Hence s.cur.idp = g. By the precondition of 1r (see DVS-IMPL) we have
that ("registered") E s.msgs-to-vs[g]p. Hence C is true ins and the invariant follows from the
inductive hypothesis.

3. 7r =vs-ORDER(("regi8tered",p',g')).

If p' # p or g' # g then C is true also in s and the invariant follows from the inductive
hypothesis. Hence assume p' = p and g' = g. By the precondition of 1r we have that
("registered") E s.pending[p, g]. Hence C is true also in s and the invariant follows from the
inductive hypothesis.

18

4. Other actions.

Condition C never changes from false to true and variable reg[g]p is not modified. Hence the
assertion cannot be made false.

The following invariant states some facts about views in TotReg.

Invariant 4.10 (DVS-IMPL)

In any reachable state:

1. actp E TotReg.

2. If info-sent[g]p = (:r:, X) then :r: E Tot'Rey.

3. usep n Tot'Rey # {}.

D

Proof: First notice that Part 3 follows easily from Part 1 and the fact that, by definition,
actp E usep. Hence we only need to prove Parts 1 and 2.

By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. For Part 1, fix p. In the initial state actp = vo and vo is
totally registered by definition. For Part 2, fix p, g. In the initial state info-sent[g]p = l_. Hence
the invariant is vacuously true.

For the inductive step assume the invariant is true in s. We need to prove that it is true in
s' for any possible step (s, 1r, s'). Fix p, g, :r: and X. We prove the invariant by considering each
possible action.

1. 7r = VS-NEWVIEW(v)p.

Part 1 is still true in s' because actp is not modified (as well as Tot'Rey).

Consider Part 2 now. Assume that s'.info-sent[g]p = (:r:, X). If v.id # g then s.info-sent[g]p =
(:r:, X) then by the inductive hypothesis we have that :r: E s.Tot'Rey. Since no view is ever
removed from TotReg we have that :r: E s'.Tot'Rey, as needed. Hence we can further assume
that v.id = g. Since s'.info-sent[g]p = (:r:, X) and action 1r sets info-sent[g]p = (actp, ambp) it
must be that s.actp = :r: and s.ambp = X.

By the inductive hypothesis, Part 1, we have that s.actp E s.TotReg. But :r: = s.actp and no
view is removed from TotReg. Hence :r: E s'. TotReg. Thus Part 2 is still true in s'.

2. 1r = VS-GPRCV(("in/o",v,V))p,q•

Consider Part 1 first. If s'.actp = s.actp then Part 1 follows by the inductive hypothesis. Hence
assume that s'.actp # s.actp. By the code we have that s'.actp = v. Thus we have to prove that
v E Tot'Rey. By the precondition of 1r (in vs) we have (("info", v, V), q) E s. queue [cur. idp].
Then Invariant 4.8 implies that s.info-sent[cur.idp]q = (v, V). By the inductive hypothesis,
Part 2, we have that v E s.TotReg, as needed.

Part 2 is preserved because info-sent[g]p is not modified.

19

3. 7r = DVS-GARBAGE-COLLECT(v)p.

Consider Part 1 first. If s'.actp = s.actp then Part 1 follows by the inductive hypothesis.
Hence assume that s'.actp # s.actp. By the code we have that s'.actp = v. Hence we have to
prove that v E TotReg. By the precondition of 1r we have that rcvd-rgst[q, v.id] = true for all
q Ev.set. Then Invariant 4.9 implies that v E TotReg.

Part 2 is preserved because info-sent[g]p is not modified.

4. Other actions.

Variables actp, info-sent[g]p (as well as TotReg) are not modified. Hence the assertions cannot
be made false.

D

The following invariant states that if process q is in a view which has been attempted by process
p (which may or may not be q itself) then the current view of q is either v or a later one.

Invariant 4.11 (DVS-IMPL)

In any reachable state, if v E attemptedP and q E v.set then cur.idq :2". v.id.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix p, v and suppose that v E attemptedp and q E v.set.
If p (/_ Po then attemptedp = {}, a contradiction. On the other hand, if p E Po then since
v E attemptedp, it must be that v = vo. Moreover since q E v.set we have that q E Po. Hence
curq = vo, so cur.idq :2". v.id, as needed.

For the inductive step assume the invariant is true in state s. We need to prove that it is true
ins' for any possible step (s, 1r, s'). Fix p and v and assume that v E s'.attemptedp and q E v.set.
We distinguish two cases.

l. v E s.attemptedP.

By the inductive hypothesis we have that s.cur.idq :2". v.id. By the monotonicity of cur.id we
have that s'.cur.idq :2". s.cur.idq.

2. v (/_ s.attemptedP.

It must be 1r = nvs-NEwvmw(v)p- We consider two possible cases: q = p and q # p.

Assume that q = p. Then Invariant 4.3 implies that s'.client-curp :2". v.id. Since s'.cur.idp =
s'.client-curp, we have that s'.cur.idp :2". v.id, as needed.

Assume that q # p. Then the precondition of 1r says that s.info-rcvd[q, v.id] # l_. By Invariant
4.8 (used with p and q interchanged) we have that cur.idq :2". v.id, as needed.

The following invariant states properties of views in the use set.

Invariant 4.12 (DVS-IMPL)

In any reachable state:

20

D

1. If curp # l_ and w E usep, then w.id ::; cur.idp.

2. If curp # l_ and client-curp # curp and w E usep, then w.id < cur.idp.

3. If info-sent[g]p = (:r:, X) and w E {:r:} U X then w.id < g.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Consider Part 1 first. In the initial state we have that
usep is either empty or contains only vo. In the former case Part 1 is vacuously true. In the
latter case we have that w = vo and the invariant follows from the fact that go is the minimum
element of 9. Parts 2 and 3 are vacuously true. Indeed in the initial state client-curp = curp and
info-sent[g]p = l_.

For the inductive step assume the invariant is true in state s. We need to prove that it is true
ins' for any possible step (s, 1r, s'). Fix p, g, :r:, X and w.

We prove that the invariant is still true in s' by considering each possible action 1r.

1. 7r = VS-NEWVIEW(v)p

First consider Part 1. Assume that s'.curp # l_ and w E s'.usep. Then w E s.usep. If
s.curp = l_, then, by Invariant 4.7, w = vo. Since Vo.id is the minimum element of 9, we have
that w.id < s'.cur.idp. So assume that s.curp # l_. In this case, by the inductive hypothesis,
Part 1, we have that w.id ::; s.cur.idp, which implies w.id < s'.cur.idp.

Hence Part 1 is still true in s'. Since we actually proved that w. id < s'. cur. idp also Part 2 is
still true in s'.

Now consider Part 3. Assume that s'.info-sent[g]p = (:r:,X) andw E {:r:}UX. If g # v.idthen
we have that s.info-sent[g]p = (:r:, X). By the inductive hypothesis, Part 3, we have w.id < g,
as needed. Hence assume g = v.id. By the code of 1r, we have that s.usep = {:r:} U X. Now if
s.curp = l_, then by Invariant 4.7, w = vo. Since Vo.id is the minimum element of 9, we have
that w.id < v.id = g, as needed. So assume further that s.curp # l_. In this case, the inductive
hypothesis, Part 1, implies that w.id::; s.cur.idp, which implies w.id < s'.cur.idp = v.id = g,
as needed.

2. 7r = DVS-NEWVIEW(v)p

Consider Part 1 first. The only possible new element added to usep is v. Since v = s'.cur.id,
Part 1 still holds ins'. Part 2 is vacuously true, because s'.client-curp = s'.curp. Part 3 is
preserved because info-sent[g]p is not modified.

3. 7r = DVS-GARBAGE-COLLECT(v)p

Consider Part 1. Assume that s'.curp # l_ and that w E s'.usep. By the code s'.curp = s.curp.
If w E s.usep then by the inductive hypothesis Part 1 is true ins and thus it is still true ins'.
Hence assume that w (/_ s.usep. By the code, this cannot happen because no view is added to
usep.

Part 2 can be proved in a similar way. Part 3 is preserved because info-sent[g]p is not modified.

4. 1r = VS-GPRCV(("info", x, X))q,p

The proof is exactly as in the previous case.

21

5. Other actions.

Variables usep, curp, client-curp and info-sent[g]p are not modified. Hence none of the asser
tions can be made false.

D

The following three invariants, say that certain views appear in use sets, or in "info" messages,
unless they have been garbage-collected.

Invariant 4.13 (DVS-IMPL)

In any reachable state, if w E attemptedP then either w E usep or w.id < act.idp.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. Fix p, w and suppose that w E attemptedp. If p (/_ Po then
attemptedp = {}, a contradiction. On the other hand, if p E Po then since w E attemptedp, it
must be that w = vo. But in this case also actp = vo, so vo E usep, as needed.

For the inductive step assume the invariant is true in state s. We need to prove that it is true
ins' for any possible step (s, 1r, s'). So fix w and p such that w E s'.attemptedp. We distinguish
two possible cases.

l. w E s.attemptedP.

By the inductive hypothesis we have that either w E s.usep or w.id < s.act.idp. In the
latter case, because of the monotonicity of act.idp, we have w.id < s'.act.idp. So assume that
w E s.usep. If w E s'.usep we are done, so assume further that w (/_ s'.usep. Then it must be
that either 1r = DVS-GARBAGE-COLLECT(v)p or 1r = vs-GPRcv(("in/o",x,X))r,p for some r. In either
case, the code implies that s'. actp > w. id.

2. w (/_ s.attemptedP.

It must be 1r = nvs-NEwvmw(v)p- By the code, view v is inserted into attemptedp, but also into
ambp (and hence into usep). Thus the invariant is still true in s'.

D

Invariant 4.14 (DVS-IMPL)

In any reachable state, if info-rcvd[q,g]p = (:r:,X) and w E {:r:} U X, then either w E usep or
w.id < act.idp.

Proof: By induction on the length of an execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state info-rcvd[q, g]p = l_ for any p, q, g. Hence
the statement is vacuously true.

