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Abstract

Recent advances in the understanding of neural networks suggest that super-
position, the ability of a single neuron to represent multiple features simultane-
ously, is a key mechanism underlying the computational efficiency of large-scale
networks. This paper explores the theoretical foundations of computing in su-
perposition, focusing on explicit, provably correct algorithms and their efficiency.

We present the first lower bounds showing that for a broad class of prob-
lems, including permutations and pairwise logical operations, a neural net-
work computing in superposition requires at least Ω(m′ logm′) parameters and
Ω(

√
m′ logm′) neurons, where m′ is the number of output features being com-

puted. This implies that any “lottery ticket” sparse sub-network must have at
least Ω(m′ logm′) parameters no matter what the initial dense network size.
Conversely, we show a nearly tight upper bound: logical operations like pair-
wise AND can be computed using O(

√
m′ logm′) neurons and O(m′ log2 m′)

parameters. There is thus an exponential gap between computing in superposi-
tion, the subject of this work, and representing features in superposition, which
can require as little as O(logm′) neurons based on the Johnson-Lindenstrauss
Lemma.

Our hope is that our results open a path for using complexity theoretic
techniques in neural network interpretability research.

1 Introduction

A collection of groundbreaking publications [5, 8, 19, 23] by researchers at An-
thropic present compelling evidence that features, functions applied to the input
to recognize specific properties, are a fundamental computational unit of neu-
ral networks. It is also believed that superposition [3, 7], the computational
phenomenon allowing a single neuron to fire as part of a polysemantic rep-
resentation [23, 25] of many different features, is key to how neural networks
compute [8]. This is in contrast to monosemantic representations, where each
neuron only represents a single feature. There has recently been exciting work
on the problem of taking a trained neural network, and extracting the monose-
mantic features from the superposed representations of the network [5, 8, 23].
This has been primarily driven by safety considerations, since being able to un-
derstand the features being computed by a neural network is crucial in order to
understand the logic being used.
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It has been suggested that because the set of features that are active at any
given time is very small relative to the total number of features, superposition
allows the network to represent the current state of a computation much more
efficiently [8]. Superposition can be thought of as a compressed representation
of the current state, and this more succinct representation allows the neural
network to represent many more features than it has neurons. Furthermore, by
doing superposition the right way, the neural network performs computation in
that superposed representation. It is conjectured that computing in superpo-
sition is important from an efficiency perspective since the work on extracting
features seems to indicate that large neural networks use sets of at least hundreds
of millions of features and quite likely orders of magnitude more than that [23],
and so inference in the non-compressed form would require tremendous compu-
tational resources [8, 19]. The superposed representation of the neural network
provides compression, much greater computational efficiency and also lends it-
self well to all of the GPU optimizations that have made the AI revolution
possible.

In this work, we address the question of whether it is possible to design
explicit and provably correct algorithms for computing in superposition, and
how efficient can such algorithms be? Our primary measure of efficiency is
the level of superposition achievable: given a set of features to be computed,
what is the minimum number neurons required to perform that computation in
superposition, and how many parameters do those neurons require? Our work
here is inspired by the important work of Vaintrob, Mendel, and Hänni in [24],
that suggests the problem and shows a way of computing a k-AND circuit using
a single layer of a neural network in partial superposition. We will elaborate on
how we build and expand on this work in the related work section.

The superposition question is central to understanding how real trained neu-
ral networks compute. It also enables us to prove upper and lower bounds on
the efficiency of neural networks. In fact, our lower bounds apply independently
of representation. Furthermore, addressing this question allows us to separate
the process of determining a feature set and a feature circuit (a description of
what is being computed) from the process of mapping these to a superposed
representation. We believe that during training, neural networks are implicitly
doing both processes simultaneously, and that this disentangling (pun intended)
of the computation in superposition from the process of finding the features and
feature circuit opens up a much deeper understanding of neural networks, specif-
ically what they are computing and how they work.

Finally, perhaps a bit further in the future, solving this problem could lead
to a powerful way of designing neural networks by breaking the design problem
up into two subproblems: (1) determine the feature set and feature circuit for
a given problem domain, and then (2) map those using canonical techniques
to a neural network in superposition. Subproblem (1) could be done either
through feature circuit extraction from existing networks, or training an initial
neural network to be monosemantic, and then using that as the feature circuit.
The whole process can then be viewed as an algorithmically driven form of
distillation [14].
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1.1 Our Results

In this paper, we present nearly matching upper and lower bounds on computing
in superposition. Essentially, we demonstrate that when computing in super-
position, we can compress the representation of the features down to roughly
the square root of the number of output features, but no further. These bounds
and the techniques used to derive them open a number of further interesting
questions concerning the design of neural networks, mechanistic interpretability,
and further understanding the complexity of neural networks. We discuss these
questions in the Conclusion.

We define our models below, but for now, let m be the number of input
features to a monosemantic neural network description, and m′ be the number
of output features. Let n be the number of neurons being used in the superposed
computation.

Lower Bounds

Our lower bounds apply to a very general model of computation that includes
neural networks, and is independent of many implementation details, such as
network structure, activation functions, etc. In this model, we introduce a lower
bound technique that applies both to neural networks that must always be cor-
rect, as well as when the network, as in the real world, is allowed to make
mistakes sometimes. This technique relies on what we call the expressibility of
a neural network: how many different functions the neural network implemen-
tation (structure, activation functions, etc) is able to compute through different
settings of the parameter weights of the model. We provide a Kolmogorov Com-
plexity based proof that shows that if a neural network has high expressibility,
the parameters of the final model must have a large description length, even if
the model is allowed to make mistakes sometimes.

We use this technique to show that the minimum description of the param-
eters of the neural network must be at least

Ω(m′ logm′) bits,

for a broad class of problems that includes computing a permutation of the input
features and computing m′ pairwise ANDs of the m input features. For neural
networks using square matrices and a constant number of bits per parameter,
this implies that

n = Ω(
√
m′ logm′).

This has several interesting implications for neural network compression, a
topic of great interest given the memory limitations of today’s GPUs [15]. The
typical representation of the parameters of a neural network is as 8 or 16 bit
values, and so asymptotically such neural networks will require Ω(m′ logm′) pa-
rameters. Moreover, for quantization [15], the process of cutting the number of
bits in parameter representations to improve performance, this bound suggests
that reducing the number of bits beyond a certain point will require increasing
the number of parameters.
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Another form of compression of neural network representations is sparsity
[10, 15]. It has been conjectured that typical neural networks contain a sparse
sub-network with sometimes 90% or more of the original parameters removable
while preserving accuracy. If this kind of sparsification is possible in most cases,
then the sub-network has similar expressibility as the original network, and so
our lower bounds imply that parameter sparsity is bound by the number of
features the network is computing, and any “lottery ticket” sparse sub-network
[10] must use at least Ω(m′ logm′) bits to describe its parameters no matter the
size of the original network it is derived from.

A final form of compression is knowledge distillation [14], where a large
dense neural network is used to train a much smaller dense network preserving
the original “knowledge” and hence the accuracy. Again, if this retains the
expressibility of the original neural network, then there is a limit to how small
a network can be distilled from a larger one without loosing accuracy.

To the best of our knowledge, these are the first general lower bounds on
the number of parameters or the number of neurons required for neural net-
work computation, i.e. without any structural assumptions [11] on the specific
network architecture.

Several authors have pointed out that superposition is an application of the
Johnson-Lindenstrauss Lemma [16]. It can also be viewed as a type of Bloom
filter [4, 6]. In both cases, the previous work has focused on representation: how
efficiently can the current state be represented? Our focus is on computation. In
fact, it is not hard to show with either of these previous techniques that when
there is only a constant number of active features, they can be represented
together using O(logm′) neurons. Since we demonstrate that Ω(

√
m′ logm′)

neurons are necessary for computation, our results imply an exponential gap
between representation and computation.

Upper Bounds

According to [7, 12, 19] the ability of neural networks to compute in superposi-
tion is the result of feature sparsity : it is observed that in any layer only a small
subset of input features are activated. Under that assumption, we provide an
algorithm that takes a description of any m′ pairwise ANDs of m inputs, and
produces a neural network that correctly computes those ANDs using

n = O
(√

m′ logm′
)

neurons.

This neural network does not make errors, and multiple layers of this network
can be chained together. Our lower bound also applies to problems with feature
sparsity, and so the upper bound is within a factor of

√
logm′ to asymptoti-

cally optimal in terms of neurons. To the best of our knowledge, this is the
first provably correct algorithm for computing a non-trivial function wholly in
superposition.

We also introduce a concept closely related to feature sparsity, hinted at
in [7], which we call feature influence: for a layer of the network, how many
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output features are impacted by a given input feature? We find that feature
influence has a significant impact on what types of techniques are effective in
computing in superposition, and for some functions, determines the ability to
compute them in superposition at all. For the pairwise AND function, we show
we can compute efficiently in superposition for any level of feature influence,
but our main algorithm actually consists of three different techniques, and the
pairwise ANDs are partitioned to divide the problem into pieces with similar
feature influence.

One of the techniques we present applies to the low feature influence subset
of ANDs being computed, specifically when no input influences more than m′ 1/4

features. We consider this an important special case of the problem, since we ex-
pect that many real world models have low feature influence. Furthermore, the
algorithm for this case introduces a general technique for computing in super-
position, where inputs are routed to ”computational channels” for each output,
that are represented in superposition, and then computation is performed on
those superposed channels. This technique may be of independent interest, and
in fact, something like this may be happening in real neural networks.

Finally, we demonstrate extensions of the upper bound results in several
directions:

• We demonstrate how to utilize the algorithms for multi layered networks.

• We show that they can be used to compute k-ways AND functions.

• These results can be extended to arbitrary Boolean functions. However,
these extensions are beyond the scope of this paper, and will be presented
in a subsequent manuscript. We do, however, here demonstrate that if the
maximum feature influence of a 2-OR problem is too high, then it is not
possible to compute that problem in superposition.

1.2 Related Work

Our work here is inspired by the groundbreaking work of Vaintrob, Mendel,
and Hänni in [24], that lays out the problem of computing in superposition
and shows a way of computing a k-AND circuit using a single layer of a neural
network partly in superposition. Their work paves the way for ours, but falls
short in several fundamental ways which we aim to improve and expand here.

First and foremost, we say ”partly in superposition,” because in their prob-
lem setup the neurons are in superposition, but neither the inputs nor the out-
puts are in superposition, which significantly simplifies the problem and avoids
some its main challenges. In our work the computation as a whole is in super-
position: the inputs, the neurons, and the outputs.

Secondly, their technique allows them to compute with a single neural net-
work layer but does not extend to multiple layers due to error blowup. The new
approach we propose here allows us to remove the error for an arbitrary depth
of layers.
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Another powerful aspect of our work relative to [24] is that we show you can
use (and/or think about) much larger matrices in the process of constructing
the layers of the algorithm and then multiply these matrices together for the
construction, getting matrices and vectors of size dependent only on the number
of neurons. The combined techniques allow us to implement arbitrary width
AND expressions and arbitrary depth circuits.

Lastly, we introduce here a general framework for reasoning about super-
position in neural networks. We separate the circuit being implemented from
the neural network implementing it, with the observation that superposition is
about the relation between the two. Unlike [24], this allows us to introduce the
study of the complexity of a neural network algorithm implementing a circuit
with a given level of superposition, capturing this complexity via not only the
number of neurons but also the number of parameters in the network. In par-
ticular, unlike [24], we present not only upper bounds, but also for the first time
lower bounds on the complexity of computing in superposition.

Another paper that studies the impact of superposition on neural network
computation is [21]. However, they look at a very different question from us:
the problem of allocating the capacity afforded by superposition to each feature
in order to minimize a loss function, which becomes a constrained optimization
problem. They do not address the algorithmic questions we study here.

