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Abstract

This paper focuses on the retrieval of refractivity fields from GNSS measurements by means of least-squares collocation.
Collocation adjustment estimates parameters that relate delays and refractivity without relying on a grid. It contains functional
and stochastic models that define the characteristics of the retrieved refractivity fields. This work aims at emphasizing the
capabilities and limitations of the collocation method in modeling refractivity and to present it as a valuable alternative to GNSS
tomography. Initially, we analyze the stochastic models in collocation and compare the theoretical errors of collocation with
those of tomography. We emphasize the low variability of collocation formal variances/covariances compared to tomography
and its lower dependence on a-priori fields. Then, based on real and simulated data, we investigate the importance of station
resolution and station heights for collocation. Increasing the network resolution, for example, from 10 to 2 km, results in
improved a-posteriori statistics, including a 10% reduction in the error statistic for the retrieved refractivity up to 6 km. In
addition, using additional stations at higher altitudes has an impact on the retrieved refractivity fields of about 1 ppm in
terms of standard deviation up to 6 km, and a bias reduction of more than 3 ppm up to 3 km. Furthermore, we compare
refractivity fields retrieved through tomography and collocation, where data of the COSMO weather model are utilized in a
closed-loop validation mode to simulate tropospheric delays and validate the retrieved profiles. While tomography estimates
are less biased, collocation captures relative changes in refractivity more effectively among the voxels within one height
level. Finally, we apply tomography and collocation to test their capabilities to detect an approaching weather front. Both
methods can sense the weather front, but their atmospheric structures appear more similar when the GNSS network has a
well-distributed height coverage.

Keywords GNSS meteorology - Troposphere - Collocation adjustment - GNSS tomography

1 Introduction

Modeling atmospheric water vapor poses a considerable
challenge due to its spatio-temporal variations. Hence, there
is a pressing need to explore novel sensing techniques for
three-dimensional mapping of water vapor distribution to
advance our understanding of the current atmospheric state
and its temporal evolution within the Earth’s troposphere.
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Microwave satellite signals, as those of GNSS (Global Nav-
igation Satellite Systems), are sensitive to the constituents
along the transmitter/receiver path. Depending on the atmo-
spheric conditions along the signal path, they experience
different delays and distortions. Considered as a nuisance
in geodetic applications (such as navigation), these delays
can provide valuable information regarding the distribution
and amount of gases in the atmosphere. While the dry gases
exhibit slow variations in both, space and time, allowing for
relatively accurate modeling and prediction of their distri-
bution (and subsequent delay on microwave signals), the
modeling of wet refractivities introduces larger uncertain-
ties. Consequently, for highest accuracy, the wet delay is
estimated during the processing of microwave measurements
from geodetic techniques. This information provides knowl-
edge regarding the distribution of water vapor. It can be used
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for the correction of observations carried out by space geode-
tic techniques, as well as for meteorological applications
(Geiger 1987; Bevis et al. 1992; Yuan et al. 1993; Davis et al.
1996; Elgered et al. 1997; Kruse 2001; Troller 2004; Hurter
2014). The assimilation of GNSS tropospheric products into
numerical weather prediction (NWP) models and their ben-
efits have been reported in many research publications, such
as (Poli et al. 2007; Bennitt and Jupp 2012; Lindskog et al.
2017; Nakamura et al. 2004).

The most basic tropospheric parameter that ground-based
GNSS provides is the zenith total delay (ZTD), estimated
nowadays with sub-cm level accuracy (Teunissen and Mon-
tenbruck 2017). Further advancements in GNSS processing
and modeling have led to the estimation of ZTD gradients,
which represent the north—south and east—west tilt, i.e., the
azimuthal asymmetry of the atmosphere (Ning and Elgered
2021). Another non-trivial parameter is the residual tropo-
spheric delay. This residual of the least-squares adjustment
is assumed to hold part of the unmodeled neutral atmosphere
and, thus, contains information regarding local anisotropic
tropospheric effects. However, this information is poorly
understood (Hurter 2014; Jones et al. 2020). An improved
parameter derived from these estimates is the slant total
delay (STD). It represents the delay in the direction from the
receiver to the transmitter (Moeller and Weber 2015). STDs
are computed by mapping the ZTDs into the slant direction,
also incorporating zenith gradients and possible residuals
retrieved during the processing of GNSS phase observations
(Moeller and Weber 2015; Alshawaf 2013).

In the past decades, GNSS tomography has become more
and more attractive, motivated by the densification of GNSS
networks, improved modeling strategies and high temporal
resolution of GNSS observations. Modeled refractivities are
quantities with a better interpretability for the meteorolog-
ical community and can depict 3D tropospheric structures.
Several studies have been conducted, and GNSS tomography
software packages have been developed and maintained for
over a decade now (Kruse 2001; Troller 2004; Champollion
et al. 2005; Perler 2012; Heublein 2019; Moller 2017). The
main idea behind GNSS tomography lies in the simple fact
that the slant delay is the integral of the refractivity along
the path from the GNSS satellite to the receiver’s antenna;
above 15 degrees elevation, the ray bending can be ignored
(Ichikawa et al. 1995; Moller and Landskron 2019). The
atmosphere around the GNSS network is discretized in a 3D
grid of voxels, where the refractivity N can be assumed as
constant or modeled to change according to a simple model,
namely, node-based parametrization; this helps to avoid sud-
den jumps of refractivity values between neighboring voxels.
A simple tomography solution would be possible in a sce-
nario where non-colinear rays cross the cells and where at
least one ray is crossing each cell, and even better if several
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rays would cross each voxel. Unfortunately, due to the lim-
ited number of slant observables, this is usually not the case.
A regularization method should be applied to the inversion
process to ensure a stable and unique solution (Moller 2017;
Adavi 2022).

Although GNSS tomography has limitations related to
station density and number of observations, different works
have proven its capability to retrieve appropriate refractiv-
ity fields. (Bender et al. 2011) show that the tomography
solution can be further improved by adding additional con-
straints, such as integrating estimates of integrated water
vapor (IWV). (Rohm et al. 2014) use a Kalman filter scheme
and remove linearly dependent observations and parameters,
achieving an accuracy of 4.2 and 6.2 ppm for simulated
and real data, respectively, compared to NWP refractivity.
(Brenot et al. 2017) focus on numerical weather forecasts
to initialize GNSS tomography, showing the possibility of
improved nowcasting scenarios. At ETH-IGP, several cam-
paigns have been carried out to compare tomography with
radiosonde-retrieved refractivities; they showed that accu-
racies of few ppm are reachable by means of tomography
(Kruse 2001; Troller 2004; Hurter 2014; Perler 2012). In
parallel, a least-squares collocation software COMEDIE
(Collocation of Meteorological Data for Interpretation and
Estimation of Tropospheric Path Delays) has been devel-
oped and deployed since the beginning of the 90s (Troller
2004; Eckert et al. 1992a, 1992b; Geiger and Cocard 1992;
Hirter 1998). COMEDIE can successfully interpolate and
extrapolate meteorological parameters such as temperature,
pressure, water vapor pressure, tropospheric zenith delays
and delay gradients as well as refractivities in four dimen-
sions (Troller 2004; Hurter 2014; Eckert et al. 1992a, 1992b;
Hirter 1998; Wilgan et al. 2017). More recently, it has been
further upgraded to collocate (relative) slant delays, such as
InSAR unwrapped phase differences (Shehaj et al. 2020).

COMEDIE models the path delays as the sum of a func-
tional part, a stochastic part named ’signal,” and a ’noise’
part which is Gaussian white noise. The functional part is
based on simple physical principles, and the ‘signal’ is deter-
mined empirically and considers the distances between the
observations. Hence, the ’signal’ and the ’noise’ terms rep-
resent correlated and uncorrelated noise in the residuals,
respectively. The refractivity is described using the same
parameters as for the zenith delays by deriving the formu-
las of the functional and stochastic parts accordingly. This is
an alternative approach to tomography, which produces fields
of refractivity based on estimation and stochastic modeling.
An advantage of the collocation method compared to tomog-
raphy is that the limited number of measurements does not
hamper the solution. However, more measurements lead to
more accurately estimated parameters, and the empirically
determined stochastic part is more realistic. The accuracy of
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collocation is clearly dependent on the accuracy of the deter-
ministic and stochastic models, which have been validated
through several works over the past decades.