For the inductive step assume the invariant is true in state s. We need to prove that it is true
ins' for any possible step (s, 1r, s'). Fix p, q, g, :r:, X and w, and assume that s'.info-rcvd[q, g]p =
(:r:,X), and w E {:r:} UX. We consider two cases:

l. s.info-rcvd[q, g]p = (:r:, X)

By the statement applied to s, we obtain that either w E s.usep, or s.act.idp > w.id. In the
latter case, s'.act.idp > w.id, because of monotonicity of act.idp. So assume that w E s.usep.

22

If w E s'.usep then we are done, so assume further that w (f. s'.usep. (That is, w is garbage
collected.)
Then it must be that either 1r =nvs-GARBAGE-COLLECT(v)p or 1r = vs-GPRcv(("info", x, X))r,p for
some r. In either case, the code implies that s'. actp > w. id.

2. s.info-rcvd[q, g]p # (:r:, X)

Then 1r = vs-GPRcv(("in/o",x,X))q,p• If w E s'.usep then we are done. Hence assume that
w (/_ s'.usep. By the code, we have that s'.actp > w.id (that is, w is garbage-collected).

D

Invariant 4.15 (DVS-IMPL)

In any reachable state, if info-sent[g]p = (:r:, X), w E attemptedp, and w.id < g, then either
w E {:r:} U X or w.id < :r:.id.

Proof: By induction on the length of an execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, info-sent[g]p = l_ for all g, p, so the
statement is vacuously true.

For the inductive step assume the invariant is true in states. We need to prove that it is true in
s' for any possible step (s, 1r, s'). Fix p, g, w, :r:, and X, and assume that s'.info-sent[g]p = (:r:, X),
w E s'.attemptedp, and w.id < g. We consider four cases:

l. s.info-sent[g]p = (:r:, X) and w E s.attemptedp.

Then the statement for s implies that either w E {:r:} U X or w.id < :r:.id. In either case the
statement is true in s' also.

2. s.info-sent[g]p # (:r:, X) and w (f. s.attemptedp.

This cannot happen because both conditions cannot become true in a single step: the first only
becomes true by means of a vs-NEwvmw(v)p, for some view v, while the second only becomes
true by means of nvs-NEwvmw(w)p-

3. s.info-sent[g]p # (:r:, X) and w E s.attemptedp.

It must be 1r = vs-NEwvmw(v)p, for some v, :r: must be s.actp, and X must be s.ambp.
Invariant 4.13 implies that either w E s.usep or w.id < s.act.idp. Now, s.usep = { s.actp} U
s.ambp = {:r:} U X. So we have that either w E {:r:} U X or w.id < :r:.id, as needed.

4. s.info-sent[g]p = (:r:, X) and w (f. s.attemptedp.

Then 1r must be nvs-NEwvmw(w)p- We claim that this cannot happen: Since s.info-sent[g]p =

(:r:, X), by Invariant 4.4 we have s.cur.idp :2". g. Since g > w.id, we have s.curp > w.id. But
the precondition of 1r requires that s.curp = w.id. Hence 1r is not enabled in states.

D

23

Invariant 4.16 says that two attempted views having no intervening totally registered view,
and having a common member, q, that has attempted the first view, must intersect in a majority
of processors. This is because, under these circumstances, information must flow from q to any
processor that attempts the second view.

Invariant 4.16 (DVS-IMPL)

In any reachable state, suppose that v E attemptedp, q Ev.set, w E attemptedq, w.id < v.id, and
there is no :r E TotReg such that w.id < :r.id < v.id. Then Iv.set n w.setl > lw.setl/2.

Proof: By induction on the length of an execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, only vo is attempted, so the hypotheses
cannot be satisfied. Thus, the statement is vacuously true.

For the inductive step assume the invariant is true in states. We need to prove that it is true in
s' for any possible step (s, 1r, s'). Fix v, w, p, and q, and assume that v E s'.attemptedp, q Ev.set,
w E s'.attemptedq, w.id < v.id, and there is no :r E s'.TotReg such that w.id < :r.id < v.id. Then
also there is no :r E s.TotReg such that w.id < :r.id < v.id. We consider four cases:

l. v E s.attemptedp and w E s.attemptedq.

Then the statement for s implies that Iv.set n w.setl > lw.setl/2, as needed.

2. v (f. s.attemptedp and w (f. s.attemptedq.

This cannot happen because we cannot have both v and w becoming attempted in a single
step.

3. v (f. s.attemptedp and w E s.attemptedq.

Then 1r must be nvs-NEwvmw(v)p- Since q E v.set, by the precondition of 1r we have that
s.info-rcvd[q, v.id]p = (:r, X) for some :rand X. Then Invariant 4.8 implies that s.info-sent[v.id]q =
(:r, X). Then (since w.id < v.id), Invariant 4.15 implies that either w E {:r }UX or w.id < :r.id.
If w.id < :r.id, then we obtain a contradiction. Indeed by Invariant 4.10 :r E s.TotReg and by
Invariant 4.12, Part 3 (used with w = :r) we have :r.id < v.id. This contradicts the hypothesis.
Sow E {:r} U X.
Now by Invariant 4.14 we have that either w E s.usep or w.id < s.act.idp. In the former case,
by the precondition of 1r, we have Iv.set n w.setl > lw.setl/2. In the latter case, we obtain a
contradiction. Indeed by Invariant 4.10 we have s.actp E TotReg. Moreover by the precondi
tion of 1r, s.curp cannot be _l_ and s.curp > s.client-curp and, by definition, s.actp E s.usep.
Hence by Invariant 4.12, Part 2, we have s.act.idp < s.curp = v.id.

4. v E s.attemptedp and w (f. s.attemptedq.

Then 1r must be nvs-NEwvmw(w)q- But this cannot happen. Indeed since v E s.attemptedp
and q E v.set, Invariant 4.11 implies that s.cur.idq :2". v.id. Since v.id > w.id, we have
s.cur.idq > w.id. But the precondition of action 1r requires s.cur.idq = w.id, so 1r is not
enabled ins.

D

24

Invariant 4.17 says that any attempted view v intersects the latest preceding totally registered
view win a majority of members of w.

Invariant 4.17 (DVS-IMPL)

In any reachable state, suppose that v E Att, and w E TotRey, w.id < v.id, and there is no
:r E Tot'Reg such that w.id < :r.id < v.id. Then Iv.set n w.setl > lw.setl/2.

Proof: By induction on the length of an execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, only vo is attempted, so the hypotheses
cannot be satisfied. Thus, the statement is vacuously true.

For the inductive step assume the invariant is true in state s. We need to prove that it is
true ins' for any possible step (s, 1r, s'). Fix v and w, and assume that v E s'.Att, w E s'.TotRey,
w.id < v.id, and there is no :r E s'.TotRey such that w.id < :r.id < v.id. We consider four cases:

l. v E s.Att and w E s.TotRey.

Then, from the inductive hypothesis we have Iv.set n w.setl > lw.setl/2.

2. v (f. s.Att and w (f. s.TotRey.

This cannot happen because we cannot have both v becoming attempted and w becoming
totally registered in a single step.

3. v (f. s.Att and w E s.TotRey.

Then 1r must be nvs-NEwvmw(v)p for some p. The precondition of 1r implies that, for any view
y E s.usep, Iv.set n y.setl > ly.setl/2. Hence to prove the claim it is enough to prove that
w E s.usep. We proceed by contradiction assuming that w (f. s.usep.

By Invariant 4.10, Part 3, s.usep n s.TotRey # {}. Let m be the view in s.usep n s.TotRey
having the biggest identifier. We know that m # w because w (f. s.usep. Also, m # v, because
m E s.TotRey and v (f. s.TotRey. It follows that m.id # v.id.

We claim that m.id < w.id. We have already shown that m.id # w.id. Suppose for the sake
of contradiction that m.id > w.id. From the precondition of action 1r we have that s.cur = v
and hence s.cur # l_. Also from the precondition of 1r we have that s.client-curp < s.curp.
Since m E s.usep, Invariant 4.12, Part 2, implies that m.id < s.cur.idp and since s.cur = v we
have we have m.id < v.id. Sow.id< m.id < v.id. Since m E s'.Tot'Reg, this contradicts the
hypothesis of the inductive step. Therefore, m.id < w.id.

Let n be the view in s.Tot'Reg that has the smallest id strictly greater than that of m.
Remember that w E s'.TotRey and since 1r =nvs-NEwvmw(v)p we have that w E s.TotRey;
thus n exists and it holds m.id < n.id ::; w.id < v.id. Since m E s.usep, the precondi
tion of 1r implies that Iv.set n m.setl > lm.setl/2. By the statement applied to state s,
In.set n m.setl > lm.setl/2. Hence there exists a processor q E v.set n n.set. By the pre
condition of 1r, s.info-rcvd[q, v.id]p = (:r, X) for some :r, X. Then Invariant 4.8 implies that
s.info-sent[v.id]q = (:r,X). Then Invariant 4.12, Part 3 (used with w = :r), implies that
:r.id < v.id. Since n E s.TotRey, we have that n E s.attemptedq. Then Invariant 4.15 (used
with w = n) implies that either n E {:r} U X or n.id < :r.id. In either case, {:r} U X contains
a view y E s.Tot'Reg (either nor :r) such that n.id::; y.id < v.id. Then Invariant 4.14 implies

25

that either y E s.usep or y.id < s.act.idp. By Invariant 4.10, Part 1, s.actp E s.Tot"Reg and by
definition, s.actp E s.usep. So in either case, the hypothesis that m is the totally registered
view with the largest id belonging to s.usep is contradicted.

4. v E s.Att and w (f. s.Tot"Reg.

Then 1r must be nvs-REGISTERp for some p. Let m be the view in s.Tot"Reg with the largest id
that is strictly less than w.id. By the statement for s, we know that lw.setnm.setl > lm.setl/2
and Iv.set n m.setl > lm.setl/2. Hence there is a processor q E w.set n v.set.

Since v E s.Att, there exists a processor r such that v E s.attemptedr. Thus also v E

s'.attemptedr. Since w E s'.Tot"Reg, we have that w E s'.attemptedq. By assumption, there
is no view :r E s'.Tot"Reg such that w.id < :r.id < v.id. By Invariant 4.16 applied to state s'
(with p = r), we have that Iv.set n w.setl > lw.setl/2, as needed.