Our work is also inspired by various papers from the reserach team at An-
thropic [7, 8, 19]. Apart from their work influencing our general modelling
approach, their findings also inspired our definitions of feature sparsity and fea-
ture influence. We also recognize that there is a body of work [11, 13] on lower
bounds for the depth and computational complexity of specific network con-
structions such as ones with a single hidden layer, or the number of additional
neurons needed if one reduces the number of layers of a ReLU neural network
[2]. Our work here aims at a complexity interpretation relating the amount of
superposition and the number of parameters in the neural network to the un-
derlying features it detects, a recent development in mechanistic interpretability
research [5, 7, 8, 19, 23].

2 Modeling Neural Computation

Our goal is the following: for a given set F of computational problems and
set of possible inputs X to those problems, design an algorithm for converting
a description of any F ∈ F into a neural network N(F ) that computes F in
superposition for any input x ∈ X, possibly incorrectly for some of the x ∈ X.
In the example of this we study in depth here, F is the set of all possible
mappings of m Boolean input variables to m′ Boolean output variables, where
each output variable is the pairwise AND of two input variables. F ∈ F is a
specific mapping of pairwise ANDs, and X is the set of all settings of the m
inputs where only a small number are simultaneously active. Thus, there are
two layers of algorithms here: there is the algorithm that converts any F ∈ F
into N(F ), and then N(F ) is itself an algorithm for computing the result of F
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on any input x ∈ X.
We here use two different models of computation for the neural network

N(F ). For our lower bounds, we consider a general model for computation,
called parameterized algorithms. This model includes any neural network algo-
rithm, and so our lower bounds apply to neural networks but also more broadly.
Our upper bounds utilize a specific type of parameterized algorithm, based on
a widely used type of neural network. Both of these are described below. We
also provide a framework for describing the computational problem F , called a
feature circuit. This is also described below.

2.1 Parameterized algorithms

We use the term parameterized algorithm to be any algorithm that computes
on an input based on a set of parameters and produces an output. The func-
tion that the algorithm computes can depend on the parameters. In our main
lower bounds, we do not require any further assumptions on how computation
proceeds. We can think of the parameterized algorithm as a black box that
computes different functions F ∈ F based on different parameters. As a result,
our lower bounds apply to a neural network with any structure, any activation
function, or any other aspect of the computation, or even some other structure
that has parameters but would not be considered a neural network. Any such
structure can be a specific parameterized algorithm, and it will have a set of
different functions F that it can compute based on its parameters. We use this
model to prove lower bounds on the description length of the parameters re-
quired, based on the expressibility of the parameterized algorithm. Essentially,
we show that if F is large then the number of parameters must also be large,
both in the case where the parameterized algorithm is always correct, and when
it can make mistakes on some of the inputs x ∈ X.

A neural network could be described as a parameterized algorithm in two
different ways: the parameters can describe the structure of the neural network,
as well as the weights associated with that structure, or the parameters can rep-
resent just the weights, in which case the structure of the network is considered
part of the algorithm itself. Once we have a lower bound on parameters, we use
this latter approach. Specifically, we assume a network structure that relies on
the type of square n × n matrices we use in our upper bound model described
below. With that structure, any lower bound of B on the number of param-
eters directly implies a lower bound of

√
B on the number of neurons. Note

that in this case, the lower bound does not count the description of the network
itself, making the lower bounds even more compelling than if they included the
description of the network layout and computation.

In the past, the notion of parameterized algorithms [1, 9] was used to refine
known algorithms by introducing a small set of input dependent parameters,
in addition to inputs and outputs, as a complexity measure. This was useful
for tackling NP-hard problems by isolating the complexity to a parameter that
is small in practical instances so as to provide efficient solutions for otherwise
intractable problems. Here, we re-introduce this notion, but with a twist: the
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understanding that in this new variant of parameterized algorithms (1) the
parameters define the algorithm and (2) the cardinality of the parameter set is
a complexity measure in itself.

The study of this new type of parameterized algorithms is important today
because of a fundamental shift in the focus of software development. Until re-
cently, the bulk of software in the world was dedicated to databases and analysis
problems, where the description of the algorithms is usually small relative to
the input size, and where the complexity of algorithms is first and foremost a
function of the input size.1 Deep learning is quickly changing this balance, in-
troducing a new form of software in which the size of the algorithm’s description
can be large relative to the input, and the complexity of the algorithm is often
dominated by this size.

In our upper bounds, we will study a parameterized algorithm computed by
a specific type of neural network: a standard multi-layer perceptron architecture
[17]. Each neuron in this neural network performs a dot product of its inputs
and its weights (parameters), then adds a bias followed by a ReLU non-linearity.
A layer of this network has n neurons. If the inputs and outputs of that layer
are represented in superposition, then the layer will also have n inputs and n
outputs. We can view the resulting computation as follows. The input is an n-
vector. The dot products of all neurons are computed by multiplying that vector
by an n × n matrix and the bias is done by adding an n-vector. The ReLU is
performed on each entry of the resulting vector independently, producing the
output n-vector. The parameters of this computation are the entries of the n×n
matrix and the bias vector. We will use this representation of the computation
in our description of the upper bound.

The network can have any number of layers d. In practice though, d is
typically much smaller than n. For simplicity, we do not include batch norm
or max pooling computations and stick to ReLU as the source of non-linearity.
Since our lower bounds apply to any activation function, and our upper bounds
nearly match our lower bounds, computing with other nonlinearities (for exam-
ple, quadratic activations as suggested in [24]) does not provide much benefit
for the class of problems we consider here. In fact, it is possible that other non-
linearities are not able to match our upper bound results. As we noted above,
we also restrict the neural network to inputs and outputs that are Boolean. We
suspect this does not result in any loss of generality, since Boolean variables
can represent more fine grained values to arbitrary precision. We leave as an
open question whether there are problems where removing these two restrictions
(ReLU and Boolean), results in significantly greater computational power in the
models we consider here.

1We note that Boolean circuits are a historically well studied form of parameterized al-
gorithm that applies to hardware and is used in complexity theory, but accounts for a small
fraction of real world software.

8



2.2 The Feature Circuit View of Neural Computation

We next provide a framework for describing F , the computational problem our
parameterized algorithm N(F ) is intended to solve. We follow the intuitive
definition in [8, 24] of capturing neural network computation as a set of output
features that are the result of applying a circuit to a set of input features.

More formally, as depicted in Figure 1 below, a feature set is a set of functions
f1, f2, ..., fm applied to an original input (an image, text etc). A feature circuit
is an abstract computation that receives an input vector of m inputs, the results
of the feature set computation on the original input, and computes a vector of
m′ outputs that are features f ′

1, f
′
2, ..., f

′
m′ defined by the input feature set and

the feature circuit applied to the inputs. Though the inputs and outputs of this
circuit could be in any range, we choose to simplify it as depicted in Figure 1:
the fi and f ′

i are Boolean indicators of whether a given feature appears or not
in the input (and output, respectively). The feature circuit is thus a Boolean
function from a Boolean input vector, indicating which features from the feature
set appeared in the input, to a Boolean output vector indicating which output
features appeared in the original input. For example, if the input features
include detecting 4 legs, a tail, and a collar, then output features for cat and
dog might be valid outputs of the feature circuit computation.

Figure 1: The feature circuit representation of neural network computation.

The circuit can be described using a neural network [20], a Boolean circuit,
or any other algorithmic description of a Turing computable function. We note
that one can use a single feature circuit to describe the computation of a neural
network as a whole, or use a cascade of feature circuits, as depicted in Figure 2,
to describe the details of the computation of the layers of such a network, where
each layer’s input feature set is a function of the previous ones. The final output
can be a readout of the final layers output features, the equivalent of a softmax
or some more complex function that might require another layer of computation.
We do not touch on this exercise as it has little effect on the complexity measures
we study here.

We also do not attempt here to address the problem of determining the
feature sets - we simply assume that they are given to us, and we look at the
problem of mapping them to an efficient neural network computation. However,
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it is worth pointing out that significant research is currently ongoing that is
relevant to this problem [25, 8, 12].

Figure 2: The feature circuit representation of multiple layers of a neural net-
work.

2.3 Complexity and Superposition

Our primary measure of complexity is n, the number of neurons used by the
neural network N(P ) for computation, but we will also examine the number
of bits required to represent parameters. We describe the computation to be
performed using a feature circuit. We are agnostic as to how the feature circuit
F , specifically the features fi, are described. However, we do point out that
if extracting the logic behind the feature circuit is resource intensive, this will
cause the algorithm that translates F into N(F ) to be resource intensive as
well. In general though, given our focus on n, we do not provide an analysis
here of the computational requirements of translating F into N(F ). However,
all algorithms we provide in our upper bounds have a running time that is
polynomial inm. We also are confident that they are more efficient than running
a traditional training algorithm to determine N(F ).

The inputs to a feature circuit are said to have feature sparsity if only a
small fraction of the m input features entries are activated (are non-zero) for
every input. This corresponds to observed behaviors of real neural networks [12].
There is one more property of a feature circuit that we wish to examine: feature
influence. The feature influence of an input xi in a feature circuit is the number
of output features fj , for which there exists a setting s of the other inputs, such
that keeping those other inputs fixed at s while changing xi results in a change
to fj . The maximum (average, minimum, respectively) feature influence of a
feature circuit is the maximum (average, minimum, respectively) influence of all
its input features. As mentioned above, the algorithms of our upper bounds for
2-AND work for all variations of feature influence, but it does have a significant
impact on what techniques are deployed in those algorithms. We also point out
in Section 5.4 that if the maximum feature influence of a 2-OR problem is too
high, then superposition is not helpful.

We will say that a layer of a neural network computes in superposition if
n < m′, that is, there are fewer neurons than output features in the circuit
being computed by this layer. The network as a whole will be said to compute
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in superposition if its layers compute in superposition. Such networks are some-
times called polysemantic because each neuron participates in the computation
of more than one output feature, as opposed to monosemantic ones, in which
each neuron corresponds to a single output feature.

We focus our discussion on the problem of converting a feature circuit on
feature sparse inputs into a superposed neural network. We assume that both
the input and the output to that superposed neural network are provided in
superposition, but if this is not the case (for example, at the first layer of a
neural network), then it is straightforward to transform it into that form. The
main question we are asking is how much superposition is possible: can we
use significantly less neurons in computation than we have outputs that we are
producing.

2.4 The k-AND problem

Our upper bound work will focus on a specific algorithm that converts a 2-AND
feature circuit into a superposed neural network computation. In a 2-AND
feature circuit, the input is m Boolean variables, and the output is m′ different
conjunctions of any two of these m inputs

(
m′ ≤

(
m
2

))
returning a 1 in any

output entry corresponding to two non-zero inputs, and zero otherwise. Our
interest will be in computing this function using a superposed network that has
significantly fewer than m′ neurons. Later in the paper, we will explain how
to compute k-AND from a collection of 2-AND computations, where a k-AND
feature circuit produces m′ different conjunctions of k inputs.

3 Lower Bounds

We here present our lower bounds for parameterized algorithm. We start by
assuming that the parameterized algorithm does not make any errors but will
add errors to the mix later below. For the error-free case, we are perhaps
slightly more formal than might be necessary; we do so in order to set up a
framework that makes it much easier to demonstrate the lower bound for when
the parameterized algorithm can make mistakes.

Let U and V be finite sets, and let F be a set of distinct functions that map
U → V . Let T be a parameterized algorithm that can compute any function
F ∈ F where the decision which function is computed by T only depends on the
setting of the parameters of T . Let P (F ) be any description function describing
the parameters used by T when T is computing F , and let |P (F )| be the length
of the description P (F ) measured in bits.

Theorem 3.1. For almost all F ∈ F , |P (F )| ≥ log2 |F|.

