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Abstract 

Many sensor network applications require that each node's 
sensor stream be annotated with its physical location in some 
common coordinate system. Manual measurement and con­
figuration methods for obtaining location don't scale and are 
error-prone, and equipping sensors with GPS is often expen­
sive and does not work in indoor and urban deployments. 
Sensor networks can therefore benefit from a self-configuring 
method where nodes cooperate with each other, estimate lo­
cal distances to their neighbors, and converge to a consistent 
coordinate assignment. 

This paper describes a fully decentralized algorithm called 
AFL (Anchor-Free Localization) where nodes start from a 
random initial coordinate assignment and converge to a con­
sistent solution using only local node interactions. The key 
idea in AFL is fold-freedom, where nodes first configure into 
a topology that resembles a scaled and unfolded version of 
the true configuration, and then run a force-based relaxation 
procedure. We show using extensive simulations under a vari­
ety of network sizes, node densities, and distance estimation 
errors that our algorithm is superior to previously proposed 
methods that incrementally compute the coordinates of nodes 
in the network, in terms of its ability to compute correct coor­
dinates under a wider variety of conditions and its robustness 
to measurement errors. 

1 Introduction 

Physical location is an important attribute of a sensor's data 
stream in a large number of sensor network applications. In 
addition, geographic information, for instance in the form 
of node coordinates in some common coordinate system, is 
a useful primitive in routing protocols such as geographic 
routing [16], information dissemination protocols such as 
directed diffusion using location attributes (15], and sensor 
query processing systems (17). 

This paper presents a method to faci litate large-scale deploy­
ment of location-aware sensor networks. The main idea of 
this paper is to show that large networks of location-aware 

sensors can be made cooperatively self-configuring, that is, 
that each sensor can run an algorithm locally, interacting only 
with neighboring nodes, such that after a number of iterations 
all sensors will have reached a consensus about their coordi­
nates in some coordinate system. By doing this in an auto­
mated manner, large-scale sensor networks can eliminate the 
cumbersome and unsealable process of manually configuring 
sensor nodes with their location. 

In non-urban outdoor settings, nodes may obtain location in­
formation using an existing infrastructure such as GPS (13]. 
However, GPS receivers may be too expensive, too large, 
or too power-intensive for the desired application. In many 
outdoor urban environments, and most indoor environments, 
GPS is not available. One solution to this problem is an alter­
native location infrastructure such as Bat [11] or Cricket [20] 
that works in places that GPS does not. Another solution to 
these problems is to equip sensors with hardware capable of 
estimating distances to nearby nodes, and to have the sensors 
themselves self-configure into a consistent coordinate system. 

In contrast to the GPS with its few dozen satellites and 
ground-based monitoring centers, alternative infrastructures 
such as Cricket employ hundreds or thousands of inexpen­
sive position beacons to provide location information overex­
tended areas. This large number of nodes raises a deployment 
issue: how can an extended deployment be efficiently config­
ured for initial operation, and efficiently maintained for con­
tinuing operation? Autonomously operating location-aware 
sensor networks face the same problem. 

This paper solves the following problem: Given a set of 
nodes with unknown position coordinates, and a mechanism 
by which a node can estimate its distance to a few nearby 
(neighbor) nodes, determine the position coordinates of ev­
ery node via local node-to-node communication. Our solution 
to this problem is fully decentralized: all nodes start from a 
random initial coordinate assignment and use only local dis­
tance estimates to converge to a coordinate assignment that 
is consistent with the distance estimates by exchanging only 
local information. The resulting coordinate assignment has 
translation and orientation degrees of freedom, but is cor-



rectly scaled. A post-process could incorporate absolute posi­
tion information into three or four nodes (from building con­
ventions, survey data, or GPS) to remove the translation and 
orientation degrees of freedom. 

Some previous work on this problem assumes that a non­
negligible fraction of nodes in the network are anchor nodes 
that already know their location [2, 7, 21 , 23]. In contrast, we 
pursued an anchor-free approach for three reasons. First, es­
tablishing anchors is a manual deployment task, and may be 
cumbersome. Second, the numerical stability of anchor-based 
approaches is questionable, since they give more weight to 
anchor position estimates, and errors in those estimates will 
have undue effect on the global solution. Finally, anchor­
based approaches may not scale well, since to combat the 
instability described above, a large number of anchors may 
be required to configure an unbounded working area. 

Another class of algorithms proceed incrementally, starting 
from a small core set of nodes that know their location and 
adding nodes to an existing, configured network one at a'time 
or in groups [21]. This can be done if a node attempting to join 
the existing network can successfully estimate its distances to 
three or four nodes that are already configured. We show in 
this paper that such incremental approaches have two major 
problems: first, they may not solve the problem even when 
a valid coordinate assignment exists, and second, errors in 
local distance estimates often tend to cascade, leading to large 
global error. 

