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Abstract

We introduce a new framework for designing fixed-parameter algorithms with

subexponential running time—2O(
√

k)nO(1). Our results apply to a broad family of
graph problems, called bidimensional problems, which includes many domination and
covering problems such as vertex cover, feedback vertex set, minimum maximal match-
ing, dominating set, edge dominating set, clique-transversal set, and many others re-
stricted to bounded genus graphs. Furthermore, it is fairly straightforward to prove
that a problem is bidimensional. In particular, our framework includes as special cases
all previously known problems to have such subexponential algorithms. Previously,
these algorithms applied to planar graphs, single-crossing-minor-free graphs, and/or
map graphs; we extend these results to apply to bounded-genus graphs as well. In
a parallel development of combinatorial results, we establish an upper bound on the
treewidth (or branchwidth) of a bounded-genus graph that excludes some planar graph
H as a minor. This bound depends linearly on the size |V (H)| of the excluded graph
H and the genus g(G) of the graph G, and applies and extends the graph-minors work
of Robertson and Seymour.

Building on these results, we develop subexponential fixed-parameter algorithms
for dominating set, vertex cover, and set cover in any class of graphs excluding a
fixed graph H as a minor. In particular, this general category of graphs includes
planar graphs, bounded-genus graphs, single-crossing-minor-free graphs, and any class

of graphs that is closed under taking minors. Specifically, the running time is 2O(
√

k)nh,
where h is a constant depending only on H, which is polynomial for k = O(log2 n).
We introduce a general approach for developing algorithms on H-minor-free graphs,
based on structural results about H-minor-free graphs at the heart of Robertson and
Seymour’s graph-minors work. We believe this approach opens the way to further
development on problems in H-minor-free graphs.
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1 Introduction

Dominating set is a classic NP-complete graph optimization problem which fits into the
broader class of domination and covering problems on which hundreds of papers have
been written; see e.g. the survey [24]. A sample application is the problem of finding sites
for emergency service facilities such as fire stations. Here we suppose that we can afford
to build k fire stations to cover a city, and we require that every building is covered by
at least one fire station. This problem is k-dominating set (finding a dominating set of
size k) in the graph where edges represent suitable pairings of fire stations with buildings.
In this application, we can afford high running time (e.g., several weeks of real time) if
the resulting solution builds fewer fire stations (which are extremely expensive). Thus,
we prefer exact fixed-parameter algorithms (which run fast provided the parameter k is
small) over approximation algorithms, even if the approximation were within an additive
constant. The theory of fixed-parameter algorithms and parameterized complexity has
been thoroughly developed over the past few years; see e.g. [12, 15, 17, 19, 21, 2].
In the last two years, several researchers have obtained exponential speedups in fixed-

parameter algorithms for various problems on several classes of graphs. While most pre-
vious fixed-parameter algorithms have a running time of O(2knO(1)) or worse, the expo-

nential speedups results in subexponential algorithms with running times of O(2
√
knO(1)).

For example, the first fixed-parameter algorithm for k-dominating set in planar graphs
[15] has running time O(11k|G|); subsequently, a sequence of subexponential algorithms
and improvements have been obtained, starting with running time O(46

√
34kn) [1], then

O(227
√
kn) [25], and finally O(215.13

√
kk + n3 + k4) [19]. Other subexponential algorithms

for other domination and covering problems on planar graphs also have been obtained
[1, 2, 8, 28, 23].
However, all of these algorithms apply only to planar graphs. In another sequence of

papers, these results have been generalized to other classes of graphs: map graphs [12],
which include planar graphs; K3,3-minor-free graphs and K5-minor-free graphs [14], which
include planar graphs; and single-crossing-minor-free graphs [13, 14], which include K3,3

or K5-minor-free graphs. These algorithms [12, 13, 14] apply to dominating set and several
other problems related to domination, covering, and logic.
Algorithms for H-minor-free graphs for a fixed graph H have been studied extensively;

see e.g. [9, 22, 10, 26, 30]. In particular, it is generally believed that several algorithms
for planar graphs can be generalized to H-minor-free graphs for any fixed H [22, 26, 30].
H-minor-free graphs are very general. The deep Graph-Minor Theorem of Robertson
and Seymour shows that any graph class that is closed under minors is characterized by
excluding a finite set of minors. In particular, any graph class that is closed under minors
excludes at least one minor H.

Our results. We introduce a framework for extending algorithms for planar graphs to
apply to H-minor-free graphs for any fixed H. In particular, we design subexponential
fixed-parameter algorithms for dominating set, vertex cover, and set cover (viewed as one-
sided dominating in a bipartite graph) for H-minor-free graphs. Our framework consists
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of three components, as described below. We believe that many of these components can
be applied to other problems and conjectures as well.
First we extend the algorithm for planar graphs to bounded-genus graphs. Roughly

speaking, we study the structure of the solution to the problem in k×k grids, which form a
representative substructure in both planar graphs and bounded-genus graphs, and capture
the main difficulty of the problem for these graphs. Then using Robertson and Seymour’s
graph-minor theory, we repeatedly remove handles to reduce the bounded-genus graph
down to a planar graph, which is essentially a grid.
Second we extend the algorithm to almost-embeddable graphs which can be drawn in

a bounded-genus surface except for a bounded number of “local areas of non-planarity”,
called vortices, and for a bounded number of “apex” vertices, which can have any number
of incident edges that are not properly embedded. Because the vortices have bounded
pathwidth, their number is bounded, and the number of apexes is bounded, we are able
to solve almost-embeddable graphs using our solution to bounded-genus graphs.
Third we apply a deep theorem of Robertson and Seymour which characterizes H-

minor-free graphs as a tree structure of pieces, where each piece is an almost-embeddable
graph. Using dynamic programming on such tree structures, analogous to algorithms for
graphs of bounded treewidth, we are able to combine the pieces and solve the problem for
H-minor-free graphs.
The first step of this procedure, for bounded-genus graphs, applies to a broad class of

problems called “bidimensional problems”. Roughly speaking, a parameterized problem
is bidimensional if the parameter is large (linear) in a grid and closed under contractions.
Examples of bidimensional problems include vertex cover, feedback vertex set, minimum
maximal matching, dominating set, edge dominating set, clique-transversal set, and set
cover. We obtain subexponential fixed-parameter algorithms for all of these problems
in bounded-genus graphs. As an special case, this generalization settles an open problem
about dominating set posed by Ellis, Fan, and Fellows [16]. Along the way, we establish an
upper bound on the treewidth (or branchwidth) of a bounded-genus graph that excludes
some planar graph H as a minor. This bound depends linearly on the size |V (H)| of
the excluded graph H and the genus g(G) of the graph G, and applies and extends the
graph-minors work of Robertson and Seymour.
This paper is organized as follows. First, we introduce the terminology used through-

out the paper, and formally define tree decompositions, treewidth, and fixed-parameter
tractability in Section 2. In Section 3 is devoted to graphs on surfaces. We construct
a general framework for obtaining subexponential parameterized algorithms on graphs
of bounded genus. First we introduce the concept of bidimensional problem, and then
prove that every bidimensional problem has a subexponential parameterized algorithm on
graphs of bounded genus. The proof techniques used in this section are very indirect and
are based on deep Theorems from Robertson & Seymour’s Graph Minors XI and XII. As
a byproduct of our results we obtain a generalization of Quickly Excluding Planar Graph
Theorem for graphs of bounded genus. In Section 4 we make a step further by developing
subexponential algorithms for graphs containing no fixed graph H as a minor. The proof
of this result is based on combinatorial bounds from the previous section, deep structural
theorem from Graph Minors XIV, and complicated dynamic programming. Finally, in
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Section 5, we present several extensions of our results and some open problems.