It is important to stress that this is not a bound on an instantiation of an
algorithm that has been designed to compute a specific function F ∈ F , for
example, a neural network with an architecture for computing a single 2-AND
function by keeping only the weights that connect the inputs to neurons fitting
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F ’s desired 2-AND outputs. Such a network would have very low expressibility,
and in fact, in our parameterized algorithm model, it would not require any
parameters at all. Rather, this theorem is a bound on a network that can
compute arbitrary F ∈ Fs, and the choice of which F is dependent on the
setting of the parameters. This is similar to Komogorov Complexity, which
provides lower bounds on the description length of almost all strings in a set,
but does not provide lower bounds on the description length of individual strings.

Proof. We prove this by assuming that there is a T that violates this theorem
and show that such a T would allow us to construct a protocol to transmit
more information between two parties than is possible. Specifically, we show
that T would allow us to transmit |F| distinct messages using less than log |F|
bits. This is a contradiction since we know from Kolmogorov Complexity that
representing each of |F| elements uniquely as a binary string requires using at
least log2 |F| bits for almost all elements. For simplicity, we assume that |F| is
a power of 2, but this technique generalizes to arbitrary |F|.

We assume that we have two parties, Alice and Bob, where Alice will send
Bob the identity of an arbitrary log |F|-bit string. Prior to the start of the
transmission protocol, Alice and Bob agree on what the protocol will be, and as
a precursor to that protocol, they can exchange any arbitrary information. Once
the protocol is set up, Alice is then given an arbitrary log |F|-bit string, and her
task is to inform Bob of what string she has been given using the protocol. We
are concerned with how many bits Alice must send to perform this task. We
use the following protocol:

Setup:

• Alice and Bob are both given T , F , and P (F ) for all F ∈ F .

• Alice and Bob agree on a bijection B from the elements of F to log |F|-bit
strings.

Protocol:

• Alice is given S, a log |F|-bit string.

• Alice determines F = B(S), the F ∈ F that S corresponds with in B.

• Alice sends Bob P (F ). By assumption, this requires less than log |F| bits
for most F ∈ F .

• Bob now uses T and P (F ) to determine what F is. To do so, Bob uses
T with parameter settings defined by P (F ) to compute F (x) for every
possible input to F . This may be computationally very expensive, but we
are only concerned with communication.

• Once Bob knows F , he can use B to recover S.
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We have shown that you can send any message you want with Alice’s pro-
tocol, and since that message can be sent with fewer bits than Kolmogorov
complexity tells us is possible, we have reached a contradiction.

Note that to convey P (F ) in the above protocol, Alice does not need to
include any ordering information of the parameters since Alice and Bob can use
some agreed-upon ordering for encoding the parameters, so the lower bound
really does represent how many bits are required to represent the parameters
themselves as opposed to any ordering information on the parameters.

3.1 Parameterized algorithms with errors

The lower bound we just showed does not really capture what is going on in
neural networks since neural networks are typically allowed to make mistakes
on some inputs. There are two different ways that an algorithm can make
mistakes: either there are random choices during the execution of the algorithm
and a mistake is dependent on those choices, or there is some subset of the
inputs where the algorithm will always make a mistake. The former type of
mistake is actually relatively easy to incorporate into the above protocol. Bob
would simply try every input enough times to have very high confidence in
the resulting mapping (assuming that the parameterized algorithm returns the
correct answer with probability greater than 0.5). By doing so, he is very likely
to find the correct answer, and we again reach a contradiction (although some
care needs to be taken to ensure it is in fact a contradiction when the correct
message is not transmitted 100% of the time).

The harder case for errors is the one that represents what happens with
neural networks in practice: the algorithm T parameterized by P (F ) correctly
computes F (x) for some inputs x but is allowed to make mistakes on other
inputs. The lower bound we show does not depend on how the mistaken inputs
are chosen – they can be randomly or arbitrarily chosen, but we here argue
the case where they are arbitrarily chosen. More specifically, given a set of
functions F , a set X of allowed inputs to F , and any ϵ < 0.5, the goal is to
define a parameterized algorithm T such that for any F ∈ F , T parameterized
by P (F ) must determine F (x) correctly for at least a fraction (1 − ϵ) of the
inputs x ∈ X. We say that any T with this property on a set of functions F
and inputs X computes F ϵ-correctly.

In this case, we are not able to demonstrate as general a result as the error-
free case since the ability to make errors could allow the algorithm to use a
smaller parameter description. Consider, for example, the case where all of the
differentiation between the functions in F is on the same input (i.e., all other
inputs always map to the same result). In this case, T can have a single error
on that one input for all F ∈ F , which means that there is effectively only one
function that T needs to compute, which in turn means that no parameters
at all are needed. Instead, we will prove a lower bound based on a subset of
functions in F that can always be distinguished from each other. Specifically,
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we say that F ′ ⊆ F is β-robust if for all F1, F2 ∈ F ′ with F1 ̸= F2, F1 and F2

map strictly more than a fraction of β of the inputs to different outputs.
Let F be any set of functions U → V such that there exists a non-empty

subset of F that is 2ϵ-robust. Let F ′ be a largest such subset, i.e. having the
maximum cardinality. Let T be a parameterized algorithm that computes F
ϵ-correctly for any ϵ < 0.5. Let P (F ) be any description function describing the
parameters used by T when T is computing F , and let |P (F )| be the length
of the description P (F ) measured in bits. Let T (Y, x) be the result of running
algorithm T with parameter settings defined by Y on input x.

Theorem 3.2. For almost all F ∈ F ′, |P (F )| ≥ log |F ′|.

Proof. We will again demonstrate a protocol for Alice and Bob to transmit a
binary string more efficiently than should be possible and thus reach a contradic-
tion. In this case, however, instead of using all the functions in F as codewords,
we will use the functions in F ′ as the codewords, and the robustness of those
functions means they can be used as the codewords to an error-correcting code.

Setup:

• Alice and Bob are both given T , ϵ, F , F ′, and P (F ) for all F ∈ F .

• Alice and Bob agree on a bijection B from the elements of F ′ to log |F ′|-bit
strings.

Protocol:

• Alice is given S, a log |F ′|-bit string.

• Alice determines F = B(S), the F ∈ F ′ that S corresponds with in B.

• Alice sends Bob P (F ). By assumption, this does not require at least
log |F ′| bits for almost all F ∈ F ′.

• Bob computes T (P (F ), x) for every possible x ∈ U . This defines a function
F ∗.

• Bob compares F ∗ to every function in F ′ and finds the function F̂ ∈ F ′

that matches F ∗ on the most inputs x. Bob determines that F = F̂ .

• Based on this F , Bob uses B to recover S.

Bob is guaranteed to determine the correct F since the 2ϵ-robustness of F ′

ensures that F ∗ will have more outputs that are the same as F than any other
F ′ ∈ F ′, provided that at least a fraction of (1− ϵ) of the inputs are computed
correctly.

We next demonstrate how to apply this to the 2-AND function. As an
intermediate step towards that, we first prove a lower bound on parameter-
ized algorithms for the problem of computing a permutation. While we do not
formally provide a reduction from permutation to 2-AND, permutation does
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provide intuition for how to tackle the 2-AND problem, and it really is the in-
herent permutation required by the 2-AND problem that allows us to prove that
lower bound. For the permutation problem, let F be the set of all permutation
functions on elements of a set U . Let T be a parameterized algorithm that
computes F ϵ-correctly for any ϵ < 0.5.

Corollary 3.2.1. Any such T requires a parameter description length of at least
log[((1− 2ϵ)|U |)!].

Thus, for any ϵ < 1
2 , any such T for the permutation function requires a

parameter description length that is Ω(|U | log |U |).

Proof. By Theorem 3.2, we only need to demonstrate a subset F ′ ⊆ F that
is 2ϵ-robust and has size (|U |(1 − 2ϵ))!. To build such a subset, we will essen-
tially construct a permutation code [22]. However, since we are only concerned
with the asymptotics of the logarithm of the subset F ′ (instead of achieving
full channel capacity), we can get away with a fairly simple construction. To
construct such a subset, we start with any element F ∈ F and place it in F ′.
We then remove F from consideration as well as any other permutations that do
not differ from F in strictly more than a fraction of 2ϵ of the inputs. We iterate
this process until everything from F has either been placed in F ′ or removed
from consideration.

Each item that is placed in F ′ can remove from consideration at most( |U |
2ϵ|U |

)
(2ϵ|U |)! permutations, and so the total number of permutations placed in

F ′ is at least
|U |!( |U |

2ϵ|U |
)
(2ϵ|U |)!

= ((1− 2ϵ)|U |)!.

Corollary 3.2.2. Any parameterized algorithm T that computes the 2-AND
function at least ϵ-correctly where the input has m entries and the output has
m′ entries, for m′ ≤

(
m
2

)
, requires a parameter description length of at least

Ω(m′ logm′).

Note that we have made no assumptions here about whether the inputs
and/or outputs are stored in superposition, and so this bound applies in all
four combinations of superposition or not. Also, note that we can assume that
m′ ≥ m

2 since if m′ is smaller than that, then we can remove any unused input
entries from the problem, thereby reducing m.

Proof. For any m′ and m we can construct a set X of inputs and a set F of
2-AND functions that demonstrate this lower bound. A function F ∈ F will
consist of any m′ pairwise ANDs of the m inputs. All other functions in F
will compute the same m′ pairwise ANDs, but in a different order. All possible
orderings (i.e., permutations) of those pairwise ANDs will appear in F , and
there are no other functions in F . This gives F such that |F| = m′!. For the
set X of inputs, we will only allow two hot (exactly two entries are set to 1)
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inputs, and only those two hot inputs where one of the ANDs in F is the AND
of those two inputs. (Note that if m′ ≪

(
m
2

)
, then most two-hot inputs will not

result in entry of the output being a 1; hence the restriction.) All inputs x ∈ X
have m entries, but the number of inputs in X is m′, so |U | = |V | = m′. We are
essentially computing all the permutations of the output entries. The Corollary
now follows from the exact same argument as was used for the permutation
function.

We point out that for any neural network performing matrix multiplication
using square matrices, this lower bound implies that the number of neurons re-
quired will be at least Ω

(√
m′ logm′

)
. Note that a superposition representation

of an m variable Boolean input with a constant number of active variables can
be as small as O(logm) bits, but when we want to compute some function, such
as a permutation or 2-AND, the description of the parameters of the neural
network performing that mapping must be exponentially larger than that!

3.2 Other potential applications

The last topic we address here with respect to lower bounds is showing lower
bounds on the parameterization of the problems we use neural networks for in
practice, such as LLMs and image generation. In these cases, it might seem
like there is only one (or a small number) of functions being computed, such
as a specific LLM, and so this lower bound does not apply. In theory, this is
probably true: if there exists an algorithm that computes that LLM, there exists
a parameter-free algorithm for it. In practice, however, that is not how LLMs
are constructed. Instead, all existing neural networks use a general network
structure that could be trained to compute very different functions through
their parameterization. They start with a structure that has a high degree of
expressibility that is then made more specific through a training process that
sets their parameters. Our lower bound applies to the expressability of the
neural network prior to training.

As a result, our lower bound technique could potentially be used to prove
lower bounds on the parameterization of LLMs. While we do not prove any
such lower bounds, we demonstrate here that it has the potential to do so. The
idea is that if we take a fixed neural network structure, and train it on two very
different data sets, this should lead to it computing very different things. (The
details of the training process itself can cause differences as well, but we ignore
that here). For example, for a neural network structure being used as an LLM,
we will get very different results if we train it with a data set consisting entirely
of English language text versus only using Mandarin Chinese. We formalize this
concept here using our lower bound framework:

Corollary 3.2.3. Let Υ be any neural network that is capable of computing
every function F ∈ F ′ ϵ-correctly with some setting of its parameters for any
ϵ < 0.5 and any set of functions F ′ that is 2ϵ-robust. Almost all functions
F ∈ F ′ require at least log |F ′| bits to describe their parameter settings in Υ.

