
Boosting Fault-Tolerance in Asynchronous Message Passing
Systems is Impossible

Paul Attie1
, Nancy Lynch2

, and Sergio Rajsbaum3

1. College of Computer Science, Northeastern University, attie@ccs.neu.edu
2. MIT Laboratory for Computer Science, lynch@theory. lcs .mit. edu
3. Mathematics Institute, Universidad Nacional Autonoma de Mexico (UNAM), raj sbaum@matem.unam.mx

December 21, 2002

Abstract

\Ve show that it is impossible to "boost" the level of fault-tolerance of a system solving
consensus by combining less fault-tolerant components into a more fault-tolerant system. To do
this, we consider an asynchronous distributed computing model in which a known set of processes
interact in two ways: by using reliable point-to-point channels, and by accessing shared services.
Each of the shared services is connected to a subset of all the processes.

Our boosting impossibility result is: for any f 2'. 1, the consensus problem is unsolvable in
this model in the presence of up to f process stopping failures, if each of the shared services
is assumed to tolerate only f - l process failures. This result holds regardless of the types of
the shared services and the pattern of connectivity of processes and services. In particular, it
is impossible to construct a protocol to solve the consensus problem for f process failures using
any number of consensus services that tolerate f - l process failures.

Interestingly, it is possible to boost the level of a system solving problems easier than con
sensus. For example, we show that the k-consensus problem is solvable for 2k - 1 failures using
only (consensus) services that tolerate only 1 failure apiece.

1 Introduction

It is generally accepted that large distributed systems should be constructed from building blocks
(such as middleware-provided services) that interact with each other through well-defined inter
faces. Large systems must also tolerate a variety of types of failures. Establishing fault-tolerance
properties of a large system is difficult, as many scenarios have to be considered. A particularly
desirable approach is to "boost" the level of fault-tolerance by combining less fault-tolerant compo
nents into a more fault-tolerant system. It is plausible that this might be achieved using techniques
such as quorums, replication, and redundancy.

In this paper, we demonstrate a fundamental limitation on this approach. Namely, we inves
tigate the possibility of fault-tolerance boosting for implementing a consensus service tolerant to
f stopping failures from underlying "subservices" that are tolerant to f - I stopping failures. We
show that, in the setting of purely asynchronous message passing, such fault-tolerance boosting
cannot be achieved, for any type of underlying services. That is, the availability of any set of
distributed services, each of which tolerates up to f - I stopping failures, is insufficient to construct
a consensus protocol that tolerates f failures.

In more detail, we consider a set of asynchronous processes of which f can fail by stopping,
communicating with each other by sending messages through reliable point to point channels. In
addition, there is a set of services through which they can communicate implicitly. A process can
invoke operations of a service by sending a message to one of its ports, and eventually get a response
from the service. A process can invoke multiple operations on a service, and concurrently on other
services. But before issuing a new operation on the same service, it must first wait for a response
to the current invocation. Each service has a fixed set of "ports" and each port is hardwired
to one process, where it receives invocations and returns responses to the corresponding process.
Each service has some degree of fault tolerance, say f, which represents the number of (hardwired)
processes accessing it that could cause it to crash. This is intended to reflect the idea that services
are implemented by distributed algorithms, which run at a number of locations, represented by
ports. The failure really affects the location, causing not only the failure of the process hardwired
to the corresponding port, but also the failure of that part of the distributed implementation of
the service which resides at that location. If a sufficient number (> f) of locations of a distributed
implementation fail, then the implementation itself will fail. Note that this idea does not in any
way prevent the use of arbitrary oracles in the implementation of a service, e.g., such as failure
detectors or powerful hardware concurrent objects.

Notice that, except for the failure behavior, our services are just like the linearizable typed
shared objects usually considered in the literature e.g. [Her91, C.JT94, .Jay97, LH00]. The services
usually considered in the literature do not fail at all. There are only two papers we are aware of
that consider services that can fail, [.JCT98] and [AGMT95], but these papers assume the services
are not implemented by the processes. In contrast to our model, the failures of the services and of
the processes are not correlated in those two papers. We discuss this further in the Related Work
section below.

Our impossibility result says that it is impossible to build a consensus service tolerating f failures
from services that tolerate less than f failures, independently of the number of such services, how
powerful they are, or in what way they are accessed by the processes. Thus, for example, a strategy
in which multiple instances of (f - !)-fault-tolerant services are used by different subsets of the
processes in the system, cannot work. Methods based on splitting up processes, or divide and
conquer, also cannot work. In particular, our result holds when the underlying services include

1

consensus services tolerant to f - I stopping failures.

It is important to study consensus implementability because it is such a fundamental problem
in distributed computing. In particular, there is Herlihy's [Her91] universality result for services
that do not fail: it is possible to design a wait-free implementation of a service of any type, shared
by n processes, using only consensus services with n ports and registers. Our boosting impossibility
result shows a limitation on this universality result when services can fail.

Our impossibility holds for consensus implementability, but not for implementability of weaker
problems. Our second result is that it is is possible to boost the level of a system solving problems
easier than consensus, like k-consensus. In this problem processes have to agree on at most k
different values; thus, k-consensus reduces to consensus when k = l. We present a simple algorithm
(generalizing the one in [HR94, HR00]) that solves k-consensus and tolerates f failures using k' -
consensus services that tolerate f' less than f failures, for various values of k' and f'. For example,
k-consensus is solvable for 2k - 1 failures using only (consensus) services that tolerate only 1 failure
apiece.

Related work. Our main result is the impossibility of solving consensus !-resiliently using
f - I-resilient services in an asynchronous system. There is a lot of work that studied the feasibility
of implementing f- tolerant consensus as a function of the available components in the asynchronous
system. The "components" can be simple message transmission channels or shared read/write
registers, but also more powerful objects, perhaps implemented in hardware such as test&set or
implemented with timeouts such as failure detectors, or even combinations of different kinds of
objects. A typed shared object used in many papers is what we call a service, i.e., it has (i) a
number of ports; (ii) a set of states of the object (or values as we call them); (iii) the set of
operations that processes may apply through its ports; (iv) the behavior of the object in terms of
a transition relation 6, and is assumed to be linearizable. Except that the usual assumption is that
the components themselves are reliable.

Work that assumed that the available components are the most basic ones is [FLP85] for just
message transmission, and [LAA87, Her91] for shared read/write registers, and proved that it is
impossible to solve !-tolerant consensus using only these simple components. That is, the available
components, either channels or registers never fail. Since a consensus protocol that tolerates zero
crash faults is trivial, our result generalizes that of [FLP85], which is a special case, for f = l.
Indeed, our proof technique is a generalization of the one in [FLP85]. The main difference is the
idea of modelling the services. This introduces many more scenarios to deal with in the proof. Also,
our events are much finer grain: in FLP, in one event a process receives a message, makes a local
state change, and also sends any finite number of messages. Our events are I/O automata actions
in the model of distributed systems with services. So, for example, a process receiving a message
can only make a local state change, it cannot perform any output of any kind in the same event.

Other papers consider more general and powerful base objects (again that never fail), and
investigate when they can be used to solve consensus. For example, [LH00] ask the question for
f = I: Let n 2': 3 and S be a set of object types that can be used to solve one-resilient consensus
among n processes. Can S always be used to solve one-resilient consensus among n - I processes?
Many papers consider the other extreme, of f = n - I and deal with the robustness question
posed in [.Jay97]: can you combine objects of type T and T' that cannot be used to solve wait-free
consensus each one by themselves in such a way as together solve wait-free consensus?

Other papers relate implementations for different number of processes based on the same fault
tolerance level f. Specifically, [C.JT94] show for all n > f 2': 2 and all sets S of shared object types

2

(that include simple read/write registers) there is a !-resilient solution ton-process consensus using
objects of types in S if and only if there is a !-resilient solution to (f + !)-process consensus using
objects of types in S. And [BGLROl] fork-set consensus: if there is a !-resilient implementation of
n-ported f-set consensus from registers then there is a !-resilient implementation off+ I-ported
f-set consensus from registers.

