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FOREWORD

Randomness is successfully contributing to almost all aspects of
computation. Even a quick glance at this book shows that it helps
in enhancing the performance of some algorithms. in correcting
errors occurring during computations, in proving theorems, and so
on. This success, perhaps, needs some explanation.

Whv does randomness help computation so much? Indeed, random-
ness and computation are dual players, each standing at opposite
2nds of the spectrum. Perhaps, the fact that randomness may help
computation is no more surprising than how, in Judo, one may use
the strength of his opponent to defeat him. Put in another way,
the characteristic unpredictability of randomness is a frustration to
the rational mind. That is, until we realize that this same unpredic-
tability does not only work against us. but does also frustrate and
make ineffective any “adversary” which may arise during a com-
putation. Consider, for instance, an ‘“‘adversary”—say Nature—
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trying to select an input for your algorithm that will oblige it to run
for a long time. Her job will be harder if she does not know what
your algorithm does, which will indeed be the case if your algorithm
flips random coins to decide what to do next.

Why have we realized that randomness can be used in computation?
That is, why now? Here is my explanation. I believe the main reason
to be that we have become increasingly comfortable in living with
uncertainty—the uncertainty, I mean, of human survival. Only
after having achieved a good chance of nuclear or ecological disaster
could, for instance, the notion of a proof that has a (controllable)
chance of being false become so readily acceptable. It is true, to be
fair, that nowadays the individual experiences a longer and safer
life; but humanity as a whole stands at greater risk. Science is
primarily a social enterprise. It is this common risk that has paved
the way to accepting previously too daring scientific—and thus
eminently social—concepts. Exciting times indeed, scientifically
and otherwise.

I wish to thank all contributors for pausing to meditate in the
middle of a revolution, making this book possible. Enjoy it.

Silvio Micali
Volume Editor



PSEUDORANDOM GENERATORS

AND COMPLEXITY CLASSES

Ravi B. Boppana and Rafael Hirschfeld

ABSTRACT

This paper explores a notion of computational randomness and its
implications for complexity theory. The probabilistic complexity
class B22 is shown to lie within deterministic subexponential time
if there exist pseudorandom bit generators whose outputs cannot be
distinguished from random strings by polynomial-time statistical
tests. This notion of indistinguishability is shown to be equivalent to
unpredictability by polynomial-time algorithms. Moreover, certain
widely accepted complexity-theoretic assumptions imply the existence
of pseudorandom bit generators whose outputs are unpredictable.

Some of the results included here have been published previously
without proofs; this paper collects the known results, proves them.
and establishes some new related results.

Advances in Computing Research, Volume 5, pages 1-26.
Copyright © 1989 by JAI Press Inc.
All rights of reproduction in any form reserved.
ISBN: 0-89232-896-7
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INTRODUCTION

An understanding of randomness is of great importance to computer
science. Sources of random bits play a key role in cryptography and
the design of probabilistic algorithms, and the notion of randomness
underlies fundamental theoretical questions concerning probabilistic
computation. Though it is difficult to formulate a precise definition
that completely captures the intuitive notion of randomness, it is
possible to describe some of the expected properties of random
sources. Sources that exhibit these properties may be sufficient for

specific applications.
True randomness is not likely to be produced by something as

inherently deterministic as a computer program. Nonetheless, there
are deterministic algorithms, called pseudorandom generators, that
simulate randomness. A pseudorandom generator takes a short
random input, called a seed, and expands it into a longer pseudo-
random sequence. Though the sequences thus produced are not
really random, they may appear random in the sense that they
satisfy desired properties of truly random strings. Important results
can be derived from the existence of a pseudorandom generator
whose output is “random enough.”

A good pseudorandom generator should be difficult to distinguish
from a truly random source. But for any pseudorandom generator
there is a statistical test that recognizes its output: given a sequence
5, the test consists of an exhaustive search for a seed that generates

s. This test is not computationally feasible, however, because it
requires more than polynomial time. A pseudorandom generator is
“random enough” for many practical and theoretical purposes if its
output cannot be distinguished from random strings by statistical
tests with polynomially bounded resources. In exciting recent work.
Blum and Micali [BM] and Yao [Y] show, under certain assumptions.
how to construct such generators.

The recent results about good pseudorandom generators shed
new light on the relationship between probabilistic and deterministic
complexity classes. Probabilistic complexity classes capture the
notion of computation with access to a source of randomness. The

ability of a machine to “flip coins” can potentially increase its
computational power; there are problems that have efficient prob-
abilistic solutions. but for which no efficient deterministic solutions

are known. If good pseudorandom generators exist, however, a
deterministic machine can use their outputs to simulate probabilistic
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Goldreich, Goldwasser, and Micali [GGM] and Luby and Rack-
off [LR] extend the notion of good pseudorandomness to other
types of pseudorandom sources. This paper, however, is concerned
solely with bit generators.

This paper is a collection of results about pseudorandom gener-
ators. Some have been published elsewhere, but many remain
unpublished or appear without proofs. They are presented here
with a consistent notation and provided with proofs. Some new
theorems are also included.

The paper is organized as follows. Section 2 formally defines the
notions of pseudorandom generators and statistical tests. Section 3
shows that the definition of pseudorandom generations is robust.
Section 4 provides a necessary and sufficient condition for the
existence of pseudorandom generators. Section 5 introduces non-
uniform generators and compares them to uniform generators.
Finally. Section 6 shows that the existence of pseudorandom
generators implies that the probabilistic complexity class ZP2 is
contained in deterministic subexponential time.

2. PSEUDORANDOM COLLECTIONS

One key property of random sequences is unpredictability. This
property can be formulated in terms of polynomial-time compu-
tation by considering the predictive ability of an observer with poly-
nomially bounded resources. Shamir [S] described a pseudorandom
number generator for which predicting the next number in the
sequence seems to require more than polynomial time. An even
stronger source of pseudorandomness is a bit generator for which
no bit can be feasibly predicted from the preceding bits.! Pseudo-
random generators unpredictable in this sense were introduced by
Blum and Micali [BM]. Informally, a collection of sequences is
polynomial-time unpredictable if no polynomial-time algorithm,
given the initial segment of a sequence randomly selected from the
collection, can predict the next bit of the sequence with probability
significantly greater than 1/2. Correctly formulated, this notion of
unpredictability is a universal test of randomness with respect to
polynomial-time computation. Theorem 2.1, due to Yao [Y], shows
that no polynomial-time statistical test can distinguish polynomial-
time unpredictable strings from truly random strings of the same
length.

Polynomial-time unpredictability could be formulated either
with respect to uniform computation or nonuniform computation
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This paper adopts the nonuniform circuit model.” It is important to
realize, however, that most of the theorems presented here are true
with respect to uniform models as well, i.e., they remain true if
polynomial-size circuits are replaced by probabilistic polynomial-
time Turing machines throughout the paper. Whenever a theorem
relies on the nonuniformity of the circuit model, the dependence
will be explicitly pointed out.

Pseudorandom sequences are represented as binary strings
throughout this paper. The set of all binary strings of length &amp; is
denoted by Z¥. The notions of probability distribution and Boolean
circuit used here are the standard ones from probability theory and
complexity theory.

DEFINITION. An ensemble S is a sequence {S;}such that S, is a
probability distribution on X*. The random ensemble R = {R,} is
the sequence of uniform distributions, i.e., R(x) = 27% for all
xeXk,

DEFINITION. A polynomial-size family of circuits is a sequence of
circuits C = {C,} such that for some constant d, the circuit C, has
at most k inputs and at most k? nodes.

DEFINITION. Let S be an ensemble. A next-bit test is a poly-
nomial-size family of circuits C such that each circuit C, has i &lt; k
inputs and one Boolean output. Let ©, be the probability that on
input the first { bits of a sequence s randomly selected from S,, the
output of C, equals the (i + 1)st bit of s. The ensemble S passes the
test C if for all constants d and all sufficiently large k,

1 1

Ty sy tga

DEFINITION. A c-generator is a polynomial-time computable
function that maps the k-bit strings into the k¢-bit strings, for some
nteger constant ¢ &gt; 1.

Consider the sequences produced by a c-generator G on all seeds
of a given length k. They will all be of length k°, but most sequences
of length k° will not be included, and, since the same pseudorandom
sequence may be generated by more than one seed, some may occur
more frequently than others. In this way the collection of outputs
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of G on inputs of length k defines a probability distribution on Z¥
In essence, a c-generator is a means of easily (i.e., in polynomial
time) constructing a probability distribution on Z* from the uniform
distribution on Z*. The ensemble that comprises these distributions
is called the ensemble induced by G.

The ensembles induced by c-generators are simple ones, because
they count occurrences of strings. It is convenient to use probability
distributions instead of the collections of strings themselves because
complicated combinatorial arguments can then be replaced by
simpler techniques from probability theory.

A c-generator is a useful source of pseudorandomness if the
ensemble it induces “behaves randomly.” This is formalized in
terms of unpredictability as follows:

DEFINITION. A c-generator is strong if the ensemble it induces
passes all next-bit tests.

It might seem that the constant ¢, which indicates the amount by
which a strong c-generator expands its seed, would determine the
strength or power of the generator, and that a strong c-generator
would be weaker if ¢ were small and stronger if ¢ were large. In fact
it will be shown in the next section that the existence of the

“weakest” strong generator implies the existence of an arbitrarily
“strong” one.

A next-bit test can be viewed asa statistical test. If there is a way
to predict the (i + 1)st bit of a string chosen from some ensemble
S, then it can be used to test whether a given string x is indeed
chosen from S: simply apply the predicting circuit to the first i bits
of x, and check whether the output matches the (i + 1)st bit of x.
This will happen with probability 1/2 if x is truly random, and with
probability at least 1/2 + 1/k? if x is selected from S,.

In general, a statistical test T is an algorithm that on any input
produces either a 0 or 1 as output. The test is said to accept a string
s if it produces a 1 as output when given s as input, and is said to
reject s otherwise. Suppose that an ensemble § is such that for all
but finitely many values of k, the probability that T accepts a string
randomly selected from S, is roughly the same as the probability
that T accepts a string randomly selected from R,.&gt; Then T cannot
practically distinguish the two distributions: the ensemble S passes
the test T. Only after a very large number of experiments can T
distinguish between random picks from S, and random picks from
R,.
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Of course, the ensemble induced by a c-generator cannot pass all
tests. The next theorem will show, however, that the ensemble
induced by a strong c-generator will pass all “simple” tests, i.e.,
those computed by polynomial-size families of circuits.

DeriniTiON. If C, is a circuit with k inputs and 1 output, and S
is any ensemble, define C,(S) to be the probability that C, accepts
a string randomly chosen from S,.

The probability that a circuit C, accepts a string randomly chosen
from S, is just the sum of the probabilities of the strings of length
k that C, accepts. Alternatively, it can be thought of as the fraction
of strings that C, accepts in the collection represented by S,.

DEFINITION. A polynomial-size statistical test is a polynomial-size
family of circuits. An ensemble S passes the test T = {T,} if for
every constant d and all sufficiently large k,

| 7,«(S ) — T(R) | &lt; 1
4

We now give a proof of the aforementioned theorem of Yao.

THEOREM 2.1. An ensemble S passes all next-bit tests if and only
if it passes all polynomial-size statistical tests.

Proof. A generalization of this theorem is proved by Goldreich,
Goldwasser, and Micali [GGM]. The proof included here is similar
to the one given by Trilling [T], with some simplifications.

First, some notation is needed. If x is a string of length k, let x,
denote the ith bit of x and let x; ;; denote bits i through j of x,
where 1 &lt;i&lt;j&lt;k.

Suppose S fails some next-bit test C. Then there is a constant d

such that for infinitely many k, the circuit C, can predict the
(i + 1)st bit of a sequence randomly selected from S, with probability
at least 1/2 + 1/k?, for some i &lt; k. The circuit family C is used to
build a statistical test 7 as follows: on input x of length k, the test

T, runs C;, on xy; _;. If the output matches x;,thenT, outputs a
l; otherwise it outputs a 0. Now if xe S,, then T, accepts with
probability at least 1/2 + 1/k%, but if x is a random k-bit string, then
T, accepts with probability 1/2. Hence

1 1 1
I.(S) — T,(R) p tT 3

-

y

and so S fails the statistical test T
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Conversely, suppose S fails a statistical test T. Then | 7,(S) —
T,(R)| = 1/k“, for some constant d and all k in some infinite set K.
Choose keKand without loss of generality suppose T(S) —
T.(R) = 1/k. For 0 &lt; j &lt; k. let p; be the probability that T} accepts
x1. ;1¥, where x is a string chosen randomly from §; and y is a
string of k — j random bits. Note that p, = T(R) and p, = T,(S).
By the pigeonhole principle, there is an i between 0 and k — 1 such
that

7 —
ay Di: Pn. k?

4

Ld+1

The following probabilistic polynomial-time algorithm 4 can
predict the (i + 1)st bit: on input x; _;, the algorithm A flips k — i
coins and appends the random bits obtained to its input. It then
runs 7, on this extended sequence. If T, accepts, then 4 outputs the
bit that it randomly chose for the (i + 1)st position. If T rejects,
then A outputs the complement of this bit. The effect of this strategy
is to transfer the advantage of the statistical test to the prediction
of the (i + 1)st bit.

Let g be the probability that 7, accepts y = x, ;;%;,,r, where x
is randomly chosen from S; and r is randomly chosen from R, _;_,.
In other words, y is the first i bits of a string randomly selected from
S:, followed by the wrong bit, followed by k — i — 1 random bits.
Notice that

_ Pini tq
Di = 9 .

The randomly chosen (i + 1)st bit is equally likely to be correct as
incorrect. The probability that 4 is correct is thus one-half the
probability that a correct bit is maintained plus one-half the prob-
ability that a wrong bit is changed. i.e..

Pr(4 is correct] = 1p, + 1(1 — gq)

Hpi +1 — 2p — pi}

1 + pq — 13
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This probability is over both the i-bit prefixes and the (k — i)-bit
extensions. For any particular extension z, there is some probability
(over just the prefixes) that A is correct when it extends its input
with z. The probability (over both prefixes and extensions) that 4
is correct is just the average of these 2¢~/ individual probabilities.
There must be at least one extension z whose individual probability
is greater than or equal to the average. Hence 4 can be made
deterministic if it is given z as well as i as input.

In general, there seems to be no efficient way to compute i or z

from k. Here is where the nonuniformity of the circuit model is
exploited. Since A4 clearly runs in time polynomial in k, it can be
converted into a polynomial-size circuit family C with the appropri-
ate i and z hardwired into each circuit C,, for all k€ K. This yields
a next-bit test that can successfully predict S. Hence S fails some
next-bit test. OJ

This theorem demonstrates the equivalence of a general notion of
randomness, based on passing all statistical tests, and a specific one,
based on unpredictability. Section 4 will show how to construct
unpredictable generators, based on a complexity-theoretic assump-
tion. Because unpredictability implies passing all statistical tests,
pseudorandom generators that are random in a very general sense
with respect to polynomial-time computation are therefore con-
structible, under the same assumption.

3 ROBUSTNESS OF STRONG GENERATORS

One application of Theorem 2.1 is to show that the definition of a
strong c-generator is robust. Specifically, the existence of a strong
c-generator is independent of the particular constant ¢. This fact
was pointed out by Goldreich and Micali [GM].

THEOREM 3.1. Let ¢, and ¢, be integer constants greater than 1.
If there exists a strong c,-generator, then there also exists a strong

c,-generator.

This theorem is a direct consequence of the following lemma
about extenders. An extender is a function that captures what is in
a sense the weakest notion of a pseudorandom generator. Every
nseudorandom generator takes a random seed and extends it into
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a longer pseudorandom sequence. An extender outputs a sequence
that is just one bit longer than its input.

DEFINITION. An extender is a polynomial-time computable
function that maps k-bit strings to (k + 1)-bit strings.

Notice that an extender induces an ensemble in the same way that
a c-generator does. Analogously, an extender is strong if the
ensemble it induces passes all next-bit tests.

LEMMA 3.2. For all ¢ &gt; 1, there exists a strong extencer it and
only if there exists a strong c-generator.

Proof. One direction is immediate. Any strong c-generator can
be easily converted into a strong extender simply by throwing away
all but the first k + 1 bits of the output it produces from inputs of
length k. This extender is guaranteed to be strong because if it were
predictable by some next-bit test, the same next-bit test could
predict the same bits of the full output of the c-generator, contra-
dicting the assumption that it is strong.

Conversely, let G be a strong extender, and let ¢ be some constant.

Let head x denote x, and let tail x denote x, ,,.;- A strong
c-generator G’ can be defined inductively as follows:

G(x) = b(x)b,(x)---b,.(x

where

a(x) = x

and for i &gt; 0,

a, (x) = tail G(a.(x))

b,. (x) = head G(a,(x)).

What is happening here is that the seed is fed into G, the first bit of
the output sequence is plucked off and the remainder is fed back
into G. This process is repeated until k° bits have been stripped
away, and these bits form the output of G’. This process could
really terminate after k° — k bits have been generated. using the
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remainder at this point, a,._,(x), as the last k bits, but going all the
way to k¢ simplifies the proof.

The generator G’ clearly extends a string of length k to one of
length k°, and clearly runs in polynomial time. It remains only to
prove that it is strong. The proof is by contradiction; assuming that
G’ is not strong leads to the conclusion that G is not strong either,
which violates the hypothesis.

Let S be the ensemble induced by G and S’ be the ensemble
induced by G’. Suppose S’ fails some statistical test 7. Then there
exists some constant d such that | 7.(S") — T,.(R)| = 1/k*, for
infinitely many k. Pick such a k, and without loss of generality
assume that T,.(S") = T,.(R) + (1/k%).

For 0 &lt;i &lt; k¢, define z,(x) = yb (x) b,(x)"-* b,._,(x), where x
is a random k-bit string and y is a random i-bit string. Let p,
denote the probability that 7" accepts z;(x). Note that z,(x) = G'(x)
and that z,.(x) is a random k‘-bit string, so p, = T,.(S’) and
Pw. = T,.(R). Hence, by the pigeonhole principle, there exists an
such that p, — p,., = 1/k“*°.

Now from the circuit 7,., a probabilistic algorithm 4, can be
constructed that distinguishes the outputs of G of length k + 1. On
input x of length k + 1, the algorithm A, flips i coins to generate a
random i-bit string y, and then runs 7, on the string

w = y- head x - b (tail x) - b,(tail x)---b,._,_,(tail x).

accepting if and only if T, accepts. Notice that if x = G(a), for
some a € X*, then the part of w that follows y coincides with the first
k¢ — i bits generated by a. Specifically.

head x = b,(a)

b(tail x) = b,(a)

h,(tail x) = b;(a)

bie_,_,(tail x) = b,._,(a)

Hence if x is chosen at random from S, ;, the probability that 4,
accepts x is p;. On the other hand. if x is chosen at random from
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R.,, then head x is just a random bit that blends with y, so the
probability that 4, accepts x is p,,,. Since p, and p,,, differ by at
least 1/k°“*&lt;, the algorithm A, distinguishes S,,, from R,_,. As in
the proof of Theorem 2.1, the probabilistic algorithm 4, can be
converted into a deterministic circuit C,, with the value of i and a
single choice of the random bits built in. Such a circuit can be built
for infinitely many values of k, and the resulting circuits constitute
a polynomial-size statistical test that S fails. Therefore G is not
strong, a contradiction. 0

Because any strong generator can build any other, strong
c-generators will be called simply “strong generators’ or “strong
bit generators’ except in contexts where the particular constant c is
important. Strong generators are also called “CSPRB generators”
(cryptographically strong pseudorandom bit generators) and “CSB
generators” in the literature.

1. CONSTRUCTING STRONG GENERATORS

Randomness and efficient computability are in some sense opposite
notions. Intuitively, strings that are hard to recognize are random,
and strings that are easy to recognize are not. Theorem 2.1 ensures
that if there are strong generators, then their outputs are computa-
tionally difficult to recognize. Note that this means that a strong
generator is an easily computable function that is difficult to invert.
This section establishes the reverse relationshio: that if there are

zasily computable functions that are hard to invert, then they can
be used to construct strong generators.

If 2 = AZ, there can be no strong generators. A nondeter-

ministic machine can distinguish pseudorandom strings from ran-
dom ones by nondeterministically guessing the seed that generates
any given string and then verifying that it in fact does. If this can
be done deterministically in polynomial time, then it forms the basis
of a polynomial-size statistical test that the generator fails.

The construction of a strong generator appears to require an even

stronger assumption than 2 # A'#?. Blum and Micali [BM]
proposed a set of conditions sufficient for strong bit generation;
they also show that their conditions are satisfied if the discrete
logarithm problem is intractable. Other researchers [ACG. BCS,
BBS, GMT, VV, Y] have shown that these conditions can be met
if other specific number-theoretic permutations are one-way.
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Blum and Micali’s conditions imply the existence of a one-way
permutation. Yao [Y] showed conversely that the existence of any
one-way permutation, suitably formulated, is sufficient for meeting
Blum and Micali’s conditions, and hence for building a strong
generator. Very recently, Levin [L] found the minimal conditions
for constructing a strong generator. He shows that the existence of
a certain type of one-way function (not necessarily a permutation)
is both necessary and sufficient for strong pseudorandom bit
Zeneration.

DeriNITION. Consider a length-preserving function f; let fV)
denote its jth iterate. The function f is one-way on its iterates if

i. It can be computed in polynomial time, and
2. There is a constant d such that for all polynomial-size families

{Cy} of circuits with k inputs and k outputs, for all sufficiently
large k and all 1 &lt;j &lt; k?**, we have

Pr [C(fFru) (x) #f(j- 1) (x =&gt; 1

Zk

where x is chosen uniformly from Z*

Levin’s proof uses the concept of isolation explained next. Con-
sider a function b mapping Z* into Z, and a function f mapping Z*
into Z*. The function b is (p, T)-isolated from f if every circuit 4
with k inputs and size at most T satisfies

IPr[A(f(x)) = b(x)] — 1/2] &lt; p/2.

where x is chosen uniformly from Z*. Isolation says that b(x) is
somewhat hard to predict given f(x).

Levin proves the following result on the effect of exclusive-or on
isolation. Let @ denote the exclusive-or operation.

TueoreM A.3. If the functions b,(x;) are (p, T)-isolated
from f(x;) for all 1&lt;i&lt;n, then for every ¢&gt; 0, the func-
tion b,(x;) @® by(x,) ® --- ® b,(x,) is [p" + ¢,e*(1 — p)*T]-isolated
from f,(x,) f2(x,) + fu (X,)-

The proof of this theorem is technical and is given in the appendix.
Levin’s result on the existence of strong generators will now be
proved.
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THEOREM 4.1. There is a function that is one-way on its iterates

if and only if there is a strong generator.

Proof. (&lt;=) Suppose there is a strong c-generator G, with induced
ensemble S. Consider the function f mapping k¢-bit strings to k¢-bit
strings defined by

f(x) = G(xp..)

We will show that f is one-way on its iterates, with d = 1.
Suppose that 1 &lt;j &lt; k’. Let {C,} be a polynomial-size family of
circuits with k¢ inputs and k¢ outputs.

Consider the statistical test T; that accepts an input x if and only
if C,(fY(x)) is not equal to fU~"(x). Since S passes all statistical
tests, for every constant d and all sufficiently large k, we have

(T(S)—T,(R)|&lt;7.

The definition off implies that T(S) = T,,,(R). Thus, by summing
over j, for every constant d and all sufficiently large k, we have

T/(R)—Ty(R)|&lt; 1.

We now show that T(R) is large. The value of C,(f(x)) depends
only on the first k bits of x. Thus, for a given k-bit prefix, at most
one (k° — k)-bit extension will satisfy C,(f(x)) = x. Thus T,(R) is
at least 1 — 2=¥. Combining this result with the last equation of
the previous paragraph shows that for every constant d and all
sufficiently large k, we have

I,(R) &gt; 1 _ AF—k
&lt; 1

4-5

Hence the function f is one-way on its iterates.
(=) Suppose that the function f is one-way on its iterates. Let d

be as promised in the definition of one-way on iterates.
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Assume that k = 2’ for some /; the proof can be easily modified
if this is not true. Let p be any natural map from X’ onto the integers
(1,2,...,k}. For xe ZT" let

bix(x) = the p(x, xyn)-th bit cf 77x. 1)

g(x) = FO a) Xr. rey

Because the function fis one-way on its iterates, the function b; is
(1 — 2/k™*', k*)-isolated from g;,, for every constant e and all
sufficiently large k.

We now amplify the isolation. Write y = xX," X,4.,, Where
sach x; is in T**'. Define

ck(3) = ® by()
hi(y) = 8k (x ) 8x (xy) “Ek (Xgas2)-

Applying Theorem A.3 shows that cj, is (e7* + ¢ 46’7?)
isolated from 4; ,, for every constant e, all sufficiently large k, and
all ¢ &gt; 0.

Consider the bit generator G mapping strings of length
k4*2(k + I) to strings of length k** defined by

G(y) = Crave (¥)- tt ci () ci x(y)

Because f is computable in polynomial time, so is G. It remains to
show that G is strong. A next-bit test is of the form: given

Cravex(¥) Cu1e(Y),try to predict ¢;,(y). Since Cpasy(¥),.-.,
¢i+1.4(¥) can be computed from 4,(y) in polynomial time, it suffices
to show that predicting ¢;,(y) from h;,(y) is difficult. But this is
precisely what the isolation obtained above shows. O

5. UNIFORM AND NONUNIFORM GENERATORS

A strong generator is a uniform algorithm that expands a random
seed into a longer pseudorandom sequence. But consider instead a
family of circuits that does the same thing, with each circuit
working for a different input length. Such a polynomial-size
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family of circuits is called a nonuniform strong generator. Even if the
circuit family is polynomial-size, it does not necessarily constitute
a strong generator, for it may be very inefficient (or even impossible)
for any algorithm to construct the appropriate circuits.

Polynomial-size families of circuits compute the same functions
as deterministic polynomial-time algorithms with polynomial-length
advice, where the same advice string is used for all inputs of a given
length. (A circuit family can be simulated by a universal algorithm
that is given a description of the corresponding circuit as advice; an
algorithm with advice can be simulated by a circuit family by
hardwiring the advice strings into the circuits.) This yields an
alternate definition of a nonuniform generator as a polynomial-time

algorithm with polynomial-length advice.

THEOREM 5.1. Let ¢, and c, be integer constants greater than 1.
If there exists a nonuniform strong c,-generator with advice of
length k“, then there also exists a nonuniform strong c,-generator
with advice of length k.

Proof. In the proof of Lemma 3.2, the outputs of the extender
were fed back into the extender in order to lengthen the sequence
produced. The same technique works for nonuniform extenders.
Since the extender is always given strings of the same length, the
same advice can be used each time. The resulting generator still runs
in polynomial time with polynomial-size advice. Hence if a nonuni-
form extender exists, then so does a nonuniform c-generator, for all
¢ &gt; 1. The theorem follows. M

As a potential example of uniform versus nonuniform generators,
consider the discrete logarithm problem, upon which the first con-
structions (depending on complexity-theoretic assumptions) of
strong generators were based.

DEFINITION. Let p be a prime. The set of integers {1,...,p — 1}
forms a cyclic group, denoted Z*, under multiplication modulo p.
Given a prime p, a generator g for Z¥, and an element y of Z;, the
discrete logarithm problem (DLP) is to find the unique element x of
Z* such that y = g*mod p.

The discrete logarithm problem seems to be computationally
difficult. Although it is not known to require superpolynomial
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time, the best known algorithm, due to Adleman [A], takes time
20Wloerlegloer) (On the other hand, its inverse, the discrete exponential,
can be computed in polynomial time (by repeated squaring), and is
hence a good candidate for a one-way function.

Two different intractability assumptions have been proposed for
he DLP, one by Blum and Micali [BM] and the other by Yao [Y].

ASSUMPTION 1. (Blum, Micali) Let C = {C,} be any poly-
nomial-size family of circuits. Then C computes the discrete log-
arithm problem for less than a fraction 1/k¢ of the primes of length
k for all ¢ and all sufficiently large k.

AssumpTION 2. (Yao) Let /(p) be the size of the smallest circuit
that solves the DLP for the prime p, and let L(k) be the maximum
value of /(p) for all primes of length at most k. Then L grows
asymptotically faster in k than any polynomial.

Blum and Micali [BM] prove that Assumption 1 is sufficient for
the construction of a strong generator. Assumption 2, though
sufficient to demonstrate the existence of a nonuniform strong
generator, appears inadequate for the construction of a uniform
one. Some consequences of the existence of uniform and nonuniform
strong generators are discussed in the next section.

6. STRONG GENERATORS AND COMPLEXITY CLASSES

The preceding sections defined strong pseudorandom generators
and showed how to construct them from a one-way function; this
section will show how to use strong pseudorandom generators to
simulate probabilistic computation deterministically. Specifically,
the successive bits output by a generator are used to determine the
outcome of successive coin flips in the computation of a probabilistic
machine. The theorems in this section use this simulation technique
to relate deterministic and probabilistic complexity classes.

DEFINITION. A probabilistic Turing machine is a special case of
a nondeterministic Turing machine in which every step of the
computation has either one or two successors. In the case of two

successors, the next step is determined by flipping a coin. Without
loss of generality, on any input all branches of the computation are
assumed to have the same number of coin flips. The probability that
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a machine M accepts an input w, denoted Pr[M accepts w), is the
number of accepting branches divided by the total number of
branches.

A probabilistic Turing machine that runs in time #(n) can be
thought of as a deterministic machine with a special one-way
read-only tape of length ¢(n). The machine reads a new bit from this
tape whenever it wants to flip a coin. The probability of accepting
an input w of length » is the fraction of all ¢(n)-bit strings that cause
the machine to accept when started with that string on its special
tape and w on its input tape.

DEFINITION. The probabilistic complexity classes # and PP
are defined as follows (here M refers to a polynomial-time prob-
abilistic Turing machine):

RP
weL=Pr[M accepts w] &gt;1

= CE w¢ L = Pr[M accepts w] = oJ

weL=Pr[Macceptsw]&gt;?
A”? =(L|IM

wé¢ L = Pr[M accepts w]

It is easy to see that # = BPP. Let LeAbe accepted by some
machine M. A machine M’ simulates M with input w by running
it twice and accepting if either run accepts. If w¢ L, the probability
of acceptance remains 0. If we L, the probability of rejection is
squared, so the probability of acceptance is boosted to at least 3/4.
Hence Le P22.

Yao shows that under his assumption for the discrete logarithm
problem, the class Z is contained within deterministic subexponen-
tial time. The proof uses the output of DLP-based generators to
simulate coin tosses. Intuitively, a polynomial-time indistinguish-
able generator should work equally well for any reasonable poly-
nomial-time probabilistic complexity class, so one might expect the
result to hold for #22 as well. This is of especial interest because
some important problems in 222 are not known to be in # [BMS].

Although it seems difficult to extend Yao’s proof to B22, the
stronger result does follow from Blum and Micali’s intractability
assumption. In fact. the following theorem shows that a strong
generator can be used to recognize #2 languages in deterministic
subexponential time. This establishes the result in its full generality.
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since it depends not on the DLP but on the existence of any strong
generator, of which DLP-based generators are only one instance. In
particular, the generators produced from one-way functions in
Levin's theorem satisfy the hypothesis. The proof distills the essen-
tial ideas of Yao’s proof.

THEOREM 6.1. If there exists a strong generator, then

BP? &lt; () DTIME(Q2").
e&gt;0

Proof. Choose an integer ¢ &gt; 1 and let ¢ = 1/c. Let Le 82%
be accepted by some probabilistic machine M; in time »n’/, where
n is the length of the input. By Theorem 3.1, there is a strong
(cj)-generator G that runs in time k“, for some d (here k is the length
of the seed). A deterministic machine M can simulate M; by using
pseudorandom bits generated by G instead of coin flips to determine
the computation path. The machine M repeats the simulation for all
of the n/-bit pseudorandom sequences, i.e., for all of the n®-bit
seeds, and accepts if and only if more than half of them lead to
accepting computations of A,. This takes time

(27) (n°) (n’),

.e., the number of seeds, times the time to expand a seed into a
pseudorandom sequence, times the time to simulate M; on a par-
ticular sequence. The simulation may entail some overhead, but this
is negligible.

Suppose L(M) and L are unequal. If they differ on only finitely
many strings, then M can be patched without increasing its asymp-
totic running time. Otherwise, for infinitely many k there is a string
y, of length k on which they differ. For each y, there is a circuit C;
with k/ inputs and size k® (for some constant b independent of k)
that simulates M, on y, using its inputs to determine the probabilis-
tic branches. The strings y, may not be easy to determine, so it is
necessary to take advantage of nonuniformity and build them into
the circuits. Let C = {C,}. Then C is a polynomial-size statistical
test that G fails, since, for arbitrarily large k, either

G03) n=fyel), fy ¢L).CS) &lt; (if y,e L) of CS) &gt; b Gf ye¢ L)
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In either case,

|C(R) — C(S)] &gt; 4.

Hence L(M) = L, and LeDTIMEQ2"n**/) c DTIMEQ2"™).
Because ¢ can be chosen arbitrarily large, ¢ can be made arbitrarily
small, and therefore Le (),., DTIME(2"™). O

A nonuniform generator yields the following weaker result:

THEOREM 6.2. If there exists a nonuniform .strong generator
then

2 &lt; () DTIMEQ2").

Proof. Choose an integer ¢ &gt; 1 and let ¢ = 1/c. Let Le Z be

accepted by some probabilistic machine M, in time n/, wheren is
the length of the input. The nonuniform strong generator can be
computed by a polynomial-time algorithm with advice of length k“,
for some d. By Theorem 5.1, there is for every b &gt; 1 a nonuniform

strong b-generator that can also be computed by an algorithm with
the same advice. The deterministic simulation of M, is similar to
that of the previous theorem except that since the good advice is not
known, all advice strings of the appropriate length are tried. Since
there are 2%’ advice strings, it is necessary only to choose b large
enough so that seeds of length n°“ are sufficient to generate sequences
of length n/, i.e., choose b &gt; cdj. The simulating machine accepts if
it finds any accepting computation.

The rest of the proof is the same as before except that the
probabilities of acceptance are changed to fit the definition of #4.

MM

it is not known which circuit of a given size is part of a nonuniform
strong generator, but only that at least one of them is, so all of them
are tried. Since it is necessary only to find a single accepting path
of the computation, a bad generator cannot hurt even if it generates
only rejecting paths. The one-sided error of # ensures that bad
generators do not affect the outcome.

By contrast, the existence of a nonuniform strong generator
seems insufficient to show deterministic containment for the more
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general class ZP%. Because BPP is defined to have two-sided
error, a simulating machine much check that more than half of the
paths accept. On inputs that should be accepted, the spurious
generators may generate too many rejecting paths, and on inputs
that should be rejected, they may generate too many accepting
paths. The crucial difference is that, unlike for £, a single witness
does not suffice; the results must be weighed, and the bad generators
can disrupt the balance.

APPENDIX: THE ISOLATION THEOREM

This appendix shows how to amplify functions that are somewhat
hard to compute to obtain new functions that are almost everywhere
difficult to compute. The amplification is accomplished by taking
the exclusive-or of independent copies of the original function. This
technique was first developed by Yao [Y]; see also Goldwasser [G].
Levin [L] proves that exclusive-or is an even better security amplifier
than previously known.

Given a function b from Z* to Z, say that b is (p, T)-isolated
if every circuit 4 with k inputs and size at most T satisfies
| Prid(x) = b(x)] — 1/2] &lt; p/2, where x is chosen uniformly from
£¥. The following lemma due to Levin shows that taking the
exclusive-or of two functions essentially multiplies the isolation.

Lemma A.1. If the function b,(x,) is (p,, T))-isolated and the
function b,(x,) is (p,, T,)-isolated, then for every ¢ &gt; 0, the function
hi(x,) @ by(x,) is (p,p, + &amp;, T)-isolated, where T = min(T,,&amp;’T,).

Proof. Suppose that the function b,(x,) is (p,, T, )-isolated and
that the function b,(x,) is (p,, T,)-isolated. Given ¢ &gt; 0, set T =
min(T,, ¢’T,). Consider a circuit A(x, x,) of size at most T. We will
show that A can predict b,(x,) ® b,(x,) with advantage no better
than p, p, + ¢. For a fixed x,, view 4(x,, x,) @® b,(x,) as a predictor
for b,(x,). Since b,(x,) is (p,, T,)-isolated, every x, satisfies

Pr{A(x,,x;) = by(x))®by(x,)]—1/21&lt;py/2,

where x, is chosen uniformly from the domain of b,.
Consider the following algorithm L(x,) for predicting b,(x,).

The values of y,, y,. ..., y, are chosen uniformly from the domain
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of b,, and the real number ¢ is chosen uniformly from the interval
[c,d], where ¢ = (1 — p,)n/2 and d = (1 + p,)n/2.

Algorithm L(x,)
sum|{1&lt;i&lt;n:Ay,x)@b(y)=1}
if sum &gt;t

then L(x,) «1
else L(x,) «0

end algorithm

The algorithm L can be implemented as a circuit of size
nT + O(n). How well does L(x,) predict b,(x,)? We have

PrilL(x,) = by(x,)] = Pr[by(x,) = 1 A sum &gt;]

+ Pr[by(x;) = 0 A sum &lt; t]

Pr[b,(x,) = | A sum = t]

+ Pr[by(x,) = 0 An — sum: n

Since ¢ is symmetric about »n/2, we obtain

Pr[L(x,) = b(x,)] = Pr[s =&gt; ¢].

where s = [{l &lt;i&lt;n: A(y,x) = bi(y) @by(x)}|.
Divide the possible values of s into three intervals: s &lt; c, § = d,

and ¢ &lt; s &lt; d. Given a statement r, let 6(r) equal 1 if r is true, and

equal 0 otherwise. Write E[-] for expected value. Splitting into the
three intervals yields

Pris &gt; 1] = E[(1)- 6(s &gt; d)]

e](5) ac &lt;s&lt;d)pn

+ E[(0)* 6(s &lt; 0)].

which upon rearranging gives

Pris &gt;t] = B=
pin |

 S$ —C
Ell ——]:d0(s=&gt;dI = s )
rl (5-9) ss &lt;apn
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Let 7,, I,, and I; denote the first, second, and third terms, respectively,
of the right-hand side of this equation. We can write I, as follows:

1 1 —p,
= —E[s] — —£1

: on 1s] 2p,
1 i 1

— —Pr[A(x,, = b,(x b —— t=P: r[A(x,, x,) (x)® by(x,)] 2, 2

- 5 (Pel (x, 3) = bi(x,) ®by(x,)] — 1).

where x, and x, are chosen uniformly from the domains of b, and
b,. respectively.

We now show that the terms 7, and I, are small in absolute value.
Rearranging I, shows that

I, = = Els —d)o(s &gt;)

where the expectation is taken over random x, and random y,, y,,
.., ¥,- Rearranging I, gives a similar expression, so by symmetry

it suffices to estimate 7,.
Consider a fixed value of x,. Let p equal Pr[d(x,,x,) =

b,(x,) ® b,(x,)], where the probability is taken over x,. The begin-
ning of the proof showed thatpisbetween (1 — p,)/2 and (1 + p,)/2.
The random variable s is the sum of # independent Bernoulli trials,
each trial having probability p of success, i.e., the random variable
s has a binomial distribution. We are trying to estimate

El(s —d)d(s = d)]

This expectation is maximized when p is as large as possible, so to
bound the expectation from above, we shall assume that p equals
(1 + p,)/2. The expression E[(s — pn) é(s = pn)] can be evaluated in
closed form; backward induction on k shows that

n—1
El(s—pn)d(s=k)]=apra—pytik
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Estimating the right-hand side by Stirling’s formula yields

1— 1 —piEl(s — pn) d(s = pn)] &lt; Jon = Jos

This bound was proved for every fixed x,, so by averaging, the
bound remains true for a random x,.

The preceding analysis shows that | [,| is bounded by

LicL[dzpon1Lop
pin 8n pi N 8mn

The term | I;| has the same upper bound. Since I, &lt; 0 and I; &gt; 0,
the expression | I, + I;| is also bounded by this quantity. Recall the
equation

Pril(x,) = by(x,)] = I, + I, + I,

From the above remarks. we have

1 —121&lt;IPL(x) = bye) — 12] +2 [L221
p\ 8nn

Since b,(x,) is (p,, T,)-isolated, we have

PriL(x,) = by(x,)] — 1/2| &lt; 1p,

provided that nT + O(n) &lt; T,. Combining the last two inequalities
yields

ya 12] &lt; ip, + + 1-pi
Dp, 87n

Using our previous expression for I,., we obtain

| Pr[A(x,,x,) = bi (x) ®b, (x) = 1/21 &lt; py|I,—1/2]

L—piAppt [LE
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where x, and x, are uniform over the domains of 4, and b,, respect-
ively. By choosing n = 1/¢?, the advantage becomes less than
pp, + &amp;. Since this choice of n satisfies nT + O(n) &lt; T,, we are

done. 1

Actually, for the proof of Levin’s theorem on strong generators,
a more general notion of isolation is needed. Consider a function b
mapping Z* into Z, and a function f mapping Z* to Z*. Say that b
is (p, T)-isolated from f if every circuit A with » inputs and size
at most T satisfies |Pr[4(f(x)) = b(x)] — 1/2] &lt; p/2, where x is
chosen uniformly from Z*. Thus b(x) is hard to predict given f(x).
The following result is for the more general isolation.

LEMMA A.2. If the function b,(x,) is (p,, T))-isolated from
fi(x,) and the function b,(x,) is (p,, T,)-isolated from f,(x,), then
for every ¢ &gt; 0 the function b,(x,) @ b,(x,) is (p,p, + &amp;, T')-isolated
from f,(x,)f&gt;(x,), where T = min(T,,&amp;’T,).

Proof. The proof is almost word-for-word the same as that of
Lemma A.l. The only modification required is to replace 4(x,, x,)
with A(f,(x,), f2(x,)). Hl

We can now prove Levin’s isolation theorem, which shows that
taking the exclusive-or of many functions dramatically increases the
isolation.

I'ueoreM A.3. If the function b,(x;) is (p, T)-isolated from
f.(x;) for all i between 1 and n, then for every ¢ &gt; 0 the function
bi(x) ®by(x) DD b,(x,) is [p" + &amp;,e(1 — p)*T]-isolated from
fix) fo(x) f(x).

Proof. Using Lemma A.2, an induction on n will show that the
function b,(x,) @ b,(x,) ® --- ® b,(x,) is (g,&amp;’T)-isolated from
fix) f(x) + fu(x,), where g equals p" +e (L +p +p’ +--+
p"~%). In the induction, apply Lemma A.2 with @r] b.(x,) and
b,(x,) replacing b(x,) and b,(x,), respectively. Summing the
geometric series for g gives ¢ &lt; p" + ¢/(1 — p). The result follows by
replacing ¢ with ¢/(1 — p). O
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NOTES

. Blum and Micali [BM] point out that the individual bits of a number may

he predictable even if the number itself is unpredictable.
2 A circuit is a directed acyclic graph. Nodes with indegree 0 are called inputs

and nodes with outdegree 0 are called outputs. Every node that is not an input is
labeled with either A or v. A circuit with 2; inputs and k outputs computes a
function from X’ to =¥ in a natural way: given xe Z’, the inputs are given values
squal to the bits ofxandtheir complements, each A gate is given a value equal
to the Boolean product of the values of the nodes directed into it, and each v gate
is given a value equal to the Boolean sum of the nodes directed into it. The values
of the outputs constitute the value of the function, which is well defined because
the circuit has no cycles.

3 There is a suggestive, thought not entirely accurate, way to visualize this
criterion. Picture the pseudorandom sequences of length k produced by a generator
as points scattered throughout the set of all strings of length k. Now a statistical
test is a line that partitions the entire set into two categories, those strings that it
accepts and those that it rejects. This line also partitions the pseudorandom strings.
Passing the test means that the pseudorandom points are divided in roughly the
same proportion as the entire set. The inaccuracy here is that the same pseudo-
random point may occur more than once, but the picture is otherwise correct.
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=xistence of monotone Boolean formulas of size O (n&gt;?) that compute
the majority function of n variables. In this paper, we prove that the
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I. INTRODUCTION

Many researchers have used the following method, which I call the
amplification method, to show that particular Boolean functions
have small Boolean circuits: start with probabilistic Boolean circuits
that approximately compute the function; combine independent
copies of such circuits to form probabilistic circuits with exponen-
tially small probability of error; by a probabilistic argument, show
the existence of small deterministic circuits that exactly compute the
function. Notice that the amplification method does not give an
explicit construction of the circuits, since it uses a probabilistic
argument.

Using the amplification method, Adleman [A] showed that every
language in the probabilistic complexity class RP has polynomial-
size Boolean circuits. Bennett and Gill [BG], also using the amplifi-
cation method, extended Adleman’s result by showing that every
language in the complexity class BPP has polynomial-size circuits.
Ajtai and Ben-Or [AB] used the amplification method to show that
probabilistic constant-depth circuits can be simulated by determin-
istic constant-depth circuits, with only a polynomial increase in size.

In an elegant paper, Valiant [V] applied the amplification method
to prove the existence of monotone Boolean formulas of size O(n”)
computing the majority function of n variables. Valiant’s result is
still the best upper bound known for monotone formulas comput-
ing majority. The question we study in this paper is whether or not
Valiant achieved the best possible amplification. Our main results
show that Valiant’s amplification is indeed best possible, thus demon-
strating a limit to the power of the amplification method. To state
our results precisely, we need a few definitions.

DerNITIONS. Given a Boolean function f from {0, 1}" to {0, 1},
define its amplification function A, from [0,1] to [0, 1] as follows:
A/(p) = Pr{f(x;,X;,...,X,) = 1], where x;,x,,...,Xx, are inde-
pendent random variables that equal 1 with probability p and equal
0 with probability 1 — p. A monotone Boolean function f amplifies

(p,q) to (p,q) if A(p) &lt;p and A,(q) = q’.

The nice feature of amplifiers is that when composed with prob-
abilistic formulas that approximately compute a function, they can
provide much better approximations. We make this observation
more precise in the simple lemma below.
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DEFINITIONS. A probabilistic Boolean formula is a random vari-
able with values ranging over Boolean formulas. A probabilistic
Boolean formula F is a ( p, 9) approximation of a Boolean function
g of n variables if for every string x in {0, 1}".

(1) g(x) = 0 implies Pr[F(x) = 1] &lt; p, and
(11) g(x) = 1 implies Pr{F(x) = 1] &gt; gq.

Lemma 1.1. Suppose that F is a monotone Boolean formula of s
variables that amplifies (p,q) to (p’,q’), and that the independent
probabilistic formulas Gy, G,, ...,G, are (p,q) approximations of a
Boolean function h. Then the composed formula Fo (G,,G,,...,G;)
isa (p,q) approximation of h.

Using this connection between amplifiers and probabilistic
approximations. Valiant [V] derived his O(n’?) upper bound
for majority. Valiant implicitly constructed the following two
amplifiers.

DEFINITION. A read-once formula is a monotone formula in
which every variable appears at most once.

THEOREM 1.2.

(a) For every m 2 1 and fixed 0 &lt; p &lt; 1, there is a read-once

formula of size O(m") that amplifies (p,p + 1/m) to (1/4, 3/4),
where oa. = log (2)/log(/5—1) = 3.27.

(b) For every m = 2, there is a read-once formula of size O(m*)
that amplifies (1/4,3/4) to 2°",1 — 27™).

Our first theorem is a lower bound that shows that part (a) of
Valient’s construction is best possible up to a constant factor.

THeoreM 1.3. If0&lt; p &lt; 1 is fixed and m &gt; 1, then every read-
once formula that amplifies (p,p + 1/m) to (1/4, 3/4) must have size
Q(m™), where a = log (2)/log(/5 — 1) = 3.27.

Our next result is an upper bound that generalizes part (b) of
Valiant’s construction, by constructing good amplifiers from
(1/4,3/4) to (2=™.1 — 2-m). We also prove a lower bound showing
that our construction and part (b) of Valiant’s construction are best
possible up to a constant factor.
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THEOREM 1.4. Suppose m,,m, : 7.

(@) There is a read-once formula that amplifies (1/4,3/4) to
2-m™,1—2"™) having size O(mm,+ m logm, + m,
log m,).
Every monotone formula that amplifies (1/4,3/4) to
@2-m™,1 —2=™) must have size Q(m;m, + m logm, +
m, logm,).

(b)

An even stronger result to hope for would be an Q(n**?) lower
hound on the size of monotone formulas computing the majority
function. Unfortunately, we have not been able to prove such a
result. Khrapchenko [K] proved that formulas over the basis
AND, OR, NOT} require Qn?) size to compute majority; no
better lower bound for majority is known even for monotone
formulas. Our paper shows instead lower bounds on a particular
method for constructing monotone formulas.

As an application of the amplification method, we also show the
existence of improved monotone Boolean formulas for threshold
functions. Let TH,,(the kth threshold function of n variables) be
the Boolean function that is 1 if and only if at least k of its »
variables are 1. We prove the existence of monotone formulas

computing TH,, of size O(k*’nlogn). The best previous upper
bound was O(k®’nlogn), due to Friedman [F2], improved from
F1}.

Related to the present paper is the paper by Moore and Shannon
MS]. Their model of computation is relay contact networks, which
are more general than Boolean formulas. Moore and Shannon
prove that contact networks can be designed to be arbitrarily
reliable, no matter how unreliable the original components are.
Along the way, they obtain an Q(m,m,) lower bound on the size of
contact networks that amplify (1/4, 3/4) to (2-™,1 — 2-™). We can
strengthen their lower bound to Q(m,m, + m, logm, + m,logm,),
which is optimal. For more details, see Section 3 of the present

paper.
The remainder of this paper is divided into four sections. In

Section 2, we prove our lower bound on the amplification of
(p,p + 1/m) to (1/4,3/4). In Section 3, we present our results on the
amplification of (1/4, 3/4) to (2=™,1 — 2-™). In Section 4, we give
our O(k**nlogn) upper bound for threshold functions. Finally, in
Section 5 we conclude with open problems.
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2. AMPLIFYING (p,p + 1/m) TO (1/4, 3/4)

The main goal of this section is to prove an Q(m*) lower bound on
the size of read-once formulas that amplify (p,p + 1/m) to (1/4, 3/4),
thus showing that part (a) of Valiant’s construction is optimal.
We also prove an Q(m?) lower bound on the size of monotone

(not necessarily read-once) formulas that amplify (p,p + 1/m) to
(1/4,3/4).

The main idea of the proofs is to first show an upper bound on
the derivative of the amplification function; this step is the hardest.
Once we have an upper bound on the derivative, it will follow that

amplification of (p,p + 1/m) to (1/4, 3/4) can be achieved only by
large formulas. First we recall some standard definitions.

DEFINITIONS. A monotone formula of n variables is defined
recursively as follows:

(1) for 1 &lt;i &lt; n, the variables x; are monotone formulas;
11) if fand g are monotone formulas, then (f A g) and (fv g)

are also monotone formulas.

A monotone formula computes a monotone Boolean function in
the natural manner. The size of a monotone formula is the total
number of occurrences of variables.

The theorem below gives an upper bound on the derivative of the
amplification function. The proof relies on some independence
properties of read-once formulas. For example, if two formulas f
and g have distinct variables, then it is easy to see that 4,,, = 4. 1
and that 4,,, = 1 — (1 — 4,)(1 — A4,).

[HEOREM 2.1. If fis a read-once formula and 0 &lt; p &lt; 1, then

4p) &lt; [size (f= FLAP)
Hp) °°

where H is the entropy function H(p) = — plog,(p)—(1 — p)
log,(1—p) and a = log (2)/log(/5 — 1) = 3.27.

The proof of this theorem uses two inequalities that we state
below. The first one, called Holder’s inequality, is well-known; a
proof may be found in Hardy, Littlewood, and Polya ((HLP], pn. 24).
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THEOREM 2.2. Suppose that o,f &gt; 1 satisfy 1/a + 1/8 = 1, and
x,y;=0for1&lt;i&lt;n.Then

n n le sn 1/8

Sans(Ex) (£0)
I'he second inequality, dealing with the entropy function, is

apparently new and is proved below.

THEOREM 2.3. If0 &lt; x,y &lt;1, then

[HOT [HOT] [Hery

vhere B = log (2)/log ((\/5 + 1)/2) = 1.44.

Proof of Theorem 2.3. Let f(x,y) = [H(xy)/xy) — [H(x)/x} —

(H(y)/y}. We will show that f is nonnegative on the region
(0, 11 x (0, 1]. The proof is divided into four cases, depending on the
values of x and y.

Case 1: x 2095 ory 2 0.95

When x = 1 ory = 1, itis clear that f(x,y) = 0. Even when x

or y is very close to 1, it is easy to see that f(x, y) = 0. In particular,
by estimating f when x or y 1s close to 1, we can show that x &gt; 0.95
or y = 0.95 implies that f(x,y) = 0.

Case 2: x &lt; 0.05 or y £0.05.

As x or y approaches 0, it is easy to see that f(x, y) approaches
x. In particular, by estimating f when x or y is close to 0, we can
show that x &lt; 0.05 or y &lt; 0.05 implies that f(x,y) &gt; 0.

Case 3: 0.55 &lt; x £0.65 and 0.55 &lt; y &lt;£ 0.65

Let a = |(/5 — 1/2, (/5—1/2] = (0.62,0.62). Observe that
f(a) = 0 and that (8f/0x)(a) = (0f/0y)(a) = 0; thus a is a critical



Amplification of Probabilistic Boolean Formulas

point of f. The Hessian matrix of f at a is

of of
752 @ Ts (@)
Of *f

] xdy (a) Ee ©) |

"0.804 0.353

 0.353 0.804

This matrix is positive definite, which implies that f has a local
minimum at a. In fact, by estimating the third derivatives of f near
a, we can show that the Hessian matrix of fis positive definite on
the entire region [0.55,0.65] x [0.55,0.65]. Thus f is convex and
nonnegative on this region.

Case 4: All other x andy

The remaining case will be proved with the assistance of a
computer. Let G be the set of points (x, y) such that x and y are in
{0.05,0.06,...,0.95}, excluding those points in the region
(0.55,0.65] x [0.55,0.65]. Thus G has cardinality (91) — (11)* =
8160. Using a computer, evaluate the function f on all the points
of G. We find that f is nonnegative on G; in fact, it is bounded
away from 0 by a nonnegligible amount. We next show, by a
continuity argument, that fis nonegative for all x and y in Case 4.
Suppose not; then there must be a critical point » such that
f(b) &lt;0 and (df/ox)(b) = (0f/0y)(b) = 0. Now some point c

in G is very close to b. Estimating the second derivatives of f,
we find that f(c) is very close to f(b) &lt; 0. But this contradicts
our computation above showing that f is positive and bounded
away from 0 on G. Thus Case 4 is established, and the proof is
complete. OJ

With these two inequalities, we are now ready to prove
Theorem 2.1 on the derivative of the amplification function.

Proof of Theorem 2.1. The proof is by induction on the size
of the formula f. If f = x, then 4,(p) = p and the inequality
is clear. Suppose the desired inequality holds for two formulas g
and h with distinct variables. Let f = ¢ A h. so that A. = 4 A.
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By differentiating and then using the induction hypothesis, we have

4
A A,® = 40| EH

Ap) |. ve HA, (P)] ie HlAx(P)]7) fiz 1" i + [size (h)]" Homi),
Applying Holder's inequality (Theorem 2.2) to the right-hand side
gives

1p) &lt;2Dsize (g) + size (h)]™

THAT  [HAIT”“AU A(p) [+] 4,(p) I}
Applying Theorem 2.3 and the identity 4, = 4,4, will show that

, Ap). . 1a HA,(p)Ax(P)]
1p) &lt; H(p) [size (1) A,(p)4,(p)

Co 1 HA (D)]
= [size (f)]" HO)

This establishes the inequality for f = g A A. Similarly, we can

prove the inequality for f = g v h, by using the identities 4, =
| —(1—4,)( —4,)and H(1 — x) = H(x). The induction is thus
complete. 0

Using the above bound on the derivative of the amplification
function, we now prove our main result on amplifying (p,p + 1/m)

to (1/4, 3/4).

COROLLARY 2.4. If 0 &lt;p &lt;1 is fixed and m &gt; 1, then every
read-once formula that amplifies (p,p + 1/m) to (1/4, 3/4) must have
size Q(m®), where a = log (2)/log (1/5 — 1) = 3.27.

Proof. Suppose fis a read-once formula amplifying (p,p + 1/m)
to (1/4, 3/4). By the mean value theorem,

ap +L) = 40 = Lar.
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for some # satisfyingp&lt; n &lt; p + 1/m. But by Theorem 2.1 we have

tn &lt; Ben”
Hm

Combining the previous two inequalities shows that

size (f) &gt; | me | = Q(m?).

This establishes the result. lL

We can prove a similar result for monotone formulas that are not

necessarily read-once, but the lower bound now is only Q(m?). The
proof depends on the following theorem, which shows that the
maximum of A;(p), over all Boolean functions f of n variables.
occurs when fis a threshold function.

THEOREM 2.5. If f is a Boolean function cf n variables, then

, n—1 \

Ap &lt;n C1 pi — py

where t = “np”

Proof. By the definition of 4,, we have

A(p) = 2 apt(1—pr

where a, is the number of binary strings x with exactly k 1’s
satisfying f(x) = 1. Notice that 0 &lt; a, &lt; (}). After differentiating,
we obtain

Ar(p) = 2 a, p= '(1 — py"(k—np)

Thus to maximize A4/(p), we should choose a, = 0 for k &lt; np and
a, = (}) for k &gt; np. For this choice of a, we can use the following
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identity (which can be proved by backward induction on 1):

n n n—1

| Ja — pk —np) = of Ja —pyk=t k t—1

Here we choose t = Mnp™. Similarly, to minimize A/(p), we obtain
the negation of the above expression, which proves the theorem.

Hl

Notice that if 0 &lt;p &lt;1 is fixed and n approaches infinity,
the right-hand side of the above inequality is asymptotic to
Jr/2rp(l — p)], by Stirling’s formula. We obtain the following
corollary.

COROLLARY 2.6. If 0 &lt;p &lt;1 is fixed and m &gt; 1, then every
monotone formula that amplifies (p,p + 1/m) to (1/4, 3/4) must have
size Q(m?).

Proof. Suppose f is a monotone formula that amplifies
(p,p + 1/m) to (1/4,3/4). By the mean value theorem, we have
A;(n) = m/2 for some 7 satisfying p &lt;n &lt; p + 1/m. But Theorem
2.5 shows that A;(n) is O(/n), where 7 is the number of variables
on which f depends. Since the size of f is at least n, we have
size(f) = Q(m?). 4

3, AMPLIFYING (1/4, 3/4) TO (27™,1— 27)

In this section we give matching upper and lower bounds on the size
of read-once formulas that amplify (1/4,3/4) to (2=™,1 — 2—™).
Recall that Valiant [V] had constructed read-once formulas of size
O(m?) that amplify (1/4,3/4) to (2=™,1 — 27"). We will extend
Valiant’s construction by amplifying (1/4,3/4) to (2=™,1 — 2=™).
We will then prove a lower bound showing the optimality of the
construction.

To begin with, we present our extension of Valiant’s construc-
tion. The extension is used in Section 4 to obtain small monotone
formulas for threshold functions.

THEOREM 3.1. For m,,m, &gt; 2, there is a read-once formula
that amplifies (1/4,3/4) to 2-™,1 — 2=™) having size O(m,m, +
m, logm, + m, logm,).
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Proof. Assume, without loss of generality, that m, &gt; m,
Choose j and k to satisfy jk = m, and (1 —27/)* = 1—-2-m
Solving these equations, we find that j = ©(m, + logm,) and
k = O[m,/(m, + logm,)]. By Valiant’s construction (Theorem
1.2), there is a read-once formula of size O(;?) that amplifies
(1/4,3/4) to (27/,1 — 277). Taking the AND of k disjoint copies
of such amplifiers, we obtain a read-once formula that amplifies
(1/4,3/4) to [27%,(1 — 277)*] = (2=™,1 — 2-™). The total size is
O(kj*) = O[m,(m, + logm,)], so we are done. 0

The term that dominates the above upper bound depends on
whether or not m, and m, are within an exponential of each other.

We will now prove that the above construction is optimal. In fact,
we will show the construction is optimal over a wider class of
computational devices, called relay contact networks. We need
some definitions.

DEFINITIONS. A monotone contact network is a directed graph
G = (V, FE) that has two distinguished vertices s and ¢, and has
labels on its edges. The edge labels are chosen from the set of
variables {x,, x,,..., x,}.Amonotonecontact network N computes
a Boolean function fy from {0,1}" to {0,1} as follows. Given a
string y in {0, 1}", each edge of N is set to 0 or 1 according to the
value ofits label. Then f(y) = 1 if there is a path from s to ¢ using
only edges with value 1, and f(y) = 0 otherwise. We will often
identify a contact network with the function that it computes. The
size of a contact network is the number of edges in it. A read-once
contact network is a monotone contact network in which every
variable appears in at most one label.

Notice that a Boolean formula is essentially a series-parallel
contact network, with ANDs represented in series, and ORs repre-
sented in parallel. We recall two theorems due to Moore and
Shannon [MS].

DEFINITIONS. Given a monotone Boolean function f, its length
1(f) is the fewest number of 1’s in a string x such that f(x) = 1. Its
width w(f) is the fewest number of 0’s in a string x such that
f(x) = 0.
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THEOREM 3.2. If f is a monotone Boolean function, then

nD &lt; A(p)&lt;1— (1 — py?

I'HEOREM 3.3. If N is a monotone contact network, then

size (N) = L(N)w(N).

To prove our lower bound on the size of contact network ampli-
fiers, we need the following lemma, which is interesting on its own.

DEFINITIONS. A k-conjunctive normal form (k-CNF) formula is
an AND of ORs of literals, where each OR has fanin at most k. A
k-disjunctive normal form (k-DNF) formula is an OR of ANDs of
literals. where each AND has fanin at most k.

LEMMA 3.4.

(a) If fis a monotone k-CNF formula, then

Ap) &lt;[1 — (1 = pf»

‘h) -
fis a monotone k-DNF formula, then

A/(p) = 1—[1 — pr

Proof. We will prove only part (a), as part (b) will follow by
duality. The proof is by induction on the number of clauses in f. If
f = 1, then the inequality is clear. Otherwise, suppose by induction
that the inequality holds for all monotone k-CNF formulas with
fewer clauses than f has. Assume, without loss of generality, that
f= (x; VX,V: Vv X)g where &lt; k andgisa monotone k-CNF
formula. Let g; be the formula obtained when, in formula g, the
variables x, x,,...,x;_, are set to 0 and the variable x, is set to 1.
It is easy to see that

4p) = pA, (p) + p(1 — pA, (p) + +p(1 — pV '4,(p)

By the induction hypothesis. we have

3 (p) [1 = (1 — Ye [1 — (1 — p)VD-
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Substituting this inequality into the previous one yields

A (p) &lt; [p+p =p) +--+ pl —p)Y "11 = (1 — py!

= [1—(1=pYIll = (1 —=p)tV!

&lt; [1 —(1 =p

The induction is thus complete {

THEOREM 3.5. For m,,m, &gt;&gt; 2, every monotone contact network
that amplifies (1/4,3/4) to (2-™,1 — 2=™) must have size Q(m,m, +
m, logm, + m, logm,).

Proof. Suppose Nis a monotone contact network that amplifies
(1/4,3/4)to (2 -™,1 — 2=™). Theorem 3.2 implies that /(N) = m, /2
and that w(N) = m,/2. Thus, by Theorem 3.3, the size of N is
Q(m,m,).

We next show that the size of N is Q(m,logm,). Let k be a
parameter to be chosen later. Consider the monotone Boolean
function f of n variables that is 1 iff there is a path P from s to ¢ in
network N such that all edges of P have been set to 1, and the
number of different labels on P is at most k. Clearly fis expressible
as a monotone k-DNF formula. By Lemma 3.4, we have 4,(p) &gt;
I —[1 — pI". Since 4,(1/4) &lt; 4,(1/4) &lt; 1/4, the previous inequal-
ity implies that w( f) &lt; 4*log (4/3) &lt; 4%. Thus by setting at most 4¢
variables to 0, all paths from s to ¢ using at most k variables can be
eliminated.

Now comes the main idea of the proof. Let N’ be the network
formed when the above (at most 4%) variables are set to 0. Then
I(N) 2 k + 1 and w(N’) = w(N) — 4. Thus, by Theorem 3.3, the
size of N' is at least (k + 1)[w(N) — 4%]. Choose k = [log[w(N)/2)/
log(4)). With this choice of k, the size of N’ is seen to be
Q[w(N)logw(N)]. Since w(N) = m,/2, the size of N’ (and hence
the size of N) is Q(m,logm,).

By a dual argument, the size of N can be shown to be
Q(m, log m,). This will complete the proof. []

The above result generalizes a result in a preliminary version of
this paper ([B], Theorem 3.5), which applied only to read-once
formulas.
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4. THRESHOLD FUNCTIONS

In this section we use the amplification method to prove the exist-
ence of small monotone formulas for threshold functions. Recall

that the function TH,, (the kth threshold function of n Boolean
variables) equals 1 if and only if at least k of its n variables are 1.
Friedman ([F2], improved from [F1]) proved the existence of mono-
tone formulas computing TH,, of size O(k*’nlogn). We will
present an improved bound of O(k**nlogn). Neither result gives
explicit formulas, since both use probabilistic arguments.

Our approach is as follows: we first prove, in Theorem 4.2, the

existence of small approximate formulas for TH,,.InCorollary
4.3, we show how to use such approximate formulas to obtain small

exact formulas for TH,,.
Recall the definitions given in Section 1 of probabilistic formulas

and (p, gq) approximations. We need two additional definitions.

DeriNITIONS. Given a monotone Boolean function f, let min (f)
denote those strings x that minimally satisfy f(x) = 1 [i.e.,
f(x) = 1 but no x’ &lt; x satisfies f(x’) = 1]. Let max (f) denote

those strings x that maximally satisfy f(x) = 0.

As an example of these definitions, observe that min (TH,,)isthe
kth level of the n-dimensional Boolean cube, and that max (TH, ,)
is the (k — 1)th level. In particular, min (TH,,)hascardinality(}),
and max (TH, ,) has cardinality (,”,).

LEMMA 4.1. Suppose there is a monotone probabilistic formula of
size s that is a (p,q) approximation of a Boolean function f.

(@) If plmax(f)| + (1 — @)|min(f)| &lt; 1, then there is a mono-
tone formula of size s that computes f.

(b) If(1 — q@)|min(f)| &lt; 1, then there is a monotone probabilistic
formula of size s that is a (p’, 1) approximation of f, where

bP
PET Ta = Qimin (N°

(c) If plmax(f)| &lt;1, then there is a monotone probabilistic
formula of size s that is a (0,q’) approximation of f, where

‘Tq
| — plmax (|
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Proof. Let F be the monotone probabilistic formula promised
in the hypothesis.

(a) The probability that F does not compute f is

Pr(F doesn’t compute f]&lt; Y Pr{F(x) = 1]
xemax(f)

5S. Pr[F(x) = 0]
xemin(f)

&lt; max (lp + |min(/)(1 — gq)

(b)

Thus, F computes f with positive probability, which settles
part (a).
We first show that F &gt; f with decent probability. The
probability that F &gt; f does not hold is

Prio(F&gt;f)]&lt; 3 Pr{F(x) = 0]
xemin(f)

&lt; min (OI — q).

Thus, F=f holds with probability at least
| — (1 — q)|min(f)|. Define the probabilistic formula G to

be F restricted to those formulas for which F &gt; f. If a string
x satisfies f(x) = 1, then

PriG(x) = 11 =Pr(F(x) = 1: F&gt;1] =

On the other hand, if f(x) = 0, then

D G(x) = 11 = Pr[F(x) = 1: F &gt; f]

Pr{F(x) = 1]

Pr[F =f]

——————— rp
1 — (1 — g)lmin(f)|

n’

Thus, G is a (p’, 1) approximation of f, which settles part
(b).
The proof of nart (¢) is dual to that of part (h)
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THEOREM 4.2. For every k and n, there is a monotone probabilistic
formula of size O[k*(log k)*n] that is a (0,1 — 1/k) approximation of

TH,,.
Proof. We first prove the result for k &gt; n'”. Let F be the prob-

abilistic formula that equals x; with probability 1/n, for all
| &lt;i&lt; n ltiseasy to see that Fisa [(k — 1)/n, k/n] approximation

of TH,,.Taking the OR of n/k such formulas, we obtain a
(1 — 1/e,1 — 1/e + 1/k) approximation of TH,,.ByValiant’scon-
struction (Theorem 1.2), we obtain a (1/4, 3/4) approximation of
TH,,with a factor of O(k*) more work. By applying Theorem 3.1,
we obtain a [1/(10n%),1 — 1/(10k)] approximation of TH,,with a
factor of O(klogklogn) more work. Lemma 4.1 then provides us
with a (0,1 — 1/k) approximation of TH,,.Thetotal size is

o| *(klog klogn)| = O[(k*logk)nlogn] = O[k*(logk)’n),
which establishes the theorem for k &gt; n'".

We next prove the result for k &lt; n'. Let / = k°. By the above
paragraph, there is a monotone probabilistic formula G of size
O[k*(log k)*[] that is a (0,1 — 1/k) approximation of TH,;.Suppose
the variables of G are y,,¥,,...,¥,. Let x,,x,,...,x, be n other

variables. Randomly partition the x; into / blocks of n// variables
each. Substitute for each y, in G the OR of the n// variables in the
ith block. Call the resulting probabilistic formula H. Then H is a
(0, g) approximation of TH,,,where

 = (1-0)(3
1-H)(1-2) (1-52)
0-2)

The formula H has size

0k (log k)21] nl — O[k*(logkYn].
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With a constant factor more work, we can make H a (0,1 — 1/k)

approximation of TH,,,whichcompletes the proof. O

Now we can show the O(k**nlogn) bound for exactly computing

TH,,.
COROLLARY 4.3. For every k and n, there exists a monotone

formula of size

O[(k**'logk)nlogn| = Ok**nlogn)

that computes TH,,

Proof. Theorem 4.2 shows the existence of a monotone prob-
abilistic formula of size O[k*(log k)*n] that is a (0, 1 — 1/k) approxi-
mation of TH,,. Taking the OR of 10klogn/logk independent
copies of such formulas, we obtain a (0,1 — n~'%) approximation
of TH,,.Appealingto Lemma 4.1, we obtain the existence of
monotone formulas computing TH,,exactly that have size

Kon = O[(k**'logk)nlogn]0 [ik og k)’n) Tonk

[his completes the proof i.

Thus we see that the amplification method yields small monotone
formulas for threshold functions.

y CONCLUSIONS

We have proved limits on the power of the amplification method for
probabilistic Boolean formulas, showing that Valiant’s method of
amplification [V] is optimal. In particular, we showed that every
read-once formula that amplifies (p, p + 1/m) to (1/4, 3/4) requires
size Q(m*), where « = log (2)/log(/5 — 1) = 3.27. Every mono-

tone contact network that amplifies (1/4,3/4) to (2-™,1 — 2-™)
requires size Q(m,m, + m,logm, + m,logm,). Using the amplifi-
cation method, we also provided monotone formulas of size
O(k**nlogn) for the kth threshold function of »n variables.
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There are several open problems remaining:

Is Corollary 2.4 on amplifying (p,p + 1/m) to (1/4, 3/4) true
for arbitrary monotone formula amplifiers? If not, then there
would exist monotone formulas for majority smaller than the
best upper bound known of O(n&gt;?).
Can either Valiants O(n*’) majority bound or our
O(k*’nlogn) bound for TH,, be achieved by explicit
formulas? Both bounds were proved using probabilistic
methods. The only explicit monotone formulas of polynomial
size known for majority use the O(logn) depth sorting
network of Ajtai, Komlos, and Szemerédi [AKS], but the
degree of the polynomial is huge. Friedman [F1] showed that
monotone formulas for TH,, of size O[ poly (k)nlogn] can
be explicitly constructed using the above sorting network,
but again the polynomial in k has huge degree.
Can lower bounds better than Q(n*) be obtained for the size
of monotone formulas computing majority? Perhaps the
methods of this paper provide a step toward this goal.
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PARALLEL TREE CONTRACTION"

PART 1: FUNDAMENTALS

Gary L. Miller and John H. Reif

ABSTRACT

This paper introduces parallel tree contraction: a new bottom-up
technique for constructing parallel algorithms on trees. Contraction
can be used to solve a wide variety of problems. Two examples
included in this article are expression evaluation and subexpression
elimination. In this paper we show these applications only require
O(logn) time and O(n/logn) processors on a 0-sided randomized
PRAM or O(n) processors on a deterministic PRAM. In the process

of finding these efficient algorithms we find efficient parallel
algorithms for several other problems including generating random
permutation in parallel and randomized techniques for work load
balancing on PRAMs.

We have found other apolication of parallel tree contraction
including testing isomorphism of trees. canonical forms for trees.
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constructing planar embeddings, and testing isomorphism of planar
graphs. These applications appear in a companion paper [MR2].

INTRODUCTION

.t. Top-Down vs Bottom-Up Tree Algorithms

Trees play a fundamental role in many computations, both for
sequential as well as parallel problems. The classic paradigm applied
to generate parallel algorithms in the presence of trees has been
divide-conquer; finding a vertex which is a *“1/3-2/3” separator, and
recursively solving the two subproblems. A now classic example is
Brent’s work on parallel evaluation of arithmetic expressions [B].
This “top-down” approach has several complications, one of which
is finding the separators that must separate the tree into com-
ponents with size &lt;2/3 of the original size. We define dynamic
expression evaluation as the task of evaluating the expression with
no free preprocessing. If we apply Brent’s method, finding the
separators seem to add a factor of logan to the running time.

We give a “bottom-up” algorithm to handle trees. That is,
all modifications to the tree are done locally. This “bottom-up”
approach, which we call CONTRACT, has two major advan-
tages over the “top-down” approach: (1) The control structure
is straightforward and easier to implement facilitating new
algorithms using fewer processors and less time. (2) Problems for
which it was too difficult or too complicated to find polylog parallel
algorithms are now easy. We believe our lasting contribution will be
CONTRACT. It has already been applied to finding small separ-
ators for planar graphs in parallel [M] as well as numerous appli-
cations appearing in the companion paper [MR2].

1.2. The PRAM Model

We shall use the PRAM model of a parallel processing device (see
ISV]). A PRAM consists of a collection of processors. Each processor
is a random access machine that can read and write in a common

random access memory. In unit time these processors are allowed
concurrent reads and concurrent writes (CRCW), as well as arith-
metic operations on integers of magnitude upper bounded by n°".
There are two natural implementations of concurrent writes. (1) If
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two or more processors attempt to write in a given location of
common memory then one of the processors will succeed. The

performance of the algorithm should not depend on which processor
succeeds. (2) In the second model concurrent writes in a given
location cause detectable noise to be stored in that location. Unless
otherwise stated we shall assume the first model for concurrent

writes. But all of our algorithms also work with the same perfor-
mance in the second model.

Many of our algorithms use randomization. That is, each
processor has access to an independent random number of mag-
nitude &lt; n per step. A (I-sided) randomized algorithm A is said to
accept a language L in T'(n) time using P(n) processors if the
following conditions hold: (1) on all inputs w of length n, 4 uses at
most T(n) time and P(n) processors independent of the random
bits; (2) if 4 rejects w then w¢ L; (3) if 4 accepts w then with
probability of error at most 1/n we can conclude that we L. Note
that we have chosen 1/n for our error bound instead of the common

value 1/2. It generally seems to increase the running time by a factor
of log n to achieve the error bound 1/a from an algorithm with error
bound 1/2. On the other hand, given an algorithm with error
bounded by 1/n if we increase the running time by a constant factor
of « we can achieve the tighter error bound 1/n*. We say an

algorithm is 0-sided randomized if it is always correct when it
terminates and the probability of termination is at least 1 — 1/n.
We often denote 0-sided and 1-sided by subscripts of 0 and 1
respectively (see [R1]).

All our PRAM algorithms will only use a polynomial number
of processors. We shall take considerable effort to minimize the
number of processors used.

[ Expression Evaluation and Our Results

Arithmetic expression evaluation is a good robust problem exhi-
biting our techniques. An arithmetic expression is a tree where the
leaves have values from some domain and each internal vertex has

two children and a label from {+, x, =}. We assume that these
binary operations can be performed in constant time. As we shall
see in the companion paper, these techniques are very general but
most of the ideas will be well illustrated in the case of expression
evaluation.
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We exhibit a deterministic PRAM algorithm for dynamic expres-
sion evaluation using O(logn) time and O(n) processors and a
0-sided randomized version of this algorithm using only O(n/logn)
processors. We then extend these algorithms to evaluate all sub-
expressions using the same time and number of processors. In
comparison Brent [B] showed that expressions of size n could be
transformed into straight-line code of depth O(logn). Dynamic
transformation of code in parallel by Brent’s method seems to
require Q(log’n) time.

We also give an algorithm that uses the same resource bounds as

the expression case for computing the value of all subexpressions.
This result is a natural generalization of parallel prefix evaluation
[F, LF, V]. Up to constant factors we use no more time or processors.
The list-ranking problem (see [V]) is also a special case. Thus, we
have given an O(log n) time optimal algorithm for list-ranking. This
is the first known O(log n) time and n/logn processor algorithm for
the problem.

[ &lt;4 Organization of This Paper

The body of the paper consists of 6 sections. In Section 2 we
define two abstract operations on trees, RAKE and COMPRESS.
We show that only O(logr) simultaneous applications of these
operations are needed to reduce a tree to a point. In Section 3 we
give both deterministic as well as randomized implementations of
RAKE and COMPRESS both of these implementations reduce a
tree to a point in O(log n) time using O(n) processors. In Section 4
we show how to implement these operations on a randomized
PRAM such that any tree is reduced to a point in O(logn) time
using an optimal number of processors. We call this implemen-
tation dynamic tree contraction. In Section 4 we also describe
how to generate a random permutation in O(logn) time using
only n/logn processors and how to remove a constant proportion
of the zeros from a random string in Oflog (log n)] time using only
n/log (log n) processors. These operations give a general technique
for minimizing the number of processors used. We call this general
technique processor work load balancing. In Sections 5 we apply
dynamic tree contraction to expression evaluation, subexpression
evaluation and related tree problems. In Section 6 we show that a
natural modification of parallel tree contraction, which we call
asynchronous parallel tree contraction, works in O(logn) time even
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if the cost of raking k siblings is O(log k) time. In Section 7 we give
a partial analysis of the random variable MATE that arises in the
randc:nized parallel tree contraction algorithms.

2. THE RAKE AND COMPRESS OPERATIONS

Let T = (V,E) be a rooted tree with n vertices and root r. We

describe two simple parallel operations on 7 such that at most
O(logn) applications are needed to reduce T to a single vertex.

Let RAKE be the operation that removes all leaves from T. It is
easy to see that RAKE may need to be applied a linear number of
times to a highly unbalanced tree to reduce 7 to a single vertex. We
can circumvent this problem by adding one more operation.

We say a sequence of vertices v,,...,v; is a chain if v, | is the

only child of v, for 1 &lt;i &lt; k, and v, has exactly one child and that
child is not a leaf. The chain is said to have length k. In one parallel
step, we compress a chain by identifying v; with v, , for i odd and
| €&lt;i&lt; k. Thus, the chain v,,...,v, is replaced with a chain
Ul,..., Yup Let COMPRESS be the operation on T that
“compresses” all maximal chains of 7 in one step. Note that a
maximal chain of length one is not affected by COMPRESS.

Let CONTRACT be the simultaneous application of RAKE and
COMPRESS to the entire tree. We next show that the CONTRACT

operation needs only be executed O(logn) times to reduce T to its
root.

THEOREM 2.1. After logs,n]applicationsofCONTRACT to a
free on n vertices it is reduced to its root.

Proof. We partition the vertices of T into two sets Ra and
Com such that | Ra| will decrease by a factor of 4/5 after an execu-
ion of RAKE and |Com| will decrease by a factor of 1/2 after
COMPRESS.

Let V, be the leaves of T, V| be the vertices with only one child,
and let V, be those vertices with two or more children. We further
partition the set V; into C,, C,, and C, according to whether the
child is in V,, ¥,, and V,, respectively. Similarly we partition the
vertices C, into GC,, GC,, and GC, corresponding to whether the
grandchild is in V,, V,, and V;, respectively. Let Ra = Vu V,u
C,uC,uGC, and Com = V — Ra.
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To see that the size of Ra decreases by a factor of 1/5 after each
RAKE we show that | Ra| &lt; 5|V;]|. The inequality follows by observ-
ing the following inequalities: | V5] &lt; |W, 1Cyl &lt; Vl, IGC,| &lt; Vl,
and |G,| &lt; 1).

Note that all vertices in F] except those of C, belong to a chain.
Thus, every vertex of Com belongs to some maximal chain. If
v;,...,0; are the vertices of a maximal chain then either v, eC,
or v,€ GC,. In either case v,,...,v,_, are the only elements in
the chain belonging to Com. Thus, the number of elements in a
maximal chain of Com decreases by at least a factor of 1/2 after
COMPRESS. 1]

The type of argument used in the proof of Theorem 2.1 will be
used in the analysis of several other algorithms which are based on
CONTRACT. Given a tree T = (V,E) let Rake(V) = Ra and

Compress (V') = Com as defined in the above proof.
There are many useful applications of parallel tree contraction

and expansion. For each given application, we associate a certain
procedure with each RAKE and COMPRESS operation that we
assume can be computed in parallel quickly. Typically the vertices
of the tree T will contain labels storing information relevant to the
given application. The RAKE and COMPRESS operations will
modify these labels, as well as the tree itself. To apply parallel tree
contraction to a problem seems to require finding a general form for
implementing and storing the composition of unary functions.

As a simple example we consider the case when Tis an expression
tree over {+, x} the RAKE corresponds to the operation of
(1) evaluating a vertex if all of its children have been evaluated or
2) partially evaluating a vertex if some of its children have been
valuated. The cost of applying RAKE to an expression tree is the
cost of evaluating a vertex. If a vertex has been partially evaluated
except for one child then the value of the vertex is a linear function,
say, aX + b where X is a variable of the remaining child, and a and
hb are scalars over some semiring. Thus a chain is a sequence of
vertices each of which is a linear function of its child. In this

application, COMPRESS is simply pairwise composition of linear
functions. Thus, in this example the only nontrivial observation is
the fact that linear functions in one argument are closed under
composition and each linear function can be represented by two
scalars.
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This gives a simple proof that (after preprocessing) expressions
can be evaluated in time O(logrn) using O(n) processors on a
PRAM. On the other hand, the naive dynamic implementation of
COMPRESS requires O(log n) time since we first will determine the
parity of each vertex on a chain by pointer jumping, e.g. (doubling-
up), then combine consecutively the odd and even vertices pairwise
in constant time. In the next section we implement both a deter-
ministic and a randomized variant of COMPRESS that can be

performed in constant time.

3. DYNAMIC TREE CONTRACTION
(DETERMINISTIC AND RANDOMIZED)

In this section we describe in more detail two implementations
of COMPRESS. The first is deterministic while the second is
a randomized algorithm (see Section 3.2). The deterministic
algorithm seems to need O(n) processors to achieve O(logn) time.
We will show in Section 4 how to improve the randomized
algorithm to use only O(n/logn) processors and O(logn) time. In
this section we assume that the trees are of bounded degree. The
analysis of parallel tree contraction on trees of unbounded degree
is in Section 6.

3.1. Deterministic Tree Contraction

Let T be a rooted tree with vertex set V of size n = |V| and root
re V. We view each vertex, which is not a leaf, as a function to be

computed where the children supply the arguments. For each vertex
v with children v, ...v, we will set aside k locations /,.../, in
common memory. Initially each /; is empty or unmarked. When the
value of v; is known we will assign it to /;: this will be simply denoted
by mark I,. Let Arg (v) denote the number of unmarked /,. Thus,
initially Arg (v) = k, the number of children of ». We need one
further notation: Let vertex [P(v)] be the vertex associated with the
sole parent of v with storage location P(v). Figure 1 contains a
single phase of procedure dynamic contraction.

The procedure must detect when Arg (2) equals 0 or 1. If the
number of arguments per vertex is bounded this can be tested in
constant time using the processor assigned to vertex v. In the case
when the number of arguments is unbounded we can assign a
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Figure 1. A dynamic contraction phase.

Procedure Dynamic Tree Contraction:
In Parallel for allv € V — {r} do

1) If Arg(v) = 0 then mark P(v) and delete v;
2) If Arg(v) = Arg(vertez(P(v))) = 1 then P(v) «— P(vertez(P(v))).

processor to each argument still using at most O(n) processors
since the total number of arguments is n — 1. These processors

assigned to the arguments of » can test whether Arg(v) = 0 by
having each processor Q without an argument perform a con-
current write of its index into some memory location m, of v.

Arg (v) &gt; 0 if and only if some index is written into this memory
location. To further test if Arg (v) &gt; 1, we have each processor Q
with no argument read m, and if the value is not the index of Q then
0 again writes its index in m,. Thus, Arg (v) &gt; 1 if the value of m,
changes on the second write. In Section 6 we show that procedures
that takes at most O(log k) to test Arg (v) equal 0 or 1 will still give
an overall running time of O(logn), where k is the number of
arguments of v.

The procedure implements the RAKE in the straightforward
way, while the operation COMPRESS is implemented by pointer
jumping. In line (2) of the procedure each vertex in a chain adjusts
its pointer P, which was initially pointing at its parent, to point at
its grandparent.

More intuition for the procedure dynamic contraction can be
gained by seeing it applied to expression evaluation over {+, x }.
If Arg(v) = 0 then v “knows” its value and passes it on to its
parent. We can test if Arg(v) = 0 or Arg(v) = 1 in constant time

using concurrent reads and writes. If v and P(v) are functions of
one remaining argument we will view them as linear functions of
their argument. We store these functions in common memory
indexed by the corresponding vertex. Thus v reads the linear func-
tions of P(v), composes it with its own function, and adjusts its
pointer to P {vertex [P(v)]}. It follows that this correctly computes
the value of the expression. We next analyze the number of appli-
cations of dynamic contraction.

THEOREM 3.1. The number of applications of dynamic tree con-
traction needed to reduce a tree of n vertices to its root is bounded

above by the number for CONTRACT.
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Proof. Observe that every maximal chain, after dynamic tree
contraction, decomposes into two chains, one essential chain corre-
sponding to COMPRESS and an unnecessary chain that is out of
phase. This second chain has a leaf that is unevaluated. For the
purpose of analysis we can discard the second chain from the
analysis since it will never be evaluated. Thus, a single phase of
dynamic tree contraction is just CONTRACT, after discarding the
unevaluatable chains. It is important to point out that dynamic tree
contraction is slightly faster than CONTRACT since it does not
test if the only child of a vertex is a leaf or not. Thus, some pointer
jumping occurs in dynamic tree contraction that does not occur
in CONTRACT. We used the more conservative contract in

CONTRACT since we felt that for many applications a vertex with
an only child will use the time at this stage to evaluate itself rather

than pointer jumping. C

Note that many vertices are not evaluated, that is, for many
vertices v the value Arg (v) is never set to 0 during any stage of
dynamic tree contraction. We will define a new procedure dynamic
iree expansion that will allow the evaluation of all vertices, 1.e., each
vertex will eventually have all its arguments after completion of the
procedure. We modify dynamic tree contraction so that each vertex
keeps a push-down store Store, of all the previous values of P(v).
Here we add line (0) at the start of the block inside the do and od
of dvnamic tree contraction.

0) Push on Store, value P(9v).

We now apply dynamic tree contraction until the root r has all
ts arguments. Next we apply procedure dynamic tree expansion
given in Figure 2 until all vertices have all their arguments.

We must show that after successive applications of dynamic tree
expansion all vertices have their arguments. As in the proof of
Theorem 3.1 we can discard those chains that have a leaf that will

not be evaluated. The proof is by induction on the trees with only

Fioure 2. A dynamic expansion phase

Procedure Dynamic Tree Expansion:
In Parallel for all v € V — {r}do

1) P(v) « Pop(Store,):
2) if Arg(v) = 0 then mark P(v)
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essential chains, as defined in the proof of the previous theorem,
starting from the trivial tree consisting of a singleton vertex r and
finishing with the original tree T, say, {r} = T,,...,T, = T. Now
every vertex in 7; , is either a leaf in which case we know its value
or this vertex is missing one argument that is the value of a vertex
in T;. In the latter case this value will be supplied in one application
of dynamic tree expansion. This gives the following theorem.

THEOREM 3.2. At most |logg,n) applications of dynamic tree
contraction and logs,n]applicationsofdynamic tree expansion are
needed to mark all the vertices.

2. Randomized Tree Contraction and Expansion

We next describe a randomized version of CONTRACT. This

algorithm has the disadvantage that it needs access to many random
numbers but it has the advantages that (1) in many cases, it will only
use about half as many function evaluations and (2) it can be modi-
fied into an algorithm that up to constant factors uses an optimal
number O(n/logn) of processors and still runs in time O(logn). We
describe the algorithm in procedure form (see Figure 3).

The rest of this section contains a probablistic analysis of the
procedure randomized contract. We believe that good analysis of
this procedure with attention to constants is important. We first
show that roughly 1/5 of the vertices are deleted with probability at
least 1/2. We use this bounded to show that randomized contract
will reduce a tree to a single vertex in O(logn) time with high
probability. For the processor efficient randomized contraction
algorithms presented in Section 4.4 we need that randomized con-
traction deletes a constant proportion of the vertices with high

Figure 3. A RANDOMIZED CONTRACT phase.

Procedure RANDOMIZED CONTRACT:
In Parallel for all v € V — {r} which have not been deleted do

1) If Arg(v) = 0 then mark P(v) and delete v;
2) If Arg(v) = 1 then Randomly assign M or F to Sex(v);

3) If Sez(v) = F and Sez(P(v)) = M then do
a) Push on Store, value P(v);
b) P(v) « P(P(v));
c) delete vertex(P(v)).

su}
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probability for »n large. Thus, we show that randomized contract
deletes at least n/32 vertices with probability of failure at most 1/n.
Note that if we are not concerned about constants then the second

analysis would suffice for both applications.
The analysis will follow arguments similar to those used in the

proof of Theorem 2.1. Here we partition the vertex set V into
Rake (VV) and Compress(V')asdefined in that proof. Again by
similar argument step (1) of RANDOMIZED CONTRACT will
delete at least 1/5 of the vertices in Rake (V'). Steps (2) and (3) of
randomized CONTRACT are called Randomized Pointer Jumping.
The expected number of vertices of Compress (V') that are deleted
in step (3c) is m/4 where m = |Compress (V')|. We cannot directly
conclude that the median is also m/4. Recall, that the median of a
random variable X is the maximum real number u(X) such that
Prob[X &lt; u(X)] &lt; 1/2. We can lower bound the median using the
expected number and the variance of the number of vertices deleted.
Since the number of deleted vertices in each maximal chain is
mutually independent, the number of deleted vertices is the sum of
independent random variables, one for each maximal chain. Let
C,,...,C, be a list of maximal chains in T where C; is a chain of
length m; + 1. Thus, m; of the vertices of C; are members of the set
Compress (VV). Let the number of deleted vertices in the chain C,
after one application of RANDOMIZED CONTRACT be the
random variable MATE,.If m = |Compress(V')| then the random
variable that is the number of deleted vertices in one phase will be
X = MATE, +--+ MATE, where k is the number of maximal
chains. Thus, the expected value of X is E(X) = m/4. By Lemma
7.1 the variance for one chain is (m; + 2)/16. Thus, the variance for
X is Y¥_, (mm; + 2)/16 = (m + 2k)/16. The variance is maximized
when each m; = 1. In this case the variance is Var (X) = 3m/16.

The Chebyshev’s inequality gives the following estimate for the
median of X, u(X) (see [L], p. 244).

LEMMA 3.3. |u(X) — E(X)| &lt; J2Var(X).

Thus w(X) &gt; E(X)—+/2Var(X). In our case this gives
W(X) = m/4 — /3m/8. Therefore for sufficiently large m, m &gt; 150,
u(X') = m/S. After some simple computer calculations we conjec-
ture that u(X') &gt; m/5 for m &gt;= 15 (see Section 7).

THEOREM 3.4. RANDOMIZED CONTRACT deletes at leass
1/5 — 150 vertices with probability at least 1/2.
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Proof. Let T be the tree input to randomized contraction and
m = |Compress(V')|. Thus, n — m = |Rake(v)|. We know that at

least (n — m)/5 vertices in Rake (v) are deleted in every phase. We
know from the last lemma that for m &gt; 150 at least m/5 of the
vertices in Compress (}') are also deleted with probability 1/2.
Thus, m/5 — 150 of the vertices in Compress (V') are deleted with
probability 1/2. Therefore the total deleted is at least (n — m)/5 +
m/5 — 150 = n/5 — 150.

Let S, be the number of successes in n independent trials with
probability p of success on each trial. We shall need one major fact
about the binomial random variable S, — the probability of being
more than any fixed constant factor from the expected value is
exponentially small. This fact was observed by Uspensky [U] (see
[JK]). These bounds are commonly known as Chernoff bounds [C].
We shall use the following simply stated bounds [AV].

THEOREM 3.5. Foranyn,p,ewith0&lt;p&lt;1,0&lt;e&lt;g 1:

Prob (S, &lt; L(1 — g)npl) &lt; e—#npl2
a

Prob (S, = (1 + &amp;)np]) &lt; e—&amp;rl3

We use these bounds to show:

THEOREM 3.6. After [12.5logn] + 150 applications of RAN-
DOMIZED CONTRACT a tree of n vertices will be reduced to a

single vertex with probability offailure at most 1/n.

Proof. We show that after k = [12.5logn] applications of
RANDOMIZED CONTRACT a tree of size n is reduced to a tree

of size 150. Since randomized contract always removes at least the
leaves of a tree the tree of size 150 will take at most 150 more steps.
We say a given application of randomized contract is a success if it
deletes n/5 — 150 vertices from a tree of size n and a failure other-

wise. If after k applications the tree has not been reduced to one of
size 150 then we must have had less than [logs,n1 successes. In
Lemma 3.4 we showed that probability of success was at least 1/2
independent of the tree. Thus the probability that the tree has more
than 150 vertices after k application is bounded by Prob (S, &lt;
logs4nl) where p = 1/2. We use the first inequality from Theorem
3.5 to bound this probability. Wesetn = k,e = 1/2,andp = 1/2
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and check that {logs,nl &lt;L(1 —e)kp). The last inequality is a
straightforward calculation. Thus the probability of failure after k
applications is at most e—=#/2. To get a probability of error at most
I/n we must just see that ¢2kp/2 &gt; Inn. That is k &gt; 16Inn, but
16Inn&lt;12logn&lt;k. OJ

We next show that RANDOMIZED CONTRACT will delete at

least n/32 vertices with only vanishingly small probability of failure.

THEOREM 3.7. One phase of RANDOMIZED CONTRACTfor
any n &gt; 180 will delete at least n/32 vertices with a probability of
failure less than 1/n.

Proof. Let n be the number of vertices in a tree 7 and m be the
number of vertices in Compress (7). If m &lt; 27n/32 then n — m &gt;
5n/32 vertices are in Rake (7") and therefore at least 1/5(5n/32) =
n/32 of them are deleted by RAKE. In this case n/32 of the vertices
are deleted by RAKE alone without considering vertices deleted by
COMPRESS. Thus, we may assume that m &gt; 27n/32. It will suffice

to show that m/32 of the vertices in Compress (7) are deleted by
RANDOMIZED CONTRACT with small probability of failure.
Let I = Compress (V) be a maximum subset of vertices such that no
vertex in I is a parent of another vertex in /, i.e. I is a maximal
independent set. Now each vertex in / is deleted independently with
probability 1/4. Since the induced graph on Compress(7T) is a
forest, the number of vertices in |I| = [m/27. Thus, the number of
vertices deleted is bounded below by the binomial random variable
S;,»1wherep = 1/4. The probability of failure is bounded by

Prob (S;,,,1 &lt;1m/32]) &lt; Prob (S;,,, &lt; L(1 — &amp;)m/27/4)).

where ¢ = 3/4. Using the Chernoff bounds from Theorem 3.5 this
probability at most

&lt; Ho Emi21/8 p—Etmic

Using the hypothesis that m &gt; 27n/32 and ¢ = 3/4 we get the above

probability

GAPQIBDANE _ ,—(3323)

Cor n &gt; 180 we have that e "3 1/
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4. AN OPTIMAL RANDOMIZED TREE
EVALUATION ALGORITHM

4 Improving the Processor Count by Load Balancing

In this section we show how to implement RANDOMIZED
CONTRACT on a tree T with n vertices so that T is reduced to its

root in O(log n) time using O(n/logn) processors. We will contract
Tto a tree T’ of size n/logn at which point we will have a tree small
enough so there is a processor for every vertex of 7” and can use one

the deterministic algorithm from the last section. The important
difference in the reduction is that we will be operating on an array
of n vertices using only o(n) processors as opposed to one processor
for each pointer value. We consider pointers to be either dead or
alive. If all pointers of the array are alive and we have p processors
then we simply assign intervals of pointer values of size [n/p] to a
single processor.

if the live pointers are interspersed with dead pointers then the time
required for some particular processor to finish its tasks may be
much longer than the expected or average time. We give a method
of balancing the work load using randomization. We consider the
processors to be numbered consecutively. In general if 4 is an
algorithm originally specified using p processors but only p’ are
available we will assume that A is implemented by assigning each
distinct interval of [ p/p’ virtual processors to one actual processor.

Note that by Theorem 3.7 after each phase of randomized con-
tract with very high probability at least 1/32th of the processors are
assigned to dead pointers. Thus, after O[log (log n)] phases we will
have only n/logn active processors. One can assign active tasks to an
initial sequence of processors by computing all prefix sums as follows.

Let 5,...s5, be a sequence of zeros and ones where s; = 1 if
processor i is active and s; = 0 otherwise, and a, = Y¢_.s. We

now assign the task of processor i to processor a;. It is well known,
see [LF]:

LemMa 4.1. All prefix sums of a string of length n can be com
nuted in O(logn) time using n/logn processors.

This motivates a simple randomized tree evaluation algorithm
using O(nlog(logn)/logn) processors and O(logn) time (see
Figure 4).
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Figure 4. A Randomized tree evaluation (simple form).

Procedure Randomized Tree Evaluation (Simple form):
1) p « [nlog(logn)/logn]; k « 1;
2) While k &lt; c(log(logn)) do

T « Randomized Contraction(T); (using p processors) (*,
3) Using all prefix sums calculation assign the active

tasks to an initial sequence of processors;

4) While {T| &gt;1do T « RANDOMIZED CONTRACT(T)

To see that it works in O(logn) time we use Theorem 3.7. Note
that for some constant ¢ and large enough n, step (2) will reduce T
to a tree on [n/log n] vertices with probability of failure &lt; 1/n. Now
each execution of (x) will take O[logn/log (log n)] time. Thus, step
(2) requires O(logn) time. By Lemma 4.1 step (3) takes only
O(logn) time. By the first remark and large enough ¢ we have
IT| &lt; nflogn. Thus, step (4) will only take O(log n) time with prob-
ability of failure &lt;1/n.

Thus, the simple form of randomized tree evaluation reduces the
processor count to O[nlog(logn)/logn], by only “load balancing”
once. To remove the last log (logn) factor we will load balance
between each application of (x). The goal will be to partially
balance the load as opposed to performing the balancing exactly.
We do the partial balancing by first randomly permuting the tasks
and next partially balancing the almost random string of tasks.

12 Generating a Random Permutation

In this section we give a processor efficient algorithm to generate
random permutations. Another algorithm appears in [R2]. In
particular we show:

THEOREM 4.2. There exists a randomized PRAM algorithm
that generates random permutations of n cells using O(logn) time
O(n/log n) processors, and probability of failure is at most 1/n.

The idea behind the algorithm is extremely simple. We shall
randomly assign the n cells among 2» cells. We call the assigned
position an accommodation. Next we remove the unused cells using
prefix calculations as described in the previous section. To get the
original assignment of the » cells into 2n we will require each of the
n/log n processors to be responsible for finding accommodations for
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logncells. Each processor starts at the beginning of its list of cells
and chooses a random accommodation. The processor will find an
accommodation for the cell with probability at least 1/2. Thus, the
expected completion time for each processor is at most 2logn. We
allow each processor 12[ log #1 trials. If after this many trials, it has
not found accommodations for all its cells the process as a whole
is aborted using the concurrent write ability.

LEMMA 4.3. The probability that the above procedure aborts is at
most 1/n.

Proof. Let Y be a random variable corresponding to the
number of accommodations found after t = 12([logn1) trials.
Since each trial finds an accommodation with probability at least
[/2 the random variable Y is bounded from above by a binomial
random variable X with p = 1/2 on # trials. That is Prob (Y &lt; x) &lt;
Prob (X &lt; x) for all x.

Here we use the Chernoff bound:

Prob (X &lt; [(1 — &amp;)ptl) «J e =

Setting ¢ = 5/6, p = 1/2, and t = 12[logn] we get

Prob (X &lt;[logn]) &lt;&lt; e @/1Dloen  p-2logn 1/2

Thus, the probability of failure for any given processor is at most
|/n*. Therefore, failure probability as a whole is at most 1/n. [J

Removing a Constant Proportion of Zeros
from a Random String

Leto = s,...s, be a random binary string where each s; is an
independent random variable that takes the value one with prob-
ability p and zero with probability ¢ = 1 — p. We view ¢ as a

sequence of live and dead cells where the ith cell is alive if 5, = 1
and dead if 5; = 0. One can remove all dead cells by computing all
partial sums.

Thus, all dead cells can be removed in O(logn) time using
O(nflogn) processors. We need a faster algorithm that uses only
O(log (log n)) time and O(n/log (log n)) processors. But we require
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only that the algorithm remove a constant proportion of the dead
cells in a random string.

We shall say that an algorithm on an input string ¢ of length
discards k zeros if it maps the nonzero elements in a one-to-one way
into a new string of length at most n — k.