16



Given this, the question comes down to how large a 2ϵ-robust set F ′ can
be constructed for a given neural network structure. Proving bounds on this
is beyond the scope of this paper and the abilities of its authors, but we can
offer a potential technique for doing so. Consider training a neural network Υ
designed to be an LLM on a data setD consisting of r total tokens. Now consider
training the same Υ using a dataset D′ that is D with a random permutation
applied to the individual tokens of D. If D is a real-world dataset, then with
very high probability, D′ will differ from D in most positions, and D′ will not
be a permutation of the documents making up the dataset. As a result, we
conjecture (with a fair bit of confidence) that training Υ on D will result in
very different results than training Υ on D′. It seems unlikely that Υ will be
able to “understand” language based on the very jumbled D′.

A harder question is what happens if we construct D′′, a second and inde-
pendent random permutation of the tokens of D. While it seems likely that
Υ trained on D′′ will be very different from Υ trained on D, it is less obvious
that Υ trained on D′′ will be very different from Υ trained on D′. A jumbled
training set probably produces very different results from a clean training set,
but do two training sets that are jumbled very differently from each other pro-
duce different results from each other? We here conjecture that this is also true.
This conjecture is important since if we could show that for a neural network
structure Υ there is a training set D with r tokens, such that applying any set of
permutations P to the individual tokens of D, where every pair of permutations
p1, p2 ∈ P are significantly different from each other, leads to Υ computing a
significantly different function for each permutation of D, this would provide us
with a lower bound of Ω(r log r) bits on the description of the parameters of Υ,
where r is now as large as the training set, that is, in the trillions of tokens.
This follows from a similar counting argument as was used above for the proof
of the lower bound on permutation functions.

4 Upper Bounds

In this section, we provide an algorithm that converts any description of a 2-
AND feature circuit into a neural network that computes that feature circuit in
superposition, with both the input and output in superposition as well. Given
any 2-AND circuit with m inputs and m′ outputs, this neural network requires
n = O(

√
m′logm′) neurons. Even though our model allows the network to make

errors on some of the inputs, our resulting network does not take advantage of
this, and will always be correct. We here assume that the input consists of at
most 2 inputs being active in any input; in Section 5 we describe how to extend
this to a larger number of inputs, albeit with an exponential dependency on
the number of active inputs. The bound on neurons achieved by this algorithm
nearly matches the lower bound of the previous section: since Ω(m′ logm′)
parameters are needed for 2-AND by any algorithm that uses a constant number
of bits per parameter, any n×n matrix multiplication based algorithm requires
n = Ω(

√
m′ logm′). Our algorithm uses a constant number of n × n matrices,
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and requires O(m′ log2 m′) parameters.

4.1 Superposed Inputs

In the following, the computation proceeds in superposition throughout. How-
ever, it is helpful to think about the design of the algorithm in terms of going
back and forth between representing the input and subsequent computations
using the n-vector superposed representation, and the m-vector monosemantic
representation (we describe below how to do this in a way such that the final
computation is entirely in superposition). As a warm-up, we start by describ-
ing how to move back and forth between these representations. Let y be an
m-vector representation and x be the n-vector representation of the same state,
where n = O(

√
m logm). To go from y to x we can multiply y on the left by

C, an n×m binary matrix where all entries are chosen i.i.d. with a probability
p = O(logm/n) of each entry being a 1. To compress y into x, we use x = Cy.
We will refer to a matrix like C as a compression matrix but will use different
forms of compression matrices below.

We see that if y is sparse then Cy is fairly sparse as well and we can recover
y from Cy. In order to do so, we use a decompression matrix D where D
depends on C as follows: let CT be the transpose of C. D is CT with every
entry equal to 1 in CT (which is binary) replaced by 1 divided by the number
of 1s in that entry’s respective row of CT . Consider the matrix R = DC and
consider the entry Rij of R. If i = j then Rij = 1 since the non-zero entries will
line up exactly and we are normalizing. And if i ̸= j then Rij will be very close
to 0 since the non-zero entries in row i of D will (with high probability) have
very little overlap with the non-zero entries in column j of C. Thus D is an
approximate left inverse of C and can be used to recover the original y through
y ≈ DCy. The approximation here is due to some of the values intended to be
zero not being exactly zero.

We can also do the compression/decompression pairing in the reverse order:
x ≈ CDx. And we can insert other matrices in between C and D. For example,
we could insert a permutation matrix P to get x′ ≈ CPDx, which would allow us
to approximately compute the permutation P of the compressed representation
of x to the compressed representation x′ of the permutation of x. Note that
while P is an m × m matrix, CPD is an n × n matrix, and thus maintains
superposition. The challenge here is that Dx contains some noise in it due
to the small but non-zero values that should have been zero: in expectation,
Dx will have O(m log2 m/n) non-zero values. As a result, x′ also has some
noise in it, and in fact the multiplication by C causes the noise to add up from
the different entries of Dx, and become distributed to many entries of CDx.
The expected noise in each entry of CDx is O(m log2 m/n2). If that noise is
small (say less than 1/4), then we can remove it through a ReLU operation,
as described below. This leads us to a value of n = O(

√
m logm), which is

sufficient to compute the permutation function in superposition.
We know from our lower bounds that we cannot compute the permutation

with an n×n matrix for n = ω(
√
m logm); it is exactly this noise that keeps us
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from making n any smaller, and in fact, when n is too small, the noise becomes
so significant that the resulting permutation cannot be extracted from CPDx
even with unlimited computational power.

With the above compression and decompression techniques in hand, we are
ready to tackle the 2-AND problem. We will assume that the input comes in
the compressed form, i.e., the input is x0, an n-vector representing the input in
superposition, but if it starts in its uncompressed form of size m, then we can
compress it down by multiplying on the left by a compression matrix C. We
also assume that we know the representation being used for x0 in the form of
D0, the decompression matrix for x0.

4.2 Algorithm for maximum feature influence 1

We start off by providing an algorithm for a special case of the problem. Let
the maximum feature influence of any input be denoted by t. We here consider
the case where t = 1, which we call the single-use 2-AND problem, since each
input feature can be used in at most one output feature. This provides some
intuition for our main algorithm, and in fact, we will use the basic structure of
the single-use algorithm in our main algorithm. Note that here, the number of
output features m′ for 2-AND when t = 1 is m′ ≤ m/2.

To compute single-use 2-AND in superposition, we start by multiplying x0

on the left by D0 to uncompress x0. This allows us to more easily manipulate
the individual inputs of the problem. We then multiply D0x0 by C0, an n×m
matrix that is a compression matrix but different from the one described above.
C0 is a binary matrix whose m columns are populated with values chosen from
m′ different types of column specifications s1, . . . , sm′ , one for each output of
the 2-AND. Each column specification si has binary entries chosen i.i.d. with
probability p = O(logm/n) of being a 1 and 0 otherwise. As before n =
O(

√
m logm). The column specification si will appear in column j of the matrix

C0 if the jth input appears in the ith output that is being computed. In other
words, the ith column specification will appear exactly twice in C0: once for
each input that appears in the ith AND that is computed.

After multiplying by the compression matrix, we add b to the result where
b is a column vector consisting of n entries, all of which are −1. And then we
take the pointwise ReLU of the result giving us x′

1 = ReLU[C0D0x0 + b]. The
n-vector x′

1 is a compressed form of the output to the 2-AND problem. The
intuition for this is that because each column specification si is fairly sparse,
two distinct column specifications will not overlap much. As a result we can
use each column specification as a kind of computational channel to compute
each of the outputs. Since the input vector is also sparse, these channels will
not interfere much with each other.

To extract the outputs of the 2-AND problem from x′
1, we multiply on the

left by an m′ × n decompression matrix, D1. Note that this decompression
matrix is slightly different from the version above since the compression matrix
is also different. D1 depends on the column specification vectors s1, . . . , sm′

used to construct C0. Specifically, row i of D0 will have non-zero entries in the
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Figure 3: Matrices D1 and C0. Output i computes j1 ∧ j2. Columns j1 and j2
of C0 are identical and defined by si, which also defines the non-zero entries of
row i in D1. Value w is the reciprocal of the number of these non-zero entries.

same positions as si has 1s except that the row and column are transposed. And
the value of those non-zero entries will be 1/|si| where |si| is the number of 1s
in |si|. In other words, D1 is constructed as if the corresponding compression
matrix had consisted of the matrix formed by joining the vectors s1, . . . , sm∗ .
We depict C0 and D1 in Figure 3.

As a last step of the computation, we will multiply on the left by another n×
m compression matrix, which we call C ′

1. This matrix is a standard compression
matrix: an n × m binary matrix where all entries are chosen i.i.d. with a
probability p = O(logm/n) of each entry being a 1. Finally we perform a ReLU
operation on the result of that multiplication, providing us with the final result
x1 = ReLU[C ′

1D1ReLU[C0D0x0 + b]]. The matrix C ′
1 actually serves several

purposes:

• It compresses D1x
′
1 down to the right form to serve as an input to the

next layer. This includes being in the compressed form we assume, but
we will also use it below to set up all the inputs correctly for the more
involved computation we require.

• It removes additional noise introduce by the matrix D1 (this will require
a slightly more involved use of ReLU, which we describe below).

• It ensures that the encoding used at the start of the algorithm (in this
case for the next layer) uses a random compression matrix.

Again, x1 is used as the input to the next layer of the neural network, and
the resulting computation looks as depicted in Figure 4 for a single layer of the
computation.

To see that the correct entries of x1 are set to 1 in the result, consider the
case where inputs indexed j1 j2 are both active, and so x1 should represent
j1 AND j2 as being active. If the ith output computes j1 AND j2 then both
the j1th and j2nd columns of the matrix C0 will be si. If no other inputs are
1, then C0D0x0 will be an n-vector with 2s in the entries where si has 1s and
almost zeros elsewhere (the “almost” comes from the noise in the decompression
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Figure 4: One layer of computation

process). As a result, ReLU[C0D0x0+ b] will be very close to si. This noise will
be subsequently removed by the compression matrix C ′

1. We will see below that
we have now successfully computed x1 which can then be used as the input for
the next layer of the neural network.

Before proceeding, it is worth noting that our neural network model of com-
putation requires us to use matrices of size n × n, and yet in the construction
above, we are using matrices of size m′ × n and n×m′ which are much larger.
This is fine since we are differentiating between the construction of the neural
network and actually using the neural network (analogous to training and in-
ference in traditional neural networks). During the construction phase of the
neural network, we do indeed work with the larger m′ × n matrices (we expect
that the resulting computational cost is still significantly lower than traditional
training). However, before proceeding to inference, we can multiply out C0D0

explicitly and then simply use the resulting n × n matrix for inference. The
result looks as depicted in Figure 5.

Figure 5: Resulting n× n matrices used for inference

This is one of the really powerful aspects of this model: as long as we are
able to multiply together any matrices that we are using for the construction
and get matrices and vectors of size n × n and n, we can use (and/or think
about) larger matrices in the process of constructing the algorithm.

Furthermore, in the analysis that follows, we will describe the computation
through the lens of the larger matrices and more specifically the random choices
made for constructing the larger matrices. In this analysis, we will group to-
gether the matrices being multiplied out in different ways; this is valid due to
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the associativity of matrix multiplication.
In the algorithm described above, we have the column specifications tied to

the outputs. In a sense, there is a “computational channel” for each output,
and we route each input to its correct channel (essentially, by computing a
permutation), where it can then be combined with the appropriate other input
(in this case, via the AND function). This technique seems foundational, as it
can be used to solve any other Boolean function as well, and we are curious if
anything similar is happening in neural networks after they are trained. We also
note that this is a different approach from [24]. In [24], the column specification
is an encoding specific to the input represented by that column with the goal of
the random binary string having enough non-zero entries to randomly line up
with any other inputs that are active together.