In this work, we focus on retrieving refractivity fields
from collocation, which we consider an alternative to tomog-
raphy. Our main objective is to emphasize the retrieval of
tomography-like products using collocation to the GNSS
meteorology community, by displaying the benefits and lim-
itations of this technique.

For this purpose, we present a theoretical evaluation of our
models. We also assess the impact of network density and
network height range on our results. In addition, we provide
a theoretical comparison between tomography and colloca-
tion in terms of formal variances/covariances. Thereby we
apply collocation to two real datasets, collected at locations
with very different topographies, and compare the retrieved
fields as well as investigate the observation residuals. Fur-
thermore, we present a closed-loop validation based on NWP
model data, where we evaluate refractivity fields produced
by tomography and collocation. Finally, we apply collocation
and tomography to a scenario, where a weather front crosses
the GNSS network, with the purpose to assess their capa-
bilities of detecting the atmospheric structures under such
conditions.

This work aims to show that using collocation to retrieve
refractivity fields from GNSS delays leads to results com-
parable to GNSS tomography. The two methods are com-
pared theoretically and experimentally; this is a new aspect
addressed here. We also provide a comprehensive analysis
of different aspects that affect the results of collocation such
as the evaluation of the stochastic models and the quantifica-
tion of the impact of network density and distribution of the
heights in the GNSS network.

The paper is organized as follows. Section 2 provides a
summary of the theoretical background of collocation and
tomography and describes the datasets used in this work.
Section 3 provides a theoretical and data-based comparison
of collocation and tomography and investigates the impor-
tance of various factors that might affect the collocation
results, such as fine-tuning of the models and the distribution
of GNSS stations in the network. Section 4 summarizes the
major findings and discusses further points that have emerged
from this work.

2 Methods and datasets

This section provides a description of the main methods
employed in this study for retrieving refractivity fields: GNSS
tomography and collocation. In addition, we provide the
mathematical formulations of the equations used to inves-
tigate the formal variances/covariances and the stochastic

model of collocation. The section concludes with a descrip-
tion of the datasets used in our analysis.

2.1 Mathematical background: GNSS tomography

GNSS tomography is a technique that reconstructs the water
vapor distribution in space and times, using slant and zenith
delays. Thereby water vapor structures at different heights
are resolved. Tomography approaches have been developed
based on least squares (for instance (Moller 2017)), Kalman
filter (for instance (Perler 2012)) or algebraic reconstruction
technique (for instance (Zhang et al. 2020)).

The main principle in tomography is, that the path delay
(P D) can be expressed as a function of the refractivity in
the tomographic voxels it crosses, and the geometric length
it travels in each voxel:

k
PD;=10"% > " NiAs; (1)

i=1

where As; ; is the length of the ray j in the voxel i, and k is the
total number of voxels crossed by the ray. The tomography
equation consisting of all rays and refractivities, is defined
as follows:

PD=A-N (2)

where P D represents the vector of all path delay observations
PDj, N is the vector of refractivities for all voxels and the
matrix A contains the partial derivatives of the slant delays
with respect to the refractivities, resulting in the ray lengths
As;, j in each voxel.

The main challenge in GNSS tomography is to form a
regular normal equation matrix that can be inverted. This
is a necessary condition if the quantity of interest in each
voxel should be determined from the rays crossing it. It is
restricted by the fact that measurements can only be acquired
within a limited observation window defined by the satel-
lite—receiver geometry. With the current infrastructure, it is
usually not possible to have enough satellites and ground
stations to allocate observations to each voxel. As a con-
sequence, GNSS tomography is an example of an ill-posed
problem, where many voxels are underdetermined or overde-
termined. According to Menke (1989), the whole system is
mixed-determined, and this may lead to singularities. Singu-
lar value decomposition is a typical approach to deal with this
issue, where underdetermined and overdetermined voxels are
separated. In addition, voxel constraints are an alternative
to resolve this issue, where an a-priori field is assumed or
the specific behavior of neighboring voxels is modeled. The
weight of the a-priori background field must be treated and
constrained properly in the system, since the final solution
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depends on it. (Adavi 2022) has shown that the direct regu-
larization method (TV) can be used for a successful solution
without requiring an a-priori field. The ill-posed problem of
GNSS tomography is further pronounced by the often ill-
conditioned system equations leading to instable solutions.
Slight changes in the measurements can cause extremely
unstable parameter solutions. To ensure a stable and unique
solution, a regularization method, such as singular value
decomposition (SVD), should be applied to the inversion
process (Moller 2017).

The SVD method allows for resolving singular and non-
square matrices (Strang and Borre 1997). Therefore, the
design matrix A is split into three components as follows:

A=U-S-vT 3)

where U(1 : [, 1 : I), with [ the number of observations,
and VI (1 : m, 1 : m), with m the number of voxels, are
orthogonal matrices. U and VT are the normalized left and
right singular vectors of A. S(1 : [, 1 : ) is a diagonal matrix
where the diagonal elements are the singular values, while
S(1:1,1+1:m)has zero elements.

First, we find the rank r of the observation matrix A, and
then, we can define the resolution matrix R as follows:

R= diag(Vr : VrT) @

where V, is equal to V(1 : m, 1 : r). The resolution matrix
is used to define which voxels can be resolved. (Adavi et al.
2022) propose to use the spread of the resolution matrix to
analyze the results of the retrieved field. It shows correla-
tion between the spread and the error of the retrieved field in
terms of standard deviation. They conclude that this param-
eter could be used as a quality indicator to pre-assess the
performance of the retrieved field or to be used a-posteriori
to validate the solution.

When we introduce an a-priori field N, the system
matrix and the observations matrix change as follows:

A =[A; Agpr] o)

OBS = [PD; Nup| (6)

where A, is an identity matrix, and the standard deviation
of the a-priori field is considered in the weight matrix.
According to Eq. (1), the field is assumed constant within
a voxel, which is the simplest parametrization. (Perler 2012)
introduced trilinear and a combined bilinear/spline parame-
terization to improve the quality of the retrieved refractivity
fields. Further advancements in parameterization have been
studied in Adavi (2022), where Eikonal Ray-Tracing meth-
ods were compared to straight line geometries. (Ding et al.

@ Springer

2018) introduce an adaptive node parameterization approach,
for varying density on different tomographic planes. In addi-
tion, to discretize the tomographic field for each plane at each
epoch, the size of the tomographic field is used to determine
the location and number of nodes on the plane. (Trzcina et al.
2023) propose a new parameterization approach, where they
account for the non-uniform distribution of the GNSS obser-
vations to optimize the locations of the tomographic nodes.

In this work, we use the GNSS tomography meth-
ods described in this section to evaluate the formal vari-
ances/covariances of tomography, where the resolution
matrix is used as criteria to define if a voxel can be resolved;
the results are displayed in Sect. 3.2. The refractivity fields
presented in Sect. 3.1 are retrieved using the tomography soft-
ware ATom, which is based on least-squares estimation. For
further details about the ATom software, we refer to Moller
(2017).

2.2 Mathematical background: least-squares
collocation of ZTDs and refractivities

Least-squares collocation is an enhancement to the tradi-
tional adjustment theory. Apart from the estimation of some
parameters describing the deterministic part, the residuals
are exploited to estimate a so-called signal, which represents
correlated noise. The remaining part of the residuals is con-
sidered white uncorrelated noise. Each measurement/ is thus
described as follows (for example, from Troller (2004)):

I = f(u, x,t) +s(Css, x, t)+ € 7)

with f, s and € representing the functional, signal and noise
part, respectively. u represents the vector of parameters to be
estimated, and x and ¢ are the coordinates and time, respec-
tively. The signal is also described by the covariance Cy;
designed empirically to describe the correlations among the
measurements.