2 Background

2.1 Preliminaries

All the graphs in this paper are undirected without loops or multiple edges. The reader
is referred to standard references for appropriate background [5].
Our graph terminology is as follows. A graph G is represented by G = (V,E), where

V (or V (G)) is the set of vertices and E (or E(G)) is the set of edges. We denote an edge
e between u and v by {u, v}. We define n to be the number of vertices of a graph when
this is clear from context.
The (disjoint) union of two disjoint graphs G1 and G2, G1 ∪G2, is the graph G with

merged vertex and edge sets: V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
One way of describing classes of graphs is by using minors. Given an edge e = {x, y}

of a graph G, the graph G/e is obtained from G by contracting the edge e; that is, to get
G/e we identify the vertices x and y and remove all loops and duplicate edges. A graph
H obtained by a sequence of edge-contractions is said to be a contraction of G. H is a
minor of G if H is the subgraph of a some contraction of G. We use the notation H ¹ G
(resp. H ¹c G) for H is a minor (a contraction) of G. A graph class C is a minor-closed
class if any minor of any graph in C is also a member of C. A minor-closed graph class C
is H-minor-free if H 6∈ C.
For example, a planar graph is a graph excluding both K3,3 and K5 as minors.

2.2 Fixed-Parameter Algorithms (FPTs)

Developing fast algorithms for NP-hard problems is an important issue. Recently, Downey
and Fellows [15] introduced a new approach to cope with this NP-hardness, called fixed-
parameter tractability. For many NP-complete problems, the inherent combinatorial ex-
plosion can be attributed to a certain aspect of the problem, a parameter. The parameter
is often an integer and small in practice. The running times of simple algorithms may be
exponential in the parameter but polynomial in the rest of the problem size. For example,
it has been shown that k-vertex cover (finding a vertex cover of size k) has an algorithm
with running time O(kn+1.271k) [11] and hence this problem is fixed-parameter tractable.

Alber et al. [1] demonstrated a solution to the planar k-dominating set in time O(46
√

34kn).
This result was the first nontrivial results for the parameterized version of an NP-hard
problem where the exponent of the exponential term grows sublinearly in the parameter
(see also [25] and [19] for further improvements of the time bound of [1]) and it initiated
the extensive study of subexponential algorithms for various parameterized problems on
planar graphs. Using this result, others could obtain exponential speedup of fixed param-
eter algorithms for many NP-complete problems on planar graphs (see e.g. [8, 27, 2, 6]).
(See also Cai & Juedes [7] for discussions on lower bounds of subexponential algorithms
on planar graphs.) Recently, Demaine et al. [14, 13, 12] extended these results to many
NP-complete problems on map graphs and graphs excluding a single-crossing-graph such
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as K5 or K3,3 as a minor. As mentioned before, we extend these results for bounded genus
graphs and more generally H-minor-free graphs for any fixed H.

2.3 Treewidth and branchwidth

The notion of treewidth was introduced by Robertson and Seymour [32] and plays an
important role in their fundamental work on graph minors. To define this notion, first
we consider the representation of a graph as a tree, which is the basis of our algorithms
in this paper. A tree decomposition of a graph G, denoted by TD(G), is a pair (χ, T ) in
which T is a tree and χ = {χi|i ∈ V (T )} is a family of subsets of V (G) such that: (1)
⋃

i∈V (T ) χi = V (G); (2) for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (G) such that
both u and v belong to χi; and (3) for all v ∈ V (G), the set of nodes {i ∈ V (T )|v ∈ χi}
forms a connected subtree of T . To distinguish between vertices of the original graph
G and vertices of T in TD(G), we call vertices of T nodes and their corresponding χi’s
bags. The maximum size of a bag in TD(G) minus one is called the width of the tree
decomposition. The treewidth of a graph G (tw(G)) is the minimum width over all possible
tree decompositions of G.
A branch decomposition of a graph (or a hyper-graph) G is a pair (T, τ), where T is

a tree with vertices of degree 1 or 3 and τ is a bijection from the set of leaves of T to
E(G). The order of an edge e in T is the number of vertices v ∈ V (G) such that there are
leaves t1, t2 in T in different components of T (V (T ), E(T )− e) with τ(t1) and τ(t2) both
containing v as an endpoint.
The width of (T, τ) is the maximum order over all edges of T , and the branchwidth of

G, bw(G), is the minimum width over all branch decompositions of G. (In case where
|E(G)| ≤ 1, we define the branch-width to be 0; if |E(G)| = 0, then G has no branch
decomposition; if |E(G)| = 1, then G has a branch decomposition consisting of a tree with
one vertex – the width of this branch decomposition is considered to be 0).
It is easy to see that if H is a subgraph of G then bw(H) ≤ bw(G). The following

result is due to Robertson & Seymour [(5.1) in [34]].

Theorem 2.1 ([34]). For any connected graph G where |E(G)| ≥ 3, bw(G) ≤ tw(G) +
1 ≤ 3

2bw(G).

3 Graphs on surfaces

3.1 Preliminaries

In this subsection we remind a machinery developed in Graph Minor papers that is used
in our proofs.
A surface Σ is a compact 2-manifold, without boundary. A line in Σ is subset home-

omorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to a circle. Let G be a graph
2-cell embedded in Σ. To simplify notations we do not distinguish between a vertex of G
and the point of Σ used in the drawing to represent the vertex or between an edge and
the line representing it. We also consider G as the union of the points corresponding to its
vertices and edges. That way, a subgraph H of G can be seen as a graph H where H ⊆ G.

5
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We call by region of G any connected component of Σ − E(G) − V (G). (Every region is
an open set.) We use the notation V (G), E(G), and R(G) for the set of the vertices, edges
and regions of G.
If ∆ ⊆ Σ, then ∆ denotes the closure of ∆, and the boundary of ∆ is bd(∆) =

∆ ∩ Σ−∆. An edge e (a vertex v) is incident with a region r if e ⊆ bd(r) (v ⊆ bd(r)).
A subset of Σ meeting the drawing only in vertices of G is called G-normal. If an O-arc

is G-normal then we call it noose. The length of a noose is the number of its vertices.
∆ ⊆ Σ is an open disc if it is homeomorphic to {(x, y) : x2 + y2 < 1}. We say that a disc
D is bounded by a noose N if N = bd(D). A graph G 2-cell embedded in a connected
surface Σ is θ-representative if every noose of length < θ is contractable (null-homotopic
in Σ).
A separation of a graph G is a pair (A,B) of subgraphs with A∪B = G and E(A∩B) =

∅, and its order is |V (A ∩B)|. Tangles were introduced by Robertson & Seymour in [34].
A tangle of order θ ≥ 1 is a set T of separations of G, each of order θ, such that

(i) for every separation (A,B) of G of order < θ, T contains one of (A,B),
(B,A)

(ii) if (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪A2 ∪A3 6= G.

(iii) if (A,B) ∈ T then V (A) 6= V (G).

Let G be a graph embedded in a connected surface Σ. A tangle T of order θ is
respectful if for every noose N in Σ with |N ∩ V (G)| < θ, there is a closed disc ∆ ⊆ Σ
with bd(∆) = N such that separation

(G ∩∆, G ∩ Σ−∆) ∈ T .

Our proofs are based on the following results from Graph Minors papers by Robertson
& Seymour.

Theorem 3.1 ((4.3) in [34]). Let G be a graph with at least one edge. Then there is a
tangle in G of order θ if and only if G has branch-width ≥ θ.

Theorem 3.2 ((4.1) in [35]). Let Σ be a connected surface, not a sphere, let θ ≥ 1, and
let G be a θ-representative graph 2-cell embedded in Σ. Then there is a unique respectful
tangle in G of order θ.