D

The final invariant, a corollary to Invariant 4.17, is instrumental in proving that DVS-IMPL

implements DVS.

Invariant 4.18 (DVS-IMPL)

In any reachable state, if v, w E Att, w.id < v.id, and there is no :r E Tot"Reg with w.id < :r.id <
v.id, then v.set n w.set # {}.

Proof: Suppose that v and w are as given. We consider two cases.

l. w E Tot"Reg.

Since there is no :r E Tot"Reg, Invariant 4.17 implies that Iv.set n w.setl > lw.setl/2, which
implies that v .set n w .set # {}, as needed.

2. w (/_ Tot"Reg.

Then let Y = {YIY E Tot"Reg, y.id < w.id}. We first show that Y is nonempty: Invariant 4.5
implies that vo E Tot"Reg and that Vo.id::; w.id. If Vo.id= w.id, then by Invariant 4.1, we have
w = vo. But then w E Tot"Reg, a contradiction to the definition of this case. So we must have
Vo.id< w.id, which implies that vo E Y, so Y is nonempty.

Now fix z to be the view in Y with the largest id. We have that there is no :r E Tot"Reg
with z.id < :r.id < v.id. Then Invariant 4.17 implies that lw.set n z.setl > lz.setl/2 and
Iv.set n z.setl > lz.setl/2. Together, these two facts imply that v.set n w.set # {}, as needed.

D

4.3.2 The abstraction function

We prove that DVS-IMPL implements DVS by defining a function :F that maps states of DVS-IMPL

to states of DVS and proving that this function is a abstraction function. Section 4.3.2.1 contains
the definition of the function :F along with auxiliary invariants, then Section 4.3.2.2 gives the
proof that :F is an abstraction function.

26

4.3.2.1 Defi,nition of :F

DVS-IMPL uses vs to send client messages and messages generated by the implementation ("info"
and "registered" messages). The abstraction function discards the non-client messages. Thus, if q
is a finite sequence of client and non-client messages, we define purge(q) to be the queue obtained
by deleting any "info" or "registered" messages from q, and purgesize(q) to be the number of
"info" and "registered" messages in q. Figure 5 defines the abstraction function :F.

Lets be a state of DVS-IMPL. The state t = :F(s) of DVS is the following.

• t.created = UpEps.attemptedP

• for each p E P, t.current-viewid[p] = s.client-cur.idp

• for each g E 9, t.attempted[g] ={pig= v.id, v E s.attemptedp}

• for each g E 9, t.registered[g] = {pls.reg[g]p}

• for each p E P, g E 9, t.pending[p, g] = purge(s.pending[p, g])+purge(s.msgs-to-vs[g]p)

• for each g E 9, t.queue[g] = purge(s.queue[g])

• for each p E P, g E 9,
t.next[p, g] = s.next[p, g] - purgesize(s.queue[g](l..next[p, g] - 1)) - ls.msgs-from-vs[g]pl

• for each p E P, g E 9,
t.next-safe[p, g] =

s.next-safe[p, g] - pur:qesize(s.queue[g](l..next-safe[p, g] - 1)) - ls.safe-from-vs[g]pl

Figure 5: The abstraction function :F.

Next we give some simple consequences of the definition of :F. They deal with the messages
delivered by DVS-IMPL. They state that these messages are exactly the ones that DVS would
deliver to the client.

Invariant 4.19 (DVS-IMPL)

In any reachable states, if s.msgs-from-vs[g]p = ((m1,q1), (m2,q2), ... , (mk,qk)), then we have
that :F(s).queue[g](next[p, g] .. next[p, g] + k - l) = ((m1, q1), (m2, q2), ... , (mk, qk)).

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state no message is in msgs-from-vs[g]p. Hence
the invariant is vacuously true.
For the inductive step, assume that the invariant is true in state s. We need to prove that it is
true in state s' for any possible step (s, 1r, s'). Fix p, g and m1, q1, m2, q2, ... , mk, qk and assume
that s'.msgs-from-vs[g]p = ((m1, q1), (m2, q2), ... , (mk, qk)). We distinguish the following cases.

l. s.msgs-from-vs[g]p = ((m1, q1), ... , (mk-1, qk-1)).

It must be 1r =vs-GPRcv(mk)qk,P" By the inductive hypothesis we have that
:F(s).queue[g](next[p, g] .. next[p, g] + k - 2) = ((m1, q1), ... , (mk-L qk-1)).

27

By the code in vs we have that next[p, g] is increased by one and by the code in DVS we
have that the size of msgs-from-vs[g]p also increases by one. Hence by the definition of F, we
have that F(s').next[p,g] = F(s).next[p,g]. Moreover F(s').queue[g] = F(s).queue[g] and by
the precondition of 1r we have that F(s).queue[g](s.next[p,g] + k - I)= (mk,qk)- Thus the
invariant is still true in s'.

2. s.msgs-from-vs[g]p = ((m, q), (m1, q1), (m2, q2), ... , (mk, qk)).

Then 1r =nvs-GPRcv(m)q,p• By the inductive hypothesis we have that
F(s) .queue[g](next[p, g] .. next[p, g] + k) = ((m, q), (m1, q1), (m2, q2), ... , (mk-1, qk-1)).

By the code we have that next[p, g] is incremented by one. Since F(s').queue[g] = F(s).queue[g],
the invariant is still true in s'.

3. s.msgs-from-vs[g]p = s'.msgs-from-vs[g]p

By the inductive hypothesis the assertion is true in states. For any possible action in this case
F(s').next[p, g] = F(s).next[p, g] and the portion of F(s).queue[g] involved in the statement
of the invariant never changes because messages are only appended to queue[g]. Thus the
assertion cannot be made false.

4. Other cases.

Not possible. Indeed msgs-from-vs[g]p either stay the same or is changed by appending a
message or deleting the head.

D

The following invariant follows easily from the previous one. It just states that the next message
delivered by DVS-IMPL to a processor p is the same one that DVS delivers.

Invariant 4.20 (DVS-IMPL)

In any reachable states, if (m,q) is head of s.msgs-from-vs[g]p, then F(s).queue[g](next[p,g]) =
(m, q).

Proof: Follows easily from previous one.

Similar invariants hold for the delivery of safe messages.

Invariant 4.21 (DVS-IMPL)

D

In any reachable states, we have that if s.safe-from-vs[g]p = ((m1,q1), (m2,q2), ... , (mk,qk)), then
F(s).queue[g](next-safe[p, g], next-safe[p, g] + k - I) = ((m1, q1), (m2, q2), ... , (mk, qk)).

Proof: The proof is as for msgs except that it uses the safe-from-vs queue instead of msgs-from-vs
and the pointer next-safe instead of next. □

Invariant 4.22 (DVS-IMPL)

In any reachable states, if (m, q) is head of s.safe-from-vs[g]p, then F(s).queue[g](next-safe[p, g]) =
(m, q).

Proof: Follows easily from previous one. D

Notice that v is totally registered in state s of DVS-IMPL if and only if it is totally registered in
the state of DVS that appears in state F(s) of DVS.

28

4.3.2.2 Proof that :F is an abstraction function

In order to prove that :Fis an abstraction function we need to prove that (a) for any initial state
s of DVS-IMPL we have that :F(s) is an initial state of DVS, and that (b) for any possible step 1r

of DVS- IMPL there exists an execution fragment a of DVS such that the trace of a is equal to the
trace of 1r, that is, a and 1r have identical externally observable behaviors. Lemmas 4.23 and 4.24
prove this.

Lemma 4.23 Ifs is an initial state of DVS-IMPL then :F(s) is an initial state of DVS.

Proof: Let so be the unique initial state of DVS-IMPL and to the unique initial state of DVS.

We have so.attemptedP = {vo} for p E Po and so.attemptedP ={}for p (/_ Po. By the definition
of :F and the fact that Po # {} (because all membership sets are defined to be nonempty), we
have :F(so).created = {vo}- This is as in to.

We have so.client-curp = { vo} for p E Po and so.client-curp = l_ for p (/_ Po. By the definition
of :F we have :F(so).current-viewid[p] = go for p E Po and :F(so).current-viewid[p] = l_ for p (/_ Po.
This is as in to.

We have so.attemptedP = {vo} for p E Po and so.attemptedP ={}for p (/_ Po. By the definition
of :F we have :F(so).attempted[go] = Po and :F(so).attempted[g] = {} for g # go. This is as in to.

Let g E t;;. We have that so.reg[g]p is true if and only if p E Po and g = go. By the definition
of :F we have :F(so).registered[go] = Po and :F(so).registered[g] = {} for g # go, as in to.

Let p E P. We have that so.msgs-to-vs[g]p = ..\ and so.pending[p, g] = ..\. By the definition of
:F we have :F(so).pending[p, g] = ..\, as in to.

Let g E t;;. We have so.queue[g] = ..\. By the definition of :F we have :F(so).queue[g] = ..\,
as in to.

Let p E P, g Et;;. We have so.next[p, g] = I, pur:qesize(s.vs.queue[g]) = 0 and so.msgs-from-vs[g]p =
..\. By the definition of :F we have :F(so).next[p, g] = 1, as in to. A similar argument holds for
next-safe.

Thus :F(so) = to, as needed. □

Lemma 4.24 Lets be a reachable state ofDVS-IMPL, :F(s) a reachable state ofDVS, and (s,1r,s')
a step of DVS-IMPL. Then there is an execution fragment a of DVS that goes from :F(s) to :F(s'),
such that trace(a) = trace(1r).

Proof: By case analysis based on the type of the action 1r. (The only interesting case is where
1r = nvs-NEwvmw(v)p-) Define t = :F(s) and t' = :F(s').

1. 7r = VS-CREATEVIEW(v)

Then trace((s, 1r, s')) = ..\. Action 1r modifies created. The definition of :Fis not sensitive to
this change. Therefore, t = t', and we set a = t.

2. 7r = VS-NEWVIEW(v)p

Then trace((s, 1r, s')) = ..\. Action 1r modifies curp, info-sent[cur.id]p, and current-viewid[p],
and adds an "info" message to msgs-to-vs[cur.id]p. The definition of :Fis not sensitive to any
of these changes. Therefore, t = t', and we set a= t.