We will refer to the technique above as using output channels and the tech-
nique of [24] as using input channels. To generalize our single-use 2-AND algo-
rithm to an arbitrary 2-AND problem, we use both types of channels, although
the input channel approach requires additional components beyond that of [24]
to work when the computation starts and ends in superposition. Which type
of channel is utilized depends on the feature influences of the specific 2-AND
problem. Input channels are useful for inputs that have high feature influence,
since that single encoding can be used multiple times. However, they create a
lot of noise relative to the number of inputs, and so if we want to keep n small,
they can only be used when the number of input channels is significantly smaller
than m′. Output channels, on the other hand, are useful when the number of in-
puts is closer to m′, which happens when the average feature influence is small,
such as in the single use case above. However, if output channels are used for
high feature influence inputs, the different output channels start to interfere
with each other. Using the right type of channel for each input is one of the
main challenges our algorithm overcomes. To do so, we will divide the 2-AND
into three different subproblems, based on the feature influence specifics of the
2-AND problem to be solved.

The rest of this Section is organized as follows. In Section 4.3 we provide
a high level overview of our algorithm, describe how to divide it up into the
different cases, and cover some preliminaries that we will use in the analysis of
those cases. In Section 4.4 we describe our algorithm for the case of low maxi-
mum feature influence (t ≤ m′ 1/4), which we believe to be the most interesting
of the cases, as it seems likely to represent the actual level of feature influence
seen in real neural networks. Then, in Section 4.5 we provide the algorithm for
the case of high average influence and in Section 4.6 we describe how to cover
the case of high maximum feature influence but low average feature influence.

4.3 High level outline of algorithm

Our goal is to demonstrate that n = O(
√
m′ logm′) is sufficient. We divide

the problem up into three subproblems, dependent on feature influence, and
these subproblems will be solved using the three algorithms described in the
following three subsections. In all cases, we use the same structure of matrices
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as described above, and depicted in Figure 4. We call this structure the common
structure. Except as otherwise described, each of the algorithms only changes
the specific way that matrices C0 and D1 are defined.

Here is a high level description of our algorithm:

• Label each input light or heavy depending on how many outputs it appears
in, where light inputs appear in at most m′ 1/4 outputs and heavy inputs
appear in more than m′ 1/4 outputs.

• Label each output as double light, double heavy or mixed, dependent on
how many light and heavy inputs that output combines.

• Partition the outputs of the 2-AND problem into three subproblems, based
on their output labels. Each input is routed to the subproblems it is used
in, and thus may appear in one or two subproblems. Otherwise, the
subproblems are solved independently.

• Solve the double light outputs subproblem using algorithm
Low-Influence-AND, described in Section 4.4.

• Solve the double heavy outputs subproblem using algorithm
High-Influence-AND, described in Section 4.5.

• Solve the mixed outputs subproblem using algorithm
Mixed-Influence-AND. We describe this algorithm in Section 4.6.

To route the inputs to the correct subproblems, we use the matrix C ′
1 of the

previous layer, or if this is the first layer, we can either assume that we have
control over the initial encoding, or if not, then we can insert a preliminary
decompress-compress pair to the left of x0, followed by a ReLU operation to
remove any resulting noise before starting the algorithm above. The partition
of the outputs and the computation allocates unique rows and columns to each
of the subproblems in every matrix of the computation except C ′

1 (since that
is used to set up the partition for the input to the next layer). As a result,
the subproblems do not interfere with each other, and in fact the description of
the algorithms below treats each subproblem as if they are standalone. This is
depicted in Figure 6 for the case of two subproblems.

We will prove that n = O(
√
m′ logm′) neurons are sufficient for each of the

subproblems, and thus that bound also applies to the overall problem as long
as there are a constant number of subproblems. We note that when some of the
outputs are placed in a subproblem, the inputs that remain may go from being
heavy to light (since they have lost some of their outputs). We use the con-
vention that we continue to classify such inputs with their original designation.
Also, one or two of the subproblems may become much smaller than the original
problem. However, when we partition the problem into these subproblems, we
will treat each subproblem as being of the same size as the original input: we
will use a value of n = O(

√
m′ logm′) for each of the subproblems, regardless

of how small it has become.
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Figure 6: A partition of 2-AND into two subproblems. The red regions compute
one subproblem, and the blue regions the other. All entries in other regions will
be 0. Note that in C ′

1, the rows do overlap. This is to set up the outputs of this
layer as the inputs to next layer, specifically to allow the same resulting input
to appear in up to two subproblems.

We also note that in this section, when we refer to ReLU, when in fact we
mean something slightly more involved built on top of the typical definition of
ReLU. Specifically, we mean that we take each of the n entries of a vector in its
compressed form, and round them to either 0 or 1, where anything less than 1/4
becomes a 0 and anything greater than 3/4 becomes 1 (we don’t allow values to
go to the intermediate range). This can be done with two rounds of an actual
ReLU operation as follows: First, subtract 1/4 from all entries and then perform
a ReLU operation. Then, do 1−ReLU(−2x+1) on all entries, which guarantees
the objective. We can do this any time we have an intermediate result that is in
superposed representation, and so we only need to be concerned with getting our
superposed results to be close to correct. Note that we cannot use ReLU when
an intermediate result is in its uncompressed form, since that would require at
least m ≫ n ReLU operations. We will continue to use the convention of using
ReLU to refer to the above operation.

In the analysis that follows, we frequently make use of Chernoff bounds [18]
to prove high probability results. In all cases, we use the following form of the
bound:

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , 0 ≤ δ,

We always use with high probability to mean with probability at most O(1/mc),
where c can be made arbitrarily large by adjusting the constants in the algorithm
hidden by the Big-O notation. As mentioned above, our algorithms are always
correct for all inputs. In our method of constructing the algorithm, there is
a small probability that the construction will not work correctly (with high
probability it will work). However, we can detect whether this happened by
trying all pairs of inputs being active, and verifying that the algorithm works
correctly. If it does not, then we restart the construction process from scratch,
repeating until the algorithm works correctly (but these restarts do not add
appreciably to the expected running time of the process of constructing the
algorithm).
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Figure 7: The matrix C0 for Low-Influence-AND. The circled 1s are those
that correspond to si, where output i computes j1∧ j2, and thus the 1s in those
rows will line up between j1 and j2. Other rows with 1s come from different
column specifications, and thus only line up by chance, but when that happens
it causes spurious 1s to appear after the second ReLU. When there are at most
O(m′ 1/4 logm′) total 1s in each column, it is likely there will be O(logm′) such
spurious 1s. However, since n = O(

√
m′ logm′), if there were more 1s in both

columns, the number of spurious 1s would become too large to handle. This is
why m′ 1/4 represents such an important phase change for what techniques are
effective for this problem.

4.4 Algorithm for double light outputs

We now handle the case where all inputs are light. This means that the max-
imum feature influence is at most m′ 1/4. We show that in this case n =
O(

√
m′ logm′) is sufficient. The algorithm uses the common structure, defined

above, with the following changes:

Algorithm Low-Influence-AND

• Define m′ different types of column specifications s1, . . . , sm′ , one for
each output, where a column specification is a binary n-vector. Each
column specification si has binary entries chosen i.i.d. with probability
p = O(logm/n) of being a 1 where n = O(

√
m logm) and 0 otherwise.

• In the matrix C0, there is one column for each input j, and that column
lines up with the entry for j in D0x0. Entry e of column j is a 1 if
any column specification si that corresponds to an output that input j
participates in has a 1 in entry e. Otherwise entry e is a 0. C0 is still an
n×m matrix.

• The matrix D1 is still an m′ × n matrix with one row for each output i,
and that row is the transpose of si, with each 1 replaced by 1/|si|, where
|si| is the sum of the entries in si.

• The other matrices are defined exactly as they were before, except that
now C ′

1 is an n×m′ matrix (with the same likelihood of a 1).

The matrix C0 is depicted in Figure 7. We point out that we are still using
output channels here, since we are actively routing inputs that need to be paired
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up to the channels specified by the column specifications. We then combine all
the channel specifications for a given input into a single column for that input.
We say that a neural network algorithm correctly computes in superposition x1

from x0, if x0 and x1 are represented in superposition, and for any input x0, x1

represents the output of the 2-AND problem for that x0, with all intended 0s
being numerically 0 and all intended 1s numerically 1.

Theorem 4.1. When the maximum feature influence is at most m′ 1/4, at most
2 inputs are active, and n = O(

√
m′ logm′), Algorithm Low-Influence-AND

with high probability correctly computes in superposition x1 from x0.

Note that this subsumes the single-use case above.

Proof. We already demonstrated in our discussion of the single use case that
we will get values that are 1 in the entries of x1 that were supposed to be 1s; a
very similar argument holds here, and so we only need to demonstrate that the
inherent noise of the system does not result in too large values in the entries of
x1 that are supposed to be 0s. There are two sources of noise in the system:

(a) Multiplying by the decoding matrix D0 is not perfect: there is the poten-
tial to have entries of D0x0 that are supposed to be zero but are actually
nonzero since each row of D0 can have a 1 in the same column as a row
that corresponds to an input that’s a 1. Or equivalently, each row i of D0

can have a 1 at a location that lines up with a 1 in the row representing
the active x0. We need to show that the resulting noise in D0C0x0 is small
enough to be removed by the first ReLU operation.

(b) Multiplying by the decoding matrix D1 is also not perfect for the same
reason. There can be overlap between the different output channels. Fur-
thermore, since an input can be used multiple times (but in this case at
most m′ 1/4 times) we can also get 1s in the matrix ReLU[C0D0x0] in
places outside the correct output channel. Both of these effects lead to
noise after multiplying by D1, and potentially after subsequently multi-
plying by C ′

1 as well. We also need to show that this noise is small enough
to be removed by the second ReLU operation.

We point out that as long as it is small, the noise of type (a) is removed by
the first ReLU operation (right after the multiplication by C0), and thus will not
contribute to the noise of type (b). Thus, we can analyze the two types of noise
independently. We handle noise of type (b) first. Let y1 = D1ReLU[C0D0x0].
Our goal is to show that ReLU[C ′

1y1] only has non-zero entries in the correct
places. Let x′

1 = ReLU[C0D0x0].

Claim 4.2. Any entry of C ′
1y1 that does not correspond to a correct 1 of the

2-AND problem has value at most ϵ due to noise of type (b) with high probability.

Proof. For any matrix M , we will refer to entry (i, j) in that matrix as M(i, j),
and similarly we will refer to entry k in vector V as V (k). Let e be the index of
any entry of C ′

1y1 that should not be a 1. We will show that with high probability

26



the value of the entry C ′
1y1(e) is at most ϵ. Due to our ReLU specific operation,

we can assume that all non-zero entries of x′
1 are at most 1. We refer to the two

active inputs as i and j, where i ̸= j (there is no type (b) noise if there is only
one active input). We first consider the expectation of C ′

1y1(e). In the following
expression for E[C ′

1y1(e)], we let a range over the entries of C ′
1 in row e and b

range over the columns of D1. For entry x′
1(b) to be a 1, we need C0(b, i) = 1

and C0(b, j) = 1. For this to translate to a non-zero value in its term of the
sum for entry y1(a), we also need D1(a, b) = 1. Since the entries in D0 will be
O( 1

logm′ ) with high probability, this gives the following:

E[C ′
1y1(e)] = O(

1

logm′

∑
a∈1...m′

∑
b∈1...n

Pr[C0(b, i) = 1] Pr[C0(b, j) = 1|C0(b, i)]·

Pr[D1(a, b) = 1|C0(b, i), C0(b, j)] Pr[C
′
1(e, a) = 1]) (1)

Note that C ′
1(c, e) is independent of all the other events we are conditioning

on, and so we do not need to condition for the probability associated with that
event. The other three events are independent for most terms in the sum, but
not so for a small fraction of them. D1(a, b) is independent of C0(b, i) whenever
i is not used in the output for row a of D1, and similarly for C0(b, j). C0(b, i) is
independent of C0(b, j), as long as D0(d, b) = 0, where row d of D0 corresponds
to the output that is an AND of i and j (since then we know that for all
such entries b of row d, sd(c) = 0). The entries y1(d) where D0(d, b) > 0 are
supposed to be non-zero, but they can still contribute noise when multiplied by
the compression matrix C ′

1.
Thus, we will evaluate this sum using two cases: where there is some depen-

dence between any pair of the four probabilities, and where there is not. We
deal with the latter case first, and in this case Pr[C ′

1(e, a) = 1] = Pr[D1(a, b) =
1] = O(logm′/n). Using a union bound and the fact that no input is used more
than m′ 1/4 times, we see that Pr[C0(b, i) = 1] = O(m′ 1/4 logm′/n) and also
Pr[C0(b, j) = 1] = O(m′ 1/4 logm′/n). This tells us that the contribution of the
independent terms is at most

O

(
1

logm′nm
′
(
logm′

n

)2(
m′ 1/4 logm′

n

)2
)

= O(1).