Also in our proofs we use the notion of radial graph. Informally, the radial graph of
a 2-cell embedded in Σ graph G is the bipartite graph RG obtained by selecting a point
in every region r of G and connecting it to every vertex of G incident to that region.
However, a region maybe ”incident more than once” with the same vertex, so one needs a
more formal definition. A radial drawing RG is a radial graph of a 2-cell embedded in Σ
graph G if

1. E(G) ∩ E(RG) = V (G) ⊆ V (RG);

2. Each region r ∈ R(G) contains a unique vertex vr ∈ V (RG);
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3. RG is bipartite with a bipartition (V (G), {vr : r ∈ R(G)});

4. If e, f are edges of RG with the same ends v ∈ V (G), vr ∈ V (RG), then e ∪ f does
not bound a closed disc in r ∪ {v};

5. RG is maximal subject to 1,2,3 and 4.

3.2 Bounding the representativity

Lemma 3.3. Let G be a graph 2-cell embedded in a non-planar surface Σ of representa-
tivity at least θ. Then G contains as a contraction a partially triangulated (θ/4×θ/4)-grid.

Proof sketch. By Theorem 3.2, G has a respectful tangle of order θ. Let A(RG) be the set
of vertices, edges, and regions (collectively, atoms) in the radial graph RG. According to
Section 9 of [35] (see also [36]), the existence of a respectful tangle makes it possible to
define a metric d on A(RG) as follows:

1. If a = b, then d(a, b) = 0.

2. If a 6= b, and a and b are interior to a contractible closed walk of radial graph of
length < 2θ, then d(a, b) is half the minimum length of such a walk (here by interior
we mean the direction in which the walk can be contracted).

3. Otherwise, d(a, b) = θ.

Assume for simplicity that θ is even. Let c be any vertex in G. For 0 ≤ i < θ/2, define
Z2i to be the union of all atoms of distance at most 2i from c. (Notice that, in radial
graphs, all closed walks have even length.) By Theorem 8.10 of [35], Z2i is a nonempty
simply connected set, for all i. (A patch of a surface is simply connected if it has no
noncontractible closed curves.) Thus, the boundary ∂Z2i of each Z2i is a closed walk in
the radial graph.
We claim that the closed walks ∂Z2i and ∂Z2i+2 are vertex-disjoint. Consider any atom

a on ∂Z2i and an adjacent atom b outside Z2i. The distance between a and b is 2 because
there is a length-2 closed walk connecting them, doubling the edge (a, b). By Theorem 9.1
of [35], the metric satisfies the triangle inequality, and hence d(s, b) ≤ d(s, a) + 2 = 2i+2.
In fact, this bound must hold with equality, because b /∈ Z2i. Therefore, every atom a on
∂Z2i is surrounded on the exterior of Z2i by atoms at distance exactly 2i + 2 from c, so
∂Z2i is strictly enclosed by ∂Z2i+2.
Consider the “annulus” A = Z2θ−2 − Zθ. We claim that there are at least θ/2 vertex-

disjoint paths in the radial graph connecting vertices in ∂Zθ to vertices in ∂Z2θ−2. By
Menger’s Theorem, the contrary implies the existence of a cut in A of size < θ/2 separating
the two sets, which implies the existence of a cycle of length < θ, but such a cycle must
be contained in Zθ.
Now we form a (θ/2 × θ/2)-grid in the radial graph. The row lines in the grid are

formed by taking cycles enclosing c that are subsets of the closed walks ∂Z2i for i =
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θ, θ + 2, θ + 4, . . . , 2θ − 2. The column lines in the grid are formed by the θ/2 vertex-
disjoint paths found above. Therefore, we obtain a subdivision of the (θ/2× θ/2)-grid as
a subgraph of the radial graph.
Finally, we transform this grid into a (θ/4 × θ/4)-grid in the original graph G. Each

grid edge in the radial graph corresponds in the original graph to a sequence of faces
surrounding the edge. We replace this grid edge by the upper half of each face. In this
way, each row line in the radial graph maps in the original graph to a curve above this row
line. Two adjacent mapped row lines may touch but cannot properly cross, so row lines of
distance 2 or more cannot overlap. Thus, by discarding the odd-numbered row lines, and
similarly for the columns, we obtain a subdivision of the (θ/4 × θ/4)-grid in the original
graph. Because each Z2i was simply connected, the grid is embedded in a planar patch
on Σ, so if we apply contractions without deletions, we obtain a partially triangulated
grid.

3.3 Bidimensional Parameters

In this section, we define a general framework of parameterized problems for which subex-
ponential algorithms with small constants can be obtained. Our framework is sufficiently
broad that an algorithmic designer only needs to check two simple properties of any desired
parameter to determine the applicability and practicality of our approach.
A partially triangulated (r × r)-grid is any graph obtained by adding edges between

pairs of nonconsecutive vertices on a common face of a planar embedding of a (r×r)-grid.

Definition 3.4. A parameter P is any function mapping graphs to nonnegative integers.
The parameterized problem associated with P asks, for some fixed k, whether P (G) ≤ k
for a given graph G.

Definition 3.5. Parameter P is called minor bidimensional with density δ if (i) contract-
ing or deleting an edge in a graph G cannot increase P (G), and (ii) there exists a function
f, f(x) = o(x) such that for the (r × r)-grid R, P (R) = (δr)2 + f((δr)2).

Parameter P is called contraction bidimensional with density δ if (i) contracting an
edge in a graph G cannot increase P (G), (ii) there exists a function f, f(x) = o(x) such
that for any partially triangulated (r × r)-grid R, P (R) ≥ (δr)2 + f((δr)2), and δ is the
smallest real number for which this inequality holds.

In either case, P is called bidimensional. The density δ of P is the minimum of the two
possible densities (when both definitions are applicable). We call the sublinear function f
residual function of P .

Many parameters are bidimensional, mention just a few. Examples of minor bidimen-
sional parameters are
Vertex cover. A vertex cover of a graph G is a set C of vertices such that every edge of
G has at least one endpoint in C. The vertex cover problem (VC) is to find a minimum
vertex cover. VC is minor bidimensional with problem with density δ = 1/

√
2.

Feedback vertex set (FVS). A feedback vertex set (FVS) of a graph G is a set U of
vertices such that every cycle of G passes through at least one vertex of U . The feedback
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vertex set problem (FVS) asks for a minimum a feedback vertex set of size ≤ k. This is
minor bidimensional problem with density δ ≥ 1/2.
Minimum maximal matching. A matching in a graph G is a set E ′ of edges without
common endpoints. A matching in G is maximal if there is no other matching in G con-
taining it. The maximal matching problem MM asks for a minimum maximal matching.
MM is minor bidimensional with density δ ≥ 1/

√
8.

Examples of contraction bidimensional parameters are
Dominating set. A dominating set of a graph G is a set D of vertices of G such that each
of the vertices of V (G)−D is adjacent to at least one vertex of D. Minimum dominating
set problem is contraction bidimensional with density δ = 1/3.
Edge dominating set. The edge dominating set problem EDS that given a graph G asks
for a minimum set E ′ ⊆ E(G) of such that every edge in E(G) shares at least one endpoint
with some edge in E ′. EDS is contraction bidimensional with density δ = 1/

√
14.

Clique-transversal set. A clique-transversal set of a connected graph G is a subset of
vertices intersecting all the maximal cliques of G. This is contraction bidimensional with
density δ ≥ 1/2

√
2.