29

3. 7r = VS-GPSND(m)p

Then trace((s, 1r, s')) = ..\. Action 1r just moves a message from the queue msgs-to-vs[cur.id]p
to the queue pending[p, current-viewid[p]]. The definition of :Fis not sensitive to this change.
Therefore, t = t', and we set a = t.

4. 7r = VS-ORDER(m, p, g)

Then trace((s, 1r, s'))
consider two cases.

..\. Action 1r moves a message from pending[p, g] to queue[g]. We

(a) m E Mc
Then we set a= (t,nvs-oRDER(m,p,g),t'). We claim that nvs-oRDER(m,p,g) is enabled int:
Since vs-oRDER(m,p,g) is enabled ins, it follows that m is the head of s.pending[p, g]. By
the definition of :F, m is also the head of t.pending[p, g]. It follows that nvs-oRDER(m,p, g)

is enabled in t.
By definition of :F, t' differs from t only in the fact that m is moved from pending[p, g] to
queue[g]. This is the effect achieved by applying nvs-oRDER(m,p,g) tot.

(b) m{f_Mc
Then the definition of :F is not sensitive to this change. Therefore, t = t', and we set
a= t.

5. 1r = VS-GPRCV(("in/o",v,.5))q,p

Then trace((s,1r,s')) = ..\. This action can modify info-rcvd[cur.idp,q]p, actp and ambp (see
code of DVS) and causes next[p, cur.idp] to be incremented (see code of vs). The definition of :F
is not sensitive to these changes. (The only interesting case is the definition oft. next[p, cur. idp],
where the absolute values of the first two terms on the right-hand side are both increased by
1, but they cancel each other out.) Therefore, t = t', and we set a= t.

6. 7r = VS-GPRCV("regi8tered")p

Then trace ((s, 1r, s') = ..\. This action can modify rcvd-rgst[cur.id, q]p. It also causes the pointer
next[p, cur.idp] to be incremented. The definition of :Fis not sensitive to these changes. (The
only interesting case is the definition of t.next[p, cur.idp], where the absolute values of the first
two terms on the right-hand side are both increased by 1, but they cancel each other out.)
Therefore, t = t', and we set a= t.

7. 7r = vs-GPRcv(m)p, m E Mc

Then trace((s, 1r, s')) = ..\. This action copies a message from the sequence queue[cur.id]p to
the sequence msgs-from-vs[p, client-cur[p]], and causes next[p, cur.idp] to be incremented. The
definition of :F is not sensitive to these changes. (The only interesting case is the definition of
t.next[p, cur.idp], where the absolute values of the first and third terms on the right-hand side
are both increased by 1, but they cancel each other out.) Therefore, t = t', and we set a= t.

8. 1r = vs-sAFE((m,v,.5))q,p, m E {"info", "registered"}

30

Then trace((s, 1r, s')) = ..\. Action 1r just causes next-safe[p, cur.idp] to be incremented. The
definition of :F is not sensitive to this change. (The only interesting case is the definition of
t.next-safe[p, cur.idp], where the absolute values of the first two terms on the right-hand side
are both increased by 1, but they cancel each other out.) Therefore, t = t', and we set a= t.

9. 7r = vs-SAFE(m)p, m E Mc

Then trace((s,1r,s')) = ..\. Action 1r adds a message to safe-from-vs[cur.id]p and causes the
pointer next-safe[p, cur.idp] to be incremented. The definition of :F is not sensitive to these
changes. (The only interesting case is the definition of t.next-safe[p, cur.idp], where the abso
lute values of the first and third terms on the right-hand side are both increased by 1, but
they cancel each other out.) Therefore, t = t', and we set a= t.

lQ. 7r = DVS-NEWVIEW(v)p

Then trace ((s, 1r, s)) = 1r. In DVS- IMPL, this action modifies only variables ambp, attemptedp,
client-curp. We have s'.client-curp = v and s'.attemptedp = s.attemptedp U {v}. By definition
of :F, we have that t'.current-viewid[p] = s'.client-cur.idp = v.id, t'.created = t.createdU {v}
and t'.attempted[v.id] = t.attempted[v.id] U {p}, while all other state variables int' are as int.

We consider two cases:

(a) v Et.created.

In this case, we set a = (t, 1r', t'), where 1r' = nvs-NEwvmw(v)p- The code shows that 1r'

brings DVS from state t to state t'. It remains to prove that 1r' is enabled in state t, that
is, that v E t.created and v.id > t.current-viewid[p]. The first of these two conditions is
true because of the defining condition for this case. The second condition follows from
the precondition of 1r in DVS-IMPL: this precondition implies that v.id > s.client-cur.idp,
and by the definition of :F we have t.current-viewid[p] = s.client-cur.idp.

(b) v tf_t.created.

In this case we set a= (t, 1r', t", 1r", t'), where 1r' = nvs-cREATEvmw(v)p, 1r" = nvs-NEwvmw(v)p,
and t" is the unique state that arises by running the effect of 1r' from t. The code shows
that a brings DVS from state t to state t'. It remains to prove that 1r' is enabled int and
that 1r" is enabled in t".
The precondition of 1r' requires that (i) Vw Et.created, v.id # w.id and (ii) Vw Et.created,
either :lr E s.Tot'Reg satisfying w.id < :r.id < v.id or v.id < :r.id < w.id, or else v.set n
w.set # {}.
To see requirement (i), suppose for the sake of contradiction that w E t.created and
w.id = v.id. The precondition of 1r in DVS-IMPL implies that v = s.curp, which implies
that v E s. created. Since w E t. created, the definition of :F implies that w E s. attemptedq
for some q. This implies that w E s.created. But then Invariant 4.1 implies that v = w.
But this contradicts that fact that v (f. t. created and w E t. created.

To see requirement (ii), suppose that w E t.created and there is no :r E s.Tot'Reg satisfy
ing w.id < :r.id < v.id or v.id < :r.id < w.id. Since w E t.created, by definition of :F,
w E s.attemptedq for some q. Clearly, w E s'.attemptedq. Therefore, w E s'.Att. By the
code of 1r we have that v E s'.attemptedp. Therefore we also have v E s'.Att. Moreover,

31

there is no :r E s'.Tot'Reg satisfying w.id < :r.id < v.id or v.id < :r.id < w.id. Then
Invariant 4.18 implies that v.set n w.set # {}, as needed to prove that 1r' is enabled int.

We now prove that 1r" is enabled in state t". The precondition of 1r" requires that
v E t".created and v.id > t".current-viewid[p]. The first condition is true because v
is added to created by 1r'. The second condition follows from the precondition of 1r in
DVS-IMPL: The precondition of 1r implies that v.id > s.client-cur.idp. The definition of
:F implies that t.current-viewid[p] = s.client-cur.idp. Moreover, t".current-viewid[p] =
t.current-viewid[p]. It follows that v.id > t".current-viewid[p]. Thus 1r" is enabled in state
t".

11. 7r =DVS-REGISTERp

Then trace((s, 1r, s')) = 1r. Let g be s.client-cur.idp, which equals t.current-viewid[p] by the
abstraction function. If g = l_, then 1r has no effect in DVS-IMPL, so s = s'; thus t = t', as
required to show that 1r brings DVS from t to t'. Otherwise, g # l_, so by the code in DVS

IMPL, this action sets reg[g]p to true and inserts a "registered" message into msgs-to-vs[g]p.
By definition of :F, t' is the same as t except that t'.registered[g] = t.registered[g] U {p}. We
set a= (t, nvs-REGISTERp, t'). It is easy to check that nvs-REGISTERp brings DVS from t tot'.

12. 7r =DVS-GARBAGECOLLECT(v)p

Then trace((s, 1r, s')) = ..\. This action can modify actp and ambp. The definition of :Fis not
sensitive to these changes. Therefore, t = t', and we set a= t.

13. 7r =DVS-GPSND(m)p

Then trace((s, 1r, s')) = 1r. We set a= (t, nvs-GPSND(m)p, t'). We consider two cases:

(a) s.client-cur.id = l_

Then s = s'. In this case, the definition of :F implies that also t.current-viewid[p] = l_,

which implies that the action also has no effect in t, which suffices.

(b) s.client-cur.id # l_

In this case, the action appends m to msgs-to-vs[g]p, where g = client-cur.idp. Hence
we have that s'.msgs-to-vs[g] = s.msgs-to-vs[g]+m. By the definition of :F we get that
t'.pending[p, g] = t.pending[p, g]+m. This is the effect of the action int (using the fact
that t.current-viewid[p] # _i.)

14. 7r = DVS-GPRCV(m)p

Then trace((s, 1r, s')) = 1r. This action removes the head of msgs-from-vs[g]p, where g =
cur.idp. We have that s.msgs-from-vs[g]p = m+s'.msgs-from-vs[g]p. Thus t'.next[p, g] =
t.next[p,g] + l. We set a= (t,nvs-GPRcv(m)p,t'). It is easy to check that the step has the
required effect in DVS. The fact that nvs-GPRcv(m)p is enabled int follows from Invariant 4.20.

15. 7r = DVS-SAFE(m)p

Then trace(1r) = 1r. This action removes the head of the safe-from-vs[g]p, where g = cur.idp.
We have that s.safe-from-vs[g]p = m+s'.safe-from-vs[g]p. Thus t'.next-safe[p, g] = t.next-safe[p, g]+

32

1. We set a= (t, nvs-GPRcv(m)p, t'). It is easy to check that the step has the required effect in
DVS. The fact that nvs-GPRcv(m)p is enabled int follows from Invariant 4.22.

D

Lemmas 4.23 and 4.24 prove that :F is an abstraction function from DVS-IMPL to DVS and thus
the following theorem holds (this is a standard inference, cf. [29]).

Theorem 4.25 Every trace of DVS-IMPL is a trace of DVS.

5 An application of DVS

Now we demonstrate the utility of DVS by showing how to use it to implement a totally ordered
broadcast service, called TO, originally defined in [17]. This service accepts messages from clients
and delivers them to all clients according to the same total order. This kind of service is used as a
building block for many fault-tolerant distributed applications, e.g., in implementing sequentially
consistent shared memory and atomic shared memory. The TO specification is reproduced in
Figure 6.