Thus, our question is orthogonal to the concerns of these previous works: while they assume
reliable components, we consider components that are less reliable, i.e. we ask what problems can
be solved in an !-resilient manner using components that tolerate less than f failures. We know
of two papers that do consider shared objects that may fail. Afek, Greenberg, Merritt, Taubenfeld
[AGMT95] study wait-free implementations using objects that can fail by returning the wrong value
for a response. And more closely related to our work is [.JCT98] that consider base objects that may
fail by not responding (both [.JCT98] and [AGMT95] consider other types of failures, like wrong
values returned, less related to our work). In their model any number of processes may fail, and at
most t base objects may fail. When an object fails, it stops responding. They have an impossibility
result for solving consensus for two processes tolerating even one nonresponsive-faulty service, and
even if that service can be nonresponsive wrt only one predetermined process. This proof works
by a reduction from [LAA87]. This result is orthogonal to ours: the failures of the services in their
model are unrelated to the failures of the processes, while in our model, services can fail only due
to failures of processes. Thus, if no process fails, in our model we know no service will fail, while
in such a situation in their model still services could fail. On the other hand, they know that at
most one service will fail, while in ours there is no bound: if one service will fail due to too many
processes failing, all the services with the same processes associated can also fail.

Our main concern in this paper is on the implementation of consensus. Recall that Herlihy
[Her91] has shown that any object can be implemented using consensus. Thus consensus is at the
top of a hierarchy. As mentioned above, our impossibility result does not hold for objects weaker
than consensus.

The paper is organized as follows. Section 2 gives technical preliminaries. Section 3 gives our
model of a distributed system, and defines the consensus problem. Section 4 presents our impossi
bility result for consensus. Section 5 describes the contrasting result for k-set consensus. Section 6
discusses directions for further research and concludes. Appendix A presents some technical back
ground.

2 Modeling Preliminaries

2.1 Basic underlying model of concurrent computation

We use the I/0 automaton model [Lyn96, chapter 8] as our underlying model for concurrent com
putation. We assume the terminology of [Lyn96, chapter 8]. An I/0 automaton A is deterministic
iff, for each task t of A, and each state s of A, there is at most one transition (s, a, s') such that
a Et.

2.2 Variable types

We define the notion of a "variable type", in order to describe allowable sequential behavior of
services. The definition used here is a generalization of the one in [Lyn96, chapter 9]; the gener-

3

alization allows nondeterminism in the choice of the initial state and the next state. Namely, a
variable type T = (V Vo, invs, resps, c5) consists of:

• V, a nonempty set of states of the variable, called values,

• Vo ~ V, a nonempty set of initial values,

• invs, a set of invocations,

• resps, a set of responses, and

• c5, a subset of (invs x V) x (resps x V) that is "total", in the sense that, for every (a, v) E

invs x V, there is at least one (b,v') E resps x V such that ((a,v), (b,v')) E c5.

A deterministic variable type is one in which c5 is a mapping, i.e., for every (a, v) E invs x V,
there is exactly one (b, v') E resps x V such that ((a, v), (b, v')) E c5.

The reason for generalizing the notion of a variable type to allow nondeterminism is that we
want to make our notion of "service", defined below, as general as possible. In particular, we want
to include the problem of k-consensus, which can be specified using a nondeterministic variable
type, in our consideration.

Example. Read/write variable type: Here, V is some arbitrary set of "values," Vo = V,
invs = {read} U {write(v) : v EV}, resps =VU {ack}, and c5 is defined to include the following
pairs: ((read,v), (v,v)) for v EV, and ((write(v),v'), (ack,v)) for v,v' EV. □

Example. Consensus variable type: Here, V is the set of subsets of {0, 1} having at most one
element, Vo= 0, invs = {init(v): v E {0, 1}}, resps = {decide(v): v E {0, 1}}, and c5 is defined to
include the following pairs:
((init(v),0), (decide(v),{v})) for v EV, and ((init(v),{v'}), (decide(v'),{v'})) for v,v' EV. □

Example. k-consensus variable type: Here, V is the set of subsets of {0, L ... , k} having
at most k elements, Vo= 0, invs = {init(v): v E {0,1}}, resps = {decide(v) : v E {0,1}},
and c5 is defined to include the following pairs: ((init(v), W), (decide(v'), WU {v})) for IWI < k,
v' E WU {v}, and ((init(v), W), (decide(v'), W) for IWI = k, v' E W.
Thus, the first k values get remembered, and all operations return one of these first k values. □

2.3 Canonical f-fault-tolerant atomic objects

We now define the notion of canonical !-fault-tolerant atomic object, which describes the allowable
concurrent behavior of services. The canonical !-fault-tolerant atomic object of type T for endpoint
set J and with index k is given in Figure 1 as an I/O automaton that is parameterized by k, T, J,
and f, where these are:

1. A unique index k, drawn from some index set K,

2. An underlying variable type T = (V Vo, invs, resps, c5), which defines the sequential behavior
of the object,

3. A set of "endpoints" .J, and

4. The required degree of fault-tolerance f.

4

A canonical atomic object accommodates concurrent invocations by different processes, i.e.,
between an invocation from and response to a particular process, the invocations of other processes
may arrive and be processed. The use of a set of endpoints allows different services to be connected
to different sets of processes. Thus, .J will be a subset of some set I of process indices, which
represents all the processes in the system.

Our notion of atomic object generalizes that in [Lyn96, section 13.1.2]. We note the follow
ing features of our atomic objects. Each process in .J can issue any invocation of the atomic
object's underlying variable type, and can (potentially) receive any allowable response. The re
sult of performing an particular operation is nondeterministically selected from all results allowed
by the transition relation c5 and the current value val of the object. Thus, the object is, in gen
eral, inherently nondeterministic in that it can exhibit nondeterminism that is not just due to the
nondeterminism of its invocations by different processes.

For every process Pi, i E .J, there corresponds a task of the atomic object, which we call an
i-task. The i-task consists of all the perform actions that carry out the operations invoked by
Pi, together with all the possible response actions giving responses to Pi. In addition, the i-task
contains a dummyk,i action, which is enabled when either Pi has failed or more than f processes
in .J have failed. Thus, by inspecting Figure 1 we see that for every i E .J, the task structure
requires that the object eventually respond to an outstanding invocation by Pi, unless either Pi
has failed or more than f processes in .J have failed. In the latter case, the object is allowed to
abstain from responding to Pi, since the internal action dummy k,i is enabled, and can be executed
to discharge the fairness requirement imposed by the task structure. If more than f processes have
failed, then the object is allowed to abstain from responding to any process in .J, since dummyk,i is
enabled for all i E .J. This reflects the idea that the object is !-tolerant; once more than f failures
have occurred (amongst processes connected to the object), then the object can itself "fail" by
being "silent" forever from that point onwards. That is, we allow the object to violate its liveness
property. Note, however, that the object can never violate its safety property, e.g., by returning
values inconsistent with the transition relation c5. Note that we also allow the object to be silent if
all processes it is connected to (i.e., in .J) fail, since dummyk,i is then enabled for all i E .J.

2.4 f-fault-tolerant atomic objects

Given a variable type ~ and set ,h of endpoints, define an I/0 automaton U to be a well-formed
environment for ~ and ,h if and only if

1. Its outputs are exactly the invocations of~ at the endpoints in ,h, and its inputs are exactly
the responses of~ at the endpoints in ,h, and

2. In every execution of U, for each endpoint i E ,h, there aren't two consecutive invocations at
i without an intervening response at i.