Almost all known techniques for obtaining subexponential parameterized algorithms
on planar graphs are based on the following ’bounded treewidth approach’ [1, 19, 25]:

(I1) Prove that tw(G) ≤ c
√

P (G) for some constant c;

(I2) Compute treewidth (or branchwidth) of G;

(I3) If treewidth is > c
√

P (G) there is no solution to the problem. If treewidth is
≤ c

√

P (G) run standard dynamic programming on graph of bounded treewidth

which takes 2O(
√

P (G))n steps.

All previously known ways of obtaining the most important step (I1) are based on
rather complicated techniques based on separators. Let us first give some hints why
bidimensional parameters are important for the design of subexponential algorithms on
planar graphs. We need the following result of Robertson, Seymour & Thomas. (Theorems
(4.3) in [34] and (6.3) in [38].)

Theorem 3.6 ([38]). Let r ≥ 1 be an integer. Every planar graph with no (r, r)-grid as
a minor has branch-width ≤ 4r − 3.

Since for every bidimensional parameter P and (r × r)-grid R, |V (R)| = O(P (R)), by
Theorem 3.6 we have the following proposition.

Proposition 3.7. Let P be a bidimensional parameter. Then for any planar graph G,
tw(G) = O(

√

P (G)).

The class of bidimensional parameterized problems contains all known from the liter-
ature planar graph parameters with subexponetial parameterized algorithms. Recently,
Cai et al. [6] defined a class Planar TMIN1 and proved that for every graph G and pa-
rameter P ∈ Planar TMIN1, tw(G) = O(

√

P (G)). Every problem in Planar TMIN1
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can be expressed as a special type of dominating set problem on bipartite graphs (we refer
to [6] for definitions and further properties of Planar TMIN1) and Proposition 3.7 yields
immediately the result of Cai et al.
Notice that density assigns a real number in (0, 1] to any bidimensional parameter.

This assignment defines a total order on all such parameters. It is tempting to wonder

whether every parameter admitting a 2O(
√
k)nO(1)-time algorithm is bidimensional.

To extend Propositionr̃efthm:btwappr on graphs of bounded genus more work need to
be done.
If P is a bidimentional parameter with density δ and residual function f then we define

the normalization factor of P as

min{β | ( δ
β
r)2 ≤ (δr)2 + f(δr), for any r ≥ 1 }.

Lemma 3.8. Let P be a contraction (minor) bidimentional parameter with density δ.
Then P (G) < ( δ

β
r)2 implies that G excludes the (r × r)-grid as a minor (and all partial

triangulations of the (r × r)-grid as contractions).

Proof. If P is minor bidimentional andH is the (r×r)-grid andH ¹ G, then P (H) ≤ P (G)
and as P (H) = (δr)2+f(δr), we have that ( δ

β
r)2 > P (G) ≥ (δr)2+f(δr) which contradicts

to the definition of β.
If P is contraction bidimentional, H is any partial triangulation of the (r × r)-grid,

and H ¹ G, then P (H) ≤ P (G) and as P (H) = (δr)2 + f(δr), we have that ( δ
β
r)2 >

P (G) ≥ (δr)2 + f(δr) which contradicts to the definition of β.

Let G be a graph and let v ∈ V (G). Also suppose we have a partition Pv = (N1, N2)
of the set of the neighbors of v. Define the splitting of G with respect to v and Pv to be
the graph obtained from G by

(i) removing v and its incident edges

(ii) introducing two new vertices v1, v2 and

(iii) connecting vi with the vertices in Ni, i = 1, 2.

If H is the result of the consecutive application of the above operation on some graph G
then we say that H is a splitting of G. If additionally in such a splitting process we do not
split vertices that are results of previous splittings then we say that H is a fair splitting
of G.
We say a parameter P is α-splittable, if for every graph G and for each vertex v ∈ V (G)

the result of splitting G′ with respect to v has P (G′) ≤ P (G) + α.

Many natural graph problems are α-splittable for small α. Examples of 1-splittable
problems are dominating set, vertex cover, edge dominating set, independent set, clique-
transversal set and feedback vertex set among many others.

For the proof of our main result on properties of bidimentional parameters we need
two technical lemmas used in induction on the genus.

10

□ 



It is convenient to work with Euler genus. The Euler genus eg(Σ) of a nonorientable
surface Σ is equal to the nonorientable genus g̃(Σ) (or the crosscap number). The Euler
genus eg(Σ) of an orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of Σ.
The following lemma is very useful in proofs by induction on the genus. The first part

of the lemma follows from Lemma 4.2.4 (corresponding to nonseparating cycle) and the
second part follows from Proposition 4.2.1 (corresponding to surface separating cycle) in
[29].

Lemma 3.9. Let G be a connected graph 2-cell embedded in a non-planar surface Σ, and
let N be a noncontractible noose on G. Then there is a fair splitting G′ of G affecting the
set S = (v1, . . . , vρ) of the vertices of G met by N such that one of the following holds

1. G′ can be 2-cell embedded in a surface with Euler genus strictly smaller than eg(Σ).

2. each connected component Gi of G
′ can be 2-cell embedded in a surface with Euler

genus strictly smaller than eg(Σ) and is a contraction of some graph G∗
i obtained

from G after ≤ ρ splittings.

The following lemma is a direct consequence of the definition of branchwidth.

Lemma 3.10. Let G be a graph and let G′ be the splitting of a vertex in G. Then
bw(G′) ≤ bw(G) + 1.

Theorem 3.11. Suppose that P is an α-splittable bidimensional parameter (for α ≥ 0)
with density δ and normalization factor β (δ ≤ 1 and β ≥ 1). Then for any graph G 2-cell
embedded in a surface Σ of Euler genus eg(Σ), bw(G) ≤ 4β

δ
(eg(Σ) + 1)

√

P (G) + 1 +

8α(β
δ
(eg(Σ) + 1))2.

Proof. We use induction on the Euler genus of Σ.
In case eg(Σ) = 0, Lemma 3.8 implies that if P (G) < ( δ

β
r)2, then G excludes the

(r × r)-grid as a minor. Indeed, this is obvious in case P is minor bidimentional. If P
is contraction bidimentional, then it is enough to observe that if the planar graph G can
be transformed to H via a sequence of edge contractions or removals, then by applying
only the contractions in this sequence we get a partial triangulation of H. Using now
Theorem exclude-grid we get that if P (G) < ( δ

β
r)2, then bw(G) ≤ 4r − 6. If we set

r = bβ
δ

√

P (G)c+1, we have that bw(G) ≤ 4bβ
δ

√

P (G)c−2. As α, β, δ ≥ 0, the induction
base is done.
Suppose now that eg(Σ) ≥ 1 and that induction hypothesis holds for any graph 2-cell

embedded in a sphere with Euler genus less than eg(Σ). Let G be a graph embedded
in Σ. We set k = P (G) and we claim that the representativity of G is ≤ 4b β

δ

√
k + 1c.

Lemma 3.8 implies that if k < ( δ
β
r)2, thenG excludes any triangulation of the (r×r)-grid as

a contraction. By the contrapositive of Lemma 3.3, this implies that the representativity
of G is < 4r. If we set r = b δ

β

√
k + 1c + 1, we have that the representativity of G is

≤ 4bβ
δ

√
k + 1c. Let N be a minimum size non-contractible noose N on Σ meeting ρ

vertices of G where ρ ≤ 4bβ
δ

√
k + 1c. By Lemma 3.9, there is a fair splitting along the

vertices met by N such that one of the conditions (1) or (2) holds (see Figure 1). Let G′

11



split

S S1 S2

Figure 1: Splitting a noose.

be the resulting graph and let Σ′ be a sphere such that eg(Σ′) ≤ eg(Σ) − 1 and every
component of G′ is 2-cell embedable in Σ′. We claim that in each of the cases (1), (2),
bw(G′) ≤ 4β

δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2.