The functional part of zenith total delays is described as
follows:
ZTD (u, x, y, h, t)

=[ZTDo+azrp - (x —x0)+bzrp - (y = yo) +czTD - (t — 19)]

_ h=ho
.e HzrD

®)

where u = (ZT Dy, azrp, bzrp, czTDp, HzT D) represents
the vector of parameters to be estimated. x and y are the east
and north coordinates, & is the height and ¢ is the time of a
measurement. The parameters x,yo,%0 and #( are the coordi-
nates and time of an arbitrary chosen reference point inside
the network (usually the mean of north, east, time coordinates
and height A is set to 0). Therefore, ZT Dy is the delay at
the reference position, Hz7 p is the atmospheric scale height
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(distance over which the ZTD decreases by a factor of the
Euler number ¢) and azrp, bzrp and czrp are the gradi-
entsin x, y and ¢, respectively. In case of a bad distribution of
GNSS measurements, for example, in height (such as when
one station of the network is at located above 3 km and all the
other stations are located below 1 km), COMEDIE discards
the observations that would not fit well the model based on
gross-error detection (Eckert et al. 1992a).

The covariance matrix describing the signal is modeled as
follows:

Css (i, J)

2
9

hl-+hj

N2 _vin2 hi—h:\2 t—t:\2 —
Xi—Xj Yi—Yj ihj il 2h
1+[<Axo)+<m’0)+(Aho)+(Ato) e 0

€))

with (x;, yi, hi, ;) and (x;, y;, hj, 1) representing the
coordinates and times of two measurements. Axg, Ayg, Ahg
and Ary are the signal correlation lengths in space and time,
while oq and A are the a-priori covariances of the signal and
the scale height modifying the signal correlation lengths as a
function of height. In (Hurter 2014), it is explained how the
parameters of the covariance matrix can be determined from
the data.

The deterministic part of the refractivity is computed by
taking the derivative of the ZTD model with respect to the
zenith direction (Hurter 2014):

1
N(u, x,y, h, t) = :
Hzrp
[ZT Do +azrp - (x —x0) +bzrp - (y — y0) +czrp - (t —10)]
_ h—ho
.e HzrD (10)

The formulation of the covariance of the signal, describ-
ing the relation between the measurement (Z7 D) and the
interpolated refractivity (N) is shown in Hurter (2014); Wil-
gan et al. 2017, once more obtained by taking the derivative
of the model for ZTDs with respect to the zenith direction.
Therefore, after the collocation of the delays, the refractivity
can be modeled at any point of the area of investigation, using
the same functional and signal parameters as for the delays,
but with different (and slightly more complex) formulations.

2.3 Formal variances/covariances analysis

In this section, we provide the mathematical formulation of
the formal variances/covariances of tomography and collo-
cation. To compute these errors, the observation (design)
matrix and the variance/covariance matrices of the measure-
ments are utilized. The formal variances/covariances show
the expected inaccuracies in the resolved fields due to the

geometry (network configuration) and the a-priori knowl-
edge on the accuracy of the GNSS observations. In this
work, we have defined a 10 x 10 grid and simulated different
network geometries to evaluate/compare the errors for both
methods. Therefore, we do not need to simulate the measure-
ments themselves, but only their ray paths within the grid.
The respective results are shown in Sect. 3.2.

The formal variances/covariances of the tomography solu-
tion (for the retrieved refractivity) are obtained as follows:

E,. = (ATD_lA)_l (11)

where A is the tomography design matrix, and D is the covari-
ance matrix of the measurements.

The formal variances/covariances of the collocation
approach (for the retrieved refractivity) are provided by the
following equation (Wirth 1990):

Etl
= Cyy—CysD'CT +(HA — A)) Eyy (ATHT - A1T>
(12)
where D = C,, + Cys is the sum of the covariance of

the signal and the covariance of the measurements, and
H = Cy3 D™, Cy4 is the signals’ covariances between the
values of N in the retrieved refractivity fields, Cys is the
covariance between the refractivity values N and the ZT D
measurements and Cy; is the covariance between the ZT D
measurements. A and A; are the design matrices of the col-
located measurements (Z7T D) and the retrieved refractivities
(N), respectively.

Based on Egs. 11 and 12, we perform a 2D evaluation of
the a-priori errors of tomography and collocation. For tomog-
raphy, we ray trace the signals within our 2D (east and height)
voxel model. For collocation, we consider the following sim-
plified functional relations for the zenith total delays (Eq. 13)
and the refractivities (Eq. 14), respectively:

h
ZTD(x, y, h,t) =[ZT Do +azrp(x —xp)le zrp (13)

_h
[ZT Do +azrp(x — xg)le *Hzrp

(14)

1
N(x,y, h, t)= Horo

For the stochastic modeling, the following equations are
considered:

%
Cy(ZTDi, ZTDj) = TR B
Xi—Xj i—hj
1+[(T0’) +(W0’> }
2
2hy —h
Css(N, ZTD) = o—g[(’v—zz”’)] (16)
q (Aho)
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2 2
st(Ni, Nj) = %[

_1 Xi — Xj 2 hi —hj 2 18
q_+<AXO)+<Ah0) (1%)

2.4 Fine-tuning of the stochastic collocation model
for refractivity estimation

L 4 —hy)’ )
(Aho)?  q(Ahg)*

This section provides the mathematical formulations used
to evaluate the stochastic model in collocation. We discuss
the models separately for the height and the east/north/time
components. The results of the fine-tuning are presented and
further analyzed in Sect. 3.3.1.

The innovation of collocation compared to classical least
squares is the stochastic model, which takes a correlated noise
into account. Our stochastic models are defined empirically
and have been studied and validated over the course of sev-
eral works (Kruse 2001; Troller 2004; Hurter 2014; Hirter
1998; Wilgan et al. 2017; Shehaj et al. 2020). Apart from
the validation of the models with several test campaigns, in
this paragraph, we evaluate our models in a more analytical
approach, by utilizing NWP data.

2.4.1 Stochastic model in the height component

The decrease of the ZTD with increasing height is well
described by an exponential function. Therefore, to evaluate
our height assumption, we derive our stochastic functions
from the following simplified model:

h
N(h) = .ZTDy-e¢ Fzrp (19)

Hzrp

Equation (19) shows that the functional part of refractiv-
ity decreases exponentially. In this evaluation, we are mainly
interested in how well our empirical stochastic functions can
model correlated noise in the height component, after remov-
ing the functional part. For this purpose, we utilize an NWP
model and fit an exponential function, which we consider
to be modeled by the functional part. Therefore, we obtain
residuals of the NWP profiles, which we use to evaluate our
stochastic functions for covariance (Eq. (20)) and correlation
(Eq. (21)), respectively:

213 (12 = 3r?)

Cov(Np,, Ni,) = 3 (20)
(3 +r)
L2 —3r?)
Corry iy, Ny = h(lzh o) @D
h
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with [, as the correlation length in height and r = |h| — h»|
as the height difference between two points.

Section 3.3 further analyzes the correlations between the
stochastic model and the NWM residuals (after fitting an
exponential function) in the height component.

2.4.2 Stochastic model in the north/east/time component

As we can see from Eq. (10), our functional model is similar
for the north, east and time coordinates. Therefore, we only
consider the east component and the following simplification,
to evaluate our model in the east component.

1
N(x) = %[ZTDO +azrp - x] (22)

The simplified signal correlation formulation is the same
as for the height, with the correlation length [, and r =
lx1 — x2:

12 —3r?)