TuEOREM 4.4. There exists a PRAM algorithm DISCARD

ZEROS using O(log (logn)) time and O(n/log(logn)) processors
that, for at least 1 — 1/n of the random strings ¢ of length n discards
at least [gn/21 zeros, p = 1 — q fixed and n sufficiently large.

Proof. We partition n into intervals of size m = [c(Inn)1 plus
one last interval of size &lt;m. We fix ¢ as a function of g later in the

proof. Each interval will be given k = L(p + g/2)m — 1] conse-
cutive storage locations in which to store its live cells. We assign
O[m/log (log n)] processors to each interval. In O(log m) time, using
the classical prefix sums algorithm, these processors place the live
cells in their interval. If any interval has more live cells than storage
locations then the process as a whole is aborted using concurrent
write. The algorithm has thus failed on this input.

We first check that if the algorithm terminates then it has in fact
it has discarded [g/2n] zeros. The total space used for storing the
ones is [n/miL(p + q/2ym — 14, which is less than or equal to

(nfm + D[(p + q/2)m — 1]

= (p+ qg/2n+ (p+ q/2ym — nim —

For n&gt; (p + q/2)m? this sum is less than | (p + g/2)n]. Thus, we
have discarded [g/2n1 zeros.

Before we show that the algorithm fails only on a vanish-
ingly small fraction of the strings we analyze the number of pro-
cessors and the time uses. Sincce there are [n/m] intervals each using

O(m/log (log n)) processors the total number of processors used in
O(n/log (logn)). Since each interval can be packed in parallel, the
total time (besides computing the parameters m and k) will just be
the cost of computing all the prefix sums for a string of length m.
which is O(logm) = O(log (logn)).

The procedure fails on some interval if the number of zeros in
that interval is less than [q/2m]. It will suffice to show that the
probability of fewere than | g/2m + 1] zeros in an interval is small.
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Note that g/2m +1 = (1 — g)gm fore = 1/2 — 1/(gm) and for m

large ¢ &gt; 0. To analyze the probability of failure we use Chernoff
bounds from Theorem 3.5. Let S,, be a binomial random variable
with parameters m, g. We have the following bound on the prob-
ability of failure for some interval:

Prob (S,, &lt;L(1 — e)mgl) ~&amp;mp-

Using our values of ¢ and m, and setting ¢ = 9/q we get

p ~[1/2—/igm)mq/2 — eo (mai2=1/2) i eg imn—(nn-1/2) &lt; 1/n?

The last inequality follows for n &gt; 2. Now the probability of failure
on any interval is upper bounded by (n/m)l/n* = 1/mn. Since
m &gt; 2 we get that failure occurs less than 1/n of the time. O

THEOREM 4.5. There exists a PRAM algorithm using O(log (log n))
time and O(n/log (logn)) processors that for at least 1 — 1/n of the
strings with b zeros discards at least min {b/2,n/3} zeros.

Proof. To prove the theorem we use the algorithm from the
proof of the previous theorem with p = (n — b)/n. The analysis of
failure for the previous theorem reduces to Chernoff bounds for
tails of a binomial random variable with parameters m, p. In this
case the random variable is hypergeometric with parameters n, m,
n — b. Hoeffding [H], Theorem 4, has shown that the moments of
a hypergeometric are always bound by the moments of a binomial
with the same expected value. Thus, the Chernoff bounds in
Theorem 3.5 can be applied directly to hypergeometric distri-
butions. Thus the arguments used in the proof of Theorem 4.4
apply directly to this case giving an error bound of 1/n. a

4.4 Randomized Tree Evaluation Using O{n/log n) Processors

We are now ready to describe our optimal randomized tree

evaluation algorithm. The procedure is presented in Figure 5.
Routine (a) generates for each i an upper bound x; on the size of the
work space at the ith stage of routine (¢). The routine (b) generates
in parallel all the permutations that will be needed in routine (¢).
We generate all the permutations at once to ensure O(logn) time.
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Figure 5. An optimal randomized tree evaluation algorithm.

Procedure Randomized Tree Evaluation:
Set z; « nja « 31/32; k « 1; « 1;T) « T;

While z; &gt; n/logn do
1) zi41 + [az];
 ie—141

In Parallel Generate random permutations my,...,
of sizes zy,..., T;, respectively

While k£ &lt;i do

1) Tiy1 — RANDOMIZED CONTRACT(T}), using p processors:
2) Permute the pointers of Tx41 using meq;
3) Apply DISCARD ZEROS to the list of pointers Ty

returning at most x4; pointers;
Hke—k+1.

While [T| &gt; 1 do
T «+ Randomized Contraction(T')

(using a distinct processor at each vertex)

-

(¢c

Routine (c) step (1) for each k contracts 7, to T,,, generating at
least x,/16 dead pointers. After randomly permuting the pointers,
step (2), step (3) discards at least x, /32 dead pointers. When routine
(d) 1s implemented, T will be stored in an array of pointers of size
at most 0(n/log n). Since no routine will be implemented more than
O(logn) times we need only make sure that the probability of
aborting at each step is &lt; 1/cnlogn for some constant ¢. These
bounds follow from the preceding theorems and the fact that the
error can be decreased to 1/n* by simply running an algorithm
twice.

We discuss each of the four routines: (a), (b), (¢), and (d).
Routine (a) is deterministic and thus always works. Routine (b)
generates all O(logn) permutations needed by the algorithm. The
important fact to note is that the sum of their sizes is O(n). Thus,
we can generate each =; in logan time using at most O(x;/logn)
processors (see Theorem 4.2) all with probability of failure at most
1/n. Therefore routine (b) uses O(log rn) time and n/lognprocessors.
The analysis of routine (c) is slightly more complicated. By
Theorem 3.7 RANDOMIZED CONTRACT will fail with prob-
ability at most 1/n for sufficiently large n. By Theorem 4.5
DISCARD ZEROS will fail with probability at most 1/n also.
Step (1) will take O(x, /nlogn) time using n/logn processors. Since
X/n is approximately oa the time taken by (1) is geometrically
decreasing in k. Therefore the total time used by (1) over all values
of k is O(logn). This same analysis also applies to (2). Using
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Theorem 4.5, the procedure DISCARD ZEROS can be speeded only
by using more processors to a minimum time O(log (logn)). Thus,
we must check that x;/nlogn &gt; log (logn). But x; &gt; 31/32n. Thus,
for n large step (3) also uses total time at most O(logn). Finally
routine (d) will complete in O(logn) time by Theorem 3.6 with
failure probability at most 1/n. Thus, it follows that RANDOM-
[ZED TREE EVALUATION will fail with probability at most 1/n.

Using the parallel tree expansion ideas in Theorem 3.2 we get;

THEOREM 4.6. There exists a 0-sided randomized algorithm
that marks all vertices of a tree in O(logn) time using O(n/logn)
processors.

For deterministic dynamic tree expansion, we had enough
processors so that all the trees T, . . ., 7, computed during dynamic

tree contraction can be stored on the processors local memory using
a pushdown store. Here we have fewer processors so we shall simply
store the tree in common memory with back pointers from vertices
in tree 7; to corresponding vertices in 7; ,. Since the size of the trees
is decreasing geometrically the total storage is at most linear.

 —~
J APPLICATIONS OF DYNAMIC TREE CONTRACTION

5.1. Arithmetic Expression Evaluation

Let T be a tree with vertex set J and root r. We assume each leaf

is initially assigned a value C(v), and each internal vertex v, with
children u,,...,u,, hasalabel L(v)[y,,...,u,] that is assumed to be
of the form 6(u,...,u,) where fe{+.—, x, +}. A bottom-up
approach for expression evaluation is to substitute L(u;) into
L(v)[u,,...,u,] for each child u, that is a leaf, and then delete u;.
This method however requires time (rn) in the worse case. The
results of Brent imply we can do expression evaluation in O(logn)
time if we can preprocess the expression [6]; however Q(log n)* time
seems to be required if the expression is to be evaluated dynamically
(i.e., on line).

THEOREM 5.1. Dynamic arithmetic expression evaluation can be
done in O(logn) time using O(n) processors deterministically and
only O(n/log n) processors using a 0-sided randomized procedure.
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Proof. We shall assume that the number of arguments at a
vertex is at most 2. If not we assume that in O(logn) time we can
convert it into such a tree. As in Brent we shall perform only one
division at the end.

The values stored or manipulated will be sums, products, and
differences of the initial leaf values C(v). The value returned will be
a ratio of these elements. The operations {+, —, x, +} will have
their usual interpretations, e.g., a/b + c/d = (ad + bc)/bd. The
other main item we need is a way to represent elements from a class
of many functions that is closed under composition. Here we will
use ratios of linear functions of the form, (ax + b)/(cx + d). We
must verify that they are closed under composition:

a(au + b)f(cu+d)+b  au+ bd
c(au+ b)(cu+d)+d ~ cu+d’

5.2. Arithmetic Subexpression Evaluation

By running procedure randomized tree evaluation “backward”
(Figure 5) as we did in the deterministic case (Figure 3) we get:

THEOREM 5.2. All subexpressions can be computed in the time and
processor bounds in Theorem 5.1.

A special case of computing all subexpressions is the linked-list
ranking problem. Here we have a linked-list and we would like to
compute the position in the list of all elements (see [V]).

COROLLARY 5.3. General a linked-list of size n, the position of
each element in the list can be computed with a 0-sided randomized
algorithm in O(logn) time using O(n/logn) processors.

6. PARALLEL TREE CONTRACTION FOR TREES
OF UNBOUNDED DEGREE

Up until now we have assumed that the RAKE operation could
be performed in unit time. For many applications this is not the
case. As we shall see in the companion paver [MR2], the RAKE

operation for certain applications may be considerably more com-
plicated than just deletion. As an example, we may need to sort
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the labels assigned to the leaves of a vertex before they can be
“ranked.” Here, the parallel time of raking the leaves of a vertex
with k children is O(logk). If we require the algorithm in this
example to finish a CONTRACT completely before it is allowed
to start the next CONTRACT then it is not hard to construct

examples where the total cost to reduce a tree to its root will be the
cost for RAKE times the logarithm of the size. As an example of
where the Rake operation is not constant time in Part 2 of this
paper we consider the problem of finding canonical labels for trees;
here the RAKE operation consists of sorting the labels of all
siblings before the leaves are removed (see [MR2] for details). It is
well-known how to sort in O(log?n) time. Thus, the naive analysis
of this algorithm would be that it runs for O(log’) time. We will
improve the running time by a factor of logs below.

We modify parallel tree contraction so that for those parts of the
tree where CONTRACT has already finished we implement a new
round of CONTRACT, i.e., CONTRACT is run asynchronously.
We shall assume that the time used to remove the leaves of a given
vertex is only a function of the number of leaves at that vertex. We
should point out that the synchronous and asynchronous versions
of CONTRACT may return very different answers. In the case of

computing canonical forms for trees by sorting leaves both the
synchronous and asynchronous algorithms are correct. The asyn-
chronous version will be faster.

Asynchronous Parallel Tree Contraction (APTC) can be described
graph theoretically by viewing it as operating on trees with special
leaves that we call phantom leaves. The algorithm APTC is run in
stages. Initially the tree 7 has no phantom leaves. We apply the
procedure CONTRACT to T obtaining the tree 7”. If a given vertex
ve T had k &gt;= 2 children that are leaves excluding any phantom
leaves then we add a new phantom child w to v € T”. Further, if the

time required for APTC to delete these k children of © is ¢ then the
phantom vertex w will persist for ¢ stages at which time it simply
disappears. Note that a given vertex may have several phantom
children and a vertex with a phantom child is not a leaf. The time
to execute APTC is the number of stages it takes to reduce the tree
to its root and all phantom leaves to disappear.

THEOREM 6.1. If the cost to RAKE a vertex with k children is

hounded by O(log k) then asynchronous tree contraction requires only
O(log n) time.
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Proof. Suppose the time to RAKE a vertex with k children is
bounded by clogk for k &gt; 2 and RAKE for a single child can be
performed in unit time. We shall analyze the time used by asyn-
chronous parallel tree contraction by assigning weights to the
vertices of the tree such that at any stage of the algorithm the weight
of the tree reflects the progress made so far.

A weighted tree is a tree with weights assigned to the vertices. The
weight of a tree is the sum of the weights of the vertices in the tree.
In this application all vertices will have weight one except phantom
leaves, which may have arbitrary real weights &lt; 1. Thus, initially.
the weight of the tree is the size of the tree.

We describe in more detail how weights are assigned to phantom
leaves. Suppose the time required to rake the kK nonphantom leaves
of a vertex v is f(k). There is a subtle point that is worth pointing
out. Namely, if the time to rake a vertex with k leaves varies from
vertex to vertex this may dramatically affect the way the tree
contracts. Our analysis depends only on an upper estimate for the
time to rake a vertex. We pick 8, which is a function of k, such that
B/®~'k = 1for f(k) &gt; 0. Hence  &lt; 1 for all k &gt; 2. The constant
f will be the rate at which the phantom leaf decays. We set the
weight of the new phantom leaf w of v to fk. After each successive
stage we will decrease the weight on w by a factor of § until the
weight equals one. In the next stage we will simply delete the
phantom leaf w. Thus, the phantom leaf w will exist for f(k) stages
at which time it will be deleted. Note that the weight of a phantom
vertex is always &gt; 1.

As in the proof of Theorem 2.1 we partition the vertices of T
into two sets, Ra and Com. We claim that the weight of Com
decreases by a factor of 1/2 at each stage while the weight of Ra
decreases by a factor of at least (4 + f)/5 at each stage, where
p = max {f(k)|1 &lt; k &lt;n}. Note that different phantom leaves
decay at different rates. We have picked f to be the slowest such
rate. The fact that Com decreases by 1/2 follows by noting that the
vertices in Com are processed the same as in CONTRACT and their
weights are all one. We next consider the case of Ra, Ra =

huhu Gu Cu GC, where Vj is the set of leaves and phantom
leaves. Since the weight on any vertex in Vj is at least one and the
weight of any vertex not in Vj is 1 we see that that weight of V} is
at least 1/5 of the weight of Ra. On the other hand the weight of ¥;
decreases by at least f at each stage. Thus, the weight of Ra
decreases by at least a factor of 4/5 + B/5 at each stage.
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This shows that the number of stages is bounded by logn base
5/(4 + PB). For a particular case of interest when f(k) &lt; clogk for
some constant ¢ and k &gt; 2 we see that f is bounded away from 1
for all n. This proves the theorem. lH

7. THE RANDOM VARIABLE MATE

Let X, be the space of all binary strings of length n + 1 for n &gt; 1.
Let MATE, be a random variable defined on X, where MATE,
zquals the number of 01 patterns in a string from X,. Intuitively, 0
is a female and 1 is a male.

LEMMA 7.1. The random variable MATE, has expected value n/4
and variance (n + 2)/16.

Proof. Lets,...s, be a random binary string. Since the expected
value of MATE, substring s;s;., is 1/4 and there are n such sub-
strings the expectation for s, ...s, must be n/4. Here we used the
fact that expectations sum.

To compute the variance we consider a slightly different random
variable with the same probability distribution. Let S, be the
binomial random variable on binary strings of length n with p = 1/2.
We define a random variable X with p = 1/2 over the space of all
zero—one strings of length n + 1 as follows:

or rn L217 if, =0iy...l,) =
(Go. 1n) US. (ty...0)))2)ifr,= 1

To see that X is simply a change of variables of MATE, consider
the mapping from s,...s, to ¢, ...¢, defined by ¢, « 5, and induc-
tively t; = 0 iff s,_, = s;. One can see that this mapping is surjective

and X(t,...1,) = MATE,(s, ...s,). Thus, the expected value of X
is n/4 and we need only compute the second moment of X, E(X?).

E(X?) = 12 3 {[k/2TProb(S, = k) + Lk/22 Prob (S, = k)}
k=0

12S [(k* + 1)/2]Prob(S, = k)
kodd

L1/2 Y (K/2)Prob(S, = k)
kFeven

14 | Y k*Prob(S, = k) + Y Prob(S, = k)
k=0 k odd
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The first term in the sum is just 1/4 of the second moment of S,,
which is (#n* + n)/4. By a straightforward examination of Pascal’s
Triangle the second term equals 1/2, since the sum consists of every
other term in a row of Pascal’s triangle, which is equal to the sum
of the row above it. Thus, E(X?) = (n* + n + 2)/16. Therefore the
var (X) = E(X?) — E*(X) = (n + 2)/16.

By similar arguments we get the following bound on MATE:

LEMMA 7.2. Vx Prob ([S,/21 &lt; x) &lt; Prob (MATE, &lt; x) &lt;
Prob (L.S,/2] &lt; x).

One of the referees has noted that Lemma 7.1 follows by a rather
straightforward induction based on covariances. We feel that our
proof while slightly longer is instructive since it shows that the
random variable MATE, is very closely related to a simple binomial
random variable. We conjecture that the random variable MATE =

MATE, +--+ MATE, where n = n+ --- +n, has all its
moments bounded by the moments of S, for p = 1/4. If the conjec-
ture is true the analysis of many of the theorems could be simplified
and the constant improved. We hope that this section is of some
help in settling this conjecture.
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PRIVATE COINS VERSUS PUBLIC COINS

IN INTERACTIVE PROOF SYSTEMS

Shafi Goldwasser and Michael Sipser

ABSTRACT

An interactive proof system is a method by which one party of
unlimited resources, called the prover, can convince a party of limited
resources, called the verifier, of the truth of a proposition. The
verifier may toss coins, ask repeated questions of the prover, and run
=fficient tests upon the prover’s responses before deciding whether to
be convinced. This extends the familiar proof system implicit in the
notion of NP in that there the verifier may not toss coins or speak,
but only listen and verify. Interactive proof systems may not yield
proof in the strict mathematical sense: the “proofs” are probabilistic
with an exponentially small, though nonzero chance of error.

We consider two notions of interactive proof system. One, defined
by Goldwasser, Micali, and Rackoff [GMR], permits the verifier a
coin that can be tossed in private. i.e.. a secret source of randomness.
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The second, due to Babai [B], requires that the outcome of the
verifier’s coin tosses be public and thus accessible to the prover

Our main result is that these two systems are equivalent in power
with respect to language recognition.

The notion of interactive proof system may be seen to yield a
probabilistic analog to NP much as BPP is the probabilistic analog
to P. We define the probabilistic, nondeterministic, polynomial time
Turing machine and show that it is also equivalent in power to these
systems.

INTRODUCTION

In this century, the notions of proof and computation have been
formalized and understood. With the arrival of complexity theory,
the notion of what is efficiently provable became of interest. The
class NP captured this notion, containing those languages for which
proofs of membership can be verified by a deterministic polynomial
time Turing machine. We can view NP as a proof system consisting
of two communicating Turing machines: the prover who guesses the
proof and the polynomial time deterministic verifier, who checks
the correctness of the proof.

Randomization has been recognized to be a fundamental ingredi-
ent in defining what is efficiently computable (e.g., RP, BPP, RNC).
In this paper, we seek to understand how randomization affects the
definition of what is efficiently provable.

A conventional deterministic NP verifier does not accept statisti-
cal evidence as a convincing argument, regardless of how over-
whelming it may be. As a consequence, the kinds of languages
contained in NP are precisely those whose proofs of membership
can be fully put down in writing and shown to others. The verifier
does not actively participate in the proof process or interact with
the prover in any way. It suffices for the prover to speak and the
verifier to listen.

Randomization and interaction are essential ingredients of two
recent formalizations of the concept of an efficient proof system.
One formalization is due to Babai [B] and the other to Goldwasser,
Micali, and Rackoff [GMR]. Both definitions would collapse to NP
if no coins were flipped.

1.1. Interactive Proof Systems

in defining what interactive proof systems, Goldwasser, Micali,
and Rackoff’s intent was to make as general a definition as
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possible of what is provable to a probabilistic verifier willing to
accept statistical evidence. Their broader goal was to define the
concept of the “knowledge” communicated during a proof.

An interactive proof system consists of a prover with unlimited
computation power and a probabilistic polynomial time verifier
who receive a common input x. The prover and the verifier can

exchange messages back and forth for a polynomial in the length of
x number of times. There are no restrictions on how the verifier may

use his coin tosses: he can toss coins, perform any polynomial time
computation on them and send the outcome of the computation to
the prover. In particular, he need not show the outcome of the coins
to the prover.

The secrecy of the verifier’s coin tosses seemed essential to certain
examples of interactive proof systems. The most notable is a recent
result of Goldreich, Micali, and Wigderson [GMW] showing an
interactive proof system for the graph nonisomorphism problem.
This is somewhat remarkable in light of the fact that graph noniso-
morphism is not known to be in NP. We sketch this example in
Section 2.1.

The interactive proof system (IP) defines a hierarchy of languages.
Namely, L is in IP[k] if there exists a k-move (k alternations of
message exchanges between prover and verifier with the verifier
sending the first message) interactive proof system such that for
every input x € L, the probability that the verifier accepts is greater
than 2/3; and for every input x not in L, even against an optimal
prover, the probability that the verifier accepts is less than 1/3.

[.2.  Arthur—Merlin Games: An Interactive

Proof System with a Public Coin

Babai’s formalization of efficient proof system attempts to capture
the smallest class of languages extending NP for which statistical
proofs of membership exist. The primary motivation was to place
the matrix group nonmembership and matrix group order problems
in a complexity class “just above NP.” His proof system, presented
as a game, consists of a powerful prover (capable of optimal moves)
called Merlin, and a probabilistic polynomial time verifier called
Arthur, which receive a common input x. Merlin wins the game if
he can make Arthur accept x. Arthur and Merlin alternate exchang-
ing messages back and forth for at most a polynomial in the length
of x times. At the end of the interaction, Arthur decides whether to
accept or reiect (i.e.. whether Merlin won or lost)
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The difference between the Arthur-Merlin proof system and the
interactive proof system of [GMR] is in the restricted way that
Arthur is allowed to use his coin tosses during the game. Arthur’s
moves consist merely of tossing coins and sending their outcomes
to Merlin. Thus, the Arthur-Merlin game is a special case of an

interactive proof system.
The Arthur-Merlin games define a hierarchy of complexity classes,

(n a manner similar to IP. We say L is in AM [k] if there exists an
Arthur-Merlin k-move game (i.e., k alternating message exchanges
between Arthur and Merlin, Arthur sending first) such that for
every input x € L, the probability that Arthur accepts x is greater
than 2/3; and for every input x not in L, the probability that an
optimal Merlin wins is less than 1/3.

The elegant simplicity of the definition of the Arthur-Merlin
game facilitates additional results. Babai showed that for every
constant k, AM[k] collapses to AM|[2]. This in turn is a subset of
both I'l and nonuniform NP. The relative power of proof systems
with a bounded versus an unbounded number of exchanged messages
remains an interesting open question.

In this paper we prove the equivalence of these two types of
Interactive proofs with respect to language recognition. As a conse-
quence the above results extend to IP.

[.3. Our Result

Let Q denote a polynomial. Let /P[Q] (and AM[Q]) denote those
languages L for which there exists a Q-move interactive proof
system (and Q-move Arthur-Merlin proof system, respectively).
Namely, Q(|x|) message exchanges between the prover and the
verifier are allowed on input x.

In this paper, we show that for any polynomial OQ,

IP[Q]  AM[Q + 2]

i.e., the GMR proof system is as powerful as the Babai proof
system.

2. EXAMPLES AND RELATED WORK

2.1. An Example of an Interactive Proof System

Goldreich, Micali, and Wigderson [GM W] have recently demon-
strated the following interactive proof system for the graph noniso-
morphism problem.
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Let NONISO = {(G,,G,) such that the graph G, 1s not 1somor-
ohic to the graph G,}.

THEOREM. (GMW): NONISO¢eIP

Proof. The prover and verifier receive as input two n node
graphs G, and G, on vertices VV. The following steps 1 and 2 get
executed » times in parallel.

Step 1. The verifer flips a fair coin to choose c€{0,1} and a
random permutation n of V. The verifier then computes
R = 7n(G,) and sends R to the prover.
Step 2. The prover tells the verifier whether ¢ = 0 or 1.

Final step. If the prover ever makes a mistake in Step 2 determin-
ing c¢ the verifier rejects, otherwise he accepts.

If the two input graphs G, and G, are not isomorphic to each
other, then there exists a prover who can distinguish the case that
R is isomorphic to G, from the case that R is isomorphic to G,, and
thus can always tell correctly in Step 2 of the protocol whether
c = 0 or ¢ = 1, and make the verifier accept.

On the other hand, if Gis isomorphic to G,, then by the random-
ness of the permutation 7, R is as likely to be n(G,) as it is to be
n(G,). The prover who does not know ¢ will err in Step 2 of the
protocol with probability 1/2. QED

Clearly, the secrecy of the coin is essential to this protocol.
One consequence of this result, combined with Babai’s and ours.

's that the graph nonisomorphism problem has polynomial-size.
nondeterministic circuits.

Several other interactive proof systems for number theoretic
problems and the matrix group membership problem appear in
(GMR_B].

2.2. Related Work

The difference between IP and AM games is analogous to that
between alternation [CKS] and alternation with partial information
[R]. In the case of alternation both players play optimally subject
to their knowledge and only the referee who determines the out-
come is required to be polynomial time bounded. Condon and
Ladner [CL] describe this connection in a general setting.
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Other relevant results concerning interactive proof systems appear
in [H]} and [F]. Prior to our result, Johan Hastad [H] showed that
the union {J, o /P[k] is contained in X,. Paul Feldman [F] showed
that the prover in an interactive proof system with a polynomial
number of interactions need not be more powerful than a PSPACE
machine. Boppana, Hastad, and Zachos [BHZ] showed that if
co-NP &lt; AM then for any i, £f &lt; AM. This and our result show
that the polynomial hierarchy collapses to X4 if graph isomorphism
is NP-complete.

Fortnow and Sipser [FS] have shown that there is an oracle F
such that co-NPF &amp; IP”. Aiello, Goldwasser, and Hastad [AGH]
have shown that there is an oracle 4 such that IP? = IP[2]%.

Other work related to the study of randomized proof systems
appear in [Pa] and [ZF]. In Papadimitriou’s “Games Against
Nature,” the verifier is also a probabilistic polynomial time machine
that flips coins and presents them to the prover, which is a capable
of optimal moves. The difference is that the probability of convinc-
ing the verifier need not be bounded away from 1/2. This apparently
affects the strength of the system as Papadimitriou’s games are as
powerful as PSPACE.

Furer and Zachos [ZF], in a work investigating the robustness of
probabilistic complexity classes, introduce a framework of prob-
abilistic existential and universal quantifiers and prove several com-
binatorial lemmas about them. The AM complexity classes can be
formulated in terms of these special quantifiers.

AN Connections with Cryptography

An interactive proof system can be viewed as a model for proving
the correctness of two party cryptographic protocols [GMR]. The
prover and verifier in an interactive proof system model the two
participants in a cryptographic protocol with one exception: the
cryptographic prover is not all powerful, but a probabilistic poly-
nomial time machine with a secret unknown to the verifier.

A key property of cryptographic protocols is the amount of
“knowledge” released to the verifier during the execution of the
protocol. Very informally, we say that a prover in an interactive
proof system releases “zero-knowledge” if even a devious verifier
can learn no more than the validity of the assertion being proved
[GMR]. In [GMW] it has been shown that if one-way functions
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exist then every language in NP has a zero-knowledge interactive
proof system.

Using this and our transformation from private-coin to public-
coin protocols, Ben-Or, et al. [BGGHKMR] has very recently
shown that all languages in IP have zero-knowledge, public-coin
protocols, given the existence of one-way functions. Our transfor-
mation does not preserve the zero-knowledge property. It is an
open question whether there is such a transformation which does.

3. DEFINITIONS

We represent the verifier and the prover of an interactive proof
system as two functions V and P.

DEFINITION. An [Interactive proof protocol is given
functions:

V.y* ko Tk Ty {accept. reject!
p.- vo vx

bv two

Let s; denote the concatenation of i pairs of messages,
S; = HX # HF #X;#y;. We write V(w, r,s) = x;,, to mean
that ¥ on input w, with random sequence r, and current message
stream s produces next message x;,.Wesay P(s; #X,.,) = yi; to
mean that P produces next message y;,, given current message
stream s; # x, ;. The exchange of a single pair of messages is called
a round.

For a given input w and random sequence r we say

(V*P)(w, r) accepts

if there exists a message stream s = #x,#y, # -- #x,#y, such

that V(w,r,s) = accept, and for each i &lt; /, V(w,r,s;) = x;,, and
P(s;#Xi01) = Yigrr

Let us assume for simplicity that there is a function / such that for
inputs w of length n, Vwill only accept if the length of r is /(n). Then
we write

Prl(V*P)(w) accepts]

to mean Pr[(V*P)(w, r) accepts] for r chosen randomly from Z/(*?
Further we let

PrlV{(w) accepts]

denote max, Pri(V* P)(w) accents]
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Let the language of the verifier, L(V) =

{w: Pr[V(w) accepts] &gt; 1/2)

Say V has error probability e if for all we X*:

I. IfwelL(V), Pr[V(w) accepts] =&gt; 1 —e
2. If w¢ L(V), Pr{V(w) accepts] &lt; e

For Wc Z*, we say We lP if there is a polynomial time verifier V
with error probability 1/3 accepting W. As we shall see later,
the class IP is unaffected if we substitute e for 1/3, where
D—Poly(n) « o «1/2 — 2—Poly(n)

DEFINITION. An interactive proof protocol with public coin is
defined as above with the following difference. The random input
+ is considered to be the concatenation of / strings r = rir,...r,

where / is the number of rounds andV is restricted to produce r; as
its ith message, i.e., for i &lt;/, V(w,r,s;) = r; or accept or reject.

This notion is essentially identical to that of the Arthur-Merlin
game defined by Babai in [B)]. Following his terminology we say that
for W &lt; X*, We AM(poly) if WelIP as above and the interactive
proof protocol uses a public coin. We refer to an Arthur-Merlin
game as an A-M protocol.

For polynomial Q, say We IP[Q(n)] if We IP with a verifier that
never sends more than O(n) messages for inputs of length ». Simi-
larly define AM[Q(n)].

[HE EQUIVALENCE OF PUBLIC VS. PRIVATE COINS

4.1. Approximate Lower Bound Lemma

This lemma, an application of Carter-Wegman universal hashing
[CW], plays a key role in our proof of equivalence. In its original
form it appeared in Sipser [Si]. It was first applied to approximate
lower bounds by Stockmeyer [St] and in Arthur-Merlin protocols by
Babai [B]. The present simpler form of the lemma is due to Boppana
(personal communication).

DEFINITION. Let D be a k x b Boolean matrix. The linear function
hp: T* — Tis given by h(x) = xD using ordinary matrix multipli-
cation modulo 2. A random linear function is obtained by selecting
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the matrix D at random. If H = {h,,...,h} is a collection of
functions, C &lt; X*, and D &lt; XZ? then H(C) denotes (JAh,(C), and
H~'(D) denotes (JA '(D). Let | C| denote the cardinality of C.

LEMMA. Given m, b&gt; 0 and C &lt; ZF. Let ¢ &lt;|C|/2". Let h:
$™ — ¥% be a random linear function and z be an random member

of X?. Then:

Prize i(C)] = ¢c —.

Proof. We may assume that | C| &lt; 2° since decreasing |C| to
that size can only decrease Pr[z e h(C)] while increasing ¢ — 2. The

lemma requires the following two claims.

i. Forx#yeXZ”, Prlh(x) = h(y)] =

2. Prizeh(C)] = Z,.Pr[z = h(x)]
— Ze cPr[z = h(x) = h()].

5—b

The first claim follows because each bit of A(x) has an independent
50% chance of agreeing with the corresponding bit of A(y). The
second follows from taking the first two terms of the inclusion-
exclusion expansion. Since

%, Prlzeh(x)] = |C|/2

and

C
J. Prlz = h(x) = h(y)] = ( ) a (from claim 1)

WE SEE that

Prize h(C)] = | C2" — CN, oa
\ 5 2e—ctfores|Cl/2&lt;1.

COROLLARY. Given m, b,d &gt; 0 and C c TF.
inear function 4: =" — ¥¢ and a random ze X¢

Choose a random

i. If|C|&gt;2°"?then Prlzeh(C)] &gt; 1/8
). If [Cl &lt; 2/d then Prize i(CY &lt; 1/d
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Proof. Part 1 follows directly from the above lemma. Part 2 is
straightforward.

COROLLARY. Given m, b, d, [20 and C&lt; XZ”. Choose
random linear functions H = {h,...,h}, h:Tm"&gt;3%and
Z = {z,,...,z,} © Z° then

I. If|C|&gt;2"2then Pr[Zn H(C) #0] &gt; 1— (7/8).
2. If|C|&lt;2%d then Pr[Z nn H(C) # 0] &lt; 1d.

Proof. Parts | and 2 follow directly from the previous lemma.

We use this lemma to obtain Arthur-Merlin protocols for show-
ing an approximate lower bound on the size of sets. Let C be a set

in which Arthur can verify membership, possibly with Merlin’s
help. Then Arthur picks random H and Z and Merlin attempts to
respond with x e C such that some xe H~'(z). If C is large then he
will likely succeed and if C is small he will likely fail.

1.2. Main Theorem

THEOREM. IP[Q(n)] = AM[Q(n) + 2] for any polynomial Q(n).
An informal proof sketch. Let us focus on l-round protocols.

Assume V has an exponentially small error probability e, sends only
messages of length m, and uses random sequences of length /. For
each xeZ™ let B, = {r:V(r,w, #) = x}. For every yeZ” let
x, = {r:ref.and V(r,w, #x #y) = accept}. Clearly, for each x,
the optimal prover will select a y, maximizing la,|Leta, = a,.
Let ay = (J, o,. Then Pr[V(w) accepts] = |a,]/2".

We next present the protocol by which 4 and M simulate V and
P. M tries to convince A that |a,| &gt; e + 2/ because this implies that

Pr[V(w) accepts] &gt; e and hence ~ 1. He does this by showing that
there are “many” a,’s that are “large,” where “many” x “large” &gt;
e + 2!. The tradeoff between “many” and “large” is governed by a
parameter b sent by M to A.

More precisely, M first sends b to A. Then two approximate
lower bound protocols ensue. The first convinces A that
Hx:|a,|&gt;e- 22} = 2°. M produces an x in that set as per the
approximate lower bound lemma. The second convinces A that x
ceally is in that set as claimed, i.e., that {a|= e+ 2/2?
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For g-round protocols iterate the first approximate lower bound
protocol to obtain ag 2 a; 2 - ++ 2 a, where there are “many,” ways

to extend «,_, to a; and a, is “large.” Require that (IT “‘many,”) x
“large” =e + 2".

Full proof. Let WelP[Q(n)]. We may assume, without loss
of generality, that on inputs w of length n there are exactly
g(n) = Q(n)/2 pairs of messages sent between J and P, these
messages are exactly m(n) long and the random input r to Vis I(n)
long. Let e(n) bound the error probability.

AMPLIFICATION LEMMA. Let p(n) be a polynomial. Let ¥ be a
verifier that on inputs of length »n sends a total of at most g(n)
messages, each of length m(n), using /(n) random bits, and with
error probability at most 1/3. Then there is a ¥’ such that L(V) =
L(V’), with a total of at most g(n) messages, each of length
O[ p(n) m(n)}], using Of p(n)I(n)] random bits and with an error
probability of at most 27"

Proof. V’ performs O[ p(n)] independent parallel simulations of
"and takes the majority vote of the outcomes. OO

By this lemma we may assume

e(n) &lt; I(n)~%®

Further we may assume that /(n) &gt; max[g(n), m(n), 50]. We write g,
m, e, | for g(n), m(n), e(n), and I(n) where n is understood.

We now describe the functions 4 and M simulating V and P,
informally as two parties exchanging messages. The variables x; and
y; represent messages sent by V and P, respectively. In essence, the
idea is for 4 to use the random hash functions to force M to

produce a generic run of the V, P protocol and then finally to prove
that this run would likely cause ¥ to accept. The numbers b, that M
produces roughly correspond to the log of the number of possible
generic messages that ¥ can make at round i.

Arthur's Protocol

Round 0:
A4 initially makes a null move and receives number b, from M. Go

‘0 round 1
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Round i (1 &lt;£i&lt;g):
So far A has received b,, ..., b;, and strings X;, ..., X;_{, Vis «+&gt;»

yi, from M. Now A randomly selects / linear functions
H = {h,...,h}, h: Z"&gt;XZ"and[stringsZ = {z,...,2,} xb
and sends them to M. A then expects to receive strings x; and y; and
number b,,, from M. A checks that x,e H'(Z). If not then A
immediately rejects. Then 4 performs round i + 1.

Final round g + 1:

Lets, = x, #y,# --- #x, #y,. A randomly selects / linear func-
tions H = {h,,...,h}, h;: Z'— Z% and I strings Z &lt; Z%*'. It then
expects to receive a string re X' from M and checks that re H='(Z).
A accepts if for each i &lt; g V(w,r,s,) = x;,,, V(w,r,5,) = accept
and 2% &gt; 1 — glogl.

Can Merlin Convince Arthur?

Now we show that Pr[V(w) accepts] &gt; e(n) iff Pr[4(w)
accepts] = 2/3.

(—) Merlin's Protocol When we W

First some notation. For reX’ and s = v, #v, # + #v, ¢

stream of messages we say

(V*P)(w, r) accepts via s

f the first kK messages sent by V and P agree with s and (V*P)(w,r)

accepts.
Suppose Pr[V(w) accepts] = 2/3. Fix any P such that

Pr{(V*P)(w) accepts] = 2/3. We now exhibit a protocol for M such
that Pr[(4*M )(w) accepts] &gt; 2/3.

Round 0:
Let i = 1. Proceed with “obtain b,.’

Obtain b, (i &lt; g):
Lets,,= x, #y,# ++ #x,_, #y;_, be the message stream for the

V—P protocol produced so far. For each xe Z" let a, = {r: (V*P)(w,r)
accepts via s;_, # x}. Group these a’s into / classes y,, ..., y, where
y, contains a’s of size &gt; 297! and &lt;2 Choose the class y,,,, whose
Union ymax = U{0:0,€Prax}18largest.Sendb,=1+[log] yay |.

Round i:
M receives hy, ..., h; from A and strings zi, ..., z,. If there is an

ce HY(Z) such that a ey,_.., call it x;. Then, M responds with the
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pair x;, y; where y, = P(s,_, #x;). Otherwise M responds with
“failure.” In the later analysis we refer to the set a, as a;. Set
i« i+ 1. Go to “obtain b,.”

Obtain b, ,:
M produces the value b,,, as follows: Lets, = s,_, #x, #y, be

the message stream that has been selected. So a, = {r:(V*P)(w,r)
accepts via s,}. Send b,,; = 1 +[log|a,|l.

Round g + 1:
M receives h,, ..., h, and strings z,, ..., z,€ b+ If there is an

rea, NH ~(Z), then M responds with r. Otherwise M responds
with “failure.” (Note that reo, implies that V(w,r,s,) = accept.)
End of Protocol.

We now show that Pr[(4*M )(w) accepts] &gt; 2/3. Let o, =
(r:(V*P)(w,r) = accept}. Since Pr[V accepts w] is high, [oy] &gt;
(2/3)2'. By the definition of M, A will accept provided M never
responds “failure” and Xb, &gt; [ — glog/. By the approximate lower
bound lemma the probability that M responds failure at any round
is &lt;(7/8)". Hence, the probability that M ever responds failure is
&lt;g(7/8)' &lt; 1/3, since we assume that / &gt; max[g, 50].

The following two claims show that Zb, &gt; / — glog/

Cram 1. ForeachO&lt;i&lt;g

1b

Proof. Consider round / and the sets a, defined in “obtain b,.”
By definition the a,’s partition a;_,and hence |J,a, = «;_,. Hence

U foe&gt;21
Since all members of y,,,, differ in size by
since a; €y,.,, we have

at most a factor of 2 and

ay) 5 Vapl) Be
TT 20y

and since b;, = 1 + [log|y,..|1 we have

3b; - 2 | vy
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Thus

FUPax| Tia]
lo &gt; =57=&gt;—5 i

Cam 2. Xb, =1—glogl

Proof. By Claim 1 we have

foo|
1% &gt; no

i&lt;g

Since | a,| &gt; (2/3) 2! and taking logs

ogla,i = (I —1) — (gtoe + Y bi)
i&lt;g

Since b,,, &gt;&gt; 1 + log oa,

PIR =1—glogl

«) Merlin’s Impotence When wé¢ W

Show that if Pr[V(w) accepts] &lt; e, then Pr[4(w) accepts] &lt; 1/3.
For every i&gt;0 and s, = x, #y,# #x,#y; let as) =

max, Pr[(V*P)(w) accepts via s;]. For each xeZXZ™ let y, be any
ye X™ maximizing a(s; #x#y).

We now show that Merlin must be extremely lucky in at least one
step of the protocol in order to convince Arthur to accept.

CLAIM 3. a(s)) = Z,a(s, #x#Y.) |

Fix0 &lt;i &lt;gands, Foreveryc &gt; Olet X, = {x:a(s; #x#y,) &gt;
a(s;)/c}.

CiaiM4. |X |&lt;ec r

Fix b, d &gt; 0. Choose random linear functions H = {h,,...,h},
h;: TZ" — X and I random strings Z = X°. Pick any xe H™'(Z) and
any yex™. Lets... = $s; #X#V.
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Call the following event E,, ;:

asiyy) 2als)
281d

Cram 5. For i &lt; g Pr[E;] &lt; P/d.

Proof. Let ¢ = (2%/d]. Then |X.| &lt;2%/d by claim 4. Since
as; #x#,) = a(s;,,) by the definition of y_, if a(s,,,)=a(s,)/(2°/d)
then xe X,. Since xe H™'(Z), if E,,, occurs then xe X,n H™'(Z)
and so X,nH '(Z) # ¢ and H(X,)nnZ#¢.But

Pr[H(X.) NZ # ¢] &lt; I*/d

by the approximate lower bound lemma.  -_

Fix s,. Choose / random linear functions H = {h,...,h},
h,: 2! — Z%+ and I random strings Z &lt; E%*'. Pick any re H™'(Z).
Call the following event E, , |:

2aSs.) &lt;&lt;2ld and  Vv *P)(w1) acceptS viia S

CLAIM 6.

Pr[Ezi] &lt; 1%d

Proof. By the approximate lower bound lemma part 2, since
{r:(V*P)(w,r) accepts via s,}| = 2a(s,). 0

In any run of 4 and M, event E; may occur during round i, where
b = b, for i &lt; g + 1. The probability that each occurs is at most
I’/d and therefore the probability that any occurs is at most
(g + 1)/%/d. Choose

d= 3(g+ DI

Then Pr[3iE; occurs] &lt; 1/3.
Assume no E; occurs. Then we show that 4 will reject, provided

that Pr[V(w) accepts] &lt; e.
Since Vi &lt; g, 1 E,;, we have

Yo rey
I... (2% d)
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Since TE, ;:

(V *P)(w, r) # accept

Ya (s.) ai1d

[hus if (VV*P)(w,r) accepts, combining the above:

2a(sy) = 211@"/d)

50, since / &gt; g + 1, taking logs:

[ + loga(s,)

&gt;Yb,—(g+ 1)logd
&gt; Yb, —4glogl!

1t

a(s,) = Pr[V(w) accepts] &lt; e 1- 3

llog4gb; -Y&gt;52° logl

Thus

b.Yb, &lt;Il—glogl

Recall that Arthur only accepts if (V*P)(w,r) accepts and
2b, &gt; 1— glogl. Therefore if Vi&lt; g+ 1, E; does not occur and
Pr{V(w) accepts] &lt;e, then Arthur will reject. Hence Pr[4(w)
accepts] &lt; 1/3. OJ

3 PROBABILISTIC, NONDETERMINISTIC TURING
MACHINES

We can define a new type of Turing machine that accepts precisely
those languages in IP. This gives an automata theoretic characteriz-
ation of this class.
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DEFINITION. A probabilistic, nondeterministic, Turing machine,
N, is defined conventionally except that it has two kinds of non-
deterministic states: random states denoted @ and guess states.

denoted .
Given a configuration, c, of such a machine we assign it a prob-

ability p(c) of accepting as follows: if ¢ is an accept configuration
then p(c) = 1; if c¢ is a reject configuration then p(c) = 0; if cis a
deterministic configuration then p(c) = p(c’) where ¢’ is the succes-
sor of ¢; if ¢ is a random configuration, then p(c) is the average of
p(c’); and if c is a guess state then p(c) is the maximum of p(c’) for
¢’ a successor. We say that Pr[N(w) accepts] = p(cy.) Where cg,
is the starting configuration for N on input w. One way to think of
computations on these machines is that at every random state, a
coin is flipped to determine the successor and at every guess state

the successor with highest probability of eventually accepting is
selected.

DEermNiTION. Say We BPNP if there is a probabilistic, nondeter-
ministic, polynomial time Turing machine N such that for all
we 2*:

1. If we W then Pr[N(w) accepts] &gt; 2/3
2. If we¢ W then Pr[N(w) accepts] &lt; 1/3

THEOREM. IP = AM(poly) = BPNP

Proof. Immediate. These machines are just a reformulation of
Arthur—Merlin games.

5. OPEN QUESTION

[n [B] Babai states that AM[2] = {W: We NP%, for almost all
oracles R}. However, an oversight in his argument leaves this
zquality an open question. (Note added in proof: This statement
has recently been proved by Nisan and Wigderson [NW].)
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COLLECTIVE COIN FLIPPING

Michael Ben Or and Nathan Linial

i. INTRODUCTION

Randomized algorithms play an important role in parallel and
distributed processing. The use of such algorithms assumes that
each processor is able to generate random bits during the compu-
tation. In some applications the algorithm requires that the same
random bit be generated by a set of processors. This task is easy if
we assume that no faults may occur. We have one of the processors

flip a coin and announce the outcome. If, however, the processor
assigned to flip the coin happens to be faulty this may ruin the
probabilistic requirement for our randomized algorithm. Suppose,
then, that each processor is equipped with a fair coin, how can they
generate a global coin flip that is only slightly biased despite failure
of some of the processors?

This problem was considered before, mostly in the framework of
the Byzantine Generals Problem [ACGM, BE, BD, Br, BR, Ra, Ya].

Advances in Computing Research, Volume 5, pages 91-115,
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These past solutions are all based on the assumption that infor-
mation may be communicated so that only some of the parties can
read it. This is achieved either by choosing an appropriate model of
communication, or by resorting to cryptography. We want to avoid
such assumptions. Technically this means that we deal only with
games of complete information.

The most obvious approach to solve this question is via what we
call a one-round coin flipping scheme: Say that there are n processors
involved. Fix a Boolean function f: {0,1}"—{0,1}. Whenever a
random bit is needed, instruct each processor P, to flip his coin and
announce the outcome x;. The global coin flip is taken as
f(x,,...,x,). How sensitive is this approach to the possible exist-
ence of faults? If the processors act simultaneously, the situation is
very favorable. If fis the parity function, then clearly, even if only
one processor is in order, this yields a perfect coin flip. In a distri-
buted environment, where one cannot assume perfect simultaneity,
the parity function is not very useful. A single faulty processor that
announces his bit already knowing the bits announced by all the
rest has complete control over the global bit.

We are thus looking for Boolean functions on which every
variable has only a small influence. The discussion above hints at
the features we should expect from measures of influence. Indeed
there are a number of inequivalent such quantities. We present the
simplest and probably the most natural one among them: Let
S&lt;{l,...,n} be a subset of the variables of the Boolean func-
tion f. Randomly set the variables outside S by independent perfect
coin flips. This partial setting may already determine the value of f
regardless of the values of the variables in S. A measure for the
influence of S on fis the probability that this does not happen and
the variables in S “have the last word” in determining f. Our goal
is to find functions f for which this measure of influence is as small
as possible for all subsets S = {1,...,n}.

The assumption that the variables in S are set after those in
{1,...,n}\S is obviated by the following observation (Lemma 2.1):
For every Boolean function f there is a monotone function g such
that

Pr(f=0)= Pr(g =0)

and every S &lt; {1,...,n} influences fat least as much as it influences
g. So for our purposesg is at leat as good as f. This lemma thus says
that it suffices to consider monotone f’s. This observation removes
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the need for S to be set only after the other variables. All the
information we need in this case is embodied in the probability of
f = 0 when all variables in § are set zero (resp. one).

Some very basic questions regarding Boolean functions thus
arise. They also turn out to be rather natural questions in game
theory. A Boolean function is for the game theorist a simple game.
Variables are players and sets of variables are coalitions. The meas-

ure of influence of a player (the case |S| = 1) is a quantity already
considered in game theory, under the name of Banzhaf-Coleman
power index. Much attention has been given in game theory to
measures of influence of players and sets of players in games [Ow].
The most important among these is the Shapley value. For us the
Shapley value does not seem to be the most appropriate.

Consider the Boolean function f(x,,...,x,) = x,, which in
game theory is the dictatorship of player k. Here, the influence
(Benzhaf index) of the dictator k is 1 and is 0 for all the other
players. The influence of each variable on the majority function is
oO In). It may be thought that this is better but this is not the
case. We present a Boolean function for which the influence of each
variable 1s only O(logn/n). On the other hand it follows from
known facts in either game theory [Ha] or combinatorics [H] that
for any function the average influence of a variable is at least Q(1/n).
This gap between the upper and lower bound is very intriguing and
our conjecture is that the upper bound is closer to the truth. Put
informally, there is always some player who affects the outcome of
the game in a disproportionate manner.

Until this point we restricted our discussion to single-round
schemes. The reader can certainly think of more elaborate schemes
for collective coin flipping based on more complicated protocols
than just an application of a Boolean function. We make the
observation (Proposition 5.2) that the most general coin flipping
scheme can be described as follows: There is a rooted binary tree T
whose leaves are labeled by zeros and ones. Each internal node of
Tis labeled by the name of one of the players. We start at the root.
Whenever an internal node is reached, the player at this node flips
a coin and announces the outcome. According to this outcome the
game proceeds to either the right or the left son of that node in the
tree. When a leaf is reached the game terminates and the outcome
of the game is the 0/1 label of the leaf.

Such a labeled tree is called a multiround coin flipping scheme.
This is a more complicated setup and we need to consider at least
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two quantities which measure influence. Let S &lt; {1,...,n} be a set
of players. Assume that the players not in S do follow the rules and
flip perfect coins. Then there is a best strategy for S to maximize the
probability of a zero outcome. The difference between this prob-
ability and the probability of zero if members of S, also, play
randomly measures the influence of S toward zero. A similar quan-
tity is defined for an outcome of one.

Our main relevant result (Theorem 5) says that in every multi-
round game there is a player with an Q(1/»n) influence toward one.
Of course the same holds toward zero. Unfortunately, we have no

similar result to guarantee the existence of a player with a substan-
tial influence both towards zero and one. Unlike the one-round

situation (1/n) bound is known to be best possible. We exhibit
games showing the tightness of this bound.

More general questions regard the influence of sets of players in
both single and many round games. Particularly interesting is the
following notion of e-control. For ¢ &gt; 0 a coalition S has e-control
over a game G if S’s influence on the outcome of G is &gt;¢. (As
mentioned before we deal with a number of measures for influence

and the definition of ¢-control clearly depends on the measure at
hand.) The goal is of course to find games which are not e-controlled
by small sets.

To illustrate this notion we remark that majority is e-controlled
by O(ey/n) players. We construct single-round games in which
Q(en®®-) players are needed to achieve e-control. Recently Saks [S]
analyzed a multistage game where Q(n/log n) players are required to
achieve e-control. We conjecture that Saks’ construction is essen-
tially the best possible. This means that there is always a negligible
minority of the players that almost determines the outcome assum-
ing all the others play randomly. Even the one-round version of
this question is open and very intriguing: Given a Boolean f:
{0,1}" &gt; {0,1} with Pr(f = 0) = 1/2, is there a set of o(n) vari-
ables such that even if the assignment of values to all other variables
is known there is a constant probabiliity that this does not yet
determine 1?

In the results described here we always assume that the set of
faulty processors is fixed during the game. A completely different
question arises if the faulty processors are determined by an
adversary during the course of the game. In the single-round
context it can be shown that the most robust scheme against such
an adversary is the majority voting scheme. This is an easy
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consequence of the isoperimetric inequality in the cube [H]. In the
multistage case this problem is left open. A special case of this
question was recently settled in a paper of Lichtenstein, Linial, and
Saks [LLS].

ONE ROUND COIN FLIPPING SCHEMES—
PRELIMINARIES

As explained in the introduction a one-round coin flipping scheme
is nothing but a Boolean function f: {0,1}" — {0, 1}. Unless other-
wise stated f is usually assumed to satisfy | f~'(0)] = |f~'(1)] =
2"! [or equivalently Pr(f = 0) = 1/2]. With a slight change
of notation f may be thought of as a function from the power set
of {1,...,n} into {0,1}. Consequently we speak of f(4) for
A&lt;{l,...,n}. We now set to formally define our notions of
influence for a set of variables of f.

Let

Oo = Qu(f,S) = {4|ANnS = and for every

BCS. f(AUB) = 0}

0, = Q,(f,S) = {4l4nS = J and for every

Bc S, f(AuB) = 1).

Also

70 = 9o(f; 8) = |Q(f, S)| + 215!

g, = q,(f,. 8) = 10,(f.8)| «251-7

7, = ¢,(f.S) = i—qg,—q

It is seen that g,(q,) is the probability that the values assigned to
variables outside S already set f to zero (one). The probability that
this partial assignment does not determine fis g,. Accordingly, the
influence of S on fis defined as

(SY: = g.(f.S)
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The influence of S on f towards zero (one) is defined to be

PS): = q(f,S) + q:(f,S)— Pr(f = 0),

(S): = q(f,S)+q,(f.S)—Pr(f=1).

respectively. Note that g,(f,S) + ¢,(f,S) is the probability
that f = 0 assuming the players in S try to set f to zero. The
influence toward zero is defined as the excess of this probability
over Pr(f=0).For 1 &lt;r &lt; n we let

I(r): = max {L(S)||S| = r!

and similarly for I(r), I} (r). Also I: = L(1).
If § = {x} is a singleton [,({x}) is a quantity that was studied in

game theory. A monotone Boolean function v: {0,1}" — {0,1} is
called a monotone simple game (N,v) with N = {1,...,n}. Variables
are called players and sets of players are coalitions. In this context
I;({x}) is called the Banzhaf-Coleman power index of the player x,
see [Ow]. We freely interchange between these two equivalent termi-
nologies, according to the context. In game theoretic terms one of
our main problems is thus to find simple games where all Banzhaf
indices are small. Our first observation about this problem is that
monotone Boolean functions are as good as any other:

Lemma 2.1. Letf:{0,1}"— {0,1} be a Boolean function. Then
here exist a monotone function g: {0,1}" — {0, 1} such that

Pr(f=0) = Pr(g = 0)

ud for every S&lt;{1,...,n}

PS) &gt; IS),

IS) &gt; I'S),

IL(S) &gt;= L(S),

Proof. The proof is based on a standard technique in the
extremal theory of finite sets viz. compression. The function f is
made more and more monotone until eventually g is reached.
Let us pick a 1 &lt;x &lt;n and considerf:{0,1}"— {0,1} which is
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obtained fromfasfollows:Supposethatforsome 4 &lt; {1,...,n},

f(4) = 1 and f(Aui{x})=0

Then we set

f(4)=0 and f(A4u{x})) = 1.

Otherwise fequals f. We keep doing the same thing with f; but with
respect to a different 1 &lt; y &lt; sn. It is easily seen that as long as fis
not monotone there is an x for which f # f. Also after a finite
number of such transformations the function becomes monotone.
It is also clear that Pr(f = 0) = Pr(f = 0).

We want to show that g,(f, S) &lt; q,(f,S) for all S. Let us start
with the case xe S. In this case we show that

0,(1.8)&lt; 0,(f.S).

Suppose to the contrary that there is a set Ae Q,(f. S)\Qo(f. S).
Since 4¢Q,(S, f) there is a set B&lt; S with f{(4 UB) = 1. But
Ae Q,(f,S) and so f(4 UB) = 0. The definition of f implies that
f(A uu B\{x}) = 1 and again the fact that 4e Q,(f,S) implies that
x€ A. But this contradicts xe S.

Now we have to prove our claim for x¢S. Here we show that if

Ae Qy(f,SNQ,(fS) then 4\{x}e Qy(f; SI\Qy(/. S). Consequently
the desired inequality holds. We repeat the previous arguments and
conclude that xe 4 and f(4\{x} U B) = 1 when 4\{x}¢ Q,(f., S).
Now suppose that f(4\{x} uC) = 1. But the definition of f
implies that also f(4\{x} uC) = f(4 uC) = 1. This, however.
contradicts 4€ Q,(f, S) and completes our argument.

The proof for g, is identical. The conclusion for I°, I' and Iis then
immediate. Ml

We prove the following easy lemma:

Lemma 2.2. (a) Letf:{0,1}"— {0, 1} be a Boolean function and
let xe{l,...,n}. Then

£0) = 27 NSS Ux) — f(syA

b) If f is monotone. let d(x) = |{S&lt;{l.....n}|xeS and
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f(S) = 0}| then

I[({x}) = 2Pr(f = 0) —27"d(x)

Proof. (a) This is just a restatement of the uefinition. (b) Let us
denote

Cy = {S|x¢S, f(S) = 0}, C, = {S|xeS, f(S) = 0}

From (a) and the monotonicity of fit follows that

L({x}) = (1Cy| — |C, N27"!

But |Cy| + |C,| = 2" Pr(f = 0). Divide by 2"~' and subtract to
deduce (b). Cc

ONE ROUND GAMES—A CONSTRUCTION

This section presents a one round coin flipping scheme among n

players in which the influence of any particular player is only
O(log n/n).

THEOREM 3. There are one round coin flipping schemes G = G,
vhere

logn1 = o(127)
Proof. To describe the idea of this construction let us ignore for

a while issues of integrality and divisibility. For given n let 5 be the
(unique) solution of the equation

(2 _ Nye — Nl=1/n

We will later show that this b satisfies

b = logn — loglogn + O01)

Now decompose [rn] with n/b blocks of size b and consider the ideal
J of those subsets of [n] which contain no block.

J = (2° — 1) =n
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So we consider the coin flipping scheme where v(4) = 0if 4 eJ and
w(A) = 1in A ¢ J. Simply stated, the overall decision is 1 if and only
if a whole block unanimously votes one and is 0 otherwise. Now let
us compute the influence of an individual player. Using Lemma 2.1
we have to find d(x) which is the same for every x € [rn]. According
to the definition of J we have

d(x) = (27 — 1)(2° — De!

ob-1 —1 , 26-1 —1
gpeeege (ee TYE om

Hence

I; = I({x}) = [IJ] —2d(x)]27"*

2-2 1 1224)my iT Po1T of &gt;

To show the last equality go back to the relation between b, n:

id _ 1! — Al=1/n

orn = —bflog[l — (1/2)"]. We use

~m2(}) &gt; fog 1 - (5)] PB — (3)
when b2°loge &gt; n &gt; b2°~". These functions of b are increasing and
therefore by evaluating them at the appropriate values of b the
following bound on &amp; results

lb — (logn — log loz pn) &lt;2

It follows that

I = (22 —1)"' = o('en).
n

To overcome the difficulties involved with b not being an integer we
do as follows: We select any integer b and define « to be the real
number for which

/ 1)
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Next we d:ine a to be the integer nearest to a, say a = a + &amp;,

eg] &lt; 1/2, und set n = ab. The ideal J is defined as before and
has size

IJ] = (2°—1)=(2°— 1y2eb—1 (2° _ate Dn

While 2"! = Q@+ab-1 gq

[J] 2»-1¥%¥ £ g
or - —— =1-5%+0 7)

Therefore, by adding 2"~°~'¢ sets to J, still maintaining J being an
ideal, the influence of every player can rise to at most (1 + £)/2° =

O(log n/n). 0

For completeness sake we add the following proposition:

ProprosITION 3. Let fbe a Boolean function on » variables, with
Pr(f = 0) = 1/2. Then

$ Ix)

This bound is tight as shown by f(x,,...,x,) = x,. This result
1s known in game theory [H]. The reader may verify it by noticing
that given any set of 2"! vertices in the n-dimensional cube there
are at least 2" edges in the associated cut. Theorem 5 gives a more
general result. Meanwhile we state:

CoNJECTURE 3. For every Boolean function f on »n variables
with Pr(f = 0) = 1/2 there is a variable x such that

I(x) = olen),

Proposition 3 implies the existence of a variable with influence at
least 1/n. Noga Alon showed, using eigenvalue methods, the exist-
ance of a variable with an influence of at least [2 — o(1)]/n.
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4. SYMMETRIC GAMES

The following symmetry condition is commonly imposed in the
context of human voting games: If every player reverses his vote
the collective decision has to change as well. If our coin flipping
scheme is described by a simple game the condition is that for every
coalition S€ N

v(S) + v(N\S) = 1.

[t also turns out that symmetric games with small influences are
useful building blocks for robust coin flipping schemes that are not
necessarily symmetric (see Section 6).

We would like to consider our general problem in the context of
symmetric coin flipping games:

Find symmetric games which minimize I;(r). Notice that the
symmetry condition implies that for all S&lt; N, I(S) =

I5(S).
Find symmetric games for which the least number of players
which e-control the game is as large as possible.

We have the following result for the symmetric case:

TaeorEM 4. (a) There exist symmetric games GG, = G for which
the influence function satisfies

rr

In &lt;= for 0 r
at

cr)

where « = log;2 = 0.6309...

(b) There exist symmetric games G, = G for which the individual
influence function satisfies

1
I; &lt;—
G= 8

where f = log,;(32/9) = 0.6518...

Proof. We first introduce the notion of the composition of
games: Let G = ([n],v) and G; = (P,,w;) be simple games,
(i = 1.....n). where the sets of plavers P. are mutually disjoint.
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The G-composition of {G;} is the game

6 = (0 pw)
Af ere

w(S) = 1 iff v{ilw,(XnP)=1}) = 1.

Intuitively this means that the set of players is composed of n
committees where the internal voting in the ith committee is by the
w; rule, and the committees votes are combined by v.

Next, we introduce some more definitions. A hypergraph H is
intersecting if every two edges have a nonempty intersection. H is
two-colorable if there is a partition of the vertices VV = V, u FV, such
that no edge is contained in either ¥; or V,. Finally, we say that a
came G = (N,v) is transitive if there is a transitive group acting on
N under which v is invariant.

PROPOSITION.

(a) Let H = (V, E) be an intersecting, non-2-colorable hyper-
graph, then the coin flipping scheme G = (V,v) given by

(SS) = 1 iff thereis an AcE such that A = 8S,

‘b)

 Cc

is symmetric.
If G = (n], v) is a symmetric coin flipping scheme and so
are Gy,...,G, then the G composition of {G;} is also
symmetric.
Let G = ([n],v) and H = H, = H, = --- = H, be sym-

metric transitive games and let K be the G composition of
'H.}, then K is also transitive and

I = II,

Proof. (a), (c), and the transitivity of K in (c) are simple. Since
Kis transitive I, = I,({x}) for any player x in K. We may therefore
assume that x is some player in H, = H. Now L({x}) is the
probability that the game is not determined by the votes of all other
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players. This probability is exactly the probability that H, is not
determined by the votes of other players in H,, that is I, times the
probability that K is not determined by the outcome of the games
H,,...,H,. Since the players in H,,..., H, flip coins to set their
votes and Pr(H = 0) = Pr(H = 1) = 1/2 the probability that K

is not determined by the “votes” of H,,..., H, is I;, and thus

I. = I,I. l

Consider the following two examples:

Let n = 2¢ — 1 and consider the hypergraph of all z-sets of

[x]: It is clearly intersecting, non-2-colorable and the game it
determines (i.e., majority voting) is transitive.
The hypergraph of lines in the Fano plane. It has 7 vertices
and the edges are {(1,2,4),(2,3,5),(3,4,6),(4,5,7), (1,5, 6).
(2,6,7),(1,3,7)}. It is easy to check directly that it is interest-
ing, non-2-colorable, and transitive. For readers familiar
with projective geometry only non-2-colorability needs ela-
boration. This is true because any set of 4 points that does
not contain a line is the complement of a line in this plane

Using these examples we can now prove our theorem.

Part (a). Let H, be the majority game of 3 players. Define H,
recursively as the H, composition of three copies of H, ,. Denote
by n = 3* the number of players in H, and let J(n,r) = I,L (r) be
the largest influence toward 1 that r players can have in H,, that is.
the probability of outcome 1 if all the r players vote 1 minus
Pr(H, = 1) = 1/2. Clearly there is a set of 2 = n* players that

completely control H, so only r &lt; n* is of interest. We prove by
induction on k that for such r

r
J &lt;L—.(nr) &lt; n&gt;

This is true for k = 1 as can easily be verified.

To proceed we consider how these r players are split among the
three H,_, component of H,. Say there are r; of them in the ith
component i = 1,2,3. We are allowed to assume that for all i

 Nn ny _,
~ F&lt; 3
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since (n/3)* players can have complete control over H,_,. The
condition Zr; = r must clearly hold too.

The best strategy for the r players in order to achieve an outcome
of 1 in the game is for the r; players in the ith component to play
toward 1 in their component. The probability for the game to end
with a 1 under such strategy is the probability that at least two of
the components end with 1. The probability is, therefore,

[3 + J(/3,r)[3 + J (/3,r)]l7 + J(n/3, r3)]

+13 + J 3,r)l3 + J (1/3, r)M3 — J(1/3, 13)]

+3 +J3,mr)= J/3, 15 — J (1/3, 13)]

Fz = J@/3, 0013 + J (n/3,1)][5 = J(1/3, 1y)]

$+ 3X H@OB3,r)—2[1J0/3,r)

ALY J(n/3,1).

Therefore

J(n,r)&lt;:imaxY J(r/3,r,)

where the maximum is over all choices of r|,r,,r; with 0 &lt;r; &lt;
(n/3)* = 3n*, Xr; =r.

By induction

J(nf3,r) &lt; i =
2(n/3)* n”

A 20

| gE r
&lt;= ZL mmJ(n,r) 5 210°

as claimed. The conclusion about e-control follows by solving
J(n,r) = ¢ for r.

Part (b). The construction here is similar to the construction
above with the building block being the Fano game rather than the
majority of three game. Let F = F, be the Fano game on seven
players, and inductively define F; to be the F composition of seven
copies of F,_,. Let n = 7* be the number of players in F,. It is easy
to see that I. = 9/32, and thus

1LAPET,Ir. = 3 |
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5 MULTISTAGE GAMES—LOWER BOUNDS

Ife

We have already mentioned in Proposition 3 a limitation of single
round coin flipping schemes: There is always a player with an Q(1/n)
influence on the outcome. One can certainly device more elaborate

schemes for n players to flip a coin and hope to reduce the influence
of any of the participants on the outcome. As it turns out, the same
limitation still prevails for much more general schemes of complete
information. The most general coin flipping scheme we consider
here can be described as follows:

DEerINITION. (a) Let X|,..., X, be finite probability spaces, and
let V be a nonempty set. A V-valued random variable f: [1X,&gt;V
is called a choice function for the players {1,...,n} on V. We say
that the choice function fis controlled by player i if f depends only
on its ith coordinate. We say that f is a coin flip by player i if
f is controlled by player i, V = {v,,v,} is of size two, and
Pr(f=v) = Pr(f=v,)=1/2.

(b) A general coin flipping scheme (T, N') is a rooted tree T of finite
depth with leaves labeled 0 or 1 and internal nodes labeled by choice
functions (for the players NN) on the set of their children. To
determine the coin flip by this scheme we start at the root. When-
ever an internal node is reached use the choice function at the node
to select one of its children and move down the tree to that node.
Continue in this manner until a leaf is reached. The label at this leaf

determines the outcome of the coin flip.
(c) A restricted coin flipping scheme is a general coin flipping

scheme (7, N) where the choice function attached to each internal
node is controlled by one of the players, and a Boolean coin flipping
scheme is a restricted coin flipping scheme where all the choice
functions are just coin flips by one of the players.

We now define the notion of influence in this general context. Let
(T, N) be a general coin flipping scheme and let S = N. Denote by
Pr(T = 0) the probability that the outcome of Tis zero, assuming
that at each internal node v the choice function f, is used to select
the next node, and that all the players pick their assignments to f,
according to the prescribed probability distributions. Now assume
that at each node the players outside of S first select their assign-
ments using the given probability distributions and then, given
these assignments, the players in S can select their assignments to
the choice function at the node according to their best strategy to
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maximize the probability of outcome 1. The probability of S failing
and T ending with 0 despite the effort by S is denoted by

do = qo(T, S).

The definition of g, is symmetric. The reader can verify that if 7 has
a single internal node labeled by a single round scheme then the g;
defined here are the same as those defined in Section 2 for the single
round case. In the same way we define the influence of Sin T toward
zero (one) to be

1S) = 1—q,(T,S)—Pr(T=0).

IMS) = 1 — g,(T,S) ~ Pr(T = 1).

Also for 1 &lt;r." n, and 6€{0, 1},

I7(S) = max I}(S)

and forr= |

I; = I.)

Note that 1 — ¢,(7,S) is the probability that the outcome is 0
when the players in S play their best strategy to reach 0. The
difference between this and the probability that the outcome is 0
when all players play according to the scheme T is defined to be the
influence of S toward 0.

Unlike the one round schemes that were studied in game theory
and in the early days of computer science (e.g., in the context of
threshold functions [Wi]), the influence of players in general coin
flipping schemes, to the best of our knowledge, has not been studied
before. For example, the following basic question has not been
answered before: Can we approximate an unbiased coin as well as

we wish despite the intervention of one of the players, by a long
enough game. Or using our notation, given n and &amp;¢ &gt; 0, is there a
general coin flipping scheme T for n players with Pr(T = 1) =
Pr(T = 0) = 1/2 such that IY, Ir &lt; &amp;.

In the following theorem we answer this question negatively, by
showing that in any general coin flipping scheme for n players, for
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any r, 1 &lt;r &lt; n, there is always a set S of r players that can bias the
coin by Q(r/n). We wonder whether this natural result is a conse-
quence of some more general principle. In contrast. consider the
example at the beginning of Section 6. It shows an election scheme
that cannot be biased by any single player.

THEOREM 5. Let (N,T) be an n player general coin flipping
scheme. Let §€{0,1} and letp = Pr(T = 6). Foranyr,1 &lt;r &lt;n

5) &gt; L pln-.I(r) 2 pln

[n particular if Pr(T = 0) = Pr(T = 1) = 1/2, there are subsets

S, and S, of N cardinality » with

19(S,) &gt; ¢

r

where ¢ = (In2)/2 = 0.34657...

Proof. Our first observation is that for the purpose of lower
bounds it is enough to consider only restricted schemes. This follows
immediately from

ProposiTION 5.1. For any general coin flipping scheme (7, N)
there is a restricted scheme (7,N) such that Pr(T = 0) =
Pr(T = 0) and forevery Sc Nand § = 0.1

IS ) &gt; Ia (S )

Proof. Theidea is very simple: Instead of assigning values to the
variables of the choice function at each node simultaneously we do
this sequentially. This can only reduce the influence of any set of
players. Let u be an internal node of T and let f,: []S, — V be its
choice function. We replace this node by a tree T, of n + 1 level as
follows: All the nodes of 7, will have the given probability spaces
X; as their attached probability spaces. The root of T, will be the
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node u and the set of its children will be the set X;. The choice
function attached to this root will be the function f! (x;,...,x,) =
x,. In the same manner, the set of children of all nodes at the ith
level of T;, will be the set X;, with the choice function f(x, ...,x,) =
x;. In other words, all the nodes of depth i are controlled by player
i, and his action at this level is to select his assignment to f,. With each
leaf of T, we can associate the n-tuple (x,,...,x,) according to the
path that leads from the root u to the leaf. At this leaf we attach a
copy of the node v = f,(x,,...,x,)eV.

To construct Twe begin at the root « of T and replace it by the tree
T,. At each leaf of T, that is labeled by ve I we put a copy of the
subtree rooted at the child v of u. We now proceed with each subtree
in the same manner. This way 7 is constructed.

Let S = N be any subset of the players. In evaluating I3(S), at each
node of T we set the variables in S after the other variables have been
set at random. In T this may not be possible just because members
of S may precede other players outside of S. Thus in scheme T the
players in S may have less strategies to choose from than in the
scheme T. (In fact for § = {n —|S| + 1,...,n} they have exactly the
same set of strategies to play.) Since any strategy for the players in T
can be used as a strategy for Tit is clear that I2(S) = IS). O

Our next observation is that it is enough to prove the theorem for
Boolean schemes:

PROPOSITION 5.2. Let T be a general n player coin flipping scheme
and let ¢ &gt; 0. Then there exists a Boolean scheme 7 such that

Pr(T = 0) — Pr(T = 0) &lt;e¢ and for every coalition § and

ye{0,1}, we have

BS) +e.

Sketch of Proof. W.l.o0.g. assume T is a restricted scheme. To
construct T simply approximate the random variable at each node of
T by a dyadic approximation and in a similar manner to the proof
of Proposition 5.1, replace the action of the player at this node by a
sequence of coin flips. O

We now return to the proof of Theorem 5. Proposition 5.2 allows
us to assume that Tis a Boolean scheme. Consider first the influence

of one player (i.e.. r = 1). For a node in the game tree T we consider
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the game H of the subtree below it. Let a; = 1 — ¢,(H, {i }) denote
the largest probability that this game ends with a 1 under i’s best
strategy and let a = Pr(H = 1) be this probability under random

play by all the players. We prove

[ EMMA 5.3. For every node in a game tree

a. a. .  a

Proof. We prove this by induction on the height in the tree. In
a leaf all @; and a are either zero or one. Let u be the father of v and

w and say w.l.o.g. that u is controlled by player 1. We use b;, ¢; to
denote the appropriate quantities at v, w. We have

b.---b = bh

c.,~

a. = max(b,c) say a, = b,

np

1;

ry

1b, + ¢)

1b + 0).

ni?

We wish to show

a ‘a, &gt; a!

That is

n—1

b+eo bute) (re)b=) Tm) 2

bi(by +c) (by +c) = (b+)

Expand the product [T/_, (b; + ¢;) and consider the (*;') terms with
t b -factors and (n — ¢t — 1) c-factors. This gives

o 11511 ¢
Ac {2.n} ied jéA

14 =r
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By the arithmetic-geometric inequality this is greater or equal to

'n—1 bTT eCt JI. 1 Al d

_ " ) ( fi pf (i OT
n—1 n n—1) ¢ n (n—1=1)f(n—1,

(2) (11)t 2 2

So we have

bi(b, + ¢;) (b+ c,)

n=l fn — 1 n tfn—1) / n (n—t—1)jn—1)

0("7)(0)(114)1=0 { 2 2

n-1({n — 1 n fin=1) 7 n (n—1—1)/(n—1)

u(t)(fe) (ie)t=0 t 1 1

= n — ) ple! — b+
1=0 t

Where [1b6, &gt; b"' and [I¢, &gt; ¢"! were used 1

The derivation of the theorem is easy now: We conclude from the
lemma that at the root of T

maxa. =a" =a 1 $00) on) |

12 —
Fl ns

This completes the proof for » = 1. The general case is treated in
a similar way: Let a; = 1 — g,(7,S) for all S = N of size r. and
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let a = Pr(T = 0), then by an argument simmilar to the one

presented above we have

[1 as 2 a")
and thus

max ds &gt; ad *w a 1 + “In (1/a) | |

REMARK. Our lower bound shows that there is always a player
that can bias the coin by O(1/n) toward the value 1. A similar result
holds of course if we are interested in bias towards 0. We note that

this lower bound is optimal as for any p, and p between 0 and 1
satisfying [| p; = p"' and p, &gt; p for all i, we can construct a
scheme T such thatp= Pr(T = 0)and p, = p + I;({i}) as follows:

Leta, = p/p,. Each player i in N flips a biased coin with probability
x; of outcome 1. If all players get 1 the outcome of Tis 1 and
otherwise 0. Note that in this construction any player can bias the
outcome toward 0, but the bias toward 1 is bounded. In the follow-
ing section we give a construction where an influence of any player
(toward 0 or 1) is only O(1/n).

6. MULTISTAGE GAMES—UPPER BOUNDS

An election scheme (T, N) is defined like a coin flipping scheme, but
unlike coin flipping schemes where the leaves of T are labeled by 0
or 1, in an election scheme they are marked by names of players
from N. The game proceeds exactly like a coin flipping scheme and
when a leaf is reached, the player whose name marks it is elected.
We restrict our attention to election games where if everyone plays
randomly each player is elected with equal probability. To measure
the influence of a coalition S we assume that players outside S play
randomly, while those in S play the best strategy to maximize the
probability that a member of S is elected. The excess of this proba-
bility over |S|/N is defined as the influence of S on the election
scheme.

Here is an example of an election scheme E = (T,N) where
every player has zero influence. The root is controlled by player 1.
Its n — 1 sons are controlled by 2,...,n, respectively, and 1 has

to select between them with equality probability. The children of
i’s node are n — 1 leaves and all marks appear there but for i
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Player 1 is to be chosen with probability 1/n and all the rest with
probability (n — 1)/n(n — 2) each. The reader can easily check that
under random play every player is elected with probability 1/n and
a single player cannot increase his chance of being elected no matter
what strategy he plays. The next theorem follows easily now.

THEOREM 6.1. There are multistage games T = 7, such that
p(T = 0) = 1/2 and the influence of any player x satisfies

A, B(x) = 01).

Proof. The scheme may be described as follows: Run the elec-
tion scheme E and have the elected player flip a fair coin. By the
property of this election scheme a player may bias the coin only if
he is elected. Since everyone is elected with probability 1/n the
influence toward either zero or one are both O(1/n). Od

As for the influence of larger sets of players we have the following

THEOREM 6.2. There are n players multistage schemes T = T,
such that p(T = 0) = 1/2 and for all k,k &lt; n*~°"), where a =

log,2 = 0.63... , we have

506), 10) = 0%)

Proof. We assume n = 2" and let k &lt; n*/2r. Let G; be the
n-player game of Theorem 4(a). Define the scheme IT" = T, to be the
following: We play the game G, for r = logn times and let b, be the
ith outcome. The sequence b = b,,...,b, identifies one of the n

players. This selected player now flips his coin again to set the
outcome of T. Note that the only way a set of players can bias the
coin is by trying to have one of them selected to flip the final coin.
As the influence of the k players on the G, game is bounded by
k/2n*, the probability that one of these k players will be reached is
bounded by

1 kX k 1Y 2k(La LY E141] &lt;2toe n 1+ pi
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Thus the probability of outcome 1 (or 0) is at most

2431-2) =kn 2 n) 2 n

and so the influence of any k players is bounded by O(k/n). [

7 FINAL REMARKS AND OPEN QUESTIONS

We will now list some open problems raised in this paper along with
our conjectured answers. We always refer to f as an n variable
Boolean function with Pr(f = 0) = 1/2 and T is always an n

player multiround scheme with Pr(T = 0) = 1/2. Most of these
questions deal with the maximization of the influence function.
They are classified according to the following criteria:

Single round/multiround scheme.
The influence of a single player/the gain of ¢ control.
The influence function considered. We deal with the following

three quantities: 7, min (1°, 7"), and max (1°, 1").

As mentioned in Section 3 we conjecture that /; is always
O(log n/n). In other words, every Boolean function has an
influential variable.
Given n and ¢ &gt; 0, what is the least r such that for every f
there holds

max [I2(r). I} (r)] &gt; &amp;?

We gave examples showing r = Q(n®%-), but we are not sure
of the best bound.
We conjecture that for every f there is a set S of O(n/logn)
variables for which both

(SY.I(S) = OL).

[n other words, every Boolean function has a negligible set of
variables with a significant influence. In Section 3 this is
shown to be best possible.
We showed in Theorem 5 that for every T both I? and I} are
at least Q(1/n) and this is tight. What is the largest ¥ = ¥(n)



MICHAEL BEN OR and NATHAN LINIAL

such that in every T there is a player x for which both

(x), I(x) = ¥(n)
hold?

The claim of (3) is conjectured to hold also for multiround
schemes. By the results of Saks [S] this, if true, is best possible.
We want to describe another notion of adaptive influence
over a scheme. Let T be a given scheme, let k be an integer,
and start with S an empty set. As we play the scheme 7 an

adversary adds at most k players to S. The players currently
in S play their best strategy towards é and the rest play
randomly. Let

AT ): =Pr(T ends with 0) —Pr(T = 0)

For which T is this quantity minimized? Among the one
round games this quantity is minimized for the majority
function. This follows from an isoperimetric inequality in the
cube [H]. A recent article of Lichtenstein, Linial, and Saks
[LLS] shows that the majority function remains optimal even
after unfolding the one round game to a tree scheme of n

levels. It may be that majority is the answer also without
extra assumptions.
The connection between election games and coin flipping
games seems very interesting. Consider coin flipping schemes
where we first run an election game and have the elected

player flip a coin. It is true that the best coin flipping schemes
have this form? Given a robust coin flipping scheme how can
it be used to create a robust election scheme? The Vaziranis’

recent results on sampling with random sources [VV] are
relevant but do not seem to answer this question.
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ALMOST SORTING IN ONE ROUND

Miklos Ajtai, Janos Komlos, William Steiger, and
Endre Szemerédi

ABSTRACT

N simultaneous comparisons are made between the elements of a set
V of size n from an ordered universe. How large should N be if we
want to learn the order relation for most pairs of elements of V7

Both the upper and the lower bound we get for N are proved by
using probabilistic arguments (a random construction for the upper
bound, and a random adversary for the lower bound).

1. INTRODUCTION

In a recent paper [AKSSz] we constructed an O(loglogn) parallel
algorithm for finding the median of » elements, using the model of
Valiant [V].! As most parallel comparison algorithms, it consists of
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several rounds, each one of which provides the answers to a large
proportion of all pairwise comparisons.

This naturally leads to the problem of how much information
one can get in one round, i.e., how many questions (simultaneous
comparisons) should be asked to get a positive fraction (or almost

all) of the possible (5) answers. Thus, our work is a continuation

of the research started by Haggkvist and Hell, Bollobas and Rosen-
feld, and Bollobas and Thomason [HH], [BR], [BT].

Valiant’s model attempts to separate the computation cost from
the communication cost and overhead by suppressing the latter
two. It is thus information theoretical in nature, but lower bounds
in this strong model, of course, apply readily to more realistic
models.

In the language of Valiant’s model, the present problem is to
determine the number of processors necessary to “almost sort” a

list, i.e., to get most of the (5) relations, in unit time (one round).
After formulating our model and the problem precisely, we

propose an upper and a lower bound for the quantities in question.
Interestingly enough, both the upper and the lower bound will use
probabilistic arguments. (Typically only one of them do, the other
is a “real” mathematical proof.) The lower bound will use natural
averaging arguments, but the probabilistic construction for the
upper bound uses an important feature of random graphs: the
so-called expanding property. Consequently, the probabilistic con-
struction can be replaced by known deterministic constructs for
:xpanders, with a constant multiple loss in efficiency.

There have been quite a lot of parallel research done in this
area. We have recently learned about papers by Noga Alon and
Yossi Azar [AA], Béla Bollobas and Graham Brightwell [BB], and
Nick Pippinger [P]. Their results are fairly similar to ours; some
bounds are actually better than ours. In particular, [BB] disproves
the conjecture made in our paper, although the right order of
magnitude still seems to be “almost” as large as nlognloglogn (see

below).
We have also learned from [BB] that the question we investigate

was apparently proposed by Rabin (see [BH]).
We will state the results and give the proofs in two separate

sections.
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2. PRELIMINARIES

(Q

2.1. The Model

Given a graph G = (V,E), |V| = n, we interpret the edges of G
as questions asked (simultaneously) about the order of V.

An acyclic orientation A of G is called the raw answers (A stands
for adversary), 4 defines a relation on V in a natural manner:

v; &lt;4, if {v,,v,}€E and v, &gt; v, in 4.
The transitive closure Pg( A) of the relation defined by A is called

the full answers. P = P(A) is a partial order, but, for convenience
of language, we will often disregard the diagonal elements (2, v).

The size of G is defined as the number of edges: |G| = | E|.
We define the size of a partial order P on a set V as the number

of nondiagonal elements in P

[Pl = #{(u,v);, u,veV,u+#wv, (u,v)eP}

Finally, the norm of the graph G is defined as follows:

|G = min|Pg(A)|

where 4 runs through all adversaries (acyclic orientations of G),
.€., [|G || is the number of (full) answers one gets in the worst case
about the order of V for the (simultaneous) questions in E. Note
that we disregard the problems involved in obtaining the full answers
from the raw answers (taking transitive closure), and deal only with
the information contained in A.

2.2. The Problem

How many questions do you have to ask to get almost all
answers; 1.e., given ¢ &gt; 0, how large should |G| be to have

G1 &gt; (1 — ef")

Note that |G|&gt;|G|, and that |G| = (5) iff |G| = (5
(a discouraging fact), so one may think that you need |G| =

1 —o()(}) to get 161 = [1 — ou").
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The results of Hiaggkvist, Hell, Bollobas, Rosenfeld, and Thoma-
son show however that there are sparse graphs with |G | &lt; n'** and

yet |G] = [1 — o((3) (an encouraging fact).
As a matter of fact, these sparse graphs provide most answers

even if one can draw inference from 4 only by using bounded depth
implications (a more realistic model than ours). The existence of
these graphs was shown by probabilistic arguments. See the quoted
papers for details.

oC Remark

[P| (and thus ||G |) is not necessarily the only natural measure
of information. In many situations one uses the number of linear
extensions of P, or other similar quantities. Qur measure is most
natural in the framework of selection algorithms. The reasons are
explained in a forthcoming paper of Komlos and Remmel [KR]
about the relation of | P| and another measure—the spread of P.

2.4. More Notation

If &lt; pis a partial order on V, then we define the lower and upper
rank functions

0; = #{veV;v &lt;px} pi = (V+ 1)— #{veV;x&lt;,pv}.

(The closed interval (p;, p;}) is the set of ranks of x in all possible
linear extensions of P.)

Clearly,

(5)-1P = 2(bs —~ Pu).
2.5. Expanders

Given positive numbers 4, a, 4 &gt; 1, Aa &lt; 1, we say that the
graph G = (V,E),|V| = n,is an (4, a)-expander if for all U = V,
|U| &lt; an, we have |N(U)| = A|U|, where N(U) = {ve V; (u,v)eE
for some ue U} is the neighborhood of U.

G is a weak (A4,a)-expander if for all Uc V, |U| = an, we
have | N(U)| = Aan. [It is, of course, enough to check sets U,
| U| = [an], since N(-) is monotone; thus expanders are also weak
expanders.]
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Note that a weak (4, a)-expander, « = 1/(4 + 1), is simply a
graph, in which there is at least one edge between any two vertex-
sets of size an.

3. THE RESULTS

[n what follows, c¢,, ¢,, ... are universal constants, and we assume

that n is large enough so that all approximations are valid.

[HEOREM 1. There are graphs with

Gl &lt; f(n) = “nlogn[loglogn + log (1/¢)] (

and vet

G1 (1 = 8)(}) 2

where ¢ &gt; 0 is arbitrary (may depend on n). Moreover, most graphs
with f(r) edges satisfy (2).

THEOREM 2.

1G || &lt; 3n|G|/(logn)

Chus.

G| ~ enlogn implies | G || &lt; 3en’

and hence the minimal |G | with |G| =~ (5) is somewhere between
cn(logn) and cn(logn)loglogn.

We have strong reasons to believe that the upper bound describes
the truth:

CONJECTURE. [Gl &lt; ¢,n|G|/(lognloglogn)

Theorem 1 will follow from the more constructive.

THEOREM 1’. Let G be a weak (A4,a)-expander graph, where
1 = 1/(4 + 1). Then.

(7) — Gl &lt; cxn(logn),4
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Now Theorem 1 is a consequence of Theorem 1” and the follow-
ing simple fact about random graphs [just choose 4 = c,(logn)/e]:

Fact (random construction). Most graphs with »n vertices and
cs A(log A)nedges are weak (A, a)-expanders with a = 1/(4 + 1).
(Actually, most graphs with c(x) n edges are weak (4, «)-expanders,
where c(¢) = 2h(x)/a’ ~24In A, and h(x) = —[alna + (1 — a)
In(1 — a)].)

For proving the lower bound we will use the following result.

THEOREM 3. If the maximum valency in G is at most 7, then

1G &lt; ner. (5)

Theorem 3 will be proved by using a random adversay. In effect,
we are going to prove the upper bound ne’ for the number of
answers one gets in the average, when all n! total orderings are

equally likely.
This answers a question of Remmel: whether one can get, in the

average, more than a linear amount of derived information from a

graph with a linear number of edges. The answer is no as long as the
graph is of bounded degree. A star shows that without bounded
degrees the answer may be yes.

We will also make use of the following simple lemma.

LEMMA. Let U c V be a subset of the vertices of G and G, the
restriction of G to U. Then

|G|€ |G, + nV—Ul}

4. THE PROOFS

Proof of the Lemma. Let A be an adversary (for G,) such that
Ps, (4) = ||Gyll. Define 4” to be the adversary (for G) that is
identical to 4 on U, and that declares any vertex in VV — U to be

larger than any vertex in U (and is arbitrary on V - U). Clearly,

1G S| P(A) SP (D]+nrlV-U| = |Gyll +nlV-UlI

We show now that Theorem 2 is implied by Theorem 3 and the
Lemma. We can assume that | G | = n/2, since isolated points are
irrelevant. Then. for the set

U = {veV:deg(v) &lt; T} WE aave |[V—-—U| &lt;2I1G|/T
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and thus

1G &lt;I1Gyll + nV =U] &lt; ne” + 2n|G|/T&lt;3n|G|/(logn)

if we choose T = logn — loglogn — ¢

The following proof of Theorem 3 was offered by one of the
referees, and is much simpler and more natural than our original

proof.
We choose a random linear ordering L of the vertices of G, and

consider the expected number N of pairs in the partial order P
generated by the orientation of the graph induced by L. This
expected number is clearly an upper bound on |G ||.

Every pair in the partial order corresponds to one of possibly
several directed paths in 4. Hence, we let X; denote the number of
directed paths of length L in 4 and observe that

[P(A] &lt; YX,
I&gt;?

and thus (writing E for expected value) that

N = E|P;(4)| &lt; } EX,
&gt;

There are at most NT*~! paths of length L in G, and each path
becomes a directed path in 4 with probability 1/L!. Although things
are clearly dependent, we still have that

E eex, &lt; NTL!
LL!

The proof is concluded by observing that

NT! N@E"-1-T)
Sgt ~&lt; Ne"

Proof of Theorem 1’. We recall the following lemma from
AKSSz]:

LEMMA. Let G = (V, E) be a weak (4, «)-expander graph on n
vertices, where « = 1/(A4 + 1). Then, for any acyclic orientation of
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G, the implied partial order P has the following property: for any
re (D,n) there is an xe V such that

r—D&lt;p, &lt;pf&lt;r where D = 20n(logn)/A. (6)

We show now that (6) implies (3) — | P| &lt; 4nD, which amounts
to Theorem 1’. (For a tighter bound see [KR].)

Let us write d = [D1], N = |n/d] + 1, and apply the lemma for
the numbers r, = id, i = 1,2, ..., N— 1, ry, = n. Thus we find

vertices x; satisfying

l KL po Spl wa po &lt;p ~ J
t po

Let us compare (in the partial order P) all ve V to these “markers”
x;. For any fixed ve V, v is greater than some x; and smaller than
some others, but it is clear that the indices i (if any) such that v is
incomparable to x;, form an interval (transitivity).

Let us write m, for the number of markers incomparable (in P)
to v. Then, the total number of vertices ue V incomparable to v is

p.! —p. &lt;(m, —2)d.

Indeed, if i, is the smallest and i, is the largest marker incompar-
able to v, then

(h—Dd&lt; pg, spl «py pS Spr &lt;p. &lt;@G+1)d

The

0

[heretore.

(3)-17 = 2 (ps —pi)&lt;(2n+ Tm)
Now, £,m, &lt; ND &lt; n + d, since any marker Xx; is compared to

all but at most D of the n vertices. This proves the claim.

Proof of the Fact. The probability that in a randomly selected
eraph with n vertices and N edges there are two (not necessarily
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disjoint) sets of vertices of size k with no edges between them, is less
than

[© ONO) &lt;r-ereree
Choosing k = an, N = [2h(x)/a*]n, the right-hand side above

goes to zero as n tends to infinity, since ( 2) = o(e"™m).
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NOTES

t. In Valiant’s comparison-tree model the only cost is the number of com-
parisons made. (Other computational costs such as the cost of determining which
comparisons to make are excluded in this model.)
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CHROMATIC NUMBERS OF

RANDOM HYPERGRAPHS

AND ASSOCIATED GRAPHS

Eli Shamir’

ABSTRACT

The statistics of anticliques inside large sets of vertices of random
hypergraphs has exponentially small deviation probabilities. This is
derived by a martingale estimate. It implies the formula y(G) =
[1 + o(1))d(n)/21og d(n) for the [strong] chromatic number of hyper-
graphs almost surely, where d(n) is the expected vertex valency. This
holds under several models of randomization. For the associated
graphs, it allows strong correlation between sets of edges in tuples up
to size ¢. Weak chromatic numbers are also sharply located for
random hypergraphs.
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1. INTRODUCTION

Random graphs theory is a confluence of graph theory and prob-
ability. One studies probability distributions of the interesting
graph invariants (functions preserved under graph isomorphisms)
under various models of randomization. A common model is the

space %(n, p)-graphs over n labeled vertices where the (5) vertex

pairs form a Bernoulli collection of independent 0-1 valued random
variables, i.e., each pair independently occurs as an edge with
probability p. But it is important to work with various models of
randomization and relax the independence condition. This is one of

the goals here.
The typical questions concerning a graph invariant f(G), say for

Ge%(n,p), are:

Concentration: Does lim,_,,f(G)/f,,—1,insomesense,forsuit-
able parametersf, ,?
Location: Where is f,,located, how does it vary with (n, p)? [the
“evolution” of random graphs].

The chromatic number y(G), an invariant of fundamental
importance in theory and practice, is the one studied here for
graphs and hypergraphs. It is defined as the minimal r such that the
vertex set J can be partitioned into r independent, i.e., “edge free”
sets. Standard tools of moments evaluation seem too weak to derive

concentration and sharp location of x(G). Using a martingale
approach, sharp concentration [SS] and very recently sharp location
of ¥(G) for a certain range of np [B2] were obtained.

In this article, we take a step beyond edge independence and
beyond graphs. The main result, stated in terms of hypergraphs, is
(cf. relevant definitions in Section 2):

THEOREM 1.1. Consider the random-hypergraphs spaces
#[n,p(n),t] and UPD[n,b(n),t). Let d(n) be the expected vertex
valency of a hypergraph H (and of the associated multigraph Gy). It
is expressed in terms of the other parameters. If d(n) = n*, « &gt; 6/7,
then with probability 1 — o(1) the chromatic number y(H) [= x(Gy)]
satisfies

H) = [1 + o(D}y[d(n)], (1.1)
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where

[dn] = d(n)/2logd(n). (1.2)

Each cell of size (¢ + 1) in H contributes a (¢ + 1)-clique to Gy.
Thus, whether edge occurrences are independent (¢ = 1) or highly
correlated within tuples up to size (¢ + 1), the chromatic number of
most graphs is sharply determined by the same formula (1.1)—(1.2),
involving the expected valency only, or equivalently the total number
of edges.

This robustness of x(G), of anticlique statistics and possibly
other graph invariants, with respect to relaxations in edge indepen-
dence, is quite significant in practice, for getting realistic estimates
of these invariants in graphs that come up in applications. In a
previous article [ScS] we established robustness of the ‘“‘double-
jump,” the location where the giant component of a graph emerges.
at average vertex valency d(n) = 1.

The coloring process establishing Theorem 1.1 is quite simple. It
keeps peeling off anticliques of about the same size r from the
remaining set of vertices M, until M is quite small (| M| &lt; m,) and
colorable by a few colors. The main idea is that, with prob-
ability 1 — o(1), the process is never blocked, since inside any
M &lt; V(| M| &gt; my) there is an anticlique of size r. Indeed there are
many. We can choose r so that their expected number in M is n'*¢
and sizable deviation from it is exponentially improbable.

This deviation estimate is most conveniently derived from a
martingale tail estimate. This is the reason we chose #2[n, b(n), t]
as the basic model. In it, hypergraphs are compactly presented by
n adjacency lists, of size b(n) each, and the random generation
process of H involves n * b(n) selections.

2. RANDOM HYPERGRAPHS MODELS

A hypergraph H over a set V of n (labeled) vertices is a family E of
subsets of V. We call ecE a cell (see Remark 2.1). The size
le] = t(e) + 1. If t(e) is constant for all ec E, then it is (t + 1)-
uniform. Standard definitions are found in [Be, Bl].

We find it convenient to work also with pointed cells. A vertex
xee is singled out as pointed. If e’ = e — {x} then with a slight

abuse of notation e = {x,e’} and e’ is a neighbor of x. A pointed
H is presented by the adjacency list of neighbors. for each xe V.
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Upon forgetting the pointing, an underlying hypergraph #H is
obtained.

A subset R = Vis an anticlique if |e n R| &lt; 1 for each ee E. This
is the strong extension of the independence notion in graphs.
Weaker forms are obtained if 1 is replaced by y(e) &lt;|e| — 1 (cf.
Section 5). Notice that vertices outside R do effect the anticlique
condition for R. A (strong) coloring is a partition of V into disjoint
anticliques. The chromatic number y(H ) is the minimum cardinality
of such a partition.

We associate to H an ordinary multigraph G, with the same set
of vertices.

Gy = (V,E;) where {x,y} e E;&lt; {x,y} &lt; e for some ecE

2.0

Clearly, a coloring [anticlique] of H is precisely a coloring [indepen-
dent set] of G,,.

REMARK 2.1. (2.1) means that a cell e contributes a clique of

edges to E;. One can envisage cells contributing (prescribed) subsets
of their pairs. Our main result will hold.

The space Hp [n,p(n),t] of random [pointed] hypergraphs is
defined as in the case of graphs (¢ = 1). Each (¢ + 1) [pointed]-tuple
e occurs with probability p(n), distinct occurrence events are inde-
pendent. In case of nonuniform cells, + and p(n) are vectors of
values. One can let the range of ¢ grow slowly with n. For simplicity’s
sake, we limit ourselves to bounded ¢ and uniform hypergraphs.
Otherwise the notation becomes cumbersome but the results are the
same; cf. Remark 3.2.

The total number of edges in the associated multigraph Gy is
t n .

3) (, + ) p(n), the expected vertex valency is

d(n) = ("7 Hoe; (2.2)

this is the most convenient space-parameter for comparing various
models and expressing the location of chromatic numbers and other
invariants.
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The relation between the models of pointed and unpointed
hypergraphs is simple.

Hn pt) = UHp(n,p,t), 1-p =(1 — py!

Prob(H) = J Prob(H"),

(2.3)

(2 4

% is the pointing forgetful functor.
The pointed space can be partitioned as follows:

Hon, p,1) = U {ln b(). nb@es|p(" I! 2.5)

Dn, b(v),t] = {H|each v selects b(v) random neighbors}. (2.6)

The union in (2.5) is parametrized by the sample vectors b(v),
ve V, whereby each v independently picks up its pointed valency

from the binomial distribution B [p, (" 7 Hl . Each sample vector
is included in the union with its outcome probability. In (2.6), the
vector b(v) is given [if it is uniform, we write b(n)]. Each ve Vselects

b(v) random neighbors among the § , ) possible ones; this
defines the (uniform) probability measure in 2.

If b(n), the expected number of neighbor cells per vertex, satisfies
the inequality

oo = ("7 pmznt, po

then all the functions b(v) picked in (2.5) are sharply concentrated:

with probability 1 — o(1), all b(v) = [1 + o(1)]b(n). (2.7)

This follows from standard tail estimates for the binomial distribution.
The order we follow to compute the location of y(H) (it can be

used for other purposes) is to derive it first for %#P[n, b(n), t], the
hypergraph space underlying (2.6) [but all b(v) are set to b(n), the
location formula being continuous in 5(v)]. Then (2.3), (2.5) give it
for Hn, p(n), t].
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REMARK 2.2. The main advantage of the model #2 is clear.
Representation by adjacency lists instead of adjacency matrix is
more compact (even more so for ¢ &gt; 1). It involves n « b(n) random
selections.

3. ANTICLIQUES PROBABILITIES

Let H = (V,Ey) be a (t + 1)-uniform hypergraph. For R&lt; V
| R| = r the anticlique condition is

AC(R) = {for all ee Ey, len R| &lt; 1}.

[n #(n,p,,1) it is easy to see that

Er n—r
Prob{AC(R)} = ew] =r 2(2), T1— J (3.1)

Dn exp(—p’), pp’ = —log(l —p)) = pll+0(p)l

(3.2)

Soild =a-0G)0Z]) es
where 0 = O(tr/n), so

Prob{AC(R)} = exp] = (5)r* p* = (1 ~or(hZ1),

3.4

indeed the left-hand side of (3.3) counts tuples f with | fn R| =
3 rNfn—2 k\ |.

k &gt; 2 once, while Nr counts such tuples 5 times, but

these tuples are negligible compared to the tuples with |fn R| = 2.

REMARK 3.1. Prob{AC(R)} is computed as if the pairs (poten-
tial edges in Gy) of R are absent independently with probability

sxp(—p*}N~1 — p*) and p* = (1 — ows ~2) sums up over all
cells containing a given pair. p’ is there [cf. (3.2)] since for anti-
cliques nonoccurrence is basic.
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REMARK 3.2. Similar reductions of Prob{AC(R)} to ¥(n,p*)
with suitable p* hold for more general cells—different sizes or
contributing only fraction of their pairs.

Similar situation prevails in % 2[n, b(n), t] as we proceed to show.
Here, Prob(Event) is estimated by counting for each vertex the
neighbor configurations that are in the Event. For b(n) small (which
is always the case if # &gt; 1), it does not matter if the random selection
of b(n) neighbors is done with or without replacement.

For Prob{AC(R)}, the product over all vertices factors into two
parts:

(1) for v¢ R: The selected cells should not contain k &gt;= 2 vertices
of R;

(i) for ve R; The selected cells should not contain k” &gt;: 1 vertices
of R.