An I/0 automaton A (a full-blown I/0 automaton, with tasks) is said to be an !-fault-tolerant
atomic object of type ~' set ,h of endpoints, and index k, if and only if it implements the f-fault
tolerant canonical atomic object Sk of type ~ for ,h, in the following sense:

1. It has the same input and output actions (including the fail actions).

2. If U is a well-formed environment for~ and ,h, then

5

Canonical Atomic-Object(k, (V Vo, invs, resps, c5), .J, f)

Signature

Input:
a.;,h a E inv8, the invocations of Atomic-Object(k, (V, Vo, inV8, re8p8, b), .T, J) by P;, i E .T
fail;, i E .T

Output:
bk,i, b E re8p8, the responses of Atomic-Object(k, (V, Vo, inV8, re8p8, b), .T, J) to P;, i E .T

Internal:
perforrn((a.,v), (b,v'))k,;, a E inv8, b E re8p8, v,v' EV, i E .T
dummy k,i, i E .T

State
val, a value in V, initially a value in Vo
inv - buffer, a set of pairs (i, a), for a; an input action
re8p- buffer, a set of pairs (i, b), for b; an output action
failed <;;; .T, initially empty

Actions

Input a.;,k
Eff: inv - buffer +-- inv - buffer U { (i, a.)}

Internal perform ((a, v), (b, v') h,i
Pre: (i,a.) E inv-bufferAval=vAb((a.,v),(b,v'))
Eff: inv-buffer +-- inv-buffer - {(i,a.)};

val +-- v';
re8 p - buff er +-- re8 p - buff er U { (i, b)}

Tasks

Output bk,i
Pre: { (i, b)} E re8p- buffer
Eff: re8p-buffer +-- re8p-buffer -{(i,b)};

Input fail;
Eff: failed +-- failed U { i}

Internal dmnrny k,i
Pre: i E failed V lfailedl > f
Eff: none

For every i E .T: {perforrn((a., v), (b, v')h,; : b((a., v), (b, v'))} U {b; : b E re8p8} U { durnrn11k,;}

Figure 1: I/O automaton for the canonical !-fault-tolerant atomic object with endpoints .J and
type T = (V Vo, invs, resps, c5)

(a) Any trace (3 of A x U is also a trace of Sk x U. (This should imply that A preserves
well-formedness and guarantees atomicity.)

(b) Any fair trace (3 of A x U is also a fair trace of Sk x U. (This should imply that the
implementation is !-fault-tolerant.)

3 Model of Computation

The model we consider for our problem consists of a collection of processes, channels, and services,
which we define formally below. For the rest of this section, we fix:

• I, K, finite index sets, and

• T, a variable type for the entire system, representing the problem being solved, and

6

b;
cj,, senrl(m.)i,i

fail; senrl(m);,i
C;,i re1rive(m);,i

~--~

Figure 2: The interfaces of process ~, channels Ci,.i, Ci,i and service Sk in the complete system.

• M, a message alphabet.

A distributed system with services (DSS) for I, K, TM is the parallel composition of I/0 automata
(see [Lyn96, chapter 8]) of the following kinds:

l. processes Pi, i E I, and

2. channels Ci,j, i,j EI, i c:Jj, and

3. services Sk, k E K. We let Tr;; denote the variable type and ,h ~ I denote the set of endpoints
of service S k.

Processes interact only via channels: Process Pi communicates with process Pi over unidirectional
channel Ci,.i · Processes also interact with services: Process Pi can invoke service Sk provided that
i is in Bk's set of endpoints. Services do not communicate directly with one another; however, they
interact indirectly via common processes. Figure 2 shows the interfaces that a process, channel,
and service have. In the remainder of this section, we provide more details about the components.

3.1 Processes

Process Pi, i E J has the following kinds of inputs and outputs:

1. Inputs ai and outputs bi, where a is an invocation of type T and b is a response of type T.
These represent P/s interactions with its own clients (the outside world).

2. Outputs send(m)i,j and inputs receive(m)j,i, m E M, which connect to channels Ci,.i and
Cj,i, respectively.

3. For every service Sk such that i E ,h, outputs ai,k, where a is an invocation of type Tr;;, and
inputs bk,i, where b is a response of type Tr;;.

7

4. Input faili.

We assume that Pi observes well-formedness for each separate service Sk: it does not issue two
invocations on Sk without receiving a response to the first one. However, Pi is allowed to issue an
invocation on a service without waiting for previous invocations on other services to respond. That
is, Pi can issue concurrent invocations to different services, but not to the same service. We also
assume that the client of Pi is well-formed with respect to Pi: it does not issue two invocations to
Pi without receiving a response to the first one. We assume that Pi has only a single task, which
therefore consists of all the locally-controlled actions of Pi. We assume that in every state, some
action in that single task is enabled. We assume that the faili input action sends Pi into some
kind of state from which (from that point onward), no output actions are enabled. However, other
locally-controlled actions may be enabled-in fact, by the restriction just above, some such action
must be enabled. This action might be a "dummy" action, as in the fault-tolerant atomic objects
defined earlier.

3.2 Services

We define a !-fault-tolerant service of a particular variable type Tr;; for a particular set ,h of
endpoints, to be simply the canonical !-fault-tolerant atomic object of type Tr;; for ,h. Let Tr;;.invs,
Tr;;.resps denote the set of invocations, responses, respectively, of the variable type Tr;;.

The safety properties of a service Sk are determined by its finite traces, which are determined
by its start states, transitions, and signature. These are all part of the definition of the service as an
I/0 automaton. Likewise, the liveness properties of a service Sk are determined by the automaton
task structure and the usual conventions for fair executions of I/0 automata.

We say that Pi has an outstanding invocation to a service Sk iff either (1) the invocation buffer
of Sk contains an invocation of the form (i, a), a E Tr;;.invs, or (2) the response buffer of Sk contains
a response of the form (i, b), b E Tr;;. resps.

We say that a service Sk is silent along an execution a iff the only actions that Sk executes
along a are dummy actions.

3.3 Channels

Channel Ci,j is a FIFO reliable channel, as defined in [Lyn96, chapter 14]. Its inputs are send(m)i,j
actions, which are outputs of Pi, and its outputs are receive(m)i,j actions, which are inputs of Pi.
A channel has exactly one task, consisting of its locally controlled actions.

3.4 The task structure of a complete system

The ordinary assumptions about I/0 automata mean that the system executes using a "weakly
fair" scheduling discipline: in any execution, every task that is continuously enabled gets selected
for execution infinitely often. (Thus, an enabled task is eventually either disabled or executed.)
For a service S k, there is a task for each i E ,h, consisting of the actions {perform ((a, v), (b, v') h,i :
6((a, v), (b, v'))} U {bi : b E resps} U { dummy k,i}, see Figure 1. For a process Pi there is a single task,
consisting of all the locally controlled actions of Pi. Likewise, for a channel Ci,.i, there is a single
task, consisting of all the locally controlled actions of Ci,j, i.e., the receive(m)i,j actions, m EM.

8

Since a task of a component contains only its locally controlled actions, we infer from the
signature compatibility condition for I/O automata that the tasks define a partition of the set of
all actions in the system, except the init (v)i and faili actions; each action occurs in exactly one
task.

With this task structure, the weak fairness discipline implies that every message that is sent
is eventually received, every process executes infinitely often along an infinite fair execution, and
every outstanding invocation (of a service) eventually receives a response.

We introduce a naming scheme for tasks as follows. The single task of Pi, i E J is called pti. The
single task of channel Ci,j, i,j EI, i # j, is called cti,j· The task of service Sk, k EK for i E ,his
called stk,i· We define PT= {pti: i EI}, CT= {cti,.i: i,j E J,i # j}, ST= {stk,i: k E K,i E .Jk},
and T = PT U CT UST. We call the tasks pti (i EI) process tasks, the tasks cti,j (i,j E J,i # j)
channel tasks, and the tasks stk,i (k E K, i E ,h) service tasks.

For any action a except an init(v)i or faili, we define task(a) to be the unique t such that t ET
and a Et, i.e., task(a) is the name of the task containing a. We define task(init(v)i) = init(v)i,
and task(faili) = faili, i.e., we consider these actions as being the sole members of singleton tasks,
and overload the name of the action as the name of the corresponding task. If e is a channel task
cti,j, then let receiver (e) be the process Pi.

3.5 The Consensus problem

The "traditional" specification of !-fault-tolerant consensus is given in terms of a set {Pi,i EI}

(J is an index set) of processes that each starts with some value Vi drawn from {0, 1 }. Processes
are subject to crash failures [Sch90], that disable the process from producing any output.1 As a
result of engaging in a consensus algorithm, each nonfaulty process eventually "decides" on a value
from {0, 1 }. The behavior of processes is required to satisfy the following three conditions [Lyn96,
chapter 6]:

Agreement No two processes decide on different values.

Validity The value decided on is the initial value of some process.

Termination In every infinite fair execution, all nonfaulty processes eventually decide.

We specify the consensus problem in a slightly different way. We say that a DSS S solves f-fault
tolerant consensus for I if and only if S is an !-fault-tolerant atomic object of type consensus
(Section 2.2) for endpoint set I.

We now show that any system that meets our definition also meets the traditional one. We
argue that the !-fault-tolerant canonical consensus object for endpoint set I satisfies the three
conditions above (with a slight variation of the termination condition).