Our contribution is an algorithm called AFL (Anchor-Free 
Localization), a concurrent and anchor-free solution to the 
problem. We show that this combination has significant ad­
vantages over several previous approaches. However, realiz­
ing such an algorithm is a non-trivial problem, because con­
current approaches tend to fall into false minima, where each 
node believes it is in an optimal position but the global config­
uration is incorrect. In particular, the classic approach to ob­
taining a concurrent algorithm is to model the nodes as point 
masses connected using springs, and use force-directed relax­
ation methods to converge toward a minimum-eneroy confio-
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urat1on. Such force-directed methods are susceptible to severe 
false minima. 

The key idea in AFL that alleviates the false-minimum prob­
lem is fold-freedom. Based on the observation that many false 
minima are caused because nodes operating on local informa­
tion converge falsely to configurations where groups of nodes 
are topologically folded with respect to the true confi ouration 0 , 

AFL seeks to first configure nodes into a "fold-free" confio-
. 0 

urat1on that is (loosely speaking) a scaled-up, unfolded and 
locally distorted version of the true configuration. After this 
is done, the nodes run a force-based relaxation procedure tak­
ing care to not seriously violate fold-freedom. The result is a 
correct solution, or graph embedding, for a large class of input 
networks in practice. While we don't yet have a proof of cor-
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Figure 1: Examples of graphs that are not rigid (flexible as a 
bar-and-joint framework), rigid but not globally rigid (mul­
tiple embeddings), and globally rigid (one embedding up to 
rotation, translation, and reflection). 

rectness for exactly when AFL works and when it does not, 
we show using extensive simulations under a range of net­
work sizes, node connectivity and densities, and distance es­
timation errors that AFL outperforms incremental algorithms 
by both being able to converge to correct positions when in­
cremental algorithms do not, and by being significantly more 
robust to errors in local distance estimates. 

2 Terms and definitions 

This section defines useful notation and terms, and formally 
defines the problem. For ease of exposition, we restrict our 
defini tions to two dimensions, but AFL applies to three­
dimensional node placement as well. 

2.1 Problem definition 

Consider N nodes labeled 1, . .. , N at unknown distinct lo­
cations in some physical region. We assume that some mech­
anism exists through which each node can discover its neigh­
bor nodes by establishing communication with those nodes, 
and can estimate the range (separation distance) to each of 
its neighbors. For example, neighbor information may be ob­
tained using radio links, while range information may be ob­
tained using radio coupled with ultrasonic or acoustic signals. 
Each discovered neighbor relationship contributes one undi­
rected edge e = (i,j) in a graph Gover the nodes. We denote 
by r ii the range, or estimated distance, between nodes i and 
j, and by dij the actual distance between nodes i and j. 

Given a collection of N nodes, and the distance measure­
ments of each node to its neighbors, the goal is to produce 
a set of coordinate assignments Pi that are consistent with 
all distance measurements, that is, an assignment of points 
Pi for all i and j such that the distance between i and j 
IIPi - Pill = dij for all e E G. Note that this position assign­
ment can be unique only up to an arbitrary rotation, transla­
tion, and possible reflection, but its scale is determined by the 
measured ranges. 

However, for some graphs, the position assignment is not 
unique even up to rotation, translation, and reflection. Refer 



Figure 2: A graph consisting of 16 nodes, displayed at their 
true positions. 

to Figure l. If we treat the graph as a bar-and-joint frame­
work, the graph should be rigid in the sense that it cannot 
be flexed while preserving the distances (as in a rectangle, 
for example). Even if the graph is rigid, it may be subject to 
"local flips". For example, if there are just two triangles shar­
ing an edge, one triangle can be reflected through that edge 
without any distances changing. We call such a graph rigid 
but not globally rigid. For autolocalization to work given just 
edge lengths, we need a globally rigid graph that has exactly 
one embedding. We elaborate on this connection to rigidity 
theory, and known results about globally rigid graphs, in Sec­
tion 3.2. 

Even if the graph is globally rigid and has a unique embed­
ding, it is NP-hard to find the correct embedding in gen­
eral (24, 25]. Most solutions have failure modes where they 
fall into false minima or simply don't work for certain topolo­
gies (e.g. , incremental methods don't work well unless the 
node density is high). Furthermore, in practice, distance esti­
mation errors occur, which may cascade in certain solutions 
to produce highly erroneous configurations. 

2.2 Performance metric 

In previous work on the localization problem, researchers 
have used the average percentage error of the calculated dis­
tances compared to the true distance between neighbors as 
a measure of the algorithm ·s performance [2, 21]. While in­
structive, this metric does not fully capture the intended goal 
of the configuration algorithm, which is to produce coordinate 
assignments that "resemble" the true configuration's topolog­
ical properties. For example consider the graph of nodes in 
Figures 3 and 4. These figures show two modified versions 
of the graph in Figure 2 where the average error ratio is 5% 
compared to the original graph. Compared to the graph in 
Figure 3, it is visually obvious that the graph in Figure 4 is a 
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Figure 3: A modified version of the graph in Figure 15 where 
the average edge length error is 5%. 

Figure 4: Another modified version of graph in Figure 15 
where the average edge length error is 5%. 

much better approximation of the true configuration. Simply 
reporting the average position error does not capture the true 
behavior of auto-localization algorithms. 