The count of the “good” configurations in (i) is

Co -2 C2) = -00 za»
where &amp; = O(rt/n). Dividing by (" , ) we get

(as),
raising to power (n — r) b(n) = nb(n)(1 — 96):

exp) — (5) tt — no — 5)

Similarly for part (ii) we get

exp) - (5) 22a )
Multiplying the two, we get

Prob{AC(R)} =exp| (5) + nq — 9 (3.5)

axp| 2% =z 5)
Am) = tft + Db]
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REMARK 3.3. In%2[n, b(n), 1], (t + 1) b(n) is the expected num-
ber of cells containing a vertex v, and v has ¢ vertex-neighbors in
each cell so d(n) in (3.6) is the expected vertex—vertex valency, i.e.,
the expected vertex valency is the associated multigraph G,. Not
surprisingly, p* = (1 — 8) d(n)/n serves as a substitute edge prob-
ability (more precisely e #" is the independent nonedge probability)
for G; and Remark 3.2 also applies.

For later purposes, we need to compute probability of

AC(R) and AC(S), |R| =|S| =r, |RAS|=1 (3.7)

[t is crucial that the conjunction probability is also computed
(approximately) as if the multigraph Gy is taken from %(n, p*):

xp] = p*2(5)+2%(5)} (2 8]

p* = (1 —d8)dn)/n or p* =(1-— or" 2) (3.9)

depending on the model we work with. [Notice: the two occurrences
of p* in (3.8) have different 4 in them.] Indeed, the probability of the
event (3.7) is obtained by summing, for each pair {x,y} = Ror S
the “noncell” contribution of tuples containing {x, y} (cf. Remarks
3.1 and 3.3). But a tuple e containing pairs of R and S causes
duplication. If {x, y} = Rn S, the duplication is taken care of by

the p* (5) term. Else {en (Ru S)| = 3. This duplication, as we
have seen in (3.3) and (3.5), is taken care of by the factor (1 — 4) in

the p*2 (3) term.

4. THE NUMBER OF ANTICLIQUES

Let us fix a set of M vertices and consider Y(M, n, r), the number of
anticliques of size r in M. For EY, we multiply Prob{4C(R)} by

™). We take m such that
\

ogm = logn(l — 8), 0" = o(1), [e.g., m = n/log‘n].

41
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Using (3.5).

EY(M,n,r) = exp —r| F501 +0) —logn(l1 — 0") + logr | ¢

(4.2)

we substitute

2
(I - £) Jos log d(n), 5 _ o(%) —o(|. @3

then since logr = logn[l — o(1)] — logd(n), the braces in (4.2)

become r(logn)(e — 6”), 6” = o(l) includes é and 6’ (6’ dominates!).
Clearly we can accommodate ¢ to a to get

EY(M.n,ry=n", — &lt;2 r=[l-— oD] log dn),
4 4)

since it suffices to vary ¢ in 8” + 2/r and by (4.3) the approximate
size of r is known.

In (4.4) a threshold for anticlique size is located. Above it, they
are very rare. Below it, their expected number EY is high. We
proceed to show strong concentration of Y around EY. To this end,
we pass to the variable Z(M, n,r) that is a lower bound for Y since
it counts only anticliques that do not share a pair with any other
anticlique.

IR =r, RcM, AC(R) andif
Z(M.n,r)=31

R [|S =r. ScM. AC(S) then|SnR|&lt;1.

(4.5)

Given R = M with AC(R), the S-conditioning in (4.5) can be
expressed by

- VX= nN  4 r
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where

X, = the numberof{ScM,[S|=r,|SAR|=1AC(S)}
4.7

EZ(M,n,r) = (7) Prob{4C(R)} - Prob{X = 0| AC(R)} (4.8)

Prob{X = 0| AC(R)} = 1 — E[X] AC(R)). (4.9)

EX ACR) = 3. Prob{AC(R) and AC(S)}/Prob{AC(R)}.

(4.10)

Now we use (3.8) but upon dividing one should not forget that our
equalities are approximate, up to factors (1 — 6),

E[X,| AC(R)] = (n= ; ) exp{-r*|(5) - Gl}
 exp(—dp*rt) = f, (4.11)

Sp*r: = O[d(m)r’in*] = O(n), &amp;e&gt;0 (4.12)

by (4.14) below, so the approximation factors are very close to 1.
Our goal is to show, as in [B2], that for f; defined in (4.11),

5 f= Oat) = oD) (4.13)

We note the relations, based on the value of r

 2 p(—p*r) = d(n)y™2, li = 2logd(n).

AT

A&lt;(3) ew] (3)
ZA)exp 7 (5) |} = rem
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since the expression in braces is EY(M, n, r), which was taken to be
n*

2 2

fo_yornd(n)? = Joop log d(n).

f, is more critical, because a should be kept close to 2. The restric-
tion we impose is

Vv 17. o =? —4y, din) = n'™? (sor &lt;n). 4.14)

Then clearly f, and f,_, are o(1). To estimate Z;~'f, we compute

_ (r—1y * 2

fralfi =T+Din —2r TI DP? (l—or). (4.15)

Now there is a k = Or such that

(i) the ratio (4.15) rises steeply in k &lt;/ &lt;r — k (where the
exponential dominates). from values well below 1 to well
above 1;
in2&lt;I&lt;k (415 is &lt;1/2,inr—k&lt;I&lt;r—1(4.15 is
&gt;2.

(11)

This proves that indeed, f, + f,_, dominates Zf,, and provided
(4.14) holds, we established (4.13) and going backward to (4.8)

FZ(M,n,r) = EY(M,n,r)[1 —o(1)]. (4.16)

THEOREM 4.1. Assume (4.14) for d(n), (4.1) for m. Then with
probablity 1 — o(1), every subset M of size m contains many anti-
cliques of size r,

r = [1 — o(D)]n/x[d(n)]. 4.17

Proof. By (4.4), (4.16), there is an r of the required size such that
EY(M,n.r) and EZ(M,n.r) &gt; n*. Next we show that

Prob{Z(M.n.r) &lt; 1n*} &lt; expl— O(n' +91. (41?
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This clearly proves the Theorem with “many” = n%/2. Martingale
estimate 1s used to get (4.18). A hypergraph in the space
%2In, b(n), p] is determined by selecting, in some order, n * b(n)
neighbors. Consider the refining sequence of equivalence relations
on the space

Qo&lt;O1&lt;Qy&lt;2Coson 9

where H, H’ are Q;-equivalent if they made the same selections up
to the jth selection. The sequence

t, = E(Z|Q), 1&lt;j&lt;nbn) (4.19)

is a martingale and the oscillation of | Z, — Z,_,| is at most (‘ ? H .

because changing only the jth selection may effect at most (‘ 3 )
of the pair-disjoint anticliques counted in Z [cf. (4.5)]. The lengt
of the martingale is nb(n) = n=". We apply the deviation estimate
of ([SS], Theorem 3) with A = Inf, { = 2 —4y — 1 —y/2&gt; 1/2 if
y &lt; 1/7 [cf. (4.14)], this yields (4.18).

To render the article self-contained, we outline in Section 7 a

proof of the martingale deviation estimate.

3. THE CHROMATIC NUMBERS

The proof of Theorem 1.1, giving the location of the chromatic
number, was indicated in the introduction. Consider the coloring
process applied to H

M:=V;
repeat
find an anticlique of size r in M, r = [1 — o(1)]n/x[d(n)], and

give it a new color
until | M | &lt; n/log’n;
color [the residual] M by 2d(n)/log?n colors.

The process uses [1 + o(1)] + x[d(n)] colors, and it is almost surely
not blocked, the repeat loop by Theorem 4.1, the residual coloring
by Theorem 6.1, proved in Section 6.
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5.1. Other Chromatic Numbers

The anticlique condition for R = V in a hypergraph H can be
weakened. Let |y(e)| &lt; |e| — 1:

IN,(R) = {for all ee E, |Rne| &lt; ye}. (5.1)

Accordingly, y-coloring [y-chromatic number] are defined as [mini-
mum] partition of V into IN,-sets. The probability of IN,(R) is
affected predominantly by potential (z + 1)-cells that intersect R in
y + 1 vertices. It is simple to show that in the space #(n, p,, t) the
parameter replacing d(n) [which served us for y = 1, cf. (2.2)] is

am =v (0) ee. (3.2)

Calculating the threshold where EY, crosses 1, the size of the
maximal IN, set is found to be

[1 — on] oe)+Dlogd,(n)d,(n) |
The y-chromatic number is, almost surely.

d,(n) I1+ o(1)] a, (5.3)

These results are proved in the same way as for y = 1 (strong

coloring), in a sense, they are simpler and the range of density where
they hold is larger. It was proved in [SSU] that the almost surely a
greedy algorithm yields weak coloring (y = |e| — 1) with number
of colors expressed similar to (5.3) but without (y + 1)! inside the
braces. In [Sc], a fast algorithm for strong coloring of hypergraph
is given that almost surely uses at most 4y colors. Our process of
coloring proving Theorem 1 is not fast because finding anticliques
of size r is not (known to be) fast.

6. RESIDUAL COLORING

Let Mc V,|M| = m = nw(n), wn) = o(1). Consider the random
variable

F,, = the number of edges in G,| M, (6 1
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Gy|M is the multigraph G, induces on M. In our model
UZD|N, b(n), t] each V selects b(n) neighbors e’

If véM, leenM|=s5s+122,

the selection gives § : ') edges, (6.2)

if ve M, lee nM| =s=1.

he selection gives (* : ) edges. (6.3,

Since M is relatively small, only s = 1 really counts. The contri-
bution from s &gt; 1 can be accounted for by a factor 1 + 9,
0 = O[w(n)]. Fis the sum of (n — m) b(n) type (6.2) selections plus
mb(n) type (6.3) selections, Fis distributed B[1, nb(n)] with average
probability

A +8) /m\[ n! 2n'"! nws Gle&amp;z+&amp;w)0)
_ a+ 5(7) ot + Din?

Thus EF = (1 + 6) (3) d(n)/n and standard tail estimates for the
binomial-like distributions give

Prob{|F — EF| &gt; B(EF)} &lt; exe] £2 | i (6.4)

THEOREM 6.1. Consider the models # or UD with expected
sertex-valency d(n). Let ¢ &gt; 0. Almost surely H;|Mwhere|M| = m
and m’d(n) &gt; n?, has average valency

2Fy/m &lt; (1 + eymd(n)/n- (6.5)

If also m*d*(n) =&gt; n* then almost surely each of these graphs is
L-colorable with L = (1 + &amp;)md(n)/n colors.

Proof. (6.5) follows from (6.4), as the condition on m and d(n)
make EF,, grow like n so the tail probability in (6.4) &lt; exp(— kn).
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Now if G,| M were not L-colorable, and g’ the minimal graph in
it which is not L-colorable, then G” a size m” L-regular graph, so its
average valency is at least L &gt; (1 + e¢)m’d(n)/n; this contradicts
(6.5), after we check that m’ is not too small. Indeed

2

m’2d(n) &gt; me2 an &gt;n?

For the proof of Theorem 1 we needed m = n/log’ n, which satisfies

the requirements.

7. CONCENTRATION VIA MARTINGALES

The martingale method allows one to prove that a graph function
is tightly concentrated in distribution though it does not say where
this concentration occurs. A martingale is a stochastic process
Xg, --., X, for which E[X,,,|X;] = X,. The following bound on
deviations of martingales, used in the proof of Theorem 2, is
recognized as Azuma inequality [A].

THEOREM 7.1. Let 0 = X,, X,, ..., X, be a martingale with
X,,, — X,| &lt;1. Then

PriX. &gt; J] &lt; e= Hin (7.1)

Proof. Set Y, = X,— X_,. If Y is any distribution with
E(Y) = 0 and | Y| &lt; 1 the concavity of f(y) = e* implies

Ele*'] &lt; cosh(a) &lt;

[n particular

Ele [Y,L,Y 1&lt; ed?

Hence

aX, z $

Ele] = 8 [1 | &lt; enh
i=1

and with « = A/n

PriX. - A ot E[e* eo &lt; poni2—ol =p 22/2n

The estimate (7.1) holds for X, — X, (and for X, — X,) in case
X, #0.



47) ELI SHAMIR

ACKNOWLEDGMENTS

Thanks to Jeanette Schmidt-Pruzan for most useful remarks and improve-
ments, to Joel Spencer for inspiring conversations, and to the Computer
Science department of the University of Chicago, where this work was
written in 1987, for inspiring intellectual and physical atmosphere.

NOTES

Institute of Mathematics and Computer Science, the Hebrew University,
Jerusalem.

REFERENCES

[A] K. Azuma, “Weighted sums of certain dependent random variables,” Téhoku
Math. J. 3: 357-367 (1967).

[Be] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam, 1973.
'B1] B. Bollobas, Random Graphs. Academic Press, London, 1985.
B2] B. Bollobas, “The chromatic number of random graphs,” Combinatorica 8:

49-56 (1988).
[ES] P. Erdos and J. Spencer, Probability Methods in Combinatorics. Academic

Press, New York, 1974.
M1D. W. Matula, “Expose-and-merge exploration and the chromatic number of

a random graph,” to appear.
Sc] J. P. Schmidt, “Probabilistic analysis of strong hypergraph coloring algorithm

and the strong chromatic number,” Disc. Math. 66: 259-277 (1987).
[SSU]J. Schmidt-Pruzan, E. Shamir, and E. Upfal, “Random hypergraph coloring

algorithms and the weak chromatic number,” J. Graph Theory 8: 347-362
(1985).

[ScS1J. Schmidt-Pruzan and E. Shamir, “Component structure in the evolution of
random hypergraph,” Combinatorica 5: 81-95 (1985).

[SS] E. Shamir and J. Spencer, “Sharp concentration of the chromatic number on
random graphs G,,,” Combinatorica 7: 121-129 (1987).



ALMOST OPTIMAL LOWER BOUNDS

FOR SMALL DEPTH CIRCUITS

Johan Hastad

ABSTRACT

We give improved lower bounds for the size of small depth circuits
computing several functions. In particular we prove almost optimal
lower bounds for the size of parity circuits. Further we show that
there are functions computable in polynomial size and depth k but
that require exponential size when the depth is restricted to k — 1.
Our Main Lemma that is of independent interest states that by using
a random restriction we can convert an AND of small ORs to an OR

of small ANDs and conversely.

(. INTRODUCTION

Proving lower bounds for the resources needed to compute certain
functions 1s one of the most interesting branches of theoretical
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computer science. One of the ultimate goals of this branch is of
course to show that P # NP. However, it seems that we are yet

quite far from achieving this goal and that new techniques have to
be developed before we can make significant progress toward
resolving this question. To gain understanding of the problem of
proving lower bounds and develop techniques, several restricted
models of computation have been studied. Recently there has been
significant progress in proving lower bounds in two circuit models.
The first example is the case of monotone circuits, i.e., circuits just
containing AND and OR gates and no negations. Superpolynomial
lower bounds were proved for the clique function by Razborov [R]
and these were improved to exponential lower bounds by Alon and
Boppana [AB]. Andreev [An] independently obtained exponential
lower bounds for other NP functions.

The second model where interesting lower bounds have been
proved is the model of small depth circuits. These circuits have the
full instruction set of AND, OR, and negations and furthermore
gach AND and OR gate can have an arbitrary number of inputs.
However, the depth (the longest path from input to output) is
restricted to be small, e.g., constant. The unrestricted size of the
AND gates is needed to make it possible to compute circuits
depending on all inputs. In this paper we will prove exponential
lower bounds for this model. Our technique enables us to prove
lower bounds for several different functions. Thus we have at least

partial understanding of what causes a function to be difficult to
compute in this model of computation.

Finally let us remark that even though the P # NP question is
one of the motivations to studying the problem of small depth
circuits, we do not think that the techniques of this paper will help
in resolving that question. The results for small depth circuits and
monotone circuits show only that it is possible to prove exponential
lower bounds in nontrivial cases. This might be taken as a promis-
ing sign and encourage us to look for new techniques with renewed
optimism.

[.1. Lower Bounds for Small Depth Circuits; A Crucial Lemma

The problem of proving lower bounds for small depth circuits
has attracted the attention of several researchers in the field.
Functions considered have been simple functions like parity and
majority. The first superpolynomial lower bounds for the circuits
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computing parity was obtained by Furst, Saxe, and Sipser [FSS].
Ajtai [Aj] independently gave slightly stronger bounds and Yao [Y]
proved the first exponential lower bounds. (The case of monotone
small depth circuits has been studied by Boppana [B], Valiant [V],
and Klawe, Paul, Pippenger, and Yannakakis [KPPY].)

We will in this paper give almost optimal lower bounds for the
size of circuits computing parity. However, it is quite likely that the
longer lasting contribution will be our main Lemma. The main
lemma is the essential ingredient in the proof and it gives some
insight into why some problems require large circuits when the
depth is small. The lemma tells us that given a depth two circuit, say
an AND of small ORs (a gate is small if it has few inputs), then if
one gives random values to a randomly selected subset of the
variables it is possible to write the resulting induced function as an
OR of small ANDs with very high probability. Let us outline how
this can be used to prove lower bounds for circuits computing
parity.

Given a circuit of constant depth k computing parity we can give
random values to some random inputs. The remaining circuit will
still compute parity (or the negation of parity) of the remaining
variables. By the virtue of the lemma it is possible to interchange
two adjacent levels of ANDs and ORs, then by merging the two
now adjacent levels with the same connective decrease the depth of
the circuit to k — 1. This can be done without increasing the size of

the circuit significantly. An easy induction now gives the result.
The idea of giving random values to some of the variables was

first introduced in [FSS] and weaker versions of our main lemma
were used in [FSS] and [Y]. In [FSS] the probability of the size not
increasing too much was not proved to be exponentially small. Yao
only proved that the resulting OR of small ANDs was in a technical
sense a good approximation of the original function. This fact gave
significant complications to the rest of the proof. Also, Yao did not
obtain the sharp estimates for the probability of failure. Since we
get almost optimal lower bounds for the size of parity circuits our
estimates are sharp up to a constant.

[.2. Results

Our nearly optimal results for the size of parity circuits imply
that a polynomial size circuit computing parity has to have depth
essentially log n/loglogn. The best previous lower bounds for the
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depth of polynomial size parity circuits was /logn by Ajtai [Aj].
Here as everywhere else in the paper logn denotes logarithms to
base 2.

By similar methods it is possible to prove that there is a family
of functions f;’ of n inputs that have linear size circuits of depth k
but require size circuits when restricted to depth k — 1. These
functions f;" were introduced by Sipser in [S]. Sipser proved super-
polynomial lower bounds for the size of the circuits when the depth
was restricted to be k — 1. Yao claimed exponential lower bounds
for the same situation.

.3. Small Depth Circuits and Relativized Complexity

{ower bounds for small depth circuits have some interesting
applications to relativized complexity. Furst, Saxe and Sipser
proved in [FSS] that subexponential lower bounds [more precisely
()(20°¢™') for all i] for any constant depth k for the parity function
would imply the existence of an oracle separating PSPACE from
the polynomial time hierarchy. Yao [Y] was the first to prove
sufficiently good lower bounds to obtain the separation for an
oracle A. Cai [C] extended his methods to prove that a random
oracle separated the two complexity classes with probability 1.

In [S] Sipser proved the corresponding theorem that the same
lower bounds for the functions f would imply the existence of
oracles separating the different levels in the polynomial hierarchy.
The lower bounds claimed by Yao gives the first oracle achieving
this separation. Our bounds are of course also sufficient. The
question whether a random oracle achieves this separation is still
open.

ig Relations to PRAM:

The model of small depth circuits has relations to computa-
tion by parallel random access machines (PRAM). In particular,
Stockmeyer and Vishkin [SV] proved that any function that can be
computed on a slightly limited PRAM with a polvnomial number
of processors in time 7 can also be computed by polynomial size
unbounded fanin circuits of depth O(T'). The limitations on the
PRAM was a limitation of the instruction set to contain only
relativelv simple operations like addition, comparison, indirect
addressing multiplication by logn size numbers, etc.
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Thus, our results imply among other things that parity requires
time Q(log n/loglogn) to compute on such a PRAM. Interestingly
enough the same bounds can be proved for more powerful PRAMs
using extensions of the present technique [BeH].

5 Outline of Paper

In Section 3 we prove the main lemma. The necessary back-
ground and some motivation are given in Section 2. The application
to parity circuits is in Section 4 and in Section 5 we prove the lower
bounds for the functions f;' and in Section 6 we briefly mention
some more details of the implications for relativized complexity. An
earlier version of this paper appeared in [H1]. The paper is also part
of my thesis [H2).

) EACKGROUND

2.1 Computational Model

We will be working with unbounded fanin circuits of small depth.
A typical example looks like Figure 1.

We can assume that the only negations occur as negated input
variables. In general if there are negations higher up in the circuit
we can move them down to the inputs using DeMorgan’s laws. This
procedure at most doubles the size of the circuit. Observe that we
have alternating levels of AND and OR gates since two adjacent
gates of the same type can be collapsed into one gate.

Figure 1

¥ X= Xa Xa x -
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The crucial parameters for a circuit are the depth and the size.
Depth is defined as the length of the longest path from an input to
the output and can also be thought of as the number of levels of
gates. For instance the depth of the circuit in Figure 1 is 3. Size is
defined to be the total number of AND/OR gates and the circuit in
Figure 1 is of size 11. The fanin of a gate is defined as the number
of inputs to it. We put no restriction on the fanin of the gates in our
circuits. However, we will be interested in the bottom fanin, which
is defined as the maximum fanin for any gate on the lowest level,

i.e., having variables as inputs.

2.2. Qutline of Proof

Several of the cited lower bounds proofs ([FSS], [Y] and the
present paper) have the same outline. The proofs are by induction
which proceeds as follows.

lL.

)
Prove that parity circuits of depth 2 are large.
Prove that small depth k parity circuits can be converted to
small depth k — 1 parity circuits.

Of these two steps the first step is easy and tailored for the parity
function. It is easily seen that depth 2 parity circuits require size 2"
[FSS]. The second step is much more difficult and contains the
difference between the papers. The basic idea for doing this lies in
the fact that every function can be written either as an AND or ORs
or as an OR and AND:s. To give an idea of (2) assume that k = 3

and we have the depth 3 circuit shown in Figure 2. Take any gate
at distance two from the inputs. It represents a subcircuit of depth
2. In this case this circuit will be an AND of ORs. Now observe that

Ficure 2

: ~ A x
et ~~
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Figure 4
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any function can be written either as an AND of ORs or as an OR

of ANDs. Thus. we can change this depth 2 circuit to and OR of
ANDs which computes the same function, as shown in Figure 3
Observe that we have two adjacent levels consisting of OR gates.
These two levels can be merged to one level and we get the circuit
of depth 2 shown in Figure 4. However, doing this we run into one
problem. When we convert and AND of ORs to an OR of ANDs

the size of the circuit will in general increase considerably. Thus, we
have converted a small depth k circuit to a large depth k — 1 circuit
and hence we fail to achieve (2).

2.3. Restrictions

The way around this problem was introduced in [FSS] and works
as follows. If we assign values to some of the variables we can

simplify the circuit. In particular if we assign the value 1 to one of
the inputs of an OR gate we know that the output of that OR gate
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will be 1 no matter what the other inputs are. In the same way we
only need to know that one of the inputs to an AND gate is 0 to
decide that it outputs 0. This means that for any specific gate on the
bottom level we can force it by assigning a suitable value to one of
its inputs. However there are many more gates than inputs and so
we have to do something more efficient than forcing one gate per
variable. Let us first make formal what we mean by fixing some
variables.

DEFINITION. A restriction p 1s a mapping of the variables to the
set {0,1,*).

o(x;) = 0 means that we substitute the value 0 for x;

p(x;) = 1 means that we substitute 1

p(x;) = * means that x; remains a variable.

Given a function F we will denote by FT, the function we get by
making the substitutions prescribed by p. Ff, will be a function of
the variables which were given the value x.

ExaMmpPLE. Let F(x,,x,,X;,X,,Xs) = majority of the variables
and let p(x;) = 1, p(x) = *, p(x3) = *, p(x,) = 1, and p(x;) =

x. Then FJ (x,, x;,xs) = “at least one of x,,x; and x51is 1.”

A simple observation that is important to the proof of the result
for parity is:

OBSERVATION. Parity [, = Parity or the negation of Parity.

We are looking for restrictions that simplify circuits efficiently. It
seems hard to do this explicitly and we will use a probabilistic
method. We will be working with random restrictions with distri-
hutions parameterized by a real number p which will usually be small.

DEFINITION. A random restriction p € R, satisfies

p(x;) = 0 with probability (1/2) — (p/2)

p(x;) = 1 with probability (1/2) — (p/2)

p(x;) = * with probability p

independently for different x.
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Observe that we have probability p of keeping a variable. Thus,
the expected number of variables remaining is pn. Obviously the
smaller p is the more we can simplify our circuits but on the other

hand we have fewer remaining variables. We have to optimize his
trade off when we make a choice of p.

The main improvement of the present paper over previous papers
is that we analyze in a better way how much a restriction simplifies
a circuit. We will prove a lemma that basically tells us that if we hit
a depth 2 circuit with a random restriction then we can change an

AND of ORs to an OR of ANDs without increasing the size. We
prove that this fails with only exponentially small probability.

We will need some notation. A minterm is a minimal way to make
a function 1. We will think of a minterm o for a function F as a

partial assignment with the following two properties.

i. o forces F to be true.

2. No subassignment of ¢ forces F to be true

Thus (2) says that o is minimal satisfying (1).

ExaMPLE. Let F(x ,Xx,,x;) be the majority function. Then the
minterms are o,,0,, and ¢, where

g(x) =1. ox) =1. (x)

7,(x) = 1, 0,(x,) = *, 0,(x:) =

0:(x,) = *, 063(x,) = 1, oy(x;) = 1

The size of a minterm is defined as the number of variables to
which it gives either the value 0 or the value 1. All three of the above
minterms are of size 2. Observe that it is possible to write a function
as an OR of ANDs where the ANDs precisely correspond to its
minterms. The size of the ANDs will be the size of the minterms
since x; will be input precisely when o(x;) = 1 and x, will be input
precisely when a(x.) = 0.

5. MAIN LEMMA

Our Main Lemma will tell us that if we apply a restriction we can
with high probability convert an AND of ORs to an OR of ANDs.
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This will provide the tool for us to carry through the outline of the
proof described in Section 2.

MAIN LEMMA. Let G be an AND of ORs all of size &lt;tandp a
random restriction from R,. Then the probability that G[, cannot be
written as an OR of ANDs all of size &lt;s is bounded by o’ where a

is the unique positive root to the equation.

4p 1Y 2p 1Y
1+ 21} = PC(+720) = (+750+1

REMARK 1. An elementary argument shows that a = 2pt/In¢ +
O(p*t) &lt; Spt, for sufficiently small p, where ¢ is the golden
ratio.

REMARK 2. By looking at —1G one can see that it is possible
to convert an OR of ANDs to an AND of ORs with the same

probability.

REMARK 3. There are two versions of the proof of the Main
Lemma that are identical except for notation. Our original proof
was in terms of a labeling algorithm as in those used by Yao [Y] in
his proof. The present version of the proof, avoiding the use of such
an algorithm, was proposed by Ravi Boppana.

It turns out that it is easier to prove a slightly stronger version of
the Main Lemma. First we will require all minterms of GT, to be
small. By the remark above this implies that G[, can be written as
an OR of small ANDs. A more significant difference between the
Main Lemmma and the stronger lemma we will prove is that we will
estimate the probability conditioned upon any function being forced
to be 1. The reason for this is that it facilitates induction.

For notational convenience let min (G) &gt; s denote the event that
GJ, has a minterm of size at least s.

STRONGER MAIN LEMMA. Let G = /\!_, G;, where G; are OR’s
of fanin &lt;t. Let F be an arbitrary function. Let p be a random
restriction in R,. Then we have

Primin(G) = s|FJ, = lls o
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REMARK 4. The Stronger Main Lemma implies the Main
Lemma by choosing F = 1 and the fact that a function has a circuit
which is an OR of ANDs corresponding to its minterms.

REMARK 5. If there is no restriction p satisfying the condition
FT, = 1 we will use the convention that the conditional probability
in question is 0.

Proof. We will prove the Stronger Main Lemma by induction
on w, the number of ORs in our depth 2 circuit. A picture of G
which 1s good to keep in mind is shown in Figure 5.

If w = 0 the lemma is obvious (G = 1). Suppose now that the
statement is true for all values less than w. We will show that it is
true for w. We will first study what happens to G,. the first OR in
our circuit. We have two possibilities, either it is forced to be 1 or
it is not. We will estimate these two probabilities separately. We
have

Prmin(G) = s| FT, = 1]

&lt; max (Pr[min(G) = s|F[, = 1 AG, = 1],

Primin(G)=s|F[,= 1 AG, # 1)

I'he first term is

Primin(G) = s|(FAGY, = 1}

However, in this case GI, = A\-,G[, = /\!-,G/, since we are
only concerned about p’s that force G, to be 1. Thus min (G) = s is
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equivalent to saying that /\/_, G,[, has a minterm of size at least s.
But this probability is &lt; a’ by the inductive hypothesis since we are
talking about a product of size w — 1. We are conditioning upon

another function being 1 but this is OK since we are assuming that
the induction hypothesis is true for all F. It is precisely the fact that
the conditioning keeps changing that “forced” us to introduce the
stronger version of the Main Lemma.

Now consider the second term (Pr{min(G)=s|F[, = 1A
G\[, # 1]. For notational convenience we will assume that G, is an
OR of only positive literals, i.e.

G, = \/x

where |T'| &lt; t. We do not lose generality by this since p is symmetric
with respect to 0 and 1 and hence we can interchange x; and x; if
necessary. Let p = p,p,, where p, is the restriction of the variables
in T and p, is the restriction of the other variables. Thus, the
condition that G,[, # 1 is equivalent to that p, does not take the
value 1, and we write the condition as G,[, # 1. Since we are now
conditioning upon the fact that G, is not made true by the restriction,
we know that G, has to be made true by every minterm of G[,, i.e.,
for every minterm o there must be an ie T such that o(x,) = 1.

Observe that o might give values to some other variables in T and
that these values might be both 0 and 1. We will partition the
minterms of G[, according to what variables in T they give values
to. We will call a typical such subset Y.

The fact that the minterm give values to the variables in Y implies
in particular that the variables in Y were left as variables and hence
were given the value * by p,. We will denote this fact by the
shorthand notation p,(Y) = *. Further let min (G)* &gt; s denote the

event that GT, has a minterm of size at least s whose restriction to
the variables in T assigns values to precisely those variables in Y.
Using this notation we get

Primin(G) = s|F[, = 1 AG([, # 1]

~ Primin(G)' 2s|F[,=1AG[, #1
YcT,Y#Q

Y.  Primin(G)2sAp(Y)=IFT,= 1 AG, # 1]
 eT, Y# QJ

Y. Prip(Y) = *|F[, = 1 AG, #1]

x Primin(GY2s|F[,=1AG,#1Ap,(Y) =
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The inequality and the first equality follows by the reasoning
above and the last equality follows by the definition of conditional
probability. Now we will estimate each of the two factors in each
term of the above sum. Let us start with the first factor (i.e..
Pripi(Y) = =|---].

To make things simpler we will start by ignoring the condition
F[, = 1.

LEMMA 1. Prip,(Y) = =|G|[, # 1] = [2p/(1 + p)]'"!

Proof. As remarked above the condition G,[, # 1 is precisely
equivalent to p,(x;)€{0, =} for ie T. The induced probabilities are
Prip(x;) = 0] = (1 — p)/(1 + p) and Pr{p(x;) = *} = 2p/(1 +p).
The lemma follows since the probabilities are independent. O

Now we have to take the condition F[, = 1 into account. The
intuition for doing this works as follows. The fact that something
is determined to be 1 cannot make stars more likely since having a
lot of stars is in a vague sense equivalent to making things undeter-
mined. During a presentation of this material Mike Saks found a
nice way to make this formal without looking at probabilities of
individual restrictions. We first need an elementary fact from pro-
bability theory. Let A. B. and C be three arbitrary events

LEMMA 2. Pr[A|B A C] &lt; Pr{A|C] is equivalent to Pr[B|A »
Cl1&lt; Pr[B|C].

This lemma follows from use of definition of conditional prob-
ability and trivial algebra. Our final estimate will be

Lemma 3. Prip,(Y) = IFT, = 1 A G[[, # 11 &lt;[2p/(1 +p)"

Proof. Let A = [p(Y) = *|, B= (F[, = 1), and C
(Gif, # 1). By the above lemmas we only have to verify that

PriFT, = lp(Y) = + A G\[,, # 11&lt; Pr[F[, = 1|G,[, # 1]

This is clear from inspection since requiring that some variables are
+ cannot increase the probability that a function is determined.

iM

Next we try to estimate the other factor. Namely.

Prlmin(GY2sIF[.=1AGT.£1Ap,(Y) = x
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To do this think of the minterm as consisting of two parts:

i. A part 0, that assigns values to the variables of Y.
2. A part g, that assigns values to some variables in the comple-

ment T of T.

This partition of the minterm is possible since we are assuming
that it assign no values to variables in T'— Y. Observe that og, is a

minterm of the function G[,,. This obviously suggests that we
can use the induction hypothesis. We only have to get rid of the
unpleasant condition that G,[, # 1. This we do by maximizing
over all p, satisfying this condition. We have

Primin(G)' 25|FT, = 1 AG, #1 Ap(Y) = +]

P n (GY) = s|(F = 1]]a .. - Tor [min ( ) sI( Cova) on 1]—

The two last conditions have disappeared because they involve
only p, and we are now interested in a probability over p,. By

(2) above we know that min (G)"* &gt; s implies that (GT,,)[,,has
a minterm of size at least s — | Y| on the variables in T. Thus we can

estimate the probability by o’~'*! using the induction hypothesis.
We have to be slightly careful when we use the induction hypoth-

esis since Gf,, might depend on variables in 7 — Y. These vari-
ables cannot, by the definition of Y, be in the minterm we are
looking for. This implies that we can instead look at the formula
Ne, Gl s0160 where og, ranges over all ways to give values to the
remaining variables in T. This is just equivalent to dropping the
variables from T — Y in all the G;. In particular this implies that
the number of ORs in the resulting formula is at most w — 1 and

the induction hypothesis can be applied.
To sum up each term in the sum is estimated by «’ ~!*' and we have

2"1 — 1 possibly o,. This is because o, must make G, true and hence
cannot be all 0. Thus we get the total bound (2¥' — 1) 1.

Finally we must evaluate the sum. Since the term corresponding
to Y = Fis 0 we can include it.

3 (2) er — oe

2(MP5-(2)¥



Almost Optimal Lower Bounds for Small Depth Circuits

IT"

IT] 2p ) |2 2) -(1+ 25 T+ 15 |
o ( +p , ] B

= 2) -(1+ 7%o (1+ 72

The last equality follows by the definition of a. This finishes the
nduction step and the proof of the Stronger Main Lemma.

A LOWER BOUNDS FOR SMALL DEPTH CIRCUITS

The first function we will prove lower bounds for is parity. We have

I'HEOREM 1. There are no depth k parity circuits of size
YORE for n&gt; nk for some absolute constant ny.

REMARK 6. Observe that this is quite close to optimal since it is
known that parity can be computed by depth k circuits of size
n201/¢= D1 The best previous lower bounds were Q(2"“) by Yao [Y].

As in the case of the Main Lemma it will be more convenient to

irst prove something that is more suitable to induction.

THEOREM 2. Parity cannot be computed by a depth k circuit
containing &lt;2" subcircuits of depth at least 2 and bottom
fanin &lt; nV for n &gt; nk for some absolute constant n,.

Proof. We will prove the theorem by induction over k. The base
case k = 2 follows from the well-known fact that depth 2 parity
circuits must have bottom fanin n. The induction step will be done
as outlined in Section 2. We can now with the help of the Main
Lemma make sure that we convert a small depth k circuit to a small
depth k — 1 circuit.

Suppose without loss of generality that our depth k circuits are
such that the gates at distance 2 from the inputs are AND gates and
hence represent a depth 2 circuit with bottom fanin bounded by
Zon “=. Apply a random restriction from R, with p = n="
Then by our lemma every individual depth 2 subcircuit can be
written as an OR of ANDs of size bounded by s with probability
| — o’. By the chosen parameters « is bounded by a constant less
than J. If we choose s = {;n'*~" the probability that any of the
201m depth 2 circuits cannot be converted into a depth 2 circuit
of the other type is bounded by (2a). Thus. with probability at least
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I — (2«)° we can interchange the order of AND and OR in all depth
2 subcircuits and still have bottom fanin bounded by s. Observe that
this gives us two adjacent levels of OR’s that can be collapsed to
decrease the depth of the circuit to k£ — 1.

The number of remaining variables is expected to be n*~2/*=1
and with probability greater than 1 we will get at least this number.
Thus with nonzero probability we can interchange the order of
AND and OR in all depth 2 circuits and we also have at least
n*~2M=1 remaining variables. In particular such a restriction
exists. Applying this restriction to the circuit gives a depth k — 1
circuit computing parity of at least n*=2/*=Y —= m; variables.
Further it has bottom fanin bounded by &amp;5n"*" = Lm"*-2 and
the number of gates of depth at least 2 is bounded by 2'/1%x"/¢—D —
210! %=2 The last fact follows because a gate of depth at least 2
in the new circuit corresponds to a gate of depth at least three in the
old depth k circuit. But this is precisely a circuit that is certified not
to exist by the induction hypothesis. The proof of Theorem 2 is
complete. O

Let us now prove Theorem 1. Consider the circuit as a depth

k + 1 circuit with bottom fanin 1. Hit it with a restriction from R,
usingp= {4 and by using our Main Lemma with s = n"*"" we
see that we get a circuit which does not exist by Theorem 2.

Since there are no constants depending on k hidden in the

theorem we get the following corollary.

COROLLARY. Polynomial size parity circuits must have depth at
least log n/(c + loglogn) for some constant c.

Observe that this is tight since for every constant c there are such
polynomial size circuits. Since Yao had constants in his theorems it
is not clear if similar corollaries could be obtained from [Y].

Observe that we have used very little about parity. Only the lower
bound for k = 2 and the fact that it behaves well with respect to
restrictions. Thus, we will be able to improve lower bounds for sizes
of small depth circuits for other functions using our Main Lemma.
Let us do majority:

THEOREM 3. Majority requires size 2" """“" depth k circuits
for n &gt; nk for some absolute constant n,.
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Proof. To make the proof go through we only need to make two
observations. The base case k = 2 goes through. Second, even if
we require that the restriction gives out as many 1’s as 0’s we still
have a nonzero probability that a random restriction satisfies all
conditions. This requirement ensures that the smaller circuit also
computes majority.

In general we do not need that we get back the same function but
only that we get a function that is hard to compute. Loosely
speaking we can prove the corresponding lower bounds as soon as

the function even when hit by severe restriction still have large
minterms. We leave the details to the interested reader.

FUNCTIONS REQUIRING DEPTH k
TO HAVE SMALL CIRCUITS

We prove that there are functions f;” that have linear size circuits
of depth k but require exponential size circuits when the depth is
restricted to k — 1. To prove this we will introduce a new probabil-

ity space of restrictions and reprove the Main Lemma for this space
of restrictions.

5... The Sipser Functions f,”

In [Si], Sipser defined a set of functions f” that could be
computed in depth k and linear size. He showed, however, that
these functions require superpolynomial size when the depth is
restricted to k — 1. We will redefine f;” slightly and let it denote the
function defined by the circuit in Figure 6. To avoid confusion we
will refer to the circuit in Figure 6 as the defining circuit of £;”. The
defining circuit is thus a tree with top fanin \/m/log m, bottom fanin
Jkmlogm/2, while all the other fanouts are m. Each variable
occurs at only one leaf. Thus, by definition f” is a function of
m= Jk/2 variables.

Yao has claimed exponentially lower bounds for these functions,
but the proof has not yet appeared. We have the following results
for the functions £;”.

THEOREM 4. Depth k — 1 circuits computing fi" are of size a
least 2VNWIJmIRm for ma ~ m.. where m. is some absolute constant
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Figure 6
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As an immediate corollary we get

COROLLARY. Polynomial size circuits of depth f(n) are more
powerful than polynomial size circuits of depth f(n) — 1 if f(n) &lt;
(logn/3loglogn) — w[logn/(loglogn)?].

Proof. Follows from a computation using n = r1*~

k = f(n).

Er New Random Restrictions

 + Jk/2 and

One would like to prove Theorem 4 with the aid of the Main
Lemma. Here, however, one runs into problems not encountered in
the case of the parity function. If a restriction from R, is applied to
£7 the resulting function will be a constant function with very high
probability. This happens since the gates at the bottom level are
quite wide and with very high probability all gates will be forced.
There is also a more philosophical reason why R, destroys functions
like f;". R, was designed to destroy any small-depth circuit, and will
in particular destroy the circuits defining f;”. To get around this
problem we will define another set of restrictions that are designed
not to destroy the circuits defining f;”
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DEFINITION. Let ¢g be a real number and (B;);_, a partition of
the variables (The B; are disjoint sets of variables and their union
is the set of all variables.) Let R; be the probability space of
restrictions that takes values as follows.

For pe R}, and every B;, | &lt;i &lt; r independently:

 =

)
With probability ¢g let 5, = * and else 5; = 0.

For every x, eB; let p(x.) = s; with probability g and else
p(x) = 1.

Similarly a R,; probability space of restrictions is defined by
interchanging the roles played by 0 and 1.

The idea behind these restrictions is that a block B; will corre-
spond to the variables leading into one of the ANDs in the bottom
evel in the circuit defining f”. If the bottom level gates are ORs we
use a restriction from R,. These restrictions will, however, not be
quite sufficient for our purposes and we need a complementary
restriction.

DerFiNITION. For a restriction pe R; let g(p) be a restriction
defined as follows: For all B, with 5, = x, g(p) gives the value 1
to all variables given the value * by p except one to which it
oives the value x. To make g(p) deterministic we assume that
it gives the value * to the variable with the highest index given the
value * by p. If pe R_,theng(p) is defined similarly but now takes
the values 0 and =.

These probability spaces of restrictions do not assign values to
variables independently as R, did, but is nice enough so that the
proof of our Main Lemma will go through with only minor modifi-
cations. Let pg(p) denote the composition of the two restrictions.
Observe that they are compatible since g(p) assigns values to
precisely the variables given the value * by p.

LemMA 4. Let G be an AND of ORs all of size &lt; t andparandom
restriction from Ry. Then the probability that GT, cannot be
written as an OR of ANDs all of size &lt;s is bounded by o°, where
1 = 4q/2"" — 1) &lt; 4qt/log?2 &lt; 6qt.

REMARK 7. The same is true for BR,
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REMARK 8. The probability of converting an OR of ANDs to an
AND of ORs is the same.

As in the case of the Main Lemma, before proving Lemma 4, we
prove a stronger lemma stating that we have the same estimate of
the probability even when we condition upon an arbitrary function

being forced to 1 by p. Define AND (GT ,,)) &gt; s denote the event
that GT ,,,, cannot be written as an OR of ANDs of size &lt;s.

LEMMAS. Let G = /\!_,G;, where G,are OR’s of fanin &lt;t. Let
F be an arbitrary function. Let p be a random restriction in Rf 5. Then

Pr[AND(G[,,,, = s|FT, = 1] &lt;o

1.yr _
= 4q/(2o =vhere

REMARK 9. Recall that if there is no restriction p satisfying the
condition F, = 1 then the conditional probability in question is
defined to be 0. Observe that we are only conditioning upon
F[, = 1and not F[,,,, = 1.

Proof. We will only use the weaker bound 64g for « and since
the lemma is trivially true if « &gt; 1 we will assume q¢ &lt; 1/6¢ whenever
convenient. The proof will be done in a way similar to the proof of
the Stronger Main Lemma. We therefore only outline the proof,
and give details only where the proofs differ.

As before

PriAND(Gl,p, = SIFT, = 1]

&lt; max (Pr[AND (GT py = SIFT, = 1 A G{[, = |

Pr[AND (GTpet) = s| FT, =1A Gif, # 1]).

I'he first term.

PriAND (Gl, = s|(F A G))[, = {

is taken care of by the induction hypothesis.
We have to estimate the second term, Pr [AND(G[,,,, = S| F[, =

I A Gl, # 1]. We cannot assume that G, is an OR of only positive
literals since the restrictions employed here assign 0 and 1
nonsymmetrically
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We denote the set of variables occurring in G, by T, and |T'| &lt; t.
We do not know that G, must be made true by every minterm of

GT gp- This is because G, might be made true by g(p). We do know,
however, that for G[, not to be the constant 0 some of the variables
of T must be given the value x by p. Suppose the variables of T
belong to r different blocks. Assume for notational convenience
that these blocks are B;, i = 1,...,r. We call a block B exposed if
there is a variable x;€Bsuchthat x;eT and p(x;) = *. By the
above remark there must be some exposed blocks for G not identi-
cally 0. Let Y denote the set of exposed blocks. Denote this event
by exp (Y) and let [r] denote the set {1,2,...,r}. We get

PrlAND (G[ py Z s|F[, = 1 A G|[, # 1]

«YYPrlep(DIET, = LAG, # 1]
Yer, Y#Q

x PrlJAND(G],,,,ZSIF,= 1 AG, # 1 A exp(Y)]

The factors in the above sum can be estimated separately. Let us

start with the first factor Prlexp(Y)|FT, = 1 A Gi[, # 1]. We
need a little bit of extra notation. Let P, = {j|x;€G, A x;€ B;} and
et N, = {j|X;€G, A x;€B;}. Let us start with the simple case
when Y consists of a single block B,.

LEMMA 6. Prlexp(BHIF[, = 1 AG, #2 11&lt; 2g.

Proof. By the definition of conditional probability we want to
prove

exp (B.) Pr(p) &lt;2.
 SY Pr(p)

Here the prime indicates that we are only summing over p satisfy-
ing the condition FT, = 1 A G|[, # 1. Remember that if this
quotient takes the form 0/0 we have the convention that it takes the
value 0. Now assume that p gives a nonzero contribution to the

numerator. We define a restriction p = H(p), which gives a larger
contribution to the denominator 1et

L.
)

p(x,) = p(x;) for x; ¢ B.
o(&gt;)=0forjeP,
o(x 1 for je N,
p(x) = lforjeB, MN, —Pandp(x;) = 1
p(x;) = 0forjeB. — N. — P. and p(x.) = *

}
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To check that p gives a contribution to the denominator we only
have to check that F[; = 1and G,[; # 1. The first fact follows by
noting that we change values only from * to non-* values. To see
that the second condition is fulfilled we observe that rules 2 and 3
are tailored to this.

To get an estimate for the quotient we must compute the proba-
bility of p compared to p. We must also investigate what restrictions
o satisfy H(p) = p. Let us start with this second task.

Observe first that s; = * in the definition of p and hence that p

only gives out the values * and 1 on B,. Obviously p(x;) = p(x;) for
all x; not in PF, or N,. Furthermore p(x;) = x for x;e FP, since
G[; # 1. Finally p can take any combination of 1 and * on N,
provided it does not take the value of all 1 in the case when 2, is
empty. Observe that all these p might not satisfy the condition
FI; = 1 but we are only trying to get an upper bound. Assume that
op assigns / *’s on N, and |N,| — / ones. Then

! 1 _ IN —1 RN

Pr) = TA LOD Pr,

The first factor comes from the fact that 5s, = 0 for p while 5s; = *

for p. The second factor comes from the behaviour on N,. Observe
that the probability that p gives out only 0 on P, is equal to the
probability that p gives out only *. Summing up we get

MIN 7g )
_ _ q -LoreeSN) (HL

- Pr) —

l1—gq

since |N;| &lt; ¢ and ¢g &lt; 1/61 we have (1 — ¢)™"' .2 2. Using this we

have

ep (8) PT (p) © 2h Lp Hipp) Pr(p)
Y Pr(p) XY Pr(p)

« 2129/0 — q)] Pr(p) ——
Ys(1+[29/(1 — @)] Pr(p)

1 nda the proof is complete
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Next we have

Lemma 7. Prlexp(Y)|F[, = 1 A G|[, # 1] &lt; (2g)

Proof. This is proved in the same way as Lemma 6. We get
restrictions contributing to the denominator by doing the changes
in p on all the blocks simultaneously a

Next we estimate the factor

PriAND(GT0)2sIFT,=1AG[,#1Aexp(Y)].

We want to use induction and to do this we have to get rid of the

condition G,[, # 1. In the blocks that are not exposed we know
that p only takes the values 0 or 1. This conditioning can be
incorporated in Ff, = 1.

In the exposed blocks we let the corresponding variables that are
still alive after pg(p) be in the ANDs of GT ,,,. We try all possibili-
lies of these variables and we estimate the probability that the
remaining formula cannot be written as an OR of ANDs of size
s — |Y|. This probability is taken over a restriction that does not

include the blocks of Y. Thus, we can use the induction hypothesis
and we get the estimate o'~'*! for each setting of the variables
corresponding to Y. Thus we get the total bound2'¥a =H"!

Finally we evaluate the sum to get

|Y| s— 3"a (29) DIY1 gs=1Y] oa ! (%)i=1\ i a,

 8 4q'\( 5 J | =aR"-D&lt;
This finishes the induction step and the proof of the Lemma 5.

M1

An interesting question is for what probability distributions on
the space of restrictions is it possible to prove the lemma equivalent
to the Main Lemma and Lemma 4. The general proof technique
uses two crucial properties of the distribution.

The condition F, = 1 for an arbitrary F does not bias the
value of any variable too much toward =. This should also
remain true even if we know that the variable is not 1 (0).



HA JOHAN HASTAD

2. It is possible to eliminate the variables of GG, and use induc-
tion on a similar restriction over the remaining variables.

Condition (1) was taken care of by Lemmas 3 and 7. Condition
(2) seems easier to satisfy and was so obviously satisfied that no
formal lemma was needed. The verification was basically done
where we claimed that induction could be used after eliminating G,.

5.3 Back to the Proof of Theorem 4

Let us continue with the present restriction space R, ; and prove
Theorem 4. We first prove a slightly stronger technical theorem.

THEOREM 5. There are no depth k circuits computing f" with
bottomfanin (1/12+/2k)/mflogm and &lt; 201 VVmoem 0qe of depth
= 2 for m &gt; my some absolute constant my.

Note that Theorem 5 implies Theorem 4 since a depth k£ — 1
circuit can be considered as a depth k circuit with bottom fanin 1.
Theorem 5 is proved by induction over k. The base case for k = 2
is quite easy and is left to the reader.

For the induction step we use one of the restrictions defined
above. Assume for definiteness that k is odd, so that the gates on
the bottom level are AND gates. Define the sets B, in the partition
to be the set of variables leading into an AND gate. Recall that
since the defining circuit of f;” is a tree the blocks are disjoint. Set
q = «/2klogm/m and apply a random restriction from R/;.

In the case of the parity function even after applying a restriction,
it was trivial that the remaining circuit still computed parity or the
negation of parity. In the case off", we have to prove that the new
restrictions used transform f;” into something that is very close to
fo.

LEMMA 8. If k is odd then the circuit that defines f"[ ,, for a
random pe R} with q = /2klogm/m, will contain the circuit
that defines f;", with probability at least %, for all m such that
m/logm = 100k, m &gt; m,, where m, is some absolute constant.

REMARK 10. Lemma 8 holds for even k when R™ is replaced
Ww RT
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Figure

famout

\ + km logm/2

Proof. The fact that x is odd implies that the two lower levels
look like Figure 7.

We establish a series of facts.

Fact 1. The AND gate corresponding to block B; takes the
value s; for all i, with probability at least 2 for m &gt; m,.

The AND gate corresponding to block B; takes the values s,
precisely when not only ones are given to the block. The probability
of this happening is (1 — ¢)*' = (1 — /2klogm/m)/*m2loem &lt;

elem &lt; Ly=* for m &gt; m,. Thus the probability that this happens
for any block B,; is bounded by L for m &gt; m,.

Fact 2. With probability at least § at least \/(k — 1)mlogm/2
nputs given the value x by pg(p) to each OR gate at level k — 1.
Again this is true only for sufficiently large m.

The expected number of such inputs is /2km logm and the fact
follows from known estimates using m/logm = 100k. For com-
pleteness let us include a very elementary proof.

Let p; be the probability that an OR gate has an input exactly
AND gates that take the value *. Then

py = ” (Zloem)” (1 Zklogm' i m m

Then for i &lt; \/kmlogm we have p,/p,_, &gt; +/2. Using Pfrriorm &lt; |
we estimate Yymkloem2 p by

/mklogm/2 © —1p2

pis P jrrtosmrz 2 2 « 4D fromm
4.[D—11—(1/y2DN10klogm -4 n —[V = (1DmkTogm -

"= Drm -
1 — A

=m

or nC 1



~§ JOHAN HASTAD

To sum up, with probability at least Z all OR gates at level k — 2
will remain undetermined, and have at least \/(k — 1)mlogm/2
variables as inputs. This constitutes the defining circuit for f{” ;. The
lemma is proved. OO

Let us now finish the proof of Theorem 5. We need to perform
the induction step. This is done using the same argument as in the
proof of Theorem 2. Apply a restriction from Rf, to the circuit.
Observe first that if m/logm &lt; 100k the result of the theorem is
trivial and hence we can assume that the reverse inequality holds.
By Lemma 8 the defining circuit still computes a function as difficult
asf,”, and setting some of the remaining variables the circuit can
be made into the defining circuit of f;",.

On the other hand suppose that there existed a circuit of depth
k, bottom fanin (1/12/2k)/m/logm and size 2(/12/20Vmlogm which
computed f;". By using Lemma 4 and reasoning as in the proof of
Theorem 2 we can interchange the ANDs and ORs on the last two

levels without increasing the bottom fanin. Now it is possible to
collapse two adjacent levels of OR gates and the resulting circuit
will be of depth k — 1. As in the proof of Theorem 2 the gates
corresponding to subcircuits of depth 2 in this new circuit corre-
spond to gates of depth 3 in the old circuit. Thus we have obtained
a circuit certified not to exist by induction. [1

SEPARATION OF COMPLEXITY CLASSES
BY ORACLES

As mentioned in the introduction lower bound results for small
depth circuits can be used to construct oracles relative to which
certain complexes are different [FSS], [S]. In particular the result for
parity implies that there are oracles for which PSPACE is different
from the polynomial time hierarchy. In the same way Theorem 4
implies that there are oracles separating the different levels within
the polynomial time hierarchy. As previously remarked, Yao’s
hounds [Y] were sufficient to obtain these separations. Cai [C]
proved that PSPACE was different from the polynomial time hie-
rarchy even for a random oracle. To prove this result one needs to
establish that a small circuit makes an error when trying to compute

parity on a random input with a probability close to 1. This
problem and related problems are studied in [H2].
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To prove that a random oracle separates the different levels
within the polynomial hierarchy one would have to strengthen
Theorem 4 to say that no depth k — 1 circuit computes a function

that agrees with f;” for most inputs. This is not true in the case of
fo" since if k is even (odd), the constant function 1(0) agrees with f,”
for most inputs. However, perhaps it is possible to get around this
by defining other functions more suited to this application.
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ANALYSIS OF ERROR CORRECTION

BY MAJORITY VOTING

Nicholas Pippenger

ABSTRACT

For a particular model of computation with error correction by
majority voting, we determine the reliability required of the pro-
cessors, the accuracy required of the initial data, and the accuracy
attainable in the final result. We determine the minimum possible
ratio of correction steps to computation steps and show that,
although it has simple asymptotics. it has diabolically complicated
local behavior.

1. INTRODUCTION

Our goal in this paper is to analyze a model of computation with
error correction by majority voting. In this model, a computation
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consists of steps, each of which may be either a computation step or
a correction step.

We shall assume not that we have access to the initial data, but

only that we have access to an unlimited number of samples of each
initial datum, with each sample independently being correct with
probability x. (If a sample of an initial datum or an intermediate or

final result is correct, we shall say that it is accurate. The probability
that it is accurate will be called its accuracy.)

We shall assume not that each processor performs correctly, but
only that each performance of each processor is independently
correct with some probability g. (If a processor performs correctly,
we shall say that it performs reliably. The probability that it performs
reliably will be called its reliability.)

Suppose that during a computation step, each processor combines
three inputs to produce a single output. We assume that the output
of a processor is accurate if and only if all three of its inputs are
accurate and it performs reliably. (We do not consider the possibility
that two or more errors might cancel.) If its inputs are independently
accurate with probability x, and if it performs reliabily with prob-
ability g, then its output is accurate with probability ox.

Suppose that during a correction step, each processor takes a
majority vote among three independently computed samples of
some intermediate result and produces a single sample of this result.
We assume that the output sample is accurate if and only if at least
two of the three input samples are accurate and if the processor
performs reliably. If the inputs are independently accurate with
probability x, and if the processor performs reliably with probability
0, then the output is accurate with probability g(3x* — 2x3).

Suppose that the samples of the initial data are independently
accurate with probability x. Suppose that we wish to producea final
result with accuracy y. For what values of g, x, and y can we

perform an unlimited number of computation steps? This question
is answered in Section 2, where it is shown that the conditions
0&gt; (4+ 32)/9 = 09158...

§ — 4/9 — 8/p
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an

3+9—8Je

are necessary and sufficient.
In Section 3 we address the question: what is the minimum

number 7,(G, x, y) of correction steps necessary for a given number
G of computation steps? We shall show that T,(G, x, y)/G tends to
a limit as G — oo that is independent of x and y (subject to the

inequalities given above). Let ©, denote this limit.
We give an expression for ©, in terms of the “rotation number”

of a certain homeomorphism of a circle. This expression is not very
explicit, but no simple analytic formula for ©, exists. Indeed, we
show in Section 5 that @, is a diabolically complicated function of
0. Although it is continuous and nonincreasing, and its range is the
interval (0, 00), it is locally constant on a dense open set. In particular,
zvery rational number on (0, 00) is assumed by ©, for all ¢ in a
closed interval of positive length, and every irrational number in
0, 00) is assumed by ©, for a unique value of g.

Despite these complications, ©, has simple asymptotics. In Section
4 we show that it 1s asymptotic to

log [1/(1 — @)]

as ¢ — 1, and

3+./2) 1 4-2 2 + 2)(08152) oe) 152) (125
as 0 = 0, = (4 + 34/2)/9.

The model analyzed in this paper has its origins in the work of
von Neumann [Ne], though we are interested in minimizing the
depth rather than the size of networks. To obtain precise information
about the depth, we have ignored the size, with the result that it may
increase exponentially with the depth. To obtain comparably precise
information about the size appears at present to be hopeless. For
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related work, see Dobrushin and Ortyukov [DO1, DO2] and
Pippenger [P1, P2].

J LIMITS TO RELIABILITY AND ACCURACY

For ge (0,1) and xe(0, 1], define

f(x) = o(3x* — 2x7)

+

g,(x) = 0’

We shall say that a function h is deflationary, stationary, or
inflationary at x if h(x) &lt; x, h(x) = x, or h(x) &gt; x, respectively.
We shall say that A is deflationary or inflationary on X if it is
deflationary or inflationary, respectively, at x for all xe X.

For ¢€(0, 1), the maps f, and g, are increasing on (0, 1], and g,
is deflationary on (0, 1]. For ¢€(0, 8/9), f, is also deflationary on
(0,1]. For ¢ = 8/9,f,isdeflationary on (0, 3/4), stationary at 3/4.
and deflationary on (3/4, 1]. For ¢€[8/9, 1), define

3-9—3gEB-~ f£)

11d

Pr 3+.9+ = —8o
 =

Note that 1/2 &lt; &amp;,; &lt; 3/4 &lt; ¢; &lt; 1. The solutions off,({) = ¢ in
0,1] are £e{&amp;,,&amp;}. For 0€(8/9,1), f, is deflationary on (0,¢,),
stationary at ¢,, inflationary on (&amp;,,&amp;,"), stationary at £;", and
deflationary on (&amp;;, 1].

For any map 4:(0,1]— (0,1] and He{0,1,2,...}, define A":
0,1] — (0,1] by K(x) = x and A¥*V(x) = A[A" (x)].

Lemma 2.1. For ¢e(8/9,1] and x, ye(&amp;,,&amp;,)), there exists
Fe {0,1,2,...} such that £©(x) &gt; v.
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Proof. Since f, is inflationary on (¢; , &amp;;), the sequence f" (x)
is increasing and bounded above by &amp;} for Fe{0,1,2,...}. Let
Ee(&amp;,,¢,] denote the limit of this sequence. Taking the limit as
F — co on both sides of

[+1, (x) =x) = fl)

and using the continuity of f,, we see that { = f,(£). Since fo 1s
stationary at &amp;, we have &amp; = £. Since y &lt;¢, we must have

f(x)&gt;yforsomeFe{0,1,2,...}. O

For 0e(8/9,1) and x, ye (¢,,£)), define

S, (x,y) = min{Fe{0.1,2,...}: fF(x) &gt; y}

LEMMA 2.2. For every 0€(0,1) and x, ye(0,1), there exists
Ge{0,1,2,...} such that g(x) &lt; v

Proof. Similar to Lemma 2.1.

Let 0. = (4 + 3./2)/9 = 0.9158...

LEMMA 2.3. We have

o [= if 0€[8/9,0,);2G oe octl

Proof. The condition g,(&amp;,) = £, is by definition equivalent to

€ + J9 — bey — (Jo) (: —J9— be)4 4 ’

Expanding the cube, segregating the radical, and squaring yields the
cubic 2/0 + 72/0* — 81/¢ = 0 with solutions 1/oe{— (27/2 + 36)/2,
0, (272 — 36)/2}. Thus, g,, is the unique value of ¢ in (0,1) for
which g,(£,) = &amp;. Since £; and therefore also g,(&amp;;") are increas-
ing in o. while ¢ is decreasing. the Lemma follows.

For 0e(0,1) and x, ye(0, 1), define

0 (x,y) = min{Ge{0.1.2...3:29(x)&lt; v}
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The set { f,g}* of finite words over the alphabet { f, g} forms a
monoid with concatenation (which will be denoted by juxtaposition)
as its operation and the empty word (which will be denoted A) as
ts neutral element. For we { f,g}* and x€[0, 1], define

D,(w,x) =

ifw= A:

{ f,[®, (2, 0)], ifw = fo:
(g,[@,(0,%)] ifw=gv

Forwe{f,g}* let[f:w] and [g: w] denote the number of occurrences
of f and g, respectively, in w. For F, Ge{0,1,2,...} and x€[0, 1],
define

¥,(F,G, x) = max ®,(w. ),

where the maximum is over all we { f,g}* such that [ f: w] = Fand
(g:w] = G. For Ge{0,1,2,...} and x€]0, 1], define

¥,(G, x) = sup¥,(F,G,x).

where the supremum is over Fe {0,1,2,...}. For x€[0, 1], define

V(x) = inf ¥, (G, x),

where the infimum is over Ge {0,1,2,...}

THEOREM 2.4. If g€(0,¢,], then ¥,(x) = 0 for all xe[0,1]. If
reo,, 1), then

0, if xe(0, &amp;; J;
F(x) = bh if xe(E-,1]

Proof. Suppose ¢e(0, 0]. Since f, and g, are nondecreasing, so
is ¥,, so it will suffice to show that ‘¥,(1) = 0. We observe that
f,(x)/x assumes its maximum, 99/8, at x = 3/4, so that

s(x) = f(x) &lt; (YH. 3 X
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Thus ¥,(F, G, x) &lt; (9¢/8)"*%x. If0€(0, 8/9), then 9¢/8 &lt; 1, and the
desired conclusion is immediate.

Suppose then that g€[8/9,¢,]. Since f, is noninflationary on
 1],

Y,[0,(1,E), 11 &lt; &amp;f (2.1

Since f, maps (0,£, ] and (0, £, ] into themselves, Lemma 2.3 implies

W(l,EF)EF

Since f, 1s noninflationary on (0, ¢,],

 VY [0,(E,,0),E1&lt;y. (2 2)

for any y€(0,&amp;,].Thus.

,[0,(1L,E) + 1+ 0,8, ,»,1]1&lt; py

{etting y — 0 yields the desired conclusion.

Now suppose ge (g,,, 1). For xe(0,&amp;; ], it will suffice to show
that ¥,(£,) = 0. But this follows from (2.2). Suppose then that
xe (£7, 1). In view of (2.1), it will suffice to show that

Y(x)=vy (2  3)

for every ye(&amp;,,¢0).
By Lemma 2.3, g,(&amp;)&gt;¢,. Take n-e(&amp;,,g,(&amp;)) and

t= gn)e(g(7),EF).Thenwehave

P[S,3/4.n7) + S,(n,3/4). 1.3/4] =&gt; © (w. 3/4) &gt; 3/4.

where

4 — FSB) rSof Set3

Thus

YIGIS,(3/4,n) + S,(n™.3/4)],G, 3/4) &gt; ® (w®,3/4) &gt; 3/4
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Finally,

¥,{S,(x,3/4) + G[S,(3/4.n*) + S,(n~,3/4)] + S,(3/4,5),G, x}

-Q (v,x) &gt;= y.

A a 0

. £5074,SBA 2) 1,6 £Se(x3/4)

| etuing G — oo proves (2.3).

3. THE OPTIMAL RATE

Henceforth, let us assume ge (0, 1). For xe (¢,, 1], ye (0,¢,) and
Ge{0,1,2,...}, define

T.(G,x,y) = min{Fe{0,1,2,...}:¥,(F,G,x) = y}.

Note that 7,(0,x,y) = S,(x, y).

Lemma 3.1. For ge(o,,1), Ge{0,1,2,...}, xe(&amp;,,1] and
ye (0,&amp;1), we have

T,[G.8,((),y] STJIGH+ Q,(x,&amp;) + L,x,)]

TG, x,8, (6 S T,IG + Q,(&amp;,,») + 1, x, 3.

Proof. Letwe{f,g}* besuchthat[f:w] = T,[G + Q,(x,&amp;) +
Lx, yl [g:w] = G+ Q,(x,¢) + 1and ®,(w.x) &gt; y. Let w = ugv,
where [g:v] = Q,(x,¢]).

Since f, is noninflationary on (&amp;;, 1], we have ®,(v, x) &lt; ¢; and
D,(gv, x) &lt; g,(£;). Thus we have @,[u,g,(¢;)] = Olu, R,(gv, x)] = y.
Since [g:u] = G, we have T,[G,g(&amp;),yI&lt;[f:ul&lt;[f:iw] =

T,[G + Q,(x,¢) + 1, x,y]
Now let we{f,g}*besuchthat[fw]=T,[G+ Q,(§, ,y) + 1,

xy] lg:w] = G+ Q,(¢;,7) + 1 and @,(w,x) &gt; y. Let w — uge,
where [g:u] = Q,(¢,,¥)

We must have ®,(v, x) &gt; g; '(&amp;; ), for if ®,(v, x) &lt; g; '(&amp;;), then
®, (gv, x) &lt; &amp;; and, since f, is deflationary on (0,£,), ®, (ugv,x)&lt;y.



Analysis of Error Correction by Majority Voting

a contradiction. Since [g:v] = G, we have T,[G,x,g,'(&amp;;)] &lt;

ful &lt; [fiw] = T,[G + Q,(&amp;,,») + 1x, 0

THEOREM 3.2. For every ge(g,,, 1), there exists a real number

®,€ (0, oo) such that

lim T,(G, x, y)/G = 0

for all xe(&amp;,,1] and ye(0,&amp;)).

Proof. Given Ge{0,1,2,...}, let v be a word in {f,g}* such
that [g:2] = G,®,(v,3/4) &gt; 3/4and [f:v] = T,(G,3/4,3/4). Simi-
larly, given He {0,1,2,...}, let w be a word in {f, g}* such that
g:w] = H, ®,(w,3/4) &gt; 3/4, and [f:w] = T,(H,3/4,3/4). Then
(a ow] = G + H and ®, (vw, 3/4) &gt; 3/4. so

T(G+ H.3/4,3/4) &lt; [f:ow] = T,(G,3/4,3/4) + T,(H, 3/4,3/4)

[f a function Tis nonnegative and subadditive [that is, if T(G + H) &lt;
I(G) + T(H) for all G, He {0,1,2,...}], then T(G)/G tends to a
nonnegative limit as G — oo; this is Fekete’s lemma (see Polya and

Szegd [PS], Pt. I, Ch. 3, §1, Pr. 98). Thus the sequence T,(G, 3/4.
3/4)/G tends to a limit as G — oo. Let ©, denote this limit.

Suppose that xe (£7, 3/4). Then we have

[(G,3/4.3/14) &lt; T.(G.x,3/4) &lt; S,(x,3/4) + T,(G.3/4,3/4).

Dividing by G and letting G — co we have

lim T,(G, x,3/4)/G = ©, [3  nN

Next suppose that xe[3/4,£,). Then we have

r,(G,x,3/4) &lt;T,G,3/4.3/4) &lt; S,(3/4,x) + T,(G,x, 3/4),

and again we have (3.1).
Finally suppose that xe[£,, 1). Then by Lemma 2.3, g,(£,)e

(¢,,&amp;5) and by Lemma 3.1, we have

T,1G.2,(£;),3/41 &lt; T,IG + 0,(x,&amp;) + 1.x, 3/4]

&lt;TIG+ O,(x, EX) + 1,2 (£F5).3/4]
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and again we obtain (3.1). Thus the limit of 7,(G,x,3/4)/G as
G — oo is independent of x for xe (¢, , 1]. Similar arguments show
that the limit of T,(G, x, y)/G as G — oo is independent of y for
ye(0,&amp;1). 0

LEMMA 3.3. Forevery ge(g,, 1), there exists a unique «,€ (0, 1)
such that

Folge) &lt; g[f,(x)] if x € (0, a),

flg.(¥)] = gl/,(x)] ifx =a,

 1g, (0) &gt; g,[f,()] if xe (a,1]

Proof. Since f, and g, are cubic polynomials, {f,,g,&gt; =
f,°8, — 8,°/, 1s a nonic polynomial. It has a sextuple root at 0, and
thus has three other roots. For ge (o,,, 1), we have

Cf, 8,0(@) ~ (30° — 270M)ab&lt;0 asa — 0 witha &gt;0. (3.2)

Furthermore, we have

{for80(1) = 30’ —¢*) &gt; 0,

{fy:8,3) = 37(@* — 270%) &lt;0

( Ey

ai]

Song) = 3:2%* — 0") &gt; 0

It follows that each of the intervals (0, 1), (1, 3), and (3, 4) contains
one root of {f,,g,&gt;. Thus there is a unique a,€(0, 1) such that
f.1g,(0,)] = g,[f,(a,)]. Since {f,,g,&gt; cannot change sign in the
intervals (0, a,) and (a,, 1], its signs throughout these intervals are
determined by its behavior (3.2) at 0 and its value (3.3) at 1. [J

For ge(0,1), define , = f,[g,(2,)] = &amp;,[/o(2)]: 1; = 8,(2,)
and nf = f(a,).

LEMMA 3.4. For ge(p,,1), we have

+ &lt; EF_ {fel &lt;i &lt; s wo &lt;M &lt;p
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Proof. To prove the leftmost inequality, let &amp; = g, '(£,). By
Lemma 2.3, Ee, EN). Since f, is inflationary on Sp ).
f,(£0) &gt; £0. Since g, is increasing, g,1/,(E0)] &gt; £,(&amp;2) = £,[g, (0)
Thus &lt;f,,g,&gt;(£)) &lt;0 and, by Lemma 3.3, &amp; &lt;a,. Since g, is
increasing, &amp;, = 2,(&amp;)) &lt; g,(a,) = n,.This proves the leftmost
inequality.

Next we prove the rightmost inequality. By Lemma 2.3.
g, (EN)e(&amp;,,&amp;)). Sincef,isstationary at £, and inflationary on
Co 60) L180EN) — LAE = £8,(E7)) — £,(7) &gt; 0. Thus
(fy:8,2(;)&gt;0 and, by Lemma 3.3, a, &lt;&amp;;. Since f, maps
(&amp;,,&amp;,) into itself, n = f,(a,) &lt; &amp;'. This proves the rightmost
inequality.

The remaining inequalities follow from the inflationarity of f,
and the deflationarity of g, on (&amp;,7,&amp;)"). O

Let us fix ge(0,, 1). Let us say that we{f,g}* is optimal for
F,Ge{0,1,2,...} and xe(&amp;, ,1]if [f:w] = F, [g:w] = G and

 Dd. (w,x) = WY.(FG, x).

Let us order the words {f,g}" of length H from {f,g}* anti-
lexicographically, with f preceding g and letters to the right being
more significant than letters to the left. Let us say that we {f,g}*

is strongly optimal for F, Ge{0.1,2,...} and xe(&amp;,, 1] if it is
optimal for F, G, and x and if it is antilexicographically last among
optimal words for F, G, and x.

LEMMA 3.5. If F&gt;1and G &gt; 1, an optimal word for F, G, and
x€(0,a,) must end with f'; an optimal word for F, G, and xe (a,, 1]
must end with g; and a strongly optimal word for F, G, and «, must
snd with g.

Proof. First suppose that xe (0,a,). Let w be an optimal word
{or F, G, and x. Since F&gt; 1, we can write w = vfg” for some

ve{f,g}* and He{0,1,2,...}. We must show that H = 0.
If H&gt;1, then @,(g"',x)e(0,a,), since g, maps the interval

(0, a,) into itself. By Lemma 3.3, @,(gfg"~',x)&gt;®,(fg",x). Since
f, and g, are increasing, ®,(vgfg"',x)&gt; @,(vfg”, x). This contra-
dicts the definition of w and thus the supposition that H &gt; 1.

Now suppose that x e (a,, 1]. Since f, maps the interval (o,, 1] into
itself, a similar argument shows that an optimal word for F, G. and
x must end with eo.
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Finally, if an optimal word w for F, G, and «, ends with f, w must
have the form vf, where v is an optimal word for F— 1, G, and
f,(¢,) = un, . Since 5, (a, 1], the preceding case shows that v must
end with g. Thus, v must have the form ug, where u is an optimal

word for F— 1, G — 1, and g,(3,) = f,. By Lemma 3.3,

D, (ufg,a,) = O,(w,a,).

Thus there is also an optimal word for F, G, and a, that ends with
g. It follows that a strongly optimal word for F, G, and «, must end
with g. Od

For ge(0.,, 1) and xe(0, 1], define

h(x) = pe if xe(0,a,);
2,(x), if xe, 1].

For He {0,1,2,...}, define

ie pH) .

(x) = t if 1," (x)e(0,a,);
g, if 9 (x)e(a,, 1].

Let w,(H,x) = ef".

Lemma 3.6. If F+ G &gt; 1, a strongly optimal w word for F, G,
and x € (0, 1] must have the form f'w,(H, x) or g'w,(H, x) for some
I&gt;1and He{0,1,2,...}.

Proof. We proceed by induction on FG. If FG = 0,then F = 0

or G = 0. Then g°w, (0, x) or f*w, (0, x), respectively, is the unique
word w satisfying [f:w] = Fand [g:w] = G, and thus is strongly
optimal for F, G, and x.

If FG&gt;=1, then F&gt;1 and G &gt;= 1, so by Lemma 3.5, w must
end with e”(x). By inductive hypothesis, the strongly optimal
word v for F—[f:e(x)], G —[g:e{(x)] and k,(x) must have
the form f'w,[H, h,(x)] or g'w,[H, h,(x)] for some I&gt; 1 and He
f0,1,2,...}. But then w = vel” has the form f'w,[H, h,(x)]e{ (x) =
fw, (H + 1,x) or gw, [Hh (x)]e® (x) = gw, (H+ 1.x). [OI
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Let F,(H,x) = [f:w,(H,x)] and G,(H,x) = [g:w,(H,x)]. Let

H,(G,x) = min{He{0,1,2,...}:G,(H,x) &gt; G}

1nd

R,(G,x) = F,[H,(G,x),x].

Lemma 3.7. For ge(g,,1) and xe[n, ,n,]

lim R,(G,x)/G = O,.

Proof. It will suffice to prove the inequalities

T,(G,x,n,)&lt; R,(G,x) &lt; T,(G,x,n)

for G &gt; 1, for then the Lemma will follow upon dividing by G,
letting G — oo and applying Theorem 3.2.

To prove the left inequality, let F = T,(G, x,n,)andlet w be the
strongly optimal word for F, G, and x. By Lemma 3.6, w is of the
form f'w,(H, x) or g'w,(H,x)forsome I &gt; 1 and He {0,1,2,...}.

First suppose that w = f'w,(H,x) for some I&gt; 1 and He
{0,1,2,...}. Since xe[n,,n;] and h, maps [n,n] into itself.
D,[w,(H,w),x] =n,.Since [g:w,(H,x)] = G, we have T,(G, x,n,)&lt;
[f:w,(H,x)] = F— I&lt; F, a contradiction.

Thus we may suppose that w = g'w,(H, x) for some I&gt; 1 and

He{0,1,2,...}. Since [g: w,(H,x)] &lt; G, we must have R,(G,x) &gt;
[f:w,(H,x)] = F = T,(G,x,n,;). This proves the left inequality.

To prove the right inequality, let F = T,(G, x,n,) and let w be
the strongly optimal word for F, G, and x. By Lemma 3.6, w is of
the form f'w,(H, x) or g'w,(H, x) for some I &gt; 1and He {0,1,2,...}.

First suppose that w = g'w,(H,x) for some I&gt; 1 and He

10,1,2,...}. Since h, maps [, , 5, ] into itself, ®,[w,(H, x), x] &lt; n;}
Since g, is deflationary, ®,[g'w,(H, x), x] &lt; 1. , a contradiction.

Thus we may suppose that w = fw, (H, x) for some I &gt; 1 and
He{0,1,2,...}. Since [g:w,(H,x)] = G, R,(G,x) &lt; [f: w,(H,x)] =
F—I&lt;F = T,G,x,n). This proves the right inequality. [7]

Let C, denote the circle obtained by identifying the endpoints of
he interval [1, ,5,"]. Define k,: C, &gt; C, by

(x) if xen, ,a,):fix = bt

g(x). ifxelu.n)
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It is easy to check (using the condition f,[g,(«,)] = g,[f,(«,)]) that
k, is a homeomorphism of C, to itself (that is, k, is a continuous
bijection whose inverse is also continuous). Since neither f, nor g,
is stationary at any point of [n, ,#, ], k, has no fixed points. Since
f, and g, are increasing, k, is orientation preserving [that is, as x
runs around C, in a certain sense, k, (x) runs around C, in the same
sense].

We shall associate with k, a number 3(k,)e (0,1) called the
rotation number of k,. (This definition depends on some assertions
that we shall present without proof. For an account including
proofs, see Nitecki [Ni], Chap. 1, or Devaney [D], Pt. I, Chap. 14.)

Define the canonical projection nn, :R =» C by

m,(x) =n, +n, —n, Nx —1x)),

so that m, is continuous and periodic with period 1. We shall
say that homeomorphism k, of R to itself is a lift of k, if
nok, = k,om,. A lift k, of k, exists, and any two such lifts differ
by an integer. Since k, is orientation preserving, any lift k, is
increasing. For any lift &amp;,, the ratio £’(x)/G tends to a limit as
G — oo, and this limit is independent of x. This limit, denoted 3(k,),
is the rotation number of the lift k,. The rotation numbers of any
two lifts of k, differ by an integer. Thus, for pre isely one lift k, we
have 3(k,)€[0, 1). The rotation number of this lift, denoted 3(k,),
is the rotation number of k,. Since k, has no fixed points,
Sk)e(0, 1).

THEOREM 2.2. Wyo agve

© =

(Ck) — 8k) if a, ~ By:

1, if a, = B,

lt — ses). ite, f,

Proof. Any orbit x, k(x), ..., k{(x), ... of k, lifts to an orbit
t&lt;k (x) &lt;-&lt;k{"(x)&lt;: of k, Bya cycle in an orbit of k,,
we shall mean that portion of such an orbit falling in a half-open
interval of length 1. By a cycle in an orbit of k,, we shall mean the
image under nm, of a cycle in the lift of such an orbit.
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In the definition of k,, the first case is inflationary and the second
case is deflationary. Thus each case must occur at least once during

cach cycle. In particular, 3(k,) &lt; 1/2.
Ifa, &lt; B,, then f,([n, ,,)) = [B,.n,) &lt; lo,,n,). Thus, the first

case in the definition of k, occurs at most once during each cycle.

Thus, for any xe[n, ,n, 1,

lim F,(H,x)/H = 3(k,)

Complementarily.

lim G,(H,x)/H = 1 — 8(k )

Reciprocally.

lim H,(G.x) = 1/[1 — 8(k,)]

Thus, by Lemma 3.7,

CL R,(G,x)
B, = lim G

iy FulH, (Gx), x] Hy (Gx)
mx H,(G,x) G

FH,(G,0),x [Hy (G,x)= Jim H,(G, x) Him G
= 3(k,)/[1 — 3k).

if a, =p, then fn.) = [B,n) = lx,n) and
g,([%,,1,)) = [n;,B,) = [n, ,o,). Thus, the two cases in the defi-
nition of k, alternate during each cycle, and 0, =1

Finally, If a, &gt; §,, then g,([a,,7,))= n, ,B,) =In, ,e,). Thus,
the second case in the definition of k, occurs at most once during
zach cycle. Arguments similar to those for a, &lt; 8, complete the
proof.

i. ASYMPTOTIC PROPERTIES OF THE OPTIMAL RATE

Lemma 4.1. Suppose that w,(H + 2,x) = fg"f for some
0€(0,,1), He{0.1.2....} and xe[y, n+]. Then

0.8.a VS HLSQO (n,n).
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Proof. Since w,(H + 2, x) ends with f, we have xen, , «,). Thus
D,(f,x)ef,([1; +%,)) = [Bony)-Similarly, since w[1,,(g"f;x)]
ends with f, we have ®,(g"f,x)en,; ,«,). Thus g{") sends some
zlement of [B,,#,") into some element of[1 ,a,). O

LEMMA 4.2. Suppose that w,(H+2,x) = gffg for
0€(0,,1), He{0,1,2,...} and xen, ,n,]. Then

some

S.(B,,2,) &lt; HSS, (n,n)

Proof. Analogous to that for Lemma 4.1.

THEOREM 4.3. We have

=
log, [1/(1 — o)] asgo—|

1]

4-2 212)34.2 oe) (100252) (1 ,©, ~ {log == 0 — 0»
as 9 &gt; 0,

Proof. We shall deal first with the case ¢ —» 1. By Lemma 4.1,
there are at least Q,(B,,,) and at most Q,(n, ,n, ) occurrences of
g between any successive pair of occurrences of f in the word
w,(H, x), for any He {0,1,2,...} and any xe[n, ,n,]. We shall
rove

1
0,(B,. 2) ~ tlogy— (4

1
YG

1
Q,(ng 51, ) ~ 3 logy — (4.2)

as ¢ — 1. By Lemma 3.7, this will complete the proof for the case
oo!
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Since 0'g, (x) = (0'*x)’, we have

0,(x,7) = [log (1m (7) / In (77) - (4.3)
From the defining conditionf,[g,(x,)] = g,[f,(«,)] we see that a, is
the root of 2a® — 12a + 18x — (9 — 1/g) = 0 in the interval (0, 1).

From this it follows that

x. = 1 —(1/6)2(1 — 9)"* + O(1 —¢

From this we obtain

1, = 1= (3/21 — 0)" + 0(1 — 0),

nf = 1—3/2)(1 — 9) + O[(1 — 9)*?]

and

B, = 1 —(11/2)(1 — 0) + O[(1 — 0)**].

Substituting these expansions into (4.3) yields (4.1) and (4.2).
We next deal with the case ¢ — ¢,,. By an argument similar to

that for the preceding case, but using Lemma 4.2, it will suffice to
prove

5.0) ~ (1088) og) fog) 022)
(4 4)

and

1 4—./2 2+ 2Seng sm, ) ~ (106252) (toe) / (105%) (10622)
(4

as ¢ —¢,,. We do not have a convenient formula like (4.3) for
5,(x, y), so we shall develop bounds.

Let f be the piecewise-linear function whose graph is formed by
the tangents to the graphoff, at &amp;, and &amp;: for xe[&amp;;,&amp;],

(3+ (= EE). if xeles,g,)
let + (x — ENVFAED).  ifxelt. Et]:
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where

 EI = LEIN — &amp; 1 — fE)

g FE) —fHED

is the abscissa of the intersection of the two tangents. Since
f,(x) &lt;0 for xe[1/2,1], f, is concave in this interval, and thus its
graph lies below the graphs of its tangents at £,°, £; €[1/2, 1]. Thus
f(x) = f,(x) for xe[&amp;,, EF]. If we define

S,(x,y) = min{Fe{0,1,2,...}: f(x) = y}.

then S,(x,) &lt;S,(x,y). If xe[&amp;,(], then f(x)—¢,
(x —&amp;,)f,(&amp;,). Thus

sn) = [in(2250) fms)
Similarly, if ye ((,,&amp;,), then

5,0»7)= (=&gt;) fmtugcesy0 y

If xe(&amp;,,¢,) and ye(,,&amp;}), then

S06,» =S,(x0)+S,E,y) — 1. 4.6

Consider the asymptotic behavior of S,({,,a,) as 0 —go.
Straightforward estimates yield

15.2—21ld = = 222 6600)

Slightly more delicate estimates yield

2 — a, = (27 — 182) — 04) + Olle — 0.)’]-

Again, straightforward estimates yield

Urey = 252406— 0
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Combining these estimates yields

1 (1 212),Oo S———S, (or) ~ Cl 3

Similar arguments yield

. 1 2+42
§ ~ ee? ————50 (Los, ) CEG 5 )

1 4-2
S ~ ——— ~~So (Be: C0) (1022) (108 &gt; )

and

a) (eetS,(1,,8,) ~ (tog,——
Substituting these .~~2ansions into (4.6) and using the identity

ft a = (e255)
(10g 22) (10g 252) (10g 25Y2) (10g 252)

vields

A log ——),
[4 [4 Q 2 0 — 0.

4 — /2 2(108%27) (10g 222) (4.7)

and

_ 3+42 15,1, 1) (1062302) (10g
| tort V2) (109 2432 \
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To obtain corresponding upper bounds is a bit more complicated
For ¢€[0, 1] and x€[0, 1 — ¢], define

el) = x+¢

If &amp; is sufficiently small, the graph of f, will intersect the graph of
e, at two points, say {, and {; ,, in the interval (1/2, 1), and we
have

Cone Cp, and {J ES

as ¢ — 0. If ¢ — g,. is sufficiently small, then the graph of f, also
intersects the graph e, at two points, say {,, and {,, in the interval]
(1/2, 1), and we have

7
—

i 8 So. 3g Lor - i JE

AS @ 2 0 -

Let f,. be the piecewise-linear function whose graph is formed by
the chords of the graph off, from &amp;, to {,, from {,, to {,, and from
[goto &amp; for xe[&amp;,, 8]:

fos (x) =

r— Er [fC —&amp;
+(x—¢, NE |

+g,

 reg E| iserien

*.

if xe[{,.,{]:

Since f, is concave in [1/2, 1], its graph lies above that of its chords.
Thus, f, (x) &lt; f(x) for xe[£,, 7]. If we define

E(x) = 0h-f-Joein{Fe{0.1,2,..S. ) =mS, (x,y

hen S(x,y) = S,(x,y). If xe(£,,(.], then

: . {or — Eo felled — &amp;¢5,006.05) = [ine=o) fin (fled22) a Q
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Similarly, if ye[(],, EF), then

8 pr 4 $e — Lo &amp; —Co

Gi = [n(n ESE)| wo
Furthermore,

SL Ch) = [oe = bu 4.11)

If xe(¢,,¢,.] and ye[(),,&amp;), then

S61) &lt;8, (5,0) +S, (Les C) + S,. CS .p). (4.12)

Straightforward asymptotic estimates for the expressions appear-
ing in (4.9) and (4.10) yield

Saallin%) ~ in; — 0x )/m( 5)

ind

2 _ 1 on ofan)SeclBoa) ~ In gt ) fn Selefend)
Substituting these relations and (4.11) into (4.12) and letting ¢ — 0
we obtain

5,62 &lt; (106253) (10g)(10g2)
» (10232),

Ince

lim
£0

" oh — - _ ’ +

= —f,. es | = Wee)
1nd

im
PY

I Eon I (S|
EE —(

=f (E77
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Similar arguments yield

1 : 4-32)2) (roe) (1s 2(1, 1;) &lt; (log 2

X (e242).

Combining these relations with (4.7) and (4.8) yields (4.4) and (4.5).
Cc

3 tUKTHER PROPERTIES OF THE OPTIMAL RATE

ProposITION 5.1. The optimal rate ®, is nonincreasing and
continuous in ge(p.., 1).

Proof. Since f,(x) and g,(x) are nondecreasing in ¢ for every
xe (0,1], so is ®,(w,x)forevery we{f,g}* and ¥,(F,G,x) for
every F,Ge{0,1,2,...}. Thus, T,(G, x,y) is nonincreasing in ¢ for
all Ge{0,1,2,...}, xe(é,,1] and ye(0,&amp;, ). Dividing by G and
letting G — oo, we see that ©, is nonincreasing in g.

To show that ©, is continuous, let C denote the interval [0, 1]
with its endpoints identified. The circle C is a metric space under the
metric

de(x,y) = min{|x—y|,[1—x+y|}

for x, ye C. Let ¥ denote the set of all orientation-preserving fixed-
point-free homeomorphisms from C to itself. The set ¥ is a metric
space under the metric

de(p,q) = max dc p(x), g(x)]

for all p,qe¥.
For ge(o,, 1), define [,: C,—» Cby L(x) = (x —n,)/(n, —n, ).

Then ¢ — [,0 k,l," is a continuous map from (g,, 1) to %,since f,.
g, and «, are all continuous in g.

Since the rotation number 3: € — (0,1) is continuous (see
Devaney [D], Pt. I, Cor. 14.7), 3(,ok,o."") is continuous in g.
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Since /, is a homeomorphism, 3(k,) = (lo k,o1;") is also con-
tinuous in @. Thus, by Theorem 3.8, ®, is continuous in g. OJ

LEMMA 5.2. Let F and G be positive integers with (F,G) = 1.
For ge(g,,1), we have ®, = F/G if and only if there exist
Ais. ... Ar, such that

A. Ap.
+

er &lt; n, (5. i)

ind

f,(in) = Aur, if Hel... F}:

g,(4a) == A
HFs if He{ F + 1. LF +

or (5.2)

Proof. If (5.1)and (5.2) hold, then 4,,..., 45, 1s an orbit of 4,
[hat ®, = F/G then follows from Lemma 3.7.

Suppose now that ®, = F/G. Then 3(k,) is rational, by Theorem
3.8. This implies that k, has a periodic point (see Nitecki [Ni], Ch. 1.
Prop. 2 or Devaney [D], Pt. I, Prop. 14.8). Let

noo A. i, &lt;n! (5.3)

be a minimal orbit of k,. Let K = L + M, where 4; &lt;a, &lt; 4,
Since f, is increasing and inflationary in [n, , 7, ), while g, is increas-
ing and deflationary, we have

f(y) = Arr, if He{l....,L):

 ge (Ay) = Au_,, ifHelL+1.....L+M}.

We have have (L,M) = 1, else 4; 4s, Ayr anys - --» AryiWOuldbe a
proper suborbit of (5.3) contradicting the minimality of (5.3).
Finally, applying Lemma 3.7 to any of 4,,..., A yields L = F and
M = GG. completing the proof of (5.2). ]

Let F and G be positive integers with (F,G) = 1, and let
0€(0,,1) be such that ®, = F/G (such a g exists by virtue of the
continuity and asymptotics of ®,). Let 4, ..., Ap, satisfy (5.1) and
(5.2). Then for He {l....,F + G}, the successor of 4, in this orbit
of k, is Ay,s, where the subscript addition is modulo F + G in
1.....F+ GG).
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For He{l,...,F+G}andI€{0,...,F+G—1},define

Sf, H+ IGe{l,...,F} (modF+G);
ORT fH IGE{F+1,....,F+G} (modF+G).

Let wen = erguric-1 "ergno- Then we have w (F+G,Ay) =
Weg.

For ge(o,,1) with ®, = F/G, He{l,...,F+G} and x€(0, 1].
define

p, u(¥) = DO (Weg ps x).

Then 4, is a fixed point of p, ,,. Conversely, if A is a fixed point of
p, un, and if we define

brig = Perc hii CU eEG HO J (s 4

for I€{0,...,F+ G — 1}, then we have

fo (ty) = Hpi if He{l,...,F};
(5.5,

g. (ty) = Hu_r, if He{F+1,....,F+ G}.

The elements of {y,,..., pr,c}mustbedistinct, since if two of them
were equal, two cyclic shifts of the word wz would be equal,
contradicting (F,G) = 1. Since f, is inflationary, the largest F
clements of {y,..., Hr, 5} must be the images underf,ofthe
F smallest. Since g, is deflationary, the smallest G elements of
ty, p,q) must be the images under g, of the G largest. Since
f, and g, are increasing, it follows that

wu. &lt;&gt;&lt; Up, ~.

Lemma 5.3. For all positive integers F and G with (F,G) = 1,
there exists an algebraic number ¢p;€(0,,1) such that for all
0€(0,1) and He{l,...,F+ G}, p, , has a fixed point in [1/2, 1]
if and only if 9 &gt; 05.

Proof. Since the words wp; , are cyclic shifts of each other for
He{l,...,F+G},either none of the polynomials p, ,,...,p, r.c
have a fixed point in [1/2, 1] or all of them do.
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Since there exists ge(g,, 1) such that ®, = F/G, there exists
0€(0,, 1) such that p,,hasa fixed point in [1/2, 1]. Let g,,; denote
the infimum of¢€ (¢.., 1) such that p,,has a fixed point in [1/2, 1].
By continuity of p, ;(x)in ¢ and x, p,,.,hasafixedpoint in[1/2, 1].
By Lemma 2.3, p,,doesnot have a fixed point in [1/2, 1]. Thus
06 € (0, 1). Furthermore, if¢&gt; 0g, then p, ,, has a fixed point in
[1/2,1], since p, 4(x) = p,,, u(x) for xe[1/2,1}, but p, 4(x) &lt; x for
xe {1/2,1}. It remains to show that ¢. is an algebraic number.

At a fixed point A ofp, ,, the graph of this polynomial must be
tangent to the diagonal. Thus, 4 is a double root of the equation
Dorc.ri(E) = &amp;, and gg 1s a root of the discriminant ofp, ,(&amp;) — ¢&amp;
Since this is a polynomial in ¢ and £ with integer coefficients, g,;
is an algebraic number. J

THEOREM 5.4. For all positive integers F and G with (F,G) = 1,
there exist algebraic numbers gz and gg in (0, 1), With gg &lt;
07» such that for all ge(o,.1), ®, = F/G if and only if ge
[0FG, rm

Proof. From Theorem 4.3 and Proposition 5.1, it follows that
the set of pe (g,,1) such that ®, = F/G forms an interval of the
form [076,056], With gz &lt; @f. It remains to prove that ¢5; and
01 are algebraic numbers with g5; &lt; 07.

We claim that gz; = 0p. By Lemma 5.3, the polynomial p,_
has a fixed point A. Define y,,..., pup, ; according to (5.4) with
0 = 0c. Then we have (5.5). It remains to prove that

Ue &lt; Aq, &lt; Hea

To prove this, we begin by observing that w,,, = vgf and
Vrc.re1 = Ufg for some word ve {f, g}*. Since @,, (v, x) is increas-
ing in x, p,..s(x)—p,,..r-1(x)hasthesamesign as {f, ,g,,.&gt; (x)
for xe (0, 1]. Since a,,.is the unique unique root of Sor 8ore 2 (8)
in the interval (0,1], it is also the unique root of p, .(&amp;)-
Pore.r+1(€) in this interval. Furthermore, since a, is a simple root
Of { foro2 or» (€), and since the derivative of ®,,.(v, x) with respect
to x does not vanish for xe(0,1), «, is a simple root of

Porc.r(E) — Pope.r+1(8)-
If x&gt;ua,., then Porc. F(X) &lt; Py, rir (x). Furthermore,

Pore.r+1(X) &lt; x, €lse p, r,, would have a fixed point for some
0 &lt; @pg- Thus if x &gt; a, _, then p, (x) &lt; x, so any fixed point A
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of Po, Must satisfy 4 &lt;a, . Similarly, any fixed point 4 of
Perc. F+1 Must satisfy 4 &lt;a, . Furthermore, a, cannot be a fixed
point of either p,, por p,,. ry For if it were a fixed point of one,
it would also be a fixed point of the other. Since fixed points of p,,,_
and p,,.pr,are double roots of p,,. (&amp;) — ¢ andp,,. r.1(E) — &amp;.
respectively, «,. would thus be a double root of p, .r(£)—
Perc. F+1(£), contradicting what was shown above.

Since pp is a fixed point of p,,.rand pg, is a fixed point of
D,.. r.1&gt; We have

Up &lt;0, &lt;&lt; Hp,

which completes the proof that gz = 076.
For all ¢ &gt; ¢g,p,. has a fixed point A, from which we may

define y,,..., ur, according to (5.4) and for which (5.5) holds.
Thus the condition

i ¥  Mp (5.6)

must fail for ¢ = g¢/,;. By continuity, we must have pu, = «, or

tre = o, foro = gf. It follows that gz; is a root of the resultant

of po r(&amp;) — &amp; and &lt; f,,8,5 (©), or of py. (&amp;) — &amp; and {£;.8,&gt; (2).
Since these are polynomials in ¢ and ¢ with integer coefficients, g7
is an algebraic number. Since (5.6) holds for ¢ = gps, we have
Ore &lt; Chu Ol

Forevery ge(o.,,1) and every He {0,1,2,...}, k(x) is a piece-
wise polynomial function of x, with finitely many breakpoints that
are algebraic functions of g. As a function of g and x, it is a bivariate

piecewise-polynomial function, with finitely many breaklines that
are algebraic curves. Thus is has continuous partial derivatives with
respect to ¢ and x, except on finitely many algebraic curves.

Lemma 5.5. Forall H&gt; 1, 0e(o,,1) and xe(n, ,n, ), we have
4k!" (x)/dg = 1/2, except on finitely many algebraic curves.

Proof. We proceed by induction on H. If H = 1. then
K(x) = k,(x) and we have

dk,(x) [Si a. — kG) En 12
do |g, (x) &gt; g(x)
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[f H &gt; 2, then we have by the chain rule

k(x) _ ok Ok ()
do do y= ktH=1(x) dy

(H-1)dH (x)
doy =k = (x)

The first term is at least 1/2 by the case H = 1. In the second term,

the first factor is positive since k, is increasing between breakpoints;
the second factor is positive by inductive hypothesis. Thus, the
second term is positive and the sum is at least 1/2. 0

THEOREM 5. For every irrational number te(0, co), there is a
unique ge(p., 1) such that ®@, = 1.

Proof. Asin the proof of Theorem 5.4, the set of ge (¢,,, 1) such
that ®, = ¢ forms an interval of the form [g; ,,"]. It remains to
prove that 9, = o;.

Suppose, to obtain a contradiction, that ¢; &lt;7. Set ¢ =

(0) + ¢,)/2. Then ®, is irrational. By Theorem 3.8, 3(k,) is also
rational. The homeomorphism k, is differentiable (except at the
points 77, , &amp;, and 7," ) and its derivative is continuous (except at these
points) and has bounded variation. It follows that k, is transitive
(that is, every orbit is dense in C,). (This is proved for a diffeo-
morphism with its derivative continuous and of bounded variation
in Nitecki [Ni], p. 45; scrutiny of the proof given there reveals that
it remains valid under the weaker assumptions available here.)

Choose ¢ &gt; 0 sufficiently small that ¢ &lt; (¢," — 0,7 )/2 and the
intersection

. [ n,n]
&lt;g&lt;o+r

contains a nonempty open interval ({~,{*). (This can be done,
since 7, and #5, are continuous in ¢ and 7, &lt;n; .)

Set { = ({* + {7)/2, and choose § &gt; 0 sufficiently small that
0 &lt;({* —{(7)/2 and § &lt;¢/2. We shall prove that there exists
s€lo — 20,0 +20] [0 —¢,0+¢l &lt; [0,0] such that k, has a
periodic point. This will imply that 3(k,) is rational (see Nitecki
[Ni], Ch. 1, Prop. 2 or Devaney [D], Pt. I, Prop. 14.8). By Theorem
3.8, this will imply that ©, is rational. Since oe,,0, ], this will
imply that ®, = @,, so that ®, = ¢ is rational, a contradiction.

Since k, is transitive. the orbit of { is dense in C,. Thus, k/"({) =
("for some {"e({~,{") and H &gt; 1. Suppose firstly that {’e[{, (+) =
[{,{ + 0). As ¢ increases from pg to go + 26, kK) ({) increases from
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KM) to
o+26 dk(0)

KO) = KO+[1 =

which is at least k{"’({) + &amp;, by Lemma 5.5. Thus, by continuity, we
have k{)({) = { for some oefo,0 + 26]. If {'e((~,{], a similar
argument shows that k”({) = { for some oe — 26, 0]. O
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DETERMINISTIC SIMULATION

OF PROBABILISTIC CONSTANT

DEPTH CIRCUITS

Miklos Ajtai and Avi Wigderson

ABSTRACT

We explicitly construct, for every integer n and ¢ &gt; 0, a family
of functions (pseudorandom bit generators) f,,: {0,1} — {0,1}"
with the following property: for a random seed. the pseudorandom
output “looks random” to any polynomial size, constant depth,
unbounded fan-in circuit. Moreover, the functions f,, themselves
can be computed by uniform polynomial size, constant depth circuits.

Some (interrelated) consequences of this result are given:

Deterministic simulation of probabilistic algorithms. The
constant depth analogues of the probabilistic complexity
classes RP and BPP are contained in the deterministic
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complexity classes DSPACE(n’) and DTIME(2™) for any
e = 0.

Making probabilistic constructions deterministic. Some
probabilistic construction of structures that elude explicit
constructions can be simulated in the above complexity
classes.

Approximate counting. The number of satisfying assignments
to a (CNF or DNF) formula, if not too small, can be arbitrarily
approximated in DSPACE») and DTIME(2™), for any
ce &gt; 0.

