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Towards real‑time monitoring 
of insect species populations
Titus Venverloo 1,2* & Fábio Duarte 1

Insect biodiversity and abundance are in global decline, potentially leading to a crisis with profound 
ecological and economic consequences. Methods and technologies to monitor insect species to aid 
in preservation efforts are rapidly being developed yet their adoption has been slow and focused on 
specific use cases. We propose a computer vision model that works towards multi-objective insect 
species identification in real-time and on a large scale. We leverage an image data source with 16 
million instances and a recent improvement in the YOLO computer vision architecture to present a 
quick and open-access method to develop visual AI models to monitor insect species across climatic 
regions.

The loss of biodiversity is a global crisis with profound ecological and economic consequences1–10. Among the 
numerous threats to biodiversity, the rapid decline in insect populations is particularly concerning3–6, as around 
65% of insect species could go extinct over the next one hundred years. This could have disastrous consequences, 
as insects play critical roles in pollination and nutrient cycling, and act as a food source for other species2–4. 
Hence, insect species abundance and diversity conservation are crucial to maintaining ecosystem stability2–4.

Literature describing the dynamics of insect populations is growing, furthering our understanding of global 
biodiversity decline. Common drivers for the rapid decline in insect populations are habitat loss to agriculture 
and urbanization, water, air, and soil pollution including pesticides and fertilizers, pathogens and invasive species, 
and climate change5. Furthermore, ecological niche species are increasingly replaced by more generalist species, 
declining diversity while potentially stabilizing overall insect abundance11,12. While some drivers of decline might 
be localized, global drivers such as climate change will affect every ecosystem on the planet5,9. There is an ongoing 
discussion regarding the effect of climate change on insect populations in temperate regions of the globe, while 
for tropical regions there is a consensus that there will be large effects4–10,13.

Challenges in insect conservation include accurate species identification, which is a very complex task con-
sidering the vast number of insect species1,14,15, the enormous lack of spatial and temporal data covering insect 
species populations1,16, and high uncertainty about species’ ability to adapt to changing climate conditions4,13. 
There is also plenty of evidence that conventional approaches are falling short in monitoring efforts, as manual 
classification requires extensive expertise and labor1,11.

There are other concerns when it comes to the data utilized to describe the decline. For example, Crossley 
et al.12 report no net abundance and diversity declines in long-term ecological sites in the United States of 
America, while Welto et al.11 report that the lack of consistent sampling techniques across long-term monitoring 
sites has influenced those earlier findings11,12. Another confounding factor is the seasonality of insect abundance, 
complicating objective quantification of decline6. Furthermore, we know very little about how extreme weather 
events might cause mass insect death episodes, further affecting the diversity and abundance of insects6,13,17.

More effective and standardized monitoring of important taxa will allow for improved scientific consensus 
and ideally inform actions by governments to protect insect abundance and biodiversity across climatic regions.

Bridging the information gap
Data acquisition about insect species is being automized with large-scale AI models. Currently, an effort similar 
the one presented here, although on a much smaller scale, is already adopted for agricultural sciences, specifi-
cally focused on pest control efforts1,14,18. Leveraging this approach across regions for the overall evaluation of 
insect abundance and biodiversity can standardize data collection while reducing the required effort involved15. 
Some initiatives already incorporate such large models19; however, they require manual collection of geolocated 
images22.

In a systematic literature review from 2023, the largest number of species included in a visual AI model was 
40, trained on a dataset containing 4500 images1. While the largest dataset included in the review contained 
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88,670 images, it had only 16 insect species and achieved a relatively low mean Average Precision (mAP) of 
74%1,14. Very few studies ventured beyond classifying a limited number of insect species, and are often focused 
on the most relevant species for their objectives, such as pest control1,14,18.

Several technologies could help in acquiring better data, as covered by an extensive review15. Specifically, 
computer vision, acoustic sensors, radar and molecular methods are discussed to monitor insects. While the 
review highlights several studies that develop relevant technologies, they are often commercial products, such as 
Diopsis21, and are the result of an expensive development 20. Hence, open-source methods and tools are neces-
sary to address this gap and extend the insect monitoring effort, including regions with low economic resources.