From the definition of the consensus variable type, each process in J has two invocations, init(O),
init(l) and two responses, decide(O), decide(l). By inspecting the consensus variable type given in
Section 2.2, we see that the value of the variable is initially 0, and on invocation init(O) can change
from 0 to {0}, and on invocation init(l) can change from 0 to {1 }, and is stable once it is different
from 0. It is also clear that any decide(O) response is only issued by the object when the variable

1 Crash failures are usually defined as disabling the process from executing at all. However, the two definitions are
equivalent with respect to overall system behavior.

9

has value {O}, and any decide(l) response is only issued by the object when the variable has value
{1 }. Hence, after the first decide(O) response, all subsequent responses will be decide(O), and after
the first decide (1) response, all subsequent responses will be decide (1). So, the canonical consensus
object satisfies the agreement condition. If all invocations are init(O), then the only possible change
of the variable is from 0 to {O}. Hence, all responses will be decide(O). Likewise if all invocations
are init(l), then all responses will be decide(l). Otherwise, there are both init(O) and init(l)
invocations. Hence, in all cases, the value decided on is the value occurring in some invocation.
Hence, the canonical consensus object satisfies the validity condition. If at least one process invokes
the !-fault-tolerant canonical consensus object, then the value of the variable will eventually be
either {O} or {1 }, provided that less than f processes fail, and that the scheduling is weakly fair, as
discussed in Section 3.4. Hence, all nonfaulty processes that invoke the object will receive a decide
response, along fair executions in which no more than f processes fail. Processes that do not invoke
the object will not receive a response, even if they are nonfaulty. That is, processes that do not
invoke the object (with an init(v) action) do not participate in the consensus algorithm, and hence
are not required to have an initial value. This is a slightly different condition than the traditional
termination condition, which requires that all nonfaulty processes do have an initial value, and that
they all eventually decide. Here, only the nonfaulty processes that "participate," by invoking the
object, will receive a decision.

Since any system S that solves solves !-fault-tolerant consensus for I can only exhibit behaviors
(in composition with a well-formed environment) that are a subset of the behaviours of the f-fault
tolerant canonical consensus object, the desired conclusion follows.

4 The Impossibility Result

The problem we address is to design a system, as given in Section 3, which is an !-fault-tolerant
atomic object (Section 2.4) of type consensus for some (arbitrary) set I of endpoints. We show
that, when the services in the system are restricted to be (f - !)-fault-tolerant atomic objects,
that this problem is impossible to solve. The services can have arbitrary types, and can have as
endpoints any subset of I. Thus, techniques based on quorums, replication, and redundancy, could
all be implemented within our model. Our result implies that none of these approaches would help:
a limitation on the fault-tolerance of the underlying services is also a fundamental limitation on
the fault-tolerance of any consensus service that can be built from these underlying services.

Since we now restrict attention to systems that are consensus objects, the inputs ai and outputs
bi that represent Pi's interactions with its own clients are now instantiated as the inputs init(O)i,
init(l)i, and the outputs decide(O)i, decide(l)i, for the single consensus client that Pi now interacts
with.

4.1 Main result and proof assumptions

The main result of the paper is:

Theorem 1 Let I be an arbitrary endpoint set such that III 2': 2, and let f be such that I :; f <
III. Then there does not exist a distributed system with services that is an !-fault-tolerant atomic
consensus object for endpoint set I, if the services are (f - !)-fault-tolerant.

10

Note that the services can be of any variable type. We assume in the sequel, that such a DSS, P,
exists and derive a contradiction.

We assume that all the processes of P are deterministic automata, as defined in Section 2.1.
Since channels are FIFO, they are already deterministic. We assume a slightly weaker condition
for services, namely that variable type of each service is deterministic, i.e, the relation c5 of the
underlying variable type is a mapping. For an impossibility proof, these assumptions are made
without loss of generality, since processes and services can be made to satisfy the above conditions
by removing a subset of the locally-controlled transitions. Hence, if an unrestricted solution exists,
then a solution satisfying our assumptions also exists.

4.2 Terminology used in the proof

4.2.1 Transitions

A transition is a triple (s, a, s'). We define .first(s, a, s') = s, action(s, a, s') = a, last(s, a, s') = s'.
The participants of a locally controlled action (i.e., not an init(v)i or faili action) a of the system
are all automata with a in their signature: participants(a) ={AI a E acts(A)}. The participants
of a transition (s, a, s') are the participants of its action: participants(s, a, s') = participants(a).

If the action a of a transition is an output action of some component A (process or service, since
channels do not have internal actions), then we say that the transition is an output transition of
A. We define internal transition of A similarly. Due to I/0 automaton signature compatibility, a
transition can be the output or internal transition of at most one component. Furthermore, due to
the structure of the system, as given in Section 3, every transition, with the exception of transitions
due to the execution of the init(v)i inputs to Pi, and faili actions, is either an output transition or
an internal transition of exactly one component.

4.2.2 Tasks and scheduling

We say that a task e is applicable to a global state s iff some action of e is enabled in state s. If
a is a finite execution, then we say that e is applicable to a iff e is applicable to last (a). Thus,
if e is an applicable channel task cti,j, then the corresponding channel Ci,j must be nonempty, so
that a message can actually be delivered. If e is an applicable service task stk,i, then either the
invocation buffer of service Sk must contain an invocation from process Pi, or the response buffer
of Sk must contain a response to Pi, or the dummyk,i action must be enabled. We assume, for
technical convenience, that a process always has an enabled locally controlled action, and so a
process task is always applicable.

An applicable task e, together with the current global state, determines a unique transition
(arising from the scheduling of task e in the current state) since processes and channels are de
terministic, and the variable type underlying a service is also deterministic. We denote this tran
sition as transition(e, s). Let transition(e, s) = (s, a, s'). Then, we apply the notation defined in
Section 4.2.1 to transition(e, s) as follows: .first(e, s) = s, action(e, s) = a, last(e, s) = s'. We
abbreviate last(e, s) by e(s). We note that transition(e, s), .first(e, s), action(e, s), last(e, s) are
defined if and only if e is applicable to s.

We note that when e is a channel task, then transition (e, s) always causes a change of state,
i.e., e (s) # s, since some message is delivered by the channel. When e is a service task st k,i, then
transition (e, s) causes a change of state unless it corresponds to the execution of a dummy k,i action.

11

When e is a process task, then transition (e, s) may or may not cause a state change. This would
depend on the transition structure of the process, about which we make no assumptions.

4.2.3 Executions

Define an initialization of P to be a finite execution containing exactly III actions, which moreover
are all init(vi)i actions, one for each i E J. Define an execution a of P to be input-.first iff it has an
initialization as a prefix, and otherwise contains no init actions. If a is a finite execution, then an
extension of a is an execution a' such that a is a prefix of a'. Define a finite input-first failure-free
execution a to be 0-valent if (1) some input-first failure-free extension of a contains a decide(O)i
action, for at least one i EI, and (2) no input-first failure-free extension of a contains a decide(l)i
action, for any i E J. The definition of 1-valent is analogous. Define a finite failure-free execution
a to be univalent iff it is either 0-valent or 1-valent. Define a finite input-first failure-free execution
a to be bivalent iff it has some input-first failure-free extension that contains a decide(O)i action,
for at least one i E I, and some input-first failure-free extension that contains a decide(l)i action,
for at least one i E J.

Since the assumed !-fault-tolerant atomic consensus object P is an I/0 automaton, we can
view its transition relation as defining a labeled directed graph whose nodes are the states of P and
which contains a directed edge from s to s1 labeled with a iff (s, a, s') is in the transition relation
of P. This graph is called the global state transition graph of P. Let G(P) be the subgraph of
the global state transition graph of P obtained as follows: (1) include every state that lies along
an input-first execution, and (2) include all the transitions of P that connect the states that are
included by virtue of (1).

4.2.4 Schedules

A schedule is a finite sequence of task names drawn from TU {init(v)i,faili : v E {O, 1},i EI}.

Let a- = e1e2 ... en be a schedule, and s be a global state, such that, e1 is applicable to s, e2 is
applicable to e1(s), and, generally, ei is applicable to ei-1(ei-2(... (e1(s)) ...)) for all i, 1 < i:; n.
Then, we say that a- is applicable to s, and we let o-(s) denote en(en-1(... (e1(s)) ...)). A schedule
a- is applicable to a finite execution a iff a- is applicable to last(a). In this case, we let o-(a) denote
the resulting extension of a.