We also present two results for the special case of depth 2 circuits.
They deal, respectively, with finding a satisfying assignment and
approximately counting the number of satisfying assignments. For
example, 3-CNF formulas with a fixed fraction of satisfying assign-
ments, both tasks can be performed in polynomial time!

[. INTRODUCTION

The relationship between randomized and deterministic compu-
ation is a fundamental issue in the theory of computation. The
results on this subject fall into the following categories.

.1. Simulating Randomness by Nonuniformity

Adleman [Ad] showed that any language in RP can be computed
by a polynomial size family of circuits. However, the proof is
existential, and there is no known way of explicitly constructing
these circuits. A similar result, for simulating probabilistic, poly-
nomial size, constant depth circuits by nonuniform deterministic
ones is due to Ajtai and Ben-Or [AB].

.2. Simulating Randomness under an Unproven Assumption

Yao [Ya] has shown that if one way functions exist, then RP is
contained in DTIME(2™), for any fixed positive ¢. Note that the
assumption is extremely strong, as it implies in particular that
P # NP nn coNP. Similar results are given in [FLS], who study the
space complexity of the simulation, and [RT], who consider RNC
instead of RP.
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1.3. Simulating Randomness by Alternation

Sipser and Gacs [Si] showed that BPP is contained in Aj. Of
course, the time or space complexities of languages in this class are
unknown. A related result, due to Stockmeyer [St], is that approxi-
mate counting is in Af.

4. Simulating Specific Randomized Algorithms

By a careful analysis of how randomness is used in a specific
algorithm, one may be able to replace it by a deterministic construc-
rion. Such examples are the parallel algorithms in [Lu, KUW, KW].
Also related are explicit constructions of graphs with special
oroperties, which can be found in [Ma] and [GG].

There were no explicit upper bounds on the deterministic simu-

lation of any nontrivial class of probabilistic algorithms. In fact,
there is no such simulation that does less than brute force enumer-

ation of all possibilities for the random inputs.
We prove in this paper that probabilistic, polynomial size,

constant depth, unbounded fan-in circuits can be simulated in
DSPACE(n®) [and hence also in DTIMEQ2")], for every fixed
positive &amp;. This is done by generating a small set of pseudorandom
binary strings, such that a randomly chosen one of them “looks
random” to any polynomial size, constant depth circuit.

It is interesting to note that our “pseudorandom bit generator’
is purely combinatorial, in contrast to the number theoretic gener-
ators used in cryptography (e.g., [Sh, BM, BBS]).

The proof that our generator “works” requires an intimate
understanding of the structure of constant depth circuits. Such an
understanding is drawn from the lower bound proof techniques for
such circuits [Aj, FSS]. Moreover, these lower bounds are all
“probabilistic” (or ‘““nonconstructive”), and an essential part of
building the generator is making them explicit. To this end we use
the idea of ‘“k-wise independent” random variables (e.g., see
TACGS, Lu, An, KUW]).

[n Section 2 we give definitions and state our main theorem. In
Section 3 we discuss applications of the main theorem, and in
Section 4 we give the proof. In Section 5 we obtain refined results
on depth 2 circuits, and discuss their applications.
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2. DEFINITIONS AND THE MAIN THEOREM

A circuit C is a directed acyclic graph with node labels. The nodes
of indegree zero are labeled with input variables, the nodes of
outdegree zero are labeled with output variables, and the rest of the
nodes are labeled from {AND, OR, NOT}. We put no bound on
fan-in or fan-out.

The size of a circuit C, s(C), is the number of nodes in it. The
depth of C, d(C), is the length of the longest input-output path. We
say that C is an (s,d)-circuit if s(C) &lt;s and d(C) &lt;d.

We shall be interested in families of circuits. Let s,d: N — N be
functions. We say that {C,},n = 1,2,...isan (s,d)-family if for all
n, s(C,) &lt; s(n), d(C,) &lt;d(n). Ifs= n°Y,d = O(1) then {C,} is a
PC family (polynomial size, constant depth).

A family is uniform if there exists a Turing machine that on input
n in unary, outputs a description of C,, using only O(logn) space
[Ru]. We shall mainly deal with one output circuit. Every such
circuit C with nn inputs computes a function C: {0,1}" — {0,1} ina
natural way. Define p(C) = Pr[C(x) = 1], where xe {0, 1}" with
uniform probability.

For inputs that are generated pseudorandomly we use the
following. Let f: {0,1}"—{0,1}"be a function. Define p,(C) =
Pr[C(x) = 1], where x = f(y) and ye{0,1}" with uniform

probability.
Two important parameters measure the “goodness” of f as a

pseudorandom bit generator for a circuit C. The natural one is
'p(C) — p;(C)|. Another parameter,, for which we get better
bounds, is how small can p(C) get so that still p,(C) does not
vanish.

We can now state the main theorem. The present form of the
Main Theorem is stronger than the one given in [AW], since the
order of quantification has been changed.

MAIN THEOREM. Let ¢ be fixed. Then there exists a family of
functions {f,: {0,1}" = {0,1}"}, n = 1,2,..., with the following
properties:

(7)

(i7)

{f,} can be computed by a uniform, PC family of circuits.
(So in particular, { f,} can be computed in LOGSPACE.)
Let /, d, u be fixed integers and {C,} be any (rn, d) family of
circuits. Then for every sufficiently large n.
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(@ |p(C,)—p (CHl&lt;n™”
(b) for a fixed 1 = t(l,d,e), if p(C,)=&gt;2"". then

p (C)&gt; 0.

APPLICATIONS

The applications are given not necessarily in order of importance,
but rather in order of notational convenience. All the applications
are based on the fact that we can get a fairly good approximation
of the output behaviour of C, by “testing” it on only 2” inputs.

The following notation will be used often. Let g: N— [0,1] be a
function. We say that g is polynomially small if g(n)~' = n°". We
say that g is subexponentially small if g(r)" = 0(2™), for every
fixed ¢ &gt; 0.

3.1. Approximate Counting

Let the number of satisfying assignments to a (CNF or DNF)
formula F be # F. Computing # F from Fis # P complete. It is not
known whether # P is in the polynomial hierarchy. An easier
problem is approximate counting, which is in this case to find an
integer in the range [(1 + B)~' # F, (1 + B)# F]. Call this f approxi-
mation. For any polynomially small 8, f approximation was shown
to be in A} by Stockmeyer [S]. No explicit deterministic upper
bounds were known for approximate counting. Let p(F) = # F/2"
be the fraction of satisfying assignments of F, where # is the number
of variables in F.

COROLLARY 1. Consider formulas F with polynomially small
p(F). Then for every fixed ¢ and every polynomially small §, the f
approximation problem for Fis in DSPACE(rn®) [and hence also in
DTIME(2™)].

Proof (sketch). F is a polynomial size depth 2 circuit. In
DSPACE(n®) all the “seeds” y of f, can be generated, f,(y)
computed and tested on F. The output is =e FLAC MP2". By
(ii), part (a) of the main theorem. it is the desired approximation.

3.2. Easy Cases of Satisfiability

If we are just interested in finding a satisfying assignment to a
formula F, the result above can be improved. In [VV], Valiant and
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Vazirani showed that finding a satisfying assignment in formulas
with exactly one such assignment is essentially as hard as the
general case. The following result, which complements theirs, says
that if the number of satisfying assignments is large enough, then
satisfiability becomes easier.

CoroLLARY 2. Consider formulas F with subexponentially
small p(F). Then for any ¢ &gt; 0 a satisfying assignment of F can be
found in DSPACE(n°) [and DTIME(2™)].

This result follows from (ii), part (b) of the main theorem

3.3. Making Probabilistic Constructions Deterministic

Following Sipser [Si], we define a probabilistic construction to be
a language L &lt; {0,1}* x {0, 1}* with the property that if (u,v) e L,
then Pr{(u,x)e L] = 1/2, where x is uniformly chosen with |x = |v].
(u usually gives the size of the required object in unary, and then a
random object of the right size has the desired properties.) The
deterministic construction problem for L is, on input u, to generate
vs.t. (u,v)el.

If Ley’, Sipser calls it a YF construction. He shows that if L is
a Y construction, then the deterministic construction problem for
Lis, is in ¥},,. (An analogous statement is true for []7.)

Note that Le! or Le[]/ means that L can be recognized by a
uniform family of constant depth (but possibly exponential size)
circuits. We say the L is a PC construction if it can be recognized
by a uniform PC family of circuits.

CorOLLARY 3. If Lis a PC construction, then for any ¢ &gt; 0 the

deterministic construction problem for L is in DSPACE(n®) [and in
DTIME(Q2™)].

Note that the uniformity is needed for our deterministic machine
to generate the circuit recognizing constructions of size |u|, where u
is the input.

3.4. Deterministic Simulation of Probabilistic Constant Depth Circuits

A probabilistic circuit C is one with “real” input variables, z,
and random input variables, x. If |z| = n and |x] = m[=m(n)],
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C computes a function C: {0,1}"*"— {0,1}. Let p[C(2)] =
Pr[C(z,x) = 1] when xe {0, 1}" with uniform probability. The idea
of recognizing languages by probabilistic circuits is that the behav-
iour of p[C(z)] will depend on whether z is in the language or not.

We define two families of complexity classes, PC l(a), PC2(x)
where PC refers to polynomial size, constant depth, 1 and 2 refers
to whether we allow one or two sided errors, and a is the “accuracy”

(in general a: N — [0, 1] is a function). A language L = {0,1}* is in
PC 1() if there exists a uniform PC family {C,} s.t. for every n and
avery ze {0, 1}" we have

zeL—p[C(2)]=a(n)andz¢L—p[C(2)]=©

A language L &lt;= {0, 1}* is in PC2(a) if there exists a uniform PC
family {C,} s.t. for every n and every ze {0,1}"

zeL —- p[C(2)] = 1/2 + a(n)

zdL—p[C(D] &lt; 1/2 — a(n).

CoROLLARY 4. For every fixed ¢ &gt; 0 we have

(i) for every subexponentially small function a, PCl(x) S
DSPACE(n®)

(ii) for every polynomially small function a. PC2(x)&lt;
DSPACE (0).

4. PROOF OF THE MAIN THEOREM

[he key notion is that of approximating a circuit. A given circuit
will undergo a series of simplifications, each restricting the inputs.
that will change the output behaviour by only tiny amounts.

The proof has two logical parts. In Part I we show how to
approximate n' ~¢ input bits of a PC circuit by only O(log) bits. In
Part II we show how to iterate this construction, adding only a
constant to the depth and a polynomial to the size.

1.1. Part I. Sketch of the Proof

As we mentioned, the task in this part is to replace n'~¢random
bits by O(logn) random bits without affecting the output behavior
of the circuit by much, and implement this change by a PC circuit.
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Suppose that C is a constant depth polynomial size circuit with
the set of variables 4 = {x,,...,x,}. First we show that if Wis a
random subset of 4 with n'~* elements and we substitute random

values for the variables in 4 — W then with high probability the
resulting circuit will actually depend only on ¢ variables where ¢ is
a constant. [See Definition 1. “W is (¢, 1)-local.”]

If we know such a set W then we can define a pseudorandom

input f for C in the following way. Let f|, , and f|, be indepen-
dent, f1,, uniform on the set of all possible assignments on 4 — W
and let f|, be uniform on all subsets of W with ¢ elements. [See
Definitions 2 and 3; “Y is (|W|, t)-uniform.”’] We will show how to
generate such an f|, only from O(logn) random bits. For such an
f we have that |Pr[C(x) = 1] — Pr{C(f) = 1] &lt;n “where uis a

large constant.
Unfortunately f still depends on the subset W. To pick a random

W with n' ~* elements requires too many random bits. We will show
however that a WW with the required properties can be generated
from only O(log n) random bits. To make this part of the argument
clearer, first we show those combinatorial properties of a random
subset W that guarantee that the circuit we get from C by substituting
random bits for the variables in 4 — W depends only on ¢ elements.

If we consider only depth 2 circuits the essential property of
W is the following: if a small subset V of 4 is given [|[V]| &lt; rn’,
8 + (1 — ¢) &lt; 1] then with high probability # will intersect it in a
set of constant size. (See Definition 4. “Small intersection
property.”’) This property will imply that if a polynomial family of
V’s are given then still with high probability W will intersect each
of them in a set of constant size. This property will make it possible
to replace large conjunctions (or disjunctions) by small ones.

For depth d circuits we have to iterate this argument, so W
must be included in a sequence of sets X,2 X, 2 2X, = W
so that each X; has the small intersection property in X;_,. (See
Definition 5. ““d-iterated small intersection property.)

Now we can define the pseudorandom input f from the n — n'~*

random bits, which specifies its value on A — W, and from the
O(logn) random bits, which describes a W with the d-iterated
small intersection property and another O(logn) random bits.
which give a (|W|, t) uniform f],. So altogether from n — n'~* +
O(logn) random bits we defined a pseudorandom input f so that
'p(C) — pC) &lt;n. In Part II we will iterate this argument to
decrease the number of necessary random bits to »°.
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We need some notation. Let C be a circuit on »n variables 4 =

{X(,...,x,}. For any subset ¥ = 4 and a binary vector v of length
'Y|, let Cy, denote the circuit obtained from C by assigning the
values v to the variables in Y, in the natural order. If v is chosen

uniformly at random then denote by Cy the random variable C, ,,.
Let Z be a random variable taking values from {0, 1}*, then denote
Pr(C(Z) = 1] by p[C(Z)].

Proposition 1 asserts that for a random set of all but n' ~* of the

input variables and a random assignment to them, the resulting
circuit will depend only on a constant number of inputs (although
it has n' ~* of them).

DEerFINITION 1. We say that a circuit C depends on ¢ variables if
there exists a subset T= A of size ¢ s.t. for every assignment to the
variables in 7, the resulting circuit is constant. We denote the
minimum such ¢ by ¢(C) and some T of this cardinality by T(C).

If is an integer and © &gt; 0 the set W &lt; 4 is called (¢, t)-local if

Prie(C,_,)&lt;t]=1-=2""

PROPOSITION 1. Let d, /, u be positive integers and ¢ &gt; 0. Then
there exists an integer ¢ so that if » is sufficiently large, Cis a (n',d)
circuit with n input variables 4, and W&lt; 4 is random with
|W| = n'"*, then Pr[t(C,_,) &gt; t] &lt; n™" where we take the prob-
ability over the product space ‘choose W, then choose assignment
on A4A— WW”

Moreover, there exists a t &gt; 0 depending only on d, /, u, € so that
with probability at least | — n™* the set W is (¢, t)-local. (Here the
probability is over choices of W only.)

The proof of Proposition 1 is an inductive argument on the depth
of the circuit, similar in flavor to the lower bound proofs in [Aj],
[FSS], [Ha], and [Ya]. In fact, the first part of Proposition 1 appears
with a different proof in [Aj]. The inductive step is based on a
property of depth 2 circuits, which will be given in Theorem 1
(Section 5).

We do not prove Proposition 1 now since we later (Proposition
2) will prove a stronger version of it, namely we can pick W
randomly from a uniformly given polynomial size family of subsets
of A. This remark also relates to Corollary 5.
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Note that different choices of v may result in different subsets
I'(C,y,) of W that the resulting circuit depends on. However,
Proposition 1 tells us that the output distribution of C will essen-
tially remain unchanged if instead of assigning random values to
the variables in W (not in W — A), we use assignments that “look
random” only on ¢ subsets of W. This motivates the next definitions
and corollary.

DeriNiTION 2. A random variable Z = Z,,...,Z, with
Z,€{0,1} is said to be (m,t,p)-uniform if for all 1 &lt;i&lt;m
Pr(Z, = 1) = p and for every t-subset Iof {1,...,m} the variables
{Z,|iel} are mutually independent. When p = 0.5 we say that Z
is (m, t)-uniform.

The key fact about (m, t)-uniform sequences is that they can be
simply generated from only tlogm random bits by PC circuits,
using polynomials over finite fields. The explicit construction will be
given later.

DEFINITION 3. Let W&lt; 4 and integer ¢ be fixed. A random
variable Ye{0,1}" is called (W,?)-uniform if Yl, is ((W|,1)-
uniform, Y|{,_, is uniform, and these two restricted random vari-
ables are independent.

Corollary 5 below follows easily from the above definitions and
Proposition 1.

COROLLARY 5. Letd, I, u,¢,t, 1 be asin Proposition 1. For each
possible W of size n'*let Y*e{0,1}" be an arbitrary (W,1)-
uniform random variable. Then

(1) If Wis chosen uniformly at random, then we have | p(C) —
p[C(YP) &lt;n.

(2) If Wis (1,7)-local, then | p(C) — p[C(YP)] &lt; 27".
(3) If Wis (t,7)-local then there is an evaluation w on W so that

Pr(Y™|, = w)&gt;0and Pr(Cy,, = 1)=plC(Y")]—-2"

Proof. Fixvin {0,1}, let C’' = C,_y, (on inputs from W),
and consider p(C’) vs. p(C’, Y|,). In the first we consider a
aniform distribution on inputs to C’ and in the second only a
+-uniform distribution. The circuit reacts identically if #(C”) &lt; t hence
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we get errors only if #(C’) &gt; ¢. By Proposition 1, for a random W
and v, this happens with probability smaller than n=“. (1)

For a (7, 7)-local set WW, this happens with probability smaller
than 27. (2)

(3) follows from (2) by averaging over the possible assignments
w to W in the random variable Y*? [replace p[C(Y"™)] by p(C)].

We are now in the situation where, if given a (¢, 7)-local set W,
we can replace its n'~° random input bits by O(logn) random
bits. Corollary 5 shows that most W will work, but to specify a
random set W we need as many as n' “lognbits. Our next step will
be to generate (f,7)-local sets W pseudorandomly, using only
O(logn) random bits. This is done by extracting from the proof of
Proposition 1 only the essential properties of the random variable
W that are actually used.

DEFINITION 4. Let X be a random variable whose values are

subsets of a set 4 of size n. We say that X has the small intersection
property with parameters a, f, tif for every set V = A with |V| &lt; nf
we have that if 5s &lt; 1, then

PrAVAaX|I&lt;s)&gt;1—n-oaBs

DEFINITION 5. The random variable X = 4 has the d-iterated
small intersection property with parameters «, B, ¢ if there exists
a sequence of random variables X|,..., X;sothat X = X,, X,,, ©
X; and for any possible fixed values B,,...,B; of the variables
Xi,...,X;wehavethatX|withtheconditionX;, = B,,...,X, =
B; has the small intersection property with parameters a, f. 7.

PropPosITION 2. The consequences of Proposition 1 and Corol-
ary 5 hold if we replace a randomly chosen W of size n'~* by a
random variable W that has the d-iterated small intersection
property with parameters 1 — ¢, g/2. ¢

The proof of Proposition 2 is based on the following Lemmas. 1
and 2.

Before stating the lemmas, we state Theorem 1, which is proved
n Section 5. Intuitively. it shows that a depth 2 circuit of small
bottom fan-in is almost completely determined by a small subset of
Its input variables.
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THEOREM 1. Let C be a depth 2 circuit of bottom fan-in &lt;k
with input variables in 4. Then for every r &gt; 2%’ there exists a
subset Q &lt; 4 s.t.

 1gl&lt;
2) Pr(C,# 0,1): ~

Furthermore, if |4] = n, the set Q can be found in time O(n")

Lemma 1. Let k, ¢ be fixed. For any z if n is sufficiently large, C
is a depth 2 circuit with bottom fanin at most k; W is a random
variable with the (1 — ¢,&amp;/2, z) small intersection property and 7 &lt; z
then with probability at least 1 — nn"? the set W satisfies the

following inequality:

Prit(C,up)&lt;1]:1—=2-n

Proof of Lemma I. Apply Theorem 1 with r = n?* to obtain
the set 0. By (1) of the theorem, |Q] &lt; r** = n*?, and since W has
the small intersection property, PriQnW|&lt;t)=1—n"*"

Now fix W so that [Wn Q]&lt;t By (2) of the theorem at
most 2'9!=" of the assignments to Q do not determine the value
of C. Hence, at most 29" of the assignments to Q — W will
have an extension in Q n W that does not fix C, and since these
are chosen randomly in C, , and |Q — W|&gt;|Q| —t we have
Prit(Comy) &gt; 1] &lt; 2977/29") = 277% = 2-6 +0 If n is suf-
ficiently large then n* — t &gt; n* — z &gt; n¥*" 50 the probability is

not greater than 2-3

Using Lemma 1, we can reduce the depth of a PC circuit C (as
in [Aj], [FSS]) by applying it to all the bottom depth 2 circuits of C.
Once each of these depends only on ¢ inputs, we change it from
CNF to DNF or vice vera without blowing the size up by more than

2' (a constant) and hence reduce the number of alternations (depth)
of C by 1. This is the essence of Lemma 2, and since a pseudo-
random W is good enough for Lemma 1, it suffices also for
Lemma 2.

Lemma 2. Foralld, /, k, e &gt; 0 there is a ¢ and a t &gt; 0 so that
or any z = ¢ if n is sufficiently large and Cis an (#, d) circuit with
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bottom fanin at most k, and W has the small intersection property
with parameters 1 —e¢, ¢/2, z then with probability at least
| — n~@2=1 the set W will satisfy Pr(C, , is a depth d — 1 circuit

with bottom fan-in ) &gt; 1-27"

Now to prove Proposition 2, we simply apply Lemma 2 d times
to the circuit (again, as in [Aj], [FSS], [Ya], [Ha]). The resulting
circuit (with high probability) depends only on a constant number
of inputs, which implies the proposition.

Note that in Definition 4 only intersections of cardinality ¢ or less
are important. From this it is easy to deduce:

Lemma 3. If Wis an (n,n¢,t)-uniformrandom variable, then
X= {i|W(i) = 1} has the small intersection property with par-
ameters 1 — ¢g,¢/2, ¢.

Proof of Lemma 3. Let VA with |V| &lt;n”, s&lt;t I
IVnnX|= s then there are distinct v,,...,2,€ Vn X. The number
of s-tuples v,,...,7, is (V')&lt;("), and for any fixed s-tuple
Vy,...,U, We have Pr(v,,...,v.e X)&lt; (n %) since s &lt; t and Wis
(n,n%, H)-uniform. So Pr(V nX|=s) &lt;(%)n*y &lt; np =
p—1—(—e)—e2ls

Again such a random variable can be constructed from tlogn
random bits by PC circuits. To get a random variable with the
d-iterated small intersection property one can use d independent
constructions as above, which require only dt log # random bits. We
will give the construction in detail in Part II.

To summarize the first part of the proof, we have shown how to
replace n' ~¢ random bits by O (log n) random bits, thus reducing the
number of inputs by roughly »' ~¢ without substantially affecting the
output probability of the circuit. This was done by first using
O(logn) bits to specify a pseudorandom set W of size n' ~¢ of inputs.
Then use other O(logn) bits to create a pseudorandom assignment
to variables in W. The remaining n — n'~* inputs receive truly
random assignments.

1 Pus

At this point it is natural to iterate the construction roughly »'
imes. However, this presents some difficulties. For example. if we
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implement the construction in the first part, the depth of the circuit
increases by a constant, and so we cannot repeat that more than a

constant number of times. Another problem that bounds the number
of iterations is that we must keep the circuit polynomial in the
number of remaining inputs, so we have to stop when at least a
polynomial fraction remains.

Conceptually performing this iterative process, we obtain a
sequence of roughly #»° pseudorandom subsets of variables, that
together with the remaining part (of size roughly »°) form a par-
tition of the set of variables. To each pseudorandom subset we
assign (independently) a pseudorandom assignment [requiring a
total of O(n’logn) bits], and to the remaining subset assign random
variables (only n°).

in order to perform this process in constant depth, we shall
generate all parts in the partition together with their assignments
simultaneously. We first define the partition assignment pair
abstractly, as random variables, and then show how they can be
generated from n° random bits.

DEFINITION 6. Let d,¢ be integers and 6 &gt; 0. For every » and
0 &lt; pu &lt;n define (F,P) to be a (d,¢,0)-fooling pair of random
variables if the following conditions hold:

(1) Each value of Fis a 0,1 assignment to the variables in A.
A] = n.

Each value of P = (P,,..., P,) is a sequence of subsets of
4 so that P,..., P, form a partition of 4.
Forall 0 &lt;i &lt; pif Ay,...,A4,_, are fixed disjoint subsets of
A then the random variable P, with the condition
P, = A,,...,P,_, = A,_, has the d-iterated small intersec-
tion property with parameters 1 — 24,4, t.

Forall 0 &lt;i&lt; pif A,,...,A, are fixed subsets of 4 then
with the condition P, = A4,,...,P, = A, the random vari-

ables F|, ,..., F|, are independent.
Forall 0 &lt;i &lt; pif 4; = A then F|, with condition P, = 4.
is an (}A4,|, f)-uniform random variable.
There is a set 4, &lt; A so that |4,| =n’, Pr(P, = 4,) 2
| —27", Pr (4,&lt; P,) = 1, and F|, has a uniform distri-
bution over all possible assignments on A.

+

The technical properties of the fooling pair guarantee that it fools
any PC circuit with the appropriate parameters.
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ProposiTION 3. For all d, /, u, 6 there exists a t such that for all
sufficiently large n, 4 &lt; n and a (d, t, 6)-fooling pair {F, P) we have
the following.

(1) Forevery (#,d) circuit C with ninputs, | p(C) — p[C(F)] &lt;
nv.

(2) There exists a 7 &gt; 0 depending only on d, /, u, é so that
pl[C(F)] = p(C) — u2".

The proof of this Lemma will be by induction, which will show
that the simultaneous construction definition of the fooling par-
lition assignment pair actually simulates the natural iterative
construction. For this we need the following definition and Lemmas
4 and 5.

DerFiniTION 7. For all 0 &lt;i &lt; pu let Y; be the random assign-
ment to the variables in 4 that coincide with F on |J;., P, and
take random values uniformly and independently of {F, P)&gt; on
4 — lJ)... P.

Lemma 4. For all but a fraction n™“~? of the values B that P may
take, and for all 0 &lt;i &lt;u — 1 we have |p[C(Y;)] — p[C(Y;.)] &lt;
n“~2, when these probabilities are conditioned by the event
P = B.

Note that, conditioned on the event P = Bwe have Pr{C(Y,) =

l] = p(C) and provided that P, = 4, we have Pr{C(Y,) = 1] =
Pr(C(F) = 1] so, according to property (6) of a fooling pair.
Lemma 4 implies part (1) of Proposition 3.

Proof of Lemma 4. In the following proof all probabilities
are considered with the condition P = B. Let F, = F ly,
Then for every value B that P may take Pr[C(Y;) = 1] =

yy Pr(F, = f)Pr[C(Y,) = 1|F, = f] where f takes all of the
possible values for F..

Suppose now that fis fixed. We may consider C as a circuit with
the variables 4 — |J;_; P, by evaluating the remaining variables
according to f. We will denote this circuit by D. According to the
definition of a fooling pair, P,, has the d-iterated small intersection
property with parameters 1 — 20, 8, ¢ (even if F, is fixed). Proposi-
tion 2 implies that for all but a fraction »~=*~* of values B, that P
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may take we have that the set B, is (¢, 7)-local with respect to the
circuit D. Therefore (2) of Corollary (5) implies that for all but a
fraction n=“? of values B, that P, may take, given the event F, = f
we have

|Pr[C(Y;) = 1] — PriC(Y;,,) = 1] &lt;n“

Since yu &lt; n this implies that for all but a fraction n™ “2 of the values

B that P may take the inequality holds for alli = 0,...,u—1

Lemma 5. For all but a fraction n “2 of the values B =

(By,...,B,) that P can take and for all 0 &lt;i&lt;pu—1if fis an
assignment with Pr (F, = f|P = B) &gt; 0, then there exists an exten-

sion fof fto |&lt;, B; so that

Pr(F, = f'|P = B) &gt; 0, and

Pr(C(Y,,,) =

&gt; PriC(Y) = 1|P

tip BF. =f]

BF —=f]—2"

The proof of this Lemma is essentially the same as the proof of
Lemma 4, only in the last step we use property (3) from the
modified form of Corollary 5 as described in Proposition 2. Part (2)
f Proposition 3 follows from Lemma 5.

Proposition 4 deals with the explicit construction of a fooling
hair from a small number of random bits.

PROPOSITION 4. Let d,¢ be integers 6 &gt; 0. Then for every large
znough n a fooling pair {F,,P,&gt; can be constructed with pu =
n+], by a LOGSPACE uniform PC family of circuits, given as
inputs 2d(t+1)(u + 1)log,n + n° random bits.

DerFiniTION 8. (1) We will denote the finite field with g ele-
ments by K,. We suppose (without the loss of generality) that n is
a power of two, n = 2"and K, = K,[y,] (Where y, is given uniformly)
and so the elements 1,7, ...,(7,)"' form a basis of the vectorspace
K, over K,. For each xe K, let x denote the sequence of coefficients
of the representation of x in this basis. (There is no difficulty with
giving the bases of K, in LOGSPACE since an irreducible poly-
nomial over K, of degree 4 can be found by the brute force method
in LOGSPACE.)
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(2) Let g,(xy,..., Xym&gt;s Yis-- +&gt; Vom) be a function with u(n) +
v(n) variables where each x; can be an element of K, and each y; can
be an integer between 0 and 2"~'. We say that g, can be uniformly
computed by a family of (rn, ¢,) circuits if there are absolute
constants ¢;,c¢, and a uniform family of (n“,¢,) circuits C, with
(u(n) + v(n)lh inputs and A outputs so that for any sequence
Xis-- vs Xyms Yis- +» Yorn irom the domain ofgifthe input of C, is
Xis ees Xyms Vise +» Pom (Where 3; 1s the binary representation of the
aumber y;) the output is g(x, ..., Xm» Vis: 1 Vow):

Lemma 6. The following functions can be compu
(n°, ¢,) circuit:

Barsl DY an

(1) g(x,,x,) or g(x,») for any ge LOGSPACE
2) xix.
(3) x’.
4) xp+x++x,
(5) xo4+ xX, + Xx 4+ + x,_,(x,)!

Proof. (1) If x, = &lt;og,...,0,_&gt;, X3=Bo,...,B_1&gt;.
Z(x1, x2) = {Vo»---,ys—1» then y; = V’ Ajo (oa; A Biorb; A
y;&lt;&gt;d;) where V' is taken for all a, b, de K, with d = g(a, b) and
a= ay,...,a_1),b=1&lt;by,....0,_\&gt;,d =&lt;dy,...,d,_\&gt;.

(2) and (3) follows immediately from (1).
4) If a,...,2,_, are the coefficients of x; and B,,...,B,_,

are the coefficients of g(x,,...,x,_,) is the basis 1, y,...,y""
then f; = Va;a)A&gt;A(4, ;a,_,)] where the dis-
junction V’ is taken for all 0,1 sequences a,,...,a,_, with
dy + ++ a,_, = 1(mod?2). Since there are only n/2 such sequences
the size of the circuit is polynomial in 7.

(5) follows from (4), (3), and (2).

DEerINITION 9. If xeK, let int(x) denote the integer whose
binary representation is the same as the sequence of coefficients of
xin the basis 1, y,...,9"~' [thatis ¥ = int (x)]. Converselyif y is an
integer between 0 and n — 1 thenletfd( y) be the element of K,, with
nt[fld(y)] = y.

(2) Suppose i,t are integers 0 &lt; i,t &lt; n. Let us define a random
variable Z7, = (zy,...,z,_,&gt; in the following way. Take a
random polynomial of degree at most 1 — 1 f(x) = a, + a,x +
+a _, x" over K,, so that d,,....a,_, are chosen uniformlv
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and independently from K,. For each 0 &lt;j &lt;n let z; = 1 iff
int{fAd(j)] &lt; i.

(3) We define a random variable S,,where i,t are as in the
previous definition and k is a positive integer, whose values are of
10,...,n — 1}. Let {s3,.-.,8h_1Ds---,&lt;Sh,...,55_&gt; be k indepen-
dent random values of the random variable Z},. Foreach 0 &lt;j &lt;n
let je SI iffsl= 52 = ++ = 5 = 1.

Lemma 7. (1) If 0 &lt; i,t &lt;n then Z}, is an (n,t,i/n)-uniform
random variable.

(2) If i = n" then §,, satisfies the k-iterated small intersection
property with parameters (1 — a, 0/2, 1).

(3) ST.«has the following property: for each 0 &lt;j &lt; n we have
Pr(jeS!.,) = (in).

4) Ifi(n),t(n),k(n)e LOGSPACE and i(n),k(n) &lt;n, 0 &lt;i &lt;n,
0 &lt; t(n) &lt; log,n = h then there exists uniform families C,, D, of
(m1, ¢,) circuits where ¢,,c, are absolute constants, which realizes
Ziny.amy aNd Si 10 k0ny- More precisely C, has th inputs, D, has kth
inputs and both have # outputs, and if we take their input randomly
(uniformly) then the output sequence of C, has the same distribution
as Zi. and the output sequence of D, has the same distribution
as the characteristic function of Si,inxm-

Proof of Lemma 7

(1)
(2)

-

4

See e.g. [KUW].
Part (1) and Lemma 3 implies the assertion for k = 1. For
an arbitrary k our statement follows from the trivial fact
that the intersection of k independent random variables
with the small intersection property with parameters
(1 — a, a/2,t) has the k-iterated small intersection property
with the same parameters.
For k = 1 our statement is equivalent to the following: if f
is a random polynomial of degree at most ¢ in K,[x] then
for any fixed be K,, Pr {int[f(b)] &lt; i} = i/n. This assertion
follows from the fact that f(b) has a uniform distribution in
K. For an arbitrary k our assertion follows from the case
k = 1 and the independence of the sequences {s{,...,si_,&gt;

in the definition of S7,;.
Follows from (5) of Lemma 6. since it guarantees that the
random polynomial in the definition of Z7, can be evaluated
by a (n“, ¢,) circuit.
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DeriNniTION 10. If C is a circuit with # outputs then let
seq(C) = {sp,...,5,_,» bearandom variable whose values are the
output sequences of C if the input of C is taken randomly and
uniformly from the set of all possible inputs and let set(C) =
0&lt;j&lt;nls; = 1}.

Proof of Proposition 4. Assume 4 = {0,1,...,n— 1}. Let
3 &gt; 0, d, t be fixed. Suppose that n is sufficiently large and yu =

n+]. Let D,,D,,...,D, be disjoint (n9,c,) circuits with
d(t + 1)log,n inputs and » outputs, so that for alli = 0,..., u the
random variable set (D;) satisfies the d-iterated (1 — 0, 6/2, ¢) small
intersection property and for any re4Pr[reset(D,)] &gt; (n'~°/n)’
(where ¢, and ¢, are absolute constants). Note that Lemma 7
implies the existence of such circuits. Let G,,G,,...,G,,be
disjoint (n®,c,) circuits with (+ + 1)log,n inputs and n outputs
(where ¢;,c, are absolute constants) so that for each 0 &lt;i &lt; pu
seq (G;) is (mn, t)-uniform. Lemma 7 guarantees the existence of
such circuits. Let G, be a circuit with [°] inputs and n outputs
s0 that the value of the ith output is equal to the value of the ith
input if i &gt; n° and 0 otherwise. Of course if the input is randomized
uniformly, then we get a uniform distribution on the first [n°]

outputs.
Now we define the circuit C that will give as an output the

function F of a fooling pair.
Suppose that the circuits D,....,D,, Gy,...,G, are pairwise

disjoint. If py,...,p,; qo. -»q, are inputs for D,,...,D,, G,,...,G,
thenp = {py,---,Pu&gt; 4905-4, Will be an input for C. Cwill have
n outputs and the value of the ith output C(p|i) is defined by the
following boolean expressions. If i &gt; [#°] then

p—1 Jj—1

C(pli) = \/ [Gi(g;11) A Dy(p;li) A \ TID(p, 1D] (+
i=0 r=0

otherwise C(pli) = G,(q,1i).
[The meaning of (x) is the following: if j is the smallest non-

negative integer with j &lt;u and D;(p;|i) = 1 then C(p|i) =
G;(q|i), if there is no such integer then C(p|i) = 0].

Clearly there is an (n%, cq) circuit with these properties where
Cs, Ce are absolute constants.

We define the parts of P,.....P, in the partition as follows:
thinking of Dy, D,,...,D,,as subsets of 4, we take P,j&lt;u, to
be all elements in D, that do not belong to D.. r &lt;j, and P, are the
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remaining elements. Formally, for j &lt; u

I —i=n’ A D( = ) =(p11) 1A D [A (p11) 1

P=4-P

Now we prove that (F, P) is a fooling pair

(1) follows immediately from the definition of F.
(2) The defining formula of P, implies that the sets are disjoint

and the definition of P, implies that they cover 4.
For i&lt;pu P, = set(D,) — A,_;set(D;) — {r|r &lt;n’}. The
conditions Py, = A,,...,P,_, = A,;_, restrict only the
values of D,,...,D,_, but D, is independent of them.
Therefore set(D;) has the d-iterated small intersection
property with parameters (1 — d,4/2, t) even with the con-
ditions Py, = A,,... . Since P, &lt; set (D;) it also has the same
small intersection property.
If B = Athen F|, = seq(G;)|, Since the outputs of each
G; are independent for j = 0,...,i the random variables
Flu, --.,F|, are also independent.
If P= A, then F|, = seq(G,)l,, and seq(G;) is (n,?)-
uniform and as we have shown in the proof of (3) it is

independent of P,.
Let A, = {r|r &lt;n’}. A, = P, always holds according to the
definition of 4, and P,. The definition of G, and F|, =
seq (G,)|,, implies that F|, has a uniformdistribution SO we
have to prove only Pr(P, = A,)&gt; 1-27".

Let red — A,, i &lt;p be fixed. According to our assumption
Prreset(D,)] = n~®. Since the D,’s are independent we have
Prir¢ Ui, set DD] &lt; (1 —n Py &lt; (1 — ny" &lt; 27". This
proves our assertion since P, NJ, ., set(D;) = 0.

The Main Theorem follows from Proposition 3 and Proposition 4
if we choose any 6 &gt; 0 so that 6 » 0 as n — co.

5. DEPTH 2 CIRCUITS

The two results in this section are algorithms for the problem
of approximate counting and finding a satisfying assignment.
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respectively, in depth 2 circuits (or CNF/DNF formulas). The two
important parameters that affect the running time of the algorithms
are the fraction of satisfying assignments and the sizes of clauses.

Let A = {x,,...,x,} be aset of boolean variables. A clause C is
a conjunction of literals from 4, e.g, C = x; A X; A x,. A DNF

formula Fis a disjunction of clauses (we will take F to be both the
set of clauses and their disjunction, so F = VC). |F| denotes
the number of clauses in F. For a clause or set of clauses H, v(H)
will denote the set of variables occurring in H. If for all CeF,
v(C)| &lt; k, then F is a k — DNF formula. Similarly we define
k-CNF formula.

We need some notation which is similar to that of Section 4

Assume 4 &lt; v(F), and Y © 4. We can restrict F by assigning
values to variables in Y. If ye {0, 1}'"!, then Fy, denotes the restricted
formula after assigning y to Y (in order). Say that restrictions (Q, ¢)
and (7, y) satisfy (Q,q) = (Y,y) if Y &lt; Q and gq agrees with yon Y

We further define Fy to be the random variable (formula) Fy,
where ye {0,1}! is chosen uniformly at random. Note that if
Z &lt; Y then Pr(Fy, # 0,1) &lt; Pr(F, # 0,1).

Theorem 1 deals with the approximation of depth 2 circuits. It
shows that the output almost always depends on a small subset of
the input variables.

THEOREM 1. Let C be a depth 2 circuit of bottom fan-in &lt;k
with input variables in 4. Then for every r &gt; 2% there exists a
subset 0 &lt; 4 s.t.

(1) lol &lt;r.
(2) Pr(C, # 0.1)

~

Furthermore, if [4] = n, the set Q can be found in time O(n")

Proof. It is enough to prove Theorem 1 in the case when the
boolean formula F corresponding to C is a k-DNF formula. We
orove the theorem by induction on k.
k=1 If |[F|&lt;r then set G = F else let G be a subset of

any r clauses in F. Let Q = v(G). Then |Q| &lt;r &lt;r and

Pr(F, #0,1) &lt;2"
k &gt; 1. Assume the inductive assumption for all values less than

k. Let G be a maximal subset of pairwise disjoint clauses from F
formally E,DeG — v(E)nv(D) = but for all EeF—G there
axist a DeGwith (EY no(D) = OF.
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Case 1: |G| &gt; r2*. Let G &lt; G with |G| = r2*. Set Q = v(G).
We have |Q] &lt; kr2¥ &lt;r and

Pr(Fy # 0,1) Pr(Fy # DJ] Pr(Ep # D&lt; (1 — 2=kyG
Ee

&lt;(1=2"8y¥ gor

Case2: |G|&lt;r2¥.LetZ = v(G). Partition the clausesin F — G

into families, H(Y,y) one for each Y= Z, 1 &lt;|Y|&lt;k — 1, and
ye {0, 1}, as follows: H(Y,y) = {EeF—G|v(E)nZ = Y and
Ey, # 0}. Clearly there are at most (kr2)* such families, and
F=Gv Vy, HY,y).

Consider the formulas Hy, = H(Y, Vy, v(Hy,) = A —Z, and
cach is a (k — 1) — DNF formula since G was maximal. Apply the

inductive assumption to each Hy , with parameters kK — 1 for k and
2r for r. Let Qy,be the sets guaranteed inductively. Hence for all
Y,y we have

(1) 1Qy,| &lt;@ry*" and
(2) Pri(Hy,),,. # 0,1]&lt;27%

Now set Q = Zu Uy, Qy,. Then
(1) 101 &lt;IZI + Zy, 10y,| &lt; rk2* + (rk 2 YF ry =" &lt; 2.
To prove that Pr(F, # 0,1) &lt; 27" we observe the following. Let

7€{0,1} st. Fy, # 0,1. Then G,, = 0, and in fact, F,, =
Vio.p&gt;w. (Hy, )o,- Therefore for at least one pair (Y,y).
(Hy,)o, # 0,1, and since Qy, = Q we have

(2) Pr(F, # 0,1) &lt;3, Pri(Hy,)o, # 0,11&lt; (rk2') 27% &lt;

The proof shows that the subset Q can be found in DTIME (n°).
(Indeed, let h(k) denote the time necessary for finding Q. Since
[F| &lt; r*, G can be found in time O(n"). Q = ZU Jy, Qy,,, which
implies that Q can be found in time O(n*) + Yy, hk —1) &lt;
nh(k — 1) that is A(k) &lt; n*h(k — 1).]

Theorem 1 can be used as an algorithm for approximate counting

‘see Section 3.1).

COROLLARY 6. Let k, p, B be fixed, F any k-CNF or k-DNF
formula, p(F) = p. Then the B-approximation problem can be
solved in deterministic polynomial time.
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Theorem 2 gives a somewhat faster algorithm for the simpler
problem of finding a satisfying assignment.

THEOREM 2. Let F be a satisfiable k-CNF formula on n variables

with p = p(F). Then we can find a satisfying assignment of F in
DTIME(k|F| + 2k (oer=)y,

For example this theorem says that 3-CNF instances of SAT with
a polynomially small fraction of satisfying assignments are easy, as
we can find one in polynomial time!

Proof. (Sketch). Simple counting shows that any maximal set of
clauses has at most 2*(logp~') elements, otherwise some clauses
would be satisfied. We try all assignments to this variable and
proceed with induction on k.
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SELE-CORRECTING

TWO-DIMENSIONAL ARRAYS

Peter Gacs

ABSTRACT

We continue the program begun in two earlier works: to find simple
and efficient ways to implement computations of arbitrary size by a
homogeneous array of unreliable elementary components. The
homogeneity of cellular arrays makes the maintenance of the error-
correcting organization the biggest technical problem. This problem
could be completely avoided in the earlier three-dimensional con-
struction, where almost no structure was needed. All error correction

was performed using Toom’s voting rule. The structure maintenance
nroblem dominates the earlier one-dimensional construction since
there is no Toom’s Rule in one dimension. Here, we present a
two-dimensional solution, desirable for several reasons. Information

maintenance is no longer possible by Toom’s Rule, forcing us to
adopt a hierarchical design. But Toom’s Rule is still applicable to
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structure maintenance, giving a significant complexity-dimension
trade-off. The second achievement of the present work is the
constant space redundancy. Despite the noise in its elementary
components, our computing device has a positive capacity as a
‘communication channel” from input to output. Great care was
given to terminology and structured presentation to create a
reference point on which further developments (e.g., the introduc-
tion of asynchrony) can be built. The first third of the paper serves
as an informal overview of the subject.

{. ASSUMPTIONS

There are some general assumptions underlying our investigation
that distinguish it from many other studies addressing problems of
fault-tolerant computing. These assumptions are as follows.

We have to build computing devices of arbitrary size from a
few types of elementary components.
Faults occur in each component independently at different
space-time positions. Faults thus do not conspire: only the
computation creates dependence between the results of faults.
Faults are transient: they change the local state but not the
local transition rule.
The probability of component faults is bounded by some
small parameter o¢ independent of the size of the computing
device.
There are no other restrictions on the type of fault that can
accur. Thus. faults can cause arbitrary local state changes.

The goal is to find architectures coping with all combinations
of faults likely to arise for devices of a given size. We also want
to estimate the needed sacrifice in time and memory to make a
computation reliable.

Transient Faults

The requirement that the faults be transient restricts us severely.
This is the kind of fault that is only a one-time violation of the rule
of operation. It does not incapacitate the component permanently
in which it occurs. In the following steps, the component obeys its
rule of operating again, until the next fault.
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The toughness of the condition becomes clear if we try to
implement each component of a theoretical device by a small network
of transistors. In a typical implementation, the states of the com-
ponent are mapped into some configurations of the network. But
most configurations will be illegal. Therefore the fault of one
transistor brings the network probably into an illegal configuration
not representing any state of the implemented component. It is
better therefore to understand under implementation something
ike a computing crystal: a compound whose transition rules are
determined by physical law. It is unlikely, of course, that some
chemist will find or synthetize a compound with exactly the same
transition laws that we propose. Our constructions must be viewed
as existence proofs. However, they help to clarify what properties of
the local transition rule are needed for reliable computation.

Transient faults are not an exotic kind. Their main source is

thermal noise that becomes more significant as the scale of physical
devices goes down.

The case of nontransient component fault is of practical import-
ance, but it has not been investigated in the same generality. There are
reasons to believe that many of the techniques developed for the case
of transient faults will be applicable to the case of permanent faults.

2. Parallel Architectures

A reliable computer, all of whose components are unreliable,
must use massive parallelism. Indeed, information stored anywhere
during computation is subject to decay and therefore must be
actively maintained.

Problems concerning serial computers are of less “ideological
purity,” since they must except a part of the device from the
influence of faults. Still, the following problem seems technically
very challenging. Manuel Blum asked whether reliable computation
is possible with Turing machines in which only the internal state is
subject to faults: the tape is safe. Presently, it seems that the solution
of this problem requires a construction analogous to the one given
in [G].

[.2.1. Inhomogeneous Devices

von Neumann [VN] designed a Boolean (acyclic) circuit that
vorks reliably even if its components are unreliable In his model
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each component had some constant probability of fault. For a
deterministic circuit consisting of N components, he built a circuit
out of O(NlogN) stochastic components, computing the same
function with large probability. (For an efficient realization of his
ideas, see [DO2].) The key element of his construction is a restoring
unit. This unit is supposed to suppress the minority. If among
its n Boolean input values fewer than 0.3n are different from the
majority then among the #n Boolean output values, fewer than 0.1n
values differ, even if each component of the restoring unit fails with
probability 0.01. The restoring unit of [DO2] achieving this consists
of several layers of majority gates. The inputs for each such gate are
three randomly selected sites of the previous layer.

The redundancy factor logNin von Neumann’s construction
seems to be essential. The number N can be called the size of the

computation. In other models of computation, it corresponds to the
number of elementary events (including information storage)
during the whole computation, i.e., roughly to the product of the
number of components by the number of computational steps. This
estimate is a little weak if the only goal of the computation is
information storage.

For purposes of information storage, it is better to use the model
of clocked circuits. These are Boolean circuits in which special one-bit
memory elements called shift registers are also permitted. Cycles are
permitted but each cycle must contain at least one shift register.

We cannot store even one bit in # registers of such a circuit for

longer than 2" steps, since during that time quite probably a step
will occur in which the content of all cells changes simultaneously.
But the paper [Kuz] showed that once we have n registers, it is
possible to store there c¢ - n bits for 27 steps, where the positive ¢

depends only on the fault probability of the individual components.
This work used Gallagher’s low-density parity-check codes, as
proposed in [Ta], but improved both in performance and proof by
Pinsker.

1.2.2. Cellular Automata

The above constructions suffer from the same theoretical flaw:
the circuits use a rather intricate connection pattern that cannot be
realized in three-dimensional space with wires of constant length.
On the other hand, the natural assumption about a wire is that as
its length grows, its probability of fault converges to 0.5.
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A cellular space (medium) is a lattice of automata in, say, three-
dimensional space where every automaton takes its input from a
few of its closest neighbors. First introduced by von Neumann and
Ulam, such devices are now sometimes known as ‘‘systolic arrays,”
or “iterative arrays.” Mathematical physicists use the more general
term interactive particle system.

Typically, all automata are required to have the same transition
function and are connected to the same relative neighbors, i.e., the
device is translation invariant. The spatial uniformity suggests the
possibility of especially simple physical realization. It reduces the
number of ingredients that are assumed unchangeable by faults to
just one: the transition rule.

Cellular media are desirable computing devices, and it is easy to
construct a one-dimensional cellular space that is a universal com-

puter. Let us indicate how a one-tape Turing machine can be
simulated by a cellular array, since these machines are better known
‘0 be universal.

A Turing machine is defined to have an infinite array of tape cells
and a head. Each cell can be in a finite number of possible states.
and so can the head. In each instant, the head is scanning a cell.
Depending on the state of the scanned cell and its own state, the
head makes one of three possible movements (left, right, stay), and
changes its own state and the state of the scanned cell. The rule of
operation of the machine describes this dependence.

In a possible simulation, the cellular array simulating the Turing
machine has one cell corresponding to each tape cell of the Turing
machine. A state of a new cell indicates the state of the represented
tape cell, the fact whether the head is scanning the tape cell and if
yes, what is the head’s state. The transition rule of this simulating
array is easy to derive from the transition rule of the simulated
Turing machine.

PHILOSOPHICAL DIGRESSION

2.1. Notions of Complexity

Our remarks make use of several very different notions of com-

plexity, and it will be important to keep them apart. Some of these
notions have now very adequate mathematical definitions, while
some other ones do not.
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2.1.1. Descriptional Complexity

Kolmogorov and Solomonoff introduced the notion of descrip-
tional complexity. In its current version (see [Le}), the complexity
K(x) of a finite string can be defined as the length of the shortest
self-delimiting program needed to direct some fixed univeral com-
puter to output x. This complexity could be also called information
content,” or “measure of disorder,” “measure of randomness,” or
“individual entropy.” According to this notion, a typical string of
n bits arising from a coin-tossing experiment is maximally complex.
Let Prob,(x) be the probability to obtain x as output on some fixed
universal Turing machine [the same one used in the definition of
K(x)] in t or fewer steps from a coin-tossing input. The relation
K(x) = —logProb_ (x) + O(1) is known (see [Le]).

2.1.2. Computational Complexity

In the Theory of Computation, another notion of complexity has
widespread use. This complexity is the property of a function. The
function g(x) is a lower bound on the time complexity of function
f(x) on Turing machines if for each Turing machine T there is a
positive constant ¢ such that for all x, T takes at least cg(x) steps
to compute f(x).

2.1.3. Logical Depth

Descriptional complexity helped define individual information
and individual randomness. It also helps define a notion that
can be considered the “individual computational complexity”
of a finite object. Some objects are clearly the result of long
development (computation), and are extremely unlikely to arise
by any probabilistic algorithm in a small number of steps. This
property of objects was formally defined by Bennett as follows
‘see [B]).

dept’, (x) = min {¢: Prob,(x)/Prob, (x) &gt; &amp;}.

Thus, the depth of a string x is at least ¢ with confidence 1 — ¢ if the

conditional probability that x arises in ¢ steps provided it arises at
all 1s less than e.
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2.1.4.  Concevtual Complexity

There is also an informal notion of conceptual, or organizational
complexity that will certainly be applied to the present paper to
some extent, and to [G] to a great extent. It will probably never be
formally defined, though it may be related to an informal version
of depth,(x) defined above, with the length of x too small to be
amenable to formal treatment.

2.2. Noise Resistance and Biological Urganizatior

Even serious scientists indulge sometimes in speculations about
‘what is life.” The goal is to formulate some abstract criteria that
among the existing structures in nature, only biological (or, possibly.
social) systems satisfy. It is not easy to find such criteria: self-
reproduction is clearly insufficient. Answers to this type of question
may influence our perspective on some of the more immediate
problems of science.

Work on fault-tolerant computation led us to the conjecture that
the requirement to perform in a noisy environment forces rather
elaborate structures, with some resemblance to the ones in biological
systems. Two extremal cases of the “performance” we have in mind
are information storage and the production of depth.

Much of the apparent conceptual complexity of biological
systems might be due to the simple requirement of reliable infor-
mation storage. Here is an informal argument in favor of this
(informal) thesis: without systems of biology or human society,
there seems to be no method to save 300 bits of information from

decay somewhere in the universe for 10° years. But life has preserved
much more information in the DNA for longer.

A similar thesis could be stated about systems starting with zero
information but producing structures of ever increasing logical
depth, in a noisy environment. Again, only systems involving
biology or society seem to be capable of this.

The above general observations are in contrast with most early
experimental and theoretical work on cellular automata. The
physical investigations were concerned with systems whose conver-
gence to equilibrium could be taken for granted, and only the
properties of these equilibria were of interest. The computational
applications built structures with logical depth. Examples are
algorithms involving systolic arrays. or the structures to simulate
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arbitrary computations by simple rules like Conway's Game of
Life [BCG] or Margolus’s Billiard Ball rule [M]. However, if faults
are permitted then all structures built in these computational
applications turn rapidly into shallow chaos.

We are interested to find out what properties of the elementary
building blocks can help counteract chaos.

2.3. On the Need for Proofs

We deal with media whose reliability can be proven mathemati-
cally. Nobody suggested yet candidates for reliable media found by
experimentation. Simple reliable—or almost reliable—media with-
out proofs probably exist: such media might underly biological
systems. But elementary constructions coupled with rigorous
zlementary mathematical analysis yielded more information for the
present research than experimentation.

One reason (suggested by the reviewer) for the lack of more experi-
mentation with error-correcting schemes in the model we are con-

sidering is that the fault probabilities of the elementary components
are generally very small, even if constant. Experiments could
therefore take a long time before an interesting effect turns up.

A THREE-DIMENSIONAL RELIABLE MEDIUM

Toom’s Results

The first questions about the possibility of storing information in
arbitrary interactive particle systems were asked in the context of
ergodicity. Without giving a formal definition here, we recall that an
ergodic system converges to a unique statistical equilibrium in-
dependent of the starting configuration. Such a system therefore
cannot store even one bit of information, and cannot increase depth
too much.

It was a nontrivial result of Toom that there are infinite two-

dimensional cellular media that can store reliably a bit of infor-
mation. Let us assume that in the initial configuration, each cell has
the same state s. We try to limit the probability of a state different
from s in each cell at all later steps. It is not easy to find “voting”
rules that achieve this, and even if we find one, it is not easy to prove
that it works. This is what Toom did; moreover, he characterized
all such monotonic rules.
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For the rest of the paper, we choose one rule in the above family.
To determine the state of a cell in the next step, this rule takes the
majority of its northern, southwestern and southeastern neighbors.
In what follows we will refer to this rule simply as Toom’s Rule.

T'oom’s proof in [Too] uses an elaborate topological argument
that we could not adapt to an efficient finite version of the theorem.
A new proof technique, the technique of “k-noise,”” was developed
in [G] and [GR]. It gave a more straightforward proof of Toom’s
theorem with efficient finite implications. It is also the only prob-
abilistic tool of the present paper. Mathematical physicists point
out that it belongs to the broad class of techniques known under the
name renormalization.

3.2. Application to Computation

Let D be any one-dimensional medium (cycle) of size K working
for L steps. We can simulate its work reliably using a three-
dimensional medium D’ on a torus of size K x d x d where

d = log'**(KL). Each trajectory x[t,n] of D (the function giving
the state of cell » at time when the medium evolves according to
the rule D) is mapped into a trajectory z[t,n,i,j] of D’ by

z[t,n,0,j] = x[t, nl. (3.1

Thus, each symbol of D is repeated over a whole two-dimensional
slice of D’. In each step, the transition rule of D’ uses first Toom’s
Rule within the slices then rule D across the slices. Without errors,
(3.1) holds for all ¢,n, i,j. It is shown in [GR] that with errors, the
same relation will still hold with large probability. The space
requirement of the reliable computation, compared to the original
one, is increased by the factor 42. The medium D’ will simulate D
reliably step-for-step, without any time delay.

This simulation is the simplest design for reliable computation
ever proposed. Its simplicity seems to depend on some special
circumstances, especially on a too high number of dimensions, and
on synchrony. When these do not hold, we have to rely on much
more complicated models.

No attempt was made in [GR] to maximize the error probability
permissible for reliable computation. Bennett’s experiments on
Toffoli’s Cellular Automata Machine give convincing empirical
svidence that Toom’s medium is nonergodic at error probabilities
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below 0.05. Piotr Berman and Janos Simon, using Toom’s original
proof, brought error bound needed for the proof to 10~7 (see [BS]).

3.2.1. Heat Production

There are some physical reasons to look for lower dimensional

error-correcting media. A three-dimensional error-correcting
medium is thermodynamically unrealizable. Indeed, any error-
correcting operation is inherently irreversible. Such an operation
turns a certain minimum amount of free energy into heat. Therefore
each cell needs a whole private “supply line” for feeding it with free
energy and relieving it of the produced heat. This is possible only
if the medium is at most two-dimensional.

3.2.2. Synchrony

Toom’s Rule keeps a bit of information in a two-dimensional
medium even if the cells do not all fire at the same time. But the

three-dimensional computing medium defined above is heavily
dependent on the synchronous operation of all cells within a cross
section. All simple synchronization techniques that we are aware of
interfere with error-correction.

“IERARCHY OF SIMULATIONS

11. Coding

Reliable computation always requires coding with redundancy.
Without it, part of the input is lost in the first step, and part of the
output in the last step. During the computation therefore, infor-
mation must live in encoded form.

In general, reliability seems to require that we break up the task
into manageable pieces in space and time, and, with each subtask,
we go through a cycle of decoding, computation and encoding.
Each cycle is repeated several times, since an error can ruin the
work of the whole cycle.

In the three-dimensional case, we enjoyed the exceptional situation
that the orthogonality of the computation to the repetition code
permitted immediate parallel access to each bit of the code. The
~epetition needed to counter errors in the computation happens to
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be identical to the repetition used as redundancy in coding. Due to
the lack of decoding or transport, no special structures are required
to support the error-correcting activity. ’

In the general case, information needs to be transported from
storage to the place where it is processed. There, it must be decoded.
After processing, it must be transported back for storage. All this
needs elaborate organization devoted to the task of error correc-
tion. In the homogeneous media we are discussing now, this organ-
ization can exist only as “software,” just as perishable as the rest of
information, and it needs maintenance.

The program also must have some continuity property: small
errors have small consequences. This property will be achieved
by insisting that in any one phase of the program, only a small
part of the information can be changed. To enforce this require-
ment, it will be necessary to keep track of phase and relative
position by especially robust methods.

1.2. Increasing Reliability by Repeated Decoding

In a computation of size N there will be arbitrary groups of
faults of size of the order of log N. Reliable computation must
be organized in such a way that no crucial piece of information
ls committed to a number of cells smaller than log N. Whatever
coding we use it must operate with units greater than log N.
The tasks of decoding, shipping, etc. with these units are large-
scale computational tasks in themselves that must be organized
reliably.

The greater units can be derived mathematically only from the
primitive “physical” cells of our original medium M, using decod-
ing. Decoding transforms the original probability distribution in M
into a different one, in which the great units will operate much more
reliably than the original cells.

We could view the greater units as a new kind of cell with a large
state space (always as large as needed). It is more advantageous to
view them as colonies built of the cells of a standard universal

medium Univ. From colonies of a given size P, we will arrive at
colonies of a larger size P* and higher reliability in the following
way. We choose a certain parameter Q, group the colonies in arrays
of size Q by Q (called alliances). and apply the decoding of a certain
error-correcting code to the configuration found in the resulting
array of size OP by OP.
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Hierarchy was used in the context of inhomogeneous one-
dimensional cellular arrays in [Ts]. The transition rule of the cells
was required to vary hierarchically in space and time, to organize
a voting scheme, with the sole purpose of remembering one bit of
information.

The paper [Kur] made a rather elaborate proposal for such a
hierarchy of simulations. Several ideas of this proposal were used
in [G].

V.ANTENANCE OF THE ORGANIZATION

51. Structure Maintenance

Above, we referred to a hierarchy of simulations that we had to
use for reliable computation in dimensions 2 and 1. On each
level of the hierarchy, for some parameters P, Q, P*, colonies
of size P (“small colonies) are grouped in a Q by Q array
(the alliance) to simulate a colony of size P* (a ‘big colony”).
All these configurations are in the universal medium Univ. Each
small colony has some work period 7, and the alliance has a work
neriod TU.

5.1.1. Health

Each small colony will, of course, have to obey a certain
program. In order for the program to have the desired effect, the
configuration of the colony must be somewhat standardized. The
standardization need not be very elaborate: we will just mark the
boundaries of the colony at the beginning of its work period. We
will say in this case that the colony is healthy. If health is lost then
it seems that we cannot keep our view elevated from the alliance to

the colony simulated by it, since the small colonies no longer work
by their original program.

5.1.2. Legality

Even if the members of the alliance are healthy they must
share some information that is of no use for the decoder but is
needed for the orchestration of their work. An idea that reduces the
structure maintenance problem to a manageable size is that all the
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information needed for this purpose falls into one of the following

categories.

Parameters of the alliance: some constants that are the same

for each small colony;
Two remainders mod Q describing the position of each small
colony in the alliance;
A remainder mod U describing the current clock value in the
work period of the alliance.

The last two pieces of information are called phase variables. The
activity of the colony can be made very predictable, provided that
the value of the phase variables is correct, even if the rest of the
information it handles is in doubt. In particular, the colony can
consult the phase variables every time it is about to write to certain
places—to make sure it writes only when the program permits this.
This reliance on the phase variables will guarantee the continuity
property mentioned in Section 4.1. We will call a healthy small
colony legal when its parameters and phase variables have the
required values.

[n some sense, the values of the parameters and phase variables
are not information. Indeed, they are a simple periodic function of
space and time. Legality can therefore be restored by methods more
local than those needed for the rest of the information. This obser-

vation solves the problem completely for two dimensions. Healthy
colonies will maintain or restore their legality by Toom’s Rule.

As a result, the two-dimensional reliable medium built in the
present paper has the following property:

Legality of colonies of the lowest order will be restored over an arbitrarily
large damaged area if only the frequency of faults remains small in each of
their alliances. This will happen even if none of the higher order colonies is
healthy.

There is no Toom Rule in one dimension. Structure maintenance

s still possible by more complicated methods, as shown in [G]. That
they are more complicated can be seen from the fact that the above
property will no longer hold. Legality and health can be defined in
one dimension similarly to the way they were defined above. If the
legality of colonies of the lowest order is damaged in an area needed
for simulating a colonv of order k then. even without noise. it will
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be restored only if outside this area, still healthy colonies of order
k are simulated. Thus, in two dimensions, to restore the legality to
lowest order colonies in a damaged area, it was enough if it was
surrounded with an area of comparable size containing legal
colonies. In one dimension, not only the size of the surrounding
area matters: it must be of comparable size and organized to the
maximum level, even if only the restoration of the legality of the
smallest colonies is required.

5.2. Health Maintenance

Toom’s Rule restores legality to healthy small colonies. It is not
clear yet how will health be restored to damaged small colonies, in
order for them to be able to apply Toom’s Rule. However, if we
assume that health is restored by “magic” then we can program the
same kind of magic into the simulation of big colonies. Indeed, at
the beginning of the simulation of a big colony by an alliance, the
latter will cast the big colony into the standard initial form required
by health.

Because of the initializing step, the simulation of colonies by
alliances is not like ordinary simulation: periodically, a certain
structure is forced on the simulated colonies, whatever their
previous state was.

Essentially, this is the method also used in [G], but there, setting
all parameters had to be part of the initialization. This type of
organization resembles that of biological systems: each cell has the
genetic code of the whole organization.

The health of colonies of the lowest order will be assured because
these colonies will be single cells of the reliable medium M and, as
such, they will be defined to have only healthy states.

At the end of the computation, whatever information is in the
alliance must be cast in the form of a redundant code. Due to

heightened requirements of efficiency, this problem is harder to
solve here than it was in [G].

BH. MINIMUM REDUNDANCY

All past and present results discussed in this chapter indicate that
if the size of the computation is N then the size of the simulating
computation must be at least NlogN, provided that some real
computation is being performed. The last qualification is necessary
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since information storage needs only a constant factor in redun-
dancy. In the model of cellular arrays, it is possible to distinguish
between the time and space requirements of the computation, and
it is therefore possible to represent the redundancy as a product of
the redundancies in space and time. Thus if ¢ steps of computation
of n cells of a deterministic medium are simulated reliably by ¢” steps
of n” cells of a stochastic medium then ¢’/¢ is the time redundancy
and n’/n is the space redundancy.

The results available to date on cellular arrays indicate that the
product of the time and space redundancies must be logarithmic in
the size of the computation. We can state this as a conjecture, but
it seems a difficult one to prove, especially that the case of “no real

computation” must be excepted.
The logarithmic redundancy can be shifted entirely to space, or

almost entirely to time, as the following examples show.

The three-dimensional simulation in [GR] is real-time: there
is no time redundancy, but there is space redundancy of size
log?*¢N(reducedto log?Nin[BS]). The ideas of [GR] applied
to [G] give a real-time two-dimensional reliable simulation
with space redundancy log” N.
The two-dimensional simulation described in the present
chapter has constant space redundancy, and time redundancy
log?*¢N.

Li CONCEPTS AND THE RESULT

771 Sites and Events

Let Z,, be the group of remainders modmif m is finite, and the
set Z of integers if m is infinite. The set W of sites of our cells will
be Z2,. If m = oo then W is the two-dimensional rectangular lattice
Z’. Otherwise, it is a lattice over a torus of diameter m. As a

notational convenience, we define, in analogy with Pascal and real
analvsis. the intervals

[a..b) = {xeZ:a: = -_F

The following definitions are given for two dimensions but they can
be generalized to any number of dimensions. For a set G and a
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vector v in Z;, and integer n we define

0+G= {v+u ueG}.

A partition of the plane and the three-dimensional space into
squares and cubes will be used so often that we introduce a special
notation for it. For a positive integer P, we write

[P;i] = [iP..(i+1)P)

for the intervals of length P shifted by a multiple of’ P from the
origin. Similarly, we write

[P:i,i= [P:i] x [P:]]

for squares of size P shifted from the origin horizontally and
vertically by a multiple of P. The cubes [P;h,i,j]’ are correspond-
ingly defined. The intervals of type [P;i], [P;i, j* and [P;h,i, jT
will be called P-intervals, P-squares, and P-cubes, respectively.

7.2. Configurations and Evolutions

Let S be a finite set, the set of all possible states of our cells. Let
B be a set of sites. A configuration x over Bis a function that orders
a state x[p]eS to each element p of B. Let x,y be two configur-
ations, over the sets of sites B and C, respectively. We will say that
y is a translation of x, if there is a vector u such that C = u + B, and

for all p in B we have y[p + u] = x[p].
Let x be a configuration over the set B of sites, and C a subset of

B. Often, we will talk about the configuration x[C] that we obtain
by restricting x to C. However, if C’ is obtained by translation from
C and x’ is obtained by the same translation from x then we
consider x’[C’] equal to x[C]. One dimensional example: if C =
f—1,0,1} then x[t,p + C] is the string

(xt, p _ 1], x[t, pl, x[t,pi 1])

(indexed by 0, 1, 2).
An evolution with set S of states over the set W of sites in the time

interval I is a function x from I x W to S. we will write x[z, p] for
the state of cell p at time ¢ in the evolution x. The function x[¢, *]
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is a configuration for each ¢. Therefore x[¢, C] is defined according
to the notation above.

7.3. Media and Their Trajectories

We will use the convenient term medium for an array of cellular
automata. The set of sites is not part of the definition of a medium
since we will consider the behavior of the same medium over

various sets of sites (in particular, for various values of m).
A medium Med will be defined by giving a finite subset G of W

(the interaction neighborhood of the site 0), a finite set S = Syoq Of
states, and a transition function Med: S¢ — S. Thus, the transition
function Med orders a value Med (y) in S to all configurations y
over G. A medium with a particular set of sites (always a torus in
this paper) will be called an iterative array. We will often refer to the
number

Med| = [ 10g, | Smeal |

as the cell capacity of medium Med.
Some evolutions of an iterative array are called trajectories.

These are the evolutions x for which the value x{¢ + 1, p] depends
only on the values x{t,p+p’] for p’ in the neighborhood G. in a way
determined by the transition function. An evolution x is called a
trajectory of the medium Med if for all (¢, p) we have

[t+ 1,p] = Med (x[t,p + G1). (7.1)

The simplest example of an interaction neighborhood is G =
{—1,0,1} in one dimension. There, the function Med ( y) can be
simply viewed as an operation of three arguments in S, i.c., the
right-hand side of (7.1) can be simvlified to Med (x[¢, p — 1], x[¢, p],
p+ 1D.

In our context, the word “error” could denote two different con-

cepts. To distinguish these we call them “faults” and “deviations,”
and reserve the word “error” to informal discussion. We say that
a fault occurred in x at (¢ + 1, p) (with respect to Med) if (7.1) does
not hold. If y is a trajectory then the event x[v] # y[v]is a deviation
(of the evolution x from y). Intuitively, a medium is reliable if it
can keep the number of deviations. small despite the occasional
occurrence of faults
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ExampLE 7.1 [Toom’s two-dimensional error-correcting medium].
This medium can be defined for any state-space. Let us define first
the majority function Maj (x,y,z). If two of the three arguments
coincide then their common value is the value of Maj, otherwise
Maj(x,y,z) = x. The interaction neighborhood is defined by
H = {(0,1), (— 1, —1), (1, — 1)}, and the transition function R by
R(x[H]) = Maj(x[H]). Rule R computes the majority among the
states of the northern, southwestern, and southeastern neighbors.
Any constant function is a trajectory of R. (There are also some
nonconstant periodic trajectories.) Suppose that x[0,p] = 0 for
all p. We have a fault in x[z, p] if it is not the value obtained by
voting from the triple x[t — 1, p + H]. We have a deviation if
[t,p] # 0. O

Let (&amp;[t, pl: tel0..1), pe W) be a system of random variables with
a joint distribution. We say that &amp; is a g-perturbation of medium
Med if for each subset B of [0../) x W the probability that for all
veBa fault occurs in &amp; at o is less than ¢®'. (This condition is
satisfied if the faults occur independently with probability g, but it
includes some other cases important in statistical physics.) We will
say that &amp; is a g-perturbation of a trajectory y over the same
space-time set if it is a g-perturbation of Med with £[0, p] = yI[0, p]
for all p in W. Our goal is to find situations in which if the
probability ¢ is small then the probability of deviations is also
small; in other words, faults do not accumulate.

7.4. Coding and Simulation

By reliability we mean the possibility of simulating the computa-
tion of a deterministic medium by an error-prone medium. For this,
of course, the simulation must use an error-correcting, redundant
code.

In this chapter, we will want to encode the information content
of a square array of cells into a larger square array. Let P be a
positive integer, and let C be a P-square. The set S€ is the set of all
configurations over C.

Let S, and S, be two alphabets, and P,, P, two integers, with C,
being the corresponding squares. A (two-dimensional block-) code

(W Ur
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from S, to S, with blocksizes P,P, is characterized by source
blocksize P,, and target blocksize P,, encoding function

W,: SE — SC

and decoding function y* where y*(¥,(x)) = x. A code can be
extended to configurations larger than those over a single square:
over a union of aligned squares, by encoding resp. decoding each
square separately. We have a single-letter code if P, = 1.

Let us be given two media Med, and Med,, with state sets S;, S|,
and a code y with blocksizes Py, P,, further the natural numbers
Io, T,. We say that is a simulation of Med, by Med, with
parameters Py, P, T;, T, if for any multiples m, of P,, any trajec-
tories x; of Med, over the spaces W, = Z_,the relation

(0, Wo] = ¢,(x,[0, W,])

implies

[To Wol = Yr, (x, [T,, W,]).

The parameters P,, P, are still called the blocksizes. The parameter
I is called the source work period, while Tj is called the target work
period. Thus, a simulation sets up a correspondence between the
svolutions of two media. A simulation is single-step if T; = 1.

A medium is universal if it can simulate any other medium by a
total single-letter single-step simulation. There are many possible
universal media in two dimensions. Some of them (the ones built
like universal Turning machines) are easy to program. Others (like
Conway’s Game of Life. or Margolus’s Billiard Ball rule) are very
simple to define. For the purpose of the following theorems, let
Med, be a fixed medium.

7.5. The Result

Our goal is to find a “reliable” simulation of our fixed arbitrary
medium Med, by a suitable medium M, as Med, computes on a
certain set Z;, of sites for a certain number 7 of steps. The simulation
y used will depend on the sizes n, t of the computation and the error
probability ¢ permitted in the result.
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The medium AM and the structure of the code y is complicated to
describe, and we leave the description to the proof. However, there
are two reasons why it is not possible to “cheat” and hide the whole
computation in the code.

The code is independent of the computation (except for its
size), and decoding is an inverse of the encoding. To begin a
computation on the output, we do not have to decode and

encode again.
The code can be computed rapidly.

Let m denote the target blocksize of the code y. We say that the
trajectory y of M on Z2 is in the range of y if we have y[0,Z2] =
v,(u) for some configuration u of Med, on Z.

THEOREM 7.1. (MAIN THEOREM). There is a medium M, a fault
probability bound ¢ &gt; 0 and for each n, t, ¢ with L = log(n’t/e), a

simulation y with parameters n, m, T, T’, such that the following
holds.

for any h [:'T", the probability of the even

y¥ (ERT, Z2)) = y*(y[hT,Z2))

is at least 1 — ¢ for all trajectories y of M in the range of y, and

all g-perturbations &amp; of y.
The periods are (almost) logarithmically small: we have
P,T = OQ"eD"). The redundancies can be estimated by
m = O(n + P), T/T &lt; L**°M,

The code y is computable in O(T) steps on a suitable deter-
ministic medium.

The code given in the theorem implements every computation of
the ideal fault-free medium Med, in the “physical” medium M in
such a way that the probability of deviations remains under control.
The space requirement » of the original computation is increased to
m in the implementation. Hence according to the statement of the
theorem, the space redundancy is a constant factor, except when the
space n is too small to accommodate even one (logarithmic-size)
block of the simulation.
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o ERROR-CORRECTING CODES

» 1 Burst Error Correction

=

it is not surprising that the theory of reliable computation
makes use of the theory of error-correcting codes. (What is
surprising is how much more is needed besides error-correcting
codes.) Indeed, if information is not stored in encoded form then
one step of computation will be enough to cause irreparable
damage.

A one-dimensional binary code y (i.e., a code from strings to
strings) 1s said to correct t errors if for all strings u, v, if y,() differs
‘rom ov in at most ¢ places then y*(v) = u.

ExaMmpLE 8.1 [Repetition code]. Let y,(4) = wuuuu over strings
u of length k. Let the decoding function be defined over strings v of
ength 5k. The decoding goes as follows: to determine the (i + 1)th
symbol of y*(v), we look at the symbols with indexes 5i, 5i + k, . . .,
5i + 4k in v and take their majority. It is easy to see that this code
y corrects two errors. Repetition coding uses too much redundancy.
There are better error-correcting codes. O

The kind of error correction we need is measured rather in the
number of error bursts of a certain size corrected than in the number

of errors corrected. We say that code y, mapping binary strings of
length Kn to binarv strings of length Nn, corrects t bursts of size n
f it corrects any pattern of errors covered by at most ¢ intervals of

the form [n; i].
The present section sketches the proof of the following theorem

THEOREM 8.1. Suppose that n has the form 2 +3". Then for all
integers N &lt;2", t &lt;2""' there is a code from strings of length
(N — 21) n to strings of length Nn correcting t error bursts of size n.
There is a universal one-dimensional cellular array performing the
decoding and encoding for these codes, for all n, N, t, in space O(Nn)
and time O(Nnlog Nn).

This theorem is a straightforward application of the theory of
algebraic codes. The details of the proof are not original and are not
needed for the rest of the chapter. We advise the average reader to
just use the theorem and skip the rest of the present section.
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8.2. Shortened BCH Codes

The BCH codes are treated, e.g., in the textbook [BI]. A (shortened)
BCH code correcting ¢ error bursts of size » has a space of symbols
that is a Galois field GF(2"), and needs 2¢ symbols devoted to
redundancy. We represent the field as the set of remainders with
respect to an irreducible polynomial. To make things completely
explicit, we use the fact, derivable from the theory of fields (see
[La]), that the polynomial

W203 PW

is irreducible over GF(2). We choose n to be an integer of the form
2-3, and use the above irreducible polynomial to represent the
field GF(2").

Let a be the element of GF(2") represented by the polynomial y.
Then the elements 1, a, o, ...,a" "are all different. Our codewords
are the vectors ¢ = (¢,,..., cy.) over GF(2") with the property that

&gt; co =0 (i=1,2 2yo.20).

or in other words, the polynomials ¢(x) of degree N — 1 over
GF(2") with the property that c(a’) = 0 fori = 1,...,2¢. Let

g(x) = (x —o)(x — a?) (x _ a).

Then the codewords are the polynomials ¢(x) of degree &lt; N over
GF(2") divisible by g(x). Hence the information strings can be
represented by polynomials of degree N — 2¢ — 1 over GF(2"), and

encoding is multiplication by g(x).
We need efficient decoding and encoding algorithms to avoid

significant time delay. Moreover, the total space used by our
algorithms can be at most constant times more than the amount of
information processed. To achieve this, we adapted some well-
known algebraic algorithms to our iterative array.

8.3. Algebraic Operations

All needed algebraic operations can be performed in O(nlogn)
time and in O(n) space. It is likely that time can be brought down
to O(n) but we do not need this fact.
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Addition can obviously be done in O(n) time and space.
Fast multiplication needs the fast Fourier transform (over

an appropriate smaller field). The latter can be done by an algorithm
F(n) in f(n) = O(n) steps, within a one-dimensional cellular
array of length O(n), as follows. In stage 1 of F(n), we separate
the even and odd digits into the two halves of the array: this
can be done in O(n) steps. Now a recursive call of F(n/2) simul-
taneously transforms both halves in f(n/2) steps. (For the sake
of the Fourier transform, we can pad » to a power of 2.) Finally.
the even and odd bits are restored from the two halves using
O(n) steps. This shows f(r) = O(n). The overhead (e.g., a firing-
squad-type organization for timing) does not take up more than
O(n) space.

The O(n) Fourier transform gives O(n) polynomial multipli-
cation (convolution), and division, which give O(n) multiplication
over GF(n). For division over the field, the Euclidean algorithm is
needed. It is known that the Euclidean algorithm can be organized
in O(n log n) serial operations (see [Bo]). The same algorithm can be
implemented here, even with the O(n) space requirement, in
O(nlogn) steps.

3 4 The Complexity of Encoding and Decoding

Computing the polynomial g(x) can be done in O(N) field oper-
ations and linear space, using fast Fourier transform over GF(2").
Encoding is multiplication by g(x), hence it can be done with fast
Fourier transform at the same time and space cost.

The first step of decoding is the computation of the syndromes
S; = c(a'). Computing the values of the polynomial c at 2¢ places
is a well-known operation doable on a sequential machine in
O(Nlog N) operations. It does not cause any problem to adapt the
known algorithm to the requirement of linear space on our cellular

array.
The next step of decoding uses the Euclidean algorithm over

GF(2"), for finding the error-locator polynomial and error-evaluator
polynomial: see Chapter 7.7 of [Bl]. Therefore it can be done
in O(nN) space and O(NlogN) field operations, hence in
O(nNlognN) operations altogether.

This completes the outline of the proof of Theorem 8.1. r
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9. OUTLINE OF AN ERROR-CORRECTING STRATEGY

Correcting a Sparse Set of Faults

The assumption that faults arise randomly and independently is
a natural one but not easy to deal with technically. In practice, if the
fault probability is small then usually the different but similar
assumption is made that faults just arise rarely. This could mean,
e.g., that in not too large domains of time and space, no two faults
will ever occur. Under such assumptions, error correction becomes
zasier. One can hope to find a mechanism to correct one fault,
provided no new faults occur during the correction process. It turns
out that even this problem needs an elaborate solution, outlined in
Sections 10 and 12.

A little more generally, we introduce two integer parameters U
and r. We will say that the set of faults is (U, r)-sparse if in each
U-cube in space-time, there are at most r faults. If r is small enough
with respect to U then media will be constructed that resists a
(U, r)-sparse set of faults.

The present section outlines how these contributions can help in
fighting probabilistic faults.

J Probabilistic Noise Bound:

Let us be given some probability distribution on all possible sets
n the space-time V = Z x Z2,,. This distribution gives rise to a
random set &amp;. For a parameter p, we say that the distribution of &amp;
is p-bounded if for all k and all finite sets 4 = {v,...,v,} of
space-time points, we have

Prob(4 cc &amp;) &lt;p

Let us define a new space-time V'* = Z x ZZ whose points are the

U-cubes of V. Point v = (h,i, j) of V* corresponds to the cube
v, = [U;h,i, jl of V.IfC= [U;h,i, j]’ then we will write C* =
(h, i, j). For each subset E of V, we define the set E*(r) in V'* as
follows: v is in E*(r) if there are more than r elements of E in the
U-cube v,. Via this mapping, the random noise &amp; gives rise to the
random noise &amp;£*(r) in the space V'*
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LEMMA 9.1 (NOISE BOUND). Suppose

p&lt; U-3r+h (9.1)

and that the noise &amp; is p-bounded. Then the noise &amp;*(r) is p"-bounded

Thus, the derived noise is bounded with a much smaller probability
than the original one.

Proof. By the definition of p-boundedness, for any set D of k
space-time points, the probability of D = &amp; is at most p*. We can
therefore increase the probabilities of all such events by assuming
that individual points belong to the noise independently with
probability p. Let us make this assumption. The following state-
ment follows then immediately.

LEMMA 9.2. For any sequence By, B,,. .. of disjoint U-cubes, the
ovents B*e &amp;* are independent.

It follows from this lemma that it is enough to prove for a single
U-cube B that the probability of B*e &amp;* is less than p'.

For any sequence of r + 1 points in B the probability that they
are all in &amp; is p'*'. The total number of such sequences is less than
U3C+D| Therefore the probability that B*e &amp;*, i.e., that there is
such a sequence in B is less than U*"* "pp". Hence, inequality (9.1)
implies the statement of the lemma. ]

9.3. Increasing Reliability by Simulation

Suppose that we could solve the problem of reliable computation
in the presence of a (U, r)-sparse set of faults. This could mean, in the
most simple-minded sketch, that for all U, r and media Med, satisfy-
ing certain simple conditions, we have a simulation ¢ and a new

medium M, such that the decoding ¢* maps configurations x of M,
over U-squares [U;i, j]* in the space W = ZZ, into states x*[i, j]
of Med, in the space W* = Z?. (We suppressed the dependence on
U,r in this notation which is local to the present subsection.) The
success in eliminating a (U, r)-sparse set of faults from the evolution
x would mean that the decoded evolution x*[h, i, j] is a trajectory.
In Sections 10-12, we will indeed solve the problem of reliable
computation in the presence of a (U, r)-sparse set of faults, though
the results will have a somewhat more complicated form.
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If the set FE of faults in x is not (U,r)-sparse then there will
probably be faults in the evolution of x* at the points of the derived
set E*(r). If the faults were confined to the set E*(r) then the problem
of error correction would be essentially solved. Indeed, according
to the above lemma, the random set £*(r) is p'-bounded. We
recreated therefore the original situation of a medium Med, to be
implemented, and probabilistic faults, with the only difference that
the probability bound is now p” instead of p. We could call the
simulation ¢ a ‘reliability amplifier,” or in short, an amplifier.
Concatenating several amplifiers, we can get probability bounds p".
p72, etc. Soon the probability of faults becomes negligibly small.

9.3.1. Too Big Cells

Before being carried away with this plan let us take a closer look.
Each time we apply an additional amplification the cell capacity (we
defined it as the logarithm of the number of states) of the simulating
medium could increase. The number of amplifiers depends on the
need to decrease the fault probability, and this depends on the size
of the original computation. But this means that the cell capacity of
the simulating medium depends on the size of the computation to
be carried out, which is not what we want.

Due to this problem, Sections 13 and 14 modify the construction
of Section 12, replacing each cell of the simulating medium by a
block of some universal medium Univ. These blocks will be called
colonies, and an array of colonies will be called an alliance. In the
simulation thus modified, alliances in Univ will simulate blocks in
the simulated medium Med,. The working time 7 of colonies will
be different from their size P. In case the simulated medium is
also Univ the simulated blocks will also be called colonies. The
simulated colonies are called big, the simulating colonies are called
small.

9.3.2. How to Restore Colony Structure

Once we introduced colonies, a new problem arises, as mentioned
in Section 5.2: the simulating colonies will need some minimal
structure to work according to their program: how will this struc-
ture be restored after the faults? We will postulate this restoration
axiomatically. Evolutions satisfying these axioms will be called
self-correcting evolutions.



Self-Correcting Two-Dimensional Arrays

9.3.3. How to Obtain Self-Correcting Evolutions

We are willing to restrict ourselves to self-correcting evolutions
f, in case the simulated medium is Univ again, the following holds:

All evolutions obtained by decoding from evolutions that are self-correcting
with respect to small colonies will be again self-correcting, with respect to
hig colonies.

The simulation, ¢, will be modified in Section 16 to have this
property. This will complete the construction of amplifiers.

10. A PERIODICALLY VARYING MEDIUM
RESISTING SPARSE NOISE

10.1. The Noise Condition

[n the present section, we start the investigation of a special kind
of error correction. The concepts developed here have some interest
in their own right. However, they are justified in the present chapter
as a building block of the proof of the main theorem.

The noise condition used in the present section depends on a time
period U and afault bound r. Let us say that an evolution x is a

(U, r)-trajectory if in every U-cube, x has at most r faults. We say
that a (U, r)-trajectory is a (U, r)-perturbation of a trajectory y if
it coincides with y at time 0. Our goal here is, for an arbitrary deter-
ministic medium Med, to find a simulation ¢ of Med, by a suitable
medium M, that withstands (U, r)-perturbation. The simulation has
source- and target-blocksizes OQ and Q and source- and target-
workperiods U” and U. It is simulating the work of Med, on Z;,,.

The medium M|, and the simulation ¢ used will not depend on the
size n. They do depend on the medium Med, and the constants
Q,U,Q’,U’,r. Thus, the error correction is block-for-block, using
the fact that there are only r faults by U-cube.

The target blocks of our simulation will be called alliances. Each
alliance has the form [Q;/, j]*, consisting thus of Q x Q cells that.
at least under fault-free conditions. form a cooperating unit.

10.2. Periodically Varying Media

Let us temporarily relax the requirement of homogeneity for the
medium M,. We permit the transition rule M, to be inhomogeneous:
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it can change periodically in space (in both directions) with period
Q and in time with period U. In other words, M, at space-time
point ¢, i, j will depend on tmod U, imod Q, and j mod Q: in the
equation of a trajectory instead of 7.1 at a point (z, u) withu = (i, j)
we have

x[t + 1,u] = My(x[t,u + G}, tmod U, imod Q,jmodQ).

We imagine such a transition rule as a computer program telling
each cell of the alliances in each step of the working period specifi-
cally, what local action to perform.

Let m = nQ, denote the output blocklength of the code ¢, and
let W = Z2,.

Before stating the theorem let us note that the parameters Q, U,
Q’,U’ are not completely arbitrary. The size Q must be large
enough for 18r errors to be correctable. We require Q &gt; 30’ to
represent easily nine neighbor Q’-squares within one alliance. This
requirement could be eased considerably since we can choose a
larger cell capacity for the medium M,. The time period U must
clearly be long enough to carry out the error-correcting simulation.
This will involve some decoding, coding, and repetition. A constant
factor could again be hidden here by choosing a larger cell capacity
in the simulating medium. For convenience, we also require the
time period to be divisible by the blocklength. This leads to the
following assumption.

ConNDITION 10.1 (SIZE).

Q &gt; max (30, Q’ + 22r).

Uz=TUJQ 10% logQ,

OU.

There are many ways to satisfy these conditions. Given an arbitrary
rand Q’, U’, we can choose Q greater than the right-hand side of
the first inequality. Then we can choose U to be any multiple of Q
greater than the right-hand side of the second inequality.

THEOREM 10.1. Suppose that the Size Condition 10.1 holds. Then
there is a periodically varying medium M, with periods U, Q and
capacity |M,| = O(log(Q + U)), and a simulation ¢ with parameters
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Q,Q’,U, U’ such that the following holds. For all n, all trajectories
y of Min the range of¢overZz, all (U, r)-perturbations x ofy, and
all nonnegative integers h we have

p*(x[hU, W]) = o*(y(hU, W]).

The rest of the present section is devoted to the proof this
theorem.

[1 The Construction

Error-correcting devices have a crucial feature: continuity. The
property of continuity means that every elementary event of the
computation (happening at one space-time point) influences only a
small part of the result. The continuity property will be achieved as
follows. We subdivide the alliance into a certain number of columns

and the working period into the same number of stages. We estab-
ish that in stage i, only column i can change its information
content. In this way, stage i influences only column i.

0.3.1. Variables

As we often do in the analysis of Turing machines, the state-set
§ = Sy, of the medium M, will be the Cartesian product of several
sets: § = S| x +++ x S,. Thus, the value x[#,i, j]isthecollectionof
several values Z,[h,i, j),...,Z,.[h,i, j]. For a Turing machine, we
would say that we divided the tape into k individual “tracks.” We
call log|S;| the width of track i.

Borrowing the terminology of computer programming, we will
refer to the value

Zi[h, Lj] = Z (x)][h, I,J]

as the value of variable Z, at site (i, j) at time ¢ (in the evolution x).
The transition rule M, will therefore say how the individual variables
at site (i, j) depend on those in the neighbor sites at time A.

The notion of tracks (variables) is another tool to achieve con-
linuity. We agree that the information used by the decoding func-
tion @* is in the variable InpMem, i.c., the value ¢* (x[t, A]) for the
alliance A depends only on InpMem]t.A].Nowtheprogram can
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move information across any cells (i, j): as long as it does not
require to change the variable Inp Mem(i, j] and no fault happens at
(i, j), the variable will not be changed.

Actually, the continuity requirement applies only to the variables
in InpMem and the ones used immediately for their updating, called
OutMem. We extend the notion of deviation to tracks, i.e., variables.
When we compare the evolution x with the trajectory y of the same
medium, we will say that there is a deviation at space-time point
(t,i,j) on track Z, if Z,(x)[t,i,j] differs from Z,(y)[t,i, j]. Of
course, if x deviates from y on any one track at the space-time

point (z,1, j) then there is a deviation in the absolute sense at this
point, i.e., x{t, i, j] and y[t, i, j] are different. But in general, we will
be more interested in the deviations on particular tracks than in
deviations at all.

Let us outline the major operations that the inhomogeneous
medium M, performs in the U steps of the work period in the
alliance and the neighbor alliances.

10.3.2. Decoding

Let b be the first integer of form 2 + 3* greater than both the cell

capacity |Med,| and log Q. The Size Condition and Theorem 8.1
implies the existence of a code Algeb from binary strings of length
hQ’ to binary strings of length »Q that corrects 11r error bursts of
length b. The simulated Q’-square of Med, will be encoded row-by-
row by the code Algeb.

Now we can define the code ¢. It takes a Q’ by Q' configuration
of Med,. It encodes each row into a binary string of length Q’.
Then it applies the code Algeb to each row, and writes the result
onto the ImpMem track of a row of length Q, writing b bits into
one cell. (Thus, the ImpMem track must be at least b bits wide.)
The other tracks are set to an arbitrary initial state. There will be
 OQ — Q’ unused rows in the target square: we can ignore them.

Decoding is the inverse. We take the Imp Mem track, and apply the
decoding function Algeb to each of its rows.

The first task of the program is decoding. Indeed, we do not know
how to manipulate the information in encoded form.

The decoding process, as well as all other operations mentioned
later, uses tracks different from InpMem or OutMem. We will
not give names to all these other tracks: they have the collective
name Workspace. The result of the decoding in each alliance is a
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configuration of Med, over a Q’ x Q’ square. The original content
of the Imp Mem variables is not changed. The result of the decoding
s stored on a Workspace track.

10.3.3. Input

Due to the Size Condition, we can store the result of decoding in
1 subsquare of size Q/3 of the alliance, in a part of the Workspace
called the Simulator track. In this way, the Simulator track of an
alliance could store the decoded information not only from the
alliance itself but also from its eight neighbors, arranged in their
original geometrical relation, in nine subsquares. This is necessary,
since the state of the alliance after U steps will also depend on the
neighbor alliances.

10.3.4. Computation

On the decoded contents of the original blocks of Med,, the work
of Med, is simulated step-for-step for Q’ steps, in the Simulator
track. This procedure Compute(t) is simple: the Workspace track
of the cells of M, is programmed to behave like Med, for ¢
steps.

10.3.5. Encoding, Output, Repetition

The square of size Q/3 on the Simulator track is encoded again.
Now, we resist the temptation to write back the encoded result

nto the OutMem track of the colony. While decoded, the infor-
mation was vulnerable to even a single fault. The computation
performed on it could spread the errors even farther. Therefore
we cannot completely trust the result. We will use only a single
column of it, column s, therefore this part of the program can
be called the procedure Ouitput(s). In this procedure, we write
column s of the result back into column s of a new track called

OutMem. The rest of the result can be discarded. The reason we

have to use a new track is that the old value of InpMem is still
needed. Only the last step of the program replaces InpMem with
OutMem.

The part of the program defined until now can be summarized in
the following procedure.
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procedure CompColumn(s, t);
begin

Decode;
Input;
Compute(t);
Encode;
Output(s);

2nd:

One more level of repetition is needed. The parameter ¢ above
will always be chosen smaller than Q’. Indeed, more steps of the
computation would depend on alliances farther away than the
immediate neighbors. Therefore the program part defined until now
must be repeated U’/Q’ times.

The program below also has some idle steps at the beginning.
These are not important for other than technical convenience in the
later proofs.

The whole program can now be written as follows. Let

N=|U/O"]|

idle 2Q steps;
for /:= 1 to N4+ 1 do begin

if IS Nthent:=Q'elset:= U — NO’.

for s:=1to Qdo
CompColumn(s, t);

ImpMem = OutMem;
and

Since the rule M, is allowed to be space-time dependent, the
implementation of the above program in the form of a transition
table does not cause any principal difficulty. We do not do it
because it is tedious. It is clear from Theorem 8.1 that all five parts
of CompColumn take O(Q log Q) steps, hence the whole program
takes at most O(Q*(U’/Q")log Q) steps. A constant factor in the
running time can be eliminated by the unusual speedup trick,
increasing the cell capacity and combining several steps into
one.
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10.4. Proof of Theorem 10.1

Let y be a trajectory of M; over W in the range of ¢. Let x be a
(U, r)-perturbation of y. We have to prove the relation

0*(x[hU,W]) = o*(y[hU, W))

for all 2. We will actually prove a little more:

Lemma 10.1. Let C be an alliance. Then for all h, in each row of
C, on the InpMem track there are at most 10r deviations of x from y.

The theorem will follow since the decoding ¢*, which is essen-
ally the decoding Algeb*, corrects 18r errors. |

Proof of Lemma 10.1. The lemma certainly holds for 4 = 0,
since x and y coincide there. We will assume that it holds for 4 and
prove it for # + 1. Let C be an alliance. From the inductive assump-
tion, it follows that at time AU, there are at most 10r deviations on the
ImpMem track in any row of any neighbor alliance of C at time AU.

The events happening in the evolution x during the time interval
[U; h] that can have any effect on the configuration in C at time
(h + 1)U can obviously be covered by nine U-cubes. According to
the assumption that x is a (U, r)-trajectory, in these nine cubes there
are at most 9r faults.

The inner part of the program given above consists of Q calls to
the procedure CompColumn(s, 1), and a last step copying OutMem
to InpMem. We are going to show that only those columns s of
Inp Mem will have deviations on the Inp Mem track at time (h + 1)U
for which either there was a fault during the sth call or a fault in
column s at some other time. The number of these columns is
at most 9r + r = 10r.

It is enough to show that in the calls of the procedure Comp-
Column(s, t) when no faults happen, no deviation is created in the
sth column of the OutMem track. Certainly no deviations will be
created during these calls on the ImpMem track, since nothing will
be written there. Therefore columns containing deviations on the
InpMem track in any of the neighbor alliances of C come from two
sources. 10r of these columns were inherited from the beginning
hU of the work period. r others are created by faults. Therefore
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at the beginning of a call of CompColumn(s, t), there are at most 11r
columns per alliance containing deviations on the InpMem track.
Since the code Algeb can correct 11r errors per alliance, the effect
of these deviations is eliminated by the procedure Decode during a
fault-free call of CompColumn(s, 1). O

1 TOOM’'S RULE

11.7. Shrinking Deviations

Let us review the way a finite amount of information can be

remembered in a two-dimensional homogeneous medium. For a
finite set S of states, Toom’s Rule R is defined in Section 7.3.
Why 1s Toom’s Rule R likely to preserve a nearly constant initial
configuration? Let us define the linear functions

(a, 0) = —20 + B, Lo,B)= 2a + B. Li,B)= —B

For an arbitrary subset F of Z? we define

m,(F) = sup |, (v)

We call m;(F) the measurements of F. For any real numbers
a,,a,, a, let us define the triangle

[ = L(a,,a,,a;) = {(x,y): (x,y) &lt;q forj=1,2,3}.

The numbers g; are the measurements m; (I).
The following assertion is easy to verify. Let ¢ be some constant,

and let y be the constant evolution, i.e., for which y[¢,u] = ¢ for all
times ¢ and sites wu.

LEMMA 11.1. Suppose that x is a trajectory of R in which at time
t, the set of deviations from the constant evolution y is enclosed into
the triangle L(a, b,c). Then at time t + 1, the same set is enclosed in

La—1.b—-1,c—1.

[t 1s this speed of shrinking, independent of size of the set of
deviations that distinguishes Toom’s Rule.
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11.2. Triangles

(1.2.1. Size and Separation

For later use in proofs concerning Toom’s Rule, let us introduce
some more geometrical concepts. We call

| = (a+ b)2 + c

the size of triangle L(a, b, ¢). [This expression must be chosen since
the relation (/, + ,)/2 + I; = 0 will then make sure that the size of
a point is 0.] If the size is negative then the triangle is empty. For
finite diameter m of the torus, the above definition does not work
since inequality is not defined in Z,,,. But the definition can be easily
extended as long as the size is less than m. Let us add this require-
ment to the definition of triangles.

For a set # of sets we denote by U # their union and by | #| the
sum Y, , |J|. We say that # covers a set if its union does so. We
denote by # # the number of elements of ¢.

It is easy to verify the following: If the triangles 7 and J have non-
empty intersection and |/| + |J| &lt; m (where m is the diameter of
the torus) then the size of the smallest triangle containing their union
s smaller than |I| + |J|. We can transform a finite set .# of triangles
with |.#] &lt; m into a set #’ of disjoint triangles in the following way:
we successively replace any pair of intersecting triangles in the set
with the smallest triangle containing their union (this process will
be called merging), as long as we find intersecting triangles. We have

|.#7| &lt; | F!

Figure 1. Triangles L(0,6,2) and L(— 1.5, 1), of sizes 5 and 3, respectively.

(C*
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For any sets H, I of the plane, let us define

d(H.I) = inf{l,(x): xel} — mH).

This quantity is called the j-separation of the sets H and I. It is easy
to check the following proposition, which can be considered the
“separating hyperplane theorem” for triangles.

LEMMA 11.2. Triangles H and I are disjoint if and only if there is
1 J such that their j-separation is positive. Moreover, we have

d(H, I) = m. (I) -— o || —m;(H)

where o. = 1 for j = 3, and 2 otherwise

11.2.2. Blowup and Deflation

For a triangle I = L(a, b, ¢) and pos...ve number 4, we define the
new triangle

D(l,d) = La—d.b—d.c—d)

called the deflation of I by the amount d. For a set .# of triangles
we define

D(#,d) = {D(l,d): Ie #} (11.1

For points x = x,,Xx,, ¥ = ¥,,V, we measure their distance by

max (|x, — xl, | yy — yz).

For a set Ein W and a positive number d we denote by I'(E, d) the
set of points at a distance d or less from E. We call it the d-blowup
of E. For a set E, let us denote by D(E, — d) the smallest triangle
I with the property that its deflation D(E, d) contains E. These two
operations are extended to sets similarly to (11.1). The relation
between rectangular and triangular inflation is expressed by the
following relations, which can be immediately verified. Let 7 be a
triangle, p be a point not contained in J, and d a positive integer.

I'(p.d) &lt; D(p, —3d),
(11.2

[(p.d)nD({,3d) = &amp;
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Both the deflation of triangles and the blowup of sets are additive.
in the sense of the following property:

D(D(l,c),d) = D(I,c + d),

['(T'(E,c),d) = I'(E,c +d).

The first identity does not hold if D(I, ¢) is empty but the right-hand
side 1s not empty.

| T.- . Reaching Consensus

Toom’s Rule has the property that it preserves near consensus.
Sometimes, we need a fault-resistant rule that besides this, always
establishes near consensus, even from an arbitrary initial configur-

ation. This problem is not unrelated to the group of problems
known under the name “The Byzantine Generals Problem.” In the
nresent chapter, we will need this property in Section 16.