For the case where there is dependency between the different events, we first
consider what happens when i is used in the output for row a of D1. In this case,
we can simply assume that D1(dc) = 1 always, which means we lose a factor of
logm′/n = 1/

√
m′ in the above equation. However, since i can be used in at

most m′ 1/4 outputs, there are now only m′ 1/4 values of a to consider instead of
m′, so we also lose a factor m′ 3/4. From this we see that the terms of this case
do not contribute meaningfully to the value of the sum, and similarly for when
j is used in the output for row a. For the case where D0(d, b) > 0, where i and j
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are used in the output for row d, we see that all three of the dependent variables
will be 1. However, there is only 1 such row d, and we also know that with high
probability that row will contain O(logm′) 1s. Thus, the number of terms in

the sum is reduced by m′3/2 and we still have the logm′

n from Pr[C ′
1(e, a) = 1],

and so this case does not contribute significantly to the sum either.
To convert this expectation to a high probability result, we can rearrange

the terms of the sum to consider only those rows d of D1 that correspond to
columns of C ′

1 where C ′
1(d, e) = 1 and those columns of D1 that correspond to

entries of x′
1 where x′

1(c) = 1 incorrectly (i.e. c such that there exist a and b
such that both C0(c, a) = 1 and C0(c, b) = 1). The number of non-zero entries
in a row of C ′

1 is O(m′ logm′/n) with high probability (from how C ′
1 is built).

The number of non-zero entries in x′
1 is O(logm′) with high probability.

Thus, with high probability, we are summing a total of O(m′ log2 m′/n) =
O(

√
m′ logm′) entries of D1. Each of those entries is either Θ(1/ logm′) or 0

and takes on the non-zero value with probability logm′/n. Thus the expectation
of that sum is O(m′ log2 m′/n2) = O(1). We can define indicator variables on
whether or not each such entry of D1 is non-zero. We can assume these random
variables are chosen independently, and their expected sum is O(logm′), and
so a standard Chernoff bound then demonstrates that the number of non-zero
entries in D1 will be within a constant of its expectation with high probability.
Thus, C ′

1y1(e) will be O(1) with high probability. We can make that constant
smaller than any ϵ be increasing the size of n by a constant factor dependent
on ϵ.

Thus, all noise of type (b) will be removed by the second ReLU operation.
We now turn to noise of type (a): there can be incorrect non-zeros in the vector
D0x0 and we want to make sure that any resulting incorrect non-zero entry in
the vector C0D0x0 has size at most ϵ and thus will be removed by the first
ReLU function.

Claim 4.3. The amount of type (a) noise introduced to any entry of C0D0x0

is at most ϵ with high probability.

Proof. For any row e of C0, let Ce
0 be the set of columns a of C0 such that

C0(e, a) = 1]. We first show that for any e, with high probability, |Ce
0 | =

O(
√
m′). This follows from how the columns of C0 are chosen: they are defined

by the column specifications s1, . . . , sm′ . Every column specification si where
si(e) = 1 contributes at most 2 new columns to Ce

0 - one for each input used
for output i. There are m′ column specifications, and the entries are all chosen
i.i.d., with probability of a 1 being 1/

√
m′, and so a straightforward Chernoff

bound shows that with high probability there are at most O(
√
m′) specifications

si where si(e) = 1. Thus |Ce
0 | = O(

√
m′) with high probability.

When we multiply C0 by D0x0, we will simply sum together the non-zero
entries of D0x0 that line up with the columns in Ce

0 . For any a that does not
correspond to an active input, using the fact that x0 has O(logm′) non-zero
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entries and a union bound, we see that

Pr[D0x0(a) > 0] ≤ O

(
log2 m′

n

)
= O

(
logm′
√
m′

)
.

Thus, the expected number of non-zero terms in the sum C0D0x0(e) is
O(logm′). Furthermore, since the entries of D0 are chosen independently of
each other, we can use a Chernoff bound to show that the the number of non-
zero terms in the sum for C0D0x0(e) is O(logm′) with high probability. Finally,
we point out that the incorrect non-zeros in D0x0 have size at most c/ logm′

for a constant c with high probability which follows directly from the facts that
each entry of D0x0 is the sum of logm′ pairwise products of two entries, di-
vided by logm′ and the probability of each of those products being a 1 is at
most logm′/n. Putting all of this together shows that for any e, C0D0x0(e) is
at most O(1) with high probability. This can be made smaller than any ϵ by
increasing n by a constant factor dependent on ϵ.

4.5 Algorithm for double heavy outputs

We here provide the algorithm called High-Influence-AND, which is used
by our high level algorithm for outputs that have two heavy inputs. Let t̄ be
the average influence of the feature circuit. The algorithm High-Influence-
AND requires only n = O(

√
m′ logm′), provided that t̄ > m′ 1/4. Note that

the high level algorithm uses High-Influence-AND on a subproblem that has
a minimum feature influence of m 1/4. This implies that t̄ > m′ 1/4. However,
High-Influence-AND applies more broadly than just when the minimum fea-
ture influence is high - it is sufficient for the average feature influence to be high.
We here describe the algorithm in terms of the more general condition to point
out that if the overall input to the problem meets the average condition, we can
just use High-Influence-AND for the entire problem, instead of breaking it
down into various subproblems.

This algorithm uses input channels, in the sense that the column specifi-
cations do not depend on which outputs the inputs appear in. We can do so
here for all inputs, because the number of inputs m is significantly smaller than
m′, and we define n relative to m′, not m. Specifically, if t̄ > m′ 1/4, then
m′ > m ·m′ 1/4/2, which implies that m < 2m′3/4. This algorithm follows the
same common structure as above, with the following modifications to C0 and
D0:

Algorithm High-Influence-AND

• In the matrix C0, there is one column for each input, and that column
lines up with the entry for that input in D0x0. Each entry in this column
is binary, and chosen independently, with a probability of 1 being 1

m′ 1/4 .
No further columns are allocated to C0.
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• Every row of D1 corresponds to an output, and the entries in that row that
are non-zero are those entries where both of the inputs for that output
have a 1 in the corresponding entry of their column in C0.

Theorem 4.4. With high probability Algorithm High-Influence-AND cor-
rectly computes x1 from x0, provided that at most 2 inputs are active, t̄ > m′ 1/4,
and n = O(

√
m′logm′).

Proof. We first point out that for any output that should be active as a result
of the AND, the entries of x1 that should be 1 for that output, will in fact be
a 1. This follows from the fact that for any pair of inputs that appear in an
output, the expected number of entries of overlap in their respective columns of
C0 is Θ(logm′), and thus we can use a Chernoff bound to show that it will be
within a constant factor of that value. From there, we see that the correct value
of D1ReLU(C0D0x0 + b) will be a 1. Thus, we only need to demonstrate that
there is not too much noise of either type (a) or type (b) (as defined in Section
4.4). We demonstrate this with the following two claims:

Claim 4.5. Any entry of C ′
1y1 that does not correspond to a correct 1 of the

2-AND problem has value at most ϵ due to noise of type (b) with high probability.

Proof. For any column of C0, the expected number of 1 entries is O(n/m′ 1/4) =
O(m′ 1/4 logm′), and will be no larger with high probability. With this in hand,
we can use an argument analogous to that in the proof of Claim 4.2. Specifically,
for any entry e, Equation 1 still represents E[C ′

1y1(e)], and so it follows that

E[C ′
1y1(e)] =

(
m′ 3/2 log3 m′

n3

)
. A similar Chernoff bound as in Claim 4.2 shows

that C ′
1y1(e) will be within a constant of its expectation with high probability.

Thus, n = O(
√
m′ logm′) is sufficient to make C ′

1y1(e) ≤ ϵ with high probability.

Claim 4.6. The amount of type (a) noise introduced to any entry of C0D0x0

is at most ϵ with high probability.

Proof. Let N(e) be the contribution to entry e in C0D0x0 due to this kind of
noise. We first provide an expression for E[N(e)]. Let H(C0) be the columns
of C0, except those that correspond to the active inputs. In this expression, we
let a range over the columns of H(C0) and b range over all the columns of D0.
We see that

E[N(e)] =

1

logm′

∑
a∈H(C0)

∑
b∈1...n

Pr[x0(b) = 1] Pr[D0(a, b) > 0] Pr[C0(e, a) = 1], (2)

where the active input not being in H(C0) implies that the three probabilities
listed are independent. Since |H(C0)| ≤ m, there are at most nm terms in this
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sum, and the first two probabilities are logm′

n , and the third is 1
m′ 1/4 . This gives

us that

E[N(e)] = O

(
1

logm′nm

(
logm′

n

)2
1

m′ 1/4

)
= O

(
m logm′

nm′ 1/4

)
= O(1),

where the last equality uses the fact that m ≤ 2m′3/4, which follows from the
fact that t̄ ≥ m′ 1/4. This gap between m and m′ is why we are able to use
this algorithm in the case of high average feature influence, but not when that
average is smaller. Since the summation of probabilities is divided by a logm′

factor, a fairly straightforward Chernoff bound over the choices of C0(e, a), for
a ∈ H(C0), shows that this is no higher than its expectation by a constant
factor with high probability. The resulting constant can be made smaller than
any ϵ by increasing n by a constant factor dependent only on ϵ.

This concludes the proof of Theorem 4.4.

4.6 Algorithm for mixed outputs

We now turn to the most challenging of our three subproblems, the case where
the outputs are mixed: one heavy and one light input. As stated above, High-
Influence-AND from Section 4.5 is actually effective when some outputs are
mixed, provided that the average feature influence of the feature circuit is suffi-
ciently high. However, what High-Influence-AND is not able to handle (with
n = O(

√
m′ logm′)), is the case where the feature circuit has low average in-

fluence, but high maximum influence. Our algorithm here is used by the high
level algorithm for all the mixed outputs, but most importantly it addresses
that case of feature circuits with low average influence and high maximum in-
fluence. This involves a combination of input channels for heavy inputs and
output channels for light inputs. Furthermore, we see below that just how high
the feature influence of a heavy input is impacts how the problem is divided into
input and output channels. As a result, we will further partition the outputs
into two subcases based on a further refinement of the heavy features. Since we
overall performed four partitions, this does not affect the overall complexity of
the solution.

Algorithm Mixed-Influence-AND

• Label any input that appears in more than m′ 1/2 outputs as super heavy.
We further partition this subproblem into two based on this label: we
treat the regular heavy mixed outputs separately from the super heavy
mixed outputs.

• For the regular heavy mixed outputs:

– In the encoding for x0 and the matrix D0, partition the encoding
of the light inputs and the super heavy inputs, so that they do not
share any rows or columns.
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– In the matrix C0, there is one column for each heavy input. Each
entry in this column is binary, and chosen independently, with a
probability of 1 being 1

m′ 1/4 .