Let a = soa1s1a2s2 ... Si-laisi be a finite execution. Then, we define the schedule
schedule(a) = task(a1)task(a2) ... task(ai)- That is, for each action in a, we take the name of
the task containing the action. schedule (a) then consists of these task names in the same order as
their corresponding actions.

4.3 The proof

Our proof will build up a series of lemmas establishing certain constraints on G(P). We start with
the basic commutativity situation illustrated in Figure 3.

Lemma 2 Lets be any global state of the !-fault-tolerant atomic consensus object P, and let e1,
e2 be tasks such that

1. e1, e2 are both applicable to s, and

12

8

Figure 3: Commuting tasks w.r.t. a state s.

2. participants (e1, s) n participants (e2, s) = 0.

Let e1 (s) = s1, and e2 (s) = s2. Then, e2 is applicable to s1, and e1 1,s applicable to s2, and

e2(s1) = e1(s2).

Proof. By assumption (e1, s) and (e2, s) only affect the state of different components. It fol
lows that e2 is applicable to s1, and that e1 is applicable to s2. By determinism, it follows that
participants(e1, s) = participants(e1, s2), and that (e1, s) and (ei, s2) are the same transition "lo
cally," i.e, they effect exactly the same state changes in the components in participants (e1, s).

Likewise for (e2, s) and (e2, s1). Thus, the accumulated state changes of (e1, s) followed by (e2, s1)
are the same as the accumulated state changes of (e2, s) followed by (e1, s2). Hence the lemma
holds. Figure 3 illustrates the proof. D

Lemma 3 The !-fault-tolerant atomic consensus object P must have a bivalent initialization.

Proof. Recall that we assume f 2': 1 (Section 4.1). The argument is then exactly the same as that
in the proof of Lemma 12.3 in [Lyn96, chapter 12]. □

Suppose there exists a finite input-first failure-free execution as, and states s, s', s11
, so, s1,

and tasks e, e' which are related as given by Figure 4. We call such a configuration a hook, after
[CHT96]. We say that the hook starts in state s, and we call as the stem of the hook. We also
admit as a hook a configuration in which the 0-valent and 1-valent states are interchanged.

Lemma 4 Let as be a .finite input-.first failure-free bivalent execution of G(P), and let .first(as) =
Sstart, last(as) = s. Let e be a task of P applicable to as. Let

U = {au I au= O'(as), O' is a .finite failure-free schedule applicable to as and not containing e},
V = {e(au) I au EU and e is applicable to au}-

Then either (1) V contains a bivalent execution, or (2) G(P) contains a subgraph which is a hook

starting in Sstart, as given by Figure 4.

13

Sstart

8

f;

s"
so (0-valcnt)

s1 (1-valcnt)

Figure 4: A hook starting ins.

Proof. We assume both the antecedent of the lemma and the negation of (1), and establish (2).

Now e is either a channel task, process task, or service task. If e is a channel task cti,j, then
applicability of e to s means that channel Ci,.i contains a message in state s. Thus, e is also ap
plicable to any state reached from s by a schedule not containing e, since the message remains in
Ci,.i as long as cti,j is not scheduled. If e is a process task, then e is applicable to any state, by
our assumption that a process always has some enabled locally controlled action. If e is a service
task stk,i, then applicability of e to s means that either service Sk has a pending invocation from
process Pi in state s, or dummyk,i is enabled. Thus, e is also applicable to any state reached from
s by a schedule not containing e, since the invocation (if present) remains pending as long as stk,i
is not scheduled, and dummyk,i remains enabled once it is enabled. We have therefore shown,

e is applicable to every execution in U. (a)

Since as is bivalent, there exists a 0-valent extension ax0 of as and a 1-valent extension ax 1 of
as. For i E {O, 1}, we argue as follows.

CASE 1: ax; E U. Let av; = e(axJ· Hence av; is i-valent, since ax; is i-valent. Also, av; E V,
since ax; E U.

CASE 2: ax; (/_ U. Then, e was applied in extending as to ax;· Let av; be the unique extension
of as whose last action has task e. av; is unique due to our assumptions in Section 4.1 about the
deterministic behavior of processes and variable types. Hence av; = e(a~) for some extension a~
of as. Hence av; E V by definition of V. Since (1) is false by assumption, V contains no bivalent
executions. Hence av; is univalent. But ax; is i-valent and is an extension of av;. Hence av; is
i-valent.

14

8

Ii.]

;/
Wm-I f;

/)] (Wm)

Figure 5: Existence of the hook.

Thus, in both cases, we have that av; E V and av; is i-valent. Moreover, this holds for both
i = 0 and i = 1. Thus

there exist 0-valent av0 E V and 1-valent av 1 E V (b)

Let av = e(as), and let v = last(av)- Hence av EV, and so av is univalent by the assumption that
(1) is false. Without loss of generality, let av be 0-valent. By (b), there exists av 1 E V which is
1-valent. Let aum be an execution in U such that e(um) = av 1 , and let Um = last(aum). Hence, we
have the situation depicted in Figure 5, since aum is an extension of as. (The state s is the same
state in Figures 4 and 5). Consider the (unique) execution fragment I such that aum = a;',. By
(a), e is applicable to every state along 1 . Since the resulting executions are all in V by definition,
they are all univalent, by assumption. Since av is 0-valent and av 1 is 1-valent, it follows that there
exist two such executions, ao and a1 such that ao is 0-valent, a1 is 1-valent, and ao, a1 result from
applying e to adjacent states along 1 . The subgraph of G(P) generated by taking the "union" of ao
and a 1 (i.e., take all states and transitions occuring in one, or both, of ao, a 1) is then the desired
hook. □

Lemma 5 G(P) does not contain as a subgraph a hook whose stem is a .finite input-.first failure-free
execution.

Proof. Our proof is by contradiction. We assume that G(P) does contain such a hook, and establish
that P is not a !-fault-tolerant atomic consensus object, contrary to assumption.

Without loss of generality, we assume the configuration in Figure 4. For each state except Sstart,

we let a subscripted with the state name denote the unique finite execution which is contained in
the hook and which ends in that state: as, is the stem of the hook, as 0 ends in so, as 1 ends in s1,
and as" ends in s11

•

We remark that as, cannot contain any decide actions, since it is bivalent. and this would
otherwise violate the agreement property. We first establish Claims 1-3.

15

Claim 1: e # e'.
Suppose not. Then, by determinism (Section 4.1), we have so = s". Now s1 is reachable from s",
and s 1 is 1-valent. Hence, s" is either bivalent or 1-valent. so however, is 0-valent. Hence we have
a contradiction. So, claim 1 is established.

Claim 2: lparticipants(e, s')I :; 2, lparticipants(e', s')I :; 2.
From the structure of a DSS (Section 3), we see that every output action of some component is an
input action of at most one other component. The claim follows.

Claim 3: !participants (e, s') n participants (e', s') I :; 1.
From Claim 2, we immediately have that lparticipants(e, s') n participants(e', s')I :; 2. Suppose
lparticipants(e,s') nparticipants(e',s')I = 2. From Claim 1, we know that e # e'. Hence, it must
be that, for some distinct components C1, C2, action(e, s') is an output action of C1 and an input
action of C2, action(e', s') is an input action of C1 and an output action of C2. Since services and
channels have no actions in common, the only possibilities for this are:

• {C1, C2} = {Pi, Sk} for some Pi, Sk.
This violates well-formedness of Pi for Sk.

• {C1, C2} = {Pi, Ci,.i} for some Pi, Ci,.i·
No output action of Ci,j is an input action of Pi.

• { C1, C2} = { Pi, C.i,i} for some Pi, C.i,i·
No output action of Pi is an input action of Cj,i·

Since all three cases lead to a contradiction, the claim is established.

From Claim 3, we have four possibilities for participants (e, s') n participants (e', s'). To complete
the proof of the lemma, we consider each separately.

CASE 1: participants (e, s') n participants (e', s') = 0. Hence, the antecedent of Lemma 2 holds
for s = s', e1 = e, and e2 = e'. Hence, e' is applicable to so, and e' (so) = s1. Hence, e' (a 80) and
a 81 have at least one infinite fair extension with a common suffix. Since a 8 , does not contain any
decide actions, it follows that the suffix must contain decide actions. Now a 80 is 0-valent and a 81

is 1-valent. Hence, no matter what decide actions this common suffix contains, it will violate the
valencies of at least one of a 80 , a 81 •

CASE 2: participants(e, s') n participants(e', s') = Sk.