This paper proposes an AI model focused on insect species classification for the Western European region. 
This AI model, trained on 1.54 million web-scraped images, can classify 2584 insect species and could be 
deployed on images collected from high-definition cameras in urban, suburban, agricultural, and natural areas. 
For scalability to other geographic regions, we present a code repository which uses an existing 16 million image 
dataset to train custom AI models for local insect species of interest.

Results
Our dataset comprises images of 2584 insect species, totaling 1.93 million images. These images are split into 
80% for training (1.53 million images) and 20% for validation (0.4 million images). A small sample of images is 
shown in Fig. 1. On average, each species is represented by approximately 770 images. This dataset has restricted 
access as some of the images might be copyright-protected. A smaller test dataset, containing 12,103 images, 
was collected from GBIF (Global Biodiversity Information Facility) and is accessible22. This smaller dataset is 
used to further validate the reported metrics from the validation dataset. The test dataset does not include any 
images utilized in the training of the model. Furthermore, we make available a code repository on how to utilize 
the GBIF framework22 to train custom YOLOv8 model for any region covered by the GBIF dataset.

The YOLOv8 model we developed achieved 82.3% Top 1 score on the validation dataset, which indicates how 
many times the model predicted the correct label with the highest probability. To our knowledge, this would 
make it the most accurate computer vision model to identify insect species at this scale. The accuracy, number 
of species included, and dataset size of previous literature1,14 are compared to our results in Fig. 2. The Top 5 
score of 95%, also based on the validation dataset, further underscores the model’s capacity to recognize insects. 
We also verified those metrics with the test dataset. The metrics from the test dataset are reported in Table 1. 
Table 1 also indicates that saving the Top 2 predictions might be worthwhile to improve the robustness of the 
monitoring effort, showing a 0.07 improvement.

While the model performs well overall, it does not perform uniformly across all species. Hence, a further 
validation step has been taken. First, we analyze the distribution of the number of images for each species (sup-
plementary file 1). The analysis of the number of images indicates that the dataset has a long-tailed distribution, 
implying that for some species the model is trained with significantly less images than others. To test the model’s 
abilities on these underrepresented species, we select 30 species in 6 different parts of the long-tail distribution 
for further validation, as shown in Fig. 3.

The 6 parts are:

Figure 1.   A small sample of the collected images from the GBIF repository22,26.
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•	 Q1 with ~ 20 images
•	 Species: Lasioglossum pallens, Tapinoma erraticum, Gymnosoma dolycoridis, Sphecodes scabricollis, 

Cicada orni
•	 Q2 with ~ 150 images

•	 Species: Arge dimidiata, Banchus pictus, Odontoscelis fuliginosa, Psylla buxi, Agrothereutes abbreviatus
•	 Q3 with ~ 300 images

Figure 2.   The presented dataset size, the number of included species, and achieved accuracy compared to other 
computer vision models included in systematic reviews1,14. The blue dot indicates our results. Note that the 
x-axis is log-transformed due to the large increase in the number of included species.

Table 1.   Metrics from the test dataset.

Top 1 Top 2 Top 3 Top 4 Top 5

Score 0.8287 0.8980 0.9258 0.9384 0.9443

Figure 3.   Showing the long-tailed distribution of number of images per insect species, highlighting the 6 
selected parts of the distribution.
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•	 Species: Lejogaster tarsata, Lestiphorus bicinctus, Glischrochilus hortensis, Euodynerus dantici, Aus-
trolimnophila ochracea

•	 Q4 with ~ 400 images,
•	 Species: Scymnus nigrinus, Crepidodera plutus, Temnostethus pusillus, Heterarthrus vagans, Macropis 

fulvipes
•	 Q5 with ~ 800 images

•	 Species: Limnia unguicornis, Empis stercorea, Phaonia fuscata, Tromatobia lineatoria, Cylindromyia 
bicolor

•	 Q6 with ~ 1600 images
•	 Species: Asilus crabroniformis, Haematopota pluvialis, Baccha elongata, Andrena scotica, Plagiodera 

versicolora
During validation, the 5 species in each of these 6 parts were separately analyzed (supplementary file 2). We 

find that the Top 1 scores decrease substantially for species represented with less than 800 images. For species 
with 150 to 800 images, the Top 1 scores range between 0.25 and 0.8, with an average for Q4 of 0.482, for Q3 of 
0.644, for Q2 0.622, and for Q1 the Top 1 is 0 (Fig. 4). If we generalize these results and look at the distribution 
of images used for our model, our pre-trained AI model would be very accurate for ~ 1000 species, reasonable 
accurate for ~ 1100 species, and inaccurate for ~ 400 species.