To capture this global structural property, we introduce a met­
ric called the Global Energy Ratio (GER). The global energy 
ratio is the root-mean-square normalized error value of the 
node-to-node distances, where the error eij is the difference 
between the true distance d i j and the distance in the algo­

rithm's result d;J, and eij is the normalized error, equal to 
d,; - d,; 

d,; 

/r:,i ,J=i<J e;J 
GER= N(N - 1)/ 2. (1 ) 

This measure captures both the edge length errors and the 
structural error of the graph, because it has contributions from 



both nodes that are neighbors as well as nodes that are not. As 
an example, the GER of the configuration in Figure 3 is 0 .034, 
while the GER of the configuration in Figure 4 is 0.005. If all 
the estimated ranges Tij between neighbor nodes are equal 
to the true dij values, and if the true configuration is rigid, 
then an ideal algorithm will produce a result whose GER = 
0. Because eij compares dij with dij rather than with rij, the 
GER metric also captures the errors in the final configuration 
caused by erroneous range estimates. 

3 Related work 

Previous research has addressed various versions_ of the dis­
tributed localization problem. We characterize the distributed 
algorithms developed to solve this problem in two different 
ways. The first characterization is according to whether or 
not they rely on anchor nodes, which are nodes that are pre­
configured with their true position. The second is based on 
whether they are incremental or concurrent algorithms. 

Anchor-based algorithms. Algorithms that rely on anchor 
nodes assume that a certain minimum number or fraction of 
the nodes know their position, e.g., by manual configuration 
or using some other location mechanism. The final coordi­
nate assignment of individual nodes will therefore be valid 
with respect to another possibly global coordinate system. 
Any positioning scheme built around such algorithms has the 
limitation that it needs another positioning scheme to boot­
strap the anchor node positions, and cannot be easily applied 
to any context in which another location system is unavail­
able (e.g., strictly interior to a building). It turns out that in 
practice a large number of anchor nodes are needed for the 
resulting position errors to be acceptable [21]. 

Anchor-free algorithms. In contrast, anchor-free algorithms 
use local distance information to attempt to determine node 
coordinates when no nodes have pre-configured positions. Of 
course, any such coordinate system will not be unique and 
can be embedded into another global coordinate space in in­
finitely many ways, depending on global translation, rotation, 
and possibly flipping. This limitation is fundamental to the 
problem specification, and is not a limitation of the algorithm. 

If the coordinates assignments must conform to another co­
ordinate system such as GPS, any algorithm that does not 
use anchor nodes can easily be converted to a one that uses 
a small number of anchor nodes by adding a final transfor­
mation where all the node coordinates are transformed using 
three (in 2D) or four (in 3D) anchor nodes. 

Incremental algorithms. These algorithms usually start with 
a core of three or four nodes with assigned coordinates. Then 
they repeatedly add appropriate nodes to this set by calcu­
lating the node's coordinates using the measured distances to 
previous nodes with already computed coordinates. These co­
ordinate calculations are based on either simple trigonometric 
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Figure S: Nodes involved in a typical incremental optimiza­
tion. 

• 

e already calculated 
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Figure 6: Nodes involved in a typical concurrent optimiza­
tion. 

equations or some local optimization scheme. 

A drawback of incremental algorithms is that they propagate 
measurement errors, resulting in poor overall coordinate as­
signments. Some incremental approaches apply a later global 
optimization phase to balance such error, but it remains dif­
ficult to jump out of local minima introduced by the local 
optimization in the incremental phase. 

Concurrent algorithms. In these algorithms, all the nodes 
calculate and refine their coordinate information in paral­
lel. Some of these algorithms use an iterative optimization 
scheme that reduces the difference between measured dis­
tances and the calculated distances based on current coordi­
nate estimates. 

Concurrent optimization schemes have a better chance of 
avoiding local minima compared to incremental schemes es­
pecially under measurement errors, because they continually 
balance global error and thereby try to avoid error propaga­
tion. For example, consider Figure S, which shows node posi­
tions from a typical incremental optimization scheme; in con­
trast, Figure 6 shows the same set of nodes involved in typi­
cal concurrent optimization. As we can see, the layout of the 
nodes involved in these optimizations more frequently results 
in an incorrect coordinate assignment (or local minima) for 
the incremental scheme compared to the concurrent scheme. 
A more thorough experimental comparison can be found in 
Section S. 



Previously proposed concurrent algorithms almost always use 
anchor nodes. The anchor nodes with known position infor­
mation help avoid local minima during the optimization. In 
contrast, AFL avoids the use of anchor nodes, while its initial 
phase of building a fold-free configuration helps avoid local 
minima during the optimization. 

3.1 Previous Auto-localization Systems 

Doherty et al. describe an anchor-based algorithm for local­
ization using only connectivity constraints among beacons. 
They represent the connectivities as a set of convex position 
constraints, and use a centralized linear-programming algo­
rithm to solve for the node positions. 