Case (1): We apply the induction hypothesis on G′ and get that bw(G′) ≤ 4β
δ
(eg(Σ′)+

1)
√

P (G′) + 1 + 8α(β
δ
)2(eg(Σ′) + 1)2. As G′ is obtained from G after ≤ ρ splittings

and P is an α-splittable parameter, we have P (G′) ≤ k + αρ. Taking in mind that
eg(Σ′) ≤ eg(Σ)− 1, we obtain bw(G′) ≤ 4β

δ
eg(Σ)

√
k + αρ+ 1 + 8α(β

δ
)2(eg(Σ))2.

Case (2): We apply the induction hypothesis on each of the connected components of
G. Let Gi be such a component. We get that bw(Gi) ≤ 4βδ (eg(Σ′) + 1)

√

P (Gi) + 1 +

8α(β
δ
)2(eg(Σ′) + 1)2. As Gi is a contraction of some graph G

∗
i obtained from G after ≤ ρ

splittings and P is an α-splittable parameter, we get that P (Gi) ≤ P (G∗
i ) ≤ k+αρ. Again

since eg(Σ′) ≤ eg(Σ)−1, we have bw(Gi) ≤ 4βδ eg(Σ)
√
k + αρ+ 1+8α(β

δ
)2(eg(Σ))2. No-

tice that bw(G′) = maxi(bw(Gi)) which in turn implies that bw(G
′) ≤ 4β

δ
eg(Σ)

√
k + αρ+ 1+

8α(β
δ
)2(eg(Σ))2.

As G′ is the result of ρ consecutive vertex splittings on G, Lemma 3.10 yields that

12
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bw(G) ≤ bw(G′) + ρ. Therefore,

bw(G) ≤ 4
β

δ
eg(Σ)

√

k + αρ+ 1 + 8α(
β

δ
)2(eg(Σ))2 + ρ

≤ 4
β

δ
eg(Σ)

√

k + α(4
β

δ

√
k + 1) + 1 + 8α(

β

δ
)2(eg(Σ))2 + 4

β

δ

√
k + 1

= 4
β

δ
eg(Σ)

√

(
√
k + 1)(

√
k + 1 + 4α

β

δ
) + 8α(

β

δ
)2(eg(Σ))2 + 4

β

δ

√
k + 1

≤ 4
β

δ
eg(Σ)

√

(
√
k + 1 + 4α

β

δ
)(
√
k + 1 + 4α

β

δ
) + 8α(

β

δ
)2(eg(Σ))2 + 4

β

δ

√
k + 1,

since α, β, δ ≥ 0

= 4
β

δ
eg(Σ)(

√
k + 1 + 4α

β

δ
) + 8α(

β

δ
)2(eg(Σ))2 + 4

β

δ

√
k + 1

= 4
β

δ
eg(Σ)

√
k + 1 + 16α(

β

δ
)2eg(Σ) + 8α(

β

δ
)2(eg(Σ))2 + 4

β

δ

√
k + 1

= 4
β

δ
(eg(Σ) + 1)

√
k + 1 + 8α(

β

δ
)2(eg(Σ)2 + 2eg(Σ))

= 4
β

δ
(eg(Σ) + 1)

√
k + 1 + 8α(

β

δ
)2(eg(Σ)2 + 2eg(Σ) + 1) since α, β, δ ≥ 0

= 4
β

δ
(eg(Σ) + 1)

√
k + 1 + 8α(

β

δ
(eg(Σ) + 1))2

(1)

Theorem 3.11 is a general theorem which applies for any α-splittable bidimensional
parameter. For minor bidimensional parameters the bound for branchwidth can be further
improved.

Theorem 3.12. Suppose that P is a minor bidimensional parameter with density δ and
normalization factor β (δ ≤ 1 and β ≥ 1). Then for any graph G 2-cell embedded in a
surface Σ of Euler genus eg(Σ), bw(G) ≤ 4β

δ
(eg(Σ) + 1)

√

P (G) + 1.

Proof. The proof is very similar to the proof of Theorem 3.11. The only difference is that
instead of a fair splitting along the vertices of a minimum size non-contractible noose, we
just remove vertices of the noose from the graph. Since the parameter is minor bidimen-
sional, the parameter can not increase by this operation. The rest of the proof goes the
same. Let G be a graph 2-cell embedded in a surface Σ of Euler genus eg(Σ) and let
k = P (G). We have the following inequality which is simpler than inequality (1).

bw(G) ≤ 4β
δ
eg(Σ)

√
k + 1 + ρ ≤ 4β

δ
eg(Σ)

√
k + 1 + 4

β

δ

√
k + 1 = 4

β

δ
(eg(Σ) + 1)

√
k + 1
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3.4 Combinatorial Results and Further Improvements

As a consequence of Theorem 3.12, we establish an upper bound on the treewidth (or
branchwidth) of a bounded-genus graph that excludes some planar graph H as a minor.
As part of their seminal Graph Minors series, Robertson and Seymour proved the

following:

Theorem 3.13 ([33]). If G excludes a planar graph H as a minor, then the branchwidth
of G is at most bH and the treewidth of G is at most tH , where bH and tH are constants
depending only on H.

The current best estimate of these constants is the exponential upper bound tH ≤
202(2|V (H)|+4|E(H)|)5 [38]. However, it is known that planar graphs can be excluded “quickly”
from planar graphs. More precisely, the following result says that, for planar graphs, the
constants depend only linearly on the size of H:

Theorem 3.14 ([38]). If G is planar and excludes a planar graph H as a minor, then
the branchwidth of G is 4(2|V (H)|+ 4|E(H)|)− 3.
Note that the parameter P (G) = |V (G)| is minor bidimensional with δ and β equal

to 1. Thus Theorems 3.11 and 3.12 immediately implies the following generalization of
Theorem 3.6 for graphs of bounded genus.

Theorem 3.15. If G is a graph of genus g(G) with branchwidth more than 4r(g(G)+ 1),
then G has a (r × r)-grid as a minor.

In the same way, we are able to quickly exclude any planar graph from bounded-genus
graphs. In other words, we generalize Theorem 3.14 as follows:

Theorem 3.16. If G is a graph of genus g(G) that excludes a planar graph H as a minor,
then its branchwidth is at most bgenus

H,g(G) = 4(2|V (H)|+ 4|E(H)|)(g(G) + 1).

3.5 Algorithmic Consequences

As we already discussed, the combinatorial upper bounds for branchwidth/treewidth
in are used for constructing subexponential parameterized algorithms as follows. Let
G be a graph P be a parameterized problem we need to solve on G. First one con-
structs a branch/tree decomposition of G that is optimal or ’almost’ optimal. A (θ, γ, λ)-
approximation scheme for branchwidth/treewidth consists of, for every w, an O(2γwnλ)-
time algorithm that, given a graph G, either reports that G has branchwidth/treewidth
at least w or produces a branch/tree decomposition of G with width at most θw. For
example, the current best schemes are a (3 + 2/3, 3.698, 3 + ε)-approximation scheme for
treewidth [3] and a (3, lg 27, 2)-approximation scheme for branchwidth [37].
If the branchwidth/treewidth of a graph is ’large’, then combinatorial upper bounds

come into play and we conclude that P has no solution on G. Otherwise we run dynamic
programming on graphs of bounded branchwidth/treewidth and compute P (G).
Thus conclude with the following theorem which is the main algorithmic result of this

section:

14



Theorem 3.17. Let P be a bidimensional parameter with density > δ. Suppose there is
an algorithm for the associated parameterized problem that runs in O(2awnb) time given
a tree/branch decomposition of the graph G with width w. Suppose also that we have
a (θ, γ, λ)-approximation scheme for treewidth/branchwidth. Set τ = 1 in the case of
branchwidth and τ = 1.5 in the case of treewidth. Then the parameterized problem asking

whether P (G) ≤ k can be solved in O(2max{aθ,γ}τ4 β
δ
(g(G)+1)(

√
k+1+µαβ

δ
(g(G)+1))nmax{b,λ})

time for minor bidimensional parameter P (G) with density δ and normalization factor
β, where µ is 0 if P is minor bidimensional and is 2 if P is α-splittable contraction
bidimensional.