We conduct a similar analysis for the Top 5 score, here we find that the model performs well, and the score 
remains stable between ~ 150 images to ~ 1600 images. For species with less than 150 images in the dataset the 
accuracy drops to 0 (Fig. 5).

Each prediction comes with a confidence score, which could be utilized to discard bad predictions improving 
overall accuracy. We plot the Top 1 confidence score in relationship to the Top 1 score in Fig. 6. For Q6 and Q5, 
we observe high confidence scores and high Top 1 scores. For Q4, Q3, Q2, we observe a near linear relationship 
between the confidence of predictions and the Top 1 score. The plot suggests that discarding predictions between 
0 to 0.65 confidence would improve the useability of the model.

Discussion
The results of this study highlight the potential of computer vision in addressing the challenges associated with 
insect species identification and biodiversity conservation. The YOLOv8 model, trained on a large and diverse 
dataset, achieved impressive accuracy, demonstrating its effectiveness in recognizing insect species. However, 
the model is trained on a long-tailed distribution of images, meaning there is an uneven distribution of images 
per specie in the training data. This causes lower classification performance in tail categories compared to head 
categories.

There could be several solutions to circumvent this issue, including resampling the dataset, utilizing loss 
reweighting during the training or using semi-supervised methods to be able to effectively deal with less repre-
sented species. While this is a common issue in the field of image recognition, it is not easily resolved for new 

Figure 4.   The relationship between the number of images per species and the Top 1 score for the presented 
model, based on the 6 parts of the distribution.
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Figure 5.   The relationship between the number of images per species and the Top 5 score for the presented 
model, based on the 6 parts of the distribution.

Figure 6.   The relationship between the Top 1 confidence score and the Top 1 predictions for each of the 6 parts 
of the image dataset.
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datasets. Hence, a future research direction is the utilization of the GBIF image repository incorporating methods 
to better deal with long-tailed distributions of classes. On the short term, discarding low-confidence predictions 
is an easily implementable solution. Additionally, the species in the tail end of the distribution are all rare species; 
thus, rebalancing the dataset might cause overprediction of very uncommon species. The primary objective of 
this contribution is to create a method to get a robust indicator of insect dynamics. To get this indicator, several 
rare species might not be relevant at this stage for initial monitoring setups. Efforts should be focused on select-
ing more abundant indicator species for the relevant ecosystems.

To make these computer vision developments useable, there should be a discussion on the monitoring efforts. 
Standardized monitoring with AI tools requires coordination between long-term research sites to formalize cam-
era configurations, sample plot size, and type of plants in the monitored plot. Further research still must prove 
that computer vision systems remain reliable during in-the-wild deployments and that these sensing systems can 
operate autonomously and effectively. Additionally, the conventional monitoring setups, such as sweep netting, 
pitfall traps, malaise traps, light traps, berlese funnel traps, and visual surveys should not be replaced11,15. These 
methods have their relevance in quantifying insect species; however, they often do not provide scientific data 
in the right granularity and in the right frequency for many analyses. There are also ways to combine these trap 
techniques and visual AI in parallel or in a complementary fashion11,15.

Considering the large and pressing need to understand the dynamics of insect populations, more frequent 
measurements are vital. While image repositories are available15,22, scientific publications on the application of 
large-scale visual AI are lacking. The absence of easy methods to train AI models, a lack of awareness and data-
set availability, and the commercialization of monitoring technologies are delaying monitoring efforts. In this 
research, we present a possible path forward by providing a reproducible method to fetch an image database of 
species of interest, train AI models, and provide a novel large-scale AI model applicable to insect classification, 
which we tested for the purposes of this paper in the Western European region.