Bui usu et al. describe a GPS-less scheme that uses the radio 
connectivity of a node to a set of anchor nodes to determine 
its coordinates [2]. The coordinates of non-anchor nodes are 
obtained by calculating the centroid of all the anchors in the 
nodes radio-range. This is a concurrent algorithm, but it does 
not use any optimization. In simulations, they achieve about 
12% localization error with approximately 12 anchor nodes 
per non-anchor node ( ~ = 2 where R is the radio range and 
dis the separation between anchors). The ratio of the anchor 
nodes to non-anchor nodes is rather large. 

The ABC algorithm is an incremental algorithm that does 
not use anchor nodes [21]. ABC first selects three in-range 
nodes and assign them coordinates to satisfy the inter-node 
distances, then it incrementally calculates the coordinates of 
nodes using the distances to three nodes with already calcu­
lated coordinates. This simple incremental scheme results in 
error propagation. The authors report that with 5% range er­
ror, ABC results in about 60% average position error, which 
is larger than tolerable in many situations. This is a conse­
quence of cascading errors in incremental solutions. 

The Terrain algorithm, another anchor-based al o-orithm 
t, ' 

builds on ABC [21]. Each anchor starts the ABC algorithm. 
Using the coordinates assigned using ABC, each node calcu­
lates the distances to at least three anchors. Then each node 
performs a concurrent optimization using the distances to the 
anchors and the anchor coordinates. The authors report about 
25 % position error (actual offset of the node position from 
the true position) with 5% range error. They also mention that 
position errors show a high variance and possibility of diver­
gence during the optimization phase. A related algorithm for 
localizing nodes in an ad hoc network uses hop-count and 
radio strength as distance measures, but assumes nearly uni­
form node density and no occlusion [18]. 

Savarese et al. describes a two-phase, anchor-based, con­
current, localization algorithm [22]. The first phase of the 
algorithm, Hop-Terrain, is a variant of Terrain, and is ro­
bust against ranging errors. The second phase is a simulated­
annealing based optimization . With 5% range errors, 10% of 
the nodes being anchors, and 12 neighbors per node, this al-
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II Incremental Concurrent 

Collaborative- Terrain [21] 
Anchor-based multilater'n [23] Hop Terrain [22] 

AOA [19] GPS-less [2] 
Anchor-free ABC [21] AFL (this paper) 

Table 1: A characterization of localization algorithms. 

gorithm results in about 12% average position error. 

Savvides et al. describe a collaborative multilateration 
scheme, an anchor-based localization algorithm [23]. Here, a 
node solves a set of over-constrained equations relating the 
distances among a set of anchors and a set of non-anchor 
nodes (including itself). For a sample graph of 300 nodes, 
the algorithm needs about 30 (10%) anchor nodes to calcu­
late the location of the other nodes. Iterative multilateration, 
an incremental component of their algorithm, produces node 
position errors within 20cm of a node's actual positions, when 
the ranging error is small (2cm, Gaussian-distributed). This 
experiment consists of 50 nodes, with a 3m ranging system, 
deployed in a square grid of 15 x 15m, and with 10% of the 
nodes being anchors. 

Niculescu et al. present an anchor-based, distributed algo­
rithm that uses angle-of arrival (AOA) for localization [19]. 
In this algorithm, nodes iteratively obtain position and ori­
entation information starting from anchor (landmark) nodes. 
One potential problem with this approach is that using angle­
of-arrival is expensive and obtaining precise angle estimates 
is often difficult. 

Howard et al. 's localization scheme using spring-based relax­
ation is perhaps the closest to our work [14]. In their system, 
robots equipped with odometric equipment move through an 
environment, seeding beacons with approximate initial po­
sitions, from which the beacons run a distributed relaxation 
procedure. While the problem setup is different from ours be­
cause of the assumption of having active robots to seed the 
system, we discuss certain similarities in Section 4 when we 
describe the details of AFL. 

Bulusu et al. study the performance characteristics of dif­
ferent RF-based beacon configuration algorithms and con­
clude that node density is an important determinant of per­
formance [3]. This paper also contains a detailed survey of 
various beacon-based localization schemes. 

Table 1 categorizes these algorithms according to the taxon­
omy developed earlier. Because AFL does not use anchor 
nodes, it can provide localization without an existing loca­
tion system. AFL uses a concurrent optimization scheme that 
is robust against measurement errors. 



3.2 Previous Geometric Work 

Given an abstract graph with a specified length (positive real 
number) for each edge, when can the graph be embedded into 
2D or 3D while satisfying the edge lengths? When is such 
an embedding unique (up to global translation, rotation, and 
reflection), and therefore a reliable reconstruction of the de­
sired geometry? Both of these questions have received con­
siderable attention in both the discrete geometry and compu­
tational geometry communities. 

Deciding whether a graph with edge lengths can be em­
bedded is NP-hard in general [25]. Basically, triangles form 
rigid structures but can be independently flipped (folded), 
and deciding whether a string of triangles can be folded left 
and right to make a particular length is equivalent to subset 
sum. Saxe [24] proved the stronger result that the problem is 
strongly NP-hard even for embedding into ID. 