23
@+ =

Corry ey Ny =

Similarly to the previous section, we remove a linear com-
ponent from the NWP refractivities in the east component.
Therefore, we can evaluate the fit of the stochastic model in
the east component compared to the residuals of the NWP
data. Here, we use a fixed height of 4.5 km since the data we
use stems from a mountainous area, in the Valais, and some
profiles start at altitudes of ~ 4 km. Since the NWP model
layers do not have iso-heights, we interpolate all the profiles
at 4.5 km. Thus, we use a simple interpolation function, as
the NWP model is quite dense in the height component (see
Sect. 2.5.1).

2.5 Datasets and test area
2.5.1 NWP data

We used the NWP model COSMO-1 (Consortium for Small-
scale Modeling) to simulate zenith and slant delays. It is
operated by MeteoSwiss to produce weather forecast in the
Alpine region (MeteoSwiss 2019). In this work, we used a
grid of 65 vertical layers up to ~ 11 km, where pressure, water
vapor pressure and temperature are provided hourly. The hor-
izontal resolution is 1.1 km. We ray-traced through the NWP
model and used COMEDIE to interpolate the atmospheric
variables (pressure, temperature and dry pressure) with a
resolution of 300 m along the slant and zenith paths. The
interpolation of meteorological parameters with COMEDIE
is described in Troller (2004); Eckert et al. 1992a; Eck-
ert et al. 1992b. Since the COSMO grid has a very high
resolution, the error due to interpolation with COMEDIE
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Fig. 1 GNSS AGNES/COGEAR network in the Valais, Switzerland

is very small. Therefore, we calculated the refractivity and
finally integrated it to calculate the delays. The delay above
the COSMO grid is modeled using the Saastamoinen model
(Saastamoinen 1973).

For our analysis, we simulated NWP model-based slant
and zenith delays for the Valais network. The elevation and
azimuth of GPS and GLONASS satellites in view were
derived from broadcast ephemerides using the software
ATom (Moller 2017). The slant delays entering the NWP
model through any lateral surface were not simulated. In
addition, we also simulated very high-resolution GNSS net-
works based on the grid of the COSMO model. It allows for
testing of different resolutions of stations that are equally
distributed in space, and, therefore, verify the effect of the
network resolution in a closed-loop validation. In subsequent
sections, the refractivity of the COSMO model is used as
ground truth to depict the collocation and tomography a-
posteriori errors.

Similarly, based on the COSMO grid, we simulated slant
and total delays for another scenario in 2013, where a weather
front arrived over Switzerland. We applied tomography and
collocation, with the aim to assess their capability to detect
this atmospheric structure. We selected two sub-networks
from the GNSS network in Switzerland: 1) a NorthCH sub-
network, where the stations are located at low altitudes
and with a small variability in height and 2) the Valais
sub-network (with the same configuration as in the 2016 sce-
nario).

2.5.2 Real data in the Valais

The main area of investigation in this work is the Alpine
region in the Valais, Switzerland. It is illustrated in Fig. 1,
where the GNSS stations are marked in blue. This area

is interesting, since there is a high variation of altitudes
in the terrain and GNSS stations. This is a positive factor
for tomography and collocation, since GNSS stations can
sense the troposphere at different altitudes. However, the
highly variable terrain results in highly variable refractiv-
ities. We utilized hourly zenith wet delays (ZWDs) of the
AGNES/COGEAR network (Swisstopo 2019) for a 2-week
period in August 2016, processed by swisstopo (Brockmann
and Troller 2002; Brockmann et al. 2006).

2.5.3 Real data in the Upper Rhine Graben region

We also used zenith delays from the GURN (GNSS Upper
Rhine Graben Network) in South Germany. This dataset is
important to display collocation results and evaluate residuals
in a very different scenario compared to the Valais use case.
The GURN network consists of 66 stations in an area of about
5° x 5° latitude—longitude. The network is larger in size and
has more stations. Furthermore, the area is rather flat, which
has a different effect on the collocation results compared to
the Valais scenario. The data were processed by the Geodetic
Institute (GIK) of Karlsruhe Institute of Technology (KIT).
For more details regarding this dataset, we refer the reader
to Fersch et al. (2021).

2.6 Preprocessing of refractivity fields to compare
collocation and tomography

Tomography directly provides the refractivity at each voxel,
whereas for collocation, we interpolate refractivities to the
COSMO grid and then calculate the averaged refractivity of
all points inside each tomographic voxel. This will be the
collocation-based refractivity that we will compare with the
tomography field. Similarly, we also compute the refractivity
of the reference field from COSMO, which is used as ground
truth. We have chosen a tomography grid of 24 horizontal
and 14 vertical voxels. The a-priori field for tomography is
based on a smoothed refractivity field which uses as input
the NWM field.

Furthermore, we would like to point out that we computed
the refractivity fields using ATom (Moller 2017), for two dif-
ferent slant inputs: 1) The slants are ray-traced along the
COSMO grid (as explained in Sect. 2.5.1), and 2) the slants
are computed from the ZTDs using a global mapping function
(GMF) (Boehm et al. 2006). The latter case is more simi-
lar to slant delays estimated from GNSS processing, where
mapping functions are utilized to map the estimated zenith
delay into the slant direction. Since, in the first case, we are
ray-tracing along the NWM grid, the slant delays may be
much more accurate than those computed using a mapping
function. This is the reason behind this comparison. From
our tests, the comparison of the two retrieved fields reveals
differences of few ppm for few voxels, for the 2 weeks in
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Fig.2 Averaged refractivities over 2 weeks in August 2016, plotted as a
function of height for the ground truth COSMO refractivity, collocation
solution (COMEDIE) and tomography solution (ATom)

August, while most of the field is very similar. Therefore, in
Sect. 3, we use only the ray-traced slant delays, for further
comparisons and analysis.

3 Results

This section presents the results for the individual test
cases. Initially, we provide comparisons of refractivity fields
retrieved through collocation and tomography. After ana-
lyzing 4D fields of refractivity from both methods, we
investigate how they reconstruct the refractivity distribution
within an approaching weather front. For selected scenarios,
we present the results of a theoretical investigation, where we
analyze the formal variances/covariances of the two meth-
ods. In the second part of our results, we focus on factors
affecting the solution of least-squares collocation. After pre-
senting the results from fine-tuning the stochastic models, we
demonstrate the importance of station resolution and station
heights in the collocation method.

3.1 Refractivity fields retrieved from tomography
and collocation

3.1.1 2016 Valais use case

In this section, we present the refractivity fields obtained
from collocation and tomographic processing.

In Fig. 2, we display the mean refractivity for each tomo-
graphic height, from the original COSMO field (in blue),
COMEDIE (in red) and ATom (in green). We can notice
that ATom produces refractivities with values closer to the
original COSMO field, compared to COMEDIE. Indeed, a
distinct bias is notable for COMEDIE, more obvious at high
altitudes, whereas it is difficult to clearly see a bias for ATom.

In Fig. 3, we display the mean refractivity for each tomo-
graphic height, from the original COSMO field (in blue) and
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Fig.3 Averaged refractivities over 2 weeks in August 2016, plotted
as a function of height for the ground truth COSMO-1 refractivity,
collocation solution, collocation functional part and collocation signal
part

that from COMEDIE (in red). In yellow and purple, we show
the functional and the signal part, respectively. In this figure,
we want to display how the signal part "helps’ the functional
part to get closer to the true COSMO value. For instance,
at the lowest layer, the signal is negative, and the functional
part is overestimated. Therefore, the total estimated value is
closer to the COSMO value. On the other side, we can see
how in the layers between 2000 and 4000 m, the functional
part is underestimated, and the signal has positive values,
bringing again the total value closer to the ground truth. At
highest layers, above 7 km, we do not have any signal, since
there are no stations at these altitudes (and the chosen signal
correlation length in height is smaller than 2 km).