For the purposes of the present section, we will use a variant of
‘he Toom Rule R defined in Section 7. In the rule R, a cell used the

majority of the northern, southeastern, and southwestern neighbors
for its next state. Now in the rule R’ the cell uses the northern and

eastern neighbor and itself. Rule R’ is related to rule R but is
simpler to analyze. (Indeed, it is easy to see that the effect of rule
R is isomorphic to the combined effect of rule R’ on four disjoint
sublattices in space-time. We will not use this fact, but will just deal
with the rule R’)

We introduce an auxiliary rule Inflate. This rule replaces the
value of a cell by the disjunction of the values of itself, its southern
and western neighbors. Let us define a new rule in which the effect
of Toom’s Rule is biased by Inflate:

RY = Inflate o (R')

Thus, each application of R* contains two applications R’, followed
by an application of Inflate. The interaction neighborhood of the
new rule has, of course, diameter 3.

If x is an evolution then we will denote by G,(¢) the set of sites
u with x[z,u}] = 1. The goal of the present section is to prove the
following theorem. Let

ery om
i: 3
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THEOREM 11.1. Assume m &gt; 16. Let y[t,u] be a trajectory of R*
over ZZ. Then G, (Kconsym) is either empty or is the whole torus.

The estimate {cons)&gt;m is certainly too high, but the present
chapter cannot attempt to find the best coefficient of m in this
theorem.

11.3.1. Geometric! Definitions

For the present subsection, triangles will be defined with the helg
of the linear functions

(a,B)= —a, L@p)=—B, L@p)=a+8

These are the triangles naturally associated with rule R” as the old
triangles were with rule R. Now R’ shrinks a triangle L'(a, b,c) to
L'(a,b,c — 1). The size ofatriangle L’(a, b,c) is given bya + b + c.
Thus, the rule decreases the size of each triangle by 1. We also
introduce a new neighborhood relation on the two-dimensional
lattice Z2,. The new neighbors of a cell 0 are all vectors (i, j) with

max (lil, | 7], [i +] &lt; 1.

(These are the old neighbors with the exception of the northeastern
and southwestern ones.) We will view the set of sites as a graph
where the edges connect the neighbors.

The mapping

(i, j) =» (i mod m, j mod m)

will be called the wraparound. For any cycle u,,u,,...,u, in our
graph we can compute the sum

(ty — uy) + (zs — uy) + + (uy — u,)

not taken mod m but as the sum of integer two-dimensional vectors

in the plane (not the torus). This sum always has the form (mi, mj)
for some i, j. When i = j = 0 we say that the cycle is contractable.
A connected subset of the torus is called contractable if all cycles in
it are contractable. A noncontractable cycle is called a belt. The
following lemma is elementary.
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LEMMA 11.3. A connected subset C of Z., contains no belt if and
only if there is a set C’ in Z? whose wraparound is C, such that the
wraparound has an inverse on C that maps neighbors to neighbors.
The set C’ is unique up to translation.

For a connected contractable set C we call the C’ of the above

emma the lift of C. The size of a contractable connected com-
ponent is the size of the smallest triangle containing its lift.

1.3.2. Global Behaviour of Toom’s Rule

It is sometimes easier to think of the rule R” as applied not to a
configuration x over Z2, but to the set G,. Thus, for any transition
rule D with a state-space {0, 1} and any set E = Z},, we say D(E) =
E’ if D has a trajectory y such that E = G,(0), E' = G (1).

[EMMA 11.4. Let C be a set ofsites.

(a) Suppose that R'(C) is nonempty. Then C is connected if and
only if R'(C) is connected.
The set R'(C) contains a beltif and only if C does. Suppose
that C is connected, contractable with size n &gt; 0. Then the

size of R'(C) isn — 1.

If C = Ciu---uC, is the breakup of C into disjoint con-
nected components then R'(C) = R'(C,)u---UR'(C,) is
the breakup of R'(C) into disjoint connected components
(some of whom may be empty).

)

The verification of this lemma is not difficult but requires the
somewhat tedious examination of a few special cases, so we do not

sive it here.

TueoreM 11.2. Let y(t, u] be a trajectory of R’ over Z2,. We have
G,(t) = 0 for a large enough t if and only if G,(0) contains no belt.

Proof. It follows from Lemma 11.4 () that if there is a belt in
G,(0) then G,(t) never becomes empty. Suppose there are no belts
G,(0). Then it follows from (c) and (b) of Lemma 11.4 that its
components disappear after a finite number of steps.
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11.3.3. Combining Inflation with Toom's Rule

The following lemma is easy to check

LemMa 11.5. Let C = C,u---u CC, be the breakup of C into
disjoint connected components. Then each of the connected com-
ponents of Inflate (C) is the union of sets of the form Inflate (C,).

The following inequality for an arbitrary set of sites follows from
‘he monotonicity of the rule R’.

Inflate (R'(C)) = R'(Inflate (C)). (11.3

(he following lemma follows easily from Lemmas 11.4 and 11.5,

Lemma 11.6. (a) Let C = Cu ---u C, be the breakup of C into
disjoint connected components. Then each of the connected com-
ponents of RY (C) is the union ofsets of the form R* (C,).

(b) If C is connected and R* (C) is contractable with size n then C
is contractable with size n + 1.

Let y be a trajectory of R*. A connected component C’ of
G,(t + 1) is said to be an immediate successor of a component C of
G,(1) if R* (C) is nonempty and is contained in C’. A component
D of G,(t + k) is a successor of a component C of G,(?) if there is
a sequence C, = C, Cy,...,C, = D such that C, is a component

G,(t + i) and is an immediate successor of C;_,. The above lemma
says that each component has at most one successor at all times.

LEMMA 11.7. Let y be a trajectory of the rule R™, let n &lt; m. Let

C be a connected contractable component of G,(t) which has only a
single predecessor C,; at time i for all i in (t —2n..t). Then C,_,
contains a triangle of size n.

Proof. Since C is nonempty the predecessor at time ¢t — 1 has
size at least 2. It follows from Lemma 11.6 that if C,_,,,; is con-
tractable then its size is at least 2n. Let us denote temporarily
t —2n+ 1 = s. We have, using (11.3):

C_... = (RC) = (Inflate (R")*)"(C,)

5 Inflate ((RY(C)). { al
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Since C, either contains a belt or has a size at least 2n, Lemma 11.4
implies that the set (R")*"(C,) is not empty. Therefore the right-hand
side of (11.4) contains a triangle of size a. 0

Proof of Theorem 11.1. Let y be a trajectory of R*. Let us
assume that G,({consym) is not empty. Let 4, = {cons)m. For
i = 0,1,..., let us define

5. = [/48(0.6)?mY,  t,,.

First we show ¢; &gt; 0 for all i &lt; 4logm. Indeed, we have

=I — (6++6;y)

ft — 48m
1 -./0.6

‘consdm — i — 31m =m —4logm =0.

In the last two inequalities we used the definition of (cons) and
m = 16.

If some G,(¢;) with i&gt; 0, t,&gt; 0 contains a belt then G(r)
contains a belt. In the §, &gt; \/48m steps until #, the component of
‘his belt will be inflated over the whole space. Suppose therefore
that G,(;) with i &gt; 0, £, &gt; 0 has no belts.

Let n, be the number of components in G,(z;). Let us call a
connected component in G,(t;) persistent if it has exactly one
predecessor in G,(f) forall tin [t, ,,..¢;). Let be the first i such that
at least n, /6 of the connected components in G,(t;) are persistent.

First we showj&lt;4logm. For any i &lt;j, at least Sn;/6ofthe
connected components are not persistent. Each of these com-
ponents has at least two predecessors in G,(¢; , |). We have therefore
m;., = 5n;/3 for all i &lt;j. It follows that n, &gt; (5/3) &gt; 2%. For
i = 4logm this would give n, &gt; m7, i.e., the number of components
would exceed the size of the whole space.

Let C be a persistent connected component of G,(1). It follows
from Lemma 11.7 that the predecessor of C in G, (1; —[6;/27)
contains a triangle of size[ §,/27, i.e. it contains at least 67/8 points.
Altogether, the set G,(1, — [§;/2]) contains thus at least as many
noInts as

1; 0 (3)2J &gt; |Z) ZL

687 \3/ 48
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Using the definition of J;, this is greater than number m” of points
in the torus. 0

12. A HOMOGENEOUS MEDIUM RESISTING SPARSE
NOISE

 2 Eliminating Space-Time Dependency

In this section, we construct a medium AM, that does everything
that M,, does in Theorem 10.1, but it will be homogeneous, i.e. a
nedium in the original sense of our definitions.

For the sake of the present section, let us denote

(sick) = 1°

(dev) = {sickd + 12

{corr = 10¢sick) + (dev)

CONDITION 12.1 (SIZE).

Q = max (3Q’, 0’ + 2{corr)r).

Uz=(U/Q0%logQ,

O|U.

There are many ways to satisfy these conditions, as shown in the
-emark after Condition 10.1.

THEOREM 12.1. Suppose that the Size Condition 12.1 is satisfied.
Then there is a medium M, and a simulation ¢ satisfying the asser-
tions of Theorem 10.1.

The present section is devoted to the proof of this theorem.
We can eliminate the inhomogeneity from M, formally, by intro-

ducing an extra restriction on the evolution. We add three new
tracks, i.e., three new variables denoted by 1, wr, 7, called the phase
variables. The variable 1 takes its value from the set [0.. U). The
variables n,, 7, take their values from {0.. Q). The new local state
space is that of M,, multiplied by the ranges of the phase variables.
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We could restrict our attention to evolutions x over the new

state-space with the property that at all space-time points (1,7, j) we
have

t(x)[t, i,j] = tmod U.

rm, (x)[t, i, Jl = i mod0,

mT, (x)[¢, I J] = jmod Q (i2.1)

This requirement means that even the faults cannot change the
values of the phase variables. Now we can modify the transition
rule of M, in such a way that instead of depending directly on time
and space, it will depend on the phase variables. This new medium
M; is homogeneous, and obviously satisfies Theorem 10.1, if we
restrict ourselves to evolutions satisfying (12.1). In what follows we
show how to eliminate the requirement (12.1).

12.1.1. Toom’s Rule for Periodic Stable States

We will use Toom’s Rule in a slightly generalized form. What we
need to preserve are the periodic evolutions of the variables 7, 7, 7,
rather than all-constant evolutions. (The generalized formulation
of Toom’s Rule is used in [Too] first.)

The rule for t is (arithmetic operations are mod U):

‘Th + 1,i,j]=Majlhi, j+ 1], thi — 1, j — 11,

thi+1,j—1]) + 1.

[he rule for =, is (arithmetic operations are mod Q)

tlh+1.4,j]=Maj(m,[hyi, j + 1], m [hi—1,7 — 1] + 1.

mlhi+ 1. i—11—=1).

The rule for 7, is analogous.

12.1.2. The Medium M., and the Code ©

Let us define the medium M,as follows. It works as the medium

M; on the variables different from the phase variables. To the phase
variables, it applies a generalized Toom’s Rule as defined above.
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The medium M, is homogeneous. We will prove that it satisfies
Theorem 10.1, even if the property (12.1) is not required.

The code ¢ is defined similarly to its definition in the previous
section. Decoding is exactly the same. In encoding, the phase
variables must be set correctly. The phase variable 7 will be set
to 0. In this way, the result of the encoding is always an alliance at
the beginning of its work period.

12.2. Legal Cells

Let x be an evolution. We will say that the cell at site (i, j) is legal
at time ¢ if the equations (12.1) are satisfied. Toom’s Rule has the
property that, in the absence of faults, it decreases the set of illegal
cells. This property can be spelled out in a lemma similar to Lemma
11.1. In words, if the set of illegal cells is enclosed in a triangle then
in the next moment, it will be enclosed in a smaller triangle. We
generalize to sets of triangles. If there are several enclosing triangles
then they will be able to contract onto the illegal cells only if each
of them is surrounded by legal cells. For technical convenience, we
will express this in the following form: there is a set of disjoint
triangles whose deflation covers the illegal cells. Thus, we will use
the following property of Toom’s Rule.

LEMMA 12.1. Let y be a trajectory of M, (not necessarily in the
range of @). Suppose that at time t all illegal cells are enclosed into
D(#,1), where # is a disjoint set oftriangles. Then at time t + 1, all
illegal cells are enclosed in D(4,2).

Let m = nQ, let y be a trajectory of M, over W = Z, in the

range of @. Let x be a (U, r)-perturbation of y.
Let E be an alliance. The set of sites at time ¢ — U that can have

any effect on the state of E at time ¢ is ['(E, U). Since squares of the
order of magnitude U occur this way, we will try to use U-squares
as much as possible. Condition 12.1 required U to be divisible
by Q. Therefore each U-square is the union of some alliances. Let
us call the U-squares therefore alliance clusters.

We will say that an alliance cluster C is locally healthy at
time ¢ if there is a set # of disjoint triangles with |.# | &lt; {sick)r
such that the deflation D(#,1) covers the set of illegal cells in
(CC, U).
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LEMMA 12.2. Assume that the conditions of Theorem 12.1 hold.
Let C be an alliance cluster. Then at all times hU, the following
statements hold:

(@) In each alliance E of C, in each row of E, on the InpMem
track there are at most {dev)r deviations ofxfromy.

(b) C is locally healthy.

Of course, this lemma implies the theorem. |

To prove the lemma, we will use induction on A. It holds by
definition for 4 = 0. Let us assume that it holds for A, we prove it
for h + 1.

[2.5 Singularity

First we will prove statement (b) of Lemma 12.2. Let us call a

space-time point (2, i, j) singular if either a fault occurs in the evol-
ution x at this point or (i, j) is illegal at time ¢. Otherwise, the point
s called regular. At a regular space-time point (¢, i, j), the medium
M, computes the value x[f + 1,1,j]justlike the inhomogeneous
medium M,, did. Therefore our immediate goal is to obtain a bound
on the set of singular points. The next lemma bounds their time
projection by a small set of short intervals, and their space projec-
rion by a small set of triangles. First, some remarks and definitions.

Let C be an alliance cluster. The set of sites at the time ge [U; 4]
that can have any effect on the state of C at time (h + )U is

C.=T[C,(h+ DU — g]

[Let us define

(kill = (4.5¢sick) + 18)r + 1

Notice that the first inequality in Size Condition 12.1 implies

10k &lt; 0. (12.2)

LEMMA 12.3 (SINGULARITY LOCALIZATION). There is a set Y of
times in [U; h] consisting of 9r intervals of length (kill), and sets A.
L of triangles with

 wW| &lt; 9¢sickDdr. | Z| - ick
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such that the following holds. For any singular space-time points
(q,1, J) during [U; h) with (i, j)e C, we have

ge YUThU..hU + &lt;killy),  (, j)eU D(H v2), 1).

For g &gt; hU + (kill), the site (i, j) is covered even by the smaller set
D(Z,1).

This lemma implies statement (b) of Lemma 12.2. Indeed, inequality
(12.2) implies (h + 1)U &gt; hU + (kill). Therefore the set of singular
sites, and thus certainly the set of illegal cells at time (kh + 1)U is
covered by D(Z, 1).

[ Lrieng.e vevelopmen

(2.4.1. Noise

I'he set C,, consists of nine U-squares. The domain of space-time
involved is covered by the nine cubes above these squares. Since
x is a (U, r)-trajectory, there are at most 9r faults in these cubes.

For a number ¢ in [U; A], let #, be the set of projections of the
faults in this domain happening at time ¢. The number g will
be called singular if the set &amp;, is nonempty. Otherwise, it is called
regular.

Let the set X consist of all singular numbers g. We define

r= lg. q+ kill)

By definition, the set Y can be covered by 9r intervals of length
(kill.

It is convenient to take the set 4, into account via the following
set of triangles:

¢ = D(F,, —1Y.

Here, each point of &amp;#, was enclosed intoa triangle of size 0 (itself),
and then this triangle was blown up by 1. The blowup provides for
the possibility of a later deflation by the same amount. The size of
each element of .%, is 2. Therefore the sum of their sizes is at most
187
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12.4.2. The Triangle Sets %.

Let us define for all ¢ in [U; A] a set .#, of disjoint triangles such
that the following proposition holds.

LEMMA 12.4. At time q, the system D(%,,1) covers the illegal

cells in C,.

The set .#, will be defined inductively. Since we assumed that C,,
is locally healthy at time AU, for each of the nine alliance clusters
in C,,, there is a set J; of triangles of size less than {sick)rforwhich
D(X; ,1) covers the sick cells at time hU. We define

bo=A = (Y oA)

We proceed to the definition of .#, for ¢ &gt; AU. Let us assume that

#, is defined

fo 2
(F,0%,) if qis singular.

D(#£,,1) otherwise.

With this definition, the proof of Lemma 12.4 is easy by repeated
nse of Lemma 12.1. Mm

12.4.3. Vanishing Triangles

The next lemma states that by the time g = (kill) the deflations
liminate the effect of the set .#,,,.

Lemma 12.5. For all se[hU..(h+1)U — Kkill)) there is a

gq in [s..s+&lt;kill))forwhich4,isempty. Consequently, for
all q 2 hU + (kill) the triangles in #, are covered by D(%,1)
with

A#=(UZ
The second statement follows because we built .#, by consecutive

merging of elements of .£ to .#,,,.
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Proof. Suppose that .#, never vanishes between s and s + kill}.
Let us calculate the decrease of the size of .#, during this interval,
combined with the sum of all increases since time AU. At singular
points g, there is a possible increase by the size of &amp;,. The sum of
these increases is at most 18r. There are at most 9r such points. For
at least (killy — 97 points in [s..s + &lt;kill}), the decrease is at least
2. The total decrease from the size of .#,,, thus is at least

2({killy — 9r) — 18r = 2&lt;kill&gt; — 36r &gt; 9{sickHr

by the definition of (kill). But 9{sick)r is the upper bound on the
size of .#,,;. The size of .#, would thus have decreased below 0. The
contradiction proves the lemma. O

Proof of Lemma 12.3. Let the space-time point (g,i, j) be
singular. It follows from Lemma 12.4 and the definition of .#, that
(, j) is in a deflation of an element of .#, thus itis in D(A" L ZY)’, 1)
since (AL £)’ covers all sets .#,. It follows from Lemma 12.5 that
g is in YU[hU..hU + (kill}), and that if ¢ &gt; AU + (kill) then
(i, j) is in D(Z, 1). O

2.5.  Computatior

To end the proof of the first statement of Lemma 12.2, let us
remember that we assumed its assertion for A, and are proving it for
h+ 1.

Let us estimate the deviations at time (A + 1)U. Since we obtained
an upper bound on the set of singular points during the space-time
period of the computation, we can follow the proof of Theorem
10.1, i.e., the proof of Lemma 10.1. The program still consists of Q
calls to the procedure CompColumn(s,t), and a last step copying
QutMem to InpMem.

LEMMA 12.6. If site (i,j) in column s has deviations on the
InpMem track at time (h + 1)U then either the duration of call s
intersects the set Y or there was a singular event at (i, j) some later

time.

Proof. Only a singular event can create new deviations on the

InpMem track. According to the Singularity Localization Lemma,
the sites of the singular events are all covered by a deflation of the
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set (AU ¥)’. Therefore each row contains at most || + |Z} &lt;
10{sick&gt;rnewdeviationson the Imp Mem track. Each row contains
at most {dev)r old deviations, making the total (10{sick) +
{dev))r = {(corr)r. Under the Size Condition 12.1, we can con-
struct a code Algeb just as in Section 10.3, to correct this many
deviations (error bursts, in the original terminology, but each
“burst” is confined here to one cell). Therefore if a call s has no

singular event its computation starts with the correct input and it
will write the correct value on the QutMem track.

Lemma 12.3 says that the times of the singular events are covered
by YU [hU..(hU+&lt;kill))). After the first idling steps of the
program, the first call s = 0 begins at time AU + 2Q, which is,
according to inequality (12.2), greater than AU + (kill). Therefore
if a call s intersects with the time of a singular event then it intersects
with the set Y. nl

To finish the proof of the first statement of Lemma 12.2, we
sstimate the number of columns s for which either the duration of
the sth call intersects the set Y or there was a singular event at some
later time in the column.

The set Y consists of at most 9r intervals of length (kill). Accord-
ing to inequality (12.2) we have (kill) &lt; Q. Therefore each of these
intervals can intersect the duration of at most two calls. This is at

most 18r calls. The number of columns s in any row in which a

singular event happened after iteration s can be estimated by
|-#| &lt; {sick)r. The total number of deviations in any row at time
(h + 1)U is thus at most 18r + {sick&gt;r = {(dev)r. OJ

12.6. Reaching Consensus in the Presence of Noise

This section applies the technique developed in the present section
.0 the model introduced in Section 11.3. The notion of triangles, the
constant (cons) etc. used here are therefore those used in Section
11.3.

THEOREM 12.2. Let x{t, u] be an evolution over Z+ x Z?,, and r
an integer less than m. Suppose that x has at most r faults with respect
to the rule R*. Then there is an integer b = 0 or 1 such that for all
t &gt; (cons) (r + 1)m there is a set of triangles of total size less than
dr covering the set of sites u with x[t,u] # b. If at time 0, there is a
set of triangles of total size less than 4r covering the set of sites u with
x[0.ul # b, then b = b,.
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The bound (cons) (r + 1)m is probably too high. We conjecture
that if r = o(m) then O(m) can be written in its place.

Notice that about m? processors are used here to fight r faults,
where r is approximately m. This is analogous to the results in [Ly]
where, in case of r permanent faults, approximately an r by r array
of processors is needed to achieve consensus. (By permanent faults,
we mean cells that can act arbitrarily.) The rule R™ is sensitive to
even a small number of permanent faults. Two permanent faults
can keep an arbitrarily large triangle forever from shrinking. It is,
an interesting open question whether, in case the consensus must be
achieved by a homogeneous array of automata, an r by r array is
necessary to achieve consensus in the presence of r transient faults.
The rule R* can certainly be fooled by as many faults as the size of
the torus, whether they are placed at one time, or at a constant
number of places but for a long time. Is this true of all rules?

Sketch of proof. The proof of the second statement of the
theorem is similar to (only much simpler than) the proof of the
Singularity Localization Lemma 12.3. We build sets .#, of triangles
and estimate their size increases and decreases.

To prove the first statement of the theorem, note that there is a
time interval of length {cons&gt;m between times 0 and {cons} (r + 1)m
when no faults occur. To this time interval, we can apply Theorem

11.1. OJ

13. COLONIES

[n Theorem 12.1, we found a medium M, that, under certain noise
conditions, reliably simulates a given medium Med,. There is
no universal medium for this sort of simulation, even if we fix

the medium Med,. Indeed, the cell capacity of the medium AM,
crucially depended on the pair (U, r). Nevertheless, we will bring
all the different simulated and simulating media to a “common
denominator.” To standardize the simulated media, let us first
choose some universal Turing machine Turing. For any medium
Med, let us encode the alphabet Sy.q, into binary strings of fixed
length [Med,|. This binary encoding is called expanding: we expand
a symbol s into the string bin(s). Now let Prog, be some program
(e.g., first one) that computes on Turing the transition function
Med, from its nine arguments when each state s is represented by
hin(s). The program Prog, describes the parameter |[Med,| as well.
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The common denominator will be more interesting to find for the

simulating media M, and different noise conditions (U,r). We
define a new universal medium Univ. In the previous section, we

simulated each Q’-square of Med, by a Q-square of M,. Now for
some integers P, T where T is a multiple of P, we subdivide the
plane into squares of size P that will simulate, in a working period
of size T, the cells of medium M,. Just as we used a name for the

0-squares of medium M, calling them “alliances,” we will use a
name for the P-squares of medium Univ, calling them colonies.

Actually, we will dispose of the intermediate medium AM,
altogether. Instead of saying that we simulate M, by Univ and
combine this with the simulation of Med, by M,, we will just say
that we simulate the Q’-squares of Med,, using Q P-squares of Univ
called alliances. Here the medium Univ does not depend on Med,
or any of the parameters.

13.1. Cells with Nonunit Size and Worktime

Later, we will consider evolutions of Univ that were obtained by
decoding from some other evolution of another medium. In such
cases, it is useful to measure the size and worktime of cells by the
cost in space and time in the simulating medium. For this later goal,
we generalize slightly the model considered so far. We introduce
two, not necessarily integer, parameters, the cell size « = 1 and cell
worktime § = 1. If there are m cells across the torus then the space
W will consist now not only of sites with integer coordinates but of
all points with coordinates (i, j) where (i, j) are real numbers in
[0, ma). Each cell of the space W occupies a square of size a.
Similarly, each transition of the medium Univ will take § time units.
Of course, the notions of evolution and trajectory are modified
accordingly: evolution x[¢, 4] is defined only for instants ¢ that are
multiples of B. Let us introduce the integers

P’— Plo. T = TB

During T units of time, only 7” actual state transitions of the
medium Univ occur, and the number of cells across a colony is only
P’. It is reasonable to require that 7’ be significantly larger than P’,
in order for the colony to have time to receive information from the
aeighbor colonies and some time to process it. Let us require

 Nn Tr! { 31
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The numerical parameters determining the model are thus

Pp. T.0,UQ0 , U.P, T,r.

(3.2. Noise

To the assumption that the medium M, has at most r faults in
every U-cube, we make a corresponding assumption under the new
conditions. The correspondence cannot be perfect since sites of M,
correspond to squares of size P and working period 7. Since we
want to look at the colonies only at times # = ¢T, and since the
effect of faults can be expected to spread during each work period,
we account for faults by the abstract notion of noise. The noise is
a given union A” of some T-cubes.

Let us generalize the probabilistic noise bounds of Section 9. Let
us be given some probability distribution on all unions of T-cubes.
This distribution gives rise to a random union &amp; of 7-cubes. For a
parameter p, we say that the distribution of &amp; is p-bounded if for all
k, all finite sets 4 = C, uu C, of disjoint T-cubes, we have

Prob (4A = &amp;) &lt; p*

The noise in a UT-cube C will be called (U, r, T)-sparse if at most
r of the T-cubes of C belong to it. Since in the present section,
U,r, T are fixed, we will not indicate the dependence on them. The
noise is sparse over a union of UT-cubes if it is sparse on each of
them. It is sparse over some other space-time set FE if it is sparse
over a union of cubes covering E.

Faults in M, were transient. After the fault happened, a cell of M,
obeyed again the transition rule. Why would a fault in a colony
have only a transient effect? The simulation that the colonies perform
most probably depends on some structure within the colony that
will be destroyed by the fault. Our present solution to this problem
will be to define it away. We will make further restrictions on the
permissible evolutions. The particular form of the restrictions is
dictated by our needs to be able to prove them under certain
circumstances.

Since T-squares [T;i, jJ* will appear frequently below, we give
them a name: we call them clusters. For a cluster E, we call the set

[(E, T) its neighborhood. It is the union of nine clusters.
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[3.2 Parameters and Phase Variables

Before we present the structure restoration condition we must say

something about the notion of structure.
To find the boundaries of the colony at the beginning of the work

period, let us mark the left-most column and the top row by a

special symbol.
lo give us some freedom for later tuning, let us add one more

parameter: a number modif of yet unspecified role that will later be
used to modify the action of Univ. Let us set aside the row second
from the top for the parameters P’, Prog,, modif, r abbreviated as
P’,...,r. This area is called the parameter field.

In the construction of the medium M, in the preceding section,
-hree variables called the phase variables played a special role. The
-ole of these variables will here also be a distinguished one. We set
aside a fixed field for them in the colony called the phase variable
field: the row below the parameter field.

Now we are ready to define a standard
Let us assume that a special symbol set

Sint — Suni

and an element

topleft € Syniv\ Sinit

are given. A colony C = [P;i, j]* is called healthy at time qT (with
respect to the evolution x) if

x[qT,u] = topleft for all sites u that are either in the top row
or in the leftmost column of C.

x[qT, ule S,;, for all sites in C not in the top row or left-most
column.
The first two integers in the parameter field are P’ and 7’

The notion of health thus depends on the parameters P’. T’. This
is not essential, but convenient.

A healthy colony is [P; i, jis legal with respect to the parameters
P’,..., rat time ¢qT if the parameter field contains these parameters,
and the phase variable contains the integers g mod U, i mod Q. and
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The medium Univ supports colonies if the following condition
holds, for all P’, T’ with P’| T”, for all trajectories y with unit cell
sizes and worktimes and for all colonies C healthy at time 0.

C is healthy at time 7.
The configuration of C at time T depends only on the
configuration of its nine neighbors (including itself) at time 0.
Assume that in addition, two of the northern, southeastern,
and southwestern neighbor colonies are legal at time 0 with
respect to some parameters P’,...,r. Then Cis legal at time T.

We will be interested only in media Univ supporting colonies.
Colony support will be easy to add to the program of a medium that
does not have it.

Let ¢ be a simulation whose code maps Med,-configurations
z[B] over a square B of size Q’ into Univ-configurations x[C] =
@4(z[B]) over a square C of size QP. We say that the simulation ¢
is standard if for each configuration x[C] of the form ¢.(z[B]), all
colonies in the alliance x[C], are legal with the value 0 in the phase
variable T.

Damage, Quarantines

We introduce a way to keep track of the bad parts of a configur-
ation x[¢gT]. For all ¢, we introduce a set Damage(q7) =&lt; W. This
set consists not only of points that are sites (i.e., whose coordinates
are multiples of a) but may contain also other points of the torus
W. For all clusters C the set C n Damage(qT') will be the union of
a finite number of convex polygons. The set Damage (0) will be
assumed given, and the set Damage(qT') will be defined inductively
for g &gt; 0.

It is often convenient to take the set Damage(gT') into account
by a set of disjoint triangles containing it. Let C be a union of
clusters. We will say that a set .# of disjoint triangles is a quarantine
at time g7 on C if we have

C nDamage(qT) &lt; UD(F#,T).

The deflation D(#, T) is used in the above definition because the
quarantine must cover the damage by a well-separated system of
triangles.
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For all C and ¢T there is a minimal quarantine. Indeed, the set
C n Damage(gT) is the union of a finite set # of convex polygons.
The set D(#, — T)’ (see Section 11.2) is then the minimal quarantine.

Suppose that Damage(gT') is defined. Let C be a cluster. Let .#
be the minimal quarantine for C’ = I'(C, T). We define

C nn Damage((g + YT)

fenupe ts P) ifNN(TqlxC)=CC

Thus, the damage shrinks in the absence of noise, and it maximally
grows in the presence of noise. We will be interested only in evolu-
jons that satisfy the following condition.

ConDITION 13.1 (RESTORATION). All coloni-s disjoint from
Damage(gT) are legal at time qT.

This condition says, implicitly, that if, in the neighborhood of a
cluster C, the illegal colonies are confined to well-separated triangles
then, in the absence of noise, these triangles shrink.

We call a cluster C = [T;i, j J’ regular at time gT if the following
two conditions are satisfied.

The neighborhood C’ = I'(C, T') of C does not intersect with
the noise during the interval [T; gq].
C’ nn Damage(¢qT) = 0.

Otherwise, we will call C singular at time gT. We will also call the
triple (q, i, j) singular.

The following condition requires that the evolution of Univ we
are considering should behave like a trajectory on regular clusters.

CONDITION 13.2 (COMPUTATION). Let the cluster C be regular at
time qT. Then the configuration x[(q + 1)T, C] is what it would be if
x was a trajectory of Univ starting from the same configuration
x[gT, C1.

3.5. Summary of the Primitive Notions

We can divide the ingredients of the model into two parts. The
first group contains those ingredients chosen bv us. the machine
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designers. The second group relates to the constraints imposed on
the evolution that is otherwise chosen by nature.

Our choice:

The parameters P',T°,Q,U,Q’, U’, P, T, Prog,, modif,r. (The
notions of health and legality are now defined.)
The colony-supporting medium Univ.
The standard simulation o.

Nature’s choice:

The evolution xf{¢, i, J];
The noise A;
The set Damage(0).

The triple (x, 4, Damage(0)) will be called a self-correcting evol-
ution if it satisfies the Restoration Condition and the Computation
Condition. Thus, when we say that the evolution x is self-correcting,
we assume that the other two ingredients of the triple are also given.
The notion of a self-correcting evolution depends on the parameters
P’....,r and the medium Univ.

A self-correcting perturbation of a trajectory y in the range of the
simulation ¢ is a self-correcting evolution (x, 47,0) such that x
coincides with y at time 0. A random self-correcting perturbation of
a trajectory y is a self-correcting p-perturbation if the random noise
A is p-bounded. The problem of how to find random self-correcting
perturbations with a small noise probability will be partly addressed
in Section 13.7.

13.6. Size Conditions and Simulation Theorem

The theorem stated in the present section is analogous to the
theorem of the previous section, using the Restoration Condition in
place of Lemma 12.1. To emphasize the analogy and save notation,
we will use some of the names and notation used in the preceding

section with slightly different but analogous meaning. For the
present section, let us define the constants

(sick) = 72.

(dev = 180.

wadJrr = (dev + 27({sick&gt; + 6). (13.2
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[n the new Size Condition below the lower bound on QP’ is needed
for the existence of a code correcting enough error bursts and
enough simulation space. The lower bound on P’ makes sure
that numbers smaller than U,Q and T as well as the program
of the transition rule Med, are representable within a colony.
The bound for UT’ is similar to the one found in Size Condition

12.1, with UT’ replacing U and (QP/T)QT’ replacing Q&gt;. The
multiplier QP/T is the number of repetitions in the program. The
expression QT” measures the time taken by Q colony work periods.
L.e., the time to get any information across the alliance. The lower
bound on 7” is the same as (13.1). The divisibility assumptions
serve only convenience. The constant Step, measures the time
needed by the Turing machine Turing with program Prog, to
compute the transition function Med,. We assume that the size
IProg,| of the program also measures the space needed for the
computation.

ConbpiITION 13.3 (SIZE).

oP’ &gt;max (30'IMed,|, 0'[Med,| + HeorprP'T) | (13.3)

I "&gt; max (log U.log T”, IProg,|, 'modif|).

2 U’ op
DT 5 om Se I’ PoT 0 log (Q ")Step,.

YD

PIT, lo. Ocv7

(12 4)

(13.5)

(14.6)

Let us show how to satisfy all these conditions but (13.4). This
remaining condition can be easily satisfied if we do not choose our

parameters to be exponentially large compared to P’. Let Q’, U’,
Prog, and modif be arbitrary. Let P’ be large enough such that
Progy| &lt;P’. Let P&gt;P'. Let T&gt;T’ be a multiple of P large
enough for (13.6). Let Q be a multiple of T/P large enough for
(13.3). Let U be a multiple of Q large enough to satisfy (13.5). In
this way, all Size Conditions will be satisfied
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THEOREM 13.1. There is a medium Univ supporting colonies
such that for all P’,...,r satisfying the Size Condition 13.3 with
modif = 0, there is a standard simulation ¢ of Med, by Univ such
that the following holds.

Let y be a trajectory of Univ in the range of @ over the space
Ww = z, », and let (x, /",0) be a self-correcting perturbation of y. If
the noise N is (U,r, T)-sparse then for all nonnegative integers h
we have

p*(x[hUT,W)]) = o*(y[hUT, W)).

This theorem will be proved in the next section. The rest of the
present section discusses the ways in which we will find self-correct-
ing perturbations.

| 2 Implementations

We can view the medium Univ as the ideal, programmable
medium to be used for computation. In order to achieve reliability
in the real world, we have to find some physical “implementation”
of Univ, in such a way that arbitrary evolutions of M are decoded
into self-correcting evolutions of Univ.

The main ingredient of the implementation is a simulation .
Let the medium Univ support colonies. Let P’,T’, P, T be given
satisfying

 il - 9p’, P’ _P, TT" &lt;T. P|T. (13.7)

Let M be a medium and let ¢ be a simulation with parameters
P,P, T,T, that maps from the space W* of Univ into the space W
of M. (With the introduction of nonunit cell sizes, it is not restric-
‘ive to require that the simulating colonies in M have the same size
and worktime as the simulated ones in Univ.) Let z be an evolution
of M. We define the evolution x = yY*(z) for values t = ¢T as

x[¢qT] = Y*(z[qT)).i.e., we obtain x by decoding from z. We define
¢[t, u] for values t that are not a multiple of T in an arbitrary way.

Besides the decoding y*, we must say how noise and the damage
are found in the space W*. Let

 Ww — (yr. Ne, Damage)
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be a triple where is the code assumed above. To each evolution,
z of M, the mapping A%(z) orders a union of T-cubes in the
space-time over W*, The mapping Damage, (z) (0) orders a subset
of W* to each evolution z.

Let 0 &lt; p,,p, &lt; 1. We call the triple ¥ an implementation with

parameters

Pr. p, T,p.,p,

[f the following properties hold.

Suppose that the parameters Q,..., r supplement P',T’, P, T
In a way satisfying the Size Conditions. Then for all evolutions
z of M, the triple

(W*(2), Vy(z), Damagey (2)(0))

is a self-correcting evolution.
Suppose further that for some trajectory y of Univ, the
random evolution { is a p, -perturbation of ¥,( y) (in the sense
of Section 7). Then the triple [Y*({), A ({), Damages ({)] is a
self-correcting p,-perturbation of y.

Of course, the notion of implementation depends on the choice
of Univ. Our goal is to find implementations with constant p,
and small p,. This will be achieved in the following way. First, we
find a trivial implementation in the paragraph below. Then, in
Section 16, we show how to turn an implementation into one with
a smaller p,, using a special self-simulation of Univ that we will call
an amplifier.

Let us give a trivial but important example ¥, of an implemen-
tation.

LEMMA 13.1. Let P’, T’, P, T be parameters satisfying (13.7), and
0 &lt; ¢ &lt;1. There is an implementation with the parameters P’, T’.
P,T, o,o0.

Proof. We introduce a new medium M over the state set Sy =
Sh, whose states are the healthy configurations over clusters
[T;i, j1’. The transition rule computes from the states of nine
neighbor cells in one step what would have been computed in 7
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steps by Univ from the corresponding clusters. The encoding i, of
the code y, are equal to the identity function, defined on the healthy
cluster configuration. In the space W of the medium M, we intro-
duce cell size and cell workperiod T.

For an evolution z of M, a cube [T;q,1i, j]’ in W* belongs to

the noise 4%,(z) if the corresponding “cube” [T;q,i, j]’ in the
evolution z contains a fault. The set Damage,(2)(0)istheunion of
illegal clusters at time 0.

The Computation Condition will be satisfied automatically for
an evolution x defined this way. Health is not a problem, since in

this evolution, all colonies are healthy at all times, by definition.
The Restoration Condition can be proved by induction on ¢ since
the medium Univ supports colonies. O

[ 4 UNIVERSAL ROBUST SIMULATION WORKS

(4.1. The Form of the Universal Simulation

The program of the simulation of an arbitrary medium Med, by
colonies of Univ will be almost like the one for cells of M,. In
particular, the period-for-period application of the Toom Rule
results in the colony-supporting property of Univ. Let us still point
out some small differences.

14.1.1. The Error-Correcting Code

We represent each row of a Q’-square as a binary string of length
Q'|Med,|. Let n be the greatest integer &lt; P’T/P of the form 2 + 3°.
We subdivide each row into segments of length n, using possibly a
partial segment at the end: there are K segments, with

K = [Q’'|Med,|/n].

We use Theorem 8.1 to find an error-correcting code Algeb
encoding these strings into strings of length

Nn = (K + 8{corr)rn X ('|Med,| + (8{corrd&gt;r + NHP'T/P

and correcting 4{corr)r bursts of errors of length n. By Size
Condition 13.3, these codewords are smaller than QP’. therefore



Self-Correcting Two-Dimensional Arrays

will fit into a row of the alliance. The n-cell segments can reach
across colony boundaries.

Now the code ¢ is defined much as in Sections 10 and 12.

Decoding is the same. The encoding creates legal colonies that are
about to start the working period of the alliance.

14.1.2. Variables into Fields

Some variables will now occupy several cells. This will happen,
&gt;.g., to the phase variables. Since the size of their field depends on
0, U, they cannot be part of the state of a single cell. We assigned to
them the phase variable field.

14.1.3. Toom Phase Protection

To make colony support complete, we must apply Toom’s Rule
to the parameters and phase variables in every work period of every
small colony. As long as a colony is healthy it does not cause any
problem to do this. The parameters and phase variables of the
northern, southeastern, and southwestern neighbor small colony
are read in. After the application of the Toom’s Rule to the
parameters, the result is written into the parameter field. After this.
using Q and U, the generalized Toom’s Rule is applied to the phase
variables. This operation is repeated in every T-interval, e.g., in
parallel (using separate tracks) with everything else done by the
colony.

14.1.4. Computation

Even after decoding by the code Algeb, the cell states of Med, are
represented by binary strings of length IMed,|. The simulation part
Compute of the program will be less direct now than it was when
one cell of the simulated medium was represented in one cell of the

simulating medium. The simulation of one step of Med, will be
carried out for each cell of Med, with the help of the program Prog,
simultaneously on all these strings.

(4.1.5. Qutvut Columns

Another slight difference between the new program and the old
one is that in the old program, in the procedure Qutput(s. 1). only
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a single column was written. Now this procedure will write in a
column of width T at once, i.e., in the part of the alliance whose
projection is the interval [Ts]. This is the reason for the factor
QP/T in the Size Conditions.

14.2. Local Health

Just as clusters (T-squares) are often more convenient than
colonies, UT-squares are often more convenient than alliances.
They will be called alliance clusters.

We will say that an alliance cluster C is locally healthy at time qT
if it has a quarantine .# with

|#| &lt; sickHrT.

For ¢g in [U; 4], lef

C, = T(C,((h+ DU —g)T). (14.1)

This is the set of those sites whose state at time g7 can have some
effect on the state of the UT-square C at time (4 + 1)U. The next
lemma is analogous to Lemma 12.2.

LEMMA 14.1. Assume that the conditions of Theorem 13.1 hold,
and the medium Univ and the code ¢ are defined as above. Let C be
an alliance cluster. Suppose that at time hUT, the following state-
ments hold:

In each row of each alliance of C,,, the deviations of the
InpMem track of evolution x from the trajectory y are coverea
by (dev)r T-intervals.
C,,, is locally healthy.

If the noise is sparse over C,y; X [UT; h] then the same statements hold
at time (h + NUT.

The two statements of the lemma hold, of course, for 4 = 0.

Therefore the lemma implies that they hold for all A, which will
prove the statement of Theorem 13.1. []
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14.3. Triangle Development

We begin with the lemma analogous to Lemma 12.3. Let

‘KID = 11¢sick&gt;MrT/P

The relation

10¢killy &lt; © (14.2)

follows immediately from the Size Conditions 13.3.
For any set .# of triangles, let us denote

#0 =D(££.T).

LEMMA 14.2 (SINGULARITY LOCALIZATION). There is a set Y of
times in [U; h] consisting of at most 9r intervals of length (kill), and
sets A, L of triangles with

|| &lt; (sick HrT, || &lt; 9¢sickHrT (14.3

with the following properties. Let § = (A w LY. At all times qT
with q in [hU..(h + )U], the set § is a quarantine for C,. For
q &gt; hU + (kill), the same is true for £.

Suppose that cluster E in C, is singular at time qT for
gq &lt;(h+ DU. Then q is in YU[RU..hU + (kill)), and T(E, T) is
intersected by #°. Ifq¢ = hU + (kill) then T(E, T) is intersected by
the smaller set #°

This lemma implies the second statement of Lemma 14.1. Indeed,
it says that the set .Z, of size &lt; {sick)r7, is a quarantine for C at
time (h + DU.

14.3.1. Noise

The set C,, = I'(C, UT) consists of nine alliance clusters. The
domain of space-time involved is covered by the nine cubes above
these squares. Since the noise is sparse, at most 9r of the T-cubes in
this domain belong to the noise. For a number g in [U; 4], let #, be
the set of projections of the T-cubes belonging to the noise in this
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domain at time g7. The number gq will be called singular if the set
#, is nonempty. Otherwise, it is called regular. Let Y be the union
of intervals [q..q + (kill}) for all singular numbers gq.

To each T-square Fin %,, we order a triangle L = D(I'(F,T), —T)
with size |L| = 8T. Performing this operation for each element F of
#, we arrive at the set &amp;, of triangles. Let us define &amp; = (U, %,)".
We have

|L| 29-8T = {sick)rT

14.3.2. The Triangle Sets %,

Let us define for all ¢ a set .#, of disjoint triangles such that the
following proposition holds.

LEMMA 14.3. At time qT, the set #, is a quarantine for C,. If E
is a cluster in C, singular at time qT then D(4,0 J, ,, T) intersects
['(E, T).

The set .#, will be defined inductively. Since we assumed that C,,
is locally healthy at time AUT, for each of the nine alliance clusters
in it there is a quarantine J; of size less than {sick rT. We define

9 3,

Ip = AH = (Ux).

Then J is a quarantine for C,;,. We proceed to the definition of .#,
for g &gt; hU. Let us assume that .# is defined. We define

5 (D(S£,,P)v ZL) if ¢ is singular,
“' 7 Ds, P) otherwise.

We see that all sets .#, are covered by ¢ — (Hu LY

Proof of Lemma 14.3. This lemma is essentially an immediate
consequence of the definitions.

Let us prove first that 4, is a quarantine for all g. We use
induction on gq. For g¢ = hU, the statement follows from the

definition of .#,. Suppose it is true for g. If g is regular, it follows
by the definition of C,,, n Damage((q + 1)T) given in 13.4.
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If g is singular, it will also follow by this definition, applied to a
smaller area B that is unaffected by the noise. We define

RB = C,. \UT(Z,,T).

The set I'(B, T') is disjoint from the noise during the interval [T; g].
[t follows from the damage definition that D(.#,, P) is a quarantine
for B at time (¢ + 1)7. We have now

Damage((¢ + DT) = D(#,, P+ T)uI(%,, T).

By the definition of &amp;,, the second term on the right-hand side is
contained in D(Z,, T). Using the definition of .#,, , this proves
that it is a quarantine.

Suppose now that the cluster E in C, is singular at time ¢7. Then
one of the two conditions of regularity is not satisfied. If this is the
first one then the set .#,, | contains %, whose deflation contains E.
[f the second one is not satisfied then by the Restoration Condition
the set D(.,, T'), as the deflation of a quarantine, intersects I'(E, T').

i]

4.3.3. Vanishing Triangles

Lemma 14.2 will follow from Lemma 14.3, the fact that _¢ covers
UJ, #,, and the fact, to be proved in the present paragraph, that &amp;
covers Uo ans 2, [1]

LEMMA 14.4. For all se[hU..(h + DU — (kill}) there is a q in

s..s + &lt;kill)) for which 9, is empty. Consequently, the triangles in
Jos ins #, are covered by &amp;.

Proof. Suppose that .#, never vanishes between s and s + (kill).
Let us calculate the decrease of the size of 4, during this interval,
combined with the sum of all increases since time AU. At singular
points g, there is a possible increase by the size of .£,. The sum of
‘hese increases is at most |Z).

There are at least &lt;kill) — 9r regular numbers in the interval

[s..s + &lt;kill}). At each of these times. there is a deflation by P, i.e.,
a size decrease by 2P. The total size decrease at these times is at
least 2(¢killY — 9r)P. Combining with the possible increase of |.&amp;!
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and the original size |f7|, this gives

Fea] &lt;A + |Z] + 18rP — 2(killyP

&lt; (10¢sick) + 18)rT — 2¢kill&gt;P &lt; 0

By the definition of (kill), the size would thus have decreased
below 0. This contradiction proves the lemma. OJ

14.4. Computation

Now we prove the first statement of Lemma 14.1 for 4 + I. Let
4 be an alliance in the cluster C. Let us estimate the colonies with

deviations at time (h + 1)U in a row of 4. Since we obtained an
apper bound on the set of singular points during the space-time
period of the computation, we can follow the proof of Theorem
10.1, i.e., the proof of Lemma 10.1. The program still consists of
calls to the procedure CompColumn(s, t), fors = 1,...,QP/T, and
a last step copying OutMem to InpMem.

The following simple geometrical lemma is useful.

LemMA 14.5. Let # be a set of triangles. The number of clusters
E in a horizontal row with the property that I'(E, T) intersects $° is
at most 3|5|/T.

Proof. Let us estimate the number of elements of .#. We can
assume that each element J of # has a size of at least 27, since
otherwise, D(J, T') would be empty. Therefore their number is at
most |#|/(2T). It is easy to see that for a triangle J, the number of
clusters Ein a row for which I'(E, T') intersects J is at most |J|/T + 4.
Therefore the total number of intersected T-intervals in a row is at
most

2d 2 LA
SHdo = 3

LEMMA 14.6. If site (i, j) in column s will have deviation on the
InpMem track at time (h + 1)UT. then either the duration of call s
intersects the set Y or there was a singular event at (i, j) at some later

time.

Proof. Before time (h + 1)UT, only a singular event can create
new deviations on the InpMem track. According to Lemma 14.2.
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f cluster E is the site of a singular event then its neighborhood
[(E, T) intersects #°. According to Lemma 14.5, the number of
such clusters in a row is at most 3| #|. Each row contains at most
{dev)r T-intervals with old deviations, making the total

(devdr + 3|J|/T &lt; ({dev) + 27({sick) + 8))r = {corr)r.

These T-intervals intersect at most four times this many n-intervals,
according to the definition of the number # in the Section 14.1. The
code Algeb was constructed to correct a pattern of 4{corr )r bursts
of errors of length n. Therefore if a call s has no singular event it will
write the correct value on the OutMem track.

It follows from Lemma 14.2 that the singular numbers ¢ &gt; AU +
(kill) are covered by the set Y. Since the call s = 1 begins only after
207" idling steps in the program and since we have inequality
(14.2), the times of singular events during calls CompColumn(s) are
covered by Y. 1

Let us apply the above lemma to estimate the number of
deviations at time (h + 1)UT. The set Y consists of 9r intervals of
length (kill). By inequality (14.2), each of these intervals can
intersect the duration of at most two calls. This is at most 18r calls.

The number of intervals [T; s] in any row in which a singular event
happened after iteration s can be estimated similarly to the proof
above by 3|.Z|/T. The total number of deviations in any row at time
(h + 1)U is thus at most.

WLT+18r&lt; 180r = (dev)r

This proves the first part of Lemma 14.1. The second part was
proved after Lemma 14.4. Ml

14.5. The Spreading of Local Health

The second statement of Lemma 14.1 says that, under the
conditions of Theorem 13.1, alliances always stay locally healthy.
Let us strengthen this statement. A set .# of triangles is a local
quarantine for the alliance cluster C if there is a set J# of triangles
of size (sick)rT such that (D(#, UT) u #) is a quarantine for C.
We say that .# is a local quarantine for a union of alliance clusters
if it is a local quarantine for each of them.
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The deflation by UT corresponds to the earlier deflation by 7. Let
us therefore define the abbreviation

gl ~D(fF.UT ).

LEMMA 14.7. Suppose that the medium Univ supports colonies
and the parameters P’,...,r satisfy the Size Conditions. Let
(x, &amp;/', Damage(0)) be a self-correcting evolution. Let C be an
alliance cluster, h a natural number, and # a local quarantine for C,,
at time hUT. Suppose that the noise A" is sparse over the set
C,u xX [UT;h). Then D(F,QP) is a local quarantine for C at time
(h + HUT.

This lemma is a generalization of the second statement of
Lemma 14.1 speaking about the preservation of local health. That
statement becomes a special case with an empty set .#. The lemma
is a step in our plan to prove the Restoration Condition for “higher
order” colonies, simulated by alliances.

We will prove the above lemma by proving the following, some-
what stronger but less transparent, lemma which also contains a
generalization for some parts of Lemma 14.2.

LEMMA 14.8. Assume that the conditions of Lemma 14.7 hold
Let us define, for q = (kill),

#, = D(S',(q — &lt;kill))P).

Assume that the noise is sparse over C,, during the time interval
[UT;h). Let the sets A, £, Y be defined as above. Then the
set (J'UAH LLY is a quarantine for C, at time qT for all q in
[AU ..(h + DU]. For q = {kill}, the same is true for the smaller set

(H,0 ZL).
Suppose that cluster E in C, is singular at time qT. Then I'(E, T)

is intersected by

DUS vu UEY,T)

If q = kill) and T(E, T) is not intersected by HY then it is inter-
sected by ¥° and gq is in Y.
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Lemma 14.7 follows immediately from Lemma 14.8. Indeed, the
fatter lemma implies that for all g, the set D(#, (gq — &lt;kill))P) is
a local quarantine for C,. Therefore for gq &gt; &lt;kill) + Q the set
D(4, PQ) is a local quarantine for C,. It follows from (14.2) that
Kill) + 0 &lt; 20 &lt; U. OJ

Proof of Lemma 14.8. We build a new sequence of quarantines
#, just like in Section 14.3, satisfying Lemma 14.3. The recursive
definition step is the same, but the starting quarantine .#,, is
different. The set Cy, is the union of nine alliance clusters B; for
i = 1,...,9. Let J; be the set of triangles with size {sick&gt;rT such
that (#' U A) is a quarantine for B;. According to the assumption
of the theorem, there is such a triangle set for all i. We define

r= (U %). Jy = (Fru

Che latter set is obviously a quarantine for C,, at time AU.
The process of creating 4, involves three kinds of steps.

Sometimes we added a new triangle. Sometimes we deflated an old

triangle. And sometimes we merged two triangles into the smallest
one containing both. For each element of .#, we can define the set
of their ancestors. New triangles are their own ancestors. Deflating
1 triangle does not change its ancestors. Merging two triangles
unites their ancestry. Those triangles that have some ancestry in .#
are called big. the rest are called small.

LEMMA 14.9. Each big triangle has exactly one big ancestor

Proof. We have to show that in the process of constructing .7,,
two big triangles will never be merged. Let H and I be two such
triangles. They are disjoint, so according to Lemma 11.2, there is a
i such that their j-separation d(H, I) is positive. The construction
begins by deflating each big triangle by the amount UT. This
increases the j-separation by 2UT. From that time on, the big
triangles suffer only merging with small triangles and further
deflation. Each deflation increases the separation. The merging
decreases the separation at most by the size of the small triangle
merged with the big one.
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The small triangles come from elements of 4” or Z, for some g,
using merging and deflation. Hence the small triangles are covered
by # whose size is bounded by 10{sick)rT. The Size Conditions
imply that this is smaller than 2UT. O

Let g &gt; &lt;kill). We find just as in the proof of Lemma 14.4 that
there is an s between AU and (kill) for which the small triangles
disappear from 4. From this time on, the small triangles are
covered by 2.

For each big triangle /in .#, let us denote by A, (7) the big triangle
in .#, whose ancestor it is. Then we have

A,(I) = D(I', P(g — &lt;kilD&gt;)). (14.4)

Indeed, just as in the proof of Lemma 14.4, we find that the total
extent of deflation of A, (1) is

gP — 9rP — | #|

&gt; (q — &lt;kill&gt;)P + &lt;killyP — 10&lt;sick &gt;rT — 9rP

&gt; (gq — &lt;kill))P.

Of course, we use Lemma 14.9 here.

This completes the proof of Lemma 14.8. Indeed, we showed that
the big triangles and .&amp; together form a quarantine, and that the big
triangles are deflated from #' by at least (g — (kill))P. 0

15. FORCING CODED OUTPUT

Section 14.5 indicated that the set of illegal colonies will shrink in
the absence of noise. Thus, legality is restored automatically.
Another important condition (used in the proof of Lemma 14.6) of
successful computation in the presence of noise is that the input is
close to a codeword of the error-correcting code Algeb. This con-
dition will not be restored automatically, even if the colonies of the
alliance are healthy, and even though the output of each fault-free
computation is a codeword. Indeed, suppose that some input words
have a larger number of deviations than the one correctable by
Algeb. Then faults can change the input in such a way that the
outputs of fault-free repetitions will be different from each other.
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We keep only a small part of each repetition in Out Mem. The result
will therefore be a mixture of different codewords, which is in
general not a codeword.

If the InpMem track contains words deviating only little from a
codeword of Algeb then the result of the computation will be the
same in all fault-free repetitions. In our program this implies that
the result (even if it is otherwise wrong) will be close to a codeword.

The present section shows that a procedure can be added to the
2nd of the program of the medium Univ that brings all words on the
horizontal rows of the InpMem track of an alliance close to a

codeword of Algeb, without significantly changing words that are
already near codewords. This property will be important for the
self-simulation in the next section.

Forrowk = 0,...,Q0P — 1 of alliance E, let u, (gq, E) denote the
word on the InpMem track in the kth row of E at time gT. Let
CodeDiff(u) denote the number of T-intervals in which the word u
differs fromAlgeb (Algeb*(u)). With an eye on the later application,
we will only consider values k &gt; 2, and will not try to change the
top three rows of the alliance.

For the following lemma, two Size Conditions need some change
with respect to Condition 13.3. Let

(dev) = 2{corr) — (dev) + 6sick&gt; + 360

We obtain {corr)’ by replacing (dev) in its definition (13.2) with
(dev):

(corr)’ = (dev) + 27({sick&gt; + 6).

The change in the Size Conditions is the following. In the first one,
(corr) is replaced with {corr)’. In the second one, QP/T is now
squared.

CoNDITION 15.1 (SIZE)

oP &gt;max (30'Med,|, 0'|Med,| + corr) rPTy
, UU (QPY

IT (4) OT log (OP")Step,
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P’ ~- max (log U,log T’,|Prog,|, Imodif}),

Tan

Tr
a“ IPIT, Fle. QIU

THEOREM 15.1. There is a procedure ForceCode, with the follow-
ing property. Suppose that the definition of the medium Univ and the
code ¢ differs from the one given in Section 14 only in that ForceCode
is attached to the end, and Algeb must be correct now {dev)'r errors.
Assume that the conditions of Theorem 13.1 hold, with the modifi-
cations in the Size Conditions indicated above.

Let C be an alliance cluster. Suppose that at time hUT, the set

C,y is locally healthy. Let f, denote the beginning of the procedure
ForceCode. Then in each alliance E of C in each row k &gt; 2 of E,
we have

CodeDiff(u(h+DU,E)) &lt; {dev)r.

If we had CodeDiff(u,(fy,E))&lt;{dev)rfor all k &gt; 2 then we have

Algeb*(u(fy,E)) = Algeb*(u((h + 1)U. E))

for all k &gt; 2. Thus, if all input words are close to a codeword the input
will not be changed by ForceCode.

The rest of this section is devoted to the proof of the above
theorem. The procedure ForceCode will attempt to decide whether
cach row of InpMem differs only slightly from a codeword of
Algeb. If this is not the case then each row will be changed to a
standard fixed codeword w,.

The procedure works within each alliance independently. We
will therefore omit the notation of dependence on E from u,(q, E).
Whenever the time gT refers obviously to the current time we also
omit the dependence on g.

In all of the following lemmas we assume that the number of
T-cubes belonging to the noise in the neighborhood of the cluster
of E in the given time period is at most 9r, i.e., that the noise is
(U, r)-sparse.
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(5.1. Computing the Votes

The crucial part of the procedure ForceCode writes a “vote”
Vote[i,s] = 0 or 1 in each cluster (i,s). The following properties
will hold, even in the presence of (U, r)-sparse noise.

There is a number b and a set .# of triangles of size O(rT') such
that Voteli,s] = b for all clusters (i, s) outside .#.
If, at time f,, for some k &gt; 2, we have CodeDiff(u,) &gt;
(2{corry — {dev))r then b = 0.

If, at time f;, for all £ &gt; 2, we have CodeDiff(u,) &lt; {(dev)r
then b = 1.

The first part of ForceCode 1s an assessment of the situation. For
the present section, let

teT
 MM a

procedure CheckCode (i, s)

for i,s = 0,...,n — 1 does the following. After Q idling steps, it
checks, simultaneously in all rows k &gt; 2 of the alliance, whether

CodeDiff(u,) &lt; {corrr

Then it computes the conjunction of these tests and stores the result
in a bit Vote[i, s] in the cluster (i, s) of the alliance. Thus, only the
place where the result is stored depends on i and s. The first part of
ForceCode now looks like this.

procedure FindVotes
begin

fori =0ton—1do
fors=0ton—1do

CheckCode (i, 5);
end

The 7’ repetitions are performed as a guard against noise. This is
the most time-consuming part of the whole program of Univ.
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We assumed that C,, is locally healthy. Let G, be the union
of all clusters F for which I'(F, T') intersects a triangle in #°. They
include all clusters in which a singular event occurred during the
original program after the first Q idling steps. (By that time ¢, as
shown in Lemma 14.8, the big triangles of the quarantine .# of the
definition of local health disappear in C,.) Let G, be the union of
all clusters (i,s) for which a singular event occurred during the
nonidling part of the computation of CheckCode (i, s). The follow-
ing lemma is obtained by an analysis of the above iteration similar
to the proof of Lemma 14.6.

LEmMA 15.1. (a) Suppose that at the beginning of the program
CodeDiff(u,) &lt; {dev)r holds for all k &gt; 2. Then at the end of
FindVotes, in each cluster (i,s) not belonging to G, uw G, we have
Voteli,s] = 1.

(b) Suppose that at the beginning of the program we have
CodeDiff(u,) &gt; {(dev)r + 2({corr) — {dev))r for at least one
k &gt; 2. Then at the end of FindVotes, in each cluster (i, s) not belong-
ing to G,u G, we have Voteli,s] = 0.

15.2. The Consensus Problem

The real technical difficulty of the present section is that of
making a decision based on the contents of the array Voteli, s]. We
cannot fight faults made during the decision as we did until now, by
mixing the results from different repetitions. In borderline cases, the
result could then namely be the mixture of some codeword and wy.
This mixture may not be a codeword, and we want a codeword

result in all cases. We can view the values of Voteli,s}] as the
different opinions of some population. We want to achieve consensus
in this population, without reversing a near consensus. This
problem was essentially solved in Section 12.6.

To apply those results, the sites of a small torus (used there to
achieve consensus) will be simulated by the clusters of the alliance.
Now, a square is not a torus but a torus can be “folded over” to a

square. To be more formal, let us introduce the mapping i — 7from

Z,,t0 [0..n) by

min(i,2n —i — 1)
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All points of the interval [0. . n) have two inverse images under this
mapping. We define a mapping

(i,5) = (1,3)

of the torus Z3, to a lattice square. This mapping maps points that
are neighbors in the torus to points that are neighbors in the square.
Let us temporarily denote by (i;,s,),...,(is,s,) the four inverse
images of (i, s).

We will use a new array Vote'[i,s] over the torus Z3,. The four

bits Vote'[i,,s,],..., Vote'li,,s,] will be kept in the cluster [T; i, 5].
Initially, the array Vote will be quadrupled into the array Vote’, by
repeating each bit of a cluster four times. Of course, since one
cluster represents four sites of the imaginary torus Z3,, one fault
will affect all four of these sites. Now the second part of the
procedure ForceCode can be written as follows.

procedure Consensus
begin

for i,s = 0 to 2n — 1 parallelly do Vote'[i, s] := Votel[i, 5;

for i = 1 to 2({cons) + 1)n(r + 1) do
Vote’ :== R* (Vote),

for i,s = 0 to n — 1 parallelly do

Voteli, s} == Vote'liy, s,];
end

In the last step, we just chose arbitrarily the first one of the four
sotes in square [Ti sP.

5.3. Analysis of the Consensus Algorithm

T'o avoid the awkward conversions between measurements, let
as give a new size T to each cell of the torus Z2,, converting
it into the real torus [0,2nT)* = [0,2PQ)* where the cells occupy
the points whose coordinates are divisible by T (see Section 13.1).
Without loss of generality, let us assume that the alliance E under
consideration is [PQ;0,0]%, i.e., its lower left corner is at the
origin. The mapping d@ now becomes min (a,2PQ — a). In the
torus [0, 2PQ)* we will also speak of T-squares. Each such T-square
holds one vote
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In the reasoning below, we use both notions of triangles: the
usual one, as well as the one used in connection with the modified

Toom’s Rule. Let us call the latter special triangles. The ordinary
triangles are defined on the alliance cluster and its eight neighbors.
The special triangles are defined on the torus [0,2PQ)*. Let us say
that a special triangle weakly covers a cluster C if it covers the
bottom of C.

LEMMA 15.2. There is a number b = 0 or 1 such that at the

end of the procedure Consensus, there is a set M of special triangles
with

AL (6¢sick) + 360)T

weakly covering each cluster [T} i, s]* of the torus with Voteli,s] # b.
In the cases treated by Lemma 15.1, the value of b will be what is
stated there.

Proof. Let us first show that there is always a number 5 and a
time ¢, during Consensus such that all votes outside G,u G, are
equal to b. In the cases of Lemma 15.1 we can take ¢, to be the
starting time of Consensus. In the rest of cases, let us locate a
sequence of 2({cons) + 1)n noise-free iterations of the rule R*. The
first 2» iterations will be enough to eliminate the set .#,, and thus
make all clusters regular. By Theorem 11.1, the remaining 2{cons)n
noise-free iterations achieve consensus. Thus we can set #, equal to
the time after these iterations.

The remainder of the proof will show that the consensus achieved
by time #, will not be overturned. Assume b = 0. The case b = 1

can be treated similarly but somewhat simpler. We construct a set
M of special triangles on the torus with the property that for all
iterations of R™ after t,, they weakly cover every T-square in which
the vote differs from 0.

For a triangle I, let us consider the four inverse images /,,..., 1,
of I under the above mapping (i,s) — (7,5). Let I, be the smallest
special triangle containing I,. For any set .# of ordinary triangles
let

LI Hy—— {I, 9.
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Thus, we merge all special triangles obtained for all elements of .
until we get a set # of disjoint special triangles. We have |I,| =
3/2|1|, hence

BE)

Let us start from the set &amp; of triangles. The number of triangles in
¥ is at most 9r. These have the property that for every cluster F
that ever becomes singular during the computation considered,
[(F, T) intersects .#. The same will be true for .# and all inverse
images of singular clusters. We have Z &lt; 6|.%| &lt; 6&lt;sick&gt;rT. Let us
obtain the set .#, of special triangles by replacing each triangle
L(a, b,c) of &amp; with L(a + 2T,b + 2T,c + 4T), and then merging.
Then all inverse images of singular clusters are (completely) covered
by #,. We have

My &lt; | P| + 8T#PL &lt; 6(sick)rT+8+4-9rT

= (6¢sick) + 288)rT.

If case (a) of Lemma 15.1 holds then at time f, set G, U G, can
contain clusters (i, s) with Vote[i,s] = 1. We covered the inverse
image of G, by .#,. Let .#, be the set of special triangles obtained
by covering the inverse images of the clusters of G, and merging.
One cluster can be covered by a triangle of size 27. We have
thus [A &lt; 4-9 2T = 72rT. Let M = (M, © .M,). The above

estimates give || &lt; (6&lt;sick) + 360)rT.
Let us first show that if before an application of R’, the set of

clusters (i, 5) on the torus with Vote'[i,s] = 1 is weakly covered by
A then this is the case after the application, too. Suppose the
cluster (i,s) (the T-square [T;i,s}*) is not weakly covered by .#.
Then it is regular. It is not possible that both clusters [T;i,s + 1]°
and [T;i + 1,s]* are weakly covered by .#. Indeed. .# consists of
disjoint triangles, hence these two clusters would be weakly covered
by the same triangle, which would then also cover the cluster
(T;i,s]*. Suppose, e.g., that [T;i,s + 1] is not covered. Then the
neighbor clusters [T; i, s]* and [T;i,s + 1]° are regular and contain
a 0 vote throughout the computation of R’. Therefore the compu-
tation of R” will not change Vote'[i, s].

Suppose that after an Inflate, at time (q + 1)T, a cluster [T; 1, s]°
gets vote 1. We will prove that it is weakly covered by .#. Suppose
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it is not. Then it is regular. Suppose that one of the clusters
[T;i— 1,sP,[T;i,s — 1] is singular. Then it is completely (not only
weakly) covered by a triangle of .#. It follows that [T; i, s}* is weakly
covered by the same triangle. Suppose now that all three of these
clusters are regular.

If Inflate brought Vote'li,s] = 1 by time (q + 1)T then at time
qT, we had either Vote’[i — 1,5] = 1 or Vote'[i,s — 1] = 1. Without

loss of generality, let us suppose that we had Vote'[i — 1,5] = 1.

Since this is a regular cluster, this value of Vote’ at time gT is
obtained by R’ from the votes in clusters [T;i —1,sP, [T;i,s],
[T;i— 1,5 + 1} at time (gq — 1)T. Therefore two of these three
clusters must be weakly covered by .#. It follows by simple geometric
inspection that [T: i, s]’ is also weakly covered. OJ

15.4. The New Codewords

For a word u and a number sin [0.. n) let us denote by [Ts] the
part of u on the T-interval [Ts]. The next part

procedure Enforce

of ForceCode works simultaneously in all clusters of the alliance
E. In cluster [T;i,s}, if Vote[i,s] = 0 then for all rows k &gt; 2 in

[iT..(i + TT), it changes u,[T;s] to wy[T;s].

LEMMA 15.3. Let q denote the time at the end of the proce-
dure Enforce. Under the conditions of Theorem 15.1, we have
CodeDiff[u,(q,E)]&lt;{dev)'rforall k &gt; 2. In case (a) of Lemma
15.1, we also have

Algeb*(u, (1, E)) = Algeb*(u.(q,E)),

for all k &gt; 2, i.e., the original codewords are not changed

Proof. Suppose CodeDiff(u, (hU, E)) is at most {dev)rforall
k &gt; 2. Then, by Lemma 15.1, we have the case » = 1 in Lemma
15.2. Due to the last lemma the clusters where the codeword is

changed will be weakly covered by .#. Therefore the number of
such clusters is bounded in each row by |.#|/T. This is the bound
on the increase in the number of deviations from a codeword.



Self-Correcting Two-Dimensional Arrays 10]

Suppose now that CodeDiff (u, (hU, E)) is greater than {dev)r +
2({corr) — {dev))r for some k &gt; 2. Then by Lemma 15.1 we have
the case » = 0 in Lemma 15.2, and we get u, = w, in all clusters

except for the ones weakly covered by .#. Therefore we get
CodeDiff(u,) &lt; | #|/T.

Suppose finally that CodeDiff[u, (hU, E)] is at most {(dev)r +
2({corr) — {dev))r for all k &gt; 2. Lemma 15.2 still holds but we do
not know now the value of b. If 5 = 0 then the CodeDiff(u,) will
again be bounded by |.#|/T for all k &gt; 2, while if 5 = 1 then the
number of deviations will increase by |.#|/T, bringing it to at most

(dev)r + 2({corr) — {dev))r + |.#|/T

= (2{corr) — (dev) + 6{sick) + 360)

= {dev)’r. L_

The final part of the procedure ForceCode is a procedure that
will decrease CodeDiff(u,) for each k &gt; 2 from &lt;{dev)’r back to
{dev)r. It will simply try to decrease the difference to 0. To fight
faults it is repeated for each output column of width T just as
CompColumn(s, t).

procedure Refresh
begin

fors =0ton—1do
for k :== 0 to PQ — 1 parallelly do

 wu [T; 5] == (Algeb,(Algeb*(u)))[T; s]
end

End ofproof of Theorem 15.1. The proof of Lemma 14.6 applied
to the procedure Refresh, together with the fact that the code Algeb
corrects {dev)’r bursts of errors, gives the desired conclusion. []

Let us summarize the procedure ForceCode.

procedure ForceCode
begin

FindVotes;
Consensus:

Enforce;
Refresh;

ar-4



 7) PETER GACS

16. AMPLIFIERS

Theorem 13.1 and Lemma 14.8 look similar to the Computation
Condition and Restoration Condition for alliances instead of
colonies. This section extends the similarity to equivalence. We will
show that by an appropriate choice of the code ¢, a new self-
correcting evolution can be defined by decoding. With the tools of
the present section, we learn how to turn an implementation into a
hetter one, as desired in Section 13.7.

In the previous section, the medium Med, was chosen arbitrarily.
Let us choose it now to be the medium Univ. There is no circularity
in this choice: the medium Univ was constructed to work for all

media Med,, including Univ itself. Let us refer to the spaces in
which the simulating and simulated iterative arrays of the medium
Univ operate by W* and W, respectively:

2 WwW = ZsW* = Z.,,

Let us assume that the parameters P’,...,r satisfy the Size
Condition 13.3. Let ¢ be a code satisfying the conditions of
Theorem 13.1.

The decoding ¢* orders an evolution x* of Med, = Univ in W*
to the evolution x of Univ in W. Let us define

y= @,(x*). (16.1)

Note that the evolution y is now not necessarily a trajectory. The
target blocks of the code ¢ are the PQ-squares called alliances. The
source blocks are Q’-squares, which we will call big colonies. We
define

r* = TU, P* = PQ, a* = TU/U", p* = PQ/Q’

Then we have P*|T*. We assign nonunit cell size o* and cell
worktime B* to the simulated space. With this definition, the size
and work time of the big colony is equal to the size and work time
of the alliance simulating it. The total sizes of the spaces W and W*
become identical. Both spaces are subdivided into the same number
of squares of size P* = PQ. However, the size of the individual
cells is generally larger in W* than in W.

Under the simulation ¢, the evolution x* on the big colony E =
(P*;i, j} during time interval [T*; h] corresponds to the evolution
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x on alliance E, = [QP;i, jin the time interval [UT; A). Just as
T-squares were called clusters, the T*-squares will be called big
clusters. The above correspondence will map each big cluster 4 into
an alliance cluster 4. Therefore each T*-cube B = [T*;h] x 4 is
mapped into a UT-cube B, = [UT:h] x A,.

16.1. Noise, Health, Damage

We will say that the T*-cube B belongs to the noise A4* if the
noise A” is not sparse on the corresponding UT-cube B,. Notice
that the noise 4* is defined in terms of the noise 4” and the sizes

T, U,r, independently of all other primitive notions.
Let us choose a Q* and U* &gt; Q* such that logU* &lt; Q’. Now

that we have P*, T*, Q*, U*, the notion of health and legality for
big colonies will be defined just as it was for small colonies. The set
Damage*(0) is the union of all big clusters C for which not all of
following conditions hold at time 0:

The alliance cluster Cy is locally healthy.
In each row of each alliance of C,, the deviations of the
Inp Mem track of evolution x from the evolution y are covered
by {(dev)r T-intervals.
All big colonies in C are legal.

The first two conditions concerns the simulating evolution x. They
are identical, for 2 = 0, with the statements in Lemma 14.1. The

second condition can also be stated, using the terminology of
Section 15 as CodeDiff(u,(0,C,))&lt;{(dev)r for all rows k of C,
The last condition concerns the simulated evolution x*

16.2. Simulating a Self-Correcting Evolution

THEOREM 16.1. There is a universal medium Univ supporting
colonies with the following properties. Assume for parameters
P’,....r, the Size Condition 15.1.

If modif = 0 then Univ satisfies Theorem 13.1.
If modif = 1 then there is a standard simulation ¢ of Univ

by itself such that for all self-correcting evolutions (x, NV,
Damage(0)) the triple (x*, 4"*, Damage*(0)) is a self-correcting
evolution.
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This theorem forms the backbone of the proof of the main result,
Theorem 7.1. Its case with modif = 0 is simply Theorem 13.1. The
case with modif = 1 gives the desired amplifier simulation that
turns an implementation into a better one, with smaller probability
bound. It implies namely the following theorem.

THEOREM 16.2. Suppose that the parameters P’,...,r satisfy
the conditions of Theorem 16.1 and the medium Univ satisfies its
conclusion. Suppose that we have an implementation ¥ with the
parameters P',T',. P, T, 0, p, satisfying (9.1). Then the construction

DO: (x, &amp;/, Damage(0)) — (x*, /*, Damage*(0))

gives a new implementation Wo® with the parameters Q’,U’, P*
T*, 0,0.

The rest of the section is devoted to the proof of Theorem 16.1,
i.e., to the changes to the program of Univ to achieve the desired
effects for modif = 1.

First we prove an auxiliary statement.

LEMMA 16.1. Suppose that the medium Univ supports colonies
and the parameters P’,...,r satisfy the Size Conditions 15.1. Let
(x, #", Damage(0)) be a self-correcting evolution. Let C be a big
cluster in W*, and h a natural number. Then any quarantine at time
hT* for C with respect to the triple (x*, #/*, Damage*(0)) is a local
quarantine for C, with respect to the triple (x, #", Damage(0)).

Proof. This statement can be proven by induction on A. It is
true for A = 0 by the definition of Damage*(0). If it is assumed true
for h then it follows immediately for A + 1 using the inductive
definition of C ~ Damage((q+1)T) given in Section 13.4, the
definition of /* and Lemma 14.7. [1

To make the triple (x*, #4 * Damage*(0)) a self-correcting
evolution we have to make it satisfy the Restoration Condition and
the Computation Condition.

The Restoration Condition says now that at all times AT *, all big
colonies disjoint from Damage*(hT') are legal. We will prove the
following lemma.
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LEMMA 16.2. There is a universal medium Univ supporting
colonies with the following property. Assume for parameters P’,...,r,
the Size Condition 13.3. Let h be a natural number. Assume that at

time hT*, for all big colonies E not intersecting with Damage*(hT),
the following conditions are satisfied.

(a) In each row of the alliance E,, the deviations of the InpMem
track of evolution x from the evolution y [as defined in (16.1)]
are covered by {dev)r T-intervals.

(b) Eis legal.

Then the same is true at time (h + 1)T* for all big colonies not
ntersecting with Damage*((h + 1)T*).

For A = 0, the assertions (a — b) in the lemma will be satisfied,
due to the definition of Damage*(0) in 16.1 above. Therefore this
lemma will imply that these conditions are satisfied for all 4, i.e., the
Restoration Condition holds.

Let C be a big cluster in W* containing the big colony E. If
the noise A * is not empty during the interval [T*;h] in C,, =
['(C,T*) then C belongs to Damage*((h + 1)T*), and the con-
clusion of Lemma 16.2 is automatically satisfied. Suppose now that
the noise A4* is empty in this region and .# is a minimal quarantine
for C at time AT*. Then by the definition of Damage(qT) in
Section 13.4. we have

Cn Damage*((h + NT*) = Cn |JD(S, P* + T*).

We must design Univ therefore in such a way that if E does not
intersect D(#, P* + T*) then properties (a — b) are satisfied in E at
time (h + 1) T*.

uv... Initialization

Our original definition of the medium Univ will not guarantee
that the big colony E becomes legal if it was not. Indeed, even in the
absence of noise, the small colonies just simulate the evolution of
whatever they find in the big colony and its neighbor. The simulated
medium is now Univ again. Though we made Univ to support
colonies, this property is usable only for a big colony that is already
healthy.
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To make the simulated big colony healthy “against its own will,”
a simple but crucial new procedure, called Init, will be inserted
between the procedures Input and Compute, at the beginning of
each big work period. After the procedure Input, the configurations
of these colonies are in nine subsquares of size Q P/3 of the alliance,
on the Simulator track. Let us agree that whenever we speak about
a big colony we mean one of these nine subsquares of the Simulator
track of our alliance.

The procedure Init puts the symbol topleft into the left-most
column and the top row of the simulated big colony and checks that
all other cells of this colony are in a state belonging to S,,,. If a cell
is in some other state then its state is changed arbitrarily to one in
Sine. Finally, Init writes the integers Q, U’ in place of the first two
parameters in the parameter field. (They play the role of P’, T’ for
the big colony).

Now the new procedure CompColumn has the following form.

procedure CompColumn(s,t,!1);
begin

Decode;
Input;
if modif = 1 and / = 1 then Init;

Compute(t);
Encode;
Output(s);

end;

It is crucial that in the procedures ForceCode and Init, the small
colonies intervene in the simulation of big colonies. The code ¢ thus
defined is therefore no more a pure simulation, since health is forced
on the big colonies. Since, however, ¢ is not a simulation, we do not
want to use this program always, and the parameter modif allows
us to make the choice.

Sections 15 and 16.3 engineered the “magic” recovery needed for
the big colonies to recover from loss of structure. The rest of the
present section proves that the magic works.

16.4. Legalization Works

Let E be a big colony disjoint from D(#, P* + T*). We have to
show at time (kh + 1)T*. conditions (a — b) of Lemma 16.2 hold.
The following geometrical lemma is easy to verify.
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LEMMA 16.3. Let # be a set of disjoint triangles. Let E be a

P*-squaredisjoint from D(H, P*). Let the P*-squares E,, E,, E, be
the northern, southeastern, and southwestern neighbors of E. At least
two of these three squares are disjoint from 3.

We apply this lemma to # = #' as defined above and the

big colony E that we assumed at the beginning of the previous
paragraph to be disjoint from D(.#', P*). It follows that two of the
three neighbors E, are disjoint from .#,. Without loss of generality.
we can assume that E, and E, are disjoint from #'.

We assumed that .# is a quarantine at time AT * for the evolution
x*. Hence by Lemma 16.1, .# is a local quarantine at that time, and
E,, E, are legal big colonies at the same time.

We will now follow the reasoning of Section 14.4. Before time
(h + DU, only a singular event can create new deviations on the
InpMem track. According to Lemma 14.8, if cluster F is the site of
a singular event then its neighborhood I'(F, T) intersects

DF ux uF. T.

The alliances E,,, E,, are disjoint from .#' at time AUT. Just as in
the proof of Lemma 14.6, we can conclude the following lemma.

LEMMA 16.4. During the time interval [hUT..(h + 1)UT), in
cach row of E,, and E,, the number of T-intervals with deviations on
the InpMem track is bounded by {corr)r.

The following lemma says that after time (hU + 2Q)T, in the
alliances FE, E,,, and E,,, the singular events are restricted as in the
proof of Lemma 14.6.

LEMMA 16.5. Ifcluster Fin E, © E,, U E, is singular at time qT
for q in [(hU + 2Q)T..(h + 1)U) then I'(F, T) intersects ¥° and q
isin Y.

Proof. Remember P* = PQ. According to Lemma 14.8, the

neighborhood T'(F,T) is intersected by #,u .#°. Here, #, =
D(S',(q — &lt;kill})P). Let us show that for gq &gt; hl/ + 20 the set AH
s disjoint from I'(F, T'). This will imply that the latter intersects .&amp;°
Lemma 14.8 says that in this case, g is in Y.
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We have

(q — &lt;killY))P &gt; (20 — &lt;kill))P

= PQ + (Q — &lt;kill))P = PQ + 2T

Here we used (Q — &lt;kill))P &gt; 2T, which follows from the Size

Conditions. It follows that Hy &lt; D(#', PQ + 3T). We assumed
that D(#', PQ) is disjoint from E,, E,,, and E,,, hence it is disjoint
from F. Therefore by (11.2), the neighborhood I'(F, T') is disjoint
from D(#', PQ + 37). 0

Proof of Lemma 16.2. The program begins with 20 idling steps.
After these, according to Lemma 16.5, the singular events are
restricted in E,, E,,, and E,, just as stated by Lemma 14.2.

We assumed modif = 1. Hence for/ = 1, in all regular calls s of
the procedure CompColumn(s,t,1), the procedure Init makes the
simulated colony healthy. The simulated medium Univ, by assump-
tion, supports colonies. Therefore since the big colonies E,, E, were
legal, by the end of the procedure Compute(t), the result represents
a legal colony.

The code ¢ is such that the top three rows of the alliance code the
top three rows of the corresponding big colony. Therefore the top
three rows of the alliance deviate in at most {devrT-intervalsfrom
the code of the top three-rows of a legal big colony.

Finally, the procedure ForceCode decreases CodeDiff(u,) to
/dev)r, for all k &gt; 2. ]

End of the proof of Theorem 16.1. To make the evolution
(x*, #*, Damage*(0)) self-correcting, it remains to prove the
Computation Condition. This condition says now the following:
Let the big cluster C be regular at time AT*. Then the configuration
x*[(h + 1)T*, C] is what it would be if x* was a trajectory of Univ
starting from the same configuration x*[AT*, C,,]-.

The regularity of the big cluster C at time 27* means a condition
on the noise, and one for the damage. For the noise, it says that the
noise A” is sparse over the set [UT; h] x C,, in W. For the damage,
it says that Damage*(AT*) does not intersect C,,,. By the definition
of Damage*(0) and Lemma 16.2, this implies that each row of each
alliance of C,;, differs from a codeword by at most {dev)r T-intervals.

Now Lemma 14.2 has essentially these conditions and the needed
[1
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17. CONSTANT SPACE REDUNDANCY

[n the present section, we sharpen Theorem 13.1, by weakening one
of the Size Conditions 13.3. This condition has the form

QP’ &gt; max (3Q'|Med,|, Q'|Med,| + 9{corr)rP'T/P).

We want to eliminate the factor 3|Med,|. This economy is necessary
only when our goal is constant space redundancy, as promised in
the main theorem. In that case, the factor 3|Med,| cannot be
tolerated, since the final simulation is a concatenation of several
simulations of this kind, multiplying the cell size (which is the
measure of the space redundancy) every time by 3|Med,|.

As long as we design the simulation it is convenient to use unit
cell sizes and cell worktimes in the simulated colonies [Q”; i, j]*. The
new cell size a* and cell worktime f* can then be computed at the
end, as done in Section 16. These parameters do not enter the Size
Conditions anyway.

(7.1. Economical Trajectories

If we want to get rid of the factor |[Med,| then most cells of the
Q’-square should not carry much information so that an encoding
into binary strings of length {Med,| is unnecessary. Therefore the
largest part of the Q’-square will be destined to the passive storage
of information, i.e., it will be “memory.” We add more ingredients
to our model. We assume that there is a four-element subset

Sied,, mem Of the states of the medium Med,, called the set of memory
states that is invariant with respect to the rule Med,, i.e., the rule
Med, never changes a memory state into a nonmemory state.

We also assume that a parameter (wksp)’ &gt; 1 is given. A Q’-
square of Med, will be called economical if its cells in all but the
bottom Q’/{wksp)’ rows have memory states. These bottom rows
will be called the Workspace field of the Q’-square, the rest the
Memory field. Notice that the notion of an economical square
depends on the parameter {wksp)’ and the set Spey, mem:

[n Theorem 13.1, we simulated all possible trajectories of Med.
Now we confine ourselves to trajectories that are economical, i.e.,
such in which all colonies are economical. Due to the invariance of
the set of memory states, if a trajectory starts from a configuration
of economical colonies. then it is economical
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Though we make our task easier by confining ourselves to the
simulation of economical trajectories, we pay for this by making the
medium Univ and its simulating evolutions also economical. The
set S_..., of memory states of Univ will be part of the set S;;, of initial
states introduced in Section 13.3. There will also be a parameter
{wksp) for the definition of economical small colonies. The small
colonies will be required to be both legal and economical.

The set of parameters of our model is now

P.T,0,U,Q,U, P,Q, {wksp), {wksp)’, Prog,, modif, r.

We replace the Size Conditions 15.1 with the following.

CoNDITION 17.1 (S1ZE).

. 1 , |Med,| 30

P’ &gt; max (log U,log T", |Prog,!).

UT’ &gt; ({wksp)|Med,|)?

ol (4Qo’ er) or’ log (QP)Step,

T° 9p’

T
_ UPiz, lo. ol

Only the bounds on QP’ and UT’ have changed. The bound on
QP’ is smaller: it will be asymptotically equal to Q’. On the other
hand, we pay with a factor ({(wksp)|Med,|)’ in the bound on the
time UT”, for the fact that only a fraction 1/{wksp) of each colony
is devoted to workspace.

Now we can formulate the optimized version of Theorem 13.1

THEOREM 17.1. There is an economical medium Univ supporting
colonies such that the following holds. Assume the Size Condition 17.1
for some economical Prog,, and numbers P’,...,r. Then there
is a standard simulation @ of Med, by Univ mapping economical
trajectories into economical trajectories, such that the conclusion of
Theorem 13.1 holds.
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The rest of the present section is devoted to the proof of the
above theorem. It describes all necessary modifications to the
medium Univ and the code ¢. If the reader is not interested in this
optimization then this section can be skipped.

17.2. Drying

Ordinary self-simulation would proceed by expanding the
content of each cell to be simulated, as done at the beginning of
Section 13 and storing the result in the Memory of the simulating
colony. It is possible to avoid expansion by giving different treat-
ment to the Memory and the Workspace. Due to the small number
of memory states, only the Workspace must be expanded. The
operation can be viewed as drying a flower by pressing it between
the leaves of a book. The process will not change the parts that are
already dry.

Formally, one can define a code

Dry = (Dry, Dry*)

[t is applied to a Q’-square and encodes it into an array of memory
cells. The code leaves the Memory unchanged and expands each
symbol of the Workspace into a column bin(s) of height |[Med,|.
Thus, each row of the Workspace is expanded into |Med,| rows
The vertical size of the Q’-square increases therefore to

Q'(1 — 1/&lt;wksp)’) + [Med,|Q’/{wksp)".

T'he crucial difference between drying and the error-correcting code
Algeb is that since drying is symbol-for-symbol, the simulating
alliance can manipulate the dry information without ever recon-
stituting it. The parameters of the alliance contain {(wksp)’, hence
the small colonies of the alliance will know which simulated cells are
expanded and which ones are not.

17.3. The Code @

The Memory field of a Univ-colony is divided into a vertical strip
of width P/{wksp) on the right side, called the Channel field, and
the rest, called the Data field. The Channel field is needed only for
communication between the Workspaces of the colony and its
northern neighbor. Only the Data field, which still occupies most of
the colony, will be used for actual storage.
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The union of the Memory fields of the member small colonies will
be called the Memory field of the alliance. The Data, Workspace,
and Channel fields are defined similarly. Thus, the Workspace and
Channel fields of the alliance form a grid: a union of horizontal and
vertical strips of width P/{wksp). The Data field is the comple-
ment: it consists of Q? squares of size P(1 — 1/{wksp}).

Let us define the code ¢. The encoding ¢, is defined as follows.
First we apply the code Algeb, - Dry, to the Q’-square. Then we
distribute the result in the Data fields of the small colonies of the
alliance. Finally, for all i, j, we make each of the small colonies
legal, initialized to the beginning of a work period of the alliance.

The decoding ¢* is defined as follows. For each row of the alliance
intersecting with the Data, we take the information from the Data
parts of the row. We apply the decoding Dry*. Algeb* to the
rectangle obtained from all rows this way. This means reconstituting
the Workspace rows of the O’-square from their expanded form.

17.4. Memory in the Universal Medium

How will we retrieve information from the Memory field of
Univ-colonies? For n = 0,1, 2,3, if a cell has the memory state s,

then we say that this cell stores the pair of bits ny, n, in n. Memory
cells with shift their left bits up and their right bits down between
each other. Thus, if x is a trajectory of Univ and

x(t, i, J] = RY x[t,i + 1, j] = Sn, ng

for bits m,, m,,n,,n, then we will have

x(t+1,4,j]=Suu» x[t+Li+1,j] = sm,

for some bits u, v. If the upper neighbor is not a memory cell then
the cell reads some fixed function of the state of the upper neighbor
into its right bit: the effect of this is that a workspace cell can
“write” into a memory cell. (Of course, it can also read.)

During almost the whole computation, the workspace cells at the
upper and lower edges of the Memory have states that keep the
information rotating in each column: flowing down in the right bits
and turned back at the lower edge to flow back up in the left bits.
An appropriate times, the workspace cells can write something into
the Memory or read from it.
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17.5. Ranks and Slots

We must give up the luxury of separate InpMem and OutMem
tracks in Univ. Moreover, since the Workspace is only a small part
of the whole colony, we cannot store all nine coded neighbor big
colonies in the alliance for simulation. We solve these problems in
the present subsection by trading time for space.

Let

R —
_ oF

7| 7IMed,|&lt;wksp&gt;

[et us divide the Q’-square into horizontal strips called ranks. The
width of each rank is at least R but smaller than 2R. Each rank is

sither completely in the Memory or completely in the Workspace.
These are the only requirements for ranks, and it is easy to find a
subdivision with these properties. With the Memory, e.g., we can
begin to divide it into strips of width R, leaving at the bottom a
somewhat wider last strip.

The computation will update the content of the simulated
Q’-square rank-by-rank. An extended rank is a rank extended by its
left and right neighbor ranks from the corresponding neighbor
colonies. After drying, a rank of width # will be represented by # or
Med,|nrowsdepending on whether it comes from the Memory or
the Workspace. The number R is determined in such a way that
sven when they have 2R|Med,|rows after drying, three neighboring
ranks will fit comfortably into the Workspace of the alliance. To fit
there three neighboring extended ranks, we just store three symbols
per cell of the simulating medium Univ. (Each symbol consists of
at most two bits.)

Let

N = | UR]

The computation will proceed in stages! = 1,...,N + 1. Each but
the last stage computes the state of the Q’-square after R more time
units. Some care must be taken not to update information that will
be needed in the next stage of the serial simulation. One solution,
taken from Toffoli’s Cellular Automaton Machine (see [Tof)), is to
distinguish between the physical and logical positions of a rank.
The physical position of a rank will be called its slo. It will vary
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from stage to stage. Each slot is a strip consisting of a sufficient
number of rows in the simulating alliance, to store a certain rank.
The number

m = | QP’(1 — 1/{wksp})|

of rows in the Memory of the simulating alliance is somewhat more
than needed to accommodate all ranks. Indeed, the number of all
rows in the dried Q’-square is less than Q’(1 + |Med,|/{wksp)’),
which, according to the Size Conditions, is still less than ma.

We will use the m available rows for slots as a circular store. At

the beginning, slot (i,0) holds the initial content of rank i. These
slots are consecutive strips starting from the top row of the alliance.
Each stage / of the simulation consists of substages i, corresponding
to the ranks of the alliance. In stage /, at the beginning of substage
i, the new content of rankjforj &lt;i — 1 is found in slot (J, /). The
old content of ranksj= i — 1 is found in the slots slot (j, / — 1). In
the cycle of available rows modm, the slots slot(j,/— 1) for
j = i— 1 are followed by slot(j, I) forj&lt;i — 1. The union of all
these slots forms a segment mod m.

In substage i, we load the old content of the extended ranks i — 1,
i, and i + 1 into the Workspace of the alliance from the correspond-
ing slots. The simulation is performed (with the repetitions s as
earlier), and the new value of rank i is stored in a new slot slot (i,!)
at the end of the segment. At the same time, slot(i — 1,/ — 1) is

released, since it is no longer needed.

17.6. Procedures

The above outline results in the following procedures. Let
‘ranks denote the number of ranks.

procedure nput(i,l)

fori = 2,...,{ranks) — land! = 1,...,N+1loadstheDataof
the extended slots

slot (i — 1,1—1), slot (i, — 1), slot(i+1,1—1)

(representing the corresponding extended ranks) and spreads it in
the Workspace of the alliance. Fori = 1, (ranks), the information
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of one of the three ranks must be taken from the appropriate slot
of the upper resp. lower neighbor alliance. For extended rank i, for
a row n in one of the above three slots, its destination is a row

Map (i, n)

in the destination alliance. The function Map (i, n), as well as the
boundaries of all slots in all stages, could be described by explicit
formulas. The Workspace occupies only a portion 1/{wksp) of
each small colony. Therefore at its destination given by the function
Map (i, n), the information of a rank will occupy (wksp) times
more colony rows than in its slot.

procedure Output (i, s,1)

takes the information in rows Map (i, n) of the colonies in column
s of clusters and writes it back to the rows x of column s of clusters

in slot (i,1).
After stage | = N + 1.

procedure Backrotate

rotates the alliance vertically back to the initial state when rank i
s stored in slot (7,0). This procedure is just a series of copying
operations. It cannot carry deviations from one column to another.

procedure Decode

decodes the Data loaded into all rows Map (i, n) using the code Algeb
described in Section 8. Procedure Encode performs the corresponding
encoding. After encoding as well as decoding, the information is left
in the same row.

procedure Init (i)

depends now on i, since the top row of the simulated Q’-square is
located in a slot dependent on i.

procedure Compute (t..)

simulates ¢ steps (less than the width of the rank after decoding) of
‘he work of the three decoded extended ranks. Even after decoding.
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the information is still in dry form. Since the code Dry does not treat
all ranks the same way (the higher numbered ranks belong to the
Workspace of the Q’-square), procedure Compute depends on i.

procedure ForceCode

remains much as it was defined in Section 15, only it will also have
to work rank-by-rank, due to space shortage.

[7.7. The Program

Small colony support can be added to the program below just as
asily as in Section 16.3.

begin
for/= 1 to N+ 1 do begin

if &lt; Nthent:= Relset:=U’—NR,
for i = 1 to (ranks) do begin

for s = 1 to QP/T do begin

Input (i, 1);
Decode;
if modif = 1 and/= 1 then Init (i);

Compute (1,1);
Encode;
Output (i, s,1);

end;
ForceCode;

end;
end;
Backrotate;

end.

It is easy to see that the procedures of this program can be written
now in such a way as to satisfy the new Size Conditions. Essentially,
the only new Size Condition to check is the bound on UT’. The
main difference of the present program from the earlier one is that
what was earlier an U’/Q’-fold iteration, is now replaced with an
iteration U’/R-fold, combined with an iteration {ranks)-fold. The
oxtra factor is therefore

‘ranks&gt;Q’/R &lt; (Q’/R)* &lt; ((Med,| {wksp&gt;)*
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The proof of Theorem 13.1 can now be almost literally carried over
0 the proof of Theorem 17.1 when the program there is replaced
with the present one. O

If we restrict ourselves to economical trajectories of Univ then
Theorem 16.1 will also remain true with the new Size Conditions.

and the proof carries over virtually without change.

[R POOF OF THE MAIN THEOREM

18.1. A Series of Implementations

For k = 0,1,..., let us generate a sequence of parameter sets
P’,...,r each of which satisfies the Size Conditions 17.1. For the
reader who skipped Section 17: a sequence satisfying the earlier Size
Conditions 15.1 is even easier to construct. The only difference is
that P//P/_, will be about 3|Univ| instead of converging to 1

The noise bound r, and the probability p, are defined as

y . Qk Pir =

Let w be an integer parameter to be chosen conveniently large later.
Let us define the basic colony size P, and, for k &gt; 0, the auxiliary
narameter g, as follows.

P, = g, = w.

(18.1)
g. = W)'rig, for k

The absolute and relative colony sizes and work periods P,, T,.
0,, U, are defined as follows.

I, = Pg,

P, == (wkY?r,T, , » for kK &gt; 0,

0 = P./P,_, = (wk)r.g,_, fork&gt;0

"= T/T.,= (wk)r,g, for k 0
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Finally, the represented colony sizes and work periods are defined
as follows.

Fa = Ww, P| = 1.21

PP, = (1 —k™2)Q, for k:- 1.

TT: = wP,.

[HEOREM 18.1. For large enough w and small enough p, there is
a series of implementations WY, for k &gt; 0, with parameters P,
I, Pp, T:, Q; Pk

Proof. Let us fix k. We define the parameters

Pp’ P/ .. T = TT. ,. P= P .. T = 1,

QO = 0.,U= U., 0’ = P/, U' = T.,

(wksp&gt; = wk?, {wksp) = wk +12. r=nr

We prove that if w is chosen large enough and ¢ small enough then
the above choices satisfy the Size Conditions 17.1 with Med, =
Univ, and for k &gt; 1 the inequality

Dis &amp;Z [en (18.2)

[This inequality (18.2) corresponds to (9.1).] Then, the application
of Lemma 13.1, and Theorem 16.2 completes the proof.

Proof. The first Size Condition can be written as

PP(1 — 1/&lt;{wksp)) &gt; Q'(1 + |Univ|/{wksp)a+9&lt;{corr)’rT.

(18.3)

We have Q'a = P/P,_,/P/,_, = (1 — k™*)P,. Therefore the right-

hand side of (18.3) can be written as

Uni
P.(1 — k=?) (1 + a) + 9¢corr)’P, (sk)?

P.(1 — k~2(1 — |Univ|/w — 9&lt;¢corr)’/w?)).
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Suppose that w is large enough to have

\Univ|/w + 9¢corr)’/w? &lt; 0.5

Then the right-hand side of (18.3) is less than

1
OP(1 — 1/{wksp)) = P, (1 on)

[he second Size Condition says, with the substitutions made:

P/_, &gt; max (log U,log T,_,, |Prog,|).

Here, Prog, is the program of the transition function Univ on the
Turing machine Turing. The condition |Prog,| &lt; P/,follows if we
et

w &gt; |Prog,|.

We have log T/_, = log P/_, + logw &lt; P/_, since B/_, &gt; w.
Before going further, let us find some explicit formulas and

estimates from the above recursive definitions. We have, with func-
tions 0 &lt; A(k,1) &lt; 1,

&gt; — wk (nA) {] R 4

 [(k+1
-ox " } + 11k ub) — 2000, 10. (18.5)

0 = Wk) gy,

P, = w(k)%g,-- g,

J k+2 k+1exp, of \ Jo uf , tog oetoace. 2
[he relations

log U, &lt; 0.50, _,,
fF

I~cy} &amp; u
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are now easy to check. The first one implies

log U, &lt; 0.50, _, &lt; P/ '

which finishes the proof of the second Size Condition. The third
Size Condition reads:

U &gt; ({wksp) |Univ|)2(U’/Q)(QP/TYQlog(QP")Step,.(18.7)

We lave

U'1Q" = TP, = w

'QP/T)* = (PT) = (wk)*r%,

QP" = QP (&lt;P, = Q,F_,.

UT’ — UT,_, = wlU, P/_, &gt; UP,

Hence the right-hand side of (18.7) can be estimated, using (18.6), as

(wk? | Univ] w(wk)*r} Q, log P, Step,
&lt; |Univ*w’k*r2Q,wk’Step,
&lt; (wk)''ri Q, = U,.

This proves the third Size Condition. The remaining two Size
Conditions are satisfied by definition.

To prove (18.2), we prove the following stronger inequality, with
R = —logo.

oe U, &lt; Foe
“3H-Ye R/4r, == R2

We have. from (18.4):

k+1
o2l, = logg,+k+ 2log(wk) &lt; dl g + 12k log (wk).