The presented computer vision model should be further tested and validated with deployments across multiple 
sites. The open-sourced code repository can be further improved on by incorporating methods to deal with the 
long tail distribution in the GBIF repository. Additionally, further technical developments could focus on multi-
modal AI for the classification of insect. A conceivable application could be using visual recognition methods, 
where databases are more abundant, in combination with acoustic monitoring. The acoustic samples would 
then be labeled with a reliable visual classification prediction. This could create a large and needed acoustic data 
repository which scientists can use for more robust classification results.

Overall, this research represents a step forward in the automation of insect species identification for biodi-
versity conservation. The results underscore the potential of computer vision in combating biodiversity loss and 
offer promising directions for future research and conservation efforts.

Methods
Advancements in computer vision have paved the way for the automation of insect species identification at a 
larger scale. Convolutional Neural Networks (CNNs) have shown exceptional capabilities in image recogni-
tion tasks. While the AI field is progressing, insect population studies have yet to incorporate some of these 
techniques. For example, YOLO (You Only Look Once) is a real-time object detection system that has garnered 
attention for its speed and accuracy23,24. YOLOv8, an improvement of the YOLO architecture, offers state-of-
the-art performance in object detection25 and is the architecture chosen for this article.

To create a comprehensive dataset for insect species identification, the lead author web-scraped almost 2 mil-
lion images representing 2584 insect species. A small percentage of images was collected from search engines, 
while a large portion of images was collected from Observations.org22. Through this method, species were 
captured in various angles, lighting conditions, and backgrounds, which could ensure model robustness. The 
variety of angles is shown in Fig. 1. The lighting conditions were analyzed based on a representative subsample 
of images. Figure 7 shows the overall brightness distributions based on four metrics, mean brightness, standard 
deviation of brightness, the V channel of the images in the HSV format, and the L channel of the images in the 
LAB format. 10 images on the low and high side of the mean brightness distribution are shown in Fig. 8. The 
assessment of the brightness of the images also demonstrate the wide variety of backgrounds.

For the training of the AI model, the web-scraped dataset was divided into 80% training images and 20% 
validation images. The created dataset was used to train a novel AI model, relying on YOLOv8, where the number 
of species included in the model is larger by a factor of 64.6, expanding from a maximum of 40 species1,14 to 2584 
species. Additionally, the reported dataset used for the training and validation is larger than previously reported 
datasets by a factor of 21.8, increasing from 88,0001,14 to almost 2 million images.

As the pre-trained model is specialized for the Western European context, a code repository was developed 
to replicate this method for other species in different climatic zones. The repository leverages a dataset with 
links to 16 million images of insects across a wide range of geographic regions. A region might have specific 
species of interest, or indicator species relevant to estimate ecosystem health. Hence these specie names can be 
provided in a .csv file, after which the code repository downloads images of these species, if they are included 
in the image repository. The GitHub can be found at the Code Availability section, with detailed steps to create 
custom YOLOv8 models shown in Fig. 9.

To summarize, the GitHub repository requires two inputs from users: a simple csv file, with names of spe-
cies, and a GBIF26 image repository that includes those species. The user can choose to either use the prepared 
download26, or create a download meeting their needs from GBIF. The prepared download includes links to 
images of the 16 million image data repository of GBIF26. Once both the csv file and the GBIF dataset are pro-
vided, users can run two scripts to create a new custom YOLOv8 computer vision model and run a third script 
to obtain the predictions on other images.
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1.	 Collect images.py

a.	 Collect images from GBIF in designated folder structure.

2.	 Train_validate.py

a.	 Train a YOLOv8 model relying on Ultralytics and report validation results.

3.	 Run_model.py

a.	 Finds images in a folder and runs the prediction model on those new images.

Figure 7.   Brightness distribution of a subset of images in the dataset.

Figure 8.   Sample of 10 low and high mean brightness images.
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Data availability
Data availability Images can be downloaded from26, GBIF Occurrence Download https://​doi.​org/https://​doi.​
org/​10.​15468/​dl.​dk9czq.

Code availability
https://​github.​com/​Tvenv​er/​Bplus​plus.
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