Signature:

Input:
Internal:

State:

BCAST(a)p, a EA, p E P
TO-ORDER(a,p), a EA, p E p

queue E 8eqof(A x P), init .A.

Transitions:

input BCAST(a)p

Eff: append a to pending[p]

internal TO-ORDER(a, p)
Pre: a is head of pending[p]
Eff: remove head of pending[p]

append (a, p) to queue

Output: BRCV(a)p,q, a EA, p,q E P

for each p E P : pending[p] E 8eqof(A), init .A.
next[p] E N> 0

, init 1

output BRCV(a)p,q

Pre: queue(next[q]) = (a,p)

Eff: next[q] := next[q] + 1

Figure 6: The TO service

5.1 The implementation TO-IMPL

We provide an implementation of TO using DVS as a building block. The implementation is similar
to the TO implementation provided in [17]. Both algorithms rely on primary views to establish a
total order of client messages. The difference is that the algorithm in [1 7] uses a static notion of
primary and our new algorithm uses a dynamic notion. The algorithm of [17] is built upon the
vs service, defined in the same paper, that reports non-primary as well as primary views; that
algorithm uses a simple local test to determine if the view is primary, namely it checks whether the
view contains a majority of the processes; the algorithm also does some non-critical background

33

work (gossiping information) in non-primary views. In contrast, the algorithm we present here is
built upon the DVS service, which only reports primary views. Thus the new algorithm is simpler
in that it does not perform the local tests and does not carry out any processing in non-primary
views. On the other hand, in the new algorithm, the application programs must perform DYS

REGISTER actions to tell the DVS service that they have obtained whatever information they need
to proceed with regular computation in the new view. The corresponding notion in [17] is that of
an established view: an established view in the algorithm of [17] corresponds to a registered view
in our algorithm. Although the new algorithm appears very similar to the one of [17], the fact
that the DVS service provides more complicated guarantees than the vs service makes the new
algorithm harder to prove correct.

The TO-IMPL algorithm involves normal and recovery activity. Normal activity occurs while
a group view is not changing. Recovery activity begins when a new primary view is presented
by DVS, and continues while the members combine information from their previous history, to
provide a consistent basis for ongoing normal activity.

During normal activity, each client message received by TO-IMPL is given a system-wide unique
label, which consists of a view identifier (the one of the view in which the message is received), a
sequence number and the identifier of the process receiving the message. The association between
client messages and their unique labels is recorded in a relation content and communicated to
other processes in the same view using DVS. When a message is received, the label is given an
order, a tentative position in the system-wide total order the service is to provide. When client
messages have been reported as delivered to all the members of the view, by the "safe" notification
of DVS, the label and its order may become con.firmed. The messages associated with confirmed
labels may be released to the clients in the given order.

The consistent sequence of message delivery within each view keeps this tentative order con
sistent at members of a given view, but it may be not consistent between processes in different
views. To avoid inconsistencies processes need state exchange at the beginning of a new view.

When a new primary view is reported by DVS, recovery activity occurs to integrate the knowl
edge of different members. First, each member of a new view sends a message, using DVS, that
contains a summary of that node's state. The summary of a node's state contains the following
information: the association of labels with client messages, stored in content, the order of client
messages to be reported to the clients, stored in order, a pointer to the next client message to
be confirmed, stored in nextcon.firm and the view identifier of the primary view with the highest
view identifier in which the order sequence has been modified (stored in highprimary).

Once a node has received all members' state summaries, it processes the information in one
atomic step, i.e., it registers the new view using the DYS-REGISTER action. The node processes
state information as follows: it defines its confirmed labels to be the longest prefix of confirmed
labels known in any of the summaries; it determines the representatives as the members whose
summary include the greatest highprimary value; adopts as its new order the order of a "chosen"
representative (the chosen representative is arbitrary but must be the same for all processes)
extended with all other labels appearing in any of the received summaries, arranged in label
order.

Then recovery continues by collecting the DVS safe indications. Once the state exchange is
safe, all labels used in the exchange are marked as safe and all associated messages are confirmed

34

Signature:

Input: BCAST(a)p, a EA

State:

DVS-GPRCV(m)q,p, q E P, m E Cu s
DVS-SAFE(m)q,p, q E P, m EC us
DVS-NEWVIEW(v)p, v EV

current E V1_, init vo if p E Po, .l_ else
8tatn8 E {normal, 8end, collect, e8tabli8hed},

init normal
content E 2c, init {}
next8eqno E N> 0

, init 1
buffer E 8eqof(C), init .A.
8afe-label8 E 2£, init {}

Output: DVS-REGISTERp

DVS-GPSND(m)p, m EC us
BRCV(a)q,p, a EA, q E P

Internal: CONFIRMp

order E 8eqof(C), init .A.
nextconfirm E N> 0

, init 1
nextreport E N> 0

, init 1
highprimary E 9, init go if p E Po, .l_ else
got.state, a partial function from P to S, init {}
8afe-exch <:;; P, init {}
regi8tered <:;; 9, init {go} if p E Po, {} else
delay E 8eqof(A), init .A.

Figure 7: DVS-TO-TOp, signature and states

just as in normal processing.
For the code, shown in Figures 7 and 8, we need the following definitions. £ = g x N>0 x P

is the set of labels, with selectors l.id, l.seqno and [.origin. A is the set of messages that can be
sent by the clients of the TO service. C = £ x A is the set of possible associations between labels
and client messages. S = 2C x seqof (£) x N>0 x g is the set of summaries, with selectors :r.con,
:r.ord, :r.next and :r.high. Given :r ES, :r.conffrm is the prefix of :r.ord such that l:r.con.firml =
min(:r.next - L l:r.ordl). If Y is a partial function from processor ids to summaries, then we
define:

• knowncontent(Y) = UqEdom(Y) Y(q).con,

• maxprimary(Y) = maxqEdom(Y){Y(q).high},

• maxnextcon.firm(Y) = maxqEdom(Y) Y(q).next,

• reps(Y) = {q E dom(Y): Y(q).high = maxprimary},

• chosenrep (Y) = some element in reps (Y),

• shortorder (Y) = Y (chosen rep (Y)). ord, and

• fullorder (Y) = shortorder (Y) followed by the remaining elements of dom (known content (Y)),
in label order.

We define the system TO-IMPL to be the composition of the automata DVS-TO-TOp, for each
p E P, and the DVS specification. with all the external actions of DVS hidden.

Following the approach in [17], we define the derived variables allstate, all content and all con.firm
for TO-IMPL as follows.

• We write allstate[p, g] to denote a set of summaries, defined so that :r E allstate[p, g] if and
only if at least one of the following hold:

35

Transitions:

input BCAST(a)p

Eff: append a to delay

internal LABEL(a)p

Pre: a is head of delay
current =p .l_

Eff: let l be (current.id, next8eqno,p)
content := content U { (l, a)}
append l to buff er
next8eqno := next8eqno + l
delete head of delay

output DVS-GPSND((l, a))p
Pre: 8tain8 = normal

l is head of buff er
(l, a) E content

Eff: delete head of buffer

input DVS-GPRCV((l, a))q,p
Eff: content := content U { (l, a)}

order := order+l

input DYS-SAFE((l, a))q,p
Eff: 8afe-label8 := 8afe-label8 U {l}

internal CONFIRMp

Pre: order(nextconfirm) E 8afe-label8
Eff: nextconfirm := nextconfirm + l

output BRCV(a)q,p
Pre: nextreport < nextconfirm

(order(nextreport),a) E content
q = order(nextreport).origin

Eff: nextreport := nextreport + l

input DVS-NEWVIEW(v)p

Eff: current := v
next8eqno := 1
buffer:= .A.
got.state := {}

8afe-exch := {}

8afe-label8 := {}

8tatn8 := 8end

output DVS-GPSND(x)p

Pre: 8tatn8 = 8end
x = (content, order, nextconfirm, highprimary)

Eff: 8tatn8 := collect

input DVS-GPRCV(x)q,p
Eff: content := content U x. con

got.state := got.state El:J (q, x)
if (dom(got8tate) = current.8et) l\(8tain8 = collect) then

8tatn8 := e8tabli8hed

output DVS-REGISTERp

Pre: 8tatn8 = e8tabli8hed
current. id ff. regi8tered

Eff: regi8tered := regi8tered U {current.id}
nextconfirm := maxnextconfirm (got.state)
order := fullorder(got8tate)
highprimary := current.id
8tatu8 := normal

input DVS-SAFE(x)q,p
Eff: 8afe-exch := 8afe-exch U {q}

if 8afe-exch = current.8et then
8afe-label8 := 8afe-label8 U range(fullorder(got8tate))

Figure 8: DVS-TO-TOp, transitions

l. current.idp = g and :r = (contentp, orderp, nextconffrmp, highprimaryp).
2. :r E pending[p, g].
3. (:r,p) E queue[g].
4. For some q, current.idq = g and :r = gotstate(p)q-

Thus, allstate [p, g] consists of all the summary information that is in the state of p if p's
current view is g, plus all the summary information that has been sent out by p in state
exchange messages in view g and is now remembered elsewhere among the state components
of TO-IMPL. Notice that allstate [p, g] consists only of summaries: an ordinary message (l, a)
is never an element of allstate[p, g]. We write allstate[g] to denote UpEP allstate[p, g], and
allstate to denote UgEG allstate [g].

36

• We write allcontent for UxEallstate :r.con

This represents all the information available anywhere that links a label with a corresponding
data value.

• We write allconffrm for lubxEallstate(:r.conffrm).

For every p E P, g E G, buildorder[p, g] is defined to be a sequence of labels, initially empty;
this variable is maintained by following every statement of processor p that assigns to order
with another statement buildorder[p, current.idp] := order. It follows that if p registers a
view with id g, and later leaves view g for a view with a higher view identifier, then forever
afterwards, buildorder[p, g] remembers the value of orderp at the point where p left view g.

5.2 Correctness proof

The correctness proof for TO-IMPL follows the approach of the proof in [17]. The pattern of
reasoning is the same as the one used in that proof, however there are differences due to the
distinct guarantees offered by DVS compared to those of vs. In particular Invariant 5.6, which
corresponds to Lemma 6.18 of [17], requires a more subtle proof.

We start by providing some auxiliary invariants.