This is clearly smaller than the right-hand side of the previous
squation, if only R is not too small relative to w. O
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18.2. Divisibility Considerations

Let us return to the formulation of the Main Theorem. Given the

values n, 1, ¢, let K be the smallest k with

(n+ Pt" "&lt;e

[t is convenient to assume that nis divisible by Py; . Let us show that
if this is not the case then a simple extra coding # of Med, into a
slightly different medium Med, will achieve this. No subtlety is
involved, and we mention the details only for completeness’ sake.
We have seen in Section 15 that a medium on a torus can be treated

as it were folded to a medium working on a square, using the

mapping (i, j) — (i, j). If we surround the square by “blanks” then
the boundaries of the square are automatically marked. And there
is no difficulty in simulating a medium on a square by a medium on
a larger square. Let

n= P{n/P{ (18.9

be the smallest multiple of Py greater than sn. Thus, using a step-for-
step simulation # we order to each configuration of Med, over Z?
a configuration of a new medium Med, over Z2

[13 3+ Deviation Probability

[he simulation y of the theorem will be given as

= Wy 0@Q0HN.

Here, 7 1s the simulation described in Section 18.2. The simulation
Wk_y 1s provided by Theorem 18.1. The simulation ¢ with par-
ameters Py, Py, Ty, Tx of the medium Med, by Univ is given by
Theorem 13.1, with the parameters as at the beginning of the proof
of Theorem 18.1, with k = K. The target space of code y is Z2 with

17 n Py
P. T,

(12.9

We divide by Tj since in the implementation ¥,. the size of a single
cell of medium M was chosen T,.
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The number ¢ of steps of the original computation will be followed
for | ¢t/Ty|work periods of the simulation.

Now let z be a trajectory of Med,, then y = ¢,(z) is a trajectory
of Univ. Let ¢ be a g-perturbation of _,«(»). Then by the
definition of implementations, the random evolution y%_,(&amp;) is a
self-correcting p,_,-perturbation of y. In each T,-cube, the prob-
ability that the noise belonging to this p, ,-perturbation is not
(Uk, re, Ti) )-sparse, is at most p_, = p,. The number of T,-cubes
in the space-time area in question is smaller than n%z. It follows
that the probability that over this area the noise is not sparse is at
most n* tp, &lt; &amp;. With probability 1 — &amp;, the noise is sparse. Using

Theorem 13.1 we conclude that with probability 1 — ¢, we have

 p*WE_ (©) = =z.

Redundancy

First we prove

P..T. = O(2le) (18.10)

From (18.1), it follows that the quantities g,, U, grow approxi-
mately as 2%:

gy =
NE + O(k log k)

U = Ak? + O(klogk)

Therefore the quantities P,, T, grow approximately as 2%”:

I — 923+ OK? logk)

(18.11)
 Pp ~2k3/3 +O(k? logk)

Above, K was defined as the smallest k with

2log, [(n + P)*tle)l &lt;r =r

If n &gt; P, we get from here, with L = log (#’t/¢) as defined in the
Theorem:

 24+ 0(KlogK)+O
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The constant in O(1) here depends on g. If n &lt; Py the same estimate
is obtained. From this, and (18.11), we obtain (18.10).

Now we prove m = O(n + Py). It follows from (18.8) that n” =

O(n + P¢). Now it follows from (18.9) that m = O(n + Py)(Py/Fy).
Finally, it follows from the definitions (18.1) that

P, _ 1 _

BC o( 11 TE) = om

The definitions (18.1) show that the time redundancy 1s propor-
rional to g,. By the above equation, this is

YO(KlogK) 12 = [2+e

The third statement of the theorem concerns the complexity of
computation of the code. It was proved in Section 8. J

CC CLUSION AND OPEN PROBLEMS

19.1. Simplification

Simplification can be understood in conceptual and in quan-
itiative sense. In order to lend the two-dimensional medium

physical credibility. reducing the number of states (while retaining
nearest-neighbor interaction) is crucial. The features required at the
cell level include

computational universality;
parallel transport with periodic copying;
application of a generalized Toom’s Rule to some local
variables (the phase variables);
periodic majority vote among certain local variables.

[hese features can probably be achieved by a relatively simple
local rule. The elaboration of details would be very interesting.

19.2. Continuous Time

The hierarchical organization used for error correction can
11so be used for svnchronization. Each block of cells is supposed
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to be synchronized to a close tolerance and is periodically resyn-
chronized. Higher order blocks are synchronized to progressively
looser tolerances. Details must be worked out yet.

If worked out for the one-dimensional case, the result will be a
formal refutation of the Positive Rates Conjecture featured in [Li].

For the three-dimensional case, Charles H. Bennett has a physical
synchronization idea. If something of comparable simplicity does
not work, then the simplicity of the construction of [GR] will be lost
with the introduction of continuous time.

19.3. Space-Time Trade-off

This problem was discussed in Section 17. We do not consider the
logarithmic lower bound of [DO1] significant as a lower bound on
the redundancy of reliable computation. It shows only the necessity
of encoding. But in our view, for the purposes of reliable compu-
tation, information must be viewed as coming in encoded form.

It is remarkable (though probably an artifact) that both here and
in [GR], the product of the space and time redundancies came out
log? N. The bottlenecks in the present paper that caused log’N
instead of logNVoccurin the problem of consensus. In Section 11.3
more than r? repetitions were required for r possible failures. We
hope that this result can be improved to O(r) repetitions. However,
even more computation was needed in the procedure FindVotes that
found reliably the votes whose consensus is sought.

19.4. Self-Organization

Our reliable media work reliably only if the starting configur-
ation already contains the (input-independent) hierarchical organ-
ization. It would sound more natural, in one dimension, that if the
input is one bit then the starting configuration should consist just
of the repetition of this one bit. If error correction requires structure
then the medium should be able to build up this structure, out of

‘nothing.”
In two dimensions, remembering one bit starting from a homo-

geneous starting configuration can be done by Toom’s Rule. But
there is still the problem of increasing depth in the presence of noise,
as outlined in Section 2, starting from a homogeneous configuration.
This is what we consider the natural problem of self-organization.

This goal is the most intriguing among the ones proposed. Let us
aote first of all that Toom’s Rule must be largely abandoned even
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in two dimensions since its usefulness for structure maintenance

depends on a globally existing structure. We must therefore return
to the ideas of [G]. Still, we run into new problems at several points

Without errors, no structure can arise, since all cells have the
same state and the same rule. Hence, randomness is no more

than just an “enemy”: whatever structures may arise will be
random (e.g., if there are blocks, their position will be random).
Killing a small organized island surrounded by inconsisten-
cies was one of the main principles of the construction in [G].
Self-organization requires that we permit these islands to
grow, at least very slowly. A possible new rule replacing the
old one could be that islands die if they are prevented from
growth for longer time.
More probabilistic analysis is required with any of these
ideas, to show that there will always be islands not too far
from the origin whose size is greater than some increasing
function of time.

Self-organization is, of course, a favorite topic of theoretical
biology. What distinguishes our approach is that all the structure in
[G], however life-like, seems to be forced upon us by the extremely
simple requirement: the protection of information in a noisy
homogeneous medium.
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THE COMPLEXITY OF PERFECT

/ERO-KNOWLEDGE

Lance Fortnow

ABSTRACT

A perfect zero-knowledge interactive proof system convinces a verifier
that a string is in a language without revealing any additional knowl-
edge in an information-theoretic sense. We show that for any language
that has a perfect zero-knowledge proof system, its complement has
a short interactive protocol. This result implies that there are not any
perfect zero-knowledge protocols for NP-complete languages unless
the polynomial time hierarchy collapses. This chapter demonstrates
that knowledge complexity can be used to show that a language is
easy to prove.

INTRODUCTION

[nteractive protocols and zero-knowledge, as described by
Goldwasser. Micali. and Rackoff [GMR]. have in recent vears
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proven themselves to be important models of computation in both
complexity and cryptography.

[nteractive proof systems are a randomized extension to NP that
give us a greater understanding of what an infinitely powerful
machine can prove to a probabilistic polynomial one. Recent
results about interactive protocols have given us an idea of what
languages may be efficiently provable in this way.

Zero-knowledge interactive protocols give us a good way to deter-
mine which languages can be efficiently proven without giving away
any details of the proof. This model consists of an infinitely power-
ful prover trying to convince a polynomial time verifier that a string
is in a certain language. Zero-knowledge requires that the verifier
not learn any information useful to him as a polytime machine.
Goldreich, Micali, and Wigderson [GMW] show that if one way
functions exist then all languages in NP have zero-knowledge
proofs. However, their proof relies on the fact that the verifier has
limited power and is unable to invert these one-way functions. A
stronger notion is that of perfect zero-knowledge (PZK) that requires
that the verifier not learn any additional information no matter how
powerful he may be. There are many languages not known to be in
BPP or NP mn co-NP, such as graph isomorphism [GMW], which
have perfect zero-knowledge proof systems.

Our main theorem says that for any language that has a perfect
zero-knowledge protocol, its complement has a single round inter-
active protocol. Thus PZK &lt; co-AM, where AM is the class
accepted by one-round Arthur—Merlin games as describes by Babai
IB]. Our result holds in the weaker case where we only require that
the verifier that follows the protocol will not learn any additional
information.

Combining our main theorem with a result of Boppana, Hastad,
and Zachos [BHZ], we get that NP-complete languages do not have
perfect zero-knowledge proof systems unless the polynomial time
hierarchy collapses to the second level. Thus it is unlikely that the
result of [GMW] that NP has zero-knowledge proof systems will
extend to perfect zero-knowledge.

Our proof makes use of an approximate upper bound protocol
that is of independent interest and that mav be useful in completely
different contexts. This is in contrast to an approximate lower
bound protocol used in [S, B, GS].

The results in this chapter do not depend on any unproven

cryptographic assumptions.
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2. NOTATION AND DEFINITIONS

Let P, the prover, be a probabilistic infinite power Turing machine
and V, the verifier, be a probabilistic polynomial time machine that
share the same input and can communicate with each other. Let
P — V denote the interaction between P and V. P&lt; V(x) accepts
f after the interaction, V accepts. V’s view of the conversation
between P and V consists of all the messages between P and V and
the random coin tosses of V.

P and V form an interactive protocol for a language L

i. If xeL then Pr[P« V(x) accepts] &gt; £.
2. If x¢Lthen YP*Pr[P* « V(x) accepts] &lt; 1.

A round of an interactive protocol is a message from the verifier
to the prover followed by a message from the prover to the verifier.
AM is the class of languages accepted by bounded round interactive
protocols.

Messages in a conversation will be described by

Biro, Boyes Bis

where the «; are messages from the prover to the verifier at round
i and the f; are messages from the verifier to the prover.

r will be used for the random coin tosses of the verifier

Formally, we think of P as a function from the input and the
conversation so far to a probability distribution of messages. We
put no restrictions on the complexity of this function other than
requiring the lengths of the messages to be bounded in size by a
polynomial in the size of the input. This chapter will use the
informal term, probabilistic infinite power, to describe the complexity
of the prover.

Let IP be the class of all languages that are efficiently provable.
i.e., accepted by an interactive protocol.

The notation for describing protocols follows:

P- These are computations performed by the prover
that can not be seen bv the verifier. The prover has

probabilistic infinite time to make these computations.
This is a message from the prover to the verifier.
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These are computations performed by the verifier that
cannot be seen by the prover. These computations must
be performed in probabilistic polynomial time.
This is a message from the verifier to the prover.

Let M be a simulator for a view of the conversation between P

and V. M is a probabilistic polynomial time machine that will
output a conversation between P and V including the random coin
tosses of VV. Thus each run of M will produce

raBro, Bayes Bis tk

Let P&lt;» V[x] denote the distribution of views of conversations
between P and V. M|[x] denotes the distribution of views of con-
versations created by running M on x.

Let A[x] and B[x] be two distributions of strings. A[x] and Bx]
are statistically close if for any subset of strings S,

1
| Zz BO) B Lz PO | &lt; q(|xI)

for all polynomials ¢g with |x| large enough. Let J be a probabilistic
polynomial time machine that outputs either 0 or 1. A[x] and B[x]
are polytime indistinguishable if for any J,

PrJ(Alx]) = 1] — Pr[J (Bx) = 1]| &lt; —
r(lx)

for all polynomials r with |x| large enough. J(A[x]) is the output of
J when run on a string chosen from A4[x]. Note that if A[x] and B[x]
are statistically close then they are polytime indistinguishable.

Pe V is Zero-Knowledge (ZK) if for any verifier V'* there
is a M,. such that (VxeL)P«&lt; V*[x] and M,.[x] are polytime
indistinguishable.

P&lt; V is Perfect Zero-Knowledge (PZK) if for any verifier V'*
there is a M,. such that (Vxe L)P— V*[x] = M,.[x].

Po V is Almost Perfect Zero-Knowledge (APZK) if for any
verifier V'* there is a M,. such that (Vxe L)P «&gt; V*[x] and M.[x]
are statistically close.

Interactive protocols and zero-knowledge were introduced in
GMR]. Perfect zero-knowledge was described originally in [GMW].
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The class AM was introduced by Babai [B] as the class of languages
that have one round interactive protocols where }’s message
consists exactly of his coin tosses. This was shown to be equivalent
to the definition used above by [GS] and [B].

Note that ZK 2 APZK = PZK. The inclusions are not known to

he proper but this chapter gives good evidence that ZK # APZK.
The results in this chapter require only a weaker version of

zero-knowledge: a simulator need exist only for the given P and V
and not necessarily for any V*. For the rest of this chapter we will
assume we are in this weaker model and M = M,, is the simulator
for P and V.

RELATED RESULTS

Our result shows that for any language L with an almost perfect
zero-knowledge protocol, there exists a bounded round interactive
protocol for its complement L. We can then apply several earlier
results about bounded round interactive protocols.

Goldwasser and Sipser [GS] have shown that for any language
that has an interactive protocol in Q rounds, there is an Arthur-
Merlin protocol in Q + 2 rounds for that language. Arthur-Merlin
protocols are similar to interactive protocols except that the verifier’s
message are just random coin tosses. Babai [B] showed that any
bounded round Arthur-Merlin protocol is equivalent to a one
round Arthur-Merlin protocol. This is just the class AM. Babai
also shows that AM &lt;= NP® for a random oracle R and also

that AM &lt; []{. Sipser pointed out that AM is contained in non-
aniform NP.

Boppana, Hastad, and Zachos [BHZ] have shown that if co-NP
has bounded round interactive proofs then the whole polynomial
time hierarchy wouldd be an AM implying that the polynomial time
aierarchy collapses to the second level.

Subsequent to our result, Aiello and Hastad [AH] have shown,
using similar techniques, that any almost perfect zero-knowledge
protocol can be done by a bounded round interactive protocol. This
result is a nice complement to our result that describes the complexity
of the complement of perfect zero-knowledge languages. Combin-
ing the two results we have that any language with a perfect zero-
knowledge proof system is in nonuniform NP n co-NP

Brassard and Crépeau [BC] have shown perfect zero-knowledge
for SAT using a different model for interactive protocols where the
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prover is a polynomial time machine that knows a satisfying assign-
ment. Our result about perfect zero-knowledge relies on the ability
of the prover to have infinite power and thus does not apply to
Brassard and Crépeau’s model.

SHOWING SETS ARE LARGE AND SMALL

In this paper, we will need protocols to show sets are large and
small. We do both using Carter-Wegman Universal Hash Func-
tions [CW].

Let £ = {0,1}. Suppose S&lt; XV, 0"¢S. Let F be a random
binary b x N matrix. Let f/: ¥ — XZ? be the function defined by
f(x) = Fx using regular matrix multiplication modulo two. We
can think of f in terms of linear algebra over the field of two
elements. f is distributed evenly over all possible linear functions
from n-dimensional space to b-dimensional space.

LEMMA 1 (VECTOR INDEPENDENCE). Suppose X;,X,,...,x,€Z"
are linearly independent vectors over the field of two elements. Then
f(x), f(x,),..., f(x.) are independently and uniformly distributed
over 2°.

Proof. Since x,,x,,...,X, are linearly independent, we can
=xtend to a basis. Pick b,_, by. ,,...,by to complete the basis. Let
T be the transformation matrix from this new basis to the canonical
basis of ZV. Then the matrix B = FT describes the function from
the new basis to the canonical basis of £°. Since T is an invertible

matrix, there is a one-to-one correspondence B and F. Thus B is
distributed uniformly over all possible binary &amp; x N matrices. f(x;)
is just the jth column of B. Thus each f(x;) is independently
distributed over X%. 0

If |S| &gt; 2° then f; is likely to be onto most of £’ and most
slements of =’ will have many preimages.

If |S| &lt; 2° then the range of fy is a small subset of £* and most
slements of f.(S) will have onlv one inverse in S.

41 Lower Bound Protocol

(f S is recognizable in polynomial time we use the following
srotocol to show S is laree:
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D

Pick / independent random hash functions f,,..., f:
£” — X% and I’ points z,,...,z,€XZ’
frees JZ 2p
Y

Ac-eptif xe Sand f(x) = z,forsomei, j,1 &lt;i &lt;/and
 A

If Sis much smaller than 2° then it is unlikely for there to be any
¢ such that f(x) = z;. However if S is large then there are likely to
be many x so a prover should have no trouble exhibiting such an

x that V can verify in polynomial time.

LEMMA 2 (LowER BOUND). [GS] Using the above protocol with a
given N,b,d &gt; 0 and | &gt; max {b, 8}.

(. If|S| = 2° then Pr(P«V accepts) &gt; 1 — 27/8,
2 If|S] &lt; 2%/d then Pr(P* &amp; V accepts) &lt; I’/d for anv P*.

1.2. Upper Bound Protocol

If V has a random element se S that is not known by P then the
following protocol is used to show S is small:

Pick a random N x b matrix F

V—P F, f(s) = Fs
PV 5.

{f Sis small then s is likely to be the only element of S that maps
lo f(s); thus P can find s. If S is large then many elements of S$ map
lo f(s), and because s is a random element of S, the prover will have
no way of determining which element of S V has.

LemMA 3 (Upper BOUND). Using the above protocol with a given
Nb&gt;0andd&gt;7.

(. If|S|&lt; 2d then Pr(P—V accepts) = 1 — (1/d).
2. IfIS| &gt; 8d2° then Pr(P* «&gt; V accepts) &lt; (1)d) for any P*

Proof. Let A be the random variable equal to the number of
« # sin S such that f(x) = f(s). Let S" = S — {5s}. Let 4, be
the indicator random variable equal to one if f(x) = f(s), zero
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otherwise. Then

S| —1
E(A) = E(% 4.) = YEU) = 32° = ;

If |S| &lt; 2%/d then E(A) &lt; 1/d. If f(s) has only s as an inverse
in |S| then P with his infinite power will be able to determine s.
Thus Pr(Pe V rejects) &lt; Pr(4 &gt; 1) &lt; E(A) &lt; 1/d since 4 is an
integral random variable.

Suppose |S| &gt; 842°. We can assume |S| = 842° + 1 without

increasing the probability of acceptance. Then E(A4) = 8d. Since
P* has no idea what s J has, P* can only have a 1/(4 + 1)
probability of predicting the s that ¥ has. We will show that there
is a high probability that A is large. To show this we look at the
variance of A.

Given x, y, s all distinct and y # x @ s then x, y, s are linearly

independent. Then by the Vector Independence Lemma f(x), f( »),
f(s) are independently distributed over Z’. It then follows that A,
and A, are independent random variables and their covariance is
zero.

The covariance of any two indicator random variables is never
greater than the expected value of one of them.

VAR(A) = ) COV (4, Aiy

x, pes’ ( * )

y. [COV (A,,4,)+ COV (A,, Aoti [ ( x ‘) ( )]x9 “ix@s

S 2E(4,) &lt; 16d
xe SS’

[t is possible that x @ s¢S but this would only decrease the variance.
Using Chebyshev’s inequality we get

VAR(4) _ 16d _ 1Pr (4 &lt; 2d) &lt; Pr (4 — 8d]&gt;6d)&lt;La)&lt;100&lt;2r(4&lt;2d) &lt; Prd —3d|&gt; 6d) &lt; gp &lt; 3657 &lt; 34

So with probability at most 1/2d 4 is small enough that P*
can determine s easily; otherwise P* has at most 1/2d chance
of guessing s, so in total P* has at most a 1/d chance of deter-
mining s. [7]
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12 Comparison Protocol

LF

Suppose we had two sets S;, S, = £" and wanted to show that
S;| &gt; |IS,|. If S, is polynomial time testable and V has a random
element s, of S,, then the following is a protocol to show |S, | &gt; |S,|:

Po i

P-V
PL

 &lt;M
Use lower bound protocol on S; with b = b',/ = 8uN
Use upper bound protocol on S, with b = b" — 3n.
§ = S4.

LEMMA 4 (COMPARISON). Using the above protocol:

If|S, = 2**"|S,| then Pr(P« V accepts) &gt; 1 —2'"".
If MY &lt; 24S, | then Pr(P*— V accepts) &lt; nn N329-n for
any P*

Proof. lLetd = an
alos

Pick b" = | log|S,| |. Then each protocol accepts with prob-
ability &gt; 1 — 27", so that both will accept with probability
&gt;1 — 2'"" by the upper and lower bound lemmas.
There are two cases depending on what 4” P chooses:
fa) If b’ &gt;[log|S,|] — n then by the lower bound lemma

the probability of V accepting is &lt;n*N32°"".
If b &lt;[logl|S,|] + n then by the hypothesis ’ — 3n &lt;
_log|S,||—n — 3 and by the upper bound lemma the
probability of V accepting is &lt;27". 0

Using Carter—Wegman Hashing to show a set is large was intro-
duced by Sipser [S] and used extensively in [S,B, GS]. To the
author’s knowledge this paper is the first use of an interactive
protocol to show a set is small.

MAIN THEOREM

We will start with a simple version of the theorem

THEOREM 1. Let L be a language with a perfect zero-knowledge
nteractive protocol. Then there exists an interactive protocol
1cceptine I,
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5.1. Structure of Proof

We are given a prover and verifier (P and V') for the language L,
and a simulator M that produces views of conversations between P
and V and the random coin tosses of V. Note that one can simulate

the computation of V in polynomial time, checking, for example,
whether or not V accepts. On xe L, M produces a view of a
conversation for exactly the same probability distribution as when
P and V run on x. The key idea of the proof of the theorem is to
notice what M might do on x ¢ L. There is no requirement in the
definition of perfect zero-knowledge on what M does on x¢L;
however there are three possibilities:

M will produce “garbage,” something that clearly is not a
randomly selected member of P« V[x].
M will produce views of conversations that cause I to reject
most of the time.
M will produce a simulation that looks valid and causes V to
accept. It may not be possible in polynomial time to tell this
view from one created by P and VV when xe L. However, M
must be producing views of conversations from a distribution
quite different from the distribution of views between P and
V, since in the real views V is likely to reject.

We will create a new prover and verifier, P’ and VV’ that will
determine if one of the three cases occur. ¥’ will run M and get a

view of a conversation between P and V and r, the random coin
tosses of V. VV’ will check that this view is valid and that V halts
accepting. If the view fails this test then it falls in cases 1 or 2 so J’
knows that x¢L and VV’ accepts. Otherwise V* will send to P’ some
initial segment of the conversation. P’ will then convince V that
the conversation came from a bad distribution by “predicting” r
better than P’ could have done from a good distribution.

5.2. An Example: Graph Isomorphism

Graph isomorphism is a well-studied problem that is clearly
in NP but not known to be in co-NP or BPP. A perfect zero-

knowledge proof of graph isomorphism was presented in [GMW].
We will show how our theorem converts this perfect zero-knowledge
protocol to an interactive protocol for graph nonisomorphism. This
protocol for graph nonisomorphism is identical to the graph
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nonisomorphism protocol described in [GMW]; our proof, how-
ever, shows that the similarity between the two protocols is not
coincidental.

Let ni: {1,...,n} -&gt; {l,...,n} be a permutation of the vertices
of a graph. For a graph G = [V, E] let [n(v,),n(v,)]en(E)&lt;=
(v,v,)eE.Letn(G) = [V,=n(E)].

Two graphs G, and G, are isomorphic if there exists a permutation
n such that n(G,) = G,. A perfect zero-knowledge protocol for
eraph isomorphism suggested by [GMW] works as follows:

P- Generate random permutation = and computes G =

HG)
J¢£

V-.
P 1

= 1 or 2 chosen at random

7’ chosen at random such that 7n’(G.) = G.

If G, = G, then G will be a permutation of both G, and G, and
P will always be able to find a =’. If G, 2 G, then G cannot be a
permutation of both G, and G,, so at least half of the time V will
choose an i such that no zn’ exists. Thus we have an interactive

protocol for graph isomorphism. This protocol also is perfect zero-
knowledge.

The simulator M works as follows:

M generates m and i at random and computes G = 7(G,), then
outputs the following view of a conversation:

f~

[t is easy to verify that when G, =~ G,, M produces exactly the
same distribution of views of conversations as P and V. Notice what

happens when G, 2% G,. The output of M always causes V to
accept. Thus when G, 2 G,, M must produce views of conver-
sations from a very different distribution from what P and V
produce. In fact whenever G, 2% G,, one can always predict r = i
from the G produced by M. This leads to a new interactive protocol
between a new prover and verifier, P’ and V’, for graph non-
isomorphism as follows:

7! —

J Generate © and i at random and compute G =

n(G;)
Gr
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5.3. The Protocol for L

We are given a prover and verifier, P and V for a language L and
a simulator M that exactly simulates views of conversations between
P and V when xe L. Let n = |x| and let k be the number of rounds

of the protocol which is bounded by a polynomial in n. We can
decrease the probability of error in the protocol between P and
V to 27" for any constant ¢ by the standard trick of running
the protocol several times in parallel and having V accept if the
majority of individual protocols accept. This new protocol is still
perfect zero-knowledge—we just run the simulator in parallel. Note
that we make use of the fact that we only need a simulator for the
real verifier V. In general, it is not known whether perfect zero-
knowledge protocols remain perfect zero-knowledge when run in
parallel.

Thus we can assume

{. If xeL then Pr[P V(x) accepts] =&gt; 1 — 27%",
2. If x¢ L then VP*Pr[P* « V(x) accepts] &lt; 276

For the sake of the comparison protocol, let us require that V
immediately rejects if all its coin tosses are zero. Since this will
happen with an exponentially small probability it will not affect the
correctness of the protocol. The protocol remains perfect zero-
knowledge by having the simulator output no conversation if the
verifier’s coins are all zero.

A protocol between a new prover and verifier. P* and VV’, works
as follows:

V'— P’
Pp’ 3 Ve

7’ Run M and get r, B,,a,,..., Bc, %. VV’ now checks two

things:
|. Check that the conversation is valid, i.e., that

r, o,...,0 will cause V to say f,,..., Bi.
2. Check that the conversation causes V to accept.

If either of these tests fail then V’ can be very sure

that x¢Lso VV’ quits now and accepts. Otherwise V”’
continues.
Letj = 1.

Bi» o
Look at the sets #, and #, as defined below. If
'R,| = 2%t'|%,] then use the comparison protocol
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described in Section 4 to show |%#,| &gt; |4%,]|. Otherwise let
j=j+ 1. If j&lt;k tell "to TRY NEXT ROUND.
otherwise GIVE UP.

A, can be thought of as all the possible random strings of V after
round j of the protocol. #, are the possible random strings of V
2enerated by M. More formally:

Let # be the set of all possible coin tosses of V.
Let # = {ReZ|Randa,,...,q cause V to say f,,...,;}.
Let #, = {Re|McanoutputR, B,,«,,...,p,, o part ofavalid.
accepting conversation}.

Note that #, = #, and if xeLthen#, ~ #,. Also note that #
s independent of a.

2, is polynomial time testable. If x € L then M produces the exact
distribution between P and V and thus r is a random element of #,
which P’ does not know. In that case we have fulfilled the require-
ments of the comparison protocol. If x¢L it is possible that r is not
a random element of %, but this can only increase the probability
of the comparison protocol accepting.

5.4. The Protocol Constitutes an Interactive Protocol for

To show that this is an interactive protocol for L, we must show
two things:

tr. If (xeL) then P’ &lt; V(x) accepts with probability &gt; 3.
2. If (x¢L) then VP Po V’(x) accepts with probability &lt;1

We will prove the second statement first since it is the easier of the
‘Wo to prove.

2. Suppose xe L. Then M will produce views of conversations
irom exactly the same distribution as P and V. Thus every con-
versation produced by M will be valid. Assume a prover P is able
lo convince V’ to accept with probability &gt; 1. There may be an
exponentially small chance that V will reject in this conversation
and this will cause V”’ to accept. If |%,| &lt; 2" *|#,| on any round
then the comparison protocol will accept with a exponentially small
probability. Thus we can assume that with probability &gt; 1 that
R,| &gt; 2""*|®,| for some round j. Since M outputs all possible
conversations, #%, is just the random coin tosses of J that might
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cause V to accept in the future. So at round j of the protocol, the
probability of Vs acceptance &lt; |%,|/|%,| &lt; 2*~". Since this happens
at least a fourth of the time the probability of Vs acceptance in
general is &lt; 2 + 2*7" that contradicts the fact that V will accept
with probability greater than 1 — 275.

1. Suppose to the contrary that x¢Landthe protocol does not
work. If |#,| &lt;2**'|®,| then by the comparison lemma the
comparison protocol will fail with at most an exponentially small
probability. So |%,| = 2**'|%,| at all rounds j with probability at
least one-fourth. We use this to derive a contradiction by demon-
strating that P&lt; V is not an interactive proof system for L by
presenting a prover P* that will convince V (the original verifier)
that xe L with probability greater than 27%".

At round j suppose the conversation so far has been f}, a, ...

B;. P* works as follows:

P*5VV

P*- Run M which outputs r, 8, &amp;,,..., Bi, %. Check that
this is a valid accepting conversation. If not, try again.
See if B,, a;,...,B; = Bi, ai,...,B;. If not, try again.
o..

At round j when P* has a conversation from M that matches the
conversation so far, #, is the set of possible random coin tosses
of VV. When P* says a, #, is the set of coin tosses of V that will still
keep V heading toward an accepting path. Since |%,| = 2*'|Z,|,
this will happen with probability &gt; 2-®"*"Y. So after k rounds,
V will end up accepting with a probability at least 12~*"*%_ which
is higher than the 2%" maximum accepting probability we assumed
for V and any P*, when x¢L. 0

Note that P* may require exponential expected time to complete
its part of the protocol but in our model an infinitely powerful P*
is allowed.

a
e -.""ENSIONSAND COROLLARIES

THEOREM 2. Suppose P&lt; V is an interactive protocol for a
language L and there is a probabilistic polynomial time simulator M
such that Mx] is statistically close to P «&gt; Vx]. Then there is a single
round interactive protocol for the complement of L.
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Idea ofproof. This extends the main theorem in two ways. First,
we do not require M[x] = P+ Vx], just that they be statistically
close. One can check the proof in the previous section and notice
that, with some minor adjustments to the probabilities, statistically
close is good enough.

Second, we would like to get a single round protocol for the
complement of L. Notice that in the protocol given above the
number of rounds is dependent on when P’ decides to say STOP.
To get bounded rounds we must make the following change to the
protocol:

D

 Pn

Run M k* times independently and get k* views of
conversations; check that each conversation is valid and
accepting.
For 1 &lt;i &lt; k* send the first imodkrounds of the ith
conversation.
Pick any conversation j and show |%,| &gt; |%,]| for the
view of that conversation.

It is not hard to verify that the above proof still works for this
new protocol. Once we have bounded rounds we apply the theorems
of [B, GS] which imply that all bounded round protocols can be
made into single round protocols.

Some trivial corollaries follow from results that are described in
Section 3.

COROLLARY 1. If Le APZK then Le AM.

COROLLARY 2. If L has an almost perfect zero-knowledge inter-
active protocol ( possibly with an unbounded number of rounds) then
Le (NP co-NPYR., where R is a random oracle.

COROLLARY 3. [If any NP-complete language has an almost
perfect zero-knowledge interactive protocol then the polynomial time
hierarchy collapses to the second level.

COROLLARY 4. If there are one-way functions and the polynomial
time hierarchy does not collapse then NP =&lt; ZK: but NP &amp; APZK. so
/K + APZK.
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7 OPEN PROBLEMS

[here are several interesting problems remaining, including

What is the relationship between PZK and APZK?
Are complement of perfect or almost perfect zero-knowledge
languages themselves perfect zero-knowledge in any sense?
Are cryptographic assumptions necessary to show NP has
zero-knowledge protocols? Although this chapter shows that
NP probably does not have perfect zero-knowledge proof
systems, it is still conceivable that the intractability of SAT is
a good enough assumption for a zero-knowledge protocol.
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RANDOMIZED ROUTING

ON FAT-TREES

Ronald I. Greenberg and Charles E. Leiserson

ABSTRACT

Fat-trees are a class of routing networks for hardware-efficient
parallel computation. This chapter presents a randomized algorithm
for routing messages on a fat-tree. The quality of the algorithm
is measured in terms of the load factor of a set of messages to be
routed, which is a lower bound on the time required to deliver the
messages. We show that if a set of messages has load factor 4 on a

fat-tree with n processors, the number of delivery cycles (routing
attempts) that the algorithm requires is O(4 + lgnlglgn) with
probability 1 — O(1/n). The best previous bound was O(dlgn) for
the off-line problem in which the set of messages is known in
advance. In the context of a VLSI model that equates hardware cost

with physical volume, the routing algorithm can be used to demon-
strate that fat-trees are universal routing networks. Specifically. we
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prove that any routing network can be efficiently simulated by a
fat-tree of comparable hardware cost.

. INTRODUCTION

Fat-trees constitute a class of routing networks for general-purpose
parallel computation. This paper presents a randomized algorithm
for routing a set of messages on a fat-tree. The routing algorithm
and its analysis generalize an earlier universality result by showing,
in a three-dimensional VLSI model, that any network can be
efficiently simulated by a fat-tree of comparable volume. The result
had been proved only for off-line simulations [Le2], where the
communication pattern is known in advance; this chapter extends
it to the more interesting on-line case, where messages are spon-

taneously generated by processors.
As is illustrated in Figure 1, a fat-tree is a routing network based

on Leighton’s tree-of-meshes graph [L]. A set of n processors is
located at the leaves of a complete binary tree. Each edge of the
underlying tree corresponds to two channels of the fat-tree: one
from parent to child, the other from child to parent. Unlike a
normal tree that is “skinny all over,” in a fat-tree, each channel
consists of a bundle of wires. The number of wires in a channel ¢

is called its capacity, denoted by cap (¢). Each internal node of the
fat-tree contains circuitry that switches messages from incoming to
outgoing channels.

Figure 1. The organization of a fat-tree. Processors are located at the
leaves, and the internal nodes contain concentrator switches. The channels
between internal nodes consist of bundles of wires.

external interface

ini
I

| &lt;«— switching
node

= ? channels

ii
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The channel capacities of a fat-tree determine the amount of
hardware required to build it. The greater the capacities of the
channels, the greater the communication potential, and also, the
oreater the hardware cost of an implementation of the network.
The idea of fat-trees is to take advantage of a principle of locality
in much the same way as does the telephone network: by using
only slightly more hardware than that required to support fast non-
local communication among a set of processors, much additional
local communication among a larger set of processors can be

supported.
An issue that any routing algorithm for a fat-tree must face is

that some communication patterns among the processors are harder

than others. For example, suppose the channel capacity between
the two halves of a fat-tree is ®@(n*”), where n is the number of
processors, and suppose each processor sends a message to a

processor in the other half. Since the number of messages that must
pass through the root is n and the capacity is @(n*”), the time
required by the network to deliver all the messages is Q(n'"?)
because of congestion. In contrast, there are manv communication
patterns among »n processors with less nonlocal communication that
can be implemented in subpolynomial time.

The routing algorithm for fat-trees presented in this chapter is a
randomized algorithm that we analyze in terms of a measure of
congestion called the load factor. The load factor of a set of
messages is the largest ratio over all channels in the fat-tree of the
number of messages that must pass through the channel divided by
the capacity of the channel. The load factor of a set of messages is
thus a lower bound on the time to deliver the messages.

We show in this chapter that our routing algorithm can deliver
a set of messages with load factor 4 in O(4 + lgnlglgn) delivery
cycles (routing attempts) with high probability. The best previous
bound for a problem of this nature was an O(Algn) bound for the
off-line situation where the set of messages is known in advance
[Le2] and the problem is to schedule their delivery. The analysis of
our randomized routing algorithm makes no assumptions about
the statistical distribution of messages. except insofar as it affects
the load factor. Moreover, the algorithm is not restricted to per-
mutation routing or situations where each processor can send or
receive only a constant number of messages. as is common in the

literature. We consider the general situation where each processor
can send and receive polynomially many messages.
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Our routing algorithm also differs from others in the literature in
the way randomization is used. Unlike the algorithms of Valiant
[V], Valiant and Brebner [VB], Aleliunas [Al], Upfal [U], and
Pippenger [P], for example, it does not randomize with respect to
paths taken by messages. For example, Valiant’s classic scheme for
routing on a hypercube sends each message to a randomly chosen
intermediate destination and, from there, to its true destination. On
a fat-tree, such a technique would likely convert communication
patterns with good locality into ones with much global communi-
cation. Instead of choosing random paths for messages to traverse,
our algorithm repeatedly attempts to deliver a randomly chosen
subset of the messages. A by-product of this strategy is that our
algorithm requires no intermediate buffering of messages.

The remainder of this chapter is organized as follows. Section 2
describes fat-trees in more detail. Section 3 presents the randomized
algorithm for efficiently routing messages on the fat-tree network,
and Section 4 contains the full analysis of the algorithm. Section 5
proves that fat-trees are universal in VLSI models. Specifically, we
use the randomized routing algorithm to show that a fat-tree with
properly chosen channel capacities can efficiently simulate any
other network of comparable hardware cost, where cost is measured
as the area or volume of the circuitry. Section 6 gives an existential
{ower bound for a class of naive greedy routing algorithms that
shows that the greedy strategy is inferior to our randomized
algorithm for worst case inputs. Section 7 contains several additional
results. These include a modification of the routing algorithm that
achieves better bounds when each channel has capacity Q(lgn), a
new, simpler fat-tree design, and results on off-line routing. Finally,
Section 8 contains some concluding remarks.

2. FAT-TREES

This section describes fat-trees in more detail. We give more specific
implementation details on our routing strategy and the hardware
required to support it. We precisely define the load factor of a set
of messages on a general network in terms of cuts of the network,
and we prove that it suffices in a fat-tree to consider only the load
factors on channels.

The implementation of fat-trees described here follows that of
[Le2]. We consider communication through the fat-tree network to
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be synchronous, bit serial, and batched. By synchronous, we mean
that the system is globally clocked. By bit serial, we mean that the
messages can be thought of as bit streams. Each message snakes its
way through the wires and switches of the fat-tree, with leading bits
of the messages setting switches and establishing a path for the
remainder to follow. By batched, we mean the messages are

erouped into delivery cycles. During a delivery cycle, the processors
send messages through the network. Each message attempts to
establish a path from its source to its destination. Since some
messages may be unable to establish connections during a delivery
cycle, each successfully delivered message is acknowledged through
ts communication path at the end of the cycle. Rather than buffer-
ing undelivered messages, we simply allow them to try again in a
subsequent delivery cycle. The routing algorithm is responsible for
zrouping the messages into delivery cycles so that all the messages
are delivered in as few cycles as possible.

The mechanics of routing messages in a fat-tree are similar to
routing in an ordinary tree. For each message, there is a unique
path from its source processor to its destination processor in the
underlying complete binary tree, which can be specified by a relative
address consisting of at most 2 Ig » bits telling whether the message
turns left or right at each internal node. Within each node of the
[at-tree, the messages destined for a given output channel are
concentrated onto the available wires of that channel. This concen-

tration may result in “lost” messages if the number of messages
destined for the output channel exceeds the capacity of the channel.
We assume, however, that the concentrators within the node are
ideal in the sense that no messages are lost if the number of

messages destined for a channel is less than or equal to the capacity
of the channel. Such a concentrator can be built, for example,
with a logarithmic-depth sorting network [Aj]. A somewhat more
practical logarithmic-depth circuit can be built by combining a
parallel prefix circuit [LF] with a butterfly (i.e., FFT, Omega)
network. With switches of logarithmic depth, the time to run each
delivery cycle is O(lg’n) bit times, making the natural assumption
that messages are O(lgn) bits long.! (Section 7 contains another
[at-tree design where the time to run a delivery cycle is O(lgn) bit
limes.)

The performance of any routing algorithm for a fat-tree depends
on the locality of communication inherent in a set of messages. The
locality of communication for a message set M can be summarized
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by a measure A(M ) called the load factor, which we define in a more
general network setting.

DErFINITION. Let R be a routing network. A set S of wires in R
is a (directed) cut if it partitions the network into two sets of
processors 4 and B such that every path from a processor in 4
to a processor in B contains a wire in S. The capacity cap(S)
is the number of wires in the cut. For a set of messages M, define
the load load(M, S') of M on a cut S to be the number of messages
in M from a processor in A to a processor in B. The load factor of
M on S is

a load(M,S)
FILS) = —Sy

and the load factor of M on the entire network R is

Lod) = max AM, S).

The load factor of a set of messages on a given network provides
a lower bound on the time required to deliver all messages in
the set.

For fat-trees, only cuts corresponding to channels need be con-
sidered to deteremine the load factor, as is shown by the following
lemma.

LEMMA 1. The load factor of a set M of messages on a fat-tree is

AWM) = max AM, ¢),

where c¢ ranges over all channels of the fat-tree

Proof. Any cut S must entirely contain at least one channel. Let
us partition the wires in S into § = ¢,u---uUcquUw, where
¢,,...,c are the complete channels in S and w is the set of remain-
ing wires in S. For convenience, let x; = load(M,c;) and
y; = cap(c;). Assume without loss of generality that A(M,c,) &gt;
MM, c)fori = 1,...,1 which implies x,y, — x,y, = 0 for all i. The
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load factor of M on S is therefore

AM, S) = - x4 ot Xi
’ ye o- + y+ |W

Yr = Xp) ++ Oayr—xp) + Owl) (1)
y++y+vl)

WM. ec)

since each term in the numerator of the second term of (1) is

nonnegative. O

} I'HE ROUTING ALGORITHM

This section gives our randomized algorithm for routing a set M of
messages on a fat-tree. The algorithm RANDOM, which is based
on routing random subsets of the messages in M, is shown in
Figure 2. It uses the subroutine TRY-GUESS shown in Figure 3.
Section 4 provides a proof that on an n-processor fat-tree, the

Figure 2. The randomized algorithm RANDOM for delivering a message
set M on a fat-tree with n processors. This algorithm achieves the running
times in Figure 4 with high probability if the constants k, and k, are
appropriately chosen. Since the load factor A(M) is not known in advance,
RANDOM makes guesses, each one being tied out by the subroutine
TRY-GUESS.

Algorithm RANDOM
send M
U «— M — {messages delivered}

Aguess «2
while ky) yep &lt; k2lgn and U # 0 do

TRY-GUESS(Ajuees)
Aguess = LA

endwhile
Aguess — (k2/k1)1gnlglgn
while U # 8 do

0 TRY-GUESS(Aueas)
1 Aguess — 2) yeas
‘9 endwhile
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Figure 3. The subroutine TRY-GUESS used by the algorithm RANDOM
that tries to deliver the set U of currently undelivered messages. When
Aeuess = AU), this attempt will be successful with high probability, if the
constants k, and k, are appropriately chosen. (The value r is the congestion
parameter of the fat-tree defined in Section 4, which is typically a small
constant.) In that case, A is always an upper bound on A(U), which is at
least halved in each iteration of the while loop. When the loop is finished.
AU) &lt; 1, so all the remaining messages can be sent.

procedure TRY-GUESS(Ajuess)
A — Aguees
while A &gt; 1 de

for i: — 1 to max {k;\, k2lgn} do
independently send each message of U with probability 1/r)
U + U — {messages delivered}

endfor

A+ 2/2
s endwhile

9 send U
10 U « U — {messages delivered}

probability is at least 1 — O(1/n) that RANDOM delivers all
messages in M within O(A(M) + lgnlglgn) delivery cycles, if the
two constants k, and k, appearing in the algorithm are properly
chosen.

The basic idea of RANDOM is to pick a random subset of
messages to send in each delivery cycle by independently choosing
each message with some probability p. This type of message set
merits a formal definition.

DEFINITION. A p-subset of M is a subset of M formed by
independently choosing each message of M with probability p.

We will show in Section 4 that if p is sufficiently small, many of the
messages in a p-subset are delivered because they encounter no
congestion during routing. On the other hand, if p is too small, few
messages are sent. RANDOM varies the probability p from cycle to
cycle, seeking random subsets of M that contain a substantial
portion of the messages in M, but that do not cause congestion.

The algorithm RANDOM varies the probability p because the
load factor A(M) is not known. The overall structure of RANDOM
is to guess the load factor and call the subroutine TRY-GUESS for
each one. The subroutine TRY-GUESS determines the probability
p based on RANDOM’s guess A, and a parameter r, called the
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congestion parameter of the fat-tree, which is independent of the
message set and which will be defined in Section 4. If 1, is an
upper bound on the true load factor A(M), then with high prob-
ability, each iteration of the while loop in TRY-GUESS halves the
upper bound on the load factor A(U) of the set U of undelivered
messages, as will be shown in Section 4. When the loop is finished,
we have A(U) &lt; 1, and all the remaining messages can be delivered
in one cycle. The number of delivery cycles performed by TRY-
GUESS is O(1g Ages Ign) if 2 &lt; Ages &lt; O(Ign), and the number of
cycles is O(Ay,,, + lgnlglgn) if A. = Q(gn).

RANDOM must make judicious guesses for the load factor
because TRY-GUESS may not be effective if the guess is smaller
than the true load factor. Conversely, if the guess is too large, too
many delivery cycles will be performed. Since the amount of work
done by TRY-GUESS grows as Ig 4,,,, when 4, is small, and as
Aguess When A. 1s large, there are two main phases to RANDOM ’s
guessing. (These phases follow the handling of very small load
factors, i.e., A(M) &lt;2.)

In the first phase, the guesses are squared from one trial to the
next. Once 4, is sufficiently large, we move into the second phase,
and the guesses are doubled from one trial to the next. In each

phase, the number of delivery cycles run by TRY-GUESS from one
call to the next forms a geometric series. Thus, the work done in any
call to TRY-GUESS is only a constant factor times all the work
done prior to the call. With this guessing strategy, we can deliver a
message set using only a constant factor more delivery cycles than
would be required if we knew the load factor in advance.

1 ANALYSIS OF THE ROUTING ALGORITHM

This section contains the analysis of RANDOM, the routing
algorithm for fat-trees presented in Section 3. We shall show that
the probability is 1 — O(1/n) that RANDOM delivers a set M of

messages on a universal fat-tree with n processors in O(A(M) +
lg n lglg n) delivery cycles. Figure 4 gives the tighter bounds that we
actually prove.

We begin by stating two technical lemmas concerning basic prob-
ability. One is a combinatorial bound on the tail of the binomial
distribution of the kind attributed to Chernoff [C], and the other is
a general, but weak, bound on the probability that a random
variable takes on values smaller than the expectation.
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Figure 4. The number of delivery cycles required to deliver a message set
M on a fat-tree with n processors. All bounds are achieved with prob-

ability 1 — O(1/n). The bounds on the number of delivery cycles can be
summarized as O(MM) + lgnlglgn).

load factor delivery cycles
0&lt;AMY&lt;L
LAM) &lt;2 O(lgn)
2S A(M) &lt;lgnlglgn O(lgnlg(A(M)))

Igniglgn &lt; MM) &lt; nM) O(AM(M))

The first lemma is the Chernoff bound. Consider ¢ independent
Bernoulli trials, each with probability p of success. It is well known
[F] that the probability that there are at least s successes out of the
t trials is

; [)ra =rB(s,t,p) = Zz .

The lemma bounds the probability that the number of successes is
larger than the expectation pt.

{ EMMA 2.

t 5

B(s,t,p) &lt; (2).

Proof. The lemma follows from [V, p. 354] LL

The second technical lemma bounds the probability that a bounded
-andom variable takes on values smaller than the expectation.

LEMMA 3. Let X &lt; b be a random variable with expectation pu
Then for any w &lt; pu, we have

Prix&lt;wi&lt;l-2—"h—w'

Proof. The definition of expectation gives us

u&lt;wPr{X&lt;wl+b(l—Pr{X&lt;w}

rom which the lemma follows.
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We now analyze the routing of a p-subset M’ of a set M of
messages. If the number load(M’, ¢) of messages in M’ that must
pass through c is no more than the capacity cap(c), then no messages
are lost by concentrating the messages into ¢. We shall say that c is
congested by M’ if load(M’,c) &gt; cap(c). The next lemma shows
that the likelihood of channel congestion decreases exponentially
with channel capacity if the probability of choosing a given message
in M is sufficiently small.

LEMMA 4. Let M be a set of messages on a fat-tree, let A(M) be
the load factor on the fat-tree due to M, let M’ be a p-subset of
messages from M, and let ¢ be a channel through which a given
message meM’ must pass. Then the probability is at most
(epA(M © that channel c is congested by M’.

Proof. Channel c is congested by M' if load(M’, c) &gt; cap(c).
There is already one message from the set M’ going through
channel ¢, so we must determine a bound on the probability that at

least cap(c) other messages go through ¢. Using Lemma 2 with
s = cap(c) and t = load(M, c), the probability that the number of

messages sent through channel c is greater than the capacity cap(c)
is less than

B(cap(c). load(M, ¢),p) &lt; (recap(c)

&lt; (ep A(M ))2P© 1

The next lemma will analyze the probability that a given message
of a p-subset of M gets delivered. In order to do the analysis,
however, we must select p small enough so that it is likely that the
message passes exclusively through uncongested channels. The
choice of p depends on the capacities of channels in the fat-tree. For
convenience, we define a parameter of the capacities that will enable
as to choose a suitable upper bound for p.

DEFINITION. The congestion parameter of a fat-tree is the
smallest positive value r such that for each simple path ¢,,c,,...,¢,
of channels in the fat-tree, we have

{ e calc) .

2 = ~~ T
k=1 \¥
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The congestion parameter is generally quite small. For any fat-
tree based on a complete binary tree, the longest simple path is at
most 21g n, where n is the number of processors, and thus we have
r &lt; 4elgn. For universal fat-trees (discussed in Section 5), the
congestion parameter is a constant because the capacities of channels
grow exponentially as we go up the tree. (All we really need is
arithmetic growth in the channel capacities.) The congestion par-
ameter is also constant for any fat-tree based on a complete binary
tree if all the channels have capacity Q(lglgn). Our analysis of
RANDOM treats the congestion parameter r as a constant, but the
analysis does not change substantially for other cases.

We now present the lemma that analyzes the probability that a
given message gets delivered.

LEMMA 5. Let M be a set of messages on a fat-tree that has
congestion parameter r, let A\(M) be the loadfactor on the fat-tree due
to M, and let m be an arbitrary message in M. Suppose M’ is a

p-subset of M, where p &lt; 1/rA(M). Then if M’ is sent, the probability
that m gets delivered is at least 1p.

Proof. The probability that meM is delivered is at least
the probability that me M’ times the probability that m passes

exclusively through uncongested channels. The probability that
me M’ is p, and thus we need only show that, given me M’, the
probability is at least 1 that every channel through which m must
pass is uncongested. Let ¢,, ¢,, ...,c, be the channels in the fat-tree
through which m must pass. The probability that channel c, is
congested is less than (e/r)™™ by Lemma 4. The probability that
at least one of the channels is congested is, therefore, less than

5 e cap(cy) - 1
Er x 2’

by definition of the congestion parameter. Thus, the probability
that none of the channels are congested is at least 3. O

We now focus our attention on RANDOM itself. The next lemma

analyzes the innermost loop (lines 3-6) of RANDOM’s subroutine
TRY-GUESS. At this point in the algorithm, there is a set U of
undelivered messages and a value for A. The lemma shows that if A
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is indeed an upper bound on the load factor A(U) of the undelivered
messages when the loop begins, then 4/2 is an upper bound after the
loop terminates. This lemma is the crucial step in showing that
RANDOM works.

LEMMA 6. Let U be a set of messages on an n-processor fat-tree

with congestion parameter r, and assume MU) &lt; A. Then after lines
3-6 of RANDOM'ssubroutineTRY-GUESS, the probability is at
most O(1/n*) that J(U) &gt; LA.

Proof. The idea is to show that the load factor of an arbitrary
channel ¢ remains larger than 1 A with probability O(1/n*). Since the
channel ¢ is chosen arbitrarily out of the 4n — 2 channels in the
fat-tree, the probability is at most O(1/n?) that any of the channels
is left with a load factor larger than 14.

For convenience, let C be the subset of messages that must pass
through channel ¢ and are undelivered at the beginning of the
innermost loop in RANDOM. Let Cy, = C, and for i&gt; 1, let
C; = C,_, denote the set of undelivered messages at the end of the
ith iteration of the loop. Notice that we have A(C,, ¢) = |C;|/cap(c).
since we have |C;| = load(C,,c)bydefinition.

We now show there exist values for the constants k, and k, in line
3 of TRY-GUESS such that for z = max {k,A,k,lgn}, the prob-
ability is O(1/n?) that A(C,,c) &gt; 14, or equivalently, that

|C,| &gt; 1 Acap(c). (2

It suffices to prove that the probability is O(1/r*) that fewer than
L|C| messages from C are delivered during the z cycles under
the assumption that |C;| &gt; 1 Acap(c) for i = 0,1,...,z— 1. The
intuition behind the assumption |C;} &gt; 1 Acap(c) is that otherwise,
the load factor on channel c is already at most 1 A at this step of the
iteration. The reason we need only bound the probability that fewer
than 1|C| messages are delivered during the z cycles is that inequality
(2) implies that the number of messages delivered is fewer than
C| — 3 acap(c) &lt; |C| — 3A(C, c)eap(c) &lt; 3IC].

We shall establish the O(1/n*) bound on the probability that at
most |C| messages are delivered in two steps. For convenience, we
shall call a cycle good if at least cap(c)/8r messages are delivered,
and bad otherwise. In the first step, we bound the probability that
a given cycle is bad. The expected number of messages delivered
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in any given cycle is the product of the number of messages that
remain to be delivered and the probability that any of these messages
is successfully delivered. Using Lemma Swithp = 1/rd &lt; 1/rA(U) &lt;
1/rA(C;) in conjunction with the assumption that |C;| &gt; 1 Acap(c),
we can conclude that the expected number of messages delivered in
any given cycle is greater than (1/2rd)1Acap(c) = cap(c)/4r. Then
by Lemma 3, the probability that a given cycle is bad is at most
| —1/8r—1)&lt;1—1/8r2

The second step bounds the probability that a substantial frac-
tion of the z delivery cycles are bad. Specifically, we show that the
probability is 1 — O(1/n®) that at least some small constant fraction

g of the z cycles are good. By picking k, = 4r/q, which implies
z = 4ri/q, at least gzcap(c)/8r = 1|C| messages are delivered.

We bound the probability that at least (1 — g)z of the z cycles are

bad by using a counting argument. There are (; *,,) ways of
picking the bad cycles, and the probability that a cycle is bad is at
most 1 — 1/8r. Thus, the probability that at most 1 |C| messages are
delivered is

Pr { &lt; 1|C| messages delivered} &lt; | (1 Ly(1—¢g)z/) \ %)
—

&lt; ((1 — = - 5) ‘

(3

=f" 2r (4:

where (3) follows from Stirling’s approximation (for sufficiently
large z), and (4) follows from choosing g¢ = 1/100rInr and per-
forming algebraic manipulations. Since z = max {k, 1, k,1gn}, if
we choose k, = 36r, the probability that fewer than 1|C| messages
are delivered is at most 1/7. J

Now we can analyze RANDOM as a whole.

THEOREM 7. For any message set M on an n-processor fat-tree,

the probability is at least 1 — O(1/n) that RANDOM delivers all the

messages of M within the number of delivery cycles specified by
Fioure 4.
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Proof. First, we will show that if 4, &gt; A(M), the probability
is at most O(1/n) that the loop in lines 2 through 8 of TRY-GUESS
fails to yield A(U) &lt; 1. Initially, 4 &gt; A(U), and we know from
Lemma 6 that the probability is at most O(1/n?) that any given
iteration of the loop fails to restore this condition as 4 is halved.

Since there are Ig 4,,.,, iterations of the loop, we need only make the
reasonable assumption that A, is polynomial in n to obtain a
probability of at most O(1/n) that A(U ) remains greater than 1 after
all the iterations of the loop. That this assumption holds can be
verified for each of the cases below by noting that A(M) is at most
polynomial in »n and that 4, is never much larger than A(M).

Now we just need to count the number of delivery cycles that
have been completed by the time we call TRY-GUESS with a 4,
such that A(M) &lt; A. Let us denote by A}, the first 4, that
satisfies this condition, and then break the analysis down into cases
according to the value of A(M).

For A(M) &lt;1, we do not actually even call TRY-GUESS.
We need only count the one delivery cycle executed in line 1 of
RANDOM.

For 1 &lt; AM) &lt; 2, we need add only the k,lgn cycles executed
when we call TRY-GUESS(2).

For 2 &lt; MM) &lt; (k,/k,)lgn, the number of delivery cycles
involved in each execution of TRY-GUESS is O(1g A...k,gn),
since we perform O(lg 4.) iterations of the loop in lines 2-8
of TRY-GUESS, each containing k, Ign iterations of the loop in
lines 3-6. The value of A}, is at most (A(M))’, so the number of
delivery cycles is O(lgnlg (A(M))?) for the last guess, O(lgnlg A(M))
for the second-to-last guess, O(lgnlg./A(M)) for the third-to-last
guess, and so on. The total number of delivery cycles is. therefore.

CS o(gnlgUMMN
Oi +1glgA(M)

= ¥ OQ" lgnlg(AM)))
ogi +lglg MM)

= O(lgnle (M)).

since the series is geometric.
for A(M) &gt; (k,/k,)1gn, the number of delivery cycles executed

by the time we reach line 8 of RANDOM is O(lgnlglgn) according
to the preceding analysis, and then we must continue in the quest
to reach A*.IfAM) &lt; (k,/k,)]1gnlglgn, then we need only add
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the O(lgnliglgn) = O(lgnlg A(M)) delivery cycles involved in the
single call TRY-GUESS((k,/k,)1gnlglgn).

If A(M) &gt; (k,/k,)Ignlglgn, the number of delivery cycles executed
before reaching line 8 is O(Ignlglgn) as before, which is O(A4(M)).
We must then add O(4,,,,,) cycles for each call of TRY-GUESS in
line 10. Since A}, is at most 2A(M), the total additional number of
delivery cycles is

z OQ!" AM)) = OAM).

where ¢t = 1+ 1g(k,A(M)/k,lgnlglgn). The total number of

delivery cycles is thus O(A(M)).
The 1 — O(1/n) bound on the probability that RANDOM

delivers all the messages can be improved to 1 — O(1/r*) for any

constant k by choosing k, = 12(k + 2)r, or by simply running the
algorithm through more choices of 4,,,,.

We can also use RANDOM to obtain a routing algorithm that
guarantees to deliver all the messages in finite time, and whose
expected number of delivery cycles is as given in Figure 4. We
simply interleave RANDOM with any routing strategy that guaran-
tees to deliver at least one message in each delivery cycle. If the
number of messages is bounded by some polynomial #*, then we
choose k, such that RANDOM works with probability 1 — O(1/1%).

5. UNIVERSALITY

The performance of the routing algorithm RANDOM allows us to
generalize the universality theorem from [Le] that states that a
universal fat-tree of a given volume can simulate any other routing
network of equal volume with only a polylogarithmic factor increase
in the time required. The original proof assumed the simulation of
the routing network was off-line. In this section we show that the
simulation can be carried out in the more interesting on-line con-
text. We first discuss VLSI models briefly and state how channel
capacities can be chosen for area and volume-universal fat-trees.
We then give a simple universality result that requires no routing
algorithm. Finally, we give a stronger universality theorem based
on RANDOM.

VLSI models provide a means of measuring hardware costs
quantitatively in terms of area or volume [L, LR, Lel, Le2, T].
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These models are interesting from an engineering point of view
because “pin-boundedness” is modeled directly as the limitation on
communication imposed by the perimeter of a two-dimensional
region or by the surface area of a three-dimensional region. In VLSI
models, the processors and wires of a network are the vertices and
=dges of a graph. The graph must be embedded in a two- or three-
dimensional grid such that vertices are mapped to gridpoints and
=dges are mapped to disjoint paths in the grid. The area or volume
of the network is the number of gridpoints occupied by either
vertices or edge segments. These assumptions implicitly restrict the
number of connections to a processor to at most four in two

dimensions and six in three dimensions, but generalizations to
larger processors are straightforward.

In order for a fat-tree to be universal for area or volume, the

channel capacities must be picked properly. Let us consider area,
instead of volume, for simplicity. Intuitively, we wish the processors
to be densely packed in the region required by the network. The
bandwidth of communication to a region is constrained by the
perimeter of the region, however, and thus if the channel capacity
lo a subtree is too large relative to the number of processors in the
subtree, the processors will not be densely packed. On the other
hand, if we choose the channel capacities too small, the processors
vill indeed be densely packed, but we will not take maximal advan-
tage of the available communication bandwidth. Consequently, we
choose the capacity of a given channel to be proportional to the
perimeter of the square region the processors rooted at that channel
would occupy if there were no wires, that is O(/n) if the subtree has
n processors. It turns out that the additional area required by the
wires in the channels does not greatly increase the area beyond that
required by the processors alone: the area for n processors is
®(nlg’n), the same as that required by Leighton’s tree of meshes
graph [L].

Following this intuition, an area-universal fat-tree can be con-

structed by giving each leaf channel a constant capacity, and then
growing the channel capacities by 2 at each level as we go up the
tree, rounding off to integer capacities. Another scheme that avoids
rounding is to double the channel capacities every two levels, as is
done in the fat-tree of Figure 1. Either of these methods yields a
©(nlg’n)-area layout for n processors, and a root capacity of O@H/n).
Volume-universal fat-trees can be constructed in a similar fashion

by picking a growth rate of 4, or equivalently, by quadrupling the
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capacity every three levels. The volume of an n-processor fat-tree
constructed by these methods is @(n1g**n), and the root capacity is
®(n*?), as can be shown with the arguments in [LR] or [Le2].

Even without a good routing algorithm for fat-trees, it is possible
to prove a simple universality property. The theorem is presented
for area-universal fat-trees—a similar theorem holds for volume-
qniversal ones.

THEOREM 8. Let R be a interconnection network occupying a

square of area n such that all connections are point-to-point between
processors with no intervening switches. Then an area-universal fat-
tree of area O(nlg’n) can simulate every step of network R with at
most O(1g’n) switching delay.

Proof. We use an area-universal fat-tree such as that shown in
Figure 1, where the channel capacity to leaves is 4 and the root
capacity is 4./n. Network R lies in a square with side length \/n.
Each processor of R is mapped to the corresponding processor of
the fat-tree in the natural geometric fashion. This mapping satisfies
the property that the capacity of any channel of the fat-tree is at
least as great as the perimeter of the corresponding region of the
layout of network R. Therefore, any communication step performed
by R induces at most a load factor of 1 on the fat-tree and thus can
be routed in one delivery cycle. Since each delivery cycle requires
only O(lg’n) bit times, the theorem follows. 0

This universality result is weak in several ways. For example, the
fat-tree network occupies slightly more area than the simulated
network R. It seems reasonable to compare networks of exactly
equal cost. Another weakness in the result is that it forbids net-
works with intermediate switches that buffer messages for several
time steps. We could model switches as processors, but in some
contexts, processors might be considerably more expensive than
switches. Since we can directly route messages sets with large load
factors using RANDOM, we can prove a stronger universality
result that addresses these concerns. The next theorem, a general-

ization of that in [Le2], is presented for volume-universal fat-trees.
One can prove an analogous theorem for area-universal fat-trees.

THEOREM 9. Let FT be a volume-universal fat-tree of volume v,
and let R be an arbitrary routing network also of volume v on a set
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of n = O(v/lg**v) processors. Then the processors of R can be mapped
to processors of FT such that any message set M that can be delivered
in time t by R can be delivered by FT in time O((t + lglgn) 1g’n)with
probability 1 — O(1/n).

Proof. The proof parallels that of [Le2]. The reader is referred
to that paper for details. The routing network R of volume ov is
mapped to FT in such a way that any message set M that can be
delivered in time f by R puts a load factor of at most O(¢lg (n/v*?))
on FT. By Theorem 7, the message set M can be delivered by
RANDOM in O(tlg(n/v*?) + lgnlglgn) delivery cycles with high
probability. Since each cycle takes at most O(lg’n) time, the result
follows. O

o
x GREEDY STRATEGIES

it is natural to wonder whether a simple greedy strategy of sending
all undelivered messages on each delivery cycle, and letting them
battle their way through the switches, might be as effective as
RANDOM, which we have shown to work well on every message
set. As a practical matter, a greedy strategy may be a good choice,
but it seems difficult to obtain tight bounds on the running time of
greedy strategies. In fact, we show in this section that no naive
greedy strategy works as well as RANDOM in terms of asymptotic
running times. For simplicity, we restrict our proof to deterministic
strategies and comment later on the extension to probabilistic ones.
Specifically, we show that for a wide class of deterministic greedy
strategies, there exist n-processor fat-trees and message sets with
load factor A such that Q(Algn) delivery cycles are required. Thus,
if A is asymptotically larger than lglg n, the greedy strategy is worse
than RANDOM, which essentially guarantees O(4 + lgnlglgn)
delivery cycles for any set of messages. The lower bound proof for
greedy routing is based on an idea due to F. M. Maley [M].

Figure 5 shows the greedy algorithm. The code for GREEDY
does not completely specify the behavior of message routing on a
fat-tree because the switches have a choice as to which messages to

drop when there is congestion. (The processors also have this
choice, but we shall think of them as being switches as well.) In the
analysis of RANDOM, we presumed that all messages in the
channel are lost if the channel is congested. To completely specify
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Figure 5. The algorithm GREEDY for delivering a message set M. This
algorithm repeatedly sends all undelivered messages. The performance is
highly dependent on the behavior of the switches.

-

while M # § do
send M

M — M — {messages delivered
endwhile

the behavior of GREEDY, we must define the behavior of switches
when channels are congested.

The lower bound for GREEDY covers a wide range of switch
behaviors. Specifically, we assume the switches have the following
two properties:

Each switch is greedy in that it drops messages only if a
channel is congested, and then only the minimum number
necessary.
Each switch is oblivious in that decisions on which messages
to drop are not based on any knowledge of the message set
other than the presence or absence of messages on the
switch’s input lines.

We define the switches of a fat-tree to be admissible if they have
these two properties. The conditions are satisfied, for example, by
switches that drop excess messages at random, or by switches that
favor one input channel over another. An admissible switch can
even base its decisions on previous decisions, but it cannot predict
the future or make decisions based on knowing what (or how many)
messages it or other switches have dropped. (The definition of
oblivious in property 2 can be weakened to include an even wider

range of switch behaviors without substantially affecting our
results.)

At this point, we restrict attention to deterministic greedy
strategies and present the lower bound theorem for GREEDY
operating on an area-universal fat-tree. The theorem can be extended
to a variety of other fat-trees. A discussion of the extension to
probabilistic greedy strategies follows the proof of the theorem.

THEOREM 10. Consider an n-processor area-universal fat-tree
vith deterministic admissible switches whose channel capacities are 1
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nearest the processors and double at every other level going up to the
tree. Then there exist message sets with load factor A for which
GREEDY requires Q(Algn) delivery cycles.

Proof. For any 4 &gt; 12, we will construct a “bad” message set
M, on the n processors of the fat-tree by induction on the subtrees.
The message set M, will consist entirely of messages to be routed
out of the root and will satisfy the following three properties:

i. The message set M, has load factor at most A.
2 The root channel of the fat-tree is full for the first 1 A delivery

cycles.
A total of at least 11 + 4 Algn delivery cycles’ are required
to deliver all the messages in M,.

For the base case we consider a subtree with 1 processor, that is,
a leaf connected to a channel of capacity 1. The bad message set M,
consists of A messages to be sent from the single processor. The
properties are satisfied since the root channel is congested through-
out the first 14 delivery cycles, and at least $4 delivery cycles are
needed to deliver all the messages.

We next show that we can construct the bad message set M,
assuming that we can construct a bad message set for a subtree of

n/4 processors. The construction uses an adversary argument. First,
we specify the pattern of inputs seen by the root switch of the
fat-tree during certain delivery cycles, without giving any indication
of how that input pattern can be achieved. Then since we have given
enough information to determine the behavior of the root switch
during these cycles, the root switch must announce which messages
it passes through to its output. Finally, we give a construction for
a message set that achieves the input pattern we called for in the first
step. We take advantage of the announced behavior of the root
switch in order to ensure that the message set also satisfies proper-
ties 1, 2, and 3.

We begin by calling for the input channels of the root switch of
the fat-tree to be full for ¢ delivery cycles, where ¢ is 1A. If this is
achieved, the total number of messages removed from the fat-tree
during the first ¢ delivery cycles is m = 11./n, since the root
capacity is Jn and the root switch is greedy. Also, as mentioned
before, the specified input pattern determines the behavior of the
root switch because the switch is oblivious.
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Figure 6. Construction of M, for the proof of Theorem 10. The subtree
from which the fewest number of messages have been delivered by a
certain time is loaded with the largest number of messages.
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The behavior of the root switch determines how many of the m
messages removed from the fat-tree by delivery cycle # come from
ach of the four subtrees shown in Figure 6. At least one of these
subtrees provides no more than m/4 of the messages. We choose one
such subtree and refer to it as the unfavored subtree. The other
subtrees are referred to as the favored subtrees.

Having determined the unfavored subtree given the conditions
specified so far, we can complete the construction of M,. The
unfavored subtree contains a copy of the bad message set M,,
for that subtree. Each of the other three subtrees contains IN

messages evenly divided among the processors in the subtree. Now
we must prove that M, meets all of our requirements.

First, we show that M, is consistent with the input pattern
specified for the root switch. To show that the input channels of the
root switch of the fat-tree are full through the first delivery cycles,
it suffices to prove that the root channels of the four subtrees are full
through this time. The root channel of the unfavored subtree is full
by the induction hypothesis (property 2). The root channel of each
favored subtree is also full for the first ¢ delivery cycles, since its
messages are evenly distributed, its switches are greedy, and ¢ times
its root capacity does not exceed the number of messages emanating
from it.

We now prove that properties 1, 2, and 3 hold for M,. The
load factor in the favored subtree is less than A by construction.
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The load factor is at most A in the unfavored subtree by the
induction hypothesis (property 1), so the number of messages in the
unfavored subtree is at most 1A\/n, and the total number of
messages in M, is at most

Lp n+3-0/n = AJn

Thus, the load factor of M, on the fat-tree is at most 4, and
property 1 holds. Property 2 is satisfied for M, because the root
switch is greedy. We have already shown that the input channels
of the root switch are full through delivery cycle ¢, so the root
channel is certainly full for the required amount of time. Finally.
property 3 holds because after running ¢ = 14 delivery cycles.
only m/4 = Jn messages have been removed from the un-
favored subtree. If priority had been given to the unfavored subtree,
only A delivery cycles would have been required to remove the m/4
messages. So by the induction hypothesis (property 3), an additional
Ll + LAlg(n/4) — LA cycles are required to empty the unfavored
subtree. If we include the original # cycles, the total number of cycles
required to deliver all the messages in M,, is at least 14 + JL Algn.

1

When probabilistic admissible switches are permitted, the proof
of Theorem 10 can be extended to show that the expected number
of delivery cycles is Q(Algn). The idea is that at least one of the
subtrees in Figure 6 must be unfavored with probability at least 1/4.
We call one such subtree the often-unfavored subtree. The construc-
tion of M, proceeds as before, with the often-unfavored subtrees
playing the previous role of the unfavored subtrees. In any par-
ticular run of GREEDY, we expect 1/4 of the often-unfavored
subtrees to be unfavored, so there is a ®(1) probability that 1/8 of
the often-unfavored subtrees are unfavored (Lemma 3). Thus, the
probability is ®(1) that (11g n) delivery cycles are required. which
means that the expected number of delivery cycles is Q(A Ign).

Although we have shown an unfavorable comparison of GREEDY
to RANDOM, it should be noted that GREEDY does achieve the
lower bound we proved for routing messages out the root. That is,
routing of messages out the root or, more generally, up the tree
only, can be accomplished bv GREEDY in O(A1gn) delivery cycles.
This can be seen by observing that the highest congested channel
‘closest to the root) must drop at least one level every A delivery
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cycles. If one could establish an upper bound of 4 times a poly-
logarithmic factor for the overall problem of greedy routing, it
would show that GREEDY still has merit despite its inferior
performance in comparison to RANDOM.

7 FURTHER RESULTS

This section contains three additional results relevant to routing on
fat-trees. The first is a simple randomized algorithm for routing on
fat-trees in which each channel has at least logarithmic capacity.
The second is a new class of fat-trees that have much simpler
switches than the ones thus far considered. The final result is an

improvement to the off-line routing result of [Le2].

7.1. Larger Channel Capacities

We can improve the results for on-line routing if each channel
c in the fat-tree is sufficiently large, that is if cap(c) = Q(lgn).
Specifically, we can deliver a message set M in O(A(M)) delivery
cycles with high probability, i.e., we can meet the lower bound to
within a constant factor. The better bound is achieved by the

algorithm RANDOM’ shown in Figure 7.

THEOREM 11. For any message set M on an n-processor fat-tree

with channels of capacity Q(lgn), the probability is at least 1 — O(1/n)
that RANDOM’ will deliver all the messages of M in O(A(M))
delivery cycles, if MM) is polynomially bounded.

Figure 7. The algorithm RANDOM’ for routing in a fat-tree with
channels of capacity Q(lgn). This algorithm repeatedly doubles a guessed
number of delivery cycles, z. For each guess, each message is randomly
sent in one of the delivery cycles.

Z a

while M # 0 do
for each message m € M, choose a random number i € {1,2,...,2)
for i — 1 to z do

send all messages m such that tp, = ¢

i: endfor
ze 22

endwhile
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Proof. Let the lower bound on channel size be algn, and let n*
be the polynomial bound on the load factor A(M). We consider
only the pass of the algorithm when z first exceeds e2*+?A(M).
We ignore previous cycles for the analysis of message routing,
except to note that the number of delivery cycles they require is
D(MM)).

We first consider a single channel ¢ within a single cycle i from
among the z delivery cycles in the pass. Since each message has
probability 1/z of being sent in cycle i, we can apply Lemma 4 with
p = 1/z to conclude that the probability that channel ¢ is congested
in cycle 7 is at most

cap(c)
(£490) Bs « ~ [(k+2)/alcap(c_— HS o-

Zz

- A—(k+2)gn

1
: nk+2"

Since there are O(n) channels, the probability that there exists a
congested channel in cycle i is O(1/n**"). Finally, since there are
2 &lt; 22% Daj (M) = O(MM)) = O(n") cycles, the probability is
O(1/n) that there exists a congested channel in any delivery cycle of
the pass. [1

7.2. Another Universal Fat-Tree

We have recently discovered a fat-tree design that uses simpler
switches than the fat-tree described in Section 1 and in [Le2].
Figure 8 illustrates the structure of a two-dimensional universal
fat-tree of this new type. Each of the switches in this fat-tree can
switch messages among four child switches and two parent switches.
The area of the fat-tree is @(nlg*n).* In three dimensions, we can
use switches with eight children and four parents to obtain a fat-tree
with volume ®(nlg*?n).

The new fat-tree design satisfies the universality property of
Theorem 9, except that the degradation in time is O(lg*n). The
new fat-tree structure removes a factor of lgn from the time to

perform a delivery cycle since the switches have constant depth. The
number of delivery cycles needed to route a set M of messages is
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Figure 8. Another fat-tree design. The switches in this structure have
constant size.
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O(M(M)1g’n), however, which yields O(A(M)lg’n) total time, as
compared with O((A(M) + lgnlglgn)lg’n) for the original fat-
tree.

The mechanics of routing on the new fat-tree are somewhat
different than on the original. The underlying channel structure for
the two fat-trees is the same, but the new fat-tree does not rely on
concentrators to make efficient use of the available output wires.
Instead, each message sent through the fat-tree randomly chooses
which parent to go to next (based on random bits embedded in its
address field) until it reaches the apex of its path, and then it takes
the unique path downward to its destination. This strategy guaran-
tees that for any given channel through which a message must pass,
the message has an equal likelihood of picking any wire in the
channel.

The routing algorithm is a modification of the algorithm
RANDOM’. We simply surround lines 3-6 with a loop that executes
these lines (k + 1)lgn times, where |[M| = O(n").

The proof that the algorithm works applies the analysis from
Section 4 to individual wires, treating them as channels of capacity
1. Consider a wire w traversed by a message in a p-subset M” of M,
and consider the channel c¢ that contains the wire. For any other
message in M, the probability is p/cap(c) that the message is directed
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to wire w when the message set Mis sent. Thus, the probability that
w is congested is at most B(1,load(M, c), p/cap(c)) &lt; epA(M'), and
an analogue to Lemma 4 holds because the capacity of w is 1.
Lemma 5, which says that the probability is 1 p that a given message
of M is delivered when a p-subset of M is sent, also holds if the
congestion parameter r is chosen to be O(lgn).

We can now prove a bound of O(A(M )lg’n) on the number of

delivery cycles required by the algorithm to deliver all the messages
in M. It suffices to show that with high probability, all the messages
in M get routed when the variable z in the algorithm reaches
®O(AM)Ign). When z &gt; ri(M) = O(A(M)lgn), any given message
m is sent once during a single pass through lines 3-6, and the
probability that the message is not delivered on that pass is at most
1. Thus, the probability that m is not delivered on any of the
(k + 1)Ign passes through lines 3-6 is at most 1/n**'. Since the
number of messages in M is O(n"), the probability is O(1/n) that a
message exists that is not routed by the time z reaches rA(M).

7.3. Off-Line Routing

Our analysis for RANDOM has ramifications for the off-line
routing problem. We have shown that with high probability, the
number of delivery cycles given by Figure 4 suffices to deliver a
message set with load factor A. Consequently, there must exist
off-line schedules using only this many delivery cycles, which
improves the bound of O(41gn) given in [Le2]. The previous off-line
bound was proved by giving a deterministic, polynomial-time con-
struction of a routing schedule that achieves the bound. Whether a
deterministic, polynomial-time algorithm exists that achieves our
better bound is an open question.

Perhaps the bound on off-line routing can be further improved
(e.g., to O(A + lgn)). The integer programming framework of
Raghavan and Thompson [RT] is one possible approach that might
give a probabilistic construction that achieves this bound. On the
other hand, it may be possible to apply more direct combinatorial
techniques to vield an improved deterministic bound.

t. CONCLUDING REMARKS

This chapter has studied the problem of routing messages on fat-
ree networks. We have obtained good bounds for randomized
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routing based on the load factor of a set of messages. Our
algorithms directly address the problem of message congestion and
require no intermediate buffering, unlike many algorithms in the
literature. We have shown how to use the routing algorithms to
prove that fat-trees are volume-universal networks. This section
discusses some directions for future research.

The analysis of the algorithm RANDOM gives reasonably tight
asymptotic bounds on its performance, but the constant factors in
the analysis are large. In practice, smmaller constants probably
suffice, but it is difficult to simulate the algorithm to determine what
constants might be better. Unlike Valiant’s algorithm for routing
on the hypercube, our algorithm does not have the same probabilistic
behavior on all sets of messages, and, therefore, the simulation
results may be highly correlated with the specific message sets
chosen. The search for good constants is thus a multidimensional
search in a large space, where each data point represents an expen-
sive simulation.

Although we have shown that GREEDY is asymptotically worse
than RANDOM, it may be that it is more practical to implement.
The logarithmic-factor overhead that we have been able to show is
mitigated by a constant factor of i. Simulations indicate that a
greedy algorithm might actually work quite well [I], but we have
been unable to prove a good upper bound on its performance.
Despite the simplicity of control offered by GREEDY, it seems
unwise to base the design of a large, parallel supercomputer on
unproven conjectures of performance. Thus, a comprehensive
analysis of GREEDY remains an important open problem.

The idea of using load factors to analyze arbitrary networks is a
natural one. We have been successful in analyzing fat-trees using
this measure of routing difficulty. It may be possible to analyze
other networks in terms of load factor, but some improvement to
our techniques seems to be necessary if channel widths are small
and the diameter of the network is large. The problem is that a
message that passes through many small channels has a high likeli-
hood of conflicting with other messages. One solution might
involve buffering messages in intermediate processors or switches.

The high probability results reported in this paper for routing
on fat-trees are almost deterministic in the sense that substantial

deviation from the expected performance will probably never occur
in one’s lifetime. On the other hand, from a theoretical point of
view. it would be nice to match the results of this paper with truly
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deterministic algorithms. Most deterministic routing algorithms in
the literature are based on sorting, and thus a direct application to
fat-trees causes congestion problems, much as does Valiant’s rout-
ing technique. A deterministic routing algorithm for fat-trees that
circumvents these problems would yield even stronger universality
properties than we have shown here.
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NL‘TS

i. In this chapter, we measure time in terms of bit operations, rather than
word operations, to better reflect actual costs.

2. We use the weak bound of Lemma 3 because we cannot assume that the

probability that a message is delivered in a given cycle is independent of the
probabilities for other messages. In practice, one would anticipate that the depen-
dencies between messages are weak, and that the algorithm would be effective with
much smaller values for the constants k, and k, than we prove here.

3. Without loss of generality, we assume henceforth that {A is integral, since
we could otherwise use | {51 | with only a constant factor change.

4 Interestingly, a mesh-of-trees [L] can be directly embedded in this fat-tree.
[n fact, it can be shown using sorting arguments that a mesh-of-trees is area-
universal [LL].
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FACTORIZATION OF POLYNOMIALS

GIVEN BY STRAIGHT-LINE PROGRAMS

Frich Kaltofen

ABSTRACT

An algorithm is developed for the factorization of a multivariate
polynomial represented by a straight-line program into its irreducible
factors. The algorithm is in random polynomial-time as a function
in the input size, total degree, and binary coefficient length for the
usual coefficient fields and outputs a straight-line program, which
with controllably high probability correctly determines the irreduc-
ible factors. It also returns the probably correct multiplicities of each
distinct factor. If the coefficient field has finite characteristic p and p
divides the multiplicities of some irreducible factors our algorithm
constructs straight-line programs for the appropriate pth powers of
such factors.

Also a probabilistic algorithm is presented that allows a poly-
nomial given by a straight line program to be converted into its sparse
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representation. This conversion algorithm is in random-polynomial
time in the previously cited parameters and in an upper bound for
the number of nonzero monomials permitted in the sparse output.
Together with our factorization algorithm we therefore can prob-
abilistically determine all those sparse irreducible factors of a poly-
nomial given by a straight-line program that have less than a given
number of monomials. We show that this result is valid without any
restriction to the characteristic of the coefficient field.

The first section of this chapter also summarizes the history of the
polynomial factorization problem, and the last section discusses
what questions for this problem remain to be solved. We have also
attempted to provide an extensive list of references on the subject, so
that this chapter can serve as a starting point for someone without
previous knowledge in polynomial factorization.

{ THE PROBLEM OF FACTORING POLYNOMIALS

“The invention of divisors of universal quantities,” what we refer
t0 today as the computation of factors of polynomials, was already
taught by Newton in 1673 and the method was subsequently pub-
lished in his Arithmetica Universalis [N]. In 1882 Kronecker [Kr,
pp. 10-13] reduced the problem of factoring multivariate poly-
nomials over algebraic number fields to factoring univariate poly-
nomials over the integers, for which he applied Newton’s
algorithm. van der Waerden’s influential text [vW] discusses those
algorithms and suggests that for larger problems they are not very
practical. Nonetheless, early computer programs realized this
classical approach [JK] and verified that it is quite inefficient. The
ensuring search for efficient algorithms to factor polynomials is a
fine example in the discipline of the design and analysis of
algorithms as well as complexity theory and exhibits many of the
techniques developed for these subjects.

In 1967 Berlekamp [B1] found an algorithm to factor univariate
polynomials over moderately sized finite fields in time proportional
to the cube of the input degrees. Berlekamp’s algorithm is the first
evidence that polynomial factorization is not as complex a problem
as is integer factoring. However, his algorithm performed badly
when applied to large finite fields. Berlekamp’s own resolution
of this problem in 1970 [B2] is remarkable in that by introducing
the selection of random field elements the algorithm could be
exponentially sped up. Thus the factorization algorithm over large
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finite fields became one of the forerunners of “randomized”

algorithms. We also refer to Rabin’s 1976 version of this algorithm
'R2] for his appealing probability analysis, and to the book
‘Kn, §4.6.2] for a discussion of additional work. Recently, the
problem of removing the random choices from the algorithm with-
out sacrificing polynomial running time has been resolved for
several special cases by the use of interesting new ideas, and we refer
to the two exemplary papers [Sh] and [Hu]. The performance in
practice of the randomized algorithms for univariate polynomial
factorization over large finite fields is quite satisfactory and, at the
moment, far superior to any known deterministic algorithms.

The advances in factoring polynomials modulo a prime integer
suggested to apply these algorithms to factoring polynomials with
integer coefficients as well. Zassenhaus in 1969 [Z] pointed to the
“Hensel Lemma” [Hen, §4] as a means to reconstruct the integral
factors from modular ones. Unlike the factorization algorithm for
polynomials over finite fields, however, the reconstruction procedure
for the integral polynomial factors from the modular ones can have
exponential complexity due to ‘“‘combinatorical explosion” [B2,
K 11]. “Probabilistic analysis” [M2, and Cd] shows, however, that
this problem does not arise on “average” inputs and implemen-
tations of the Berlekamp-Hensel algorithm for factoring univariate
integral polynomials perform quite well, except for very special
inputs. However, such inputs can arise and are, in fact, generated
by Kronecker’s reduction from algebraic number fields, for instance.
In 1982 a remarkable diophantine algorithm was found by Lenstra.
Lenstra, and Lovasz [LLL] to overcome the combinatorical explo-
sion by a polynomial-time construction. Several more classical
problems could then be shown to also belong to the polynomial-
time complexity class, for example, solvability by radicals [LM],
factorization of univariate polynomials over algebraic number
fields [LT, L}, and the multivariate polynomial factorization.

Already in 1971 Musser [M1] demonstrated that “Hensel Lifting,”
as the procedure applying the Hensel lemma is now called, can be
also applied to reconstruct multivariate from univariate factors.
Combinatorical explosion is still a problem, but not all mappings
to the univariate factorization are categorically bad. This is a con-
sequence of the famous Hilbert Irreducibility Theorem [Hi], and the
first polynomial-time reduction by Kaltofen found in late 1981 is
based on an effective deterministic version of that theorem [K1, also
in K3, §71. A number of different polynomial-time reductions from
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multivariate to univariate polynomial factorization are known
today [CG, GK1, K3, K9, Le2, Le3]. All these algorithms assume
that all possible terms count toward the input size, in other words
the multivariate polynomials are represented “densely.”

If the number of variables in the multivariate factorization
problem is allowed to grow with the problem size, then the *“sparse-
ness” of the input and output polynomials need to be take into
consideration. Wang, upon considering the very sparse examples
presented by Claybrook [Cl], invented several heuristics to cope
with the intermediate “expression swell” occurring for sparse
inputs and outputs [W]. Zippel in 1979 carried these considerations
further by introducing randomization into the Hensel lifting pro-
cess [Zi2]. In order to make a rigorous analysis of the failure
probabilities, an effective probabilistic version of the Hilbert
irreducibility theorem was needed. Although Heintz and Sieveking
‘HS] had already provided such a theorem for algebraically closed
fields, in 1983 von zur Gathen provided a suitable version for

arbitrary coefficient fields [G2] and applied it to the sparse factoring
problem [GK2]. In retrospect, Kaltofen’s effective Hilbert irreduci-
bility theorem also lent itself to an even simpler probabilistic
version [K4]. In [GK2] sparse polynomials are described that possess
irreducible factors with superpolynomially more terms. These
sxamples imply that any sparse Hensel Lifting scheme can have
more than polynomial running time on certain inputs. It became
clear that to deal with this phenomenon the sparse representation
had to be replaced by a more powerful one.

The usage of “straight-line programs” as a means to compute
certain polynomials has been developed in the framework of
complexity theory in the past decade; refer for example to [S2, S3,
PS, S4, Sc, He). In 1983 von zur Gathan [G2] combined his prob-
abilistic Hilbert irreducibility theorem with the probabilistic method
of straight-line program evaluation [S2, IM] to find the factor
degree pattern of polynomials defined by straight-line compu-
tations. A previously known operation on polynomials in straight-
line representation is that of taking first-order partial derivatives
[BS]. Although there is evidence that other operations such as
higher partial derivatives are inherently complex [V2], the greatest
common divisor problem of polynomials in straight-line program
representation is in probabilistic polynomial-time, as shown by
Kaltofen in 1985 [K7]. In this chapter we show that straight-line
programs for the irreducible factors of a polynomial given by a
straight-line program can also be found in probabilistic polynomial
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straight-line program can also be found in probabilistic polynomial
time. With Zippel’s 1979 sparse polynomial interpolation algorithm
(Zil1) our factorization result resolves all problems left open in [Zi2,
GK2, K5). We note that, unlike the randomized solutions for
factorization of univariate polynomials over large finite fields, the
probabilistic solutions are of the Monte Carlo kind, “probably
correct and always fast.” The failure probability can, of course, be
made arbitrarily small.

2. DISCUSSION OF RESULTS

A straight-line program is a sequence of arithmetic assignments to
new variables, the operands of which are either constants, indeter-
minates, or previously assigned variables. The operators allowed
are addition, subtraction, multiplication, and division. Our algo-
rithms treat this straight-line program as a data structure to repre-

sent the polynomials computed by them. This representation can
define in polynomial-space families of polynomials with exponen-
ally many individual terms, such as determinants by Gaussian
elimination sequences. Unlike algebraic complexity theory appli-
cations, in which a straight-line program is a model of computation,
our algorithms must not only produce straight-line results of
polynomial-length but also perform the transformations efficiently.
that is, in random polynomial-time.

It appears proper that we explicitly define the model of algebraic
computation in which our algorithms can be formulated. Our
model is the sequential probabilistic algebraic random access
machine (RAM), with which we not only manage computations
over an abstract algebraic domain but also resolve the question of
random element selections from the abstract fields. For concrete
domains such as the rational numbers we also establish binary
polynomial running time, even if the algorithms would then be
formulated on the probabilistic Turing machine model. We think
that the algebraic RAM model is in the spirit of new algebraic
computing languages such as Scratchpad II [Je].

The factorization algorithm presented here takes as input a
straight-line program computing a polynomial and outputs a
straight-line program and multiplicities for irreducible polynomials
that, with controllably small error probability. determine the
irreducible factors of the input polynomial. If the multiplicities are
divisible by the characteristic of the coefficient field, our output
is slightly different. The factorization algorithm calls a bivariate
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polynomial factorization procedure and is therefore effective and of
polynomial running time only for the usual coefficient fields. We
measure the running time as a function in the input size and input
polynomial degree. Over the rationals, for instance, we get an
algorithm of binary complexity that is a polynomial function in
the binary size of the straight-line program determining the input
polynomial, in its total degree and the size of the numerators and
the common denominator of its rational coefficients, and in the
logarithm of the inverse of the probability bound that the output
program incorrectly determines the irreducible factors or their

multiplicities.
The key idea of our algorithm, which we will present and analyze

in Section 5, in addition to previously known approaches, is to
employ Hensel lifting but to replace the p-adic expansion of the
coefficients by the expansions into homogeneous parts of the minor
variables. We thus lift all minor variables simultaneously and avoid
the variable by variable lifting loop that compounds programs of
exponential size. This method can be viewed as a combination of
Strassen’s trick for eliminating divisions in straight-line compu-
tations [S2] and Yun’s Hensel lifting scheme [Y]. If the coefficient
field is of positive characteristic p and the multiplicity of an irreduc-
ible factor is divisible by p, an additional problem arises. We can,
however, compute a straight-line computation for the appropriate
p*th power of such a factor.

For completeness in Section 3 we present our version of Zippel’s
conversion algorithm [Zil] from straight-line to sparse polynomial
representation. Our algorithm is of polynomial complexity in the
size of the straight-line program defining the input polynomial, in
its total degree, and in an upper bound ¢ for the maximal number
of monomials permitted in the sparse output. The algorithm pro-
duces either a sparsely represented polynomial with no more than
t monomials or a message indicating that the input polynomial has
more than ¢ terms. The algorithm is Monte Carlo and can
give a wrong answer, with controllably small probability. Over the
rational numbers the algorithm is also of binary polynomial
running time in the coefficient size of the input polynomial and the
logarithm of the inverse of the failure probability. We believe that
our conversion algorithm is a general and useful way in which
Zippel’s sparse interpolation scheme can be formulated.

Let us now come back to the question of factorizing into sparse

polynomials. The examples causing superpolynomial blow-up for
the size of the answer have the property that many other factors
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are very sparse. In general, one may wish to retrieve the sparse
factors as such and leave the dense factors in straight-line format.
Fortunately, the sparse conversion algorithm discussed allows us to
do just that. More precisely, given a bound ¢ we now can prob-
abilistically determine in polynomial time also in ¢ the sparse format
of all irreducible factors with no more than ¢ terms, without any

restriction on characteristic and multiplicities. Moreover, the running
time is always polynomial even if we were unlucky in our choice of
svaluation points. We think that this finally settles the question of
sparse factorization in a very satisfactory manner.

The next section introduces the model of probabilistic algebraic
RAMs, defines straight-line programs, and summarizes results
needed from other sources. In Section 4 we present the conversion
algorithm to sparse format and in Section 5 the theorems on
probabilistically preserving the factor degree pattern. Section 6
contains the straight-line polynomial factorization algorithm. We
conclude in Section 7 with a discussion of open problems in connec-
tion with the polynomial factorization problem.

3. DEFINITIONS AND PREVIOUS RESULTS

We now repeat the main notions and results presented in [K7]. We
denote the field of rational numbers by Q and the finite field with
g elements by F,. An algebraic RAM over F, with F a field, has a
CPU that is controlled by a finite sequence of labeled instructions
and that has access to an infinite address and data memory (see

Figure 1).
The split into two memories, one that facilitates pointer manipu-

lation for array processing as well as maintaining a stack for
recursive procedures, and another memory in which the algebraic
arithmetic is carried out, is also reflected in other models for
algebraic computations such as the parallel arithmetic networks in
{G3] or the omnipresence of the built-in type Integer in the Scratch-
pad II language [Je]. Each word in address memory can hold an
integral address and each word in data memory can store an
element in F. The CPU also has access to an input and an output
medium. The instructions in the CPU may have one or two

operands that typically are integers. The operands refer to words in
address or data memory depending on whether the instruction is an
address or a data instruction. Indirect addressing is indicated by a
negative operand. For completeness the microcode for a full
instruction set is given in Fisure 2.
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Figure 1. Algebraic RAM over Q(,/2).
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PRINT
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Figure 2. Summary of algebraic RAM instructions.

Instruction

ADD{ADDR}
SUB{ADDR}
MULT{ADDR}
DIVADDR

DIV

CONST{ADDR}
MOVE{ADDR}
IMP

JMPZ{ADDR}
IMPGZADDR

READ{ADDR}

Description

on; « Op; + On; (see below).
Op; « Op; — Op;.

Op; « Op; x Op;

Op; « LOp;/0p;]
Op; &lt; Op;/0p;.
Op; « c.

Op; « Op;.
Execution continues at program label /.

If Op; = 0 then execution continues at program label /

If Op; &gt; 0 then execution continues at program label /

The input medium is advanced and the next item is read

into Op;.
The output medium is advanced and Op; is written onto
the medium.

An EOT marker is written onto the output tape and execu-

Hon terminates.

if

J
i,c
i,j

PRINT {ADDR}
HALT

ML] ifi&gt;0 and | address {instruction
AMIAM[=i]] if i &lt;0 and address instruction
DM[AM[-i]] data
AM = address memory, DM = data memory

AMI—iT must be positive, otherwise an interrupt occurs.

op:
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The arithmetic time and space complexity of an algebraic RAM
for a given input are defined as the number of instructions executed
and the highest memory address referenced, respectively. It is not
always realistic to charge for each arithmetic operation in F one
time unit. We will consider encoding data in binary and define as
size(a), a€ F, where Fis a concrete field such as Q or F,, the number
of bits needed to represent a. Then the cost and space of an

arithmetic instruction depend on the size of its operands. The binary
time and space complexity of an algebraic RAM over Fis derived
by charging for each arithmetic step in F as many units as are needed
to carry out the computation on a multitape Turing machine.
Notice that we generally assume that the field arithmetic can be
carried out in polynomial binary complexity with respect to the size
of the operands. What that implies in particular is that elements in
F,. say, always require O(log (g)) representation size independent of
whether they are residues of small integral values or not. For READ.
PRINT, CONST, MOVE, or JMPZ instructions we charge as
many units as is the size of the transferred or tested element.

We also apply this “logarithmic cost criterion” to the address
computations and assume that every address is represented as a
binary integer. The binary cost for performing address arithmetic is
again the Turing machine cost. For indirect addressing we add the
size of the final address to the binary time and space cost of the
corresponding instruction. We note that in most circumstances the
binary cost for performing address arithmetic is by far dominated
by the binary cost of the algebraic operations and that for all
practical purposes the largest storage location is of constant
size. But our more precise measure has its advantages. First, all
binary polynomial-time algorithms on algebraic RAMS are also
polynomial-time in the Turing machine model. Second, the true
binary complexity is measured if we can use the address memory for
more than address computations, e.g., for hashing with sophisti-
cated signatures. Another such example is that of selecting random
field elements.

A probabilistic algebraic RAM is endowed with the additional
instruction

RANDOM {ADDR}, j

with the following meaning. Into Op. an element of F (or address)
s stored that was uniformly and randomly polled from a set R of
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elements (or integers) with card(R) equal to the address operand
Op; (see Figure 2 for the definition of Op). The selection of R is
unknown except all its elements aeRhave size(a) = O(log Op).
This model of randomized algebraic computation overcomes the
problem of how to actually generate a “random” rational number,
say, and, as we will show later, the failure probabilities can in our
circumstances be fully analyzed. Now we only note that for a
nonzero polynomial f the probability

Co deg (f)
 ea = [ &lt; card(RY’Prob{/ia),....a,) = 0la,e R) &lt; 28 (1

see [Sw]).
Our algorithms will read as input, produce as intermediate

results, and print as output straight-line programs. Let us first
precisely define what we mean (see also [S1]).

DEFINITION. Let F be a field, X = {x,,...,x,} a set of indeter-

minates. Then P = (X, V, C, S) is an algebraic straight-line program
over K = F(x,,...,x,) if

(SLP1) S ={s,....,s &lt; FV =Av,,...,v,}, VnK = J. Xis
called the sets of inputs, V the set of (program) variables.
and S the set of scalars.

C= (v,&lt;v,0,v))_y.., with Oe{+,—,x,=+}
vy, v5eSUXU{v,...,u,_} for all A = 1,...,L Cis
called the computation sequence and [| the length of P.
{ = len(P).

Forall A = 1,...,/ there exists sem(v,) € K, the semantics
of v,, such that

sea) = aifaeSuJX,
sem(v;) = sem(v}) + sem(2]) if O, = +,
sem(v;) = sem(v}) sem(v]) if O;, = Xx,

sem(vy) # 0 and sem(v,) = sem(v;)/sem(v)) if O, = =

The set of elements computed by P is sem(P) =
Us ; {sem(;)}. C

We say feF|x,,...,x,] is given by the straight-line program
P= (X.V.C.S) if fesem(P). Notice that we use the notation
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fesem(P) with the implied understanding that we also know
the v,e VV with f = sem(v,). Straight-line programs are originally
meant to be evaluated at points ¢(x;)€F.Itcan happen that such
an evaluation is impossible due to a division by zero. We say that
P is defined at ¢:{x,,...,x,} — F if a division by zero does not
occur during evaluation of P at ¢(x;) in place of x;, 1 &lt;i &lt;n.

Here we will not describe a concrete data structure that can be

used to represent straight-line programs on an algebraic RAM. It
is fairly easy to conceive of suitable ones, e.g., labeled directed
acyclic multigraphs can be used. A more intricate data structure
was used for the first implementation of our algorithm and is
described in [FI]. At this point it is convenient to define the element
size of a straight-line program as

]-size(P) = y size(v})
vexusS. sel,”

Notice that the actual size of P is in bits

D(len(P)loglen(P) + el-size(P)

since it takes size(v,) = O(log (A)) bits to represent v; in address
memory.

We now produce the input and output specifications of those
algorithms presented in [K7], which we will need for the algorithms
discussed in this chapter.

31. Algorithm Zero-Division Tes!

Input. A straight-line program P = ({x,,...,x,}, V, C, {s,....
5,1) of length / over Q(x,,...,x,), a,€Q. 1 &lt;v &lt;n, and a failure
probability ¢ &lt; 1.

Output. An integer p such that P is defined at with y(x,) =
a, mod p, ¥(s,) = s, mod p, or “failure.” The latter occurs with
probability &lt;¢ in case P is defined at ¢ given by ¢(x,) = a,. [J

3.2. Algorithm Evaluation

Input. As in algorithm Zero-Division Test. Furthermore an
ndex A. 1 &lt;A&lt;] and a bound B..
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Output. Either “failure” (that with probability &lt;¢ in case P is
defined at ¢) or ¢; = sem(¢(v,)) provided that

numerator(e;)|, [denominator(e,)| &lt;B,;. L

Both algorithms have a binary complexity of order (/log(B)
0g (1/£)°"M) on a probabilistic algebraic RAM over Q, where B =

max (size(a,), size(s,), B;) [KT].

3.3. Algorithm Polynomial Coefficients

Input. feF[x,,...,x,] given by a straight-line program P =
{x1,...,x,}, V,C,S) over F(x,,...,x,) of length /, a failure prob-
ability ¢ &lt; 1, and a bound d &gt; deg, (f).

Output. Either “failure,” this with probability &gt; ¢, or a straight-
line program Q = ({x,,...,x,},¥,,Cy,Sy) over F(x,,...,x,)
such that

 Core vrcg) = sem(Q) and len(Q) = O(ld+M(d)logd),

vlere c;€ Flx,,...,x,] satisfies

d

f = 2 cs(xy, - CX, XS

Here and later M(d) denotes a function dominating the time for
multiplying polynomials in F[x] of maximum degree d. Notice that
for arbitrary fields the best known upper bound for M(d) is
O(dlog(d)loglog(d)) [Shl]. OJ

The running time of this algorithm is summarized by the follow-
ng theorem, which is typical for our theory.