Subcase 2.1: At least one of action(e, s'), action(e', s') is not a per form action of Sk. Hence
at least one of these is an invocation or a response. Now invocation and response actions do not
change the value of the underlying variable of Sk.

Since both these actions are enabled in s', it follows that the enablement of neither action
depends on the prior execution of the other action (this might be the case for certain invocation,
perform or perform, response pairs of actions, but not here). Hence, from Figure 1, we see that
these actions commute, in that their order can be reveresed and the same final global state wil
result. Hence, e' is applicable to so, and e'(so) = s1. Hence, e'(a80) and a 81 have at least one

16

infinite fair extension with a common suffix. Since a 8 , does not contain any decide actions, it
follows that the suffix must contain decide actions. Now a 80 is 0-valent and a 81 is 1-valent. Hence,
no matter what decide actions this common suffix contains, it will violate the valencies of at least
one of a 80 , a 81 •

Subcase 2.2: Both of action(e, s'), action(e', s') are per form actions of Sk. Since a 8 , is
bivalent, then, under the assumption that P solves !-fault-tolerant consensus, a 8 , cannot contain
any decide actions, since that would violate agreement. Hence, a 80 does not contain any decide
actions either, since action(e, s') is not a decide.

Let a" be an infinite fair execution that extends a 80 , and let a' be the suffix of a' starting in
state s'. Furthermore, let a' be chosen such that:

1. The first f actions along a' are failj actions for f different j E ,h

2. For every ocurrence of an action a along a', and every i E I, if task(a) = stk,i, then a =
dummyk,i· That is, whenever stk,i is scheduled along a, the dummyk,i action is chosen. Since
dummyk,i is enabled at all states of a' except the first, it is certainly possible to always choose
to schedule the dummyk,i action in this way, along a'.

Since Pis !-tolerant, f 2': 1, a decide(v)j action, for every nonfaulty process must occur along
a'. Let a~ be the prefix of a' ending in the state just after the first such decide (v)j action. Let
a-= schedule(a~). From a-, derive the schedule a-' by removing:

1. Every occurrence of a faili, and

2. Every occurrence of stk,i for all i E J (these all correspond to dummyk,i actions in a~),

It is clear that o-1 is a failure-free schedule. Since, in a, the transitions corresponding to the above
task occurrences do not induce any change of state other than to Sk, which is silent, it follows that
a-' is applicable to so, and that a-'(a80) contains a single decide action.

By the case condition, so and s 1 differ only in the state of Sk. Since processes and channels are
deterministic, and since services have a deterministic type and also behave as given by Figure 1,
we can see that a-' is applicable to s1, and that a-'(a81) is the same as a-'(a80), with the exception of
the local state of Sk. In particular, a-'(a81) and a-'(a80) contain the same action subsequence. So,
a-'(a81) and a-'(a80) contain the same single decide(v)i action, for some v E {O, 1}, Choosing v = 0
contradicts the I-valency of s 1, and choosing v = I contradicts the 0-valency of so.

CASE 3: participants(e, s') n participants(e', s') = Ci,j· Since Pi and Ci,.i are deterministic,
and e # e', it follows that one of action (e, s'), action (e', s'), is a send (m)i,j, and the other is
a receive(m')i,j, for some m, m' E M. Since these are both enabled in s', it follows from the
definition of a FIFO channel (see [Lyn96, chapter 14]) that transition(e, s') and transition(e', s')
commute. The remainder of the argument is similar to Case 2.1.

CASE 4: participants(e, s') n participants(e', s') = Pi.
Since a 8 , is bivalent, then, under the assumption that P solves !-fault-tolerant consensus, a 8 ,

cannot contain any decide() actions, since that would violate agreement.

Let a" be an infinite fair execution that extends a 8 ,, and let a' be the suffix of a' starting in
state s'. Furthermore, let a' be chosen such that:

17

1. The action along o/ that starts in s' is faili, and

2. No failj actions, j # i, occur along o/, and

3. For every action a, and every occurrence of a along o/, if task(a) = stk,i for some k EK, then
a = dummyk,i· That is, whenever stk,i is scheduled along a, the dummyk,i action is chosen.
Since dummy k,i is enabled at all states, except the first, of any execution fragment that starts
with faili, it is certainly possible to always choose to schedule the dummy k,i action in this
way, along a'.

Since Pis !-tolerant, f 2': 1, a decide(v)j action, for every j # i must occur along a'. Let a~ be
the prefix of a' ending in the state just after the first such decide (v)j action. Let a- = schedule (a~).
From a-, derive the schedule a-' by removing:

1. The single occurrence of faili, and

2. Every occurrence of stk,i for all k EK, (these all correspond to dummyk,i actions in a~), and

3. Every occurrence of ctj,i, for all j E I, j # i

Since the only fail action along a- is faili, it is clear that a-' is a failure-free schedule. Since, in
a, the transitions corresponding to the above task occurrences do not induce any change of state
other than to Pi, which has failed, it follows that o-1 is applicable to s', and that o-1 (as') contains a
single decide action. We now establish Claims 4.1 and 4.2.

Claim 4.1:

l. a-' is applicable to so.

2. Let I be the suffix of a-'(as,) starting ins', and let ,o be the suffix of a-'(as0) starting in so.
Then 1 , ,o contain the same decide actions.

We establish the claim by case analysis on the possibilities for action (e, s'). From the case 4
condition, we have that Pi E participants (e, s'). This restricts the possibilities for action (e, s') to
the following.

Subcase 4.1.1: action(e, s') = ai,k, a E 0;.invs. By definition, a-' contains no occurrence of
stk,i· Hence, 1 contains no action in stk,i· Let ,oo be the same as I except that, for corresponding
states along ,oo, the invocation buffer of Sk contains additionally the invocation (i, a). Since ,oo
contains no action in stk,i, this extra invocation is never processed (by a perform() action) along
,oo- Hence, the state-action-state triples along ,oo are actual transitions of P (i.e., elements of
steps(P)). Thus, ,oo is an actual execution fragment of G(P). Furthermore, the first state of ,oo
is so, and schedule(,oo) = o-1

• Hence o-1 is applicable to so. Now ,oo is the suffix of a-'(so) starting
in so. Also, 1 and ,oo contain the same subsequence of actions, and so in particular contain the
same decide actions. Letting ,o = ,oo establishes the claim in this case.

Subcase 4.1.2: action(e, s') = bk,i, b E 0;.resps. By definition, a-' contains no occurrence of
pti nor of st k,i · Let I be the suffix of a-' (as') starting in s'. Hence, 1 contains no action in pti nor in

18

stk,i· Let ,oo be the same as I except that, for corresponding states along ,oo, the response buffer
of Bk is missing the response (i, b), and the state of Pi is the result of executing input action bk,i in
state s'.

We now argue that every state-action-state triple along ,oo is in steps(P), i.e, is an actual tran
sition of P. Since ,oo contains no actions in pti, this difference in P/s local state does not cause
any state-action-state triple along ,oo to not be a transition of P, since no action along ,oo either
depends on (for enablement) nor changes P/s local state. Likewise, since ,oo contains no actions
in stk,i, then the difference in the response buffer of Bk cannot cause any state-action-state triple
along ,oo to not be a transition of P, since no action along ,oo either depends on (for enablement)
those elements of Bk's response buffer of the form (i, b), nor does any such action add or remove
elements of the form (i, b) to Bk's response buffer. Thus, ,oo is an actual execution fragment of
G(P). Furthermore, the first state of ,oo is so, and schedule(,oo) = 0"

1
• Hence 0"

1 is applicable to
so. Now ,oo is the suffix of 0"

1(so) starting in so. Also, 1 and ,oo contain the same subsequence
of actions, and so in particular contain the same decide actions. Letting ,o = ,oo establishes the
claim in this case.