– In C0, there is also one column for each light input j. Each entry in
this column is binary. For entry k for j, if there is a heavy input i
such that i and j appear in the same output and entry k for column
i is a 1, then entry k for column j is chosen independently with the
probability of a 1 being 1

m′ 1/4 . Otherwise, entry k in column j is a
0.

– No further columns are allocated to C0, and the remainder of the al-
gorithm is constructed analogously to the algorithms Low-Influence-
AND and High-Influence-AND, where the entries of D1 that are
non-zero for a given output are those entries where both of its inputs
have a 1 in the corresponding entry of their column in C0.

• For the super heavy mixed outputs:

– In the encoding for x0 and the matrix D0, partition the encoding
of the light inputs and the super heavy inputs, so that they do not
share any rows or columns. Furthermore, none of the super heavy
inputs will share any rows or columns with each other.

– In the matrix C0, there is one column for each heavy input. Each
entry in this column is binary, and chosen i.i.d., with a probability
of 1 being 1

γ , for a constant γ to be determined below.

– In C0, there is one column for each light input j. Each entry in this
column is binary, and chosen i.i.d., with a probability of 1 being 2γ√

m′ .

– There is an additional mechanism, called detect-two-active-heavies,
which will be described below.

– The remainder of the algorithm is constructed analogously to the al-
gorithms Low-Influence-AND and High-Influence-AND, where
the entries of D1 that are non-zero for a given output are those en-
tries where both of its inputs have a 1 in the corresponding entry of
their column C0.

In the case of regular heavy inputs, we can view the heavy inputs as using
input channels (since they are not dependent on how those inputs are used), and
the light inputs as using output channels (since they are routed to the channel
of the input they share an output with). We see below that this is effective for
regular heavy inputs. However, for super heavy inputs, this would not work: a
super heavy input would have too many light inputs routed to it. If we do not
increase the size of the input channel for the super heavy input, there will be too
many light inputs routed to too little space, and as a result, those light inputs
would create too much type (a) noise. And if we do increase the size of the
input channel for super heavy inputs, then the super heavy inputs will create
too much type (b) noise with each other. Thus, we need to deal with the super
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heavy inputs separately, as we did above. Key to this is detect-two-active-
heavies which is a way of shutting down this entire portion of the algorithm
when two super heavy inputs are active. This allows us to remove what would
otherwise be too much noise in the system. The output for that pair of inputs
will instead be produced by Algorithm High-Influence-AND.

Theorem 4.7. With high probability, Algorithm Mixed-Influence-AND cor-
rectly computes x1 from x0, provided that at most 2 inputs are active, each
output contains both a heavy and a light input, and n = O(

√
m′logm′).

Proof. This follows from the two lemmas below.

Lemma 4.8. The subproblem of Algorithm Mixed-Influence-AND on the
regular heavy mixed outputs produces the correct result provided that at most 2
inputs are active and n = O(

√
m′logm′).

Proof. We first point out that for any output that should be active as a result
of the AND, the entries of x1 that should be 1 for that output, will in fact be a
1. This follows from the fact that for any pair of inputs that appear in a regular
heavy mixed output, the expected number of rows of overlap in their respective
columns of C0 is Θ(logm′), and thus we can use a Chernoff bound to show that
it will be within a constant factor of that value. The Lemma now follows from
the following two claims:

Claim 4.9. Any entry of C ′
1y1 that does not correspond to a correct 1 of the

2-AND problem has value at most ϵ due to noise of type (b) with high probability.

Proof. For any column of C0 (corresponding to either a light or a heavy input),
the expected number of 1 entries is O(n/m′ 1/4) = O(m′ 1/4 logm′), and will be
no larger with high probability. With this in hand, we can use an argument
analogous to that in the proof of Claim 4.2.

Claim 4.10. The amount of type (a) noise introduced to any entry of C0D0x0

is at most ϵ with high probability.

Proof. We need to argue this for both the light inputs and the heavy inputs.
However, since we partitioned those inputs in D0, they will not interfere with
each other, and we can handle each of those separately. We first examine the
heavy inputs, and note that there can be at most m′ 3/4 of them, since each will
contribute at least m′ 1/4 distinct outputs. Let Nh(e) be the contribution to
C0D0x0(e) of this kind of noise from heavy inputs. We first provide an expres-
sion for E[Nh(e)]. Let H(C0) be the columns of C0 in row e that correspond to
heavy inputs, not counting the active input. Let H(D0) be the columns of D0

that are used by the heavy inputs. In this expression, we let a range over the
columns in H(C0) and b range over the columns of H(D0). We see that

E[Nh(e)] =

1

logm′

∑
a∈H(C0)

∑
b∈H(D0)

Pr[x0(b) = 1] Pr[D0(a, b) > 0] Pr[C0(e, a) = 1], (3)
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where the active input not being in H(C0) implies that the three probabilities
listed are independent. Since |H(C0)| ≤ m′ 3/4 and |H(D0)| ≤ n, there are at

most nm′ 3/4 terms in this sum, and the first two probabilities are logm′

n , and
the third is 1

m′ 1/4 . This gives us that

E[Nh(e)] = O

(
1

logm′nm
′ 3/4

(
logm′

n

)2
1

m′ 1/4

)
= O(1).

Since the summation of probabilities is divided by a logm′ factor, a fairly
straightforward Chernoff bound over the choices of C0(e, a), for a ∈ H(C0),
shows that this is no higher than its expectation by a constant factor with
high probability. The resulting constant can be made smaller than any ϵ by
increasing n by a constant factor dependent only on ϵ.

We next turn to light inputs. This is more challenging than the heavy inputs
for two reasons. First, if we define L(C0) analogously to H(C0), then |L(C0)|
can be larger than m′ 3/4 because each light input appears in at most m′ 1/4

outputs. It can be Θ(m), which means we would need to evaluate the sum in
the expectation a different way. Second, the choices of C0(e, a), for a ∈ L(C0),
are no longer independent, since those choices for two light inputs that share
the same heavy input will both be influenced by the choice in row e for that
heavy input (see Figure 8). Thus the Chernoff bound to demonstrate the high
probability result needs to be done differently. In fact, this lack of independence
is why we need to handle the super heavy inputs differently in the algorithm.
If, for example, there were a single heavy input h that appeared in the same
output as all of the light inputs, consider any row eh such that C0(eh, h) = 1.
The expectation of C0D0x0(eh) is Θ(m3/4/n), which is too large. In other words,
with such a super heavy input, even though the expectation E[Nl(e)] = O(1)
for every e, the distribution is such that with high probability there will be some
eh such that Nl(eh) = Θ(m3/4/n).

Instead, we take a different approach here. For any row e of C0, and any
set of columns S, let CS

0 (e) be the set of entries C0(e, a) that are 1 for a ∈ S.

We first show that with high probability, |CL(C0)
0 (e)| = O(

√
m′). To do so, we

demonstrate that the entries in C0 in row e for the heavy inputs leave at most
O(m′ 3/4) light inputs that make a choice for their entry in row e; the remainder
are only in rows where all heavy inputs that appear with them have a 0 in row
e, and thus they are set to 0 without making a choice. More precisely, for any
heavy input a, let δ(a) be the set of light inputs that appear in an output with
a. We wish to show that∣∣∣∣∣∣∣

⋃
a∈C

H(C0)
0 (e)

δ(a)

∣∣∣∣∣∣∣ = O(m′ 3/4).

To do so, first note that
∑

a∈H(C0)
δ(a) ≤ m′, since there are at most m′ out-

puts, and each output has at most one light entry. We can now define random

variables za for each a ∈ H(C0), where za = 0 when a /∈ C
H(C0)
0 (e), and za =
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Figure 8: The dependence in light inputs between the different choices for
C0(e, a), when a ∈ L(C0). Here a1 and a2 are light inputs, and so a1, a2 ∈ L(C0),
and h is a heavy input such that both h∧a1 and h∧a2 are computed. If we ignore
the impact of other heavy inputs then if C0(e, h) = 0, then both C0(e, a1) = 0
and C0(e, a2) = 0. Thus, Pr[C0(e, a2) = 1|C0(e, a1) = 1] ≫ Pr[C0(e, a2) =
1|C0(e, a1) = 0], and so C0(e, a2) and C0(e, a1) are not independent.

δ(a)/
√
m′ when a ∈ C

H(C0)
0 (e), which happens with probability 1

m′ 1/4 . Since

there are no super heavy inputs in H(C0), ∀a ∈ H(C0), |δ(a)| ≤
√
m′, and so

0 ≤ za ≤ 1. Also, the za are mutually independent. Thus, E
[∑

a∈H(C0)
za

]
≤

m′ 1/4, and a standard Chernoff bound shows that
∑

a∈H(C0)
zi = O(m′ 1/4)

with high probability. From this it follows that∣∣∣∣∣∣∣
⋃

a∈C
H(C0)
0 (e)

δ(a)

∣∣∣∣∣∣∣ ≤
∑

a∈C
H(C0)
0 (e)

|δ(a)| =
√
m′

∑
a∈H(C0)

za = O(m′ 3/4),

with high probability. Given this, at most O(m′ 3/4) light inputs make a choice
for their entry in row e, and each of those is a 1 independently with probability

1
m′ 1/4 . A standard Chernoff bound now shows that |CL(C0)

0 (e)| = O(
√
m′) with

high probability.
To finish the proof of this claim, let Nl(e) and L(D0) be defined analogously

to Nh(e) and H(D0) respectively, for light inputs. We see that

E[Nl(e)] =
1

logm′

∑
a∈C

L(C0)
0 (e)

∑
b∈L(D0)

Pr[x0(b) = 1] Pr[D0(a, b) > 0]

= O

(
n
√
m′

logm′

(
logm′

n

)2
)

= O(1).

We can now use a Chernoff bound over the choices of the relevant entries
in D0 to show that Nl(e) = O(1) with high probability as well. The resulting
constant can be made smaller than any ϵ by increasing n by a constant factor
dependent only on ϵ.

This concludes the proof of Lemma 4.8.
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Lemma 4.11. The subproblem of Algorithm Mixed-Influence-AND on the
super heavy mixed outputs produces the correct result provided that at most 2
inputs are active and n = O(

√
m′logm′).

Proof. We first point out that for any output that should be active as a result
of the AND, the entries of x1 that should be 1 for that output, will in fact be a
1. This follows from the fact that for any pair of inputs that appear in a super
heavy mixed output, the expected number of rows of overlap they share in C0 is
Θ(logm′), and thus we can use a Chernoff bound to show that it will be within
a constant factor of that value. The Lemma now follows from the following two
claims:

Claim 4.12. The amount of type (a) noise introduced to any entry of C0D
′
0y1

is at most ϵ with high probability.

Proof. Since the super heavy inputs do not have any overlapping columns in D0

with each other or with light inputs, none of the super heavy inputs will produce
type (a) noise. Note that there can be at most

√
m′ super heavy inputs (or we

would have more than m′ outputs), and so n = O(
√
m′ logm′) is sufficient space

to provide a non-overlapping input encoding in x0 for each super heavy input.
(This is why we cannot treat regular heavy inputs the same as super heavy
inputs - there might be too many of them.) Thus, we only need to concern
ourselves with type (a) noise produced by pairs of inputs that are both light.
Demonstrating that this noise is at most ϵ is analogous to the proof that there
is not too much type (a) noise for heavy inputs in Claim 4.10. In fact, the
expected such noise is given by an expression almost identical to Equation 3.
In evaluating that expression, we only need to change the number of choices of
H(C0) from m′ 3/4 to m, and the Pr[C0(e, a) = 1] from 1

m′ 1/4 to 2γ
m′ 1/2 . The

facts that the expectation of this noise is O(1), that it is not much higher with
high probability, and that it can be made smaller than ϵ by increasing n by a
constant all follow the same way as in the proof of Claim 4.10.