We calculated the differences of the refractivity fields
retrieved by means of tomography and collocation, to the
reference COSMO refractivity field. We point out that with
collocation we can interpolate at any voxel; however, the dif-
ferences are computed for both methods only for the voxels
that tomography could resolve. We can conclude the follow-
ing:

e For both methods, the difference to the reference refrac-
tivity is smaller at highest layers.

e For tomography, the largest differences to COSMO are
experienced at the lowest layers up to ~ 4500 m.

e For collocation, very large differences to COSMO are
notable at the lowest layers. This is explained by the fact
that interpolation to the lowest layers is difficult for the
mountainous terrain.

e For collocation, also very large values are notable at alti-
tudes between 3500 and 5400 m. These are the altitudes,
where we do not have any observations anymore.

e The differences between collocation and tomography (not
shown here) can be more than 10 ppm for many epochs for
some of the voxels below 6 km. From the average plots over
2 weeks, a few ppm differences (up to 5 ppm N-units) are
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Fig. 4 Tomography and collocation differences to COSMO refractivities, as a function of height, averaged over 2 weeks in 2016. Left: averaged
total refractivity differences. Right: averaged refractivity differences after removal of the mean refractivity for each height

Table 1 Statistics (in ppm, N-units) of refractivity field differences among collocation, tomography and the reference COSMO

Voxel height (m) 675 1170 1715 2314 2973 3698 4495 5372 6337
COMEDIE minus COSMO Bias 5.0 - 1.7 —-3.0 - 13 - 1.5 —-23 —-19 —0.6 0.3
Std 8.2 6.9 3.6 3.3 3.0 3.8 32 2.2 1.4
Std2 22 33 2.5 2.6 2.0 1.9 14 0.9 0.6
ATom minus COSMO Bias 1.9 —23 — 1.5 - 04 - 04 —0.1 - 0.0 - 0.0 0.0
Std 7.1 4.9 4.6 44 2.9 2.5 1.7 1.0 0.7
Std2 6.2 39 4.1 4.2 2.8 2.4 1.6 0.9 0.7
COMEDIE minus ATom Bias 3.1 0.5 — 1.5 - 1.0 — 1.1 —-22 -19 —0.6 0.3
Std 9.2 52 3.7 4.0 2.8 3.5 2.9 2.0 1.3
Std2 5.2 3.6 3.5 3.8 2.3 1.5 0.7 04 0.3

Std is the standard deviation of the differences of refractivities, while Std2 is the standard deviation of the differences after removal of the mean
refractivity of the voxels in the same tomographic height. Voxel height is the ellipsoidal height of the center of the voxels

calculated for the layers below 5 km, while the agreement
is quite good in the higher layers.

In Fig. 4, we plot the difference of the mean refractiv-
ity at different tomographic altitudes, for collocation and
tomography, compared to COSMO. On the left, the total
refractivity difference is shown. On the right, the difference
after removing the mean for each height is displayed, i.e.,
for each of the three refractivity fields (ATom, COMEDIE
and reference COSMO), we have computed the average of
each tomographic height and subtracted it from the values of
the refractivity at that height. While the COMEDIE solution
is biased for different layers and performs worse (left sub-
plot), the field where the mean refractivity for each height is
removed (right subplot) has a smaller variability compared to
the ATom solution. This is also confirmed in Table 1, where
the statistics are displayed for the lowest nine layers. There-
fore, the a-priori field, which has information regarding the
mean refractivity for each layer, helps the tomography to have

a better performance in terms of total refractivities. Colloca-
tion does not include this information, and it exhibits a bias
compared to the reference. However, it can detect at a bet-
ter level the variation of the residual refractivity among the
voxels in one tomographic height, after removal of the mean
refractivity for each tomographic height. In addition, another
option would be to include an a-priori field in collocation as
well; however, one of the main advantages of collocation is
that it does not require any a-priori field, and this is why we
opted not to include it.

3.1.2 2013 weather front scenario

After a thorough comparison of tomography and colloca-
tion in the previous section, we now use both methods for
a particular scenario in 2013, where a weather front arrived
over Switzerland from the north. The NorthCH sub-network
contains stations located at low altitudes with a small height
variability, while the stations of the Valais sub-network have
a large variability in height (with the same configuration as
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Fig.5 GNSS network in Switzerland (in dots) and two chosen sub-
networks in the Valais and in the north of Switzerland (crossed stations).
In blue, the NWP model grid, used to simulate the delays, is displayed

in the 2016 scenario). The chosen sub-networks are depicted
in Fig. 5. The chosen tomographic grid is the same as for the
2016 scenario. We operated COMEDIE and ATom, for each
sub-network separately.

For validation of the results, we show in Fig. 6, the refrac-
tivity for each voxel at ~ 2.5 km as a function of time for
tomography, collocation and the reference solution, for both
sub-networks. The weather front is over Switzerland at day
~4.5— ~ 6.5. From this figure, it is obvious that both meth-
ods can sense the mass arriving at both sub-networks. It also
confirms the under- (over-) estimation of collocation for the
NorthCH scenario, while collocation can better model the
refractivity structure in the Valais. Note that our main objec-
tive is to prove the feasibility of both techniques to detect
such atmospheric structures (at least at a general scale), and
not to investigate the performance at every epoch and voxel.
In this context, we point out that both techniques have the
capability to detect atmospheric water vapor masses arriving
over the GNSS network.

Moreover, we investigated the scale heights for the two
sub-networks. We computed the scale heights of refractiv-
ity profiles of COSMO, ATom and COMEDIE for profiles
defined in the tomography grid. Figure 7 displays the differ-
ence between the scale heights computed from the COSMO
profiles (considered as true values) and those estimated from
collocation and tomography. A very clear agreement of
the tomography scale heights (compared to collocation) to
those of COSMO is visible. In case of collocation, the scale
height differences for the Valais scenario are smaller than for
NorthCH; this is related to the smaller ZWDs variations in
the NorthCH scenario compared to the Valais. This confirms
our assumption (mentioned in the previous sections of this
paper) that the over- or under-estimation of refractivities, in
networks with low variability in GNSS station altitudes, is
affected by a worse estimation of the scale height.
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3.2 Formal variances/covariances analysis
of tomography and collocation

Initially, we display a configuration of four stations for which
we have simulated rays at every 30 degrees of elevation.
Figure 8 displays, on the left, the network configuration and
the rays crossing the voxels, while, on the right, the number
of rays passing through each voxel is visualized.

We performed a single value decomposition to invert the
A-matrix for tomography in case it was underdetermined.
We computed the resolution matrix and defined (empiri-
cally) a value of 0.95 as a threshold for the resolution of
the voxel refractivity. Figure 9 (left) visualizes the formal
variances/covariances of tomography when we do not use an
a-priori field and we can clearly see how most of the vox-
els cannot be determined with tomography without using an
a-priori field. The right subplot of Fig. 9 shows the formal
variances/covariances when we do use an a-priori field. In
this case, all the voxels can be determined.

Then, we computed the formal variances/covariances for
collocation. For this case, we assumed different correlation
lengths in the east and height components since the for-
mal variances/covariances will directly depend on them. We
can notice in Fig. 10 that the error matrix from the collo-
cation approach is fully determined (for all cases), and it
tends to have a dependency on the different height levels.
The shape for all the different tunings tends to be similar,
where smaller values are obtained at larger altitudes and
close to the locations of the stations. Using large values for
the correlation length in height (bottom subplots), clearly
gives a height dependency to the solutions. When we use a
small correlation length in height (top subplots), the formal
variances/covariances become smaller in the vicinity of the
stations. Using small values for the east component will also
create more local gradients close to the GNSS stations (more
visible in left and center top subplots). For all different tun-
ings, there is clearly a different shape compared to the formal
variances/covariances of tomography, which varies strongly
even between neighboring voxels.