Subcase 4.1.3: action(e, s') = send(m)i,j, m EM. By definition, 0"
1 contains no occurrence

of pti. Let I be the suffix of 0"
1

(a 8 ,) starting in s'. Hence, 1 contains no action in pti. Also, message
m is not received by Pi along 1 , since it was not sent. (Wlog, we assume that all messages are
tagged with unique identifiers. This is for the purpose of the proof only, and is not a restriction
on the assumed system P.) Let ,oo be the same as I except that, for corresponding states along
,oo, Ci,j contains in addition message mat its end (i.e., mis the "last" message in Ci,j, recall that
channels are FIFO), and the state of Pi is the result of executing output action send(m)i,j in state
s'.

We now argue that every state-action-state triple along ,oo is in steps(P), i.e, is an actual tran
sition of P. Since ,oo contains no actions in pti, this difference in P/s local state does not cause
any state-action-state triple along ,oo to not be a transition of P, since no action along ,oo either
depends on (for enablement) nor changes Pi 's local state. Likewise, the difference in the contents of
Ci,j cannot cause any state-action-state triple along ,oo to not be a transition of P. The only triples
that could possibly be affected are those whose action is receive(m'k.i for some m' E M. But all
such triples will correspond to the reception of the message m' actually at the head of Ci,j (in the
initial global state of the triple), since the only difference in the contents of Ci,j is that an extra
message has been appended at the rear of Ci,j. In other words, Ci,j delivers the same sequence of
messages along ,oo that it does along 1 . Hence, all these triples will be actual transitions of P.
Thus, ,oo is an actual execution fragment of G(P). Furthermore, the first state of ,oo is so, and
schedule(,oo) = 0"

1
• Hence 0"

1 is applicable to so. Now ,oo is the suffix of 0"
1(so) starting in so. Also,

1 and ,oo contain the same subsequence of actions, and so in particular contain the same decide
actions. Letting ,o = ,oo establishes the claim in this case.

Subcase 4.1.4: action(e, s') = receive(m)j,i, m EM. By definition, 0"
1 contains no occurrence

of pti nor of ctj,i. Let I be the suffix of 0"
1

(a 8,) starting in s'. Hence, 1 contains no action in pti

nor in ctj,i· Let ,oo be the same as I except that, for corresponding states along ,oo, Cj,i is missing
the message m at its head, and the state of Pi is the result of executing input action receive (m)j,i
in state s'.

19

We now argue that every state-action-state triple along ,oo is in steps (P), i.e, is an actual tran
sition of P. Since ,oo contains no actions in pti, this difference in Pi 's local state does not cause
any state-action-state triple along ,oo to not be a transition of P, since no action along ,oo either
depends on (for enablement) nor changes Pi's local state. Likewise, the difference in the contents
of Cj,i cannot cause any state-action-state triple along ,oo to not be a transition of P, since ,oo
contains no action in ctj,i· Thus, ,oo is an actual execution fragment of G(P). Furthermore, the
first state of ,oo is so, and schedule(,oo) = o-1

• Hence o-1 is applicable to so. Now ,oo is the suffix of
o-1 (so) starting in so. Also, 1 and ,oo contain the same subsequence of actions, and so in particular
contain the same decide actions. Letting ,o = ,oo establishes the claim in this case.

Subcase 4 .1. 5: action (e, s') = decide (v)i or action (e, s') is an internal action of Pi. By
definition, a-' contains no occurrence of pti. Let I be the suffix of a-' (a 8 ,) starting in s'. Hence, 1
contains no action in pti. Let ,oo be the same as I except that, for corresponding states along ,oo,
Ci,i and the state of Pi is the result of executing action (e, s').

We now argue that every state-action-state triple along ,oo is in steps(P), i.e, is an actual tran
sition of P. Since ,oo contains no actions in pti, this difference in P/s local state does not cause
any state-action-state triple along ,oo to not be a transition of P, since no action along ,oo either
depends on (for enablement) nor changes Pi 's local state. Thus, ,oo is an actual execution fragment
of G(P). Furthermore, the first state of ,oo is so, and schedule(,oo) = o-1

• Hence o-1 is applicable
to so. Now ,oo is the suffix of a-'(so) starting in so. Also, 1 and ,oo contain the same subsequence
of actions, and so in particular contain the same decide actions. Letting ,o = ,oo establishes the
claim in this case.

From our definition of distributed system with services, we see that the above are all the possible
cases for action (e, s'). Having established Claim 4.1 in each case, we conclude that it holds generally.
(end proof of Claim 4.1)

Claim 4.2:

l. a-' is applicable to s1.

2. Let I be the suffix of a-'(a8 ,) starting ins', and let 11 be the suffix of a-'(a81) starting in s1.
Then 1 , 11 contain the same decide actions.

From the case 4 condition, we have that Pi E participants (e', s'). Hence, we can apply exactly the
same argument as used in the proof of Claim 1 to conclude that:

l. a-' is applicable to s".

2. Let 1
11 be the suffix of a-'(a811) starting ins". Then 1 , 1

11 contain the same decide actions.

From the case 4 condition, we have that Pi E participants (e, s'). Hence, e = pti, or e = ctj,i,

or e = stk,i, with action(e, s') = bk,i for some b E 1"k.resps. If e = pti or e = ctj,i, then clearly
Pi E participants(e, s"). If e = stk,i, with action(e, s') = bk,i for some b E 1"k.resps, then, by well
formedness of Pi w.r.t. Sk, and Pi E participants(e', s'), it follows that action(e', s') # ak,i for all
a E. From e # e' it follows that action (e', s') # bk,i for all b E 1""k. resps, since otherwise we would
have e' = e = stk,i· Hence, from Pi E participants(e', s'), we conclude Sk (/_ participants(e', s').

20

Hence, the local state of Skis the same ins' ands", i.e., s'1Sk = s"1Sk. Since action(e,s') = bk,i,
we know that in state s', (i, b) is in the response buffer of Sk. Hence, we conclude that in state
s", (b, i) is in the response buffer of Sk. Thus, by well-formedness of Pi w.r.t. Sk, in states", the
invocation buffer of Sk contains no invocation (i, a), for any a E 1"k.invs. Nows" lies along a fault
free execution. Hence, dummy k,i is not enabled in s". Hence, in state s", the only action of task
stk,i that is enabled is bk,i (see Figure 1). Hence action(e, s") = bk,i· Hence Pi E participants(e, s").

Thus, for all possible cases of e, we have established Pi E participants (e, s"). Hence, from (1)
a-' is applicable to s", and (2) 1 , 1

11 contain the same decide actions, which we showed above, we
can apply exactly the same argument as used in the proof of Claim 1 to establish Claim 4.2.
(end proof of Claim 4.2)

Since a-' is a failure-free schedule, and as0 is a finite failure-free execution, we conclude that
a-'(as0) is a finite failure-free execution. Since so is 0-valent, it follows that a-'(as0) contains at least
one decide(O)j action, for some j E J.

Since a-' is a failure-free schedule, and as 1 is a finite failure-free execution, we conclude that
o-1

(as 1) is a finite failure-free execution. Since s1 is 1-valent, it follows that a-' (as 1) contains at least
one decide(l)j, action, for some j' E J.

Let I be the suffix of a-' (as,), ,o be the suffix of a-' (as 0), and 11 be the suffix of a-' (as 1).

From Claims 4.1 and 4.2, we have that 1 , ,o, and 11 all contain the same decide actions. By its
construction, 1 contains a single decide action. Hence, ,o, 11 contain a single decide (v).e action in
common, for some v E {O, 1 }, £ E J. Choosing v = 0 contradicts the I-valency of s 1 , and choosing
v = I contradicts the 0-valency of so. Hence, we have derived the desired contradiction.
(end of CASE 4)

Since we have established a contradiction in all of CASES 1-4, the lemma holds. □

Lemma 6 Let as be a .finite input-.first failure-free bivalent execution of G (P), and let last (as) = s.
Let e be a task of P applicable to as. Let

U = {au I au= o-(as), a- is a .finite failure-free schedule applicable to as and not containing e},
V = {e(au) I au EU and e is applicable to au}-

Then V contains a bivalent execution.

Proof. In the statement of Lemma 4, as is a finite failure-free execution and a- is a finite failure-free
schedule. Hence, condition (2) of Lemma 4 is the existence of a hook in G(P) whose stem is a finite
input-first failure-free execution. By Lemma 5, we know that (2) cannot hold. Thus, the desired
result follows immediately from Lemma 4. □

We now present the proof of Theorem 1:

Assume that P is such a distributed system with services. Using Lemma 6, we construct an
infinite execution I of P in which no decide action occurs. By Lemma 3, P must have a bivalent
initialization. Call it ,o. We now apply Lemma 6 to extend ,o repeatedly.