Claim 4.13. When the two active inputs to the 2-AND problem consist of at
most one super heavy input, then any entry of C ′

1y1 that does not correspond to
a correct 1 of the 2-AND problem has value at most ϵ due to noise of type (b)
with high probability.

Proof. Type (b) noise occurs when the 1s that appear in ReLU(C0D0x0) are
picked up by non-zero entries in unintended rows during the multiplication by
D1, and then remain after being subsequently multiplied by C ′

1. Since we assume
there is at most 1 super heavy input, we only need to handle two cases: one
active light input and one active super heavy input, as well as two active light
inputs. For two light inputs, the number of 1s in ReLU(C0D0x0) is O(1) with
high probability. For the mixed case, the number of 1s in ReLU(C0D0x0) is
O(logm′) with high probability, and thus is more challenging, and in fact the
two active light inputs case can be handled similarly, so we here only present
the argument for the mixed case.
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Let s be the active super heavy input, and let l be the active light input.
The 1s in ReLU(C0D0x0) from those two active inputs can be picked up by an
unintended row of D1 that corresponds to an incorrect output that combines a
light input l′ and a heavy input s′, where either s′ ̸= s or l′ ̸= l, or both. We
will combine these three possibilities into two cases: in the first, s′ ̸= s, but
l′ = l, and in the second, l′ ̸= l, but s′ may or may not be the same as s.

In the first case, the number of entries of D1 in the row for any given output
that overlap with 1s, for each s′, can be at most O(logm′), and since l is light,
there can be at most m′ 1/4 such s′. Thus, this way only contributes at most
O(m′ 1/4 logm′) nonzero entries to y1 = D1ReLU(C0D0x0). Furthermore, each
of these entries has size at most 2/γ with high probability. The type (b) noise of
any entry e of C ′

1y1 will consist of the sum of each of those entries multiplied by
either 0 or a 1, with the probability of a 1 being logm′/n. Thus, from a union
bound the probability that this sum is non-zero is at most O(m′ 1/4 log2 m′/n) =
O(logm′/m′ 1/4). Furthermore, with high probability that sum will have at most
O(1) non-zero entries, and thus the type (b) noise when we hold l fixed is at
most O(1), and that constant can be made smaller than any ϵ by increasing the
constant γ.

We next turn to the second case: noise of type (b) that combines s′ with l′,
where l′ ̸= l. In this case, the number of entries of D1 in the row for any given
output that overlap with 1s will be O(1) with high probability, and thus any
non-zero entry of D1 has value O( 1

logm′ ) with high probability. There are at

most m′ rows of D1 that could have such overlap, and the probability of overlap

for each of them is O
(
n( 1√

m′ )
2
)

= O
(

logm′
√
m′

)
. Thus the resulting expected

number of entries of y1 that are non-zero is O(
√
m′ logm′). Using the fact that

for any pair of rows of D1 that involve two different light inputs, the entries in
those rows will be independent, and the fact that every light input can appear
in at most m 1/4 rows, we can use a Chernoff bound to show that it will not be
higher by more than a constant factor.

Again, any entry e of C ′
1y1 will consist of the sum of each of those entries

multiplied by either 0 or a 1, with the probability of a 1 being logm′/n. The

expected number of non-zero terms in that sum will be O
(

log2 m′

n
√
m′

)
= O(logm′),

and can be shown with a Chernoff bound to be within a constant factor of its
expectation with high probability. Finally, since each of these terms is O( 1

logm′ )

with high probability, we see that this contribution to any entry of C ′
1y1 is at

most O(1). This can be made smaller than any ϵ by increasing n by a constant
factor.

Claim 4.13 assumes that no two super heavy inputs are active. However, as
described thus far, if two super heavy inputs were to be active, than a constant
fraction of the entries in ReLU(C0D0x0) would be 1s, and this would wreak
havoc with the entries in C ′

1y1. Fortunately, we do not need to handle the case
of two active super heavy inputs here: if an output has two super heavy inputs,
it will be handled by algorithm High-Influence-AND. However, we still have
to ensure that when there are two active super heavy inputs, all of the mixed
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outputs return a 0. Specifically, when there are two active super heavy inputs,
there is so much noise of type (b) that if we do not remove that noise, many
mixed outputs would actually return a 1. The mechanism detect-two-active-
heavies is how we remove that noise.

To construct this mechanism, we add a single row to the matrix C0, called
the cutoff row. Every column of C0 corresponding to a super heavy input will
have a 1 in the cutoff row, and all other columns will have a 0 there. D1 will
have a cutoff column which lines up with the cutoff row in C0, and that column
will have a value of −Z in every row, where Z is large enough to guarantee that
all entries of y1 will be negative. Thus, all entries of C ′

1y1 will be non-positive,
and will be set to 0 by the subsequent ReLU operation. Note that since we are
using non-overlapping entries of x0 to represent the super heavy inputs, there
will not be any noise added to the cutoff row, and so this mechanism will not
be triggered even partially when less than two super heavy inputs are active.

We point out that this operation is very reliant on there being at most two
active inputs, and so the algorithm as described thus far does not work if three
or more inputs are active (for example, two super heavy inputs and one light
input would only return zeros for the mixed outputs). However, we describe
below how to convert any algorithm for two active inputs into an algorithm
that can handle more than two active inputs.

This concludes the proof of Theorem 4.7.

5 Generalizing the constructions

We here demonstrate how the above algorithm can be extended to more general
settings, adding the ability to structurally handle more than two active inputs,
handle multiple layers, and handle the k-AND function.

5.1 More than two active inputs

We have assumed throughout that at most 2 inputs are active at any time.
It turns out that most of the pieces of our main algorithm work for any con-
stant number of inputs being active, but one significant exception to that is
the detect-two-active-heavies mechanism of Algorithm Mixed-Influence-
AND, which requires at most 2 active inputs in order to work. Thus, we here
describe a way to handle any number of active inputs, albeit at the cost of an
increase in n. Let v be an upper bound on the number of active inputs.

We start with the case where v = 3, where there are three possible pairs of
active inputs to a 2-AND. The idea will be to create enough copies of the problem
so that for each of the three possible pairs of active inputs, there is a copy in
which the pair appears without the third input active. To handle that, we make
O(logm) copies of the problem (and thus increase n by that factor). These
copies are partitioned into pairs, and each input goes into exactly one of the
copies in each pairing. The choice of copy for each input is i.i.d. with probability
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1/2. Each of the copies are now computed, using our main algorithm, except
that only the outputs that have both of their inputs in a copy are computed, and
we have an additional mechanism, similar to detect-two-active-heavies, that
detects if a copy has 3 active inputs, and if so, it zeroes out all active outputs in
that copy. Finally, we combine all the copies of each output that are computed,
summing them up and then cutting off the result at 1. The number of copies is
chosen so that for every set of three inputs, with high probability there will be a
copy where each of the three possible pairs of inputs in that set of three inputs
appears without the third input. Thus, for any set of three active inputs, each
pair will be computed correctly in some copy, and so with high probability this
provides us with the correct answer.

We can extend this to any bound v on the number of active inputs. We still
partition the copies into pairs, and we need any set of v inputs to have one copy
where each set of two inputs appears separately from the other v − 2 inputs.
The probability for this to happen for a given set of v inputs and a pair within
that set is 1/2v−1. The number of choices of such sets is

(
m
v

)(
v
2

)
. Thus, to get

all of the pairings we need to occur, the number of copies we need to make
is O

(
2v−1 log

[(
m
v

)(
v
2

)])
≤ O(v2v logm). As a result, we can still compute in

superposition up to when v = O(logm′). We note that some care needs to be
taken with the initial distribution of copies of each input to ensure that process
does not create too much (type (a)) noise, but given how quickly n grows with
v due to the number of copies required, this is not difficult.

5.2 Multiple layers

These algorithms can be used to compute an unlimited number of layers because,
as discussed above, as long as the output of a layer is close to the actual result
(intended 1s are at least 3/4 and intended 0s are at most 1/4), we can use ReLU
to make them exact Boolean outputs. Therefore, the noise introduced during
the processing of a layer is removed between layers, and so does not add up to
become a constraint on depth. Also, as discussed, the high probability results
all are with respect to whether or not the algorithm for a given layer works
correctly. Therefore, each layer can be checked for correctness, and redone if
there is an error, which ensures that all outputs are computed correctly for every
layer. Thus, there is no error that builds up from layer to layer.

5.3 Computing k-AND

We next turn our attention to the question of k-AND. To do so, we simply
utilize our ability to handle multiple layers of computation to convert a k-way
AND function to a series of pairwise AND functions. Specifically, to compute
each individual k-AND, we build a binary tree with k leaves where each node
of the tree is a pairwise AND of two variables. These then get mapped to a
binary tree of vector 2-AND functions where each individual pairwise AND is
computed in exactly one vector 2-AND function, to compute the entire vector
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k-AND function. We thus end up with 2k 2-AND functions to compute, which
we do with an additional factor of log k in the depth of the network.

As described so far, this will increase the number of neurons required by the
network by a factor of O(k). However, for k-AND to be interesting, there would
need to be the possibility of at least k inputs being active (v ≥ k), and so for
any interesting case of k-AND, we would be using our technique for more than 2
active inputs described above, and so if we want to compute in superposition, we
have the limitation that k = O(logm′). However, since that technique already
ensures that every pair of the k-AND appears by itself in one of the copies of
the network, we can embed the leaves of our binary tree into those copies. We
would then do the same thing with the next level of the tree, and so on until
we get to the root of the tree. Since each level of the tree has half the number
of outputs as the previous level, we get a telescoping sum, and thus k-AND can
be added to our implementation of at least k active inputs without changing
the asymptotics of n. It does however add an additional factor of log k to the
depth of the network.

5.4 Arbitrary Boolean circuits

The results we have demonstrated in this paper can be extended to arbitrary
Boolean functions. However, presenting these extensions is beyond the scope
of this paper, and will be described in a followup manuscript. Instead, we
here only point out that with more general Boolean functions, the notion of
feature influence becomes even more important. In fact, without an upper
bound on the maximum feature influence, even computing pairwise ORs wholly
in superposition is not possible: if a single input appears in (for example) half
of the pairwise ORs, then when that input is a 1, half the outputs will be 1.
Thus, the outputs cannot be even represented in superposition.

6 Conclusion

To the best of our knowledge this is the first paper to address the complexity
of neural network computation in superposition, an important new topic in the
field of mechanistic interpretability. Our work delivers the first upper and lower
bounds on such computation and offers insights into what types of techniques
can be effective in neural networks.

There are many questions that emerge from our work; here are some ex-
amples. Do real world, trained neural networks exhibit any of the techniques
we have described in our algorithms? It may be easier to uncover what these
networks are actually doing in practice when armed with techniques that we
know can be effective. Can our algorithms be helpful in designing real networks
by using them to map a known feature circuit to a superposed neural network?
This may reduce the computational effort of building a model, and also im-
prove its effectiveness and/or interpretability. Can our lower bound techniques
be used to prove useful lower bounds on the parameter description of neural
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networks for real world problems, such as LLMs and image generation? Can we
close the remaining gap of the various complexity measures? This includes the
gap of

√
logm′ for n, and determining the precise dependence on the number of

active features and the size of the formula being computed. What is the impact
of using non-Boolean variables and other activation functions besides ReLU?

Looking forward, we hope our work can be viewed by the theory community
as setting up the elements of this new computation model so as to enable further
research. For the deep learning mechanistic interpretability community, we aim
to build a bridge to complexity theory. The important research analyzing the
way neural network expressibility is captured by features is at its infancy, and
it would be good to find ways to co-develop the safety aspects of this research
together with an understanding of its complexity implications, in particular
given the enormous costs involved in running neural computation.
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