Invariant 5.1 (TO-IMPL)

In any reachable state, if l E domain (allcontent) and l. origin = p then l < (current .idp, nextseqnop, p).

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, no label is associated with any message
hence the invariant is vacuously true.

For the inductive step, assume that the invariant is true in a reachable state s. We need
to prove that it is true in s' for any possible step (s, 1r, s'). The only step that can make the
assertion false is the step when a new label is associated with a message from a client, hence we
only need to consider 1r = LABEL(a)p- The code of 1r shows that the new label is less than the
new (current.idp, nextseqnop,P) triple, since nextseqnop is incremented after being used to create
the label. D

The following invariant says that when a process p has registered a view v, then any summary
that p will create for a later view w will have its highprimary component equal to v or to a later
view.

Invariant 5.2 (TO-IMPL)

In any reachable state, let :r be a summary, p E P, and v, w E created such that v.id E registeredp,
w.id > v.id, and :r E allstate[p, w.id]. Then then :r.high :2". v.id.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, there are no v and w that satisfy the
hypothesis. Hence the invariant is vacuously true.

For the inductive step, assume that the invariant is true in a reachable state s. We need to
prove that it is true in s' for any possible step (s, 1r, s'). The steps that can make the assertion
false are those that create new summaries or new views.

37

Let us first consider actions that create new summaries. When a new summary is created
without modifying the high component of existing summaries in allstate [p, w. id], then the assertion
cannot be made false. So we only need to consider action 1r =nvs-REGISTERp when currentp = w.id,
which creates the first summary :r that satisfy the hypothesis in s' (no such :r existed in s). In
this case we have that x'.high = w.id and by the inductive hypothesis w.id > v.id, hence we have
that x'.high > v.id.

Consider now actions that create new views, that is 1r =nvs-NEwvmw(w)p- We distinguish two
cases: (1) the only registered view is vo, (2) there are registered views other than vo. In case (1)
we have that y.high = go for any existing summary y; hence the invariant is true. In case (2) the
invariant is true by inductive hypothesis. D

Next we provide some other auxiliary invariants.

Invariant 5.3 (TO-IMPL)

In any reachable state, if :r E allstate[p, g] then there exists v E created and q E v.set such
that: (1) :r.high = v.id, (2) :r.high E registeredq, (3) :r.ord = buildorder[q,:r.high] and (4) either
:r.high = g or current.idq > v.id

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, for any such :r we have that :r.high = go
and :r.ord =..\and thus we can take v = vo and q = p and the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state s. We need to
prove that it is true in s' for any possible step (s, 1r, s'). If :r E s'.allstate[p, g], then in most
cases, there is y E s.allstate[p, g] with y.high = :r.high and y.ord = :r.ord, to which we apply the
induction hypothesis. The only case where this does not happen is when 1r =nvs-NEwvmw(v)p,
where v.id = g, and :r is the summary whose components are taken from the state of p. In this
case, there is y E s.allstate[p, s.currentp] with y.high = :r.high and y.ord = :r.ord, to which we
apply the inductive hypothesis. D

Invariant 5.4 (TO-IMPL)

In any reachable state, if :r E allstate then there exists w E created such that :r.high = w.id, and
for all p E w.set, p E attempted[w.id].

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, the invariant follows from the definition
of allstate (set w = current.idp)-
For the inductive step, assume that the invariant is true in a reachable state s. We need to prove
that it is true ins' for any possible step (s, 1r, s'). The only step that we have to worry about is
when a new summary is created. When a new summary :r is created, :r.high is set to the identifier
of the current view, and a message has been received from everyone in the membership. D

Invariant 5.5 (TO-IMPL)

In any reachable state, if v E created, :r E allstate and :r.high > v.id then there exists p E v.set
with current.idp > v.id.

Proof: Fix v, :r as given. Invariant 5.4 shows the existence of w E created such that :r.high = w.id,
and for all p E w.set, p E attempted[w.id]. Then Invariant 3.4 implies that there exists p Ev.set
with current-viewid[p] > v.id. But current-viewid[p] = current.idp, which yields the result. D

38

Next we provide the crucial invariant corresponding to Lemma 6.18 of [17]. This invariant
has a more subtle proof than the one given in Lemma 6.18 of [17]. That proof does not work
in the setting of DVS because DVS guarantees a weaker intersection property (each primary view
intersects only the primary views in between the preceding and the following totally registered
primary views). The new proof also uses the fact about DVS that once a view is totally attempted,
no views with lower identifiers can be registered.

Invariant 5.6 (TO-IMPL)

In any reachable state, suppose that v E created, a- E seqof(£), and for every p E v.set, the
following is true: If current.idp > v.id then v.id E registeredP and a- :S: buildorder[p, v.id].
Then for every :r E allstate with :r.high > v.id, we have that a- :S: :r.ord.

Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, the only created view is vo, and there is
no :r E allstate with :r.high > go. So the statement is vacuously true.

For the inductive step, assume that the invariant is true in a reachable state s. We need to
prove that it is true ins' for any possible step (s, 1r, s'). So fix v E s'.created and a-, and assume that
for every p Ev.set, if s'.current.idp > v.id then v.id E s'.registeredp and a- :S: s'.buildorder[p, v.id].

If v (f. s.created, then 1r must be CREATEvmw(v). Then v.id (/_ s'.registeredp for all p. Fix
:r E s'.allstate and suppose that :r.high > v.id. Then Invariant 5.5 applied to s' implies that there
exists p Ev.set with s'.current.idp > v.id; fix such a p. Then the hypothesis part of the invariant
for s' implies that v.id E s'.registeredp, a contradiction. It follows that v E s.created.

As usual, the interesting steps are those that convert the hypothesis from false to true, and
those that keep the hypothesis true while converting the conclusion from true to false.

In this case, there are no steps that convert the hypothesis from false to true: If there is
some p E v.set for which s.current.idp > v.id and either v.id (/_ s.registeredp or a- is not a
prefix of s.buildorder[p, v.id], then also s'.current.idp > v.id (the id never decreases) and either
v.id (/_ s'.registeredp or a- is not a prefix of s'.buildorder[p, v.id]. (These two cases carry over, since
s.current.idp > v.id implies that v.id cannot be inserted into registeredp and buildorder[p, v.id]
cannot change.)

So it remains to consider any steps that keep the hypothesis true while converting the conclu
sion from true to false. Thus, we assume that if s.current.idp > v.id then v.id E s.registeredp and
a- :S: s.buildorder[p, v.id]. Suppose that :r E s'.allstate and :r.high > v.id. If also :r E s.allstate
then we can apply the inductive hypothesis, which implies that a- :S: :r.ord, as needed. So the only
concern is with steps that produce a new summary.

Any step that produces the new summary :r by modifying an old summary :r' E s.allstate,
in such a way that :r'.ord :S: :r.ord and :r'.high = :r.high, is easy to handle: For such a step,
:r'.high > v.id and so the inductive hypothesis implies that a- :S: :r'.ord :S: :r.ord, as needed. So the
only concern is with nvs-REGISTERp steps that produce a new summary :r from the state-exchange
messages of a view w sent to some processor p. Thus :r.high = w.id. Let :r' be the summary of
q' = chosenrep in s'.gotstate. We claim :r'.high :2". v.id.

To prove the claim, we let v' denote the unique element with highest view identifier among the
elements of s'. created such that v'. id < w. id and v' is totally registered in s'. Let v" denote either
v' or v, whichever has the higher view identifier. Invariant 3.3 shows that w.set n v".set # {}, no
matter whether v" is v or v'. Fix any element q" in w .set n v" .set.

39

Recall that the precondition status= established of nvs-NEwvmw implies that domain(s'.gotstatep) =
w.set, so by the code q" E domain(s.gotstatep). Let :r" be the summary s.gotstate(q")p; we have
:r" E s.allstate[q", w.id].

We now show that v".id E s.registeredq"· We consider two cases:

l. v" = v'.

Then q" E v'.set so by definition of v', we have that v'.id E s.registeredq"·

2. v" = v. Because s.allstate[q", w.id] is non-empty, we have that s.current.idq" :2". w.id. We have
that :r.high > v.id by assumption, and :r.high = w.id by the code; therefore, w.id > v.id. So
also s.current.idq" > v.id. Recall that we are in the case where the hypothesis of this invariant
is true. Therefore, by this hypothesis (uses q" Ev.set), we obtain that v.id E s.registeredq"

By Invariant 5.2 (applied with q" replacing p) we obtain :r".high :2". v".id. By the definition of
q' as a member that maximizes the high component in the summary recorded in s'.gotstate, we
have :r'.high :2". :r".high. Therefore :r'.high :2". v".id :2". v.id, completing our proof of the claim.

If :r'.high > v.id then we can apply the inductive hypothesis to :r' and we are done, since
:r'.ord ::; :r.ord. So suppose :r'.high = v.id. Note that :r' E s.allstate[q', w.id]. By Invariant 5.3
there must exist2 q Ev.set so that v.id E s.registeredq, :r'.ord = s.buildorder[q, v.id], and (either
:r'.high = w.id or s.current.idq > v.id). Since :r'.high = v.id < :r.high = w.id, the last property
can be simplified to s.current.idq > v.id. By monotonicity of current, we have s'.currentq >
v.id. The hypothesis of this invariant says that this forces a- ::; s'.buildorder[q, v.id]. Since
:r'.ord ::; :r.ord by the code for this event, and :r'.ord = s.buildorder[q, v.id] as shown above, and
s.buildorder[q, v.id] = s'.buildorder[q, v.id] since q is not currently in view v, we get a- ::; :r.ord,
which is what we need. D

Next we provide some additional auxiliary invariants.

Invariant 5. 7 (TO-IMPL)

In any reachable state, if we have that v E created, a- E seqof(£), and for every p E v.set,
v.id E registeredP and a- ::; buildorder[p, v.id], then for every :r E allstate with :r.high :2". v.id,
a-::; :r.ord.