In the following, we evaluated the formal vari-
ances/covariances of two more cases. In the first case, shown
in Fig. 11 (on the left), we simulated a (nearly) flat network.
In the second case, shown in Fig. 11 (on the center right), we
also added profiles to this network; this could also be com-
parable to pointwise measurements from techniques such as
radiosonde or radio occultation. Slant delays were simulated
at every 30 degrees of elevation for the ground network for
both cases, and for the profile only zenith delays are assumed.
The number of rays crossing each voxel, for each of the simu-
lated scenarios, is shown in the center left subplot (for the first
case, without profiles of observations) and the right subplot
(for the second case, including profiles of observations).
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Fig.6 Time series of refractivity for the 24 voxels at ~ 2.5 km alti-
tude: for the ground truth COSMO model (top subplots), estimated with
tomography (middle subplots) and estimated with collocation (bottom
subplots). On the left, the time series for the Valais sub-network are
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shown. On the right, the time series for the sub-network in the north of
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N-unit (for dark red) to 35 N-unit (for dark blue)
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Fig. 10 Collocation formal variances/covariances (ppm?) for different correlation lengths

Figure 12 displays the formal variances/covariances for
the case where we use only the flat network, without
additional profile observations. Only a few voxels can be
determined by tomography without using an a-priori field
(left subplot). We can clearly see the very different behav-
ior of tomography (when we assume an a-priori field, center
subplot) and collocation (right subplot). On the one side, the
variation of the a-priori errors for collocation voxels is much
smaller and height-dependent, slowly changing with altitude.
On the other side, there is a large variation of the formal vari-
ances/covariances between tomography voxels, since they
are differently crossed by the slant delays. The variation is
quite large in both, horizontal and vertical coordinates.
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Figure 13 shows the results of the second case, where we
accounted for the profiles of zenith delays as well. In the
tomography solution without an a-priori field, the additional
observations help to resolve those voxels where the zenith
delays are located but have no clear effect on the other voxels.
Including observations at higher voxels clearly changes the
behavior of the formal variances/covariances of collocation
(right subplot), as the errors become much smaller in general
and especially at the locations of the profiles. The solution of
tomography (when an a-priori background field is assumed)
is clearly affected by the additional observations of zenith
delays, which positively affects also the neighboring voxels.
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Fig. 12 Formal variances/covariances (ppm?) for the network based on four stations at the bottom of the voxel model: from a tomography solution
without assuming an a-priori field (left), tomography assuming an a-priori field (center), collocation (right)

Error matrix without a-priori field

9 1.8
16
7
T 14
xX
g
= 12
o
=
£ 1
>
3 08
06
i
04

1 3 5 7 9
Horizontal voxel

Error matrix with a-priori field

H B

1 3 5 7 9
Horizontal voxel

o]

(=]

N

Error matrix collocation: Ax,Ah - 6,2 km

-

1 3 5 7 9
Horizontal voxel

Fig. 13 Formal variances/covariances (ppm?) for the flat network complemented by two vertical profiles: from a tomography solution without
assuming an a-priori field (left), tomography assuming an a-priori field (center), collocation (right)

@ Springer



112 Page 14 of 21

E. Shehaj et al.

However, the overall error does not drop as dramatically as
for collocation.

Our approach is based on conservative values for the
resolution matrix. As discussed in Adavi et al. (2022), apply-
ing a more flexible approach to choose the threshold value
can make the tomography results less reliant on the a-priori
field. This means that more voxels can be resolved using
tomography when we do not consider an a-priori field. For
example, for the first case, shown here in Fig. 8, decreasing
the threshold from 0.95 to 0.5 (or 0.35) increases the number
of resolved voxels without considering an a-priori field from
4t0 9 (or 19). Considering a smaller threshold would lead to
a singular error matrix.

We point out that we focus in this section on a high-level
comparison of the formal variances/covariances. We mainly
analyzed the shapes since the final values of the formal vari-
ances/covariances in tomography are highly dependent on the
noise of the assumed a-priori field. In addition, in tomogra-
phy, inter-voxel constraints can be added which could further
change the shape of the error matrix. Finally, for this sim-
plified case, we simulated delays at every 30 degrees of
elevation, and we did not discard the slant delays entering
the grid from the side. Our scope was to give a visual and
simplified comparison of the two techniques, which empha-
sizes their general characteristics, such as height dependency
of collocation and a-priori field inclusion in tomography. For
actual 3D (or 4D) applications, where measurements are pro-
cessed by means of tomography or collocation, these issues
must be properly addressed.

From this section, we could draw a link to the results in
Sect. 3.1.1, where the tomography solution, that considered
an a-priori field, results in absolute values that are more sim-
ilar to the reference refractivity field, while the accuracy of
the collocation field changes with height. However, in the
same layer, the error variation was smaller for collocation
than for tomography. Similar behaviors could be seen from
the a-priori error matrices in this section.

3.3 Investigation of important factors in collocation
results

This section focuses on the evaluation of several factors that
affect the collocation performance. It aims to provide further
insights into the assumptions and capabilities of collocation
methods to retrieve refractivity fields based on ground-based
GNSS tropospheric delays. Firstly, we provide an evaluation
of the stochastic models assumed in collocation. Therefore,
based on simulated datasets, we evaluate the importance of
network resolution and height distribution on the retrieved
refractivity field based on collocation. Finally, we analyze the
collocation fields as well as the residuals of the observations,
for two scenarios where two networks with very different
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height distributions, one with a good height distribution in
the mountains and a network located in a flat area.

3.3.1 Results from the fine-tuning of the stochastic model

In Fig. 14, the correlations of the NWP model residuals are
plotted in continuous lines for all ~ 9000 profiles available in
the Valais region (see Sect. 2.5); the black curve is the mean
over all curves. In the same figure, the correlations of our
stochastic model for different assumptions of the correlation
length in height are plotted in dashed lines. We can notice
that for different locations within the NWP model, different
stochastic models are suitable. Obviously, there is not a cor-
relation length that would be perfectly suitable for all profiles
(locations); however, we can approximate by finding the best
fit to the mean NWP model correlation length, which is the
black curve. A signal correlation length in height of ~ 2 km
seems to be appropriate, which is the correlation length we
usually use in our experiments for this area of investigation.

In the left subplot of Fig. 15, we plot the spatial correla-
tions of the NWP model residuals w.r.t. a linear function in
continuous lines; in black, the mean of all curves is plotted.
In dashed lines, we also plot the correlation of our stochastic
model for different assumed correlation lengths in the east
component. We can notice that a correlation length of 10 km
fits best to the mean NWP-based correlations. This is the
case because this curve (red curve) follows closer the aver-
age NWP correlation (i.e., the black curve), down to a value
of 0.5. The value 0.5 is defined arbitrary, considering that
the signal loses more than 50%. The other assumed correla-
tion lengths (30 km and 50 km) fit better at other distances.
However, since the values are below 0.5, we would lose most
of the signal. We point out that it is important to capture the
signals for the closest distances. This can be explained by the
assumption of a rather dense network of GNSS stations and
that the interpolation of the signal is more appropriate by giv-
ing higher weight to the ZTDs of the close-by station. Thus,
the farther from the stations we are, the worse the signal can
be modeled.

The right-hand subplot of Fig. 15 shows the case of
adjusted correlation lengths for different distances, i.e., we
assume different correlation lengths when we calculate the
signal at different distances. We have done this experimen-
tally by analyzing the mean correlation of the (residuals of
the) NWP model. We note that this is done here only to illus-
trate that it is possible to modify the assumption of the signal
model to capture a larger proportion of the correlated noise
(e.g., when a-priori data are added).

It is important to point out that these simplified examples
were displayed to show that our stochastic models have in
general a reasonable agreement with the information from
NWP models. Here, it is not our target to define the ulti-
mate correlation lengths. However, through this data-based
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Fig. 14 Correlations in height of 1 T T T
NWP refractivities and of the
signal model used in collocation,
for different values assumed for
the height correlation lengths
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Fig. 15 Left: spatial correlations of (residuals of) NWP refractivities
in the east coordinate and correlation of the signal model for differ-
ent correlation lengths in east direction. Right: spatial correlations of
(residuals of) NWP refractivities in the east coordinate and correlation

analytical evaluation, we aim to show the applicability and
sensibility of our stochastic models.