THEOREM 3.1. Algorithm Polynomial Coefficients does not fail
with probability &gt; 1 — ¢. It requires polynomially many arithmetic
steps in d and / on a probabilistic algebraic RAM over F. For
F = Q and F = F_ its binary complexity is also polynomial in
al-size(P) and log (1/¢) [K7], Theorem 5.1. OJ
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The Polynomial Coefficients algorithm requires the knowledge
of a bound d &gt; deg, (f). If no such bound is given, we can prob-
abilistically guess the degree by running our algorithm for

d= 172.4... 2

Let f,(x,,...,x,) be the interpolation polynomial that is produced
for the kth run. We then choose a,...,a,€ R randomly and
nrobabilistically test whether

f(a,,...,a,) —fi(a,,...,a,) = 0.

This test can be performed by a simple modification of the Zero-
Division Test algorithm, and the chance that the difference is falsely
determined as 0 can be made smaller than ¢. The probability that

the randomly selected a; certify the inequality of f and f, can by
Eq. (1) be made exponentially close to 1. Of course, by further
testing ¢;(x,,...,x,) for zero, 6 = 2F, 2* —1,... we can get a

probabilistic estimate for the actual degree deg, ( f). This procedure
has expected polynomial running time in deg, ( f), and can be made
quite efficient by computing the f, incrementally [FI]. The total
degree of f can be similarly estimated by testing deg, ( f). where

fx,...,x,) = f(x,%+bx, ....x, + b,x)

with b, randomly selected [K7, Lemma 5.1]. A similar algorithm is
also described in [G2. Remark 5.4]. More general, one can even prob-
abilistically determine the degrees of the numerator and denominator
of a rational function computed by the input program, and there-
fore one can probabilistically test whether it computes a polynomial
to start with, see [K8], Corollary 4.1.

1. CONVERSION INTO SPARSE POLYNOMIALS

We now discuss our version of Zippel’s [Zil] sparse interpolation
algorithm for converting a polynomial from its straight-line to its
sparse representation. The sparse representation for

el,
ACo...y+X) - fei...f(x,..

"\ ec, LeF J
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s the vector

((e sree 2€ns Cel. eer... ened

Here N denotes the set of nonnegative integers. We write mon(f) =
card(J), the number of monomials in f, and supp(f) = J, the
support or set of nonzero monomial exponents of f. Zippel’s
algorithm is based on the idea that during the variable by variable
interpolation process any zero coefficient is, with high probability,
the image of a zero polynomial. We first present the algorithm for
general fields. Extra difficulties arising from coefficient size growth
are dealt with afterwards.

4.1. Algorithm Sparse Conversion

Input. feF[x,,...,x,] given by a straight-line program P of
length /. Furthermore, a bound d, &gt; max, {deg (f)}, the
allowed failure probability ¢ &lt; 1, and an upper bound ¢ &lt; (4, + 1)"
for the number of monomials permitted in the answer.

Output. Either “failure” (that with probability &lt;¢), or the re-
presentation of a sparse polynomial with no more than # monomials,
or the message “‘f has (probably) more than + monomials.” The
'atter two outputs are correct with probability &gt; 1 —e.

Step R (Select Initial Evaluation Points): From a set R — F with

card(R) &gt; - max (ndeg(f)(d, + 1)" (a(d, + Dt + 1)2'*!

+ ndeg( Nd, + 1)

select random elements a,,...,a,€ R. Notice that if deg(f) is not
known one can use the crude upper bound deg(f) &lt; nd.

Step L (Interpolation Loop): For i 1,...,n Do Step I. Then
return Yc, X\ xX, Co #0

Step I (Interpolate One More Variable): At this point we have
with high probability correctly computed the sparse representation of

1... +Ei—-1ESI FEET A = Y Colyer 1% Xiq-
(ei.....e;_1)et;

N
Pye..ES cF. J NN
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Fori = 1wehaveJ, = {J}. We need not know c; = f(a,,...,a,).
Set

Ji «card({(e;,...,e;_1,0)(e),...,e,_1)€J;, 0 &lt; 0 &lt; dy oe 3)

where d,,,= min[d,,deg(f) —e, — + —e )

For kK 1,...,j,Do
From the subset R select random points b, ,, b;,,...,b,;€R.
Compute

ii = f(Bri1seeesbris@iirse--,a,)

by evaluating P at ¢,,(x,) = bi,, 1 sp&lt;i, ¢,;(x,) = a,
i+ 1 &lt;v&lt;n If Pis not defined at ¢,;return “failure.”

Solve the j, by j. linear system

d
€)... 08]

el LLL het Be * 7
| Zz. &gt; Vero eir6 Ok bilby = gi» sk Ji,
ey ...e._1)et. 6=0

(2;

in the determinates y,  ,  ,. If the system is singular, report
“failure.”

Set c,, . = Ye....» Where the right-hand side ranges over all
nonzero components of the solution of the above system. Notice
that the subscripts of these components define the set J, ,. If the
number of those nonzero coefficients becomes more than ¢, return
“input polvnomial has (probably) more than t monomials.” []

The challenging part is the verification of the failure and incorrect-
ness probabilities. For this. it is helpful to prove the following lemma.

LEMMA 4.1. Let J. N'. card(J,) = j. &lt; oo. Then

A. = det([8,- Bide evesiket. i)

Ss a nonzero polynomial in F[§, ,,...,B. ,].

Proof. Simply observe that the monomial contributed by the
main diagonal of the determinant is uniaue. M
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We now have the following theorem:

THEOREM 4.1. Algorithm Sparse Conversion does not fail and
outputs the correct results with probability &gt; 1 — 2¢. In that case
it requires

On(ld,t + d3 13)

arithmetic steps on a probabilistic algebraic RAM over a (suf:
ficiently large) field F.

Proof. Each of the j; &lt; (d, + 1) evaluations in step I requires
O(!) arithmetic steps. Solving the j, by j; system takes O(j}) steps.
Notice that this bound also includes setting up the linear system
from J; and g, ,. Step I is executed » times, which shows the stated
complexity.

We now analyze the probabilistic behaviour of the algorithm. Let
us first assume that the algorithm does not fail. A correct answer is

returned provided the system in Eq. (2) captures for all i every
nonzero monomial coefficient of f(x,,...,x;, a;,,,-..,a,). Let

F(X), y Xs yy gsens ly) = &gt; 2, LX xf
€.. Dei

) A 4

i é, o€Flu, ,.... 9%) anc
1,xt

5 = (e; iy Cor... ern deg(a;) % mon(f)deg().

Notice that in general J,,, 2 J,,.Butg,(a;,,,...,a,) # 0implies
that J,,, = J,,,, which in turn means that the unique solution
to Eq. (2) must determine f(x,,...,X;, @4,...,a,). Since
mon( f) &lt; (d, + 1)" the probability

Prob(o,(a;,,...,a,) # 0 forall 1 &lt;i&lt;n)

s not less than

_ 5 deg(a;) &gt;] nmon(f)deg(f)
A“ card(RY © card(R)

ndeg( f)(d, + 1)"
&gt;1—- —— —-&gt;1-¢
&gt; 1 card(R) = &amp;
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We now estimate the failure probability. We define the events

FE. = {(ay....,a,)|Pis defined at ¢,(x,) = x,
dy(x) =qa,2&lt;i&lt; nl

and

Ee: = {(be1s---&gt;bi;)| Pis defined at ¢;|

As in [K " Lemma 4.2], we have both

2! +1
Prob(Ey), Prob(Ey, | Ey) 2 1 -  —=—

Since J; &lt; (dy + 1)t we get

pied +l
Prob| E, E |&gt;1-—— csro oo ) 1 od) mi 1 a

k=l. hh k=1,....J;

, (n(dy+Dr + 12"!
card(R)

Now by Lemma 4.1 for a given i the coefficient matrix for Eq. (2)
is nonsingular with probability no less than

deg(A)) S11 deg(f) J; &gt;] — deg(f) (dy, + 1)t
card(R) = card(R) =~ card(R) ’

Thus all » arising systems are nonsingular with probability
&gt; 1 — ndeg(f)(d, + 1)t/card(R). Therefore, the algorithm fails
with probability no more than

card(R) (n(dy + Dt + D2" + ndeg(f) (dy + D1). OC

We wish to remark that the input parameters d, and ¢ need not
be specified beforehand. In Section 3 we have discussed how to

probabilisticallv determine d;, = deg, (f). In fact, the Sparse
Conversion algorithm runs more efficiently if we use d. in place of
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dy for the ith iteration of step I. The parameter ¢ is used only to
abort execution in case f has too many monomials or that we are

interpolating with unlucky evaluation points. By adjusting card(R)
appropriately we can achieve expected polynomial running time
also in mon( f) without the input parameter ¢. In the context of an
actual computer algebra system we prefer our formulation of the
algorithm, whose running time is independent of bad random
choices.

We now discuss the complications arising for F = Q. Our
requirement is to accomplish binary polynomial-time complexity. It
is clear that we must include the coefficient size of f,

. Ii max size(c, veer eq lyc-size(f) = yas { !

into our input parameters. One might think that all we have to do
is use the Evaluation algorithm of Section 3 inside the FOR loop of
step I and adjust the failure probability accordingly. Unfortunately,
there exists a theoretical probability that size (g, ;) is exponential in
n. This would happen, for instance, if all denominators of c,
were distinct primes and mon( f) were exponential in #. A way to
overcome this problem is to perform the entire conversion modulo
p, p an integer that has been tested to be a prime with probability
&gt;1 — ¢ [SS, R1], and retrieve the rational coefficients of f by a
continued fraction approximation from the coefficients of f mod p
as in step C of the cited Evaluation algorithm. The pseudo-prime p
must be selected such that also with probability &lt;1 —¢, P is
defined at ¢(x,) = x,, ¢(s) = smodp for all seS(see the Zero-
Division Test algorithm cited in Section 3), and such that

p &gt; card(R), D2c-size(f)+1

[n practice, it is better to work modulo p* at the danger of increas-
ing the failure probability. Then one avoids the generation of the
rather large pseudoprime p, and one can also solve the linear system
(Eq. (2)] p-adically [FI]. For the record, let us state the following
theorem.

THEOREM 4.2. For F = Q, algorithm Sparse Conversion, if
ased in conjunction with a probabilistic primality test, the Zero-
Division Test algorithm, and a recovery procedure for rational
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numbers from their modular images, can complete and determine
a correct answer with probability &gt; 1 — 3e. Its binary running time

is polynomial in /, d,, log (1/¢), t, el-size(P), and the additional input
parameter that is a bound for c-size( f). OJ

An interesting result concerning the conversion of a straight-line
program to a sparse rational function is a direct consequence of this

theorem and the Numerator and Denominator algorithm in [K7]

CoroLLARY 4.1. Let f/g be given by a straight-line program
P,f,geFlx,,...,x,], GCD(f,g) = 1,d &gt; deg(f), deg(g), 0 &lt;¢ &lt; 1.
In order to avoid ambiguity assume that the coefficient of the
lexicographically first monomial in g is 1. Provided the sparse
representation of f, respectively g, has less than  monomials, it can
be computed correctly with probability &gt; 1 — ¢ on a probabilistic

algebraic RAM over F in polynomially many arithmetic steps in
len(P), d, and t. In case F = Q the binary running time is also
polynomial in el-size(P), log(l/e), and c-size(f), respectively
c-size(g). O

Before we can apply theorem 4.2 to the Polynomial GCD
algorithm in [K7} we must introduce a slightly more restricted
notion of coefficient size off, that where the coefficients are already
brought to a common denominator. Assume that

“Oy... .P.

Up oe,
Ea Uy, . -Ux€ZL forall (e,...,e,)esupp(f).

Then the combined coefficient size of fis defined as

cc-size( f) = size(u,) + max {size(u, .)}
(ei.....eYesupn( N n—:

Now, since the size of the coefficients of integral multivariate poly-
nomial factors can be polynomially bounded [Ge, Chapter I11, §4,
Lemma II}, we obtain from the straight-line GCD algorithm in [K7]
the following typical corollary.

CoroLLArRY 4.2. Letf,eF[x,,...,x,] be given by a straight-line
program P, d &gt; deg(f,).1&lt;p&lt;r,g = GCD,,,(f,).0 &lt;e&lt; 1.
Provided the sparse representation of ¢ has less than t monomials.
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it can be computed correctly with probability &gt; 1 — ¢ on a prob-

abilistic algebraic RAM over F in polynomially many arithmetic
steps in len(P), d, and ¢. In case F = Q the binary running time is
also polynomial in el-size(P), log (1/e), and min, _,, {cc-size(f,)}.

OJ

Notice that we cannot yet prove the above corollary for c-size( f,)
replacing cc-size( f,). Therefore, one might question whether our
restriction is reasonable. The answer is that for three large sub-
classes of polynomial representations, namely

Sparse polynomials, Formulas, and Determinants,

the combined coefficient size as well as the degrees are polynomially
related to the input size. In fact, we know of no example for a
straight-line program representing a polynomial of polynomially
bounded degree and coefficient size, but where the combined coef-
ficient size becomes exponential.

We shall concluce this section with a remark on counting the
number of monomials. Clearly, the Sparse Conversion algorithm
can probabilistically produce the number of monomials in a poly-
nomial given by a straight-line program in time polynomial in the
anary representation of that count. One may question whether it is
possible to find the number of monomials in binary or random
polynomial-time. This is most likely not the case due to the fact
that the evaluation of 0-1 permanents is #P-hard [V1]. For
if we replace all 1 entries in a 0-1 matrix by indeterminates x, ;, i
the corresponding row and j the corresponding column, then the
number of monomials in the determinant of the new matrix is equal
to the permanent of the original 0-1 matrix. Therefore the problem
of counting the number of monomials in families of polynomials
with polynomially bounded degree and straight-line computation
tength, which Valiant calls p-computable [V2], is # P-hard.

5. EVALUATION AND FACTOR DEGREE PATTERN

It is crucial for our Factoring algorithm that the Hensel lifting is
started with true factor images. Fortunately, the effective versions
of the Hilbert irreducibility theorem [G2, K4] make it possible to
probabilistically enforce this assumption. In this section we present
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a theorem (Theorem 5.2) on the probabilities that certain evalu-
ations preserve the factor degree pattern that determines the
number of irreducible factors, their multiplicities, and their total
degrees. The argument is essentially the same as that in [G2.
Theorem 3.6], but with our effective version of the Hilbert irreduci-
bility theorem (Theorem 5.1). The main advantage of this change is
that the evaluations are simpler and the probability of success is
higher.

THEOREM 5.1 (Effective Hilbert Irreducibility Theorem). Let
f(x,...,x,)eF[x,,...,x,], F a field, have total degree d and
be irreducible. Furthermore, assume that x, occurs in f, that is
deg,,(f) &gt; 0. If char(F) = p &gt; 0 we require that each coefficient
of fin F possesses a pth root in F. A sufficient condition for this
to be true is that F be perfect. Let Rc F and let q,,aq,,...,a,.
b.,...,b,, be random elements in R. Then the probability

Prob( f(x, + a,,x,.b:x, + a4,..., b,x, + a,)

. . 4424

becomes reducibl F L—reducible in F[x,, x,]) card(R)

For a proof see [K4, Theorem 3].

In the following association between two polynomials f and
g is denoted by f'~ g and means thatf= cg with 0 # ce F. The
factor degree pattern offe Fx, ,..., x,] is defined as a lexicographi-
cally ordered vector [(d;,e;)],_,. ,suchthat for f= [[/_, kh.
he Flx,,...,x,],

h, irreducible, d; = deg(h,) &gt; 1, 1 «wi Ir, hy ~h., 1 &lt;i # j ¥

We want to apply Theorem 5.1 to the irreducible factors of a

multivariate polvnomial. However, Theorem 5.1 will apply only to
those factors that depend on x,. Therefore we need the following
notion. The primitive part of a polynomial with respect to a variable
is the polynomial divided by the GCD of all (polynomial) coef-
ficients of that variable. We denote it by pp,(.), where x is the
corresponding variable. In particular, if no factors are independent
of x we call the polynomial primitive in x.
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THEOREM 5.2. Let fe Flx,,...,x,], Fa perfect field, d = deg(f),
Rc F. Let a,a;,...,a,, b;,...,b,eRbe randomly selected
elements,

for = f(x +a,x,bx, + ay,....,b,x, + a,)

Prob(pp,,(f) and pp,,(/2)
have the same factor degree pattern)

d 3

ET.dh
card(R)

Proof. First we consider all the factors 4; with deg, (h;) &gt; 0. By
[Theorem 5.1,

ho, = h(x, + a, x3,b:x, + a;,..., b,x, + a,)

remains irreducible in F[x,,x,] with probability &gt;1 — 4d 2%
card(R). It remains to estimate the probability that deg(h,,) = d
and that &amp;;, ~ h;, for allj# i. Let

R(x), Xp, 00, 05,0030,BayesBy)
= h(x, + a,x, Bix) + ts, BX) + a),

hie Fx), Xp, 00,03, 0, B3s oo. By). Clearly, deg,.(h)=d
Let

0 # m,(By,...,B)EF(Bs,..., 0]

be the coefficient of a monomial x/'x2, j, + j, = d,, in ,. Now
deg(n,) &lt; d, and

n.(bs,...,b,) # 0 implies deg(h;,) = d,.

By [Sw!, Lemma 1, this happens with probability no less than

_ Geg(m) _ ,__ 4
card(R) = card(R)’

We finally estimate the chance that hi, ~ h;,. First we claim that
h.o~h i # jin Flx,,x,], F = F(a, o5,...,0,,B8+,...,8,). For if
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this were not the case, then there would exist nonzero g,,g;€

Fla, 5X35 UysBs, cee ,B.], GCD(g;. 8) = 1, such that (g:/2,)h; =
h;. Hence either one of h; or A; would have to be reducible in
Foxy, X3,00,05,...,0%,B5,...,B.], say h;, = AVA?. However then

h. = (HVE?) (x, — ay, Xp, 0, X35 — Bi(x — ay)...

xX, — B(x, - a), Bs, . 2 Ba)

would be nontrivial factorization of A; that would necessarily have
to lie in F[x,,..., x,], in contradiction to the irreducibility of 4;.
This shows nonassociatness of h; and h, over F. We now have two
coefficients of 4; in F, that is

Ad) JA A &gt;CC — cee gh Dxhixh og glam) in gin

gh) glk) cF

and two corresponding coefficients in 4,

ho— cee ati) hh 202 fe GU) xh sb 4»:

gink) gh) cF

such that

A , ’ ALAr= a 2) gla H2) __ gM #2) 1,42) £ 2
ir

Now 1, € Flay, a3,...,a,, B3,...,B,] and it is relatively easy to see
that

ta, a5,...,a,,bs,...,b,) # 0 implies h,, ~ 11;,

Since  deg(t;;) &lt;d;, +d, the probability of
21 — (d+ d)/card(R).

th iS event iS

Now we consider those h; with deg, (h) = 0. All that must
be satisfied for the theorem to hold is that 4,, as defined above
s not identical zero. Again the total degree of k, gets preserved
with probability d. /card(R). which is a sufficient condition. Overall.
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the factor degree pattern is preserved with probability not less
than

ro 4d2% roa d+ d,
- (2 card®) + Zcard(® Loa

 (sd d@-1)_d
- card(R) = card(R) 2 card(R)

4d2‘ + d°

card(R)

One can probabilistically enforce that the input polynomial is
primitive in x, by making the linear substitution x; + ¢;x, for all x;,
i # 2, with randomly chosen ¢;. This substitution does not affect
the factor degree pattern. It should be clear from the above theorem
that we thus can probabilistically obtain the factor degree pattern
of a polynomial given by a straight-line program by evaluation.
We formulated Theorem 5.2 in its generality because we will make
a slightly different substitution in the Factorization algorithm in
Section 6. Moreover, the theorem in its current form can be used to
also compute the degrees of individual variables in the factors. One
lets each variable take the role of x, and identifies the factors in the
different bivariate domains by evaluating that variable at a linear
form. However, since this result is not needed in the following, we
shall skip the details.

The assumption that the field is perfect can be dropped at the cost
of increasing the failure probability somewhat (see [G2, Lemma
4.2]), but since the usual coefficient fields are perfect we do not
incorporate this generalization.

6. STRAIGHT-LINE FACTORIZATION

We now describe the algorithm for finding the straight-line factors
of a straight-line polynomial. The algorithm is derived from the
One-Variable Lifting algorithm in [K5], with the homogeneous
parts of the minor variables replacing the monomials of the single
variable with respect to which is lifted. Note that a homogeneous
polynomial of degree d has the form

1..x
CnC,

“nn
1 Co EF
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We will compute those homogeneous parts by straight-line pro-
grams. The main reason why the answer is polynomial in length
is that we only need to add on to the intermediate programs. This
is because subsequent homogeneous parts can be computed from
previous ones and Strassen’s technique of obtaining a homogeneous
program need not be applied at each iteration.

6.1. Algorithm Factorization

Input. feFl[x,,...,x,] given by a straight-line program P of
length /, a bound d &gt; deg(f), and an allowed failure probability
el.

Output. Either “failure,” that with probability &lt;¢, or e; &gt; 1
and irreducible A; € Fx,,...,x,], | &lt;i &lt;r, given by a straight-line
program Q of length

en(Q) = O(d&gt;l+dM(d*)log(d))

such that with probability &gt;1 —¢, f= 1[I'_, A". [Refer to
algorithm Polynomial Coefficients in Section 3 for the definition of
M(.).] In case p = char(F) divides any ¢,, that is e, = p“é, with
not divisible by p, we return é, in place of e, and Q will compute 4°

Step R (Random Points Selection); From a set R — F with

card(R) &gt; 2 max (2'72.d2¢ + d3,2(d + 1)*)

select random elements a,,...,a,,b,,...,b,,¢,,¢5,...,c,. IfF= F,
with ¢ small we can instead work over F,, p a prime integer &gt; d.
By Theorem 6.1 in [G2] no additional factors occur.

Test whether P is defined at ¢(x;) = a;, 1 &lt;i&lt;n For F = Q
we call algorithm Zero-Division Test in [K7] such that the prob-
ability of “failure” even if P were defined at ¢ is less than ¢/6. If P
turns out to be (probably) undefined at ¢ we return “failure.”
Otherwise, P is definitely defined as ¢ and we compute the dense
representation of

f — f(x, + Ci X5 -+ a, , XxX, = b,x, + a,. bx. += C+ Xn + da

boxi+e.x, + al).
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This can be done by evaluation and interpolation similarly to the
Sparse Conversion algorithm. If F = Q, a bound for the cc-size( f)
must be added to the input parameters and we must again make the
probability that “failure” occurs due to the use of modular arith-
metic during evaluation less than ¢/6.

Step F (Factorization): Factor

r

fa = 11 gi,
i=

g.,€F[x,,x,] irreducible and pairwise not associated. Notice that
by Theorem 5.1 f and f, have with high probability the same factor
degree pattern, that is irreducible factors of f map to pairwise
nonassociated irreducible factors off, of the same total degrees. For
the remainder of the algorithm we will assume that this is the case.

If char(F) = p &gt; 0 divides any of the e,, say e, = p“é, with ¢,

not divisible by p, we replace ¢; by é; and g,, by 5. This replace-
ment guarantees that none of the multiplicities is divisible by the
characteristic. Now set

g:0(x1) « 8in(xy, 0)e F[x,].

Check whether GCD(g;,g,0) ~ 1 for 1 &lt;i &lt;j &lt;r and whether
deg(g,,) = deg(g;,) for 1 «Xi &lt;r. If not return “failure.” Let

Flxi,...,x,) = fx; + a,x+b,x,+ay.....x,+b,x,+a,

= IT hase x)

and assume that 4; are the factors that correspond to §,,. Notice
that the assumptions on the preservation of the total degrees of the
factors throughout the evaluation process also imply that

Idcf, (f)eF. (3)

Here ldcf,, denotes the coefficient of the highest power of x, and is
generally a polynomial in F[x,,...,x,]. Furthermore, let P be a
straight-line program computing f. We write

d d

(Xs) = 2 2 [ima x,)x7
i=0 m=n
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where Fi e F[x,,...,x,] is homogeneous of degree j. We remark
that d can now be set to deg( f) rather than a bound for it. We will
need a straight-line program that computes f;,. If we replace x; by
x; x{*',2 &lt;i&lt; n,in Pthenf,, is the coefficient of x{“* "+" There-
fore by evaluating at x, and interpolating as in the Polynomial
Coefficients algorithm (Section 3) we can find a straight-line
program Q, for fim of length

len(Q,) = O(d*l+M(d*)log(d)).

Notice that we need to randomly pick (d + 1)? distinct points at
which we interpolate and we must make sure that the straight-line
program P is defined at those points. If that is not the case, or if for
F = Q we cannot confirm by the Zero-Division Test algorithm
(Section 3) that a point is good, that with probability &lt;e&amp;/(6(d + 1)?),
we return “failure.” For more details we refer to step P in the cited

Polynomial Coefficients algorithm.
Step H (Hensel Lifting Loop): For k &lt;0....,d — 1 Do step L.
Step L (Lift by One Degree): Let

4 4d;

(Xp,X,)= DY Cm(Xa,eex,)XTd;=deg(h,),
m=0 i=0

where ¢;; ,,(x,,...,x,)€F[x,,...,x,] is homogeneous of degree j.
At this point we have a straight-line program Q, over F(x,,...,x,)
that computes ¢;;,, for 1 &lt;i&lt;r,0&lt;j&lt; k.0&lt;m&lt;d,andallf,,,
0 &lt;j, m &lt; d. Notice that ¢; ,, € Fis the coefficient of x" in g;,found
in step F, and therefore Q, need not encode them. Whenever
reference to these coefficients is made later, we just encode them as
scalars. Notice also that by (3) ¢;; , = 0 for j &gt; 0. We will extend
Qi to Q,, that also computes c;;_, ,,. It is useful to introduce the
following polynomials

‘Fy
x d;

. A m

— 2 2 CijmX1 5
i=0 m=~0n

d;

Bik+1 = &gt; CikrtomXT
m=10

Now consider the congruence

[1 8x + Gir)” = f mod (x5, x)?
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Expanding the left-hand side we get

er —1,. . e-1 - a :

210 &amp;ro &gt; (ein I £0)
i=1 j=

r

= f— TI gi, mod (x,,...,x,)*
Te:I

re

By our loop invariant for OQ,

(7- 1 i mod (xy, ...,x,
i=l

d—1

Lepr = &gt; LivralBus vs a Bp JOT
m=0

where #, ,  ,€ F[x,,...,x,] is homogeneous of degree k + 1. Notice
that the degree of #,,, in x, is &lt;d — 1 by assumption (3). We need
a program 7, , that computes ¢,, ,,. However, T} ,, does not start
from scratch, but references the program variables in Q, that
compute c;;,, and Lon If T,., encodes a tree-like bivariate multi-
plication scheme with those program variables as undetermined
coefficients. that can be done in

len(T,.,) = O(M(d*)log(d)).

Now, since #,,, equals the left-hand side of Eq. (5) gis" &amp;7
must divide ¢,,, in F[x,,...,x,]. Notice that this claim might not
be valid if g;,is not an image of 4;, since then the existence of the
¢. «+1 cannot be guaranteed. However, in that case our construction
still completes, but the resulting straight-line answer is incorrect.
Let

, ry m tied
Apo ’ UpimXt = role"

m=0 gio “7&amp;0

dito td,
5

Up om €EF[xy,0,X,]

Again, we need a straight-line program U,,, that computes all
Ui 11m from the program variables for ¢, , , ,,in T} ,, as indeterminates.
Since the leading coefficient in x, of g's '**- go "is an element in
F. the u,.,, can be determined by simply encoding a univariate
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polynomial division in x, over the coefficient field F(x,,...,x,).
Therefore we can construct Uy,, of length len(U,,,)= O(M(d)).
(Actually, the entire divisor is in F[x,] but our argument here also
applies to a quadratic lifting procedure, see the remark below the
proof of Theorem 6.1.) Now consider

Ui _ C1841 fru €8rk+1
£10" &amp;ro &amp;i0 gro

[t is clear that ec; are the coefficients of the univariate partial
fraction decomposition of u,,,/(g,,"""&amp;.) carried out over the
field F(x,,...,x,). One way to compute these coefficients by a
straight-line program 0, , , with len(0,,,) = O(d?) is to once and
for all find ge F[x,],0&lt;m&lt;d + +d — 1, with

Xt 5(m) 30m)a 8, Ew
£10" "&amp;ro0 &amp;1,0 &amp;ro

deg(¢'?) &lt; d,,

and encode the summation

| dt td—)
} EE a(m) -

Ci k+1 . 2 Ur 1,m8i0 1&lt;isr

We must be able to divide by e; and here we need the fact that the
multiplicities must not be divisible by char(F). We finally link the
programs Q,, Ty. 1, Up,., and Q,, , properly together to obtain the
program Q,_,. Notice that

len(Q,.,) &lt;len(Q,) + CM (d?) log (d).

where C is an absolute constant. Therefore len(Q,_,) = len(Q,) +
O((k + DM (d*)log(d)).

Step T (Final Translation): From QO, we obtain OQ that computes

h(x) — ar, x, — by (x, — a) — ay...x,—b,(x,—a)—a,)

by adding in front of Q, instructions for translating the x, appro-
priately. 0

The following theorem summarizes the comnlexity of the above
ileorithm
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THEOREM 6.1. Algorithm Factorization does not fail with prob-
ability &gt; 1 — ¢. In that case it reduces the problem in polynomially
many steps on a probabilistic algebraic RAM over F as a function
in / and d to factoring bivariate polynomials. Its answer will be
correct with probability &gt; 1 — ¢. It requires polynomially many

randomly selected field elements. For F = Q or F = F, the
algorithm has binary polynomial complexity also in log(1/e), el-
size(P), and cc-size( f).

Proof. The arithmetic and binary running time is polynomial as
a direct consequence of the results in [K7], in particular Theorems
3.1, 4.1, and 5.1. It remains to analyze the failure probabilities of
the Factorization algorithm. The only way an incorrect program Q
can be produced is that the factor degree of patterns of f and f,
disagree. If deg, (f) = deg(f), which is true with probability
&gt;1 — d/card(R) &gt; 1 — ¢/12, then by Theorem 5.2 this happens

with probability less than

4d2 + d° - 4e
card(R) 6°

Thus the compound probability of getting an incorrect result is &lt; &amp;.
“Failure” can occur in six separate circumstances. First, P may

be undefined in ¢, that with probability &lt;2'*!/card(R) &lt; ¢/6 by
Lemma 4.2 of [K7]. Second, for F = Q we might fail to recognize
that P is defined at ¢, but we make this possibility happen with
probability &lt; ¢/6. Third, for F = Q the computation off, may fail
with probability &lt; ¢/6.

Fourth, “failure” can occur if for some i # j, GCD(g,,g,0) + 1,
or deg(g;o) &lt; deg(g,,). Let m;(B,) = ldcf,, (;,(x,, Box, + a,)) and
let

0,,(2y, B,) = resultant, (8,,(x;, Box; + oy), &amp;;2(x1, Box + 03)

over Fla, B,,x,]. It is easy to see that 0 # =,0;;€Fla,B,]and
n,(b,)o,;(ay,b,) # 0 implies that the above events are impossible.
Now, deg(n;) &lt; d; and deg(o,;) &lt; 2d;d; and therefore the prob-
ability that the above events occur for any i # jis less than

rd, 2dd, (d+ +d) a’ £
2 card(R) + LX Gard(R) &lt; card(R) &lt; card(R) &lt; 6
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Notice that if P were division-free, this event would be the only one
where failure could occur.

Fifth, we may not find good interpolation points in order to
produce Q,. If we try at most (d + 1)* points, the probability that
at least (d+ 1) = d* points are good can be estimated like in
the proof of [K7], Theorem 5.1. We shall repeat the argument
here. An individual point was not picked earlier with probability
&gt;1— (d+ 1)*/card(R) &gt; 1 — ¢/12. P is not defined at an individual

voint substituted for x, with probability &lt;2'*!/card(R) &lt; ¢/12.
Hence a suitable point can be found in a block of d* points with
probability greater than

— (eM) &gt; 1 _&amp;
d*’

&amp;¥*  i
4

because (1/e*)*~! - = d* for e* &lt; 1/2. Now the probability
that a good point occurs in all of the d* blocks of points is greater
than

* \4*

(1-%] oN
and therefore failure happens with probability &lt; ¢/6. Sixth and last,
for F = Q we may not recognize that we have good interpolating
points, that for all (d + 1)” points together with probability &lt; ¢/6.
Summing up these failure probabilities completes the proof. [J]

We remark that our result in [K3] would allow to further reduce
the problem on an algebraic RAM over F to univariate factoriz-

ation. We also mention that the input parameter d can be prob-
abilistically estimated in expected polynomial-time in deg(f)
(Section 3). Furthermore, the algorithm could be formulated using
quadratic lifting [K2] in step L. Then the length of Q could be
asymptotically reduced to O(d’l + M(d?)log(d)). Finally we
mention that the binary polynomial-time upper bound can be easily
generalized to F being an algebraic extension of Q.

We now formulate two corollaries to Theorem 6.1. The first

refers to computing the sparse factorization of f and follows from
Theorem 4.2.

CoroLLARY 6.1. If in addition to the input parameters of
‘he Factorization algorithm we are given &gt; 0. for F = O or
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F =F , We can find polynomially many binary steps and random
bit choices in

,d, log ( ) , el-size(P), cc-size( f), and ¢

sparse polynomials that with probability &gt; 1 — ¢ constitute all

irreducible factors of f with no more than rt monomials. ]

Notice that the above running time is always polynomial inde-
pendent whether the correct sparse factors were produced or
whether other factors are dense. This makes this corollary superior
to all previous work on sparse factorization. The second corollary
deals with possibility nonuniform closure. Again, in a family of
p-computable polynomials the degrees computation lengths are
polynomially bounded [V2].

COROLLARY 6.2. Let F be a field of characteristic 0. Then

any family of factors of a family of p-computable polynomials over
F is p-computable. J

Notice that this corollary applies even to fields in which arith-
metic is recursive but over which polynomial factorization is
undecidable [FS]. It also shows that a polynomial degree bound is
necessarily required. We note that x** — 1 can be computed with

O(d) instructions but it is known that over the complex numbers
there exist factors that require Q(2?/\/d) computation length
[LS, Sc]. It would be nice to give such an example where the factors
are irreducible polynomials over Q.

We have implemented the Factorization algorithm [FI]. In order
that len(Q) does not become too large, two practically important
improvements to the Factorization algorithm as it is described
above were made. First, the coefficients Lon are not computed
a priori but as they are needed for each k in the lifting loop.
This is accomplished by using the Polynomial Coefficients
algorithm in the original verssion of [K7], which is based on Taylor
series expansion. Second, the product [I}_, gf is also computed
incrementally using the coefficients determined already for k — 1 of
the same product.
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7. CONCLUSION

Aside from the preceding paper [K7] currently two more of our
papers deal with the subject of manipulating polynomials in
straight-line representation. In the forthcoming paper [K10] we
show how to replace the input parameter d in the Factorization
algorithm by a degree bound for the individual factors. We also
have implemented our algorithms in Lisp with an interface to
Macsyma. The details of this first implementation together with
practical improvements and our experience on test cases are

reported in [FI].
The question arises as to what major unresolved problems in the

subject of polynomial factorization remain. It is appropriate to
distinguish between theoretical and practical issues. One theoretical
question is to remove the necessity of random choices from any of
the problems known to lie within probabilistic polynomial-time.
say factorization of univariate polynomials over large finite fields.
Another problem is to investigate the parallel complexity of poly-
nomial factorization, say for the NC model [Co]. Kronecker’s
reduction from algebraic number coefficients [Kr, T, L], Berlekamp’s
factorization algorithm over small finite fields [B1], the author’s
deterministic Hilbert irreducibility theorem [K3, §7], and Wein-
berger’s irreducibility test for Q[x] [We] all lead to NC solutions by
simply applying known NC methods for linear algebra problems. It
is open whether factoring in Q[x] or irreducibility testing in F, [x],
p large, or in Q[x, y] can be accomplished in NC We remark that
testing a rational dense multivariate polynomial for absolute
irreducibility can be shown to be in NC [K6].

In connection with the Factorization algorithm presented here,
we also mention an open question. Assume that a straight-line
program computes a polynomial whose degree is exponential in the
length of the program. Are its factors at least of polynomially
bounded degree p-computable? A positive answer to this question
would show that testing a polynomial for zero in a suitable
decision-tree model is polynomial-time related to computing that
polynomial (cf. [K10, §6, Problem 6]). In general the theory of
straight-line manipulation of polynomials may be extendable in
part to unbounded input degrees, but even for the elimination of
divisions problem [S2] the answer is not known.

From a pragmatic point of view the main unresolved question is
what role the polynomial-time polynomial factorization algorithms
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should play in computer algebra systems, that is in actually used
implementations. The “L?” algorithm [LLL] has been considered
impractical by even one of the inventors, but that was not meant to

imply that this algorithm is useless for polynomial factorization. In
fact, using L’ to recover algebraic numbers from their modular
images leads to a practically competitive factoring algorithm for
polynomials over algebraic number fields [Lel]. We submit that
careful implementations of different lattice reduction schemes
together with the complex root approximation method [Sh2] might
outperform the Berlekamp-Hensel algorithm on hard-to-factor
polynomials. The first implementation of the straight-line factor-
ization algorithm is reported in [FI]. There its practical merits
have been demonstrated on very dense inputs such as symbolic
determinants.

In summary, in this chapter we were able to contribute to

Valiant’s algebraic counterpart of the theory of P vs. NP in the
positive, that is establish a polynomial upper bound for a major
problem in computational algebra. In fact, it comes to us as a small
surprise that p-computable polynomials are closed under factoriz-
ation. And we have, finally, put to rest the problem of computing
the sparse factorization of a multivariate polynomial.
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Since this chapter has been submitted, progress on several problems discussed can
be reported. The sparse conversion problem in Section 4 has been solved more
&gt;fficiently by Ben-Or and Tiwari [Proc. 20th Annual ACM Symp. Theory Comput.
301-309 (1988)], Zippel [J. Symbolic Comput. to appear (1990)], and by Lakshman
Yagati and the author [Proc. ISSAC 1988, Springer Lec. Notes Comput. Sci. to
appear (1989)]. John Canny and Barry Trager have made the author aware of a
more effective version of the Hilbert Irreducibility Theorem 5.1, that essentially
reduces the numerator of the probability bound to d°”. Such a theorem also
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follows from methods presented in [K6}, Section 5. Finally, Barry Trager and the
author [Proc. 29th Annual Symp. Foundations Comput. Sci. 296-305 (1988)] have
shown that another implicit representation for multivariate polynomials, that of
black box programs that merely allow to evaluate the polynomials at given input
points, can be used as input and output representation for polynomial-time
polynomial factorization.
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A RANDOMIZED DATA STRUCTURE

FOR ORDERED SETS

[on L. Bentley, F. Thomson Leighton, Margaret Lepley,

Donald EF. Stanat and 1. Michael Steele

ABSTRACT

[n this chapter, we consider a simple randomized data structure for
representing ordered sets, and give a precise combinatorial analysis
of the time required to perform various operations. In addition to a
practical data structure, this work provides new and nontrivial prob-
abilistic lower bounds and an instance of a practical problem whose
randomized complexity is provably less than its deterministic
complexity.

[. INTRODUCTION

[n this chapter, we consider the problem of maintaining a set from
a totally ordered domain under the operations Member, Insert,
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Delete, Predecessor, Successor, Maximum, and Minimum. The
basic data structure that we use to represent such a set of size at

most N is a sorted linked list implemented by the two arrays
Link [0...N]and Value[l... N]. The value in Link [0] points to the
first element in the list, Link [Link [0]] points to the next element,
etc. We call such a data structure a J-/list after Janko [J1, J2] who
first studied the structure in a randomized setting. Among other
things, we will show that Member, Insert, Predecessor, Successor,
and Maximum can all be accomplished in 2,/N — ¢ expected steps
where ¢ is a small constant, and that this bound is optimal under a
plausible model of constraints imposed by the data structure. We
also show that Delete requires just 4/N — 2c expected steps and
that Minimum requires just one step (Link [0] points to the minimum
element). All of these bounds (except for Minimum) are dramatically
better than the worst case bound of N steps.

Although quite simple, the J-list data structure is surprisingly
efficient. In fact, it is superior to all of those described by Knuth [K]
for certain applications. The salient attributes of such applications
are as follows:

Space is important. This structure uses only one extra word
of storage per element, while binary search trees use at least
two extra words, and various hashing schemes use varying
amounts of extra storage. However, the storage for this struc-
ture must be available in a single contiguous block.
The “orderedness” operations of Successor, Predecessor,
Minimum, and Maximum are frequent; these are not possible
in most hashing schemes.
Insertions and deletions are frequent. If the data structure
changes rarely, binary search in a sorted array is very efficient.
Program simplicity is important. Each operation on this
structure requires only about a dozen lines of code, while
some operations on balanced binary search trees require over
100 lines of code.
Run time is important for problems of medium size (where
medium means that N is between, say, 100 and 10,000). If N
is below that range, simple sequential strategies are probably
efficient enough. If N is above that range, then the logarithmic
search time of binary search will be necessary for many
applications. When N is in the medium range, though, the low
constant factors of this structure will make it competitive with
binary search trees.
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Of course, the simple linked list is one of the most basic and well-
known data structures, and has arisen in countless contexts. Most
relevant to this chapter is the prior work of Janko [J1, J2] who studied
randomized algorithms for sorting using linked lists and obtained
an O(N*?) bound on the expected time needed to sort N items.

The remainder of the chapter is divided into sections as follows.
{n Section 2, we define the problem more precisely and observe that
the worst-case complexity of performing a Member Search is linear
in N. For the most part, we concentrate our efforts on the analysis

of a simple algorithm for Member Search. This is because the
algorithm for Member Search can be easily transformed into an
efficient algorithm for each of the other operations. In Section 3, we
describe the J-list structure and explain its relationship to a simple
Guess-Decrement game. We also describe an optimal randomized
algorithm for Member Search and show how it can be extended to
form efficient algorithms for Insert, Delete, and the other oper-
ations. Section 4 considers some natural extensions of the basic
model and contains some additional probabilistic analvsis.

J THE PROBLEM AND ITS DETERMINISTIC
COMPLEXITY

I'he J-list is implemented in contiguous storage by the two arrays
Link[0... N]and Value[l... NN]. The pointer Link[0] points to the
first element of the list, Value[Link [0]]. The next element can be
found in Value [Link [Link [0]]], and so forth. The end of the list is
denoted by an element whose Link field contains — 1. Furthermore,
we will insist that the array is dense: Value [1 ... N] must contain N
clements of the represented set. The sortedness of the linked list
implies that if Link [I] is not — 1, then Value [/] &lt; Value[Link [I]].
We will often refer to Value[I] and Link [/] together as node I.
Figure 1 illustrates the array representation of the sorted linked list
(2.6,3.1,4.1,5.3,5.8, 5.9,9.7&gt;.

It is clear that performing a Member Search in such an array
requires accessing at most N elements of the array (either by follow-
ing Link fields through the list or simply by iterating through Value
fields of the array). We will now show that in the worst case. this

Figure 1. An array representation of the sorted linked list ¢2.6,3.1.
4.1,5.3.5.8.5.9,9.7&gt;.

i 0 3 4 5 6 7

Value(I) davJar[sol26J53[58[97]Link[1] 4 12 TsT7717 16 131T
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much time is necessary to decide whether a given element is in the
list. We will assume that a (deterministic) search algorithm is
composed of operations of the following types, each with unit cost.

Determine the index of the node at the head of the list (by
accessing Link [0]). There is one operation of this type.
Determine the successor of node I for 1 &lt; I &lt; N (by access-
ing Link[/]). There are N cperations of this type.
Determine the Value of node I, for 1 &lt; I &lt; N (by accessing
Value [I]). There are N operations of this type.

(Note that if operations of type 2 have no cost; then binary search
can be used to solve the problem in logarithmic time.)

Our model assumes that a protagonist specifies a sequence of the
above operations while an adversary ensures that N operations will
be required. We will assume that the adversary knows the value of
the key the protagonist seeks, which we will call V, and that other
key values may be assigned arbitrarily by the adversary. We will
describe a strategy that enables the adversary to delay returning V
until the protagonist has specified a sequence of N operations.
Without loss of generality, we will assume that whenever one of
Value{l] or Link[I] is asked, both of Value{/] and Link[/] are
provided at a cost of a single step (1 &lt; I &lt; N). The value of V will
be the maximum element in the list. There are two cases depending
on whether or not the protagonist asks the type 1 question.

Case 1: The type 1 question is not asked.

The adversary always answers questions so that the protagonist
has queried a contiguous subset of the ordered list. In particular,
assume that the protagonist asks about node 7 where I has not yet
been queried. (Remember that Value[/] and Link[/] are always
provided together, at a total cost of one.) If I = Link[J] where J
is the node at the head of the continuous subset of previously
queried nodes, then the adversary assigns the largest value yet given
(but less than ¥V, of course) to Value[/] and assigns an as yet
unqueried node to Link[I]. If I # Link[J], then the adversary
assigns the smallest value yet given to Value [/] and sets Link [I] = K
where KX is the smallest node in the contiguous subset of previously
queried nodes. In either case, the set of queried nodes continues to
form a contiguous subset of ordered list, with all values less than V.
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The argument continues in this fashion until N — 1 nodes have been
queried. At this point, the remaining unqueried node is / = Link [J]
where J is the largest queried node. In order to resolve Member
Search for V, the protagonist must still ask the value of node I.
making for a total of N queries overall.

Case 2: The type 1 question is asked

in this case, we will show that N — 1 nodes must be queried,

making for a total of N steps. The argument proceeds as before
until the protagonist asks the type 1 question. In response, the
adversary reveals that Link [0] = K where K is the smallest node in
the contiguous subset of previously queried nodes. From this point
on, the adversary will answer questions so that the queried nodes
form at most two contiguous subsets of the ordered list, one of them
beginning with Link[0]. The subset beginning with Link [0] will
always have values smaller than the other contiguous subset, and all
values will be less than J. The details of the adversary’s responses
are similar to before until a total of N — 2 node queries have been

made. At this point the protagonist must still query the value of
node I where I = Link[J] and J is the node with the largest value
seen so far. Hence N — 1 queries need to be made, accounting for

N operations overall.

3 RANDOMIZED ALGORITHMS

In what follows, we focus on algorithms that allow probabilistic
access to nodes in addition to deterministic and Link access.

Although the worst case performance of such randomized
algorithms is no different than that for deterministic algorithms, we
will find that the average case performance is much better.

The section is divided into subsections as follows. In Section 3.1,
we define a class of simple randomized algorithms for Member
Search. We model the performance of algorithms in this class with
a Guess-Decrement game in Section 3.2. In Section 3.3, we use the
game model to show that the expected running time for the optimal
Member Search Algorithm is 2,/N — ¢, where c is a small constant.

We extend the algorithm for Member Search to other operations
in Section 3.4.
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3.1. A Class of Randomized Algorithms for Member Search

By combining probabilistic access with access by predecessor
link, a wide range of algorithms can be considered. For example,
the following pseudo-Pascal program searches for the element E,
using the order of operations specified by the array Step. When
Step[J] is zero, a random sample occurs. Otherwise the program
follows the next link in the list. Note that when a random sample
is chosen, the position in the list is updated only if the random
position is closer to (but not at or beyond) the location of E.
This strategy ensures that the updated position in the list never
worsens and that when E is eventually found, its predecessor will
also have been found (since E will have been reached via a link).
(This particular code assumes that Value [0] is — co and Value[— 1]
is 00.)

P:=0
J:=0
do until exit

Ji=J+1
if Step[J] = O then do

R := Random(1,N)
if Value!R] &lt; E and Value[R] &gt; Value[P] then P := R

zlse do
if Value [Link[P]] = E then exit (*E is at Link[P]*)
if Value [Link [P]] &gt; E then exit (*E is not in the list¥)
if Value[Link[P]] &lt; E then P := Link[P]

For any specified Step array, the expected performance of the
associated algorithm will depend on the value of E being searched.
For example, if Eis less than or equal to the smallest item in the list.
then the algorithm will terminate on or before the first Link access.
For the time being, we will focus on the more interesting case when

E is bigger than the largest item in the list. This is, in fact, the worst
case for any step array in terms of expected running time, and
is representative of the case when E has a random rank. For
expediency, we will defer the proof of these assertions to Section 4,
where we consider search values with an arbitrary index. We also
consider more sophisticated algorithms in Section 4, including
procedures that decide whether to step forward or move randomly
based on whether or not previous random moves were successful.
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3.2. Modeling Algorithms as Strategies

Before proceeding to construct an optimal algorithm from the class
described in Section 3.1, it is useful to associate algorithms in the
class with strategies for a simple probabilistic “Guessing-Decrement”
game. The G-D Game involves two integers, i and N. The value of
N remains fixed throughout the game, and the value of i is originally
N. The goal of the player is to reduce the value of i to zero in the
minimum expected number of steps. A step consists of performing
one of the following two operations:

D (for Decrement): If i &gt; 0, then replace i by i — 1.
G (for Guess): Choose j to be an integer uniform from 1... N
and replace i by j if j &lt; i. The value of i is unknown to the
player, except at the beginning of the game when i = N, and
at the end when he is notified that i has reached zero.

The value of i represents the distance from the current element in
the linked list—denoted by P in the above algorithm—to the end of
the list. The value N is the number of items in the list. We start with
i = N because we assume that we are searching for the largest

clement in the list. In the general case, we would start with i equal
to the rank of E, if known.

Each Guess corresponds to a random access in the above code,
whereas each Decrement corresponds to a link access. A strategy or
sequence of operations will be denoted by a character string o
composed of G’s and D’s to be performed in order from left to
right. A sequence of G’s and D’s corresponds naturally to a Step
array. A sequence is said to be complete if it contains at least N D’s.
Note that operations written after the first N D’s are superfluous
and need not appear. For convenience, however, we will often end
complete sequences with DV,

A complete sequence will alwavs reach i = 0 and terminate the
game after some number of steps 7. The expected termination point
for a complete sequence ¢ is denoted by

Blo) = 3 Pri = j1 = 3 Q(0)

where Q,(c) = Pr[r &gt; j]. The object is to minimize E(¢) over all
complete sequences g. We denote the minimum bv S(N).
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Note that E(o) also denotes the expected running time of the
Member Search algorithm for the corresponding Step array.
Hence, determining the optimal ¢ is equivalent to determining the
optimal algorithm from the class described in Section 3.1. For
simplicity, we will use the G-D notation henceforth.

3.3. An Optimal Strategy

The task of finding an optimal strategy for the G-D game will
proceed in two steps. The first step consists of finding the best
strategy from among those of the form G*D" for some k. The
second, and more difficult, step consists of showing that there is an
optimal strategy having this form.

We will start by analyzing strategies of the form G¥D". Within
this restricted class, it is easy to determine the best values of k and
the minimum of E(G*D").

TueoreM 1. Let k(N) be the value of k that minimizes
E(G*D"). Then k(N) = /N—1— 1/(24/N) + O(1/N).

Proof. From the definition.

k+N

E(G*D") = Y Q,(G*D").

Since the first k operations are Guesses the game cannot end there,
30 Q; (G*D") = 1forj = 0,...,k. The probability of not terminat-
ing during the first d Decrements is (N — d)*N*, since all the
Guesses must be larger than d in order not to terminate. Therefore

BZ
N-1

DY) =k+1+ Y (N—d)M
d=1

N-1

=k+1+ NF Y dg
if =

k+ 1+ Nj(k+1)— 12+ k/(12N) + O(K*/N?)

[he minimum occurs when

Nitk + 102 + 1/{12N) + O(k/N*) = (
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and thus when

k = /N—1—1/Q24/N) + O(1/N).

Theorem 1 provides an upper bound of S(N) &lt; 2\/N — 1/2 +
1/(12/N) + O(1/N) expected operations for the G-D game. Of
course, the optimal value of k = \/N—1 — 1/(24,/N) + O(1/N)
may have to be rounded to a neighboring integer, so we should
conclude only that S(N) &lt; 2./N — ¢ where c is a small constant
that tends to 1/2 as N grows large. In what follows, we will show
that this bound is tight by proving that there is an optimal strategy
of the form G*D". We commence with some definitions and
lemmas.

When a sequence w is not complete, the value of i after the
operations in « have been performed may remain undetermined.
Instead of knowing the exact value of i we define a probability
vector

P,(w) = Pr[i &gt; j after executing the sequence w]

We can see from the definition that P,(w) &gt; P,, , (w). Moreover the
vector can be computed for any sequence w.

LEMMA 1. For any sequence @ = GD" ...G*D", with b =

hy +--+ b.anda = a, +--++a.

[oo bY (N —j—b +b)”
P.(w) = | (N= j—b):N—¢

0

forj&lt;N—b

fori N—b»b

Proof. During each block of Guesses, G*, the value i must
remain above j plus the number of D’s that are still to be performed,
hb, + +++ + b,. The probability that all the Guesses in the block are
betweenj+b,,+++b,+landNis(N—j—b,,—+—b,)N~*~.

[1]

These probabilities are important in determining the optimal
strategy. The following lemma states one of the most useful proper-
ties of this vector.
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LEMMA 2. For any sequence w, P,(wD)/Py(wD) &lt; P;(w)/Py(w)
for 0 &lt;j &lt; N.

Proof. Each ratio is a product of terms of the form

IN—flysvwe BYUN — hy — BI

The sequence wD has one more D in the last block than w, so b,
increases by one in wD. When Py(wD) &gt; 0, a comparison of these
terms, letting K = N — b, — --- — b_, reveals that

(K—j— D/(K—- DI" &lt;l(K—-j)K]

and thus that P,(wD)/Py(wD) &lt; P,(w)/Py(w). If Py(wD) = 0, we
define the ratio to be zero and the inequality still holds. OJ

Remember that our goal is to prove that the optimal strategy has
the form G*D¥. To do this, we next analyze the effect of minor
variations in strategy on the expected number of operations. Then
we will show that if a small variation improves the strategy, then a
larger change could mean even more improvement. The two
sequences which we will compare first are ¢ = wDG*D" and

o* = wG*D". The only difference between o and ¢* is the position
of the block G*. The following lemma gives a method for compar-
ing these two strings.

LEMMA 3. E(wDG*D") &lt; E(wG*D") if and only if Vi) &lt;1
vhere Nel

( P,(w)/Py(w) + 2 P,(w)/Py(w)
(0) = { X[(N—d+ 1D)f—(N—-ad)lk'N~*ifPy(w)&gt;0

{0 if P,(w) = 0.

Proof. Leto and o* be defined as above. We would like to know
when E(o) — E(6*) &lt;0. The following values for Q,(s) and
Q..(c*) can be easily verified.

Q,. (0) =

[Q,.(c%)
P, (ww)

if m &lt; ol

if lo +1&lt;m
 lol +k +1

Poi (®)
xX (IN—m+lol+k+1VN" itm&gt;lo+kK+
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QQ. (6%) =

Q, (0)

P,(w)

if m &lt; ||

if lw +1 &lt;m
&lt; lo)+k

P, — wl —k (w)

«(N—m+lol+k}N* ifm: ol +k

[hus E(o) — E(6*) = Yr_, [Q,.(0) — Q,,(6%)] &lt; 0 is equivalent tc

N—-1

'k + DP, (0) — kPy(w) + YP, (@)[(N —d + IY
d=1

_(N—d)\IN*YIN * =P (0) &lt;0

Rearranging terms slightly gives

N—1

P (0) + Y Py@)(N—d+ IV — (N= dNkk" &lt; Py(w).
J

his

Combining Lemmas 2 and 3 enables us to extend a minor vari-
ation of the string into a more radical change. Specifically.if the last
block of G’s is more efficient when it is moved to the right one place.
then it is best to remove the block of Guesses altogether.

Lemma 4. Forall w, if E(wDG*D") &lt; E(wG*D"), then E(wD") &lt;
E(wDG DM).

Proof. If E(wD’G*D")&lt;E(wD’'G*D")forsomej&gt;1,
then V,(wD’~') &lt;1 by Lemma 3. By Lemma 2 and the defini-
tion of V(w), we know that V,(wD’) &lt; V,(wD’™'), and thus
that V,(wD’) &lt;1. Thus, we can conclude by Lemma 3 that
E(wD’*'G*D")&lt;E(wD’/G*D¥).Theproofofthelemmais
completed by applying this process inductively. I

[t is now a simple matter to prove our main result.

THEOREM 2. For every starting sequence w, there exists an integer
 2 0 such that E(wG DV) &lt; E(wo) for every completed sequence
DG.

Proof. Let ¢ denote the shortest (in length) sequence for which
na is complete and E(we) = min. E(wv). If6is of the form G' DV
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then we are done. Otherwise 0 = w*DG*D’, where G* is the last

block of Guesses and j &gt; 0. By the optimality of o, we know
that E(ww*DG*D’) &lt; E(ww*G*D’*'). Thus by Lemma 4, we
know that E(ww*D’*') &lt; E(ww*DG*D’) which contradicts the
minimality of o. O

Thus the best way to finish any initial sequence is by a block of
Guesses followed by Decrements. By letting @ be the empty string,
we find that the optimal strategy for the game is G*D". Recalling
Theorem 1, we find that the optimal value is near /N — 1 —

1/(24\/N) + O(1/N) and thus S(N) = 2,/N —¢ where c is a
constant that tends to 1/2 as N gets large. Hence the expected
number of steps for Member Search is at most 2,/N. As a conse-
quence, it is not difficult to show that this is within one or two steps
of optimal whenever we are searching for an item that is bigger than
the median. Searches for items less than the maximum are discussed

more thoroughly in Section 4.

3.4. Algorithms for the Other Operations

Thus far we have considered only the problem of searching the
linked list to determine if it contains a given element. It is easy to
perform many other set operations on this structure. The following
list summarizes those operations, and describes their costs in terms
of the number of Value elements accessed.

Member: The previous sections studied the problem of
searching to determine whether a given element is a member
of the set represented by the linked list. Cost: 2,/N.
Insert: A new element can be inserted in the list by using
Member Search. Cost: 2,/N.
Delete: The first step in deleting an element is to find that
element by a search algorithm, and then modify the Link field
of its predecessor to point to its successor. This takes 2,/N
references to the Value array. The next step must patch the
“hole” created in the dense array by moving the last element
of the array to the vacant position. Searching for the last
zlement requires 2,/N references. Cost: 4,/N.
Predecessor: The element immediately preceding a given
slement can be found by a simple modification to the
Member Search algorithm. Cost: 2./N.
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Succcessor: The element immediately succeeding a given
clement can be found by a simple modification to the
Member Search algorithm. Cost: 2,/N.
Minimum: The minimum element in the set is pointed to by
Link [0]. Cost: 1.
Maximum: The maximum element in the set can be found by
searching for infinity. Cost: 2/N.

Each of the above operations is straightforward to implement
given the Member Search algorithm and basic techniques for
dealing with data structures for searching (described, for example.
by Knuth [K]). Furthermore, the simplicity of the algorithm implies
that the constant factors in the running time of the program will be
relatively small. The only deviation that a programmer should
make from the Member Search algorithm deals with the random
number generation: since some random number generators are very
slow, it might be preferable to use some other approach to sample
the k elements.

i. EXTENSIONS AND REMARKS

At first glance, it might appear that our proof technique depends on
the fact that Guesses do not yield zero. This is not the case. When
a Guess returns an integer uniform on [0. .. N], the optimal strategy
differs from the above strategy by only O(l IN ) Guesses.

Our analysis of the G-D game was for the worst case task of
searching for the final element in the list. We will now consider
searches for a random element. The value i can be interpreted as the
number of links between our present position in the list and the
position of the element we are searching for. When searching for the
last element we start at i = N. Suppose a Member search seeks an

element whose position is unknown and randomly distributed. We
should then start at an unknown, random i, or equivalently start at
i = N and do one Guess to randomize i before counting oper-

ations. By Theorem 2 the optimum strategy is then G'~'D" as
opposed to G"'D" when searching for the last element.

Sometimes it is useful to find the jth element given j. When j is
small it is easy to follow links and when j = N we can use the G-D

strategy. Between these two extremes, the strategies used thus
far are not necessarily valid since the value of the jth element is
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Figure 2. Graph of ¢(j) and S(N, j)/\/N where S(N, j) is the optimal
expected number of operations when searching for the jth element.

SINAN

WN

unknown. But if we know the value as well as the position of the
element for which we are searching, then we can apply the above
techniques to find an optimal G-D search time. Searching for an
element at positionjmeansstarting the G-D game at i = J. This is
equivalent to starting at i = N and doing N — j Decrements. By
Theorem 2 the best way to continue from this point is G*D? for
some k. Thus it is only necessary to compute the optimal number
of Guesses, k = r(j). By modifying Theorem 1 it can be shown
that r(j) = c(j)+/N where

(7)

0 ifj&lt;/2N
(i— 1) JN{eli ~Detiv¥

MN —c(j)l—1} = 0(/yN) if J2N &lt;j &lt; OG/N;
V1 — 0(1/N) ifj&gt; Q(W/N).

[t is easy to determine ¢(j) numerically and a graph of the function
(e.g., see Figure 2) shows that (once nonzero) ¢(j) approaches 1
exponentially fast.

The G-D game can be modified in other ways. One particularly
interesting modification allows the player to use the information
about when a random sample is successful (i.e., closer to the target).
For example, suppose the value i is contained in a black box that
is connected to a light that turns on every time i is decreased. At first

glance, it appears as though such information could be quite useful
in planning when to stop Guessing and start Decrementing. For
instance, if the light flashed on for a series of early Guesses, then the
player might be led to believe that the early Guesses were very good
and thus that i had become very small. Hence, the player might
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think it wise to start Decrementing early. This is not the case,
however, since if all the Guesses are required to be distinct, then it
can be shown that the light does not add any useful information at
all. It is worth remarking that the likelihood of two Guesses being
identical is small and thus the constraint that all the Guesses be
different has a negligible effect on the final result.

Such a counterintuitive result requires some justification. First
notice that when all the Guesses are distinct, the sequence of Guesses

is just a permutation of a subset R of {1,..., N}. Every sequence of
Guesses produces a unique light sequence, f§, but one light sequence
can be produced by many different Guess sequences. In particular:

LEMMA 5. For every light sequence B of length k there exists an
integer m, such that for any set of Guesses R &lt; {1,...,N} of size k
there are exactly m permutations of R that have light sequence B

Proof. LetK = {l,...,k} and set m to be the number of permu-
tations of K that produces the light sequence f. Now consider any
other subset R of length k. Thereisa 1 — 1 order-preserving mapping
between K and R, so there is also a 1 — 1 mapping between the

permutations of the two sets that preserves light sequences. This
means that there are also m permutations of R that fit f. O

We can now prove

THEOREM 3. When all the Guesses in the G-D game are distinct,
then the light sequence adds no extra information about the value of
i after a sequence of Guesses.

Proof. Tt is sufficient to show that the probability Pr{i = j|f]
that i = j after k guesses given a light sequence f, is the same as the
probability Pr[i = j]thati = j after k guesses (with no knowledge
of the light sequence). From the definitions and Lemma 5,

Pri = j|B] = (3 of sequences of Guesses that fit 8 for whichi= j)/
(# of sequences of Guesses that fit )

= (# of R for which i = j)m/(4# of R)m

= (# of R for which i = )k!/(# of Rk!

= (# of sequences of Guesses for which i = j),
(# of sequences of Guesses)

Pri = 71.
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The G-D game might also be played with two different operations
O, and O,. It would be interesting to know what properties of
0, and O, give an optimal sequence of the form ©Y07, for some
k and m. In addition to operators that act directly on i, we might
also consider comparison operations that compare i to a given
input n, and answer the question, “i &lt; rn?” If the compare operation
i &lt; /2N is added to G-D, then the optimal strategy is O(N'*)
Guesses followed by a Compare, repeated until i &lt; /2N, ending
with Decrements. This strategy uses /2N + O(N '*) expected steps.
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ON COMPLETENESS AND SOUNDNESS

IN INTERACTIVE PROOF SYSTEMS

Martin Furer, Oded Goldreich, Yishay Mansour,

Michael Sipser. and Stathis Zachos

ABSTRACT

An interactive proof system with Perfect Completeness (resp. Perfect
Soundness) for a language L is an interactive proof (for L) in which
for every xeL(resp. x ¢ L) the verifier always accepts (resp. always
rejects). We show that any language having an interactive proof
system has one (of the Arthur-Merlin type) with perfect complete-
ness. On the other hand, only languages in NP have interactive
proofs with perfect soundness.

I. INTRODUCTION

The two basic notions regarding a proof system are completeness
and soundness. Completeness means that the proof system is
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powerful enough to generate “proofs” for all the valid statements
(in some class). Soundness means that any statement that can be

proved is valid (i.e., no “proofs” exist for false statements). Two
computational tasks related to a proof system are generating a
proof and verifying the validity of a proof. This naturally suggests
the notions of a prover (a party able of generating proofs) and
a verifier (a party capable of validating proofs). Typically, the
verifier’s task is easier than the prover’s task. In order to focus on
the complexity of the verification task it is convenient to assume
that the prover has unlimited power.

For many years NP was considered the formulation of “whatever
can be efficiently verified.” This stemmed from the association of
deterministic polynomial-time computation with efficient compu-
tation. The growing acceptability of probabilistic polynomial-time
computations as reflecting efficient computations is the basis of
more recent formalizations of “whatever can be efficiently verified.”
In these formalizations, due to Goldwasser, Micali, and Rackoff
[GMR] and Babai [B], and shown to be equivalent by Goldwasser
and Sipser [GS], the (polynomial time) verifier is allowed to toss
coins and arbitrarily interact with the prover; furthermore he can
accept or reject based on overwhelming statistical evidence. Ruling
by overwhelming statistical evidence means relaxing the complete-
ness and soundness conditions so that any valid statement can be

oroved with a very high probability while any false statement has
only negligible probability to be proved. For a definition of inter-
active proof systems we refer the reader to Goldwasser and Sipser’s
article [GS] in this volume.

We denote by IP the class of languages for which there exists an
interactive proof system. Clearly, NP &lt; IP &lt; PSPACE. It is
believed that the class NP is strictly contained in IP. Evidence for
this may perhaps be derived from the fact that, relative to some
oracle, interactive proofs are even not contained in the polynomial-
time hierarchy, i.e., 34 s.t. IP — PH* # (J (see [AGH]). It is also
interesting to note that natural languages such as Graph Non-
isomorphism and Matrix Group Nonmembership, which are not
known to be in NP, were shown to be in IP by [GMW] and [B],

respectively.
Considering an interactive proof system, it seems that in some

sense the prover is “responsible” for the completeness condition,
while the verifier is “responsible” for the soundness condition. If
this intuition is correct, and the prover has unrestricted power, why
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this intuition is correct, and the prover has unrestricted power, why
should the completeness condition be relaxed? Namely, can one
modify the interactive proof such that the prover never fails in
demonstrating the validity of true statements, while maintaining
soundness. By perfect completeness we mean that the prover never
fails to prove the membership of inputs that are indeed in the
language, while perfect soundness means that the verifier never
accepts inputs that are not in the language.

Perfect completeness and perfect soundness are not only theor-
stically interesting, but are also of practical importance. This is
the case, since probabilistic completeness and soundness are defined
with respect to ideal (unbiased) coin tosses and may not hold when
using pseudorandom sequences (even in the sense of Blum and
Micali [BM] and Yao [Y]). On the other hand perfect completeness
and soundness are independent of the quality of the verifier coin
tosses.

Our main result is that Interactive Proofs with Perfect Complete-
ness are as powerful as Interactive Proofs. Now, what about inter-
active proofs with perfect soundness? Unfortunately, we show that
they are only as powerful as NP

The proof of the main result is in fact a transformation that given
an interactive proof for a language L yields an Arthur-Merlin
interactive proof with perfect completeness for L. This transfor-
mation preserves the number of interactions of the original inter-
active proof. An alternative proof that uses different ideas, and in
particular a protocol for “random selection,” appears in [GMS].
An alternative characterization of complexity classes defined by
bounded Arthur-Merlin games, and their perfect completeness.
appears in [ZF].

2. MODEL AND DEFINITIONS

We state and prove our main result for the Arthur-Merlin games
introduced by Babai [B]. Using the result of [GS] our main result
applies also to the interactive proof systems of [GMR]. In this
section we provide a precise definition of Arthur-Merlin games and
auxiliary terminology, in order to facilitate the presentation of our
result.

Since we are interested in the complexity theoretic aspects of
proof systems. we may assume that the prover (Merlin) uses an
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optimal strategy and, therefore, with no loss of generality, is deter-
ministic. In the following definition we assume that in all inter-
actions of Arthur and Merlin, on inputs of the same length, the
same number of messages are exchanged and that all these messages
are of the same length. Clearly, this condition is immaterial and is
placed only in order to facilitate the analysis.

DEFINITION 1 (ARTHUR-MERLIN GAMES). An Arthur-Merlin
game is a pair of interactive programs A and M and a function p
such that

On common input x, exactly 2¢(|x|) messages of length m(|x|)
each are exchanged, where g and m are fixed polynomials and
'x| denotes the length of x.
Arthur (A) goes first, and an iteration 1 &lt; i &lt; ¢ (|x|) chooses
at random a string r; of length m(|x|), with uniform probabil-
ity distribution.
Merlin’s reply in the ith iteration, denoted y,, is a function
of all the previous choices of Arthur and the common input x.
More formally, y, = M(x, r, ---r;). In other words, M is the
strategy of Merlin.
For every program M’, a conversation between A and M’
on input x is a String ry, «rq Vea)» Where for every
1&lt;i&lt;q(x)y, = M'(x,r,---r;). We denote by CONVM
the set of all conversations between A and M’ on input x.
Note that |CONVM| = 240xdmix)
The function p is a polynomial-time computable predicate.
This predicate maps the input x and a conversation
FLV Fou) Yeon 10 @ Boolean value, called the value of the
conversation (1.., p(X, FY," Fy Yao)€{accept,reject}).
The function p is called the value-of-the-game function.

Notation. Let A and M’ be programs and p be a function as

above. Then ACC*™ denotes the set {ry rug [31 ym SL
"I Pye € CONV and (rip, Fog Yao) = accept.

Intuitively, ACC?”™ is the set of all the random choices leading
A to accept x, when interacting with M’. Note that ACC/™
depends only on Merlin (M’) and the function p, since we assume
that Arthur follows the protocol. The ratio |[ACC&gt;™|/|CONV"| is
the probability that Arthur accepts x when interacting with M’.
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DEFINITION 2 (ARTHUR-MERLIN PROOF SYSTEMS). An Arthur-
Merlin proof system for language L is an Arthur-Merlin game
satisfying the following two conditions:

There exists a strategy for Merlin, M, such that for all xe L,
ACC*M|/|CONVM| &gt; 2. (This condition is hereafter referred
to as probabilistic-completeness.)
For every M’ and for any x¢ L, |ACC?™ |/|CONVM| &lt;1.
This condition is hereafter referred to as probabilistic
soundness.)

An equivalent definition is obtained by replacing 1/3 by 27) and
2/3 by 1 — 2770 where p( +) is an arbitrary polynomial satisfying
p(n) &gt; 1 (for Vn &gt; 1).

DEFINITION 3 (PERFECT COMPLETENESS). An Arthur-Merlin
proof system with perfect-completeness for a language L is an
Arthur-Merlin proof system for L satisfying

ixel |ACCPM| = |CONVM]

Perfect-completeness, of an Arthur-Merlin proof system, means
that an honest Merlin always succeeds in convincing Arthur to
accept inputs in the language.

DEFINITION 4 (PERFECT SOUNDNESS). An Arthur-Merlin proof
system with perfect-soundness for a language L is an Arthur-Merlin
proof system for L satisfying

iM’ Vxé¢L ACCPM = oy.

Perfect-soundness, of an Arthur-Merlin proof system, means that
no matter what Merlin does Arthur never accepts an input not in
language.

ARTHUR-MERLIN PROOF SYSTEMS
WITH PERFECT COMPLETENESS

[n this section we transform an Arthur-Merlin proof system to
an Arthur-Merlin proof system with perfect completeness. This
transformation preserves the number of interactions in the original
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Arthur-Merlin proof. The underlying technique is taken from
Lautemann’s proof that BPP is in the polynomial-time hierarchy
[L}. (Lautemann’s proof that BPP is in the polynomial-time
hierarchy simplifies the original proof of Sipser [S].) The idea is
to show that this technique works also for Arthur-Merlin proof
systems. We think that this idea seems strange at first glance, trivial
in second thought, but in fact is quite surprising and important.

Lautemann’s technique is commonly presented as a method of
expressing a “‘random’’ quantifier by a universal and an existential
quantifier. Suppose we are dealing with a subset, W, of {0, 1}* and
that this subset has cardinality either &gt; (1 —¢) + 2* or &lt;e¢- 2*. The
statement “most re {0, 1}* are in W” can be substituted by the
statement “3s, s@,...,s® €{0, 1}* such that Vre {0, 1}* there Ji
(1 &lt;i&lt;k) such that s” @ re W,” where s @®r is the bit-by-bit
XOR of the strings s and r. These strings are said to “cover” W. The
statement “most re {0, 1}% are not in WW” can be substituted by
the statement “Vs, s@ ... s®e{0,1}¥3re{0,1}*Vi (1 &lt;i&lt;k)
SODre WwW.

Zachos showed that the above “simulation” can be used to

switch quantifiers in a successive manner (for survey see [Z, Sch]).
Zachos and Fuerer [ZF] then used this idea to show that bounded
Arthur-Merlin proofs equal bounded Arthur-Merlin proofs with
perfect completeness, by expressing the former proofs as a fixed
quantifier sequence and applying a “switching lemma” iteratively.
Each such iteration is thus a straightforward application of the
“simulation technique,” and blows-up the size of the Arthur-
Merlin game by an unbounded amount. Thus, this idea does not
sxtend to unbounded Arthur-Merlin proofs.

For our transformation it is necessary to extend the simulation
technique to settings in which the witness set WW is not predeter-
mined. In fact, in Arthur—-Merlin games the set of random choices
leading Arthur to accept is not defined, unless Merlin is specified.
This fact is disturbing in the case that the input is not in the
language and one has to guarantee that no matter how Merlin acts
he cannot fool Arthur (except for with low probability).

3.1. An Overview of the Protocol

Without loss of generality, we assume that the error probability
in the original Arthur-Merlin game is sufficiently small [i.e.,
e(Ix]) &lt; 1/[3¢()x)m(x|)]}. The transformed Arthur-Merlin game
will consist of k = g(|x|)m(|x]) original games played concurrently
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with related coin tosses, and Arthur will accept iff he accepts in one
of these games. More specifically, Merlin starts the game by selecting
carefully k strings, s.s@,...,5% {0,1}, and sending them to
Arthur. These strings are selected to “cover” ACCPM in the case
that x is in the language. Arthur and Merlin now start to play k
copies of the original game. In round j, Arthur sends only one m-bit
string r; and his move in the ith game is defined as the bit-by-bit
XOR of r; and the jth segment in 5s) (i.e., Arthur’sjthmoveinthe
ith copy is ri) =r, @s\", where 5 is the jth m-bit block in 5s).
Merlin answers by k strings so that the ith string equals the answer
the original Merlin would have given in the ith copy [i.e., the ith
m-bit block in Merlin’s jth message equals M(x, "ry -- FV).
where M is the original Merlin]. Clearly, the perfect completeness
condition is satisfied. It is less easy to see that probabilistic sound-
ness is satisfied as well. Note that a cheating Merlin may select his
answers for one copy of the game depending on his prospects in the
other copies, and in particular the structure of ACC?M is irrelevant.
Our argument, instead, consists of two claims: (1) the probability of
winning the transformed game is bounded by the sum of the prob-
abilities of winning each copy; and (2) the probability of winning a
particular copy is bounded by the probability of winning the original
game. (Trying to incorporate both claims in one counting argument
leads to difficulties that are not encountered in Lautemann’s original

proof.)

.. The Protocol

We denote the original Arthur by A, the original Merlin by M,
and the original value-of-the-game function by p. Let ¢ be the error
brobability, i.e., for xe L the Prob(A accepts) &gt; 1 — &amp;(|x|), and for
x ¢ L the Prob(A accepts) &lt; &amp;(|x|). On input of size n, q(n) iterations
are performed, at each iteration Arthur sends a message of length
m(n). When clear from the text we use ¢,q,m for e(n), g(n), m(n),
respectively. Let k = gm. Without loss of generality we assume

that ¢ &lt; (1/3k). This can be achieved by performing sufficiently
many copies of the original Arthur-Merlin game in parallel, and
ruling by the majority (see [B], [GS], and [BHZ)).

3.2.1. Program for an Honest Merlin

Merlin’s program consists of two stages. First, Merlin computes
“sampling points’ that are favorable to him. and sends them to
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Arthur. The second stage is a simulation of k (related) copies of the
original Arthur—Merlin game.

Preprocessing stage: Let ACC be the set of random choices
leading Arthur to accept in the original AM game on input xeL
(i.e., ACC is a shorthand for ACC?™). Merlin selects k strings
s,s? s® e{0, 1}* so that for every re {0, 1}* there exists an i
such that s“” @ re ACC. The preprocessing is said to have failed, if
no such set of ss exist. If the preprocessing does not fail then
Merlin sends the ss to Arthur. For sake of simplicity, we let
Merlin send k (arbitrary) strings (of length k-bit each) in case the
preprocessing fails.

Simulation stage: Merlin plays concurrently k copies of the
original game and computes Arthur’s responses by XORing them
with segments of the ss. Each 5% is partitioned into q segments,
of m bits each, corresponding to the g iteration of the original game.
Namely, s© = s{’s§ ---s¥, where 5” € {0,1}". Formally, at each
iteration j [1 &lt;j &lt; g(n)], Merlin performs

Receive 7;
For i = 1 to k do begin

esr,
2 M(x, AD 0)

End
Send pV,yp?...,y®

3.2.2. Arthur's Program

Arthur’s program is identical to the original program of Arthur
Formally, for each iteration j [1 &lt;j &lt; g(n)] Arthur performs

Choose r; at random in {0, 1}"
Send r;
Receive pV, yy? y®

3.2.3. The Value of a Conversation

Let #0 = r, @ si),y,=yO)yP + y® and§= sVs@ 50. We
denote by

 9 ki Vv
~ iY [ [ i

.. ry.) — p(x, ri Po .. &lt;r yn)
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the value of the ith game. The predicate p, maps a conversation to
[ if and only if the conversation induced on the ith copy of the
original game is an accepting one.

The value of a conversation is determined by the following
polynomial-time predicate:

o(x,5r,p17ry) = V pix, 5m, ry)

33. The Perfect-Completeness of the Protocol

We show that if the input x is in L, then an honest Merlin always
convinces Arthur. The argument is almost identical to the one in
Lautemann (since ACC is fixed!), and is given here for the sake of
self-containment.

LEMMA 1. If xeLthen the preprocessing does not fail.

Proof. We have to show that if |ACC| = (1 —¢)+2* and
c &lt; (1/3k) then there exists a sequence, § = s,s? ...,s% (se
{0,1}%), such that for every string re {0, 1}* at least one of the
r@ s© is in ACC. Furthermore, we will show that the statement
holds for most sequences 5. We call a sequence § = ss? s®

good if for every re {0,1}* there exists an i (1 &lt;i &lt; k) such that
r @® se ACC. We consider the probability that a randomly selected
sequence § is not good.

Prob(s is not good) = Prob(3IrVir ® s¥ ¢ ACC)

Y  Prob(Nir @sV ¢ ACC)
re{0,1}%

2% « Prob(Vis? ¢ ACC)

— 2k . ck

(2)&lt; _ ~2)
The Lemma follows

LEMMA 2. If xeL then Arthur always accepts.

Proof. By Lemma 1. Merlin can find 5s so that (when Merlin
follows his program!) any sequence of choices made by Arthur leads
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to acceptance in at least one of the copies of the original game. The
Lemma follows. Od

The Probabilistic Soundness of the Protocol

We now show that for every input x not in L, no matter what
Merlin does, the probability that he convinces Arthur is less than
1/3. We consider the probabilities that Merlin M’ leads Arthur to
accept in the ith copy of the original game. We first bound by ¢ the
probability that M’ leads Arthur to accept in the ith copy of the
original game (see Lemma 3). Hence, the probability that Merlin
cheats Arthur is bounded k + ¢ (Lemma 4).

Let M’ be any arbitrary program for Merlin. Recall that ACC?™
denotes the set of random choices leading Arthur (A) to accept in
the original game (with game value function pg). We denote the set
of random choices leading Arthur to accept in the ith game of the
transformed game by ACC*™.Namely, r,r, --r,e ACCHM iff
p; lx, ry M'Cx,r)-r,M'(x,r, ---r,)] = 1. Note that both Accr™
and ACC?™ are subsets of {0, 1}*.

LEMMA 3. Suppose that x ¢ L. Then for every Merlin M” and for
svery i (1 &lt;i&lt;k)|ACCPM | &lt;e- 28.

Proof. The idea of the proof is that a Merlin that does well on
a particular copy of the original game can be easily transformed
into a Merlin that does (at least) as well in the original game. The
transformed Merlin (which plays the original game) simulates the
actions of the Merlin that plays k games concurrently, using the real
game as the ith copy. A detailed proof follows.

Assume, contrary to the statement of the lemma, that there exists
an M’ and an /, such that [ACC”"™| &gt; &amp; - 2¢. We reach a contradic-

lion by constructing a Merlin M”, which does as well in the original
game. First, M” runs M’ on input x to get the k sample points
s,s? ...,s% and saves s”. Let ry, r,,...,r, be the firstjmessages
that M” has received. To compute the jth message, M” computes
ri =r, @s (for 1 &lt;&lt;) and runs M’ on input x and rir; #
[i.e., M(x, r, ---r;)is the ith m-bit block of M'(x, r{ - - - r})]. We now
claim that

CLAIM. reAd_CP™ anc onty if r@® s¥ e ACCHM
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Proof. Suppose that r ---r, e ACC"™. Then p,(x,5ry,
ry) = 1, where § = sV---s® = M'(x) and y, = M'(x,r, =r)

(for Vj). It follows that p(x, r{"y? ry) = 1, where y” is the ith
m-bit block in y;, si” the jth m-bit block in 5s“), and #) = r, @ s\"
Note that pV = M“(x,r{? =r"). Thus, PDE ACCHM.
Noting that i +r) = r@ 5 one direction follows. The proof of
the second direction is similar and the claim follows. O

By the above Claim, |4CC?*™| = |4CC*™| &gt; ¢- 2%, which
contradicts the hypothesis that the original game has error prob-
ability &lt;e. The lemma follows.

REMARK. A statement analogue (c Lemma 3 is trivial in
Lautemann’s setting.

LEMMA 4. Suppose that x¢ L. Then for every Merlin M’ the
probability that Arthur accepts is &lt;k -&amp;.

Proof. Clearly, for every Merlin M'.

accom) =|=| Gace |&lt;&lt; 3 cer)

Using Lemma 3, the statement follows

3.5. Main Result

Using the equivalence of interactive proofs and Arthur Merlin
Proofs {GS]. and combining Lemmas 2 and 4 we get

MAIN THEOREM (THEOREM 5). If a language L has an interactive
nroof system [with g( +) iterations] then L has an {Arthur-Merlin)
interactive proof system with perfect completeness [and q{ +) + |
iterations). MM

INTERACTIVE PROOF SYSTEMS WITH PERFECT
SOUNDNESS

[n the previous section, we showed that interactive proofs can be
modified so that the verifier always accepts valid statements. What
happens if we require that the verifier never accepts false statements?
In this case we show that the set of languages recognized equals NP
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The reader should note that the transformation of Goldwasser

and Sipser [GS] does not preserve perfect completeness. Thus it is
not clear that proving the above statement with respect to Arthur-
Merlin games yields the same result with respect to general inter-
active proofs. The difficulty can be resolved by modifying the trans-
formation of [GS], using the approximate lower bound protocol of
GMS] (which has the perfect completeness property). We prefer to
give a direct proof.

The difference between interactive proofs and Arthur-Merlin
games is that in interactive proofs the verifier’s ith message «; is a
function of the input x, his random coin tosses r, and the previous
messages of the prover fi.e., o;, = V(x,r,y, ---y;,_)]. After the last
(say gth) iteration, the verifier decides whether to accept or reject by
evaluating the polynomial-time predicate p(x,r,y, - + y,) € {accept.

reject}.

THEOREM 6. If a language L has an interactive proof with perfec
soundness then L.e NP.

Proof. Assume that for a language L, there exists an interactive
proof with perfect soundness. Since the verifier is limited to prob-
abilistic polynomial time, then for any input x € L there is a conver-
sation that convinces him, and is of polynomial length. The NP
machine guesses this conversation, and checks that it is indeed a
legitimate one and that is leads the verifier to accept. Namely, the
machine guesses a random tape r and a conversation oy, *** a, ¥,,

and checks that a, = V(x,r,y, ---y;_,) (for every i) and that
p(x,r,y,---y,) = accept. If xeLthen, by the probabilistic com-
pleteness condition, there exist (many) accepting conversations. If
x ¢ L then, by the perfect-soundness condition, there is no such
conversation, and any guess of the machine will fail. C

3 CONCLUDING REMARKS

Assuming the existence of secure encryption functions (in the sense
of [GM]) and using the results of [GMW], one can easily demon-
strate the existence of zero-knowledge interactive proofs with perfect
completeness for every language in IP. Given L € IP, first present an
interactive proof with perfect completeness for L, and next appiy
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the techniques in [GMW] observing that they preserve perfect
completeness. However, it is not clear whether every language
having a perfect (resp. almost perfect) zero-knowledge interactive
proof (see [F] for definition) has a perfect (resp. almost perfect)
zero-knowledge interactive proof with perfect completeness. Weak-
er statement can nevertheless be proven:

Every language having an interactive proof that is almost
perfect zero-knowledge with respect to the specified verifier
has an interactive proof with perfect completeness that is
almost perfect zero-knowledge with respect to the specified
verifier (again see [F] for definition).
Every language having an interactive proof which is almost
perfect zero-knowledge and remains so under parallel compo-
sition (see [O] for definition) has an almost perfect zero-
knowledge proof with perfect completeness.

The key observation in proving both statements is that almost all
sequences § can serve as sampling points (see proof of Lemma 1),
and thus having the prover randomly select and send a good § does
not yield any knowledge. (In the simulation we use a randomly
selected §, which is most likely but not necessarily good.)

Babai [B] showed that any Arthur-Merlin game with a fixed
number of interactions can be simulated by a game with two
interactions. A similar proof applies to the hierarchy of interactive
oroofs with perfect completeness.

Goldwasser and Sipser [GS] showed that the power of interactive
proofs is not decreased when restricting the verifier to use only
“public coins.” We have showed that the power of interactive
proofs is not decreased when further restricting the system to have
perfect completeness. How else can interactive proofs be restricted
without decreasing their power?
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RANDOMIZATION IN

BYZANTINE AGREEMENT

Benny Chor and Cynthia Dwork

ABSTRACT

This chapter surveys recent development and results in the area of
randomized protocols for Byzantine Agreement

iI. INTRODUCTION

The Byzantine agreement problem, first posed by Pease, Shostak,
and Lamport in 1980 [PSI.801. has received more attention from the
theoretical computer science community than any other problem in
distributed computing. In this problem a collection of physically
separated processors. some unknown subset of which may be
faulty, must cooperatively determine a value that depends on pieces
of information held privately bv the individual processors, and
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all nonfaulty processors must agree on the resulting value. The
difficulty is to achieve this agreement despite disruptive behavior by
the faulty processors.

Byzantine agreement is viewed as the quintessential paradigm for
distributed computing because of its wide applicability to real-life
problems such as maintaining consistency of a distributed data
base when updates are performed, ensuring mutual exclusion of
processes competing for a critical resource, or allowing components
in a redundant system to settle on a value, given slightly different
readings from different sensors.

The randomized solutions to the Byzantine agreement problem
discussed in this survey never sacrifice correctness: there is no

execution in which any two correct processors disagree on the final
value, and the required relationship between the inputs to the
correct processors and the final decision value is never violated.
In this respect the randomized protocols do not differ from deter-
ministic protocols.

In discussing a deterministic protocol, the cost usually refers
to the cost according to some measure, such as time or space, of

the worst case execution of the given protocol. It is convenient to
view the faulty processors as being selected and controlled by an
adversary. If we think of the inputs as chosen by the adversary then
cost is the worst case cost over all possible adversary strategies. (An
adversary strategy includes the assignment of initial values, choice
of faulty processors, and nature of their behaviour.) The same is
true in a randomized algorithm, in which the processors may flip
coins. However, in a randomized algorithm the coins are not
considered to be under the control of, or even predictable by,
the adversary. Given the protocol and the (possibly randomized)
strategy .«/ employed by the adversary, there is a well-defined
probability space. One can now assign probabilities to events such
as “the protocol has terminated after k steps,” and calculate the
expectation of the running time or any other cost measure of the
protocol, under the specific strategy «/. The expected cost of
the protocol is defined as the supremum, taken over all possible
adversary strategies o/, of the expected cost of running the protocol
with adversary strategy «.

If. for a given problem 2, there exists a randomized protocol
solving 2 whose expected cost is strictly less than the lower bound
on the cost of solving 2 by a deterministic protocol, then “random-
ization provably helps” in solving problem £. In this sense, random-
ization provably helps in solving the Byzantine agreement problem
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We begin our survey with a description of the model of compu-
ration, the types of failures studied, and the nature and power of the
adversary controlling these failures. The subtleties of randomized
protocols for Byzantine agreement are so challenging and of such
a new nature that one cannot meaningfully discuss the recent devel-

opments without first conceptualizing (rather than merely listing)
the failure models and the increasingly powerful type of adversaries
being studied. We address these issues in Section 2 in some detail.
We hope that such a coherent point of view will be useful to the
community, especially in reducing the occurrence of such disturb-
ing ambiguities as have plagued past work on this subject.

In order to help the reader appreciate what is gained by random-
ization, we briefly review some of the limitations of deterministic
protocols for Byzantine agreement (see [F83] for a more complete
survey of these and related results). We will then show how
randomization provably helps in solving Byzantine agreement,
by discussing several randomized protocols for this problem and
comparing their expected costs to the corresponding lower bounds
for deterministic protocols.

All the randomized protocols discussed require *‘coins’ visible to
certain (possibly large) subsets of the processors. The protocols
differ in how these coins are used and in how the private random
sources of the individual participants are combined to obtain the
more widely visible coins. These two issues—how the coins are
used, and how they are generated—are discussed in Sections 3 and
4, respectively.

We will also discuss some limitations on randomized protocols.
mentioning the few known results in this area (Section 5). Open
questions are discussed in Section 6. Finally, we include two
appendices. Appendix I contains a list of randomized agreement
protocols with succinct descriptions of the salient features of each.
such as the resiliency, the expected running time, and the communi-
cation costs. Appendix II contains brief descriptions of crypto-
graphic techniques used in some of the protocols. This will free us
from stressing such details in the remainder of the text.

J MODELS OF COMPUTATION, ADVERSARIES,
AND COSTS

Byzantine agreement is an interesting problem only in the presence
of (actual or potential) processor or message system failures. It is
convenient to view faults as caused bv an intellicent adversarv
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After mentioning the basic components of a distributed system
(Section 2.1), we discuss various assumptions commonly made about
the adversary (Section 2.2). Of course, there is no way of actually
controlling undesirable events in a distributed system. Thus, the
assumptions simply specify the conditions under which a protocol is
guaranteed to be correct. The goal in choosing the right assumptions
is to cleanly model actual failure behavior. Section 2.3 discusses
some cost measures by which the various protocols may be compared.

2.1. Basics of a Distributed System

A distributed system 1s a collection of physically separated proces-
sors that communicate by sending messages to one another. Some
of the processors may be faulty. We say the system is synchronous
if processing proceeds in synchronous rounds of message exchange.
That is, we may imagine there is a global clock such that at each
“tick” of the global clock all processors may send messages; mo-
reover, messages sent between correct processors at one tick will be

received before the next tick. A system that is not synchronous
according to this definition will be called asynchronous. If both
correct processors and the messages they send may suffer arbitrary
delays then we say the system is completely asynchronous.

We think of the communication system as a complete network,
with the vertices corresponding to the processors and the edges
corresponding to communication wires. For the purposes of this
survey each processor is considered to “know” the identity of the
processor on the other end of each wire. We also assume the
communication network is completely reliable, in that messages
are never lost and messages sent by correct processors are not

corrupted. In this case lost or corrupted messages are modeled by
faulty behavior of either the sender or the intended receiver.
Although Byzantine agreement has been studied in the context of
unreliable communication links, we restrict our attention to the

completely reliable case.
The processors themselves are (possibly infinite) state machines

with special input and output registers for communication with the
outside world and other processors. The protocols described in this
survey require only finite control machines, such as interactive
Turing machines, while the lower bounds and impossibility results
hold even for infinite control machines. Each processor must have
a source of randomness from which it can obtain unbiased and
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unpredictable random bits as needed. We model this as either an
unbiased coin, with values 0 and 1, or an infinite tape containing a
truly random sequence of Os and Is.

Sometimes it is convenient to think of the processors as possess-

ing private clocks. Viewed in this way, all private clocks of correct
processors in a completely synchronous system are perfectly syn-
chronized and run at exactly the same rate. Although Byzantine
agreement has been studied in certain partially synchronous cases
falling between the completely synchronous and the completely
asynchronous models, most work on randomized protocols has
involved only the two extremes.

A protocol is a collection of programs, one per processor. We
assume the processors have been programmed before execution of
the protocol begins.

2.2. The Adversary

There are five principal types of restrictions on the behavior of
he adversary. Given a particular system, the user should decide
which type of adversary best models system fault behavior and then
1se protocols resilient to this adversary.

The first parameter of the adversary is the upper bound ¢ on the
number of processors that can be corrupted by the adversary. There
are several variants on the period of time during which this upper
bound should hold. Certain protocols tolerate no more than ¢ faults
during the whole lifetime of the system. Other protocols are organ-
ized as a series of phases during each of which up to ¢ processors can
exhibit faulty behavior. Some protocols are more liberal, tolerating
changes from one round to the next in the identity of the faulty
processors, provided no more than ¢ processors are faulty in any
single round. We will be particularly interested in cases where 1 is
a constant fraction of the number of participants, n.

The second major component of the adversary is its scheduling
capability. In both randomized and deterministic protocols, the
scheduling capabilities of the adversary have a profound effect on
system performance. These capabilities may include control over
the timing of message delivery and on the rates of processors’
internal clocks. The adversary may even vary these rates dvnami-
cally, as the protocol runs. Such dynamic control models the case
in which a processor is running several protocols concurrently
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As the load on this processor varies, the rate at which it takes steps
in any given protoccl may change.

The synchronous and the completely asynchronous models
capture the two extremes in the degree of control the adversary
can possess over the timing of events. In the synchronous case,
the adversary has no control over the rates of internal clocks of
correct processors. Similarly, the adversary has very limited control
over delivery time of messages between correct processors, as all
messages reach their destination within a known time limit. How-
ever, the adversary may be able to rish messages to and from faulty
processors. This is discussed further below.

In the completely asynchronous case the adversary has complete
control over the order and timing of message arrival and of the
internal clocks. There is no upper bound on message delivery time
or on the relative rate of internal clocks. Thus there is no way to

distinguish a very slow processor from one that has crashed, just as
there may be no way to know if an expected message will eventually
arrive or if it was never sent. This implies that asynchronous
protocols can usually only be message driven, as opposed to clock
driven. The only limitation on the adversary is that all messages
sent by nonfaulty processors, of which there are at least n — ¢, must

eventually be delivered.
The third type of restriction is usually referred to as the fault

model. Three archetypical models are widely used for processor
failures. The first, most benign one, is the fail-stop, or crash failure
model. In this model, processors always send messages according to
the prescribed protocol. A processor fails by crashing at some
arbitrary time and from then on sends no messages. Note that this
model does not guarantee ‘atomic broadcast” in that some of the
messages sent at the time of failure may arrive while some others
may not arrive. A more severe type of failure is the omission fault.
In this model, all processors send messages according to the
prescribed protocol at all times, but some messages sent by faulty
processors might fail to reach their destinations. This models the
case in which a processor has an intermittently faulty transmitter.
The strongest failure model is the Byzantine failure model, in which
faulty processors can completely deviate from the protocol. In
particular, they can send wrong and conflicting messages, so as to
cause maximum confusion and disarray to others.

All three failure models can be viewed uniformly as cases of
srocessors that cease to follow their prescribed protocols and
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instead start following an adversary protocol. The processor failure
mode] then restricts what messages could possibly be sent by faulty
processors. The adversary determines which messages are sent by
faulty processors subject to these restrictions.

A popular variant of the Byzantine failure model assumes the
availability of an unforgeable authentication mechanism. A processor
receiving a signed message can convince others that the message
originated from the stated sender by displaying the signed text. (See
Appendix II for more details). We note that in the case of several
protocols in the authenticated Byzantine model appearing in the
literature the authors simply assume an authentication mechanism

and prove the protocol correct only under this assumption. In a
model where faulty processors garble relayed messages at random.
srror correcting codes can be used for authentication.

The fourth aspect of an adversary concerns the resources
to which it has access. These can be of two types: computation
resources and information resources. The computationally un-

bounded adversary has no limit to its computing power and
can even use nonrecursive strategies. A more limited adversary

appearing often in the literature is the computationally bounded
adversary. This adversary has only probabilistic polynomial time to
determine its moves, where the polynomial is in terms of n, the size
of the system, and the security parameter h.

Correct processors are often considered to be limited to prob-
abilistic polynomial time computations, reflecting the popular view
that anything outside this class is not “feasibly” computed. Given
a similarly limited adversary, cryptographic techniques may be used
to obtain more efficient agreement protocols. These techniques
employ cryptographic operators, such as public-key encryptions or
pseudorandom sequence generators (see Appendix II). They are
based on certain complexity theoretic assumptions, such as the
assumption that factoring cannot be accomplished in random poly-
nomial time. These assumptions, while not proved (a proof would
imply that P # NP), are widely believed to be true.

Under certain specific assumptions, such as the factoring assump-
ton above, it is possible to design digital signature schemes in which
the forging of signed messages is infeasible (GMR&amp;4]. Such signature
schemes can be used to implement an authentication mechanism in
the presence of a computationally bounded adversary. We remark
that, to the best of our knowledge, when used in a system with
t &gt; n/3. any authentication mechanism that is based on digital
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signatures requires that all #» public signature keys be part of the
program of each processor.

In defining the adversary one must also specify to which parts of
the system the adversary has access. This is what is meant by infor-
mation resources. If eavesdropping is allowed, then the adversary
can listen in on the conversations between correct processors. If
these lines are secure, then we say eavesdropping is not allowed.

Sometimes eavesdropping can be handled by using encryption.
However, as we shall see in later sections, introducing cryptography
is almost never as simple or straightforward as one would like it to

be. And of course, cryptography can be used only in the context of
a computationally bounded adversary.

If the adversary has access to the internal states (but never the
random tapes) of the correct processors, then we say it is intrusive.
A protocol in which correct processors employ cryptography to
hide information from the adversary cannot tolerate an intrusive
adversary. This is because an intrusive adversary has access to all
the secret keys of the correct processors. A related, more subtle,
issue is the amount of information the adversary may gain about
the internal state of an initially correct processor at the instant the
adversary makes that processor faulty. One possibility is that the
adversary has access to the internal states of corrupted processors.
(A processor’s internal state may include its entire history.) In
another variant considered in the literature, the adversary com-
pletely controls the external behavior (e.g., messages sent and
received) of the corrupted processors, but it has no access to the
internal states. These distinctions have implications in a crypto-
graphic setting, where, for example. the decryption key of a newly
corrupted processor may yield information about the state of a
second uncorrupted processor.

In addition to deciding which processors to subvert, the adversary
must specify some behavior for the faulty processors. The time at
which these decisions are made is characterized by the adaptiveness of
*he adversary. This is the fifth major component of the adversary.

There are several subtle variations in the assumptions regarding
‘he subversion and control of faulty processors as a function of the
history of the system. Interestingly, in the context of Byzantine
agreement these issues arise only in randomized protocols. If
both the adversary and the processors are deterministic, then the
adversary can completely determine the outcome of its strategy.
By contrast, a key property of randomized protocols is that the
adversary has no way of predicting future coin tosses of correct
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processors. Thus, even a computationally unbounded adversary
cannot be certain of the outcome of its strategy before the proces-
sors’ random choices are made. It may therefore be advantageous
for the adversary to decide its behavior adaptively, as the random
bits are used, so in modeling the power of the adversary it is crucial
to specify the extent to which the adversary is adaptive.

To describe some of the common adaptability assumptions we
consider only the synchronous case. Adversaries analogous to those
discussed below are defined for the asynchronous case whenever
applicable. In the static model, the adversary chooses which proces-
sors will be made faulty during the execution of the protocol before
processing begins. The weakly dynamic adversary selects at the end
of round r — 1 which processors it will subvert in round r. The

strongly dynamic adversary, sometimes called the blocker, can first
activate all processors and examine the messages they wish to
deliver at around r. Based on this examination, the adversary can
allow some of the messages to be delivered intact, while altering
others, thereby subverting the senders of the altered messages.
It may be the case that there is a small set of processors the

adversary could choose to make faulty that will cause the algorithm
to run slowly, but that this set is hard to find. Thus a resource
hound adversary may be unable to find this set of processors.

In the static and weakly dynamic adversary models it is necessary
to specify whether or not the round r messages of those processors
subverted by the end of round r — 1 can depend on the round r

messages of correct processors. If the adversary is allowed to first
“wait” for all round r messages to which it has access and only then
instruct the faulty processors on their own round r messages, then
we say that rushing is allowed. If the adversary must choose its round
rmessages at the termination of round r — 1, then we say that rushing

is not allowed. Rushing is a realistic type of fault whenever there is
sufficient uncertainty in message transmission time. The length of a
communication round must be chosen as large as the maximum
possible transmission time between correct processors, but if a
message happens to be delivered to a faulty processor in time less
than this maximum, the faulty processor has the opportunity to
rush.