A graph with specified edge lengths which has a unique em­
bedding is called globally rigid [4, 12] , a variation on the 
well-studied concepts in rigidity theory [5, 10, 9]. Because 
global rigidity can be expressed as the uniqueness of a so­
lution to a system of algebraic constraints (specifying dis­
tances between some pairs of vertices), global rigidity is al­
most always a property of the underlying graph, not the spe­
cific edge lengths. ("Almost always" is a measure-theoretic 
notion, meaning "with probability 1" under any reasonable 
probability distribution.) A graph (without edge lengths) is 
generically globally rigid if, for almost any realizable assign­
ment of lengths to the edges, it is globally rigid. 

Hendrickson [12] showed that, for a graph to be generically 
globally rigid ind dimensions, it must be (d + 1)-connected 
and the removal of any edge must leave the graph "generically 
rigid" [5, 10, 9]. Both of these properties can be checked in 
polynomial time. Connelly [4] proved that these two proper­
ties are not enough: they do not imply generic global rigid­
ity in 3D. However, Hendrickson conjectures that these two 
properties are enough, exactly characterizing generic global 
rigidity, in 2D. 

Embedding a graph with given edge lengths also arises in the 
context of reconstructing the geometry of molecular struc­
tures in an area called distance geometry; see e.g. [6]. In this 
context, distance measurements are substantially less accu­
rate, and several techniques have been developed to refine es­
timates and reduce error bounds by combining several con­
straints. On the algorithmic side, Berger et al. [l] give effi­
cient algorithms for embedding a graph with error-prone edge 
lengths, even when nearly half of the edges might have com­
pletely inaccurate lengths. However, these algorithms rely on 
every node having a constant fraction of the nodes as neigh­
bors, for a total of n (n2) links between n nodes, which does 
not scale in our context. 
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4 AFL algorithm 

4.1 Overview 

The AFL algorithm proceeds in two phases. The first phase is 
a heuristic that produces a fold-free graph embedding which 
"looks similar" to the original embedding. The second phase 
uses a mass-spring based optimization to correct and balance 
localized errors. We begin with a summary of the second 
phase to illustrate the need for and importance of the first 
phase. 

To understand the importance of fold-freedom, consider the 
classical mass-spring optimization method. Here, we imagine 
each edge in the graph as a spring between two masses, with 
a rest length equal to the measured distance between the two 
nodes. If the current estimated distance between two nodes is 
greater than their true (measured) length, the spring incurs a 
force that pushes them apart. On the other hand, if the esti­
mated distance is larger than the true distance, a force pulls 
them together. Different mass-spring schemes define the mag­
nitude of these forces differently, but the optimization pro­
ceeds essentially in the same iterative manner: at each step, 
nodes move in the direction of the resultant force. At any 
node, the optimization stops when the resultant force acting 
on it is zero; the global optimization stops when every node 
has zero force acting on it. In the optimization, if the magni­
tude of the force between every pair of neighbor nodes is also 
zero (i.e., the global energy of the system measured as the 
sum of squares of the forces is zero), then the optimization 
has reached the global minimum; otherwise, it has reached a 
local minimum. 

Mass-spring optimization is used heavily in the field offorce­
directed graph drawing [8]. In force-directed graph draw­
ing, the mass-spring model and optimization are used to find 
some local minima ideally representing "nice" drawings of 
graphs. Howard et al. [14] describe the use of this technique 
for general localization. In this paper, the authors mention 
that the mass-spring approach can converge to local min­
ima rather than the global minimum. This is the fundamen­
tal problem with unconstrained mass-spring optimizations­
when nodes start with a random initial coordinate assignment, 
mass-spring optimization has a high probability of converg­
ing to local minimum. For example, Figure 8 shows the graph 
we obtain by applying spring-mass optimization to the graph 
in Figure 7 with random initial coordinate assignments. In 
Section 5, we show that mass-spring based optimization in­
deed has a high probability of reaching a local minimum. 

Through simulations we observed that local minima in a 
spring-based optimization are most often characterized by 
sections of the graph "folding over" with respect to the true 
configuration. Because folds involve groups of nodes that 
have all folded over, their local interactions are both correct 
and strong and there isn't enough resultant force exercised by 



Figure 7: A graph with sixteen nodes with nodes at their true 
positions. 

B 

Figure 8: The graph obtained by applying mass-spring opti­
mization to the graph in Figure 7 with a random initial coor­
dinate assignment. 

the nodes neighboring the fold to unfold the group and im­
proving the global energy. Thus, the goal of the first phase 
of AFL is to design an initial "fold-free" coordinate assign­
ment. In fact, our observation of folds causing local minima 
may shed light on a point made by Howard et al. [14], who 
found that local minima did not seem to occur frequently in 
their experimental setup. Their experiments were done with 
robots equipped with odometric equipment moving around to 
provide initial coordinates to beacons, and this in fact led to 
approximately fold-free initial configurations from which the 
force-directed optimizations work better. 