Proof: The are two possible cases: (1) :r.high > v.id, (2) :r.high = v.id. In case (1) we can
apply Lemma 5.6. Consider case (2). Then we apply Lemma 5.3 to :r, which gives v' E created
and q' E v'.set such that :r.high = v'.id, :r.high E registeredq,, and :r.ord = buildorder[q',:r.high].
Since v.id = v'.id, Lemma 4.1 shows v = v'. Substituting in the facts above we see :r.ord =
buildorder[q', v.id]. Since q' E v.set, we can apply the premise of the corollary to see that a- ::;
buildorder[q', v.id]; that is, a-::; :r.ord, as required. D

The next invariant makes precise the fact that a label is in safe-labelsp only after it (and all
prior labels in orderp) were placed in orderq at every member q of current.setp

Invariant 5.8 (TO-IMPL)

In any reachable state, if l E safe-labelsP and a- is a pre.fix of orderp that is terminated by l, then
for all q E current.setp, a-::; buildorder[q, current.idp]

2 Direct application of the invariant actually shows the existence of some v and q E v .. set, but since x'.high = v.id
and also x' .high = v.id, uniqueness of view identifiers shows we may take v to be v itself.

40

The next lemma shows that in any summary, the ord component is closed under the relation
"sent-before-by-one-client".

Invariant 5.9 (TO-IMPL)

In any reachable state, the following is true. Assume l, l' E £ and i' E N> 0 . If l, l' E domain (allcontent)
and !.origin= !'.origin and l < l' and :r E allstate and l' = :r.ord(i') then there exists i such that
i < i' I\ l = :r.ord(i)

The proofs of Lemmas 5.8 and 5.9 are left as exercises. Next we show that :r.conffrm is a
prefix of a known sequence. This shows the consistency of the confirmed sequence of labels at
different places in the system.

Invariant 5.10 (TO-IMPL)

In any reachable state, if :r E allstate then

1. There exists v E created such that v.id ::; :r.high and for every q E v.set, v.id E registeredq
and :r. conffrm ::; buildorder [q, v].

2. :r.next ::; length(:r.ord) + l
Proof: By induction on the length of the execution. The base case consists of proving that the
invariant is true in the initial state. In the initial state, the only created view is vo and the only
extant summary is ({}, .. \ 1, go); it is easy to verify that the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state s. We need to
prove that it is true ins' for any possible step (s, 1r, s').

For most of the steps, there is y in s.allstate so that y.next = :r.next, y.ord = :r.ord (and
hence y.conffrm = :r.conffrm) and also y.high = :r.high. In these cases, the inductive hypothesis
gives us what we want, since buildorder[q, v] increases monotonically through an execution.

The steps that are left to consider are cmliFIRMp, nvs-GPRcv((l, a))q,p and nvs-REGISTERp•
Consider the case 1r=coNFIRMp. If :r is not the summary from the state of pins', the invariant

follows from the inductive hypothesis. If :r is the summary from the state of p in s', the precon
dition of 1r shows that the newly confirmed message has label in s.safe-labelp. By Invariant 5.8,
taking v to be s.currentp = :r.high, we have part 1 of the invariant. The precondition of 1r also
gives (:r.next - 1) E domain(:r.ord), thus showing part 2 of the invariant.

Now consider 1r =nvs-GPRcv((l,a))q,p• As before, if :r is not the summary from the state of p
in s', the invariant follows from the inductive hypothesis. If :r is the summary from the state
of p, let y denote the summary taken from p in state s. The code shows that :r.high = y.high,
:r.next = y.next, and :r.ord is an extension of y.ord. By part 2 applied toy, we see that y.next::;
length(y.ord) + l and therefore :r.next ::; length(:r.ord) + l. Which proves part 2 for :r; also it
shows that :r.conffrm = y.conffrm, so that the inductive hypothesis of part 1 applied toy proves
part 1 for :r.

Finally consider 1r =nvs-REGISTERp• As in the other two cases, if :r is not the summary from the
state of pins', the invariant follows from the inductive hypothesis. If :r is the summary from the
state of p, let y denote the summary, among those in gotstatep, with the highest value for y.next.
The code shows that :r.next = w.next. Summary y is in s.allstate. The inductive hypothesis
shows that y.conffrm has lengthy.next- l, and that there is v Es.created such that v.id::; y.high

41

and Vq Ev.set it holds v.id E s.establishedq and y.conffrm :S: buildorder[q,v]). Now let z denote
the summary of chosenrep(gotstate), as calculated in the effect of 1r. Since z.high :2". y.high :2". v.id
(recall the definition of z as being from a representative, that is, having maximal highprimary
among summaries in gotstate), Invariant 5.7 shows that y.conffrm :S: z.ord. Since z.ord :S: :r.ord
by the code, we deduce that y.conffrm is a prefix of :r.ord; as length(y.conffrm) = y.next - l =
:r.next - l, we have :r.conffrm = y.conffrm. Also by the code we have :r.high :2". y.high. Thus the
inductive hypothesis applied to y, along with the monotonicity of the set created and the fact
that v.id E registeredq, gives the invariant for :r. D

Invariant 5.11 (TO-IMPL)

In any reachable state, if :r1, :r2 E allstate and :r1.!tigh :S: :r2.!tigh, then :r1.conffrm :S: :r2.ord.

Proof: By Invariant 5.10, part 1, with :r = :r1, we have that there exists v such that v.id :S: :r1.!tigh
and :r1.con.ffrm :S: buildorder[q,v]. By Invariant 5.7 used with a-= :r1.conffrm since :r2.!tigh :2". v.id
we have that the conclusion of Invariant 5.7 holds for :r2. Hence :r1.conffrm :S: :r2.ord. D

Invariant 5.12 (TO-IMPL)

In any reachable state, for any :r, :r' E allstate, either :r.conffrm :S: :r'.conffrm or :r'.conffrm <
:r. conffrm.

Proof: Without loss of generality, we can assume that :r.high :S: :r'.high. From Invariant 5.11, we
have that both :r. conffrm and :r'. conffrm are prefixes of :r'. order. □

To prove that TO-IMPL implements TO, we define a function from the reachable states of TO

IMPL to the states of TO and prove that it is an abstraction function. This function, called :Fro,
is defined exactly as in [17] and it is given in Figure 9.

Let s be a state of TO-IMPL. The state t = :Fro (s) of TO is the following.

l. t.queue = applyall((s.allcontent, origin), s.allconffrm),
where the selector origin is regarded as a function from labels to processors.

2. t.next[p] = s.next-reportP.

3. t.pending[p] = applyall(s.allcontent, b) · s.delayp where bis the sequence of labels such that

(a) range(b) is the set of labels l such that [.origin = p, (l, a) E s.allcontent for some a,
and
l tf_ range(s.allconffrm).

(b) b is ordered according to the label order.

Figure 9: The abstraction function Fro-

In order to prove that :Fro is an abstraction function we need to prove that (a) for any initial
state s of TO-IMPL we have that :Fro (s) is an initial state of TO, and that (b) for any possible
step 1r of TO-IMPL there exists an execution fragment a of TO such that the trace of a is equal to
the trace of 1r, that is, a and 1r have identical externally observable behaviors. Lemmas 5.13 and
5.14 prove this.

42

Lemma 5.13 Ifs is an initial state of TO-IMPL then .F(s) is an initial state of TO.

Proof: Let s be the initial state of TO-IMPL. Lett= .Fro(s). By the definition of .Fro we have
that t.queue = ..\, t.next[p] = s.next-reportp = l for any p and that t.pending = ..\. Hence t is an
initial state of TO. D

Lemma 5.14 Lets be a reachable state of TO-IMPL, .Fro(s) a reachable state of To, and (s, 1r, s')
a step of TO-IMPL. Then there is an execution fragment a of To that goes from .Fro(s) to .Fro(s'),
such that trace(a) = trace(1r).

Proof: By case analysis based on the type of the action 1r. Define t = .Fro (s) and t' = .Fro (s').

1. 7r = BCAST(a)p

Since 1r is an input to TO, 1r is enabled in t. The effect of 1r shows that s'. allconffrm =
s.allconffrm, s'.allcontent = s.allcontent, and s'.pending[p] = s.pending[p] + a. This implies
that t'.pending[p] = t.pending[p] + a, thus showing that (t, 1r, t') is a step of TO. Hence we set
a= 1r. Clearly trace(a) = trace(1r).

2. 7r = LABEL(a)p

We to show that t = t'. The effect of 1r shows that t'.allconffrm = :r.allconffrm, and
t'.allcontent is the union of t.allcontent with (l', a) where l' = (t.currentp, :r.nextseqnop,P);
by Invariant 5.1, this new label l' is greater than all labels in the domain of :r.allcontent. Thus
let us consider the sequence of labels a-' (arranged in label order) such that range (a-') is the
set of labels l such that l. origin = p, (l, a') E :r'. allcontent for some a', and
l (/_ range (:r'. allconffrm). We see that a-' is related to the sequence a- (defined the same
way but using s instead of s') by a-' = a- + l'. Therefore applytoall (s'. allcontent, a-') =
applytoall (s. allcontent, a-) + a. On the other hand, the precondition of 1r shows that a is
the head of s.delayp, and so the effect of 1r means s.delayp =a+ :r'.delayp. Thus, t'.pending [p]
is the same as t.pending[p], because in the concatenation that defines this component, the
element a is simply transferred from suffix to prefix. Therefore t' = t. Hence we set a= t.

3. 7r = CONFIRMp

Clearly the effect of 1r shows s. allcontent = s'. allcontent.

If s.nextconffrmp ::; length(s.allconffrm) then Invariant 5.12 and the effect of 1r shows that
s'.allconffrm = s.allconffrm, so that t = t'. In this case we set a= t.

Otherwise s.nextconffrmp = length(s.allconffrm)+ 1, so the effect of 1r shows that s'.allconffrm =
:r.allconffrm · (l) where l = s.orderp(s.nextorderp)- Let q = [.origin and a = s.allcontent(l).
We claim that (t,rn-oRDER(a,q),t') is a step of TO.

We first show that TO-ORDER(a,q) is enabled in t. We have l E domain(s.allcontent) and
l (/_ setof (s. allconffrm); this means that a is an element of the sequence t.pending [q]. Also by
Invariant 5.9, any lower label with origin q is in s.conffrmp and so in s.allconffrm. Since the
sequence a- used to define t.pending[q] is arranged by label, we see that l is the head of a-,
and so a is the head of t.pending[q], as required. Further, the equation above for t'.allconffrm
shows that t'.queue = t.queue + (a,p), and this is what is needed to show that 1r takes t tot'.