The first condition of the theorem holds with small values of a and b for many examples
of bidimensional parameters; see [1, 2, 8, 14, 19, 28]. Observe that the correctness of
our algorithms is simply based on Theorems 3.11 and 3.12, despite their nonalgorithmic
natures, and (θ, γ, λ)-approximation scheme for branch/tree decomposition. We note that
the time bounds we provide do not contain any hidden constants, and the constants are
reasonably low for a broad collection of problems.

4 H-minor free graphs

In this section we show how the results on graphs of bounded genus can be generalized on
graphs with excluded minors.

4.1 Clique Sums

Suppose G1 and G2 are graphs with disjoint vertex-sets and k ≥ 0 is an integer. For
i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G

′
i (i = 1, 2) be obtained from Gi

by deleting some (possibly no) edges from Gi[Wi] with both endpoints in Wi. Consider a
bijection h : W1 → W2. We define a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2

or simply by G = G1 ⊕ G2, to be the graph obtained from the union of G
′
1 and G

′
2 by

identifying w with h(w) for all w ∈ W1. The images of the vertices of W1 and W2 in
G1 ⊕k G2 form the join set.
In the rest of this section, when we refer to a vertex v of G in G1 or G2, we mean the

corresponding vertex of v in G1 or G2 (or both). It is worth mentioning that ⊕ is not a
well-defined operator and it can have a set of possible results. See Figure 2 for an example
of a 5-sum operation.
The following lemma shows how the treewidth changes when we apply a clique-sum

operation, whose intuition will play an important role in our FPT results.

Lemma 4.1 (Folklore). For any two graphs G and H, tw(G⊕H) ≤
max{tw(G), tw(H)}.

4.2 Characterizations of H-minor-free graphs

In this section, we describe the deep theorem of Robertson and Seymour on graphs ex-
cluding a fixed graph H as a minor. Intuitively, Robertson-Seymour’s theorem says for
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G1

W1

|W1| = k

G2

|W2| = k

W2

h

G1 G2

join set

G = G1 ⊕G2

Figure 2: Example of 5-sum of two graphs.

every graph H, every H-minor-free graph can be expressed as a tree-structure of “pieces”,
where each piece is a graph which can be drawn in a surface in which H cannot be drawn,
except for a bounded number of “apex” vertices and a bounded number of “local areas of
non-planarity” called vortices. Here the bounds only depend on H.
Roughly speaking we say a graph G is h-almost embeddable in a surface S if there exists

a set X of size at most h of vertices, called apex vertices or apices, such that G −X can
be obtained from a graph G0 embedded in S by attaching at most h graphs of pathwidth
at most h to G0 along the boundary cycles C1, · · · , Ch in an orderly way. More precisely:

Definition 4.2. A graph G is h-almost embeddable in S if there exists a vertex set X of
size at most h called apices such that G−X can be written as G0 ∪G1 ∪ · · · ∪Gh, where

• G0 has an embedding in S;

• the graphs Gi, called vortices, are pairwise disjoint;

• there are (not necessarily distinct) faces F1, . . . , Fh of G0 in S, and there are pairwise
disjoint disks D1, . . . , Dh in S, such that for i = 1, . . . , h, Di ⊂ Fi and Ui :=
V (G0) ∩ V (Gi) = V (G0) ∩Di; and

• the graph Gi has a path decomposition (Bu)u∈Ui
of width less than h, such that

u ∈ Bu for all u ∈ Ui. We note that the sets Bu are ordered by the ordering of their
indices u as points in Ci, where Ci is the boundary cycle of Fi in G0.

An h-almost embeddable graph is called apex-free if the set X of apices is empty.

Now, the deep result of Robertson and Seymour is as follows.
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Theorem 4.3 ([31]). For every graph H there exists an integer h ≥ 0 only depending on
|V (H)| such that every H-minor-free graph can be obtained by at most h-sums of graphs
of size at most h and h-almost-embeddable graphs in some surfaces in which H cannot be
embedded.

In particular, if H is fixed, any surface in which H cannot be embedded has bounded
genus. Thus, the summands in the theorem are h-almost-embeddable graphs in bounded-
genus surfaces.
This structural theorem plays an important role in obtaining the rest of the results of

this paper. From the algorithmic point of view, because Robertson and Seymour [31] have
shown that every minor-closed class of graphs has a polynomial-time membership test,
one can observe the following theorem used by Grohe [20, Lemma 15]. Also, it is claimed
that we can construct the clique-sum decompostion algorithmically using the proof of the
theorem [39].

Theorem 4.4. For any graph H, there is an algorithm with running time O(nh+5) that
either computes a clique-sum decomposition as in Theorem 4.3 for any given H-minor-free
graph G, or outputs that G is not H-minor-free.

Theorem 4.3 is very general and has not appeared in print so far. However already
several nice applications (see e.g. [4, 20]) are known. In this paper we show an algorithmic
consequence of this theorem and how this approach can be viewed as a guideline for solving
other problems on H-minor-free graphs.

4.3 Almost embeddable graphs and k-dominating set

Definition 4.5. A vertex w is called r-dominated by a set S, if the distance from w to a
vertex v ∈ S is at most r.

We need the following result proved in [12].

Lemma 4.6 ([12]). Let ρ, k, r ≥ 1 be integers and G be a planar graph having a r-
dominating set of size k and with a (ρ× ρ)-grid as a minor. Then k ≥ ( ρ−2r

2r+1 )
2.

Lemma 4.7. For any constant r, if a graph G of genus g has an r-dominating set of size
at most k, then the treewidth of G is at most O(g

√
k + g2).

Proof. By Lemma 4.6, r-dominating set is a 1-splittable bidimensional parameter. Now
the lemma follows directly from Theorem 3.11.

Now, we extend this result for apex-free h-almost embeddable graphs. Before express-
ing this result, we mention this simple lemma.

Lemma 4.8. Consider an apex-free h-almost-embeddable graph G = G0 ∪G1 ∪ · · · ∪Gh.
Suppose further that, for each 1 ≤ i ≤ h, Ui = {u1

i , u
2
i , . . . , u

mi

i } forms a path in G0. Then
tw(G) ≤ (h2 + 1)(tw(G0) + 1)− 1.
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Proof. Consider a bag B of the tree decomposition of G0. For each vertex in B ∩ Ui, say
uji , we add to B the corresponding bag Bu

j
i
of the path decomposition of Gi. Because

uji ∈ B ∩ Ui, this addition increases the size of B by at most |Ui| − 1 ≤ h. We perform
this addition for all 1 ≤ i ≤ h, for a total increase in treewidth of at most h2 per vertex
in B. It can be easily seen that the resulting set of bags B form a tree decomposition of
G, because each Ui forms a path in G0.

Lemma 4.9. For any constant r, an apex-free h-almost-embeddable graph G embedded on
a surface of genus g with a set S ⊂ V (G) of size at most k which r-dominates every vertex
of G which is not in a vortex has treewidth at most O(h2g

√
k + h+ g2) = O(g

√
k) (g and

h are constants).