4.2 Generating a fold-free configuration 

The goal of the first phase of AFL is to embed the graph 
structurally similar to the original embedding. More specif-
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Figure 9: First step of the fold-free phase - electing n 1 . 

ically, the algorithm tries to avoid folds in the resulting graph 
compared to the original graph. We formally define a fold­
free embedding of a graph to be one where every cycle of the 
embedding has the correct clockwise/counterclockwise ori­
entation of nodes, modulo global reflection, with respect to 
the original graph. 1 We do not guarantee that our heuristic 
produces such an embedding, but it is our motivating princi­
ple. Our heuristic applies to both 2D and 3D graphs, but for 
clarity we focus on the 2D version; the 3D version is a simple 
extension. It operates in distributed fashion. 

We start with some terminology and assumptions. We assume 
that each node has a unique identifier; the identifier of node 
i is denoted by I Di. We use the phrase hop-count between 
nodes i and j to mean the number of nodes hi,i along the 
shortest radio path between nodes i and j. We assume sym­
metrical links between nodes, making the graph is undirected, 
so that hi,i = hi,i· In practice, this heuristic works on a 
neighbor graph that assumes only radio connectivity, without 
using accurate ranging information from other technologies 
like ultrasound. 

The algorithm first elects five reference nodes. Four of these 
nodes n1, n2, n3, and n 4 are selected such that they are on the 
periphery of the graph and the pair (n1 ,n2 ) is roughly per­
pendicular to the pair (n3 ,n4 ). The node n5 is elected such 
that it is in the "middle" of the graph. These five nodes are 
elected in five steps. 

• Step 1. Select an arbitrary node no -a simple way to 
achieve this in distributed fashion is to pick the node 
with smallest ID. Then, select the reference node n 1 

to maximize ho,1 ; i.e., n 1 is a node that is the maximum 
hop-count away from node no (Figure 9). Any ties are 
broken using the node's ID. 

• Step 2. Select reference node n2 to maximize h1 ,2 (Fig­
ure 10). Any ties are broken using the node's ID. 

• Step 3. Select reference node n3 to minimize lh1,3 -

1This notion is similar to the combinatorial embedding used in planar 
graphs, and the order rype used in point sets / complete graphs. 



Figure 10: Second step of the fold-free phase - electing n 2 . 

n3 

nl 

Figure 11: Third step of the fold-free phase - electing n 3 . 

n3 

nl 

. 
n2 ,' - ........... __ ____ __ __ __ ---

Figure 12: Fourth step of the fold-free phase - electing n4. 

nl 

Figure 13: Fifth step of the fold-free phase - electing n5 . 
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Figure 14: The graph obtained after running the fold-free 
phase on Figure 2(zoomed out). 

h2,3 I• In general, several nodes may all have the same 
minimum value, and the tie-breaking rule is to pick the 
node that maximizes h 1,3 + h2 ,3 from the contenders. 

This step selects a node that is roughly equidistant from 
nodes n 1 and n2 ) and is "far away" from n 1 and n 2 (Fig­
ure 11). 

• Step 4. As in the previous step, select reference node n 4 
to minimize lh 1 ,4 - h2,4I- Now, break ties differently: 
from among several potential contender nodes, pick the 
node that maximizes h3,4. This optimization selects a 
node roughly equidistant from nodes n 1 and n2 ) while 
being farthest from node n3 (Figure 12). 

• Step 5. As in the previous step, select reference node n 5 

to minimize lh1,5 -h2,s l- From the contender nodes, pick 
the node that minimizes lh3,5 - h4,5 1. This optimization 
selects the node representing the rough "center" of the 
graph (Figure 13). 

For all other nodes ni, the heuristic uses the hop-counts hi,i, 
h2,;, h3,i, h4,i,and h5,; from the chosen reference nodes to ap­
proximate the polar coordinates (e ii i)- Here, R is the max­
imum radio range. 

0 
h5,; JR 

h · - h · 

' 

- . l ,t 2,t 

h3 · - h4 · 
,i 'k 

This coordinate assignment roughly approximates the true 
layout of the graph, especially for graphs that "radiate out" 
from a central point. Figures 2 and 14 show the shapes of a 
sample original embedding and the embedding we obtain by 
the first phise's approximate coordinate assignment. When 
calculating , the use of range R to represent one hop-count 



results in a graph which is physically larger than the original 
graph; this property of the graph helps avoid local minima 
during the optimization phase. 

4.3 Mass-spring optimization 

The second phase of the AFL algorithm runs concurrently at 
each node. The nodes run the mass-spring optimization de­
scribed below. 

At any time, each node ni has a current estimate Pi of its 
position. Each node ni also periodically sends this position 
estimate to all its neighbors. Now, each node knows its own 
estimated position and the estimated position of all its neigh­
bors. 

Using these position estimates, each node ni calculates the 
estimated distance di,J to each neighbor n1. It also knows the 
measured distance ri,j to each neighbor n1. 

Let Vi,j represent the unit vector in the direction from Pi to 

p1. The force F';,J in the direction v;,j is given by 

ft. · = v· -(d· • - r· •) t ,J i ,J i,J t,J . 