3.3.2 Effect of network resolution and station heights

In this section, we utilize COSMO-simulated ZTDs at a very
high resolution. We evaluate two components: 1) the impact
of the network resolution and 2) the impact of station heights,
on the retrieved refractivity field.

Table 2 shows that there is a degradation of the retrieved
refractivity fields, especially in terms of standard deviation,
when considering lower station resolution. The refractivity
error increases by about 10%, from a resolution of 2 km to
one of 10 km, below 3 km (from 4.7 to 5.3 ppm, see first line)
and in the interval 3—-6 km (from 2.9 to 3.2 ppm, see third
line). At higher altitudes (6—11 km), the impact is not visible.
The bias is large above 6 km, where for all cases, a value of
about 5 ppm is computed. This is the case for collocation
since it relies only on ground observations. Therefore, the

0O 10 20 30 40 50 60 70 80 90 100 110
Distance in East Coord [km]

of the signal model for the east direction correlation lengths adapted to
fit the mean NWP model correlation (using different correlation lengths
for different distances)

computed scale height is only reliable up to the altitude of
the highest station in the network.

Table 3 displays that there is an obvious degradation in
the retrieved refractivity field, from the scenario when all the
points are used, to the scenario where only points at smaller
altitudes are used. This is obvious for both, bias and standard
deviation up to 6 km. However, we must point out the fact
that, except when using only points at lower altitudes, the
number of measurements is reduced as well, which further
affects the results. The highest layers (6—11 km) do not seem
to be affected.

3.3.3 Real data evaluations for Valais and URG

In this section, we present refractivity fields obtained from
collocation, for two different scenarios, namely, for the Valais
and URG regions. The collocation settings (assumed correla-
tion lengths) have been adapted for each network. Figure 16
displays the refractivity at several layers, while Fig. 17 shows
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Table 2 Closed-loop validation statistics for different network resolutions

Height/resolution (in km) 2 3 4 6 8 10
0-3 km Std.dev [ppm] 4.7 4.7 4.8 5.0 52 5.3
Bias [ppm] 1.5 1.6 1.6 1.5 1.6 1.6
3-6 km Std.dev [ppm] 2.9 2.9 3.0 3.1 3.1 32
Bias [ppm] —-0.2 —-0.2 - 04 - 0.8 - 0.5 - 09
6-11 km Std.dev [ppm] 2.1 2.1 2.1 22 2.1 22
Bias [ppm] 5.0 5.0 5.0 4.9 5.0 4.9

We used NWP-based ZTDs (for 2 weeks in summer 2016) to simulate networks with different resolutions. The refractivity field was then computed
by means of collocation and compared to the original refractivity in the NWP grid. The statistics from these differences are reported here

Table 3 Closed-loop validation statistics for different maximal station heights of the GNSS network used in collocation

Height/station height (km) <1 <15 <2 <25 <3 All
0-3 km Std.dev [ppm] 5.6 5.4 5.1 4.8 4.7 4.7
Bias [ppm] 52 3.7 29 1.7 1.6 1.5
3-6 km Std.dev [ppm] 3.7 3.7 3.6 34 32 29
Bias [ppm] 0.8 0.5 0.5 ~0 —-0.1 - 0.2
6-11 km Std.dev [ppm] 2.0 2.0 2.1 2.1 2.1 2.1
Bias [ppm] 4.9 5.0 5.0 5.0 5.0 5.0

We used NWP-based ZTDs (for 2 weeks in summer 2016) to simulate networks with different maximal heights. The refractivity field was computed
by means of collocation, for each network, and compared to the original refractivity in the NWP grid. The statistics from these differences are

reported here
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Fig. 16 Wet refractivity fields retrieved by means of collocation for the Valais (left) and URG (right)
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Fig. 17 Wet refractivity field for the lowest layer retrieved by collocation for the Valais (left) and URG (right)
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Fig. 18 Time series for the Valais scenario (left) and the URG scenario
(right). From top to bottom: a ZWDs, b ZWD residuals after collocation,
c signal estimated with collocation, d noise estimated with collocation, e

only the lowest layer field. For both scenarios, the refractiv-
ity field has lower values at higher altitudes. As explained
from the stratification of the atmosphere, the refractivity field
has a higher variability at lower layers. From Fig. 17, we
can notice the dependency on the mountainous terrain in the
Valais. For the URG scenario, the change of refractivity is
relatively low, following the smooth topography changes in
this area. The field reaches extreme values (lowest and high-
est, respectively) in the high-altitude area (in south—east) and
in the lowest part of the valley (in north—west). We point out
that these areas are outside of the GNSS network; therefore,
the values are more prone to large errors. Indeed, colloca-
tion performs worse in case of extrapolation, compared to
interpolation.

To properly evaluate COMEDIE for these very different
scenarios, we plot in Fig. 18 the ZWDs, the collocation resid-
uals and the signal and noise, for each of them. In the lower

0 20 40 60 80
Epoch [hours]

standard deviation of ZWDs, f standard deviation of ZWD residuals
after collocation, g standard deviation of the signal estimated with col-
location and h standard deviation of the noise estimated with collocation

subplots, we visualize the standard deviation of each com-
ponent. We can notice the different ZWDs obtained for these
two scenarios. In the Valais, they vary in an interval from 20
to 230 mm, with standard deviations in the interval from 21
to 43 mm. In URG, the ZWDs are in the interval from 72
to 252 mm, and their standard deviations are in the interval
from 11 to 32 mm. The smaller standard deviations in URG
are in line with the small altitude changes among the GNSS
stations.

The very different delays, and altitudes of the GNSS
stations, are, therefore, reflected in the collocation results,
where we have smaller residuals for the Valais case. The
two main reasons are: 1) We have a smaller area of inves-
tigation, therefore, the estimated functional parameters can
better approximate the refractivity fields and 2) due to the
very smooth topography in URG, the estimation of the scale
height (see Eq. (8)) is less accurate. Indeed, having GNSS
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stations in very high altitudes leads to a better approximation
of how the refractivity decreases with altitude. In the extreme
case, where all stations are at the same altitude, it would be
impossible to estimate this parameter, while the best-case
scenario would be to have measurements distributed from
the bottom to the top of the atmosphere. Therefore, the Valais
scenario is closer to the best-case scenario.

A similar white noise of the observations (see Eq. (7)) of
both areas leads to a larger amount of signal in URG. Here,
the main scope is to illustrate the very different behavior of
the functional part (modeling most of the ZWDs) for these
two very different scenarios. If we are uncertain about the
signal magnitude, one option is to increase the measurement
noise by a factor of 2 or more; this allows to lower the signal-
to-noise ratio and thus reduce the impact of the signal on the
interpolated fields.

4 Conclusions

In this paper, we presented the retrieval of refractivity fields
from GNSS zenith and slant delays by means of collocation
and tomography. For this purpose, we utilized the collocation
software COMEDIE and the tomography software ATom.

In the current literature, the retrieval of refractivity fields
by tomography (and several issues related to it) have been
addressed thoroughly. More recent publications focus on
enhancing the output of this technique via improving the
assumptions, voxel constraints and lowering the impact of
the a-priori field. On the other hand, the utilization of col-
location for retrieval of refractivity fields has not yet been
invested in such detail. Thus, the main objective of this work
is to present collocation as an alternative solution and to
encourage researchers in this domain to use both methods.
Therefore, we focus most of the investigations of this study
on collocation, and, in addition, we provide use-cases where
we compare it to tomography.