Fix an arbitrary round-robin order of all the tasks in P, except for the init(v)i and faili tasks.
Let ii be the current execution, and let tj be the next task in the round robin order. Assume
inductively that ii is bivalent. (,o gives the base case).

If tj is not applicable to last(,i), then move on to the next task in the round robin order, etc.
until an applicable task is found. Since the process tasks are always applicable, we are guaranteed
to find an applicable task. So, without loss of generality, let tj be this task.

21

By Lemma 6, there is a bivalent extension Ji+l of Ji such that the last action along Ji+l is in
task e.

Let J be the unique execution such that for all i 2': 0, Ji is a prefix of J• If a task tis continuously
enabled, then, when it is selected in the round robin order, it will be found applicable to the last
state of the current execution. Hence, the extension will contain an action from t. Along J, this
will happen infinitely often. Hence, J satisfies the I/0 automaton weak fairness condition. Since J

has infinitely many prefixes Ji, i 2': 0, that are executions of P, it thus follows that J is an execution
of P. Since none of the Ji contain a decide action, it follows that J does not either. □

5 k-set consensus

We now show that when the system is solving a problem that is weaker than consensus, namely
k-consensus (section 2.2), it is possible to boost the fault-tolerance level. Assume we have available
!-fault-tolerant k-consensus services, each one with m ports. An !'-fault-tolerant algorithm that
solves k' -consensus is as follows. Take a principal subset of the processes, and divide it into s
disjoint groups, each one accessing a different service. Each principal process participates in an
execution proposing its input value to its designated service. If and when it gets a decision back, it
sends the decision to all the other processes in the entire set of processes (not just those involved
in the same consensus service). Meanwhile, each principal process collects all the results it receives
from all processes, and decides on any of these results. The remaining processes simply wait for
a result from one of the principal processes. The values of k' and f' depend on the size of the
principal set, and on the numbers of services we divide it into. There is a tradeoff between k' and
f': if a small number of failures f' is tolerated, then a high degree of agreement is achieved, namely
a small k'. If more failures f' must be tolerated, then a lower degree of agreement is achieved,
namely a large k'.

To prove correctness, we divide the principal processes appropriately into the services they
access. We must ensure that less than s · (f + 1) principal process can fail, i.e., f' < s · (f + 1), to
guarantee that at least one service S has at most f failures. Service S is therefore not killed, and
moreover, S has at least one nonfaulty participant, who succeeds in sending the value to everyone.
That means that every nonfaulty process decides. The value of k', i.e., the number of possible
different decision values is at most s · k: there are at most k different values returned per service;
more precisely, at most k values per service being accessed by at least k processes, and c values for a
service that is being accessed by c processes for c < k. Thus, for a desired overall fault-tolerance f',
we want the smallest possible k' and so we find the smallest integer s that guarantees f' < s · (f + 1).
Thus we uses= 1U' + 1)/(f + l)l services, and take the first f' + l processes to be the principal
processes (f' + 1 processes using as few services as possible, each one with f + l input ports). It
follows that

Theorem 7 For any l :; k < m, k :; f :; m - 1, 1 :; f' :; n - l, it is possible to solve !'-tolerant
k' -consensus for an endpoint set of n processes using !-tolerant k-consensus services, each one with
m ports, for

k' = k · lj:; j + min(k, (f' + l)mod(f + 1)).

When each service is completely reliable, that is f = m - l, and we divide the processes as
described above, this algorithm reduces to the one of [HR00], and gives an upper bound proved to

22

be tight using topology. As an example, we want to build an f' = 2c-1-fault-tolerant algorithm for
an endpoint set containing at least 2c processes, and using only I-fault-tolerant consensus services,
i.e., f = I, k = l. The smallest k' for which we can do this is k' = c, using s = c services, each
with 2 processes (f' + 1 = 2c principal processes).

6 Further Work and Conclusions

We studied the consensus problem in an asynchronous distributed system with stopping failures,
and where processes can access services that abstract oracles such as hardware primitives or failure
detectors. Many papers have studied a similar model, but to our knowledge this is the first time
services that are implemented by the processes in the system are considered. We showed that !
tolerant consensus is not achievable using less fault-tolerant consensus services as building blocks,
but that k-consensus can be solved with less fault-tolerant k' -consensus services as building blocks.

Our algorithm for k-consensus generalizes that of [HR94, HR00] for reliable services. That
algorithm achieves a tight upper bound. It is an open question what is the exact situation for
k-set consensus in our model: for which k, k', f, f' is it possible to construct a k-consensus service
tolerating f failures from k' -consensus services tolerating f' failures each? This seem to lead to
more general hierarchy results, in the style of Herlihy's universality result [Her91], the consensus
wait-free hierarchy [.Jay97], and the set-consensus hierarchy e.g. [BG93], all of these for services
that can fail in our sense.

23

References

[AGMT95] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty
shared objects. J. ACM, 42(6):1231-1274, 1995.

[BG93] E. Borowsky and E. Gafni. The implication of the borowsky-gafni simulation on the set
consensus hierarchy. University of California, Los Angeles, Technical Report 930021,
1993.

[BGLROl] Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum. The BG dis
tributed simulation algorithm. Distributed Computing, 14(3):127-146, July 2001.

[CHT96] T.D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685-722, July 1996.

[CJT94] V. Chandra, T.D.and Hadzilacos, P. Jayanti, and S. Toueg. Wait-freedom vs. t
resiliency and the robustness of wait-free hierarchies. In 13'th AC.l\ll Symposium on
the Principles of Distributed Computing (PODC), pages 334-343, 1994.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis
tributed consensus with one faulty process. J. ACM, 32(2):374-382, April 1985.

[Her91] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 11(1):124-
149, Jan. 1991.

[HR94] Maurice Herlihy and Sergio Rajsbaum. Set consensus using arbitrary objects. In
Thirteenth Annual ACM Symposium on the Principles of Distributed Computing, pages
324-333, Los Angeles, CA, August 1994.

[HR00] Maurice Herlihy and Sergio Rajsbaum. Algebraic spans. Mathematical Structures in
Computer Science (Special I5sue: Geometry and Concurrency), 10(4):549-573, August
2000.

[.Jay97] P. Jayanti. Robust wait-free hierarchies. J. ACM, 44(4):592-614, July 1997.

[.JCT98] P. Jayanti, T.D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects. J.
ACM, 45(3):451-500, May 1998.

[LAA87] M. C. Loui and Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Adv. Comput. Res., 4:163-183, 1987.

[LH00] W-K. Lo and V. Hadzilacos. On the power of shared object types to implement one
resilient consensus. Distributed Computing, 13(4):219-238, 2000.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, San Francisco, California,
USA, 1996.

[Sch90] F.B. Schneider. Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Comput. Surv., 22(4):299-319, Dec. 1990.

24

A Technical Background

Definition 1 (I/0 Automaton) An I/0 automaton A consists of .five components:

1. A set of states states(A).

2. A nonempty set start(A) ~ states(A) of start states.

3. A signature sig(A) = (in(A), out(A), int(A)) where in(A), out(A), and int(A) are disjoint
sets of input, output, and internal actions, respectively. Denote by local(A) the set out(A) U

int(A) and by acts(A) the set in(A) U out(A) U int(A).

4. A task partition tasks(A), which is a partition of local(A) into at most a countable number
of classes.

5. A transition relation steps(A) ~ states(A) x acts(A) x states(A)

Let s, s', u, u,, ... range over states and a, b, ... range over actions. We say that a is enabled in
states iff there exists states' such that (s, a, s') E steps(A). If tis a task and some action a Et is
enabled in state s, then we say that task t is enabled in state s.

An execution fragment of A is an alternating sequence of states and actions soa1s1 ... Si-laisi ...
such that for all i 2:, (si-laisi) E steps(A), i.e., the sequence conforms to the transition relation of
A. An execution of A is an execution fragment that begins with a state in start(A).

If a is a finite execution or execution fragment, then .first(a) denotes the first state of a, and
last(a) denotes the last state of a. If a is a finite execution or execution fragment, a' is an execution
fragment, and last(a) = .first(a'), then a~a' denotes the concatenation of a and a'.

25