2.5. Cost Measures

There are three principal cost measures by which the protocols
{iscussed in this survey are usually compared. The first is sometimes
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called time. In the synchronous system this is exactly the number of
rounds of message exchange and so is often referred to as rounds.
In asynchronous systems time may signify the maximum length of
any chain of messages (think of this as the maximum number of
times a message could be forwarded plus one for the original
transmission). However, there is something akin to a round even in
a completely asynchronous system. Consider a set of n processors
running a protocol tolerant to ¢ faults, and let p be a correct
processor in this set. If p broadcasts the message for its ith step in
the protocol and receives step i messages from only #n — ¢ processors,
then p cannot safely wait for additional step i messages because all
t processors from which it has not heard may be faulty. In this case,
p must proceed to step i+ 1 in its protocol, and we say p has
completed round i.

The second principal measure by which agreement protocols are
compared is the resiliency. This is the maximum number ¢ of faulty
processors that can be tolerated when the protocol is run with n
processors. The resiliency often has the form ¢ = (n — 1)/c, where
¢ is a constant.

The third principal measure is the communication complexity of
the protocol, measured either as the total number of bits sent in
zach round, or as the total number of bits sent in the lifetime of the

protocol. In general, the literature had addressed only the question
of whether the number of bits grows polynomially or exponentially
in n and 7. We will not give precise bounds on bits, and unless
otherwise stated all the protocols considered in this survey require
in each round a number of bits that is polynomial in » and ¢. In the
case of the computationally bounded adversary, where a security
parameter A is involved, the number of bits is also polynomial in
this parameter. Occasionally in an asynchronous protocol a proces-
sor will tag each message with its view of the round number. In this
case the number of bits grows (at least) logarithmically with the
round number. This is not an issue in any of the asynchronous
protocols mentioned in this survey, as all of these are expected to
run within a number of rounds that is at most 2°.

Two other cost measures of interest are the amount of local

computation, as a function of n, , and possibly a security parameter
h, that must be performed by each processor at each round, and the
number of random bits that must be generated by the processors,
either per round or total over the expected running time of the
protocol. In all the randomized protocols surveyed here, the local
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computation at each round is polynomial in n, ¢, and h. The
question of minimizing the expected number of random bits needed
in each execution of the protocol has rarely been addressed in the
literature (see [CC84]).

BYZANTINE AGREEMENT

There is a rich literature on Byzantine agreement, and several
variants of the problem have been studied. In this survey we
examine randomized solutions to the following version. Each pro-
cessor begins with a private binary value. During the course of the
computation each correct processor must irreversibly decide on a

value in {0,1}, subject only to the requirements that all correct
processors decide on the same value and if all correct processors
begin with the same value, then that is the value chosen. (A reduc-
tion from multi-valued agreement to binary agreement is given in

'TC84].)
We also describe another version, called the single source

Byzantine agreement problem, because some of the protocols
discussed in this chapter employ solutions to the single source
version as subroutines. In this version of the problem the intent is
for all processors in the system to agree on a message sent by the
source, which is itself just another processor in the system. The
requirements are that if the source is not faulty, then the value
agreed on must be the value sent by the source. However, if the
source is faulty then any decision value is acceptable, provided that
no two correct processors decide differently. The two problems are
intimately related. Indeed, all the results mentioned in this chapter
apply to both problems.

The remainder of this section is organized as follows. In Sec-
don 3.1 we discuss certain lower bounds for deterministic agree-
ment protocols. This allows us to measure the gains achieved by
randomization. In Section 3.2 we discuss the principal original
randomized protocols. Improvements and extensions to these
protocols are noted in Section 3.3. Sections 3.4 and 3.5 briefly
mention some related results.

REMARKS.

All randomized protocols discussed in this section require a
number of communication bits that is polynomial in zn at
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cach round. Thus, unless the execution runs for more than a

polynomial number of communication rounds, the total
number of bits remains polynomial.
The plethora of models considered in the literature makes
comparisons between protocols extremely difficult. Even
stating the precise adversary or adversaries to which each
protocol is tolerant is cumbersome. The interested reader
may find some of these details in Appendix I.

5.1. Lower Bounds for Deterministic Protocols

Tight bounds on time and resiliency for deterministic Byzantine
agreement protocols are known for all failure models considered in
the literature. Pease, Shostak, and Lamport [PSL80] showed that
in the presence of a computationally unbounded adversary with
Byzantine faults, s-resilient Byzantine agreement is possible if and
only if n, the total number of processors, satisfies n &gt; 3¢ + 1. As we
discuss in Section 5, this bound on resiliency is not amenable to
randomization. In other words, even using a randomized protocol,
if n&lt;3r then sometimes either the requirement that correct
processors agree on the decision, or the requirement that if all
correct processors begin with the same value then this is the value
chosen, must be violated. However, if the adversary is restricted so
that faulty processors cannot forge messages of correct processors,
i.e., if an authentication mechanism is available, then Byzantine
agreement can be reached even if + = n — 1 [PSL80]. This result

applies a fortiori to all weaker fault models, in which the faulty
processors never “try” to relay false information.

In the remainder of this section we discuss two lower bounds for

deterministic protocols: a ¢ + 1 round lower bound for agreement
in synchronous systems and an impossibility result for completely
asynchronous systems. Not only can randomization help us cope
with these limitations, but as we shall see in later sections, often the

same techniques apply to both problems.
The first lower bound on the number of rounds needed to reach

agreement was obtained for the unauthenticated Byzantine model
by Fischer and Lynch in 1982 [FLy82]. They proved a worst case
lower bound of f+ 1 rounds for any agreement protocol tolerant
to ¢ faults. This matches the upper bound of the protocol of
Shostak, Lamport, and Pease [PSL80]
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In 1982 Dolev and Strong, and, independently, DeMillo, Lynch,
and Merritt, extended the Fischer and Lynch result to authen-
ticated Byzantine failures [DS82, DLMS&amp;2]. Soon afterward, the
t + 1 round lower bound was extended by Hadzilacos to omission
faults [H83], and later by Fischer and Lamport to fail-stop faults
'FLa82]. In all but [FLy82] the underlying proof is the same. One
begins, for the sake of contradiction, with the assumption that there
is a protocol that always terminates in k &lt; ¢ rounds. The general
strategy is then to create a chain of k-round executions, each
adjacent pair in the chain indistinguishable to some correct pro-
cessor, such that the initial conditions force a decision of 0 (all start
with initial value 0) in the first execution and a decision of 1 (all start
with 1) in the last execution. Because each pair of adjacent execu-
tions is indistinguishable to some correct processor, some such
processor will be forced to decide both 0 and 1 in the same execu-
tion, which is not allowed. Later, in discussing lower bounds on
randomized protocols, we will be interested in the length of the
shortest chain of scenarios for which the proof goes through. Chor,
Merritt, and Shmoys [CMS85] claim that for executions of length
k &lt; t a chain of length at most 2(2[n/|t/k|1)*suffices.

The second major lower bound for deterministic protocols is
due to Fischer, Lynch, and Paterson [FLP83]. In a seminal paper
they proved that in a completely asynchronous system no agree-
ment protocol can tolerate even one fail-stop processor failure.

Intuitively, the difference between synchronous and asynchronous
systems arises because in the synchronous case if a processor does
not hear from some other processor in a given round then it knows
that processor is faulty, while in the asynchronous case if it hears
n — 1 processors it has no way of knowing if the remaining pro-
cessor from which it has not heard is bad or just slow.

Beginning with the assumption that a completely asynchronous
l-resilient agreement protocol exists, they derive a contradiction by
arguing along the following lines. They first observe that the
hypothetical protocol must have some “bivalent” assignment I of
the initial value. This means there exist two executions of the

protocol, both beginning with initial assignment I, such that one
execution results in a decision of 1, while the other results in a
decision of 0. Fisher, Lynch, and Paterson then argue that in any
execution beginning in a bivalent state and resulting in a decision
there must be some “critical step” taking the system from a bivalent
configuration to a configuration from which onlv one outcome is
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possible. Exploiting the asynchrony of the system, they show that
the system can “hide” the critical step by temporarily delaying
any messages send during that step. Intuitively, we see that if a
processor p takes the critical step but the message system delays
its messages, then the other processors may be forced to wait.
However, they cannot wait safely because for all they know p could
have failed before taking the critical step, in which case the other
processors would wait forever. By careful formalization of this
intuition, Fischer, Lynch, and Paterson show that for the hypoth-
esized 1-resilient asynchronous agreement protocol there is an
infinite execution in which no processor fails, every message sent is
eventually delivered, and no processor ever enters a deciding state.

3.2. Randomized Agreement—Principal Results

The impossibility of reaching agreement in an asynchronous
system motivated many researchers to explore the feasibility of
randomized solutions. The first two randomized agreement protocols
appeared in 1983, and were developed by Ben-Or and Rabin,
respectively. Rabin’s protocol requires certain very strong assump-
tions, but has low expected running time, even for 1 = O(n).
Ben-Or’s protocol requires no such assumptions, but has exponen-
tial expected running time for + = O(n). In 1985 Bracha modified
a synchronous version of Ben-Or’s protocol, dramatically improving
the expected running time for synchronous Byzantine agreement.
Bracha’s protocol is nonconstructive in that it requires the assign-
ment of processors to “committees” satisfying certain conditions.
While Bracha showed that almost all assignments of processors to
committees of the appropriate size satisfy the desired conditions, no
explicit construction is known. In this section we discuss these three
principal contributions of Rabin, Ben-Or, and Bracha. As men-
tioned in the Introduction, all these protocols require *“‘coins™
visible to certain (possibly large) subsets of the processors.

In both Rabin’s and Ben-Or’s work the original goal was to
achieve agreement in a completely asynchronous system, but the
resulting protocols can be run in the synchronous environment,
often with high resiliency. In some instances (Rabin’s protocol,
Ben-Or’s protocol with sufficiently small ¢, Bracha’s protocol) the
expected running time of the synchronous randomized protocol is
considerably less than the lower bound of ¢ + 1 rounds for deter-
ministic protocols. In all these protocols, both synchronous and
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asynchronous, the two correctness critieria of Byzantine agreement
are never violated: no two correct processors ever decide on con-

flicting values, and if all correct processors begin with the same
value then that is the value chosen. In addition, the probability that
some processor has not decided by round r approaches 0 as r

approaches infinity. In all of these protocols the earliest round at
which all correct processors have decided is a random quantity.
Moreover, once a correct processor has reached a decision it may

be obliged to continue participating in the protocol for some
number of rounds. Both the synchronous and asynchronous versions
of all protocols discussed have finite expected running time. How-
ever, for simplicity, we do not address the issue of termination in
this survey. For the same reason we discuss only the synchronous
versions of the protocols.

3.2.1. Rabin’s Protocol

The major contribution of Rabin’s work [R83] is to demonstrate
the usefulness of a source of randomness visible to all processors.
Let us assume the existence of a procedure COIN TOSS implement-
ing such a source, each invocation of which instantly produces a
new random bit visible to all correct processors. Using this COIN
TOSS procedure, Rabin’s protocol achieves Byzantine agreement
in constant expected time.

We assume the system is synchronous and take » &gt; 8¢ + 1 for
our discussion. Rabin’s protocol (Figure 1) described below, runs
as a possibly infinite number of iterations of a main loop. (The code
1s easily modified so that processors halt soon after they decide.)

Figure 1. Code for Rabin’s protocol; version for n &gt; 8¢ + 1

t. procedure RABIN AGREEMENT(vote):
2. lowe— |n/2] +t+1
3. high— [n/2] +2t +1
"do forever

broadcast vote
receive votes from all processors
Let majority value be that value occurring most frequently in the votes received
Let tally be the number of occurrences ofma jority value
coin — COIN TOSS
if coin=1

then threshold « low
else threshold «- high

if tally &gt; threshold
then vote — majority value

; else vote — 0

8. if tally &gt; n — t then decide majority value
 fy.
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Throughout execution of the protocol each processor favors a
particular candidate decision value, called its vote. In the first
iteration the vote is the processor’s private initial value. However,
a processor’s vote may change as execution progresses.

[f in some iteration k of Rabin’s protocol two correct processors
differ in their choice of majority value computed in Step 7, then
regardless of which threshold is chosen the tally of no processor
2xceeds the threshold. In this case all correct processors will choose
0 as the new value of vote in Step 15. Thus at least » — ¢ correct

processors broadcast 0 in Step 5 of iteration k + 1, so all correct
processors decide 0 in Step 16. We therefore concentrate on the case
in which all correct processors compute the same majority value in

Step 7.
Observe that the two thresholds low and high differ by at least .

We say the adversary foils a threshold if by having the faulty
processors send different values to different correct processors it
causes the value of tally to exceed the threshold in the view of at
least one correct processor, while simultaneously causing the value
of tally to fall short of the same threshold in the view of a different
correct processor. Because the two thresholds differ by at least ¢,
the adversary can potentially foil only one of low and high in
each iteration of the loop. Thus in each iteration the comparison
chosen by the procedure COIN TOSS is foiled with probability at
most 1/2, so the number of iterations to an unfoiled comparison is
a geometrically distributed random variable with expected value 2.

Consider an execution of Rabin’s protocol in which for some
iteration k the threshold chosen in is not foiled. In Steps 13-15 all
correct processors choose the same value v of vote, in iteration k.
Thus in iteration k + 1 every correct processor receives at least
n —t &gt; high &gt; low votes for v in Step 6, sets majority value « v in

Step 7, and sees in Step 13 that tally exceeds whichever threshold is
chosen. Further, if in any iteration a correct processor sees tally &gt;
n — t, then in the view of all other correct processors tally &gt; high,
so all correct processors choose the same value of vote, independent
of the threshold chosen, and whether or not the threshold is foiled.
Combining these two observations, we see that if the threshold
chosen in iteration k is not foiled then from iteration k£ + 1 on no

correct processor changes its vote, and all the votes agree. We also
note that regardless of the coin, if the correct processors begin the
protocol with the same initial votes, then agreement is reached
within a constant number of iterations.
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To implement the COIN TOSS procedure Rabin suggests using
a trusted dealer to precompute a random sequence of Os and 1s
(coins) and to distribute the result to all participants before execution
of the algorithm begins. To achieve the distribution of the coins in
such a way as to keep the random sequence unpredictable to the
adversary, Rabin uses Shamir’s [S79] technique for sharing a secret
with threshold r. This is a method for sharing a secret s among n

processors in such a way that no ¢ or fewer can reconstruct s, while

any set of at least ¢ + 1 processors can do so (see Appendix II).
In general, in order to be used in implementing Rabin’s

algorithm, the COIN TOSS procedure should satisfy two require-
ments: the coin should be unpredictable (otherwise the adversary
has an advantage in choosing which threshold to foil), and all
processors should see the same random bit in each iteration (so that
they compare their tallies to a common threshold). However, as we

now explain, Rabin’s result is actually quite robust, and both
requirements can be considerably relaxed.

Let M =|n/2] + t+ 1. Suppose the coin tossing procedure
only guaranteed that at leat M correct processors see the same value
of the coin. Even under this weaker assumption, if the coin is
unpredictable to the adversary, then a slight modification allows
agreement to be reached in a constant expected number of rounds.
To see this, consider a particular iteration. After executing the coin
toss in step 9, each processor broadcasts its value of COIN and
takes as the outcome of the coin toss that value received from a

majority (&gt; n/2) of the participants. If initially M correct processors
received the same value from COIN TOSS, then after the additional
round all correct processors see the same value, a situation we have

already analyzed. Further, if in a given iteration fewer than M
correct processors see the same value of the coin, then no damage
is done. This is because a processor decides on a value v only if tally
is so large that in view of all correct processors tally &gt; high, so tally
exceeds any threshold chosen, even if different processors choose
different thresholds.

These observations lead us to the following concepts, which
are treated more rigorously in Section 4.1. Loosely speaking, a
distributed coin flipping protocol is a procedure by which a set of
processors combine their private sources of randomness to obtain
a random value visible to all or most of the participants. We say a

t-resilient coin flipping protocol achieves a persuasive coin if for
some ¢ &gt; 0 in every execution of the protocol the probability that
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at least {n/2| + t+ 1 correct processors see the outcome of
the execution as 0 and the probability that at least | n/2|+ ¢ + 1
correct processors see the outcome as 1 both exceed ¢. This ¢ may

be a function of # and ¢, but it is usually a constant. Notice that

in general the sum of the probabilities that M correct processors
all see one of the two possible outcomes is less than 1. Thus in any
particular execution it may be the case that no set of | n/2|+ ¢ + 1
correct processors see the same outcome. An execution of a

persuasive coin protocol in which at least | n/2| +t + 1 correct
processors actually do see the same outcome is called a visible

flip.
Let € be a t-resilient protocol for achieving a persuasive coin in

a system of n processors. Let T(n,t) be the run time and FE its

expected value of €. [In the protocols discussed in this survey T'(n, t)
is not random, but in principle it could be.] Let ¢ be the minimum
of the probabilities of obtaining a “‘visible 1” and a “visible 0” in
an execution of ¥. Then Rabin’s result implies that Byzantine
agreement can be achieved in expected time O(Ee™') by using ¥ as
the COIN TOSS procedure. Later we will discuss various protocols
for flipping persuasive coins that do not make use of a trusted
dealer.

3.2.2. Ben-Or’, Protocol

As mentioned earlier, Ben-Or designed a randomized agree-
ment algorithm [Be83] around the same time as Rabin obtained
his results. The two algorithms are similar in flavor and there-
fore we will not describe Ben-Or’s protocol in detail. The prin-
cipal difference between the two protocols is in the way in which
the COIN TOSS procedure is implemented. Ben-Or was the first
to give a truly distributed implementation of a coin flipping
procedure.

Ben-Or’s implementation of COIN TOSS is very simple. Each
processor flips a private coin and uses the outcome as the “result”
of the coin flipping procedure. As the coins of correct processors are
flipped independently, the number of Os and the number of 1s
flipped by correct processors are usually expected to be roughly
zqual [within O(/n) of each other]. However, occasionally a large
majority,|n/2|+ ¢ + 1, of the correct processors will flip the same
value. When this happens the effect is that of a visible flip, regard-
less of the actions of faulty processors. While the probability of



Randomization in Byzantine Agreement AO]

such an event is exponentially small, 27%" for t = Q(n), it is still

positive. Therefore this COIN TOSS procedure can be used even in
the asynchronous case to reach agreement in finite (exponential)
expected time, in the presence of a computationally unbounded.
strongly dynamic, intrusive, eavesdropping adversary.

When ¢ = O( /n) the expected time to achieve a visible flip in
Ben-Or’s protocol is O(1). This is because the probability that at
least n/2 + c/n correct processors will flip the same value is
proportional to 1/k,, for some constant k, depending only on ¢ and
not on n. This analysis depends on the fact that coins of correct
processors are sufficiently unbiased and independent. This con-
dition holds trivially when the n coins are flipped locally, as in
Ben-Or’s protocol. More generally, it is necessary and sufficient that
‘he bias of each private coin satisfy |Pr(0) — Pr(l)| = 0(1/4/n),
where Pr(x) denotes the probability that the private coin takes
value x, provided these coins are independent. These conditions
play an important role in Bracha’s protocol, which we describe
next.

3.2.3. Bracha's Protocol

In 1985 Bracha [Br85] published a linearly resilient synchronous
agreement protocol that required no trusted dealer and whose
expected running time dramatically improved on the expected
running time of Ben-Or’s protocol when run with similar resiliency.
(Bracha did not address the problem of asynchronous agreement.
Ben-Or [Be85] later adapted Bracha’s protocol to run asyn-
hronously, at a certain cost. See Section 3.3.) Specifically, Bracha
obtained a method of translating a system of n processors of which
nearly one-third are faulty [tr &lt; n/(3 + ¢), where ¢ &gt; 0 is any con-
stant], to a system of m processors, of which up to Jm are faulty.

Ben-Or’s synchronous protocol can then be simulated on the new
system. The translation is accomplished by creating m compound
virtual processors, or committees for brevity, each composed of a set
of s actual processors, for suitable choices of m and s. A single
actual processor may belong to several committees. The intent is for
zach committee to simulate a single processor in a system of size m,
where the simulated system is running Ben-Or’s protocol, although
this idea has broad applicability.

Let us say a committee is faulty if one-third or more of its
members are faulty. Otherwise it is said to be good. At the heart of



BENNY CHOR and CYNTHIA DWORK

Bracha’s result is a counting argument that there exists an assign-
ment of »n actual processors to m = O(n’) committees such that for

all choices of t &lt; n/(3 + ¢) faulty processors, at most O(\Jm)
committees are faulty, and each committee has size s = O(logn).
We will refer to such an assignment as a Bracha assignment. Bracha
actually showed that almost any assignment of n processors to m
committees of size s has the desired property, but at this writing no
efficient scheme (i.e., time polynomial in ») is known for generating
a Bracha assignment.

Because Ben-Or’s protocol has constant expected running time
when t = O(/n), the expected running time of Bracha’s protocol
is linear in the time it takes his system to simulate a single round of
Ben-Or’s protocol. In order to do this, the actual processors in a
given committee must be able to agree on the messages received and
messages to be sent by the committee. Most importantly, good
committees must be able to flip reasonably unbiased coins, global
to that committee and independent of the coins of other good
committees. (A precise definition of “bias” is given in Section 4.1.)
The running time of Bracha’s protocol is actually dominated by the
cost of flipping a coin in each committee. Using deterministic
Byzantine agreement as a subroutine in each committee, this
running time is dominated in turn by the maximum number of
faulty processors within the good committee. For t = Q(n), the
number of faulty processors in good committees is @(s), and so the
running time is linear in s, the size of the committee.

Recall that for Ben-Or’s protocol to run in constant expected
time the bias of the private coin of a correct processor should not
exceed O(1//n), where # is the number of processors. Similarly, in
the simulation of Ben-Or’s protocol the bias of a committee’s coin
should not exceed O(1/4/m) = O(1/n) in order for Bracha’s protocol
to run in expected time O(s) = O(logn), and the coins of good
committees should be mutually independent. In Section 4 we discuss
some approaches to obtaining the high quality coins necessary for
the simulation.

All protocols for this problem (and hence Bracha’s agree-
ment protocol) of which we are aware require either that the
adversary cannot eavesdrop or that the adversary is computation-
ally bounded.

We note that it is not possible to apply Bracha’s technique
recursively to the Byzantine agreement within the various committees
in order to speed up the entire procedure to o(log nn) expected time.
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This is because all but at most Om) committees must agree
internally on the values of their coins. So even if the expected time
to agreement within each individual committee could be reduced
to a constant, the expected time for m — O(\/m) committees to

terminate would still be O(logm) = O(logn). (The expectation of
the maximum of k identically distributed random variables is log k
times the expectation of each variable.) This represents no improve-
ment on the time needed for all committees to reach internal

agreement deterministically.

3.3. Randomized Agreement—Improvements and Moditications

In this section we briefly describe various improvements to and
modifications of the results of Rabin, Ben-Or, and Bracha. These
include improvements in resiliency and/or running time, approaches
toward the generation of a Bracha assignment, an asynchronous
version of Bracha’s protocol, and an agreement protocol that ac-
hieves constant expected time after an initial preprocessing stage
without assuming a trusted dealer.

We first discuss improvements in resiliency. Bracha’s protocol is
almost optimally resilient. This is not true of Ben-Or’s asynchron-
ous and Rabin’s synchronous and asynchronous protocols. However.
these bounds were tightened by Bracha [Br84] and by Toueg [T84].

Ben-Or’s original asynchronous protocol requires ¢t &lt; n/S. The
same protocol run synchronously requires only ¢ &lt; n/3, the best
possible resiliency for unauthenticated Byzantine agreement, with
or without randomization [PSL80, KY84]. Intuitively, the differ-
ence arises because in the synchronous case if a processor hears
from only n — ¢ processors in a given round then it knows that the

ones from which it does not hear are faulty, while in the asynchro-
nous case if it hears from n — ¢ it has no way of knowing if the ¢

from which it had not heard are bad or just slow. In 1984 Bracha
closed this gap, obtaining an asynchronous protocol for any ¢ &lt; n/3
(Br84]. This resiliency is optimal for asynchronous systems, even if
authentication is assumed [BT83]. The papers of Bracha and Toueg
'BT83, Br84, T84] introduced to the Byzantine literature a very
important methodological technique: identification and imple-
mentation of appropriate communication primitives. In Bracha’s
case, the net result of these primitives is to effectively restrict the
behavior of malicious processors to that of fail-stop processors
(possibly with faulty private coins). Bracha’s broadcast primitive
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guarantees that the same messages are received by all processors,
although they may be received at different times. The validate
primitive allows a processor to verify that a message received via the
broadcast primitive should indeed have been sent if the broadcaster
was following its protocol correctly. A similar broadcast primitive,
called echo-broadcast, was developed by Bracha and Toueg in 1983
iBT83]. The communication behavior of a faulty processor is limited
by the echo-broadcast primitive so that contradictory messages are
not received by different parties. That is, a message sent by a faulty
processor may be accepted by some correct processors and not by
others, but it will never be the case that two correct processors
accept conflicting messages from the same faulty processor. This
primitive was used by Toueg [T84] to improve the resiliency in the
model of Rabin (assuming a trusted dealer). See Appendix I for
specific bounds. We remark that Rabin’s protocol requires that
only the trusted dealer be able to unforgeably sign messages, while
in Toueg’s protocol this ability is required of the processors as well.
The approach of [Br84, T84] has yielded other elegant distributed
protocols (cf. [ST84, ST8S, TPS85)).

We now consider improvements in expected running time in the
presence of a computationally unbounded, eavesdropping adver-
sary. Although Ben-Or’s protocol tolerates such an adversary,
when run in a synchronous environment its exponential expected
running time yields no improvement over the running times of
various deterministic algorithms. The only protocol of which we are
aware for this model was designed by Chor and Coan [CC84]. In
contrast to Ben-Or’s protocol, the protocol of Chor and Coan
cannot tolerate a strongly dynamic adversary, but it can tolerate
weakly dynamic behavior. By careful selection of which processors
toss coins in each iteration, Chor and Coan were able to obtain

expected running time O(t/logn) while maintaining the optimal
maximum resiliency for a computationally unbounded adversary,
t &lt; n/3. Their approach is to partition the processors into n/logn
disjoint groups of size g¢ = logn. Processing proceeds in a round
robin fashion, with epochs belonging to each group in turn. In a
given epoch only members of the owning group flip coins. Each
processor in the group broadcasts the result of its private coin flip
to the entire network. Each processor (including members of the
owning group) computes the majority of the values it has received
from the members of the owning group and takes that majority
value to be the result of the COIN TOSS. Note that if the private
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coin flips of the members of the group are fairly evenly split, then
the faulty processors can either cause different correct processors to
see different outcomes of the COIN TOSS or to bias the outcome

in a direction of their choice. However, if fewer than half the
processors in a given group are faulty, then there is a reasonably
large probability [Q(1/4/n)] that g/2 + 1 correct processors will flip
the same value. In this case the majority is determined regardless of
the actions taken by the faulty processors. With at most ¢ faulty
processors there can be no more than 2¢/g groups for which a

majority of the members are faulty. Thus, after at most 2¢/g epochs
an epoch belonging to a “good” group is reached. As the expected
number of good groups that have to be used until agreement is
reached is rather small [0O(/n)], the overall expected running time
is dominated by the time to reach the good groups, which is
O(1/g) = O(tflogn).

We now discuss three results concerning the generation of Bracha
assignments. Bracha’s result is considered nonconstructive because
it is not known how to explicitly generate an assignment satisfying
the desired conditions, except by brute force. It is not even known
how to efficiently verify that a given assignment is a Bracha assign-
ment (a co-NP statement). Even though almost all assignments of
actual processors to committees of the appropriate size are Bracha
assignments, the explicit construction of a correct assignment is an
mteresting open problem.

Alon has made some progress toward efficient generation of
Bracha assignments [A85], though with larger committee size. In his
construction m, the number of committees is O(n) and each
committee has size s = @(,/n). Specifically, Alon’s construction is
based on the projective plane and yields systems of size n =
p’ + p + 1, where p is any prime. Every actual processor corre-
sponds to a point in the plane. Every committee corresponds to a
line, and thus is composed of s = p+ 1 = O(/n) actual proces-
sors. Alon shows this yields a Bracha assignment in which, if at most
n/(3 + ¢) of the actual processors are faulty, then at most O(/m)
committees are faulty. When Bracha’s protocol is run on Alon’s
construction with appropriately chosen coin subroutine, the expected
running time is ©(y/n), because the committee size s is OG/n).

To our knowledge no further progress has been made on explicit
constructions of Bracha assignments. However, a method for distri-
butively generating an assignment that with high probability is a
Bracha assignment was obtained by Feldman and Micali [FM85].
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eliminating the need for the Bracha assignment to be distributed
prior to the protocol execution. This protocol uses a deterministic
agreement algorithm as a subroutine, and therefore requires Q(¢)
preprocessing time.

Each processor secretly generates a string of the appropriate
length to describe a Bracha assignment, runs single-source Byzan-
tine agreement on an encryption of the string, and then reveals the
string. The bitwise exclusive-or of the revealed individual strings
(some processors may refuse to reveal) is used as the Bracha assign-
ment. One initially confusing point about the Feldman and Micali
work is that on the one hand the processors must agree on a

random assignment to committees by choosing a random string of
sufficient length, while on the other hand agreeing on even a single
random bit is difficult. This apparent conflict is resolved by observ-
ing that, although the faulty processors have a lot of influence on
the chosen string, so it is not “truly random,” their influence rarely
suffices to force the outcome to be a bad assignment of processors
to committees. In fact, the faulty processors can cause to be chosen
any one of the 2' strings that are the bitwise exclusive-or of all
n — t good processors’ strings with some subset of the remaining ¢

strings. However, the bad strings are so few that the probability
that any of these 2' strings are actually bad is still small. For the
probabilities to work out, it is necessary that correct processors pick
truly random and mutually independent strings, while the rest are
chosen arbitrarilv. but are independent of the strings of correct
processors. Some additional mechanism is required to enforce this

independence.
The last extension related to Bracha assignments is a generaliz-

ation of his counting argument. In 1986 Dwork, Shmoys, and
Stockmeyer [DSS86] obtained a distributed coin flipping protocol
whose expected time to a visible flip is O(1) provided the number
of faults does not exceed O(n/logn) (see Section 4). When used
as the COIN TOSS procedure in either of Rabin’s or Ben-Or’s
protocols this yields an agreement protocol with the stated resiliency
whose expected running time is O(1). Generalizing Bracha’s count-
ing argument, Dwork, Shmoys, and Stockmeyer show the existence
of an assignment of n processors to m = O(nlogn) committees of

size O(log log n) so that for any choice of fewer than n/(4 + ¢) faulty
processors at most O(m/logm) committees are bad. Simulation of
the constant time [DSS86] agreement protocol on the resulting
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system yields a linearly resilient protocol whose expected time to
agreement is O(loglogn).

Bracha’s result has also been extended to the asynchronous
environment. Paying slightly in both resiliency and number of
rounds of message exchange, Ben-Or obtained an asynchronous
adaptation of Bracha’s protocol, requiring ¢ &lt; n/7 and running in
expected time Oflog n(log log n)‘], where c is a constant independent
of n and r [Be85]. The protocol was presented in the model without
savesdropping. Ben-Or’s adaptation is based on two observations:

There exists an exponential time asynchronous Byzantine
agreement protocol requiring n &gt; 3¢ in which each processor
executes the COIN TOSS procedure simply by flipping its
private coin (cf. [Br84] discussed above).
For n &gt; 4¢, a modification of a distributed coin flipping

protocol due to Yao [Y84] gives a t-resilient protocol
for a committee to flip a coin visible to all members of the
committee, using as a subroutine any (exponential time or
faster) protocol for Byzantine agreement among n processors
(See Section 4 for the details of Yao’s protocol.)

Recall that Bracha proved the existence of an assignment of »
processors to m = O(n”) committees of size s = O(logn) so that

for all choices of fewer than n/(3 + ¢) faults all but O(\/m) = O(n)
committees are “good.” That is, the resulting number of faults in
the simulated system of size m is O(/m). Therefore, running the
asynchronous version of Ben-Or’s protocol [Be83] in the new system
yields agreement in expected time O[T(s)], where T(s) is the
time needed for all but O(/m) committees to simulate message
transmission and receipt, and to flip a relatively unbiased coin
visible to all members of the committee. By (1) and (2), each
individual committee can perform these tasks in expected time
0(2°) = 200em = 4% Moreover, the expected time for all m =

O(n*) committees to perform these tasks is Oflog (n*)n°"], which is
also n°". Thus this simple modification of Bracha’s protocol yields
asynchronous Byzantine agreement in polynomial (in n) expected
time and message complexities.

To further improve the expected running time from n°" to
Ollogn(loglogn)‘], Ben-Or employs a bootstrapping procedure
that is based on the observation that Bracha’s result can be
applied recursively inside the committees. at a multiplicative cost of



BENNY CHOR and CYNTHIA DWORK

O[(loglogn)‘]. One interesting feature of Ben-Or’s protocol is that
the processors prepare any polynomial (in #») number of coins in a
preprocessing stage, which can then be used to run additional
agreements at an expected cost of O(log n) time per agreement. This
feature yields a substantial saving in the amortized cost of internal
agreement among lower level committees, which in turn speeds up
the expected time for agreement at the top level of the recursion.

This idea of preparing many coins at once to be released later
as needed was also used by Feldman and Micali [FM85]. They
obtained an elegant method to generate “many coins at the cost of
one,” based on cryptographically strong pseudorandom number
generators (see Appendix II). Some details of this method are
discussed in the next section. After a preprocessing stage whose cost
is dominated by the cost of establishing pseudorandom number
generators inside every good committee, any (polynomial) number
of random coins are available. These coins may then be released
when desired. In particular, they can be released one per simulated
iteration of Ben-Or’s protocol. Thus, once preprocessing is com-
pleted, the Feldman and Micali protocol can achieve any (poly-
nomial) number of agreements in constant expected time per agree-
ment.

3.4. Weaker Failure Models

Our discussion until this point has assumed Byzantine faults.
Chor, Merritt, and Shmoys explored several models in which the
message system is the only adversary [CMS85]. Thus, in their
models all processors follow the protocol correctly but the adver-
sary can selectively suppress messages. Note that any protocol
designed for such a model will a fortiori operate in the model with
crash failures, since the adversary can simulate a crash failure by
suppressing all messages sent by a given processor. Chor, Merritt,
and Shmoys present a protocol resilient to an adversary that
chooses whether or not to suppress or “block” a message according
to the message contents; hence the term “blocker” to describe the

strongly adaptive adversary.
Chor, Merritt, and Shmoys’ very natural approach is to have

each processor privately flip two coins. The first, called its bit, is
just an unbiased coin. The second coin is biased so that the outcome
is 1 with probability 1/n (where value 1 means “I volunteer to be a
temporary leader’’). Note that when all » processors flip their biased
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coins the expected number of 1s (volunteers) is exactly 1.
Furthermore, the probability that exactly one processor will volun-
teer is &gt; 1/e. Once each processor has flipped its two coins it
broadcasts the resulting pair of values. In the best case (which
occurs with probability greater than 1/2e) this procedure elects a
nonfaulty unique leader. In this case the outcome of the procedure
is the bit of the leader. Clearly, this procedure yields a persuasive
coin with O(1) expected time to obtain a visible flip. Chor, Merritt,
and Shmoys handle the case in which the adversary can block
(choose which messages to suppress according to the contents)
by encrypting the messages and proving rigorously that unless
the adversary can decrypt, the problem is reduced to the weakly
adaptive case. A careful analysis shows that the same approach
works also in the asynchronous case for t+ = 8(n).

3.5 Probabilistic Adversaries

We briefly mention some results in which the adversary is
assumed to exhibit certain probabilistic behavior. This probabilistic
behavior defines a probability space in which the expected cost of
both deterministic and randomized protocols can be analyzed. The
motivation for these models is that the worst case assumptions are
frequently too pessimistic, and phenomena like failures or delays
are often randomly distributed.

The first to examine probabilistic adversaries was Reischuk [Re85].
He considered the model of a uniform static adversary, where all
subsets of ¢ processors are equally likely to fail. The adversary is
computationally unbounded, and failed processors can exhibit
malicious behavior, as is usually the case for Byzantine faults.
Reischuk obtained a deterministic Byzantine agreement protocol
‘hat terminates in a constant expected number of rounds. The
randomized protocol of [CC84] achieves similar bounds in this
model.

A different type of probabilistic adversary was studied by Bracha
and Toueg [BT83], who developed a protocol essentially identical to
Ben-Or’s [Be83] but without randomization. Their probability
space models an asynchronous environment in which message delays
are independent identically distributed random variables. Under
the assumption that there exists an ¢ such that for any two pro-
cessors p and ¢, and any round s, p receives a message from g
‘among the first n — f messages) in round s with probability at least
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g, they prove that the probability of nonconvergence (no decision)
after k rounds approaches 0 as k approaches infinity. They obtain
protocols with ¢ &lt; n/2 and t &lt; n/3 for the fail-stop and Byzantine
cases, respectively, and prove the resiliency 1s optimal in both cases.

DISTRIBUTED COIN FLIPPING

[n Section 3 it was shown that distributed coin flipping may be used
in two ways to expedite Byzantine agreement: either directly, in
implementing the protocol of Rabin, or indirectly, inside the com-
mittees of Bracha’s protocol. The two types of coin flipping proto-
cols have very different requirements. For example, as discussed in
Section 3.2, the coin in Rabin’s protocol need only be persuasive,
and it may have a high bias [O(1) expected time is achieved if the
bias is constant, independent of »n]. By contrast, the committee coins
in Bracha’s protocol must have small bias [O(1//m)]. As another
example, in order to keep the overall computation polynomial in
the number of processors, the COIN TOSS procedure employed
when implementing Rabin’s protocol should require only poly-
nomial computation and communication in each round. However,
because the committees in Bracha’s protocol are small [size
O(logn)], the work performed in each committee may be expo-
nential in the size of the committee.

These two types of coin flipping also have different termination
requirements. For the persuasive coin it suffices that in every exe-
cution there is a nonzero probability that a substantial majority of
the processors see the same outcome. In the committees of Bracha’s

protocol all processors must see the same outcome with certainty.
For this reason, we call the second type of coin a global coin.

In this section we describe solutions to the persuasive and global
coin flipping problems. We consider only Byzantine failures (the
only example known to us of a persuasive coin for more benign
fault models has already been discussed in Section 3.4). Section 4.1
contains definitions and other preliminaries. Some protocols for
persuasive coins are discussed in Section 4.2. A protocol for
global coin in the presence of a computationally unbounded adver-
sary that cannot eavesdrop is discussed in Section 4.3. Some of
the subtleties arising in cryptographic solutions to the distributed
coin flipping problem are discussed in Section 4.4. Global coins in
the presence of a computationally bounded eavesdropping adver-
sary are discussed in Section 4.5. Section 4.6 deals with an
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“approximate” global coin in which the required communication
grows as the inverse of the bias, and a polynomially small bias can
be achieved at a “reasonable” cost. In Section 4.7 we briefly mention
some results on achieving independence, and application to the
problem of flipping a global coin.

4.1. Preliminaries

We consider, as usual, systems of n processors, of which at most
t are faulty. Loosely speaking, a distributed coin flipping protocol is
a procedure for combining the individual random sources of the
processors in the system to obtain a source of randomness visible
to a “large” number of the participants. We assume that each
processor has a special result register that is initially empty. During
an execution of a distributed coin flipping protocol the processor
may irreversibly write a value in the result register, indicating the
processor’s views of the outcome of the distributed coin flip. If on
termination of the execution the value v is written in the result
register of some processor p, then we say that p sees v as the

outcome of the flip. We now specify more precisely the two types
of coin flipping protocols used in the agreement protocols described
in Section 3.

Let M (for “large majority”) satisfy M = |n/2| +1+ 1. A
distributed coin flipping protocol yields a persuasive coin in an
environment (set of adversary retrictions) Z if there is an ¢ &gt; 0 such
that for every execution of the protocol

inf Pr_(atleastMcorrectprocessors see 0) = ¢

3

inf Pr, (at least M correct processors see 1) &gt; &amp;,

where .o varies over all adversary strategies satisfying restrictions
Z, and Pr, (F) is the probability that event E will hold when the
given protocol is executed with «7. The probability space is that of
all internal flips of all processors and of the adversary.

A distributed coin flipping protocol yields a global coin in
environment Z if in every execution in which the adversary satisfies
restrictions # all correct processors see the same outcome (hence
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“‘global”), and there is an ¢ &gt; 0 such that

= Pr_(outcome = 0) &gt;: ¢

nf Pr,(outcome = 1) &gt; ¢,

where the range of .«/ and probability space are as above. When the
coin flipping protocol is run by a subset of the processors in the
system, and each processor in the subset sees the same outcome, we
say that the coin is global to the subset.

Each execution of a global coin protocol yields a well-defined
outcome, while an execution of a persuasive coin need not. We
define the bias of the coin when run with adversary strategy
to be

me: {|1 — Pr (cutccme = 0),— Pr (cutcome = 1)|}.

and the bias of the coin as the supremum of this quantity over all

adversary strategies 27.
We note that when cryptographic protocols are used in a global

coin flipping protocol, it is unreasonable to expect the resulting coin
to be totally unbiased and unpredictable. This is because even
though the adversary is limited to time polynomial in the security
parameter, it may be very lucky in guessing the secret keys of
correct processors. Thus, the best one can hope for is that the
adversary can control or predict the outcome of the coin with
probability that is subpolynomial in the security parameter.

The protocols for achieving a global coin described in this section
use deterministic Byzantine agreement as a subroutine in order to
ensure that all correct processors agree on the outcome. As discussed

in Section 3.1, this approach therefore requires ¢ + 1 rounds of
communication. Broder and Dolev [BD84] showed that in the worst
case one could do no better. That is, they proved that any t-resilient
protocol to achieve a global coin requires at least ¢ + 1 rounds of
communication in the worst case. Their technique is essentially the
same as that of Dolev and Strong [DS82], discussed in Section 3.1.
This lower bound may at first glance be interpreted as implying
that a protocol for a distributed coin cannot be used to expedite
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Byzantine agreement. However, the lower bound does not apply to
persuasive coins, and indeed these can be achieved much more

quickly.
In fact, the global coin protocol may be used inside a committee

in a Bracha construction. Because the committees are small

[O(log n) in [Br85], and O(log logn) in [DSS86]] the time needed to
obtain coins global to the committees is also small. Only one
additional round of communication is needed to combine the coins
global to the committees to obtain a persuasive coin for the entire

system.
A final important point is the independence of coins global to

different subsets. This notion is crucial, for example, in imple-
menting Bracha’s protocol, although it was generally overlooked in
many of the original papers. To see this, consider two good com-
mittees in the network. Suppose the two committees run instances
of a global coin flipping protocol (global to each committee respec-
tively) concurrently. Denote the two outcomes by C, and C,. Let us
assume that the global coin flipping protocol produces perfect
inbiased coins. Even so, it may be the case that C, is always equal
0 1 — C,, without contradicting the fact that each coin is perfectly
anbiased. One solution to this problem is to serialize: first obtain C,
and then obtain C,. However, serializing is a costly solution in
ierms of time and would render the protocol of Bracha very slow.
as there are O(n?) committees. What is required is a mechanism for
ensuring that concurrent executions of coin flips, global to the
various committees, are mutually independent, or at least “almost
mutually independent.” We do not attempt to present a formal
definition ofthis last notion, but will examine it when discussing the
various global coin flipping protocols.

4.2. Persuasive Coins

Ben-Or’s Byzantine agreement protocol discussed in Section 3.2
obtains a persuasive coin by having all the correct processors
fAip their private coins independently. As mentioned earlier, the
expected time to achieve a visible flip with constant bias (&lt; 1) in
this protocol is O(1) only if1= O(/n).

In this section we discuss a protocol of Dwork, Shmoys, and
Stockmeyer [DSS86] for achieving a constant bias persuasive coin
in O(l) expected time provided ¢ &lt; cn/logn for a particular
constant ¢. Applying this technique to Rabin’s or Ben-Or’s protocol
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yields an O(n/logn)-resilient agreement algorithm with constant
expected running time. Like Ben-Or’s protocol, the protocol of
Dwork, Shmoys, and Stockmeyer can tolerate a linear number of
faults at the cost of exponential time. However, applying a vari-
ation of Bracha’s construction to their agreement protocol yields a
linearly resilient protocol that requires only O(loglogn) expected
time.

[DSS8&amp;6] actually contains three protocols for achieving a persua-
sive coin, a basic coin protocol and two strengthened versions,
designed to handle different types of adversaries (see Appendix I).
We discuss only the basic protocol.

The basic coin protocol is designed to tolerate the lock-step
adversary with erasing. In this model the adversary is divided into
three parts. At each round r of computation the first part produces
a set F, of processors to be made faulty in round r. The second
part produces the (potentially malicious) messages to be sent by
processors in F,. The first and second parts are independent of
the round r messages of the correct processors (hence, “lock-
step”). The third part, called the eraser, is then given the round r
messages of the correct processors, and it produces a subset of F,’s
messages to be erased. Without the eraser, this model would be the
weakly dynamic model without rushing. The eraser is introduced
because proving that the basic persuasive coin alogirithm is correct
with the eraser facilitates correctness proofs for the two stronger
adversaries.

ALGORITHM DSS Basic PERSUASIVE COIN

Algorithm for processor p;:

Randomly choose an integer value v; uniformly between 1
and n* and choose a random bit 5,.
Broadcast (v,, b;) to all processors.
Compute the outcome of the coin:
3.1. Let V be the multiset of values received from all pro-

cessors (including p,;). If any value occurs more than
once in V, then remove all occurrences of that value
from V.

Let W be the values remaining in V, let w,,...,w,, be
the members of W sorted in increasing order, and let
Ww... = Ww + nt.
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$3. Find the j with 1 &lt;j&lt;m such that w,,—w, is
maximized; if there are several such j’s then pick the
smallest. We refer to this (w;,w;,,) as the maximum
gap of W with left endpoint w; and size w; | — w;.
Let p, be the processor that sent value w; ( p, is uniquely
defined because duplicate values were removed from
V'). We say that p, is the leader chosen by p;. The value
of p,’s coin is the bit b, sent by p, to p;.

The basic persuasive coin protocol works by selecting a “leader”
among the n processors and taking as the value of the coin the bit
chosen by the leader. Because the bit is chosen and broadcast by the
leader before the processor is actually made leader, the adversary
can corrupt the leader’s bit only by arranging for a faulty processor
‘0 become leader.

Consider a single execution of the protocol. This consists of one
round of communication. Let F be the set of processors faulty in
this round, and let G (for Good) be the complement of F. Let the
random variable CORRECT GAP be defined as the maximum gap
between the values v; of processors p; € G. (For more details, see
steps 3.2 and 3.3 of the basic persuasive coin protocol. CORRECT
GAP is computed from the values of processors in G exactly as the
maximum gap is computed from the values W). The position of
CORRECT GAP is its left endpoint. Note that if the adversary
lands no value in the correct gap then all correct processors choose
the same leader in Step 3.4, and this leader is a correct processor.

Let us say the position of CORRECT GAP is bad for a correct
processor p if p receives a value from a faulty processor that lies
between the endpoints of CORRECT GAP. Otherwise the position
is good for p. Once again, let M = | n/2| + t + 1. One can show
that for some poisitive constant «

nf Pr, (position of CORRECT GAP is good for
at least M correct processors) = «.

where «7 varies over all lock-step with erasing adversary strategies
in which at most ¢ processors fail, and the probability space is that
of all internal flips of all processors. Note that because the variable
CORRECT GAP is defined by the values of correct processors
(those in G), erasing the value of a faulty processor does not affect
the value of this variable. The protocol therefore handles erasing
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REMARK. As mentioned in Section 3.2, the constant expected
time O(n/logn)-resilient agreement algorithm of Dwork, Shmoys,
and Stockmeyer, can be transformed into a linearly resilient agree-
ment algorithm requiring O(log logn) expected time by a variation
of Bracha’s construction ([Br85]). However, the simulation of
the lower resiliency algorithm requires that the global coins
generated by the bad committees be independent of the global coins
generated by the good committees. This is not required in Bracha’s
original algorithm. That is because in his case the lower resiliency
system was running Ben-Or’s algorithm ([Be83]), in which the
private coins of the faulty processors are irrelevant, and there-
fore need not be independent of the private coin flips of correct
Processors.

Unbiased Global Coins with No Eavesdropping

The first to study the global coin flipping problem was Yao [Y84].
Yao’s solution assumes a model in which the adversary cannot
eavesdrop, but is otherwise very powerful: computationally un-
bounded, capable of rushing, and strongly dynamic. It requires
t &lt; n/4, but can be improved to ¢ &lt; n/3 with authentication. The
protocol was designed for a synchronous system (see [Be85] for an
asynchronous version). Yao’s solution begins by partitioning the
n processors into all (5,7},) subsets of 37 + 1 processors. Because
more than two-thirds of the processors in each subset are correct,
Byzantine agreement can be run deterministically within each sub-
set without authentication. Note that at least one subset consists

solely of correct processors, regardless of when processors are
subverted. Such a subset will be called a pure subset.

First, every subset agrees on a binary value as follows. Each of
its members individually flips a coin (a prrocessor flips a separate,
independent coin for each different subset of which it is an element).
Single source Byzantine agreement is then run inside the subset of
zach of these values. (See the introduction to Section 3 for definition
of the single source version of Byzantine agreement.) Thus, as each
subset contains 3¢ + 1 processors, exactly 3¢ + 1 separate executions
of single source Byzantine agreement are run concurrently with
zach subset. Each processor in the subset computes the majority
value among the agreed on values and takes that majority value to
be the subset coin. Because the properties of single source Byzantine
agreement guarantee that all correct processors within the subset
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see the same set of 37 + 1 outcomes, all correct processors in the

subset agree on the subset coin.
The point in the protocol at which the (5 ,) subset coins are

determined is called the turning point. After the turning point each
processor in the subset broadcasts the value of the subset coin (this
is done for each subset of which the processor is a member)
Consider a particular subset S and a processor p¢S. Note that
because at least 2¢ + 1 of the 3¢ + 1 members of S are correct, the

value received by p from a majority of the members of S will be the
actual value agreed on by the members of S. Finally, the global coin
is the mod 2 sum of all (5,%,) subset coins.

Yao’s protocol has the property that once the subset’s coins have
been determined there is nothing the adversary can do to change
any of them or to prevent them from being revealed to the other
subsets. Thus, at the turning point the final outcome is determined
and irrevocable. However, because the pure subset contains no
faulty processors, and because by assumption the adversary cannot
eavesdrop on the conversations between the members of the pure
subset, the coin of the pure subset is completely unpredictable to the
adversary at the turning point.

To see that Yao’s protocol yields an absolutely unbiased coin.
one first argues that the coin of the pure subset is uniformly distri-
buted (this is easy), and that it is independent of all other subset
coins. The independence of the pure subset’s coin follows from the
fact that eavesdropping is not possible, and thus the actions of the
adversary before the turning point must be carried out with no
information about the actions of the processors in the pure subset.
Because the mod 2 sum of m &gt; 2 numbers, at least one of which

is uniformly distributed and independent of the others, is itself
uniformly distributed, absence of bias in the global coin is achieved.

A similar argument can be made to show that when many
instances of Yao’s coin flipping protocol are concurrently executed.
the resulting coins are mutually independent. Thus, when used as
the coin flipping subroutine for the committees in Bracha’s scheme.
the global coins of good committees are mutually independent.
Coins of bad committees are not required to be independent of
coins of good committees. Thus Yao’s global coin procedure satis-
fies the required conditions for Bracha’s protocol, in the model in
which the adversary cannot eavesdrop.

We remark that if t &lt; \/n/3, then Yao’s solution is readily imple-
mentable with resources that are only polynomial in n. Simply
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partition the n processors into +/n disjoint subsets of size \/n each.
The small number of faulty processors guarantees the existence of
at least one pure subset, and the rest of the analysis is identical. For
n&gt; (4 + &amp;)t (for any constant ¢ &gt; 0), Yao also obtained a non-
constructive global coin flipping protocol in which the message
complexity is only polynomial in n. It seems that Yao employs a
counting argument similar to the one used by Bracha, but we were
not able to obtain further details of this version.

The pattern of coin generation where there is a turning point, just
before which the coin is completely determined but its value is
unpredictable to all processors, and after which the value is revealed
to all, regardless of the actions of the faulty processors, appears in
other coin flipping schemes.

1.4. Subtleties in Cryptographic Solutions
to the Global Coin Flipping Problem

in recent years much progress has been made in the area of the

cryptographic protocol design. Nevertheless, the design of efficient
and provably correct cryptographic protocols is still largely an
art, rather than a routine task. This is certainly the case in the

ricky Byzantine environment. Often, unspecified assumptions
about the behavior of faulty processors, implicitly used during
protocol design, are later found to be violated, leading to the
“breaking” of the protocol. However, if all assumptions and details
of the model are explicitly specified, it is possible to rigorously
prove the correctness of cryptographic protocols. Such proof
should be in the form of a reduction. Specifically, one shows that,
under the assumption that the adversary can break the protocol, the
adversary can be used in a simulation of the protocol to efficiently
solve the underlying intractable problem. In this section, we demon-
strate some common traps in naive employment of cryptographic
techniques by means of a simple-minded example particularly
relevant to coin flipping protocols.

Suppose two participants a and b wish to commit themselves to
secret binary values, and later, after the secret values are establised,
to reveal these values. Their “global coin” will be the mod 2 sum
of their individual values. One method that comes to mind is that

a and b will first publish their own public encryption keys E, and
E,, then publish E,(v,) and E,(v,), thus establishing the secrets,
and lastly announce v, and v, by publishing the corresponding
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decryption keys D, and D,. The idea behind such a protocol is that.
with a good encryption scheme, each private value is established by,
but unpredictable from, its encryption, and thus v, and v, should be
independent. One obvious problem with the scheme is that a faulty
processor may refuse to decrypt. Suppose a decrypts first. If b does
not like the value of the final outcome, and therefore refuses to
decrypt, then b’s action biases the coin. Even if there is some
mechanism that forces 4 to decrypt, problems remain.

Suppose, for example, that rushing is possible, and b simply
replays, or mimics a’s actions: First, b publishes the same encryp-
tion key as a does, then it publishes the same encrypted value, and
lastly it “decrypts” the same way. The protocol is not violated, but
v, and v,, being identical, are in no way independent (their sum
mod 2 is always 0). In more complicated situations, one cannot rule
out the possibility that a faulty processor, after seeing the encryp-
tion keys E,,..., E,_, of correct processors, will come up with an
encryption key E, with the property that for any values
E(v,),...,E,_,(v,_,), the faulty processor can find E,(v,) so that
u, satisfies some desired relation with the values v,,...,v, , (be
equal to their exclusive-or, for example).

In the above examples messages were encrypted with the public
keys of the senders. However, difficulties are also encountered if one
encrypts messages with the receiver’s public key. To see this.
consider a system of n processors. Each processor chooses a bit, and

breaks this bit into shares using Shamir’s secret sharing technique
(see Appendix II). The shares are then encrypted in the receivers’
public keys and broadcast throughout the network. In the next
round all correct processors release their decryption keys, and the
shares are decrypted. Any processor found to have created its
shares incorrectly is disqualified. The intent here is that any set of
t + 1 processors can reconstruct the bit of any processor, so a faulty

processor cannot prevent its bit from becoming known (in the
language of the simple minded example, the faulty processors are
forced to decrypt). Once again, the value of the coin will be the mod
2 sum of all the constructed bits. What goes wrong here is that a
faulty processor can, for example, send good shares of a secret to
all but one process, a collaborator. Once the secrets of the correct
processors are known the collaborator can choose whether or not
to reveal the bad share.

The underlying problem in the above examples is one of forcing
the adversary to choose and reveal its values independently of the
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values chosen by the correct processors. Some attempts to deal with
this problem in full generality are described in Section 4.7.

1.0. Subpolynomially Biased Global Coins

In this section we discuss cryptographic protocols for achieving
a global coin whose bias is subpolynomial in the security parameter
of the system. All these protocols assume a computationally
bounded, eavesdropping adversary, although complete specifi-
cation of the adversary was not always given. We also discuss the
applicability of these protocols when used to obtain coins global to
the committees of the Bracha protocol.

The first cryptographic solution to the coin flipping protocol was
proposed by Broder and Dolev [BD84]. Their solution is based on
a beautiful idea of combining secret sharing with deterministic
encryption schemes (specifically, they suggested high exponent
RSA encryption [RSA78], defined in Appendix II). The protocol
requires t &lt; n/3 in the absence of an authentication mechanism,
t &lt; n/2 otherwise. The basic idea is that each processor p of a
special set of t + 1 processors independently picks a binary value
¢,, and breaks it into n pieces ¢,;,¢C,,---,C,, using Shamir’s
scheme with threshold ¢. The ith piece is sent to the ith processor,

encrypted under its public key E, [that is, p sends E;(c, ;) to i]. Single
source Byzantine agreement is run on each of the E; and the
encrypted pieces. This is the turning point. At this point faulty
processors know nothing about the value of any correct processor,
having access only to ¢ pieces of each value. After the turning point,
all processors reveal their decryption keys. As at least ¢ + 1 correct
processors will reveal their keys, the secret ¢, and the rest of the
pieces can be reconstructed. (It follows from Shamir’s shared secret
construction that any collection of ¢ + 1 pieces not only allows the
reconstruction of the secret, but also the reconstruction of the
remaining n — t — 1 pieces.) Finally, because each encryption func-

tion E is deterministic, one can check, given x and E( y), whether
x = y. Thus, given ¢ + 1 pieces, it is possible to verify that the rest
of the pieces were correctly encrypted.

The coins of processors found to deviate from the scheme are
ignored. The global coin is the mod 2 sum of all the remaining c,.
The following intuitive argument suggests that the resulting global
coin is at most subpolynomially biased: as the actions of faulty
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processors before the turning point cannot depend on the bit of the
correct processor, ignoring the values of processors known to be
bad does not bias the coin. With ¢, picked independently of the rest.
the mod 2 sum ought to be unbiased.

To prove the correctness of their protocol, Broder and Dolev
make strong assumptions about the existence of certain families
of deterministic public key cryptosystems. They do not prove
that RSA with high exponent satisfies these assumptions. In fact,
Hastad [Ha85)] demonstrated that if the protocol of [BD84] is run
with sufficiently low exponent RSA, then the adversary can deter-
mine the values of correct processors before the turning point, and
thus can predict the final outcome of the coin. While Hastad’s
method is not sufficient for high exponent RSA, and thus does
not directly imply that the scheme is insecure for high exponent
RSA, we do not believe that high exponent RSA has the desired

properties.
In addition, Broder and Dolev were not able to give a correctness

proof for their protocol in the form of a reduction as discussed in
the previous section. Indeed, Chor [C85] later observed that if the
adversary can rush, then by replaying, it is possible to completely
bias the coin (the flavor of this attack is similar to those discussed
in the previous section).

The next development in the field was a cryptographic coin
flipping protocol of Awerbuch, Blum, Chor, Goldwasser, and Micali
[ABCGMSS5], which requires ¢ &lt; n/3 in the absence of authenti-
cation, t &lt; n/2 otherwise. (As we will see in Section 6, if 1 &gt; n/2 then
no coin flipping protocol with a bias subpolynomial in the security
parameter can be achieved.) The unauthenticated version of the
protocol requires only the assumption that some trapdoor function
exist. Both versions are similar to the coin flipping protocol of Yao,
described above. The intent was to use cryptography to handle

eavesdropping.
The authenticated version of the Awerbuch, Blum, Chor,

Goldwasser, and Micali protocol starts by partitioning the »
processors into all (,},) subsets of # + 1 processors. In each such
subset there is at least one correct processor; moreover, at least one

subset is pure, in that it contains no faulty processor. In every
subset, the lexicographically first processor is called the sender. and
the other ¢ processors are called inspectors. A correct processor
plays these roles separately and independently for every distinct
subset of which it is a member. Again. the general scheme is to have
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every subset flip its own coin, and to then take the mod 2 sum of
all (,7,) coins as the global coin.

The protocol for every subset consists of a preprocessing stage
and a coin-flipping stage. In the preprocessing stage, the sender and
every inspector generate (randomly and independently for every
subset) an instance (encryption—decryption pair) of a probabilistic
encryption scheme. Single source Byzantine agreement is then run
among all n processors on each of the encryption keys E;, where
| &lt;i&lt; n With the sender as the source, single source Byzantine
agreement is run among all processors on the t-encrypted messages

Eyx(Dy),...,E, (D)). Note that E;(D,) is the encryption of D,,
the decryption key for the sender, in the encryption key of the
inspector j. Thus inspector j can actually check that E,/D, is a valid
encryption/decryption pair. At the third and last step of preprocess-
ing, each inspector performs this check. If the pair is not valid the
inspector protests. By running multiple copies of single source
Byzantine agreement concurrently, the whole network gets the
same view of the protests. In case the last agreement indicates a
protest (whether justified or not), the subset is cancelied. Thus a
faulty inspector can cause cancellation even if the sender is correct.
However, the subset containing only correct processors will never
be cancelled.

At the first step of the coin flipping stage, each sender randomly
chooses a binary value C, and encrypts this under its public-key, FE,.
Single source Byzantine agreement is then run in the whole network
on the encrypted value E,(C,). This is the turning point. After this
point, every processor releases all decryption keys it holds. The
value of the coin of an uncancelled subset is found by decrypting the
sender’s encrypted value (and taking some default if this encrypted
value is neither 0 nor 1). Because every uncancelled subset contains
at least one correct processor who has not protested, it must be the
case that the coin of every uncancelled sender is decrypted after the

turning point.
Again, this coin flipping protocol is built around the notion ot a

curning point. Most of the work is done before the turning point.
At the turning point the coin is already determined, but its value is
unpredictable to the adversary. After the turning point, the coin is
revealed in one round, simply by having all (correct) processors
broadcast all the information they hold. No Byzantine agreement
is needed here—the protocol guarantees consistency of the values
computed locally by the different processors.
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In their paper, [ABCGMS85] rigorously prove that the coin of the
pure subset is unpredictable to the adversary before the turning
point. Since the various actions of any correct processor in different
subsets are independent, this argument can be used to show that the
bit of the pure subset is ‘sufficiently independent” of other subsets’
bits to give a subpolynomially biased coin. A similar argument can
be made to show that global coins of different good committees are
sufficiently independent, even if produced concurrently. Thus, this
global coin flipping procedure can be used to implement Bracha’s
protocol in the presence of an adversary that can eavesdrop and
rush, but is computationally bounded.

The property that the coin can be prepared in advance and then
released in “‘one shot” actually enables the time-shared preparation
of many independent coins, which can then be released one per
round. Thus preprocessing can substantially decrease per coin
preparation time. This idea was used in Ben-Or’s asynchronous
version of Bracha’s protocol [Be85]. Taking it one step further,
Feldman and Micali [FM85] eliminated the need to prepare many
independent coins in advance. Instead, they proposed the use of a
coin that is based on a cryptographically strong pseudorandom
sequence generator (see Appendix II). As in [ABCGMS3], each
committee is again divided into subsets, and each subset has a
unique sender and a set of inspectors. The basic idea is that in each
subset the sender chooses a trapdoor permutation g and encrypts
the trapdoor information associated with g in the public keys of
cach of the inspectors. Single source Byzantine agreement is then
run throughout the committee on g, a random seed s in the domain

of g, and the encryptions of the trapdoor information. Inspectors
again have the opportunity to protest. In a good committee, every
subset contains at least one correct processor, thus if no processor

protests at least one processor in the subset will be able to compute
the sequence s, g7'(s),g7%(s),...,2 '(s)... . The pseudorandom
bits to be used as the subset coins are obtained from this sequence
This method enables every processor in the subset (of which there
is at least a single correct one) to send the subset coins (one at a
time) and to convince all processors of their validity, without
necessitating expensive agreements. The preprocessing time required
to set up the generators is proportional to the size of the committee
because deterministic single source Byzantine agreement is used as a
subroutine.
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3.“= Polynomially Biased Global Coins

In Sections 4.3 and 4.5 we discussed various protocols for achiev-
ing a global coin without bias or with a subpolynomially small bias.
[n particular, two such protocols were described that require
communication exponential in the size of the subset to which the
coin is global. As explained, this complexity is acceptable for
implementing Bracha’s protocol with committees of size O(logn),
but prohibitive for larger committee sizes. In this section we
describe a result of Broder [B85] that achieves an approximate
solution to the global coin flipping problem. Informally, given a
desired bias e, Broder’s protocol requires communication at most
polynomial in ¢~' and runs in time O(n). Since Bracha’s protocol
can tolerate a small bias in the coins of good committees, this
performance makes it a potential candidate for implementing Bra-
cha’s protocol for larger committee sizes. (As usual, small bias is
only a necessary condition, and the issue of independence should
also be considered.)

Broder’s protocol assumes the existence of a trapdoor function.
It tolerates ¢ &lt; n/3 faults without authentication, ¢ &lt; n/2 faults
otherwise. The protocol is based on the idea of taking as the value
of the global coin the majority of binary values that are themselves
the exclusive-or of individual coins. The structure of Broder’s

protocol closely resembles the structure of the protocol of Broder
and Dolev [BD84], but circumvents the need to have a scheme
where it is possible to verify, given E(x) and y, whether x = y.
Instead, Broder proposes that each processor p distribute the pieces
of the secret coin using probabilistic encryption. Verification that p
correctly encrypted its pieces is achieved (with high probability) as
follows. Each processor p actually encrypts pieces of many different
coins ¢, ¢,, ..., ¢,. Each other processor is allowed to request r of

these coins to be revealed (all shares decrypted), for a suitable
choice of r. If p is caught deviating from the protocol of any of these
coins, then p is “erased,” and ignored for the rest of the protocol.
If no fault is found, the probability that many undisclosed c; were
improper is small. This now is the turning point. After it, all
(correct) processors broadcast all the information they hold. The
undisclosed coins are renumbered, from 1 to m — nr. Undisclosed

coins ¢{,¢s,...,C,_, are recovered from their pieces. A default
value is taken if inconsistent pieces were found. This might be under
the control of the faulty processors, but the disclosure procedure



Randomization in Byzantine Agreement 185

ensures that any processor publishing a large number of coins with
inconsistent pieces will be caught. Thus the probability that many
inconsistent pieces will be found is low. The coin G;, is defined to be
the exclusive-or of all ¢/ belonging to processors that were not erased.
The majority of all G; (i = 1,2,...,n — mr) is the final coin value.

If the ¢;’s are sufficiently uncorrelated, then the adversary can
bias the outcome only by making some of the coins of faulty pro-
cessors have inconsistent pieces. The bounds calculated by Broder
require m to be @(n’ log?(¢/e)/¢*] in order to guarantee bias &lt;e.
Because all the agreements can be done concurrently, the number
of rounds is only O(¢). It is thus possible to make m large enough
that ¢ &lt; 1/N at only polynomial (in N) message complexity.

We remark that Broder’s protocol was not proved correct by a
simulation argument, and he did not address the question of
independence. However, we believe a simulation argument can be
constructed and that the scheme affords the necessary independ-
ence. Assuming this correctness, we now examine the applications
to Bracha’s protocol.

When run in the context of Bracha’s agreement protocol,
Broder’s work yields a global coin protocol for the committee
requiring communication polynomial in the number of committees,
and time linear in their size. This global coin protocol could thus be
used for the nonconstructive Bracha scheme, with committees of
size logarithmic in n. More importantly, when combined with
Alon’s explicit construction of a Bracha assignment in which the
committees have size Jn, Broder’s scheme yields an agreement
protocol with expected running time O(,/n) and requiring message
complexity polynomial in #. To our knowledge, in the model with-
out a trusted dealer, no faster explicit agreement algorithm exists
fort= O(n).

A simpler scheme. also based on majority with small number of
potentially biased inputs, was proposed by Awerbuch, Blum, Chor,
Goldwasser, and Micali [ABCGM835]. Although their solution is
much more straightforward than that of Border, it requires a
aumber of rounds that is too large to be useful in implementing
Bracha’s protocol. For this reason we omit further details.

1.7. Independence and Verifiable Secret Sharing

The problem of achieving independence in a Byzantine environ-
ment has already been raised as an important issue in coin flipping
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protocols. Several attempts have been made to deal with this question
in full generality, with mixed results ((CGMAZSS], [AGY86],
[FM86)). The first to conceptualize the problem were Chor, Gold-
wasser, Micali, and Awerbuch [CGMAR85]. They conceived of a
scheme for “verifiable” secret sharing, in which each processor
breaks its secret value into shares and then “proves” to each other
processor that the share it receives is a valid one. Unfortunately,

their protocol requires communication and computation exponential
in the resiliency ¢ (but polynomial in the security parameter). A key
part in the protocol of [CGMASS] requires that each processor p
prove to every other processor that it “knows what it is talking
about,” when it sends an encrypted value (that is, that p can print
the value), in such a way that the proof reveals nothing about the
value itself. This can be done, for example, by having processor p
supply every other processor with a zero-knowledge proof [GMR85]
that is (p) can decrypt its encryption key E,. Intuitively, such proofs
reveal no information other than the fact that p holds D,. More
efficient schemes, requiring communication and computation that
are only polynomial in n were proposed in [AGY86] and [FM86],
based on the intractability assumptions of deciding quadratic
residuosity and factoring, respectively. A general, efficient, and
conceptually simple scheme, based on any trapdoor function, was
presented by Goldreich, Micali, and Wigderson [GMWZ&amp;86], using
their result that every language in NP has a zero-knowledged
proof. This result is directly applicable to the problem of flipping a
global coin, and can be used to get a subpolynomially biased coin
in the presence of a computationally bounded, eavesdropping
adversary. However, their results cannot be used to generate the
coins inside the committees in Bracha’s protocol because these
zero-knowledge proofs must be carried out serially, one prover at
a time. This is because if proofs are carried out concurrently and the
adversary can rush, then a faulty processor might use correct
processors as oracles for providing proofs to statements it cannot
prove by itself. Recently, Chor and Rabin [CR87] introduced a
method for interleaving and alternating the various executions of
verifiable secret sharing. Their method for achieving independence
takes only O(log n) sequential executions, while requiring the same
assumptions and complexity as in [GMWS§86]. These ideas can be
used to implement the global coin on the (logn or larger size)
committees of Bracha’s protocol.
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5. LOWER BOUNDS

[n this section we discuss the few known lower bounds on random-

ized protocols for Byzantine agreement and distributed coin tossing.
We begin by examining protocols that are required to produce a
consistent decision upon termination (i.e., correct processors never

reach disagreement).
Some lower bounds on resiliency carry over from the determin-

istic case to randomized protocols by simply fixing a particular
sequence of coin tosses. Thus, for asynchronous Byzantine agree-
ment in the unauthenticated model ¢ &lt; n/3 is essential [PSL80]. For
asynchronous systems ¢ must satisfy t &lt; n/3 for both the authen-
ticated and unauthenticated Byzantine cases, while 1 &lt; n/2 is
required for the failstop and omission models [BT83]. In both cases,
for larger values of ¢, the adversary can simulate a partitioning of
the network and thus prevent agreement.

Next, we examine lower bounds on the probability that a
randomized agreement protocol will not terminate in k rounds.
where k &lt; t [K'Y84, CMS85]. These bounds are obtained by modi-
fying the lower bound argument of Dolev and Strong [DS82] for
deterministic protocols. Let g, denote the maximum probability,
over all (nonadaptive) adversarial strategies, that the protocol
does not terminate in £ rounds (k &lt; f). To prove a lower bound on
dr,» one constructs a chain of scenarios (partial specifications of
executions) with the following properties: each pair of adjacent
scenarios is indistinguishable to some processor correct in both; the
initial values force the decision in the first scenario to be 0; and a
decision of 1 is forced in the last scenario. By attaching to each
scenario the random strings corresponding to coin-flips, one gets a
complete specification of an execution. If the length of the execution
chain is at most m,, then g, must be at least m,',asotherwise
the probability of not terminating in any of the scenarios in the
chain is less than 1. In this case there must exist some particular
random string causing termination in each of the k-round exe-
cutions obtained by attaching this string to the scenarios in the
chain. The properties of the chain now force a contradiction. As
mentioned earlier, Chor, Merritt, and Shmoys have shown that for
any k &lt; t the chain of k-round scenarios given by the Dolev and
Strong proof of the t+ 1 round lower bound for deterministic
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agreement contains at most m, = 2(2[n/|t/k|1)*scenarios.This
implies ¢, = 1(2[n/|t/k|)~*[KY84,CMS85].

In addition to examining the probability of not terminating in
fewer than f rounds, Karlin and Yao [KY84] also explored how
well randomized protocols that do not use authentication can do
when t &gt; n/3. As we mentioned earlier, such protocols must some-
times violate one of the two correctness conditions of Byzantine
agreement. Karlin and Yao quantified how often such an error
will occur. Specifically, they showed that for any randomized
synchronous Byzantine agreement protocol, if no authentication
mechanism is available and ¢ &gt; n/3, then there is an adversary that
causes the protocol to fail with probability at least 1/3. Their
argument is similar to arguments for upper bounds on ¢ appearing
in the literature on deterministic protocols.

In 1986 Cleve [CI86], showed that for any 1-resilient r round coin
flipping protocol for two processors there is an adversary strategy
which causes a bias of at least Q(1/r). Interestingly, the strategy
smployed by the faulty processor is merely to stop participating at
a certain point in the protocol. The result holds even if the adver-
sary is computationally bounded. By reducing the general case to
the two processor case, Cleve showed that in any system of n

processors there is a set of [n/2|processorsthat, if faulty, could bias
the output by Q[1/poly(n,r)], where poly(n,r) is at most O(rn’r).
Cleve also gives concise formal definitions of a general model for
coin-flipping protocols.

Ben-Or and Linial [BL85] measured the influence of faulty
processors in flipping a global coin by modeling global coin flipping
as an n-person game in which each player has a source of unbiased

coins. They consider the restrictive case of multistage games. These
consist of several rounds. In each round every good processor flips
an unbiased coin, the results are all made public, and then the faulty
processors choose their values. Thus coins of faulty processors may
depend on current round coins of correct processors, but not on
future tosses. Finally, the global flip is defined by an arbitrary
function of all the individual values. In this model, Ben-Or and
Linial show that for any k, 1 &lt; k &lt; n, there will always be some set
of k players that together can bias the coin by at least Q(k/n). This
result can be interpreted, in our terminology, as implying that given
a static, computationally unbounded adversary that can eavesdrop
and rush messages, any global coin flipping protocol will have at
least a constant positive bias when ¢ is linear in n.
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6. OPEN PROBLEMS

We now mention some specific open questions

A Better upper bounds.
' Is there a (cryptographic or noncryptographic, constructive

or nonconstructive, tolerant or intolerant of eavesdropping
and rushing) linearly resilient agreement protocol that
runs in O(l) expected time and tolerates Byzantine
failures?

Constructive agreement: The fastest linearly resilient
agreement protocol known to us that is both constructive
and requires neither a trusted dealer nor preprocessing is
obtained by combining Bracha’s protocol with the explicit
construction of Alon. Its expected running time is O(/n).
Are there faster constructive protocols tolerating t = Q(n)
faults? In particular, an affirmative answer would follow
from an explicit construction of a Bracha assignment with
committees of size o(y/n).
Computationally unbounded adversary with eavesdrop-
ping: The fastest linearly resilient agreement protocol that
tolerates an eavesdropping and computationally unbounded
adversary takes O(t/logn) expected number of rounds
(synchronous model, weakly dynamic adversary) [CC84].
By contrast, in the case of a computationally bounded
adversary, the fastest linearly resilient agreement protocols
require O(loglogn) expected time without eavesdropping
{DSS86], or O(logn) with eavesdropping [Br84]. This
leaves a large gap between the expected running times for
linearly resilient agreement protocols in the computation-
ally bounded and the computationally unbounded models.

B Lower bounds: No nontrivial lower bounds for the expected
time to reach agreement are known. However, one should note

‘hat a linearlv resilient cryptographic solution is known that,
after preprocessing, requires O(1) expected time per agreement
(FM8S5].
Cryptographic coin flip: Design a linear time, linearly resilient
global coin flipping protocol tolerating a strongly dynamic,
computationally bounded, eavesdropping adversary, having
the following properties: It should have subpolynomially
small bias, coins of good committees should be (almost)
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independent, and coins of bad committees (almost) independent
of coins of good committees. This last property is needed in the
Bracha-like construction of Dwork, Shmoys, and Stockmeyer.
Noncryptographic coin flip: Consider the model with a com-
putationally unbounded adversary who can eavesdrop and
rush, and ¢ is linear in n. Either design a global coin flipping
protocol with constant bias, or prove that such a protocol does
not exist. (The lower bound of [BL85] only implies that the
bias is at least a constant #0.) For multiround protocols, the
question is open for all variants of adaptivity (static, weakly
dynamic, and strongly dynamic).

NOTE

Feldman and Micali [Optimal algorithms for Byzantine Agreement,” Proc. 17th
ACM Symp. Theory of Computing 148-161, 1988] announced a linearly resilient
Byzantine agreement protocol that runs in constant expected time.

APPENDIX 1

This appendix contains a chronologically ordered list of principal
randomized algorithms for Byzantine agreement. The salient points
of each algorithm are mentioned briefly.

Ben-Or 1983 “Another advantage of free choice: Completely
asynchronous agreement protocols.” Resiliency: ¢ &lt; n/5; expected
running time: 27 if + = @(n); O(1) with resiliency ¢ = O(/n):

adversary: strong dynamic, intrusive.
Bracha, Toueg 1983: “Resilient consensus protocols.” Resiliency:

fail-stop t &lt; n/2, unauthenticated Byzantine ¢ &lt; 1/3; expected
running time: 2°® when 1 = @(n); O(1) at resiliency t = O(n);

assumptions: probabilistic message delays; notes: probabilistic
analysis based on behavior of message system; processors themselves
are deterministic.

Rabin 1983 “Randomized Byzantine generals.” Model: unauthen-
ticated Byzantine processors, unforgeable trusted dealer; resiliency:
t &lt; n/4 (synchronous) or ¢ &lt; 1/10 (asynchronous); expected running
time: O(1); Trusted dealer precomputes secret random bits and
distributes shares to all participants. If coin is bad (different players
see different values) agreement may be delayed but disagreement
never occurs. Assumptions: unforgeable trusted dealer; adversary:
strongly dynamic.
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Bracha 1984: “An asynchronous |” |-resilient consensus
protocol.” Model: unauthenticated Byzantine processors; resiliency:
r &lt; n/3; expected running time: 2%” when t = Q(n), O(l) at
resiliency + = O(y/n); adversary: strongly dynamic.

Toueg 1984: ‘Randomized Byzantine agreements.” Model:
authenticated Byzantine processors, authenticated trusted dealer;
resiliency: t &lt; n/2 synchronously, ¢ &lt; n/3 asynchronously; expected
running time: O(1); notes: trusted dealer precomputes secret random
bits and distributes shares to all participants. Assumptions and
adversary: as in Rabin 1983.

Chor, Coan 1984: “A simple and efficient randomized Byzantine
generals protocol.” Model: unauthenticated Byzantine processors.
synchronous; resiliency: ¢t &lt; n/3; expected running time: O(t/log n);
adversary: weakly dynamic, computationally unbounded, rushing
and eavesdropping allowed.

Bracha 1985: “An O(log n) expected rounds randomized Byzantine
generals protocol.” Model: Byzantine processors, synchronous
communication; resiliency: f &lt; n/(3 + ¢) without authentication.
t &lt; n/(2 + ¢) with authentication; expected running time: O(logn)
as published, but can be improved to Ollogn/log(n/t)]; assump-
tions: processors assigned to committees according to Bracha
assignment; comments: inherits the adversary properties of the coin
flipping protocol used by the individual committees, provided
independence is guaranteed among concurrent executions of this
protocol by different good committees; adversary: computationally
unbounded, rushing without eavesdropping; or computationally
bounded, rushing with eavesdropping (assuming trapdoor func-
tions exist).

Ben-Or 1985: “Fast asynchronous Byzantine agreement.’
Model: unauthenticated Byzantine processors, asynchronous com-
munication; expected running time: Oflogn(loglogn)‘]; assump-
tions: processors assigned to committees according to a Bracha
assignment, recursively (three times): resiliency: ¢ &lt; n/7; adversary:
rushing allowed, eavesdropping forbidden. Comments: inherits the
adversary properties of the coin flipping protocol used by the
individual committees, as above.

Chor, Merritt, Shmoys 1985: “Simple constant-time consensus
protocols in realistic failure models.” Model: omission faulty
processors; resiliency: ¢ &lt; n/4 synchronously. ¢&lt; n/6 asyn-
chronously (recently improved to t &lt; n/2 and ¢ &lt; n/3. respectively);
expected running time O(1): assumptions: for some adversaries the
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existence of trapdoor functions; adversaries: weakly dynamic and
computationally unbounded or strongly dynamic but computation-
ally bounded (assuming trapdoor functions exist).

Feldman, Micali 1985: “Byzantine agreement in constant expected
time.” Model: Byzantine processors, synchronous communication;
polynomially bounded, weakly dynamic adversary (requires
intractability assumptions); resiliency: ¢ &lt; n/(2 + ¢) if authenti-
cation is available, 1 &lt; n/(3 + ¢) if otherwise; expected running
time: O(1) per agreement; comments: requires (log n) preprocessing
if starting with a Bracha assignment, at least Q(n) preprocessing
otherwise.

Dwork, Shmoys, Stockmeyer 1986: “Flipping persuasively in
constant expected time.” Model: Byzantine processors, syn-
chronous communication; tolerates rushing without eavesdropping
with computationally unbounded adversary; tolerates blocking
with computationally bounded adversary (assuming trapdoor func-
tions exist); resiliency: ¢ = O(n/logn); expected running time O(1),
needs no preprocessing; comments: can be bootstrapped via a
Bracha-like construction to yield resiliency ¢ &lt; n/(4 + ¢) and
O(loglogn) expected time agreement algorithm in the model in
which the adversary can rush but cannot eavesdrop.

APPENDIX II

[n this appendix we briefly describe some of the cryptographic
techniques used as subroutines in various randomized agreement
protocols. The descriptions are generally kept short and on the
intuitive level. Pointers to the original references are given. (In
addition, the interested reader may find an extensive survey of
modern cryptology in [Ri89].)

One-Way Functions

One-way functions [DH76] are functions that are easy to evaluate
but hard to invert. Given an x, it is easy to compute y = f(x), but
for most v it is infeasible to find any z such that y = f(2).

Trapdoor Functions

Trapdoor functions [DH76] are one-way functions that, given
additional “trapdoor information.” are easy to invert. Trapdoor
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permutations (one-to-one functions) are the basis for public-key
encryptions. The user generates an instance of the function f and
publishes it (this is the public encryption key), while keeping the
trapdoor information secret (this is the private decryption key).

As a concrete example, we describe the RSA public-key scheme
[RSA78]. The public key consists of a pair (e, N) where N = p+ gq
is the product of two large primes, and e is relatively prime to
(p — 1) (g — 1). The one-way permutationis f(x) = x° (mod N).
The secret trapdoor information is the factorization of N, which
enables the legitimate user to efficiently extract eth roots f(y) =
ve (mod N).

Probabilistic Encryption

In a deterministic encryption scheme every message x has a

unique encryption y. By contrast, in a probabilistic scheme [GM82]
every message x is encrypted by a y chosen at random from a large
set of elements satisfying a relation R(x,y). The remarkable
property of probabilistic public-key schemes is the ability to prove
very strong notions of statistical security, based on concrete com-

plexity theoretic assumptions.
As an example, consider the following scheme [GM&amp;2], which is

based on the intractability assumption of deciding quadratic
residuosity modulo composite numbers. Let N = p + g be as in the

RSA public-key encryption scheme, described above. To encrypt the
bit 0, a square modulo N is chosen at random among all N/4 squares.
To encrypt the bit 1, a nonsquare with Jacobi symbol 1 modulo N
is chosen at random among all N/4 such nonsquares. (Longer
messages are encrypted by concatenating the encryptions of indi-
vidual bits.) In both cases, it is possible to perform such a choice
efficiently. Given the factorization of N, it is possible to efficiently
distinguish squares from nonsquares, and therefore to decrypt.
Other efficient probabilistic public-key schemes, based on the intract-
ability of factoring or inverting RSA appear in [ACGS84, BG85].

Authentication

An authentication mechanism enables a user A to send unforge-
able messages to user B so that, when relayed to a third party C, the
message is recognized bv C as one originating from 4. One possible
mechanism for authentication uses ‘digital signatures’’ based on
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trapdoor onto functions [DH76): to authenticate a message y, user
4 “signs” it by publishing x = f(y), where f, is user 4’s trapdoor
function that only 4 can invert. Thus, without the secret trapdoor
information, it is hard to forge messages (compute f,'), but it is
easy to verify that a message is properly signed (compute f,).

Probabilistic methods for digital signatures have also been pro-
posed [GMY83, GMRR4]. In particular, [GMR84] presents a scheme
for which, under the assumption that factoring is intractable, it is
provably hard for a computationally bounded adversary to forge
any additional message even if first supplied with the legitimate
signatures of polynomially many messages chosen by the adversary.
This is a much stronger requirement that just infeasibility of forg-
ing. Such a scheme is particularly valuable in Byzantine agreement
protocol in which processors are required to sign any message they
have received in previous rounds (such as the protocol of [PSL80}).

Cryptographically Secure Pseudorandom Sequence Generators

These are deterministic algorithms that, when given as input a
short random sequence of k bits called the seed, generate a longer,
pseudorandom sequence of £¢ bits (where ¢ &gt; 1 is any constant).
The set of 2* pseudorandom sequences cannot be distinguished by
any polynomial-time statistical test (polynomial in k) from the
much larger set of all 2¥ sequences of length k“ [BM84, Y82]. In
particular, if the seed is hidden, then the next bit in the output
sequence cannot be predicted by any probabilistic polynomial time
protocol with probability polynomially better than 1/2, given any
initial prefix of the sequence.

Under suitable complexity theoretic assumptions, it is possible
to design provably secure generators of this type. Efficient gener-
ators were designed assuming the intractability of computing
discrete logarithms modulo a prime [BM84], of deciding quadratic
residuosity modulo a composite number [BBS82], and of factoring
or inverting RSA [ACGB84]. Yao [Y82] and Levin [L85] have made
progress towards showing that the existence of one-way functions
is a necessary and sufficient condition for generating pseudorandom
sequences.

Secret Sharing

This is a method for a sender (the ““dealer”) to split a secret s into
pieces. in such a way that no collection of 7 pieces gives any1
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information about the secret 5, but any collection of t + 1 pieces can
be used to efficiently reconstruct the secret. We describe the follow-
ing method for secret sharing [Sh79], assuming p is a prime satisfy-
ing p &gt; n, and the secret s is an integer 0 &lt; 5s &lt; p — 1. The dealer

chooses a random polynomial P(x) of degree ¢ such that P(0) = s.
The piece of the secret sent by the dealer to each player i is the value
of the polynomial at the point i, P(i), where 1 &lt;i &lt; n. We remark
that the correctness of this scheme is not based on any unproved
complexity theoretic assumptions.
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BIASED COINS AND

RANDOMIZED ALGORITHMS

N. Alon and M. O. Rabin

ABSTRACT

A slightly random source is a source of bits, where the bias of each
bit, between 1/2 + ¢ and 1/2 — ¢ for some ¢ &gt; 0, is fixed by an

adversary who has a complete knowledge of all the previous bits. We
study the properties of sequences of n consecutive bits generated by
such a source. In particular we show that for most subsets S of half
of the n-binary vectors, even a fixed bias ¢ &gt; 0, and arbitrarily large,
n will not enable the adversary (who knows S) to avoid it with
probability approaching 1 as n tends to infinity. Also, for every n and
every S = {0,1},]S] = 2", if&amp;&lt; 1/(24/n) then the adversary can-
not decrease the probability of landing in S below 1/6. These results
mean that for randomized algorithms such as primality testing, even
a fairly biased coin will produce good answers, without any change
in the algorithm.
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1. INTRODUCTION

Several applications, such as randomized algorithms [Ra], require
a source of fair coin flips. The available physical sources are imper-
fect. The simplest model of such an imperfect source of random bits
is a coin whose flips are independent, and each has a fixed (and
unknown) bias. von Neumann [vN] gave a simple algorithm for
generating absolutely random independent bits from such a coin.
Blum [BI] (see also Elias [El]) generalized this algorithm to the case
where the imperfect random source is an n-state Markov chain.
This algorithm, however, is not useful for very large n since it
produces bits only when states are repeated. A very general model
of an imperfect source of randomness is considered by Santha and
Vazirani [SV] and by Vazirani [V] (see also [CG, VV]). In this
model, the next bit is an output of a coin whose bias (between
1/2 + ¢ and 1/2 — ¢ for some 0 &lt; ¢ &lt; 1/2) is fixed by an adversary

who has a complete knowledge of all the previous bits. Thus the
previous bits can condition the next bit in an arbitrary bad way.
Such a source is called a slightly random source in [SV], and as is
explained in [Mu] it includes the known physical sources of ran-
domness as, e.g., zener diodes. The algorithms of [SV, V], for
extracting almost fair coin flips from such a model, use the existence
of at least two independent slightly random sources. It is not clear
at all that such an assumption is practical. The bad behavior of the
sources might arise from the environment’s influence and then the
sources influence each other. On the other hand, it is trivial to show
that no such algorithm that uses a single slightly random source
exists. Thus it is interesting to check the properties of a single
slightly random source. In this chapter we show that under reason-
able assumptions n consecutive output bits of a single slightly
random source form a “reasonable random’ x-binary vector. In a

typical randomized algorithm (such as the known primality test
algorithms see [Ra]), we choose randomly an » vector and we

succeed if this vector corresponds to a “witness”. Suppose that the
set of witnesses S forms a constant fraction ¢ (0 &lt; ¢ &lt; 1) of all 2"
possible vectors. Our first observation is that if e(n) = d//n, then
even an adversary who tries to avoid S and chooses the bias of every
flip between 1/2 — e(n) to 1/2 + &amp;(n) has a probability f(c,d) &gt; 0
(independent of n) of getting an n vector in S. This result is sharp.

More surprising is our second result, which shows that under the
‘plausible) assumption that the set .S of witnesses is a random set.
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even fixed bias ¢ &gt; 0 and arbitrarily large » will not enable the
adversary (who knows S) to avoid it with probability —1 as» — co.
Thus, for example, if¢= 0.05 and #n is large, then for almost every
subset Sof the set of all 2” binary vectors, an adversary who knows
S and tries to avoid it by choosing the bias of each of his coin flips
between 1/2 — ¢ to 1/2 + ¢ (taking into account the results of the

previous flips), will get a vector of S with probability &gt; 1/4.
Therefore, for almost all sets S, a weakly random source is reason-
ible, even under adversary assumptions.

Very recently, Vazirani and Vazirani [VV] (see also [CG] for
some extensions) have found a clever algorithm that works for
every set S of c+2" witnesses in the following sense. In the
algorithm, a single slightly random source is used to produce a large
polynomial number of n-vectors, at least one of which belongs to S
with probability f(c¢) &gt; 0 (independent of n).

In the present chapter we do not discuss possible algorithms to
obtain witnesses with high probability, but rather study the proper-
ties of the bits produced directly by a single weakly random source.
We believe that this supplies a better understanding of the behavior
of such a source. Moreover, in our approach (unlike in the more

sophisticated algorithms of [VV,CG]) we need only rn slightly
random bits to produce an » bit number, and we do not need any
xtra space.

The chapter is organized as follows. In Section 2 we find, for
zvery bias 0 &lt; ¢ &lt; 1/2, for every n, and for every 0 &lt; k &lt; 2", the
“worst possible” set S of n-vectors of cardinality k. In Section 3 we
consider random sets S. Section 4 contains some concluding
remarks.

.. THE EXTREMAL CASE

We begin with some notation. For n &gt; 1 let N = N(n) denote the
set of all binary vectors of length n. For 0 &lt; e &lt; 1/2, let F(n,¢) be
the following set of strategies F for choosing a binary vector
(xX, Xy,...,X,)eN. x,€{0,1} is chosen according to the probability
distribution Prob(x, = 0) = p, = p,(F) where 1/2 —e &lt;p, &lt;

1/2 + ¢. (The value of p, is determined by the strategy F.) For every
given binary values of x,,...,x,_;, x;€{0, 1} is chosen according
to the probability distribution Prob(x; = 0) = p,, where p, =

0,(F,x,,...,x,_,) satisfies 1/2 —e &lt;p, &lt; 1/2 + ¢



1? N. ALON and M. O. RABIN

Let S be a set of binary vectors of length n. Define P(S,¢) =

MingripPTOD{(X),Xo,.0,X,)ES;(X),X35,..,X,,)ischosenaccord-
ing to F}. Thus P(S,¢) is the minimal possible probability of a
binary vector to be in S if it is chosen according to one of the
strategies in F(n, ¢). [That is, according to biased coin flips, each in
the range (1/2 — ¢, 1/2 + ¢), where the bias is chosen by an adversary
who knows the previous flips results, knows S, and tries to avoid it.]

Define a linear order on the set of all binary vectors of length »
as follows: Ifu= (u,,u,,...,u,),v = (v,,7,,...,0,) then u &lt; viff

You &lt; Yr vorYl uw = Yr vyand YI u2' &lt; YL v2". Aset S
of binary vectors is called compressed if ve Sand u &gt; v &gt; ue S. It

is easy to check that if § is compressed then it contains all vectors
with at most j 0's and possibly some vectors with precisely j + 10s,
where 0 &lt;j &lt; n satisfies

3 (H)&lt;isi&lt;3(7) 2.1)

Finally, for a set S = N we denote by CS the unique compressed set
of cardinality | S|.

PROPOSITION 2.1. (i) For every 0 &lt; ¢ &lt; 1/2 and for every set S of
hinary vectors

P(S,¢) = P(CS,¢s).

(11) Suppose 0 &lt;e&lt; 1/2 and S. j satisf’ (2.1). Put r = |S}

$i_ ("). Then

P(CS.2) = ) (ar +o)(1/2 — or"

Fre(1/2 4+ (1/2 — eg)"

That is, the best adversary’s strategy to avoid CS is to bias each flip
as strongly as he can, toward 0.

Proof. The set N of all 2" binary vectors can be naturally
represented by the set of all leaves of a rooted binary tree of height
n. Each left edge represents a zero and each right edge a 1. A leaf
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corresponds to the vector arising from the edges of the unique path
from the root to the leaf. Any strategy Fe F(n,¢) is an assignment
of a pair of probabilities 1/2 —e&lt;p, g&lt;12+¢ p+qg=11to
each pair of edges that emanates from a common parent. It is easy
to check that we can assume that the adversary always chooses, for
each pair of probabilities, either p = 1/2 —¢ or p = 1/2 + ¢.

Indeed, from each parent he will prefer to go with the highest
possible probability to the child from whom he has more chances
to avoid S. Thus, we can assume that each flip is as biased as

possible.
For a vector v = (9,,9,,...,v,)€Nputp(v)=(1/2—gt=!

(1/2 4 €)V»=% If each flip is as biased as possible then the
sequence of probabilities of the leaves of our tree is clearly some
permutation of the numbers {p(v) : veN}.Thetotalprobabilityof
vectors in S is thus at least the sum of the | S| smallest numbers in
the sequence {p(v):ve N}. These numbers are, however, precisely
those whose sum is given in part (ii) of the proposition, and if S is
compressed the strategy of always preferring 0 achieves this bound.
This completes the proof. J

Since a binomial distribution can be approximated by a normal
one, one can get a very good estimate for the bound supplied by
Proposition 2.1. Thus, for example, it implies that for all fixed c.
d&gt; 0 there exists an f = f(c,d)&gt;0 such that if S&lt; N.
'S| = c+2"ande = e(n) = d//nthen P(S,e) &gt; P(CS,¢) &gt; f. On
the other hand if¢ = ¢(n) = dg(n)//n where g(n) — oo arbitrarily
slowly it is easy to check that lim, P[CS,e(n)] = 0.

As a special case we mention that if | S| = 1/22", &amp; = ¢(n) =

1/(2+/n) then the normal approximation gives that P(S.&amp;) &gt; 1/6

REMARK 2.2. The assertion of Proposition 2.1 can be easily
generalized to the case of a random “dice” (1 &gt; 2 possible results at
cach flip). This can be used to improve some of the results of [TRV].
We omit the details.

2 THE RANDOM CASE

[n this section we show that for a random subset S of binary vectors
of length n, even a fixed bias ¢ &gt; 0 and arbitrarily large n will not
enable the adversary, who knows S. to avoid it with probability — 1
AS 1 — OO).
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Let S be a random subset of N. That is, each ve N is in § with
probability 1/2, independently. For each 0 &lt; ¢ &lt; 1/2, P(S, ¢) is now
a random variable (on the space of all possible 2” subsets 5). Let
E = E, = E[P(S,¢)lando = 0,, = o[P(S,¢)] denote the expected

value and the standard deviation of P(S,¢).

THEOREM 3.1. For every ¢ &gt; 0 that satisfies 1/2 + 26% + 2e&lt; |
and for every n:

 |Erez51 AE)1/2 + 26%+2¢

5, ~ 1/2(1/2 + 262 + 2¢)"?

Thus, for example, if¢= 0.05 then E,, &gt; 1/3 and 0,, &lt; (0.78)".
Hence, by Chebyshev’s inequality [F, p. 219], for random S &lt; N(n),
the probability that P(S,¢) is smaller than 0.3 is at most
(0.03)2 + (0.78)*". That is, almost for every S, P(S,¢) &gt; 0.3.

To prove our theorem we need some preparations and a prob-
abilistic lemma.

For a given set S and a given ¢, one can easily convince himself
that P(S,¢) can be computed as follows: Let T be a binary tree of
depth n whose leaves correspond naturally to the binary vectors of
length nn. Label a leaf corresponding to a vector » by 0 if v¢ S and
by 1 if ve S. Now label, recursively, each parent f of the already
labeled children s,, 5, with the following real number: Suppose
s; is labeled by r;, then the label of fis (1/2 + &amp;)min(r,,r,) +
(1/2 — e)max(r,,r,). One can check that the label of the root is
P(S,¢). In Figure 1 we have an example ofn= 3, § = {000, 001,
011, 111}, ¢ = 0.1). Here P(S,¢) = 0.352.

Suppose now that S is a random set of vectors in N(n). We have
to estimate the expected value and the standard deviation of the
random variable P(S,¢). We need the following lemma.

LEMMA 3.2. Let X,, X, be two independent random variables
cach with expected value E and standard deviation o. Put

Y = (1/2 + &amp;)min(X,, X;) + (1/2 — ey max (X,, X3)

XY tax — xX
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0.352 =0.6-0.16+0.4-0.64

{0.64 =04-1+06"04 N0.16 = 0.4 0.4

Then

E(Y)&gt; E—\/2¢o

HY) /1/2 + 26° + 2¢e0

Fioure 1.

3.1)

(3.2)

Proof. By Jensen’s inequality E(| X, — X,|)* &lt; (E| X, — X,|)
However, E(] X, — X, |)? = E[(X, — X,)] — [BEX — XP =

Var(X, — X,) = 20”. Hence E| X; — X,| &lt; \/20 and (3.1) follows
To prove (3.2) we compute 6*(Y) = Var(Y) = E(Y?) — [E(Y)]

Var(Y) = 1/4 Var(X, + X,) + &amp;2Var| X, — X,|

FelE(XX, + X,) El X, — X,| — E[(X, + X))|X,—X,]}

&lt; 126% + 26%? + e{E(X, + X,)E| X, — X,|

El(X, + X,) |X, — X,11}.

For every two random variables Z, T, | E(Z) E(T) — E(ZT)| &lt;
Var Z./Var T. [This is the well-known fact that the correlation
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constant is, in absolute value, at most 1, or can be derived by
applying Cauchy-Schwarz inequality to obtain {E[(Z — EZ)
(T — ET))}* &lt; E(Z — EZ)'E(T — ET)*.] Applying this to Z =

X, + X,, T = |X, — X,| we conclude that

EX, +X) El X, — X,| — E[(X, + X3) |X, — X;|]

JVar(X, + X,) - Var| X, — X,| &lt; /4o* = 25

Hence Var(Y) &lt; (1/2 + 2&amp;2 + 2¢) ¢? and (3.2) follows. L

Consider now the random variable P(S,¢) when S is chosen
randomly. Define a sequence of random variables Xj, X,, ..., X, as
follows. Prob(X, = 0) = 1/2, Prob(X; = 1) = 1/2. For i&gt; 0,

X.,, is obtained from X; as follows: let Z,, Z, be two independent
random variables having the probability distribution of X; and put
X., = (1/2+¢)min(Z,,Z,)+(1/2— ey max(Z,, Z,). Clearly X, is
the random variable P(S,¢). Since E(X,) = o(X;) = 1/2 repeated
application of Lemma 3.2 implies

EX) &gt;: E(X,) — J2e—— — ——0(X(x) (Xo) VE srt 0)

1/2{1 — J/2¢/[1 — (1/2 + 26% + 2¢)*]}

5X.) &lt; (1/2 + 262 + 26)"6(X,) = 1/2(1)2 + 26% + 2¢)™"

[his proves Theorem 3.1. |

{t is worth noting that we can slightly improve our bounds to
show that E &gt; 0 provided 1/2 + 2&amp;2 + 2¢ &lt; 1. We omit the details.

CONCLUDING REMARKS

We have shown that under reasonable assumptions the output bits
of a single weakly random source are reasonably random. Thus,
e.g., by the observation of Section 2, a 1/2 + (1/2,/900) = 1/2 + 160
biased coin is reasonably good, even under adversary assumptions,
for checking primality of a 900-bit number using the randomized
algorithm of [Ra]. Under the (plausible) assumption that the set of



Biased Coins and Randomized Algorithms re

RE

witnesses 1s random, even a much worse coin is sufficient, by the
results of Section 3.

It would be interesting to decide if E,, defined in Section 3 is
hounded away from 0 for every fixed ¢ &gt; 0.
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