Proof. Consider an apex-free h-almost embeddable graph G = G0 ∪ G1 ∪ · · · ∪ Gh in a
surface Σ of genus g. Suppose Ui = {u1

i , u
2
i , . . . , u

mi

i }. Let G′
0 be the graph obtained from

G0 by adding new vertices c1, c2, · · · , ch and edges (ci, uji ) and (u
j
i , u

j+1
i ) (where j + 1 is

treated modulo mi) for all 1 ≤ i ≤ h and 1 ≤ j ≤ mi. Notice that by adding these edges,
vertices Ui, 1 ≤ i ≤ h, form a path in G0. If G has the aforementioned r-dominating set
of size k, then G′

0 has an r-dominating set of size at most k + h: just delete all vertices
in the r-dominating set that are in Gi − G0, 1 ≤ i ≤ h, and add instead all new vertices
c1, c2, · · · , ch to the r-dominating set. Notice that G′

0 is embeddable on Σ, since G0 is
embeddable. Thus, according to Lemma 4.7 it has treewidth at most O(g

√
k + h + g2).

By Lemma 4.8, the treewidth of G′ = G′
0∪G1∪· · ·∪Gh is O((h

2+1)(g
√
k + h+1)+g2−1).

Ui forming a path in G0. Because G is a subgraph of G
′, the lemma follows.

4.4 H-minor-free graphs and dominating set

The main result of this section is as follows.

Theorem 4.10. One can test whether an H-minor-free graph G∗ has a dominating set

of size at most k in time 2O(
√
k)n2h+3, where h depends only on |V (H)|.

Before mentioning the proof of the above Theorem, we need some definitions and
lemmas.

Definition 4.11. Let G be an h-almost embeddable on a surface of genus g in a clique-
sum decomposition of a graph G∗. Suppose the set of apices in G is X. Assume G has
clique-sums with graphs G1, · · · , Gp via joinsets W1, · · · ,Wp, where |Wi| ≤ h, 1 ≤ i ≤ p.
A cliqueWi is called fully dominated by a set S ⊆ V (G) if V (Gi)−X ⊆ NG∗(S), otherwise
clique Wi is called partially dominated by S. A vertex v of G is fully dominated by a set
S if NG∗[V (G)−X](v) ⊆ NG∗(S).

We note that in the above definition, the only edges that appear in G, but may not
appear in G∗ are the edges among vertices of |Wi|, 1 ≤ i ≤ p.

Theorem 4.12. Let G be an h-almost embeddable on a surface of genus g in a clique-sum
decomposition of a graph G∗. Assume G has clique-sums with graphs G1, · · · , Gp via join
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sets W1, · · · ,Wp, where |Wi| ≤ h, 1 ≤ i ≤ p. Suppose G∗ has a dominating set of size at
most k. Then there is a subset S ⊆ V (G) of size at most h such that if we remove all
fully dominated vertices which are not included in any partially dominated clique Wi from
G and obtain graph Ĝ, tw(Ĝ) = O(h2g

√
k + h+ g2) = O(g

√
k).

Proof. Suppose X is the set of apices in G, so that G − X is an apex-free h-almost
embeddable graph. Let D be a dominating set of size k of G∗ and let S = X ∩ D. We
claim that S is our desired set. The rest of the proof is as follows: we construct a set D̂ of
size at most k for Ĝ−X which 2-dominates every vertex v of Ĝ−X which is not included
in any vortex. Then since Ĝ−X is an apex-free h-almost-embeddable on a surface of genus
g with a 2-dominating-type set of size at most k desired by Lemma 4.9, it has treewidth
at most O(h2g

√
k + h + g2). Then we can add vertices of X to all bags and still have a

tree decomposition of width O(h2g
√
k + h + g2), as desired. We construct D̂ from D as

follows. First, we set D̂ = D ∩ V (G). For each 1 ≤ i ≤ p, if D ∩ (V (Gi) −Wi) 6= ∅ and
Wi 6⊆ X, we add an arbitrary vertex w ∈ Wi −X to D̂. Here we say a vertex v of D is
mapped to a vertex w of D̂ if v = w or if v ∈ D ∩ (V (Gi) −Wi) and vertex w ∈ Wi −X
is the one that we have added to D̂. One can easily observe that since each new vertex in
D̂ is in fact accounted by a unique vertex in D, |D̂| ≤ k. It only remains to show that D
is a 2-dominating set for Ĝ −X. If a vertex v ∈ V (Ĝ) −X is not fully-dominated, then
there exists a vertex w ∈ NG(v) which is not dominated by S and thus not dominated
by X (since S = D ∩ X). It means v is 2-dominated by a vertex u of Ĝ − X which
dominates w (we note that u can be originally a vertex u′ in (V (Gi) −Wi) ∩D which is
mapped to u in D̂). Also, we note that for each clique Wi in which there is a mapped
vertex of D, this vertex dominates all vertices of Wi − X in Ĝ − X and thus we keep
the whole clique Wi − X in G. It only remains to show that every vertex of a partially
dominated clique Wi is 2-dominated by a vertex of Ĝ − X. We consider two cases: if
Wi ∩ S = ∅, since V (Gi)−Wi 6= ∅, there must exists a (mapped) vertex of D̂ in Wi −X
and we are done. Now assume Wi ∩ S 6= ∅. If Wi ⊂ X then Wi ∩ (V (Ĝ) − X) = ∅ and
we are done (since there is no clique in Ĝ − X at all.) Otherwise, there exists a vertex
Wi − X. If (V (Gi) − Wi) ⊆ NG∗(S) 6= ∅, then V (Gi) ∩ D 6= ∅. Thus there exists a
mapped vertex w ∈ Wi −X and we have 1-dominated vertices of Wi −X. As mentioned
before if D ∩ (Wi −X) 6= ∅, vertices Wi −X are 1-dominated and we are done. The only
remaining case is the case in which there exists a vertex w ∈Wi −X which is dominated
by a vertex x ∈ V (G) and by assumption w 6∈ NG∗(S) (we note that in this case, there is
no dominating vertex in V (Gi)−Wi for any i for which w ∈Wi.) It means vertex x is not
fully dominated and thus it remains in Ĝ. In addition, vertex x 2-dominates all vertices
of Wi−X, since Wi is a clique in G and thus all vertices of Wi−X are 2-dominated. This
completes the proof of the theorem.

Now, we are ready to prove Theorem 4.10.

Proof of Theorem 4.10. First, using the O(nh+5)-time algorithm of Theorem 4.4, we ob-
tain the clique-sum decomposition of graph G∗. In fact, this clique-sum decomposition
can be considered as a generalized tree decomposition of G∗.
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More precisely, we consider the clique-sum decomposition as a rooted tree. We try to
find a k-dominating set in this graph using a two level dynamic programming. Suppose a
graph G is an h-almost embeddable on a surface of genus g in a clique-sum decomposition
of a graphG∗. AssumeG has clique-sums with graphsG0, · · · , Gp via join setsW0, · · · ,Wp,
where |Wi| ≤ h, 0 ≤ i ≤ p. Also assume that G0 is considered as the parent of G and
G1, · · · , Gp are considered as children of G. Now, we define a coloring very similar to
Alber et al. [1] as follows.