The resultant force on the node i is given by 

Fi = L Fi,j. 
i ,j 

(2) 

The energy E;,1 of nodes n ; and ni due to the difference 
in the measured and estimated distances is the square of the 
magnitude of F';,J, and the total energy of node i is equal to 

Ei = L Ei,J = L ( d~,J - r;,1 )2. 
j j 

The total energy of the system Eis given by 

The energy Ei of each node ni reduces when it moves by an 
infinitesimal amount in the direction of the resultant force F';. 
The exact amount by which each node n; moves is important 
for two reasons. First we must ensure that the new position 
has a smaller energy than the original position; second, we 
have to ensure that such movement does not result in a local 
minima. 

AFL can guarantee the first condition by calculating the en­
ergy at the new location before moving there to guarantee 
that the energy reduces. But there is no simple way to guar­
antee that the move does not result in a local minima. We 
empirically selected that each node moves by the amount 
jF';j /(2m;), inversely proportional to the number of neigh­
bors of n;. 
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Section 5 shows that AFL has a low probability of converging 
to local minima. Even if the graph reaches a local minimum, 
the fraction of nodes that get displaced tends to be small, thus 
causing only a small deformation in the resulting graph. 

5 Simulation results 

We simulated the performance of AFL varying graph size, 
node connectivity, and ranging error. We evaluated its perfor­
mance against an incremental scheme and a pure mass-spring 
based approach that did not use fold-freedom. We wrote a 
Java3d-based simulator to experiment with, analyze, and vi­
sualize the performance and behavior of the different local­
ization algorithms. 2 

All the simulations presented here are 2D simulations. We 
model ranging error using a uniform random distribution, as 
a fraction of the true distance between any two nodes. We 
select a single sample from the distribution to represent the 
error, rather than collecting multiple samples over time and 
averaging them. Our simulations therefore present a worst­
case scenario, because averaging a number of samples whose 
errors are symmetric about the mean eliminates ranging error. 
In practice, the hard errors to overcome are one-sided [20], for 
which our experimental method is appropriate. 

We select a range to represent the distance over which nodes 
can communicate. For a given range R, any two nodes whose 
distance is less than Rare connected by an edge on the graph. 

In all the simulations, we take necessary precautions to reduce 
the possibility of non-rigid graphs, this becomes very impor­
tant when we do simulations with low connectivity. When de­
ploying nodes we try to maintain a uniform local density by 
adding nodes to only those positions that have a number of 
neighbors below a certain threshold (we select this threshold 
based on the average connectivity of the graph). 

5.1 Mass-spring without fold-freedom 

In our first experiment, we study the performance of a pure 
mass-spring based algorithm without fold-freedom. We sim­
ulate graphs of 30, 100, and 300 nodes, with average per­
node connectivities of four, eight and twelve for each case. 
For each combination of the graph size and the connectivity 
we run 20 simulations each on a random topology. 

All of these 3 · 4 · 20 = 240 simulations resulted in local 
minima. We detect the onset of a local-minimum condition 
when the square sum of distance errors do not change by more 
than 0.1 %, at which time we check the GER to determine if 
the graph has reached a global or local minimum. 

The results of these experiments validates our hypothesis that 
a pure mass-spring algorithm does not work without good ini-

2We plan to release the simulator and visualizer in the public domain. 
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Figure 15: The fraction of the time a pure incremental scheme 
did not work and the fraction of nodes that could not be lo­
calized. 

tial position estimates. In all these cases, we were able to ver­
ify that the reasons for local minima were folded configura­
tions. 

5.2 AFL v. incremental scheme: Node connectivity 

As discussed in Section 3, we can approach the anchor-free 
localization problem either incrementally or concurrently (as 
in AFL). The goal of our second set of experiments is to ex­
amine the performance of an incremental anchor-free scheme 
under different degrees of connectivity and under different 
ranging errors. Our hypothesis is that AFL's concurrent ap­
proach is able to work in more cases than the incremental 
approach. 

We deploy a number of nodes in a square area. The node de­
ployment is random; we select a random point in the square 
to place a node and check if the number of nodes within range 
of that node is less than n , the degree of connectivity we are 
trying obtain. Then, we adjust the graph by repeatedly remov­
ing any node that is connected to rest of the nodes by less than 
three links. This is essential for a fair analysis of the position­
ing scheme since a node has to be connected to at least three 
other points for a unique solution to its position. 

With the node configuration in place, we examine if we can 
incrementally obtain the position information of the nodes, 
starting with three nodes that can all hear each other. We per­
form an exhaustive search on the set of nodes to see if there 
are some three starting nodes that allow us to incrementally 
solve for the location information of all the nodes. In this 
sense, our results are an absolute best-case for an incremental 
scheme, because the existence of even one triplet that works 
properly is considered a success for the experiment. 

Figure 15 shows the fraction of time we could find some three 
nodes for incremental localization as a function of node con-
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Figure 16: The fraction of the time our algorithm could not 
localize a graph. 

nectivity. As we can see, even for highly connected networks 
with an average connectivity of seven, the incremental local­
ization method fails most of the time. This graph also shows 
the average fraction of the nodes that cannot be localized in 
each case. As we can see, the pure incremental scheme fail to 
localize a large fraction of nodes even under average connec­
tivities as high as seven. 