Tomography is a well-established method, with which
the refractivity field can fully be determined if enough rays
cross each voxel. However, GNSS tomography must deal
with the fact that many voxels may be underdetermined.
Voxel parametrizations, a-priori field assumption and spe-
cific methods to deal with singularities are some of the
approaches to obtain areliable estimate from tomography. On
the other side, collocation does not encounter these issues;
it is based on parameter estimation from the measurements.
Consequently, the accuracy of collocation depends on the
models’ capabilities to approximate the reality. Moreover,
the parameters of the functional and stochastic models are
chosen empirically; thus, its performance depends on their
choice. In this study, the input for collocation is zenith delays,
while tomography processes slant (and zenith) delays. There-
fore, tomography uses more observations, which also contain

@ Springer

more a-priori information regarding refractivity in the hori-
zontal domain.

From the theoretical approach to evaluate collocation and
tomography, we provide:

e An analytical analysis of the stochastic models of colloca-
tion. We simplified the models to one dimension, such as
the vertical or one horizonal dimension, and we calculated
the correlation of the signal with respect to distance. Then,
we compared the correlation to the correlation of the NWP
model, which is an independent source. We noticed that
our model approximates well the NWP model behavior;
however, we must be cautious to choose the right correla-
tion lengths.

e An investigation about the formal variances/covariances
of collocation and tomography. We provided the a-priori
errors for a 2D case scenario, where we initially simpli-
fied the models accordingly. Then, we computed a-priori
fields from collocation and tomography for different sim-
ulated scenarios. We can clearly notice how important
it is for tomography to include the a-priori field, as
otherwise many voxels cannot be resolved. The formal
variances/covariances fields of collocation have a much
smaller horizontal and vertical variability compared to
tomography; indeed, much larger differences are visible
for the formal variances/covariances of close voxels for
tomography. Both methods benefit from relying on denser
and better distributed stations.

We provided an experimental investigation of collocation.
In our work, we used two GNSS datasets from two networks
with a very different geometry. The first network is in the
Alpine region in Switzerland, and the second one is in the
URG valley. The first network has a large range of station
heights, while the second one has a much smaller one. In
addition, we used NWP data to simulate zenith and slant
measurements and then considered the NWP refractivities as
ground truth.

e Based on a closed-loop validation using numerical weather
model data, we checked the impact of network resolution
and network heights. As expected, the results verified the
importance of having a very high-resolution network and
stations well-distributed in height.

e For two GNSS scenarios, we provided refractivity fields
and analyzed the residuals (and their signal components).
We visualized how the refractivity fields follow the terrain
at the lowest layer and decrease at the higher altitudes.
Moreover, we noticed that in the URG scenario, the resid-
uals are higher compared to the Valais case. We attribute
this to the fact that the small heights (and height variability)
of the stations in this scenario results in worse estimates
of the scale height. Therefore, in this scenario, we aim to
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capture more structure from the signal. However, if we do
not want to overestimate the signal, we can increase the
standard deviation of the measurements by a factor k, and
thus decrease the signal-to-noise ratio.

Based on simulated zenith and slant delays (from COSMO
data), we performed a test campaign for 2 weeks in August
2016. We computed refractivity fields by means of tomog-
raphy and collocation with a resolution of 3 h. We used
the COSMO-based zenith and slant delays for the GNSS
sub-network in the mountainous area in the Valais, Switzer-
land. Therefore, we compared both methods with the NWP
fields which we considered as ground truth. We noticed that
tomography performs better in terms of bias. However, when
we remove the mean of each height level, both methods
performed similarly (slightly better standard deviations for
collocation). The a-priori field, which is not anecessary infor-
mation for collocation, helps tomography to better estimate
the bias. The overall agreement between the two methods is
afew ppm at the lowest layers (in terms of average difference
over 2 weeks), while above 5 km collocation and tomography
agree very well.

We also evaluated collocation and tomography for a
scenario in 2013, where a weather front arrived over Switzer-
land, for 2 days. The main objective was to understand if both
methods can sense such atmospheric structures. To check
the time series of both methods, we set up a scenario of
8 days, where we used two sub-networks. The first sub-
network is located in the north of Switzerland, with small
heights (and height variations), and the second one is again
the sub-network in the mountainous area of the Valais. Once
more, we utilized the NWP model COSMO to simulate slant
and zenith delays. The general conclusion is that both meth-
ods can sense the water vapor mass, for both sub-networks.
Tomography captures more structures in the north of Switzer-
land compared to collocation. Indeed, due to the low variation
and altitude of GNSS stations in the north of Switzerland,
the scale height parameter is estimated less accurately; using
"true’ COSMO-computed scale heights, we also showed that
the scale heights for NorthCH are less accurate compared
to those of the Valais region. This leads to an over- or
under-estimation of the refractivity by means of collocation.
However, when the weather front arrives, looking at the time
series of estimated refractivities, we notice that collocation
estimates higher refractivity values (although less precisely),
and thus senses the weather front. For the Valais scenario,
where the station heights reach about 4 km, both methods
capture similarly (and relatively well) the refractivity struc-
tures. Our main conclusion is that both methods (tomography
and collocation) can be used to detect such atmospheric struc-
tures.

5 Discussion

Previous works have addressed the effects of GNSS net-
work resolution and height distribution on the solution of
GNSS tomography. (Liu et al. 2019) use NWP observa-
tions to simulate different resolutions of the GNSS network.
They show that increasing the resolution of the network
from 1° to 0.5° improves the results by 11.2%. A resolu-
tion of 0.2° further improves the results by 15% compared
to a 1° resolution network. (Troller 2004; Perler 2012) also
highlight the importance of resolution and good height dis-
tribution of the GNSS stations as an important criterion to
improve the quality of the tomography solution. The tomo-
graphic grid must be appropriately defined considering the
height distribution of GNSS stations, and in addition, errors
can be encountered in the solution if the grid is not fine
enough to represent vertical changes of the water vapor.
(Perler 2012) shows that: a) Higher network resolution can
significantly decrease formal variances/covariances, b) the
height distribution is a key property with a large impact
on the formal accuracy of tomographic solutions, c) a net-
work with well-distributed heights can decrease the formal
variances/covariances limit and d) additional observations
complementary to ground-based GNSS observations help to
improve the vertical resolution in tomography.

Several studies have investigated the benefits of using col-
location and tomography to combine GNSS ground-based
delays with observations that have complementary infor-
mation. One of the most interesting observations that com-
plement ground-based GNSS are GNSS radio occultations,
where refractivity profiles provide information regarding the
vertical structure of the atmosphere. (Xia et al. 2013) use
RO observations to further improve the solution of GNSS
tomography, while in Hurter (2014) and (Shehaj 2023),
simultaneous RO and ground-based GNSS observations are
used to retrieve the refractivity field. Furthermore, to exploit
the high horizontal resolution of InSAR observations, (She-
haj et al. 2020) use collocation to combine the tropospheric
information from GNSS and InSAR. InSAR measurements
hold relative information, i.e., the change of the slant delays
with respect to a reference acquisition and a reference loca-
tion in the image footprint. In other works, such as (Benevides
et al. 2015) and (Zhang et al. 2021), spectrometer data are
introduced to tomography to enhance the accuracy of the
retrieved refractivity field.

This work aims at providing further insights into refrac-
tivity fields retrieved by least-squares collocation and their
possible contributions to weather forecasting models. The
assimilation of GNSS tomography products has been stud-
ied in the previous works. For example, (Hanna et al. 2019)
assimilate tomography products in Weather Research and
Forecast (WRF) model and validate the assimilated prod-
ucts with radiosonde observations. They show improvements
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in forecasting of relative humidity and temperature during
events with heavy precipitation. Positive impacts of tomog-
raphy in weather forecast are also displayed in Trzcina et al.
(2020). Similar investigations are not available for refrac-
tivity fields retrieved by means of collocation. By studying
strengths and weaknesses of collocation and comparing the
collocation-based refractivity fields to tomography-based
ones, we expect this work to give an indication of the value
of collocation to provide 4D information of the tropospheric
constituents to weather forecasts.
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