Colorings. The subproblems in our first level dynamic program are defined by a coloring
of the vertices in Wi. Each vertex will be assigned one of 3 colors, labelled 0, ↑1, and ↓1.
The meaning of the coloring of a vertex v is as follows. Color 0 represents that vertex v
is a chosen in the dominating set. Colors ↓1 and ↑1 represent that the vertex v is not a
dominating set, but has distance exactly 1 to a chosen dominating c. Such a vertex v must
have a neighbor n in the dominating set; we say that vertex n resolves vertex v. Color
↓1 for vertex v represents that the dominating vertex n is in the subtree of the clique-sum
decomposition rooted at the current graph G, whereas ↑ 1 represents that dominating
vertex n is elsewhere in the clique-sum decomposition. Intuitively, the vertices colored ↓1
have already been resolved, whereas the vertices colored ↑i still need to be assigned to a
dominating.

Locally valid colorings. A coloring of the vertices of Wi in respect with sets S1, S2 ⊆
V (G) is called locally valid if the following properties hold:

• for any two adjacent vertices v and w in the bag, if v is colored 0, w is colored ↓1;
and

• if v ∈ S1 then v is colored 0; and

• if v ∈ S2 then v is not colored 0.

Dynamic program subproblems. Our first-level dynamic program has one subprob-
lem for each graph G in the clique-sum decomposition and for each coloring c of the
vertices in W0. Thus, the number of subproblems is n · 3w. We define S(G, c) to be the
size of the minimum dominating set of the vertices in bags in the subtree rooted at G
subject to the following restrictions:

1. Vertices assigned color 0 are chosen as dominating vertices, while vertices assigned
any other color are not chosen as dominating vertices.

2. Vertices colored ↑ 1 are resolved for free by virtual dominating vertices. In other
words, vertices colored ↑1 can be ignored and do not have to be resolved.

If we solve every such subproblem, then in particular, we solve the subproblems involv-
ing the root node of the clique-sum decomposition and in which every vertex is colored 0 or
↓1 . The final dominating set of size k is given by the best solution to these subproblems.
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Induction Step Suppose for each coloring c of |Wi| ≤ h, 0 ≤ i ≤ p, we know S(Gi, c).
First, we note that obtaining all colorings of a graph of size at most h, takes at most O(hh)
time which is constant. Thus, we mainly focus on almost embeddable graphs. First, we
guess a subset X of size at most h. Then for each subset S of X, we set vertices of S in the
dominating set and forbid vertices of X−S to be in the dominating set. Now we remove all
fully dominated vertices of G−X which are not included in any partially dominated clique
Wi from G to obtain Ĝ. By Theorem 4.12, tw(Ĝ) is in O(

√
k). We can obtain such a tree-

decomposition of width 3+2/3 times optimum, in time O(23.698n3) by a result of Amir [3].
We note that all vertices which are absent in this tree-decomposition are those which are
fully dominated and thus in any minimum dominating set which includes S, they will not
appear except the following case; still it is possible that at most |X| − |S| = O(h) vertices
which are fully dominated or they belong to V (Gi) − Wi where Wi is fully dominated
appear in the dominating set to dominate vertices of X. Call such a set of vertices S ′.
W.l.o.g. we can also guess such a set S ′ of size at most h among discarded vertices which
have at least one neighbor in X − S to be in the dominating set. In the other hand, for
any partially dominated clique Wi, we know that all of its vertices are present in the tree-
decomposition; since they form a clique, there exists a bag αi in any tree-decomposition,
which contains the whole vertices of Wi. We find αi in our tree-decomposition and map
Wi and Gi to this bag. Now, for which coloring c of W0 (we assume W0 is contained
in all bags, since its size is at most h), we run the dynamic programming of Alber et
al. [1] on the tree-decomposition, provided that each coloring of the bags are locally valid
with respect to S ∪ S ′ and X − S and coloring c of W0. In addition, for each bag αi to
which we mapped Gi, we also take into account the S(Gi, c

′) for the current coloring c′

of Wi. Using this dynamic programming, we can obtain S(G, c) for each coloring c
′ of

W0. The running time for each coloring c of W0 and each choice of S is O(4
O(

√
k)n)

according to Alber et al. We have 3h choices for c, O(nh+1) choices for X, O(2h) choices
for S and finally O(nh+1) choices for S ′. Thus the running time of this inductive step is

in O(6h4O(
√
k)n2h+2). There are at most O(n) graphs in the clique-sum decomposition of

G. It means the total running time of the algorithm is in O(6h4O(
√
k)n2h+3) + O(nh+5)

(for creating the clique-sum decomposition) = O(4O(
√
k)n2h+3) as desired.

5 Conclusions and Future Work

Theorem 4.10 can be used to obtain subexponential algorithms not only for dominating
set problems.
For example, for vertex cover one can use the following reduction. For a graph G let

G′ be the graph obtained from G by adding a path of length two between any pair of
adjacent vertices. The following lemma is obvious.

Lemma 5.1. For any Kh-minor free graph G, h ≥ 4, and integer k ≥ 1

• G′ is Kh-minor free,

• G has vertex cover of size ≤ k if and only if G has a dominating set of size ≤ k.
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Combining Lemma 5.1 with Theorem 4.10 we conclude that parameterized vertex cover
can be solved in subexponential time on graphs with an excluded minor.
Another example is set cover problem. Given a collection C = (C1, C2, . . . , Cm) of

subsets of a finite set S = (s1, s2, . . . , sn), a set cover is a subcollection C
′ ⊆ C such that

∪Ci∈C′ = S. Minimum set cover (SC) problem is to find a cover of minimum size. For a
SC problem (C, S) its graph GS is a bipartite graph with bipartition (C, S). Vertices si
and Cj are adjacent in GS if and only if si ∈ Cj . Theorem 4.10 can be used to prove that
CS with GS H-minor free for some fixed graph H, can be solved in subexponential time.
In fact, for a given graph GS we construct an auxiliary graph AS by adding new vertices
v, u, w and making adjacent v to {u,w,C1, C2, . . . , Cm}. Then

• (C, S) has a set cover of size ≤ k if and only if AS has a dominating set of size
≤ k + 1.

• If GS is Kh-minor free then AS is Kh+1-minor free.

We believe that we can generalize Theorem 4.10 in order to obtain a fixed-parameter
algorithm with exponential speed-up for the (k, r)-center problem on H-minor-free graphs.
The (k, r)-center problem is a generalization of the dominating set problem in which one
asks whether an input graph G has ≤ k vertices (called centers) such that every vertex
of G is within distance ≤ r from some center. Demaine et al. [12] consider this problem
for planar graph and map graphs and present a generalization of dynamic programming
mentioned in the proof of Theorem 4.10 to solve the (k, r)-center problem for graphs of
bounded treewidth/branchwidth. Using this dynamic programming and a generalization
of Lemma 4.12, one can obtain the desired result for H-minor-free graphs. As Demaine
et al. [12] mentioned, in fact, using the solution for the (k, r)-center problem on H-minor-
free graphs, we can solve the dominating set problem in constant powers of H-minor-free
graphs, the most general class of graphs so far for which one can obtain the exponential
speed-up.
However it is an open and tempting question if our technique can be generalized to

solve in subexponential time on graphs with excluded minors every problem solved in
subexponential time on bounded genus graphs.
We also suspect that there is a strong connection between bidimensional parameters

and the existence of linear-size kernels for the corresponding parameterized problems in
bounded-genus graphs.
The final question is if the upper bounds Theorems 3.11 and 3.12 can be extended

to larger graph classes. The first step in this direction was obtained in [18] for minor-
closed graph families: A graph family F has domination-treewidth property if there is
some function f(d) such for that every graph G ∈ F with dominating set of size ≤ k,
tw(G) ≤ f(k). It was shown that a minor-closed graph family has domination-treewidth
property if and only if this is bounded local treewidth family. We conjecture that for any
bidimensional parameter P and minor-closed graph family F , tw(G) = O(

√

P (G)) for
every G ∈ F if and only if F is of bounded local treewidth.
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