Hence we set a =TO-ORDER(a,q). Clearly trace(a) = trace(1r) = ..\.

43

4. 7r = DVS-GPRCV(.5)q,p

In some cases this may change the value of nextconffrmq, but in every situation it leaves
allconffrm unchanged (it only moves nextconffrmq to a value already somewhere in allstate).
Thus t' = t. Hence we set a= t.

5. 7r = BRCV(a)p,q

We need to show that 1r is enabled int as an action of TO. This is immediate from the fact that
1r is enabled ins as an action of TO-IMPL. Similarly, the effect corresponds (only nextreportq
is altered).

Hence we set a =BRcv(a)q,p• Clearly trace(a) = trace(1r) = ..\.

6. Remaining actions.

The other actions leave t' = t. Hence we set a = t.

D

Lemmas 5.13 and 5.14 prove that :Fro is an abstraction function from TO-IMPL to TO and
thus the following theorem holds (this is a standard inference, cf. [29]).

Theorem 5.15 Every trace of TO-IMPL is a trace of TO.

6 Discussion
We presented a specification for a dynamic primary view group communication service and an
algorithm that formally implements the service, and we showed the utility of our new specification
by using it to implement a totally ordered broadcast. This work deals entirely with safety proper
ties; future work could consider performance and fault-tolerance properties using the conditional
performance analysis as presented in [17]. It also remains to study other applications of our DVS

specification, such as replicated data applications and load-balancing applications.
Another interesting exploration direction considers variations on the DVS specification, for

example, one in which the state exchange at the beginning of a new view is supported by the
dynamic view service. We are currently studying variations on our specifications that are more
specifically tuned to systems like Isis and Ensemble. In particular, we would like to understand
the power of the Isis requirement that processes that move together from one view to the next
receive exactly the same messages in the first view, especially for coherent-data applications.

In a related work [11] we also have investigated a generalization of the DVS service to dynamic
sets of primaries rather than individual primaries, in order to tolerate transient failures during a
particular view.

Acknowledgments: We thank Ken Birman, who urged us to consider the interesting issues of
dynamic views. We also thank Idit Keidar and Robbert van Renesse for discussions about our
DVS specification and our algorithm models and proofs.

44

References
[1] Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, "Robust and Efficient Replication Using Group

Communication'' Technical Report 94-20, Department of Computer Science, Hebrew University., 1994.

[2] 0. Babaoglu, R. Davoli. L. Giachini and M. Baker, "Relacs: A Communication Infrastructure for Con
structing Reliable Applications in Large-Scale Distributed Systems''. in Proc. of Hawaii International
Conference on Computer and Sy.stem Science, 1995, volume II, pp 612-621.

[3] 0. Babaoglu, R. Davoli and A. Montresor, "Failure Detectors, Group Membership and View
Synchronous Communication in Partitionable Asynchronous Systems''. Technical Report UBLCS-
95-18, Department of Computer Science, University of Bologna, Italy.

[4] 0. Babaoglu, R. Davoli. L. Giachini and P. Sabattini. "The Inherent Cost of Strong-Partial View
Synchronous Communication''. in Proc of Work.shop on Di.stributed Algorithm.s, pp 72-86, 1995.

[5] K.P. Birman and R. van Renesse, Reliable Di.stributed Computing with the I.si.s Toolkit. IEEE Computer
Society Press. Los Alamitos, CA, 1994.

[6] K.P. Birman, A Review of Experience.s with Reliable Multica.st, Software- Practice and Experience,
(J. vViley). vol. 29. no. 9. pp. 741-774. Aug. 1999.

[7] T.D. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost. "On the Impossibility of Group Mem
bership''. in Proc. of 15th Annual ACM Symp. on Principle.s of Di.stributed Comp., pp. 322-330, 1996.

[8] G.V. Chockler, "An Adaptive Totally Ordered Multicast Protocol that Tolerates Partitions''.
manuscript, Institute of Computer Science, The Hebrew University of Jerusalem, August. 1997.

[9] F. Cristian, "Group, Majority and Strict Agreement in Timed Asynchronous Distributed Systems''.
in Proc. of 26th Conference on Fault-Tolerant Computer Sy.stem.s, 1996, pp. 178-187.

[10] F. Cristian and F. Schmuck. "Agreeing on Processor Group Membership in Asynchronous Distributed
Systems''. Technical Report CSE95-428, Dept. of Computer Science, University of California San
Diego.

[11] R. De Prisco, A. Fekete, N. Lynch, A. Shvartsman, "A dynamic primary configuration group com
munication service''. in Proceedings of the 13th International Symposium of Distributed Computing
(DISC 99). Bratislava, Slovak.

[12] D. Davcev and vV. Buckhard, "Consistency and recovery control for replicated files''. in ACM Symp.
on Operating Sy.stem.s Principle.s, n.10, pp. 87-96, 1985.

[13] D. Dolev and D. Malki. "The Transis Approach to High Availability Cluster Communications''. Comm.
of the ACM, vol. 39, no. 4, pp. 64-70, 1996.

[14] D. Dolev, D. Malki and R. Strong "A framework for Partitionable Membership Service''. Technical
Report TR94-6, Department of Computer Science, Hebrew University.

[15] A. El Abbadi and S. Dani. "A dynamic accessibility protocol for replicated databases''. Data and
knowledge engineering, n.6, pp. 319-332, 1991.

[16] P. Ezhilchelvan, R. Macedo and S. Shrivastava "Newtop: A Fault-Tolerant Group Communication
Protocol'' in Proc. of IEEE Int-l Conference on Di.stributed Computing Sy.stem.s, 1995, pp 296-306.

[17] A. Fekete, N. Lynch and A. Shvartsman "Specifying and using a partitionable group communication
service''. ACM Tran.saction on Computer Sy.stem.s, vol. 19, no. 2, pp. 171-216, May, 2001.

[18] R. Ftiedman and R. van Renesse, "Strong and vVeak Virtual Synchrony in Horus''. Technical Report
TR95-1537, Department of Computer Science, Cornell University.

[19] M. Hiltunen and R. Schlichting "Properties of Membership Services''. in Proc. of 2nd International
Sympo.sium on Autonomon.s Decentralized Sy.stem.s, pp 200-207, 1995.

45

[20] F. Jahanian. S. Fakhouri and R. Rajkumar. "Processor Group Membership Protocols: Specification.
Design and Implementation''. in Proc. of 12th IEEE Symp. on Reliable Di.strib. Sy.stem.s pp 2-11.
1993.

[21] S. Jajodia and D. Mutchler. "Dynamic voting algorithms for maintaining the consistency of a replicated
database''. ACM Tran.s. Databa.se Sy.stem.s. n.15(2). pp. 230-280. 1990.

[22] I. Keidar and D. Dolev. "Efficient Message Ordering in Dynamic Networks''. in Proc. of 15th Annual
ACM Symp. on Principle.s of Di.stributed Computing. pp. 68-76. 1996.

[23] Roger Khazan. "Group communication as a base for a load-balancing replicated data service''. Mas
ter's thesis. Department of Electrical Engineering and Computer Science. Massachusetts Institute of
Technology. Cambridge. MA 02139. June 1998.

[24] Roger Khazan. Alan Fekete. and Nancy Lynch. "Multicast group communication as a base for a load
balancing replicated data service''. In 12th International Sympo.sium on Di.stributed Computing. pages
258-272. Andros. Greece. September 1998.

[25] N. Lesley and A. Fekete. "Providing View Synchrony for Group Communication Services''. Proceeding.s
of the An.stralian Computer Science Conference. Auckland. New Zealand. January 1999. pp 457-468.

[26] E. Lotem. I Keidar and D. Dolev. "Dynamic voting for consistent primary components''. in Proc.
of the 16th Annual ACM Sympo.sium on Principle.s of Di.stributed Computing. Santa Barbara. CA.
August 1997. pp. 63-71.

[27] N.A. Lynch. Di.stributed Algorithm.s. Morgan Kaufmann Publishers. San Mateo. CA. 1996.

[28] N.A. Lynch and M.R. Tuttle. "An Introduction to Input/Output Automata''. CWI Quarterly. vol.2.
no. 3. pp. 219-246. 1989.

[29] N.A. Lynch and F. Vaandrager. "Forward and Backward Simulations - Part I: Untimed Systems''.
Information and Computation. vol. 121. no. 2. pp. 214-233. 1995.

[30] L. Moser. Y. Amir. P. Melliar-Smith and D. Agrawal. "Extended Virtual Synchrony'' in Proc. of IEEE
International Conference on Di.stributed Computing Sy.stem.s. 1994. pp 56-65.

[31] L.E. Moser. P.M. Melliar-Smith. D.A. Agarawal. R.K. Budhia and C.A. Lingley-Papadopolous.
"Totem: A Fault-Tolerant Multicast Group Communication System''. Comm. of the ACM. vol. 39.
no. 4. pp. 54-63. 1996.

[32] G. Neiger. "A New Look at Membership Services''. in Proc. of 15th Annual ACM Symp. on Principle.s
of Di.stributed Computing. pp. 331-340. 1996.

[33] J. Paris and D. Long. "Efficient dynamic voting algorithms''. Proc. of 13th International Conference
on Very Large Data Ba.se. pp. 268-275. 1988.

[34] R. van Renesse. K.P. Birman and S. Maffeis. "Horus: A Flexible Group Communication System''.
Comm. of the ACM. vol. 39. no. 4. pp. 76-83. 1996.

[35] A. Ricciardi. "The Group Membership Problem in Asynchronous Systems''. Technical Report TR92-
1313. Department of Computer Science. Cornell University.

[36] A. Ricciardi. A. Schiper and K. Birman. "Understanding Partitions and the "No Partitions'' Assump
tion''. Technical Report TR93-1355. Department of Computer Science. Cornell University.

[37] R. Vitenberg. I. Keidar. G.V. Chockler and D. Dolev. "Group Communication Specifica
tions: A Comprehensive Study''. MIT Technical Report MIT-LCS-TR-790. September 1999. URL
http://theory.lcs.mit.edu/-idish/ftp/gcs-survey-tr.ps.

46