We run AFL on the same set of graphs. Figure 16 gives the 
results of this experiment. As we can see our algorithm per­
forms much better even for graphs with small connectivity. 
This demonstrates our hypothesis. 

5.3 AFL v. incremental scheme: Ranging error 

Our third set of experiments explores a large parameter space, 
varying both ranging error as well as average node connec­
tivity. The primary goal of these experiments is to evaluate 
whether our hypothesis, that AFL's concurrent fold-free ap­
proach is more robust to ranging error than the incremental 
approach. We find that the robustness to error at any given 
error rate depends on the node connectivity, so our results are 
three-dimensional graphs showing surfaces. 

Each simulation in this set of experiments is on a 250-node 
graph in average and we ran 50 simulations to obtain each 
point on the graphs described below. 

Figure 17 shows the performance of the AFL algorithm under 
different error ratios and different connectivities. The result­
ing GER values are very small. The GER represents the sum 
of the errors among individual points on the graph. Hence, 
a small GER value must correspond to small change to the 
overall structure of the graph. 

Figure 18 shows the ratio of the GERs of the incremental 
scheme and AFL. The AFL algorithm clearly outperforms the 
incremental version; this ratio is always larger than 4, and is 
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Figure 17: The value of global-error-ratio for AFL under dif­
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Figure 18: Ratio of GER of incremental scheme vs AFL. 

often larger by more than 10, an order of magnitude. The ra­
tio increases with small increases in ranging error (which is 
never more than 1 % in the experiments). 

Figure 19 shows the maximum error between any two nodes 
after running the AFL algorithm. When the graph undergoes 
some physical deformation, this is identical to some points 
in the graph moving with respect to other points. Hence the 
maximum error between any two points corresponds to the 
maximum deformation the graph has undergone. Figure 19 
shows the superior performance of AFL under ranging errors, 
since the maximum distance error between any two points is 
small most of the time. In most cases the absolute position 
error is smaller than the radio range, showing a degree of ro­
bustness to error that is significantly better than in previously 
published schemes. 

Finally, Figure 20 shows the ratio of the maximum error be­
tween any two unconnected nodes in the incremental algo­
rithm and AFL. As mentioned earlier, the maximum error be-
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Figure 19: Maximum error between any two unconnected 
nodes as a fraction of the range. 
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Figure 20: The ratio of the maximum errors between any two 
unconnected nodes in incremental and AFL respectively . 

tween unconnected nodes is a good measure of the overall 
structural accuracy of the resulting graphs. Hence as far as 
total structural rigidity is concerned, AFL easily outperforms 
the incremental algorithm. 

6 Conclusion 

Many sensor network applications require that each node's 
sensor stream be annotated with its physical location in some 
common coordinate system. Manual measurement and con­
figuration methods for obtaining location don't scale and are 
error-prone, and equipping sensors with GPS is often expen­
sive and does not work in indoor and urban deployments. 
Sensor networks can therefore benefit from a self-configuring 
method where nodes cooperate with each other, estimate lo­
cal distances to their neighbors, and converge to a consistent 
coordinate assignment. 



This paper describes a fully decentralized anchor-free algo­
rithm called AFL that solves this problem in many situations. 
In AFL, nodes start from a completely random initial coordi­
nate assignment and converge to a consistent solution using 
only local node interactions. Nodes in AFL operate concur­
rently, rather than incrementally, and our simulation results 
show that this approach produces good coordinate assign­
ments substantially more often than an incremental approach. 
For example, on random graphs based on RF connectivity, 
when the average node connectivity is to 7 or fewer neigh­
bors, the incremental scheme almost never works whereas 
AFLdoes. 

The key idea in AFL is fold-freedom, where nodes first con­
figure into a topology that resembles a scaled and unfolded 
version of the true configuration, and then run a force-based 
relaxation procedure. Fold-freedom reduces the likelihood of 
lapsing into local minima by avoiding "folded" configura­
tions, and is crucial to the ability of nodes in AFL to work 
concurrently. Our simulation results show that AFL is an 
order-of-magnitude better than incremental anchor-free ap­
proaches. 

Several directions for future work present themselves. First, 
we would like to make precise claims about when AFL works 
and when it doesn't, by formally proving theorems about 
fold-free configurations. Second, we have started implement­
ing AFL on a large location-aware beacon and sensor net­
work, and look forward to evaluating its performance under 
real ranging and connectivity conditions. Third, we plan to 
compare AFL against anchor-based approaches insofar as po­
sition accuracy is concerned (even though they solve a dif­
ferent problem because they rely on the existence of anchors 
and require a large number of anchors for good performance). 
While a comparison against published simulation results of 
the other schemes shows AFL in good light, a direct compar­
ison and analysis is needed. 

We also believe that our method for obtaining fold-free con­
figurations has applications beyond ranging, including in the 
design of self-configuring scalable routing systems for large 
wireless and sensor networks. This is because the polar (or 
equivalent Cartesian) coordinates resulting from the fold-free 
procedure forms a natural framework over which to run scal­
able geographic routing, without requiring any actual location 
